1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/MC/MCInstBuilder.h"
13 #include "llvm/Support/MathExtras.h"
14 using namespace llvm;
15
getInstSeqCost(RISCVMatInt::InstSeq & Res,bool HasRVC)16 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
17 if (!HasRVC)
18 return Res.size();
19
20 int Cost = 0;
21 for (auto Instr : Res) {
22 // Assume instructions that aren't listed aren't compressible.
23 bool Compressed = false;
24 switch (Instr.getOpcode()) {
25 case RISCV::SLLI:
26 case RISCV::SRLI:
27 Compressed = true;
28 break;
29 case RISCV::ADDI:
30 case RISCV::ADDIW:
31 case RISCV::LUI:
32 Compressed = isInt<6>(Instr.getImm());
33 break;
34 }
35 // Two RVC instructions take the same space as one RVI instruction, but
36 // can take longer to execute than the single RVI instruction. Thus, we
37 // consider that two RVC instruction are slightly more costly than one
38 // RVI instruction. For longer sequences of RVC instructions the space
39 // savings can be worth it, though. The costs below try to model that.
40 if (!Compressed)
41 Cost += 100; // Baseline cost of one RVI instruction: 100%.
42 else
43 Cost += 70; // 70% cost of baseline.
44 }
45 return Cost;
46 }
47
48 // Recursively generate a sequence for materializing an integer.
generateInstSeqImpl(int64_t Val,const MCSubtargetInfo & STI,RISCVMatInt::InstSeq & Res)49 static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
50 RISCVMatInt::InstSeq &Res) {
51 bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
52
53 // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
54 if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
55 (!isInt<32>(Val) || Val == 0x800)) {
56 Res.emplace_back(RISCV::BSETI, Log2_64(Val));
57 return;
58 }
59
60 if (isInt<32>(Val)) {
61 // Depending on the active bits in the immediate Value v, the following
62 // instruction sequences are emitted:
63 //
64 // v == 0 : ADDI
65 // v[0,12) != 0 && v[12,32) == 0 : ADDI
66 // v[0,12) == 0 && v[12,32) != 0 : LUI
67 // v[0,32) != 0 : LUI+ADDI(W)
68 int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
69 int64_t Lo12 = SignExtend64<12>(Val);
70
71 if (Hi20)
72 Res.emplace_back(RISCV::LUI, Hi20);
73
74 if (Lo12 || Hi20 == 0) {
75 unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
76 Res.emplace_back(AddiOpc, Lo12);
77 }
78 return;
79 }
80
81 assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
82
83 // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
84 // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
85 // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
86 // while the following ADDI instructions contribute up to 12 bits each.
87 //
88 // On the first glance, implementing this seems to be possible by simply
89 // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
90 // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
91 // fact that ADDI performs a sign extended addition, doing it like that would
92 // only be possible when at most 11 bits of the ADDI instructions are used.
93 // Using all 12 bits of the ADDI instructions, like done by GAS, actually
94 // requires that the constant is processed starting with the least significant
95 // bit.
96 //
97 // In the following, constants are processed from LSB to MSB but instruction
98 // emission is performed from MSB to LSB by recursively calling
99 // generateInstSeq. In each recursion, first the lowest 12 bits are removed
100 // from the constant and the optimal shift amount, which can be greater than
101 // 12 bits if the constant is sparse, is determined. Then, the shifted
102 // remaining constant is processed recursively and gets emitted as soon as it
103 // fits into 32 bits. The emission of the shifts and additions is subsequently
104 // performed when the recursion returns.
105
106 int64_t Lo12 = SignExtend64<12>(Val);
107 Val = (uint64_t)Val - (uint64_t)Lo12;
108
109 int ShiftAmount = 0;
110 bool Unsigned = false;
111
112 // Val might now be valid for LUI without needing a shift.
113 if (!isInt<32>(Val)) {
114 ShiftAmount = llvm::countr_zero((uint64_t)Val);
115 Val >>= ShiftAmount;
116
117 // If the remaining bits don't fit in 12 bits, we might be able to reduce
118 // the // shift amount in order to use LUI which will zero the lower 12
119 // bits.
120 if (ShiftAmount > 12 && !isInt<12>(Val)) {
121 if (isInt<32>((uint64_t)Val << 12)) {
122 // Reduce the shift amount and add zeros to the LSBs so it will match
123 // LUI.
124 ShiftAmount -= 12;
125 Val = (uint64_t)Val << 12;
126 } else if (isUInt<32>((uint64_t)Val << 12) &&
127 STI.hasFeature(RISCV::FeatureStdExtZba)) {
128 // Reduce the shift amount and add zeros to the LSBs so it will match
129 // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
130 ShiftAmount -= 12;
131 Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
132 Unsigned = true;
133 }
134 }
135
136 // Try to use SLLI_UW for Val when it is uint32 but not int32.
137 if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
138 STI.hasFeature(RISCV::FeatureStdExtZba)) {
139 // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
140 // SLLI_UW.
141 Val = ((uint64_t)Val) | (0xffffffffull << 32);
142 Unsigned = true;
143 }
144 }
145
146 generateInstSeqImpl(Val, STI, Res);
147
148 // Skip shift if we were able to use LUI directly.
149 if (ShiftAmount) {
150 unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
151 Res.emplace_back(Opc, ShiftAmount);
152 }
153
154 if (Lo12)
155 Res.emplace_back(RISCV::ADDI, Lo12);
156 }
157
extractRotateInfo(int64_t Val)158 static unsigned extractRotateInfo(int64_t Val) {
159 // for case: 0b111..1..xxxxxx1..1..
160 unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
161 unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
162 if (TrailingOnes > 0 && TrailingOnes < 64 &&
163 (LeadingOnes + TrailingOnes) > (64 - 12))
164 return 64 - TrailingOnes;
165
166 // for case: 0bxxx1..1..1...xxx
167 unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
168 unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
169 if (UpperTrailingOnes < 32 &&
170 (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
171 return 32 - UpperTrailingOnes;
172
173 return 0;
174 }
175
generateInstSeqLeadingZeros(int64_t Val,const MCSubtargetInfo & STI,RISCVMatInt::InstSeq & Res)176 static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
177 RISCVMatInt::InstSeq &Res) {
178 assert(Val > 0 && "Expected postive val");
179
180 unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
181 uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
182 // Fill in the bits that will be shifted out with 1s. An example where this
183 // helps is trailing one masks with 32 or more ones. This will generate
184 // ADDI -1 and an SRLI.
185 ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
186
187 RISCVMatInt::InstSeq TmpSeq;
188 generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
189
190 // Keep the new sequence if it is an improvement or the original is empty.
191 if ((TmpSeq.size() + 1) < Res.size() ||
192 (Res.empty() && TmpSeq.size() < 8)) {
193 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
194 Res = TmpSeq;
195 }
196
197 // Some cases can benefit from filling the lower bits with zeros instead.
198 ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
199 TmpSeq.clear();
200 generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
201
202 // Keep the new sequence if it is an improvement or the original is empty.
203 if ((TmpSeq.size() + 1) < Res.size() ||
204 (Res.empty() && TmpSeq.size() < 8)) {
205 TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
206 Res = TmpSeq;
207 }
208
209 // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
210 // the end of the sequence.
211 if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
212 // Try replacing upper bits with 1.
213 uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
214 TmpSeq.clear();
215 generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
216
217 // Keep the new sequence if it is an improvement.
218 if ((TmpSeq.size() + 1) < Res.size() ||
219 (Res.empty() && TmpSeq.size() < 8)) {
220 TmpSeq.emplace_back(RISCV::ADD_UW, 0);
221 Res = TmpSeq;
222 }
223 }
224 }
225
226 namespace llvm::RISCVMatInt {
generateInstSeq(int64_t Val,const MCSubtargetInfo & STI)227 InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
228 RISCVMatInt::InstSeq Res;
229 generateInstSeqImpl(Val, STI, Res);
230
231 // If the low 12 bits are non-zero, the first expansion may end with an ADDI
232 // or ADDIW. If there are trailing zeros, try generating a sign extended
233 // constant with no trailing zeros and use a final SLLI to restore them.
234 if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
235 unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
236 int64_t ShiftedVal = Val >> TrailingZeros;
237 // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
238 // its more compressible. But only if LUI+ADDI(W) isn't fusable.
239 // NOTE: We don't check for C extension to minimize differences in generated
240 // code.
241 bool IsShiftedCompressible =
242 isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
243 RISCVMatInt::InstSeq TmpSeq;
244 generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
245
246 // Keep the new sequence if it is an improvement.
247 if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
248 TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
249 Res = TmpSeq;
250 }
251 }
252
253 // If we have a 1 or 2 instruction sequence this is the best we can do. This
254 // will always be true for RV32 and will often be true for RV64.
255 if (Res.size() <= 2)
256 return Res;
257
258 assert(STI.hasFeature(RISCV::Feature64Bit) &&
259 "Expected RV32 to only need 2 instructions");
260
261 // If the lower 13 bits are something like 0x17ff, try to add 1 to change the
262 // lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
263 // of the sequence. Call generateInstSeqImpl on the new constant which may
264 // subtract 0xfffffffffffff800 to create another ADDI. This will leave a
265 // constant with more than 12 trailing zeros for the next recursive step.
266 if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
267 int64_t Imm12 = -(0x800 - (Val & 0xfff));
268 int64_t AdjustedVal = Val - Imm12;
269 RISCVMatInt::InstSeq TmpSeq;
270 generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
271
272 // Keep the new sequence if it is an improvement.
273 if ((TmpSeq.size() + 1) < Res.size()) {
274 TmpSeq.emplace_back(RISCV::ADDI, Imm12);
275 Res = TmpSeq;
276 }
277 }
278
279 // If the constant is positive we might be able to generate a shifted constant
280 // with no leading zeros and use a final SRLI to restore them.
281 if (Val > 0 && Res.size() > 2) {
282 generateInstSeqLeadingZeros(Val, STI, Res);
283 }
284
285 // If the constant is negative, trying inverting and using our trailing zero
286 // optimizations. Use an xori to invert the final value.
287 if (Val < 0 && Res.size() > 3) {
288 uint64_t InvertedVal = ~(uint64_t)Val;
289 RISCVMatInt::InstSeq TmpSeq;
290 generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
291
292 // Keep it if we found a sequence that is smaller after inverting.
293 if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
294 TmpSeq.emplace_back(RISCV::XORI, -1);
295 Res = TmpSeq;
296 }
297 }
298
299 // If the Low and High halves are the same, use pack. The pack instruction
300 // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
301 // lower half and rs2 in the upper half.
302 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
303 int64_t LoVal = SignExtend64<32>(Val);
304 int64_t HiVal = SignExtend64<32>(Val >> 32);
305 if (LoVal == HiVal) {
306 RISCVMatInt::InstSeq TmpSeq;
307 generateInstSeqImpl(LoVal, STI, TmpSeq);
308 if ((TmpSeq.size() + 1) < Res.size()) {
309 TmpSeq.emplace_back(RISCV::PACK, 0);
310 Res = TmpSeq;
311 }
312 }
313 }
314
315 // Perform optimization with BSETI in the Zbs extension.
316 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
317 // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to zero.
318 // Xor that with original value to get which bits should be set by BSETI.
319 uint64_t Lo = Val & 0x7fffffff;
320 uint64_t Hi = Val ^ Lo;
321 assert(Hi != 0);
322 RISCVMatInt::InstSeq TmpSeq;
323
324 if (Lo != 0)
325 generateInstSeqImpl(Lo, STI, TmpSeq);
326
327 if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
328 do {
329 TmpSeq.emplace_back(RISCV::BSETI, llvm::countr_zero(Hi));
330 Hi &= (Hi - 1); // Clear lowest set bit.
331 } while (Hi != 0);
332 Res = TmpSeq;
333 }
334 }
335
336 // Perform optimization with BCLRI in the Zbs extension.
337 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
338 // Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to one.
339 // Xor that with original value to get which bits should be cleared by
340 // BCLRI.
341 uint64_t Lo = Val | 0xffffffff80000000;
342 uint64_t Hi = Val ^ Lo;
343 assert(Hi != 0);
344
345 RISCVMatInt::InstSeq TmpSeq;
346 generateInstSeqImpl(Lo, STI, TmpSeq);
347
348 if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
349 do {
350 TmpSeq.emplace_back(RISCV::BCLRI, llvm::countr_zero(Hi));
351 Hi &= (Hi - 1); // Clear lowest set bit.
352 } while (Hi != 0);
353 Res = TmpSeq;
354 }
355 }
356
357 // Perform optimization with SH*ADD in the Zba extension.
358 if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
359 int64_t Div = 0;
360 unsigned Opc = 0;
361 RISCVMatInt::InstSeq TmpSeq;
362 // Select the opcode and divisor.
363 if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
364 Div = 3;
365 Opc = RISCV::SH1ADD;
366 } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
367 Div = 5;
368 Opc = RISCV::SH2ADD;
369 } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
370 Div = 9;
371 Opc = RISCV::SH3ADD;
372 }
373 // Build the new instruction sequence.
374 if (Div > 0) {
375 generateInstSeqImpl(Val / Div, STI, TmpSeq);
376 if ((TmpSeq.size() + 1) < Res.size()) {
377 TmpSeq.emplace_back(Opc, 0);
378 Res = TmpSeq;
379 }
380 } else {
381 // Try to use LUI+SH*ADD+ADDI.
382 int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
383 int64_t Lo12 = SignExtend64<12>(Val);
384 Div = 0;
385 if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
386 Div = 3;
387 Opc = RISCV::SH1ADD;
388 } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
389 Div = 5;
390 Opc = RISCV::SH2ADD;
391 } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
392 Div = 9;
393 Opc = RISCV::SH3ADD;
394 }
395 // Build the new instruction sequence.
396 if (Div > 0) {
397 // For Val that has zero Lo12 (implies Val equals to Hi52) should has
398 // already been processed to LUI+SH*ADD by previous optimization.
399 assert(Lo12 != 0 &&
400 "unexpected instruction sequence for immediate materialisation");
401 assert(TmpSeq.empty() && "Expected empty TmpSeq");
402 generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
403 if ((TmpSeq.size() + 2) < Res.size()) {
404 TmpSeq.emplace_back(Opc, 0);
405 TmpSeq.emplace_back(RISCV::ADDI, Lo12);
406 Res = TmpSeq;
407 }
408 }
409 }
410 }
411
412 // Perform optimization with rori in the Zbb and th.srri in the XTheadBb
413 // extension.
414 if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
415 STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
416 if (unsigned Rotate = extractRotateInfo(Val)) {
417 RISCVMatInt::InstSeq TmpSeq;
418 uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
419 assert(isInt<12>(NegImm12));
420 TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
421 TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
422 ? RISCV::RORI
423 : RISCV::TH_SRRI,
424 Rotate);
425 Res = TmpSeq;
426 }
427 }
428 return Res;
429 }
430
generateMCInstSeq(int64_t Val,const MCSubtargetInfo & STI,MCRegister DestReg,SmallVectorImpl<MCInst> & Insts)431 void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI,
432 MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) {
433 RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI);
434
435 MCRegister SrcReg = RISCV::X0;
436 for (RISCVMatInt::Inst &Inst : Seq) {
437 switch (Inst.getOpndKind()) {
438 case RISCVMatInt::Imm:
439 Insts.push_back(MCInstBuilder(Inst.getOpcode())
440 .addReg(DestReg)
441 .addImm(Inst.getImm()));
442 break;
443 case RISCVMatInt::RegX0:
444 Insts.push_back(MCInstBuilder(Inst.getOpcode())
445 .addReg(DestReg)
446 .addReg(SrcReg)
447 .addReg(RISCV::X0));
448 break;
449 case RISCVMatInt::RegReg:
450 Insts.push_back(MCInstBuilder(Inst.getOpcode())
451 .addReg(DestReg)
452 .addReg(SrcReg)
453 .addReg(SrcReg));
454 break;
455 case RISCVMatInt::RegImm:
456 Insts.push_back(MCInstBuilder(Inst.getOpcode())
457 .addReg(DestReg)
458 .addReg(SrcReg)
459 .addImm(Inst.getImm()));
460 break;
461 }
462
463 // Only the first instruction has X0 as its source.
464 SrcReg = DestReg;
465 }
466 }
467
generateTwoRegInstSeq(int64_t Val,const MCSubtargetInfo & STI,unsigned & ShiftAmt,unsigned & AddOpc)468 InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
469 unsigned &ShiftAmt, unsigned &AddOpc) {
470 int64_t LoVal = SignExtend64<32>(Val);
471 if (LoVal == 0)
472 return RISCVMatInt::InstSeq();
473
474 // Subtract the LoVal to emulate the effect of the final ADD.
475 uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
476 assert(Tmp != 0);
477
478 // Use trailing zero counts to figure how far we need to shift LoVal to line
479 // up with the remaining constant.
480 // TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
481 // final constant come from LoVal.
482 unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
483 unsigned TzHi = llvm::countr_zero(Tmp);
484 assert(TzLo < 32 && TzHi >= 32);
485 ShiftAmt = TzHi - TzLo;
486 AddOpc = RISCV::ADD;
487
488 if (Tmp == ((uint64_t)LoVal << ShiftAmt))
489 return RISCVMatInt::generateInstSeq(LoVal, STI);
490
491 // If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
492 if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
493 ShiftAmt = 32;
494 AddOpc = RISCV::ADD_UW;
495 return RISCVMatInt::generateInstSeq(LoVal, STI);
496 }
497
498 return RISCVMatInt::InstSeq();
499 }
500
getIntMatCost(const APInt & Val,unsigned Size,const MCSubtargetInfo & STI,bool CompressionCost,bool FreeZeroes)501 int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
502 bool CompressionCost, bool FreeZeroes) {
503 bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
504 bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
505 STI.hasFeature(RISCV::FeatureStdExtZca));
506 int PlatRegSize = IsRV64 ? 64 : 32;
507
508 // Split the constant into platform register sized chunks, and calculate cost
509 // of each chunk.
510 int Cost = 0;
511 for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
512 APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
513 if (FreeZeroes && Chunk.getSExtValue() == 0)
514 continue;
515 InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
516 Cost += getInstSeqCost(MatSeq, HasRVC);
517 }
518 return std::max(FreeZeroes ? 0 : 1, Cost);
519 }
520
getOpndKind() const521 OpndKind Inst::getOpndKind() const {
522 switch (Opc) {
523 default:
524 llvm_unreachable("Unexpected opcode!");
525 case RISCV::LUI:
526 return RISCVMatInt::Imm;
527 case RISCV::ADD_UW:
528 return RISCVMatInt::RegX0;
529 case RISCV::SH1ADD:
530 case RISCV::SH2ADD:
531 case RISCV::SH3ADD:
532 case RISCV::PACK:
533 return RISCVMatInt::RegReg;
534 case RISCV::ADDI:
535 case RISCV::ADDIW:
536 case RISCV::XORI:
537 case RISCV::SLLI:
538 case RISCV::SRLI:
539 case RISCV::SLLI_UW:
540 case RISCV::RORI:
541 case RISCV::BSETI:
542 case RISCV::BCLRI:
543 case RISCV::TH_SRRI:
544 return RISCVMatInt::RegImm;
545 }
546 }
547
548 } // namespace llvm::RISCVMatInt
549