1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCXXABI.h"
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/CodeGenOptions.h"
20 #include "clang/CodeGen/CGFunctionInfo.h"
21 #include "clang/CodeGen/ConstantInitBuilder.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/Format.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25 #include <algorithm>
26 #include <cstdio>
27 #include <utility>
28
29 using namespace clang;
30 using namespace CodeGen;
31
CodeGenVTables(CodeGenModule & CGM)32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
34
GetAddrOfThunk(StringRef Name,llvm::Type * FnTy,GlobalDecl GD)35 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
36 GlobalDecl GD) {
37 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
38 /*DontDefer=*/true, /*IsThunk=*/true);
39 }
40
setThunkProperties(CodeGenModule & CGM,const ThunkInfo & Thunk,llvm::Function * ThunkFn,bool ForVTable,GlobalDecl GD)41 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
42 llvm::Function *ThunkFn, bool ForVTable,
43 GlobalDecl GD) {
44 CGM.setFunctionLinkage(GD, ThunkFn);
45 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
46 !Thunk.Return.isEmpty());
47
48 // Set the right visibility.
49 CGM.setGVProperties(ThunkFn, GD);
50
51 if (!CGM.getCXXABI().exportThunk()) {
52 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
53 ThunkFn->setDSOLocal(true);
54 }
55
56 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
57 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
58 }
59
60 #ifndef NDEBUG
similar(const ABIArgInfo & infoL,CanQualType typeL,const ABIArgInfo & infoR,CanQualType typeR)61 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
62 const ABIArgInfo &infoR, CanQualType typeR) {
63 return (infoL.getKind() == infoR.getKind() &&
64 (typeL == typeR ||
65 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
66 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
67 }
68 #endif
69
PerformReturnAdjustment(CodeGenFunction & CGF,QualType ResultType,RValue RV,const ThunkInfo & Thunk)70 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
71 QualType ResultType, RValue RV,
72 const ThunkInfo &Thunk) {
73 // Emit the return adjustment.
74 bool NullCheckValue = !ResultType->isReferenceType();
75
76 llvm::BasicBlock *AdjustNull = nullptr;
77 llvm::BasicBlock *AdjustNotNull = nullptr;
78 llvm::BasicBlock *AdjustEnd = nullptr;
79
80 llvm::Value *ReturnValue = RV.getScalarVal();
81
82 if (NullCheckValue) {
83 AdjustNull = CGF.createBasicBlock("adjust.null");
84 AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
85 AdjustEnd = CGF.createBasicBlock("adjust.end");
86
87 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
88 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
89 CGF.EmitBlock(AdjustNotNull);
90 }
91
92 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
93 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
94 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(
95 CGF,
96 Address(ReturnValue, CGF.ConvertTypeForMem(ResultType->getPointeeType()),
97 ClassAlign),
98 ClassDecl, Thunk.Return);
99
100 if (NullCheckValue) {
101 CGF.Builder.CreateBr(AdjustEnd);
102 CGF.EmitBlock(AdjustNull);
103 CGF.Builder.CreateBr(AdjustEnd);
104 CGF.EmitBlock(AdjustEnd);
105
106 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
107 PHI->addIncoming(ReturnValue, AdjustNotNull);
108 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
109 AdjustNull);
110 ReturnValue = PHI;
111 }
112
113 return RValue::get(ReturnValue);
114 }
115
116 /// This function clones a function's DISubprogram node and enters it into
117 /// a value map with the intent that the map can be utilized by the cloner
118 /// to short-circuit Metadata node mapping.
119 /// Furthermore, the function resolves any DILocalVariable nodes referenced
120 /// by dbg.value intrinsics so they can be properly mapped during cloning.
resolveTopLevelMetadata(llvm::Function * Fn,llvm::ValueToValueMapTy & VMap)121 static void resolveTopLevelMetadata(llvm::Function *Fn,
122 llvm::ValueToValueMapTy &VMap) {
123 // Clone the DISubprogram node and put it into the Value map.
124 auto *DIS = Fn->getSubprogram();
125 if (!DIS)
126 return;
127 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
128 VMap.MD()[DIS].reset(NewDIS);
129
130 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
131 // they are referencing.
132 for (auto &BB : *Fn) {
133 for (auto &I : BB) {
134 for (llvm::DbgVariableRecord &DVR :
135 llvm::filterDbgVars(I.getDbgRecordRange())) {
136 auto *DILocal = DVR.getVariable();
137 if (!DILocal->isResolved())
138 DILocal->resolve();
139 }
140 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
141 auto *DILocal = DII->getVariable();
142 if (!DILocal->isResolved())
143 DILocal->resolve();
144 }
145 }
146 }
147 }
148
149 // This function does roughly the same thing as GenerateThunk, but in a
150 // very different way, so that va_start and va_end work correctly.
151 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
152 // a function, and that there is an alloca built in the entry block
153 // for all accesses to "this".
154 // FIXME: This function assumes there is only one "ret" statement per function.
155 // FIXME: Cloning isn't correct in the presence of indirect goto!
156 // FIXME: This implementation of thunks bloats codesize by duplicating the
157 // function definition. There are alternatives:
158 // 1. Add some sort of stub support to LLVM for cases where we can
159 // do a this adjustment, then a sibcall.
160 // 2. We could transform the definition to take a va_list instead of an
161 // actual variable argument list, then have the thunks (including a
162 // no-op thunk for the regular definition) call va_start/va_end.
163 // There's a bit of per-call overhead for this solution, but it's
164 // better for codesize if the definition is long.
165 llvm::Function *
GenerateVarArgsThunk(llvm::Function * Fn,const CGFunctionInfo & FnInfo,GlobalDecl GD,const ThunkInfo & Thunk)166 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
167 const CGFunctionInfo &FnInfo,
168 GlobalDecl GD, const ThunkInfo &Thunk) {
169 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
170 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
171 QualType ResultType = FPT->getReturnType();
172
173 // Get the original function
174 assert(FnInfo.isVariadic());
175 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
176 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
177 llvm::Function *BaseFn = cast<llvm::Function>(Callee);
178
179 // Cloning can't work if we don't have a definition. The Microsoft ABI may
180 // require thunks when a definition is not available. Emit an error in these
181 // cases.
182 if (!MD->isDefined()) {
183 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments");
184 return Fn;
185 }
186 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method");
187
188 // Clone to thunk.
189 llvm::ValueToValueMapTy VMap;
190
191 // We are cloning a function while some Metadata nodes are still unresolved.
192 // Ensure that the value mapper does not encounter any of them.
193 resolveTopLevelMetadata(BaseFn, VMap);
194 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
195 Fn->replaceAllUsesWith(NewFn);
196 NewFn->takeName(Fn);
197 Fn->eraseFromParent();
198 Fn = NewFn;
199
200 // "Initialize" CGF (minimally).
201 CurFn = Fn;
202
203 // Get the "this" value
204 llvm::Function::arg_iterator AI = Fn->arg_begin();
205 if (CGM.ReturnTypeUsesSRet(FnInfo))
206 ++AI;
207
208 // Find the first store of "this", which will be to the alloca associated
209 // with "this".
210 Address ThisPtr = makeNaturalAddressForPointer(
211 &*AI, MD->getFunctionObjectParameterType(),
212 CGM.getClassPointerAlignment(MD->getParent()));
213 llvm::BasicBlock *EntryBB = &Fn->front();
214 llvm::BasicBlock::iterator ThisStore =
215 llvm::find_if(*EntryBB, [&](llvm::Instruction &I) {
216 return isa<llvm::StoreInst>(I) && I.getOperand(0) == &*AI;
217 });
218 assert(ThisStore != EntryBB->end() &&
219 "Store of this should be in entry block?");
220 // Adjust "this", if necessary.
221 Builder.SetInsertPoint(&*ThisStore);
222
223 const CXXRecordDecl *ThisValueClass = Thunk.ThisType->getPointeeCXXRecordDecl();
224 llvm::Value *AdjustedThisPtr = CGM.getCXXABI().performThisAdjustment(
225 *this, ThisPtr, ThisValueClass, Thunk);
226 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr,
227 ThisStore->getOperand(0)->getType());
228 ThisStore->setOperand(0, AdjustedThisPtr);
229
230 if (!Thunk.Return.isEmpty()) {
231 // Fix up the returned value, if necessary.
232 for (llvm::BasicBlock &BB : *Fn) {
233 llvm::Instruction *T = BB.getTerminator();
234 if (isa<llvm::ReturnInst>(T)) {
235 RValue RV = RValue::get(T->getOperand(0));
236 T->eraseFromParent();
237 Builder.SetInsertPoint(&BB);
238 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
239 Builder.CreateRet(RV.getScalarVal());
240 break;
241 }
242 }
243 }
244
245 return Fn;
246 }
247
StartThunk(llvm::Function * Fn,GlobalDecl GD,const CGFunctionInfo & FnInfo,bool IsUnprototyped)248 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
249 const CGFunctionInfo &FnInfo,
250 bool IsUnprototyped) {
251 assert(!CurGD.getDecl() && "CurGD was already set!");
252 CurGD = GD;
253 CurFuncIsThunk = true;
254
255 // Build FunctionArgs.
256 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
257 QualType ThisType = MD->getThisType();
258 QualType ResultType;
259 if (IsUnprototyped)
260 ResultType = CGM.getContext().VoidTy;
261 else if (CGM.getCXXABI().HasThisReturn(GD))
262 ResultType = ThisType;
263 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
264 ResultType = CGM.getContext().VoidPtrTy;
265 else
266 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType();
267 FunctionArgList FunctionArgs;
268
269 // Create the implicit 'this' parameter declaration.
270 CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
271
272 // Add the rest of the parameters, if we have a prototype to work with.
273 if (!IsUnprototyped) {
274 FunctionArgs.append(MD->param_begin(), MD->param_end());
275
276 if (isa<CXXDestructorDecl>(MD))
277 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
278 FunctionArgs);
279 }
280
281 // Start defining the function.
282 auto NL = ApplyDebugLocation::CreateEmpty(*this);
283 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
284 MD->getLocation());
285 // Create a scope with an artificial location for the body of this function.
286 auto AL = ApplyDebugLocation::CreateArtificial(*this);
287
288 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
289 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
290 CXXThisValue = CXXABIThisValue;
291 CurCodeDecl = MD;
292 CurFuncDecl = MD;
293 }
294
FinishThunk()295 void CodeGenFunction::FinishThunk() {
296 // Clear these to restore the invariants expected by
297 // StartFunction/FinishFunction.
298 CurCodeDecl = nullptr;
299 CurFuncDecl = nullptr;
300
301 FinishFunction();
302 }
303
EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,const ThunkInfo * Thunk,bool IsUnprototyped)304 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
305 const ThunkInfo *Thunk,
306 bool IsUnprototyped) {
307 assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
308 "Please use a new CGF for this thunk");
309 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
310
311 // Adjust the 'this' pointer if necessary
312 const CXXRecordDecl *ThisValueClass =
313 MD->getThisType()->getPointeeCXXRecordDecl();
314 if (Thunk)
315 ThisValueClass = Thunk->ThisType->getPointeeCXXRecordDecl();
316
317 llvm::Value *AdjustedThisPtr =
318 Thunk ? CGM.getCXXABI().performThisAdjustment(*this, LoadCXXThisAddress(),
319 ThisValueClass, *Thunk)
320 : LoadCXXThis();
321
322 // If perfect forwarding is required a variadic method, a method using
323 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this
324 // thunk requires a return adjustment, since that is impossible with musttail.
325 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) {
326 if (Thunk && !Thunk->Return.isEmpty()) {
327 if (IsUnprototyped)
328 CGM.ErrorUnsupported(
329 MD, "return-adjusting thunk with incomplete parameter type");
330 else if (CurFnInfo->isVariadic())
331 llvm_unreachable("shouldn't try to emit musttail return-adjusting "
332 "thunks for variadic functions");
333 else
334 CGM.ErrorUnsupported(
335 MD, "non-trivial argument copy for return-adjusting thunk");
336 }
337 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
338 return;
339 }
340
341 // Start building CallArgs.
342 CallArgList CallArgs;
343 QualType ThisType = MD->getThisType();
344 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
345
346 if (isa<CXXDestructorDecl>(MD))
347 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
348
349 #ifndef NDEBUG
350 unsigned PrefixArgs = CallArgs.size() - 1;
351 #endif
352 // Add the rest of the arguments.
353 for (const ParmVarDecl *PD : MD->parameters())
354 EmitDelegateCallArg(CallArgs, PD, SourceLocation());
355
356 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
357
358 #ifndef NDEBUG
359 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
360 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
361 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
362 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
363 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
364 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
365 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
366 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
367 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
368 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
369 assert(similar(CallFnInfo.arg_begin()[i].info,
370 CallFnInfo.arg_begin()[i].type,
371 CurFnInfo->arg_begin()[i].info,
372 CurFnInfo->arg_begin()[i].type));
373 #endif
374
375 // Determine whether we have a return value slot to use.
376 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
377 ? ThisType
378 : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
379 ? CGM.getContext().VoidPtrTy
380 : FPT->getReturnType();
381 ReturnValueSlot Slot;
382 if (!ResultType->isVoidType() &&
383 (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect ||
384 hasAggregateEvaluationKind(ResultType)))
385 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(),
386 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
387
388 // Now emit our call.
389 llvm::CallBase *CallOrInvoke;
390 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
391 CallArgs, &CallOrInvoke);
392
393 // Consider return adjustment if we have ThunkInfo.
394 if (Thunk && !Thunk->Return.isEmpty())
395 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
396 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
397 Call->setTailCallKind(llvm::CallInst::TCK_Tail);
398
399 // Emit return.
400 if (!ResultType->isVoidType() && Slot.isNull())
401 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
402
403 // Disable the final ARC autorelease.
404 AutoreleaseResult = false;
405
406 FinishThunk();
407 }
408
EmitMustTailThunk(GlobalDecl GD,llvm::Value * AdjustedThisPtr,llvm::FunctionCallee Callee)409 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
410 llvm::Value *AdjustedThisPtr,
411 llvm::FunctionCallee Callee) {
412 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
413 // to translate AST arguments into LLVM IR arguments. For thunks, we know
414 // that the caller prototype more or less matches the callee prototype with
415 // the exception of 'this'.
416 SmallVector<llvm::Value *, 8> Args(llvm::make_pointer_range(CurFn->args()));
417
418 // Set the adjusted 'this' pointer.
419 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
420 if (ThisAI.isDirect()) {
421 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
422 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
423 llvm::Type *ThisType = Args[ThisArgNo]->getType();
424 if (ThisType != AdjustedThisPtr->getType())
425 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
426 Args[ThisArgNo] = AdjustedThisPtr;
427 } else {
428 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
429 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
430 llvm::Type *ThisType = ThisAddr.getElementType();
431 if (ThisType != AdjustedThisPtr->getType())
432 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
433 Builder.CreateStore(AdjustedThisPtr, ThisAddr);
434 }
435
436 // Emit the musttail call manually. Even if the prologue pushed cleanups, we
437 // don't actually want to run them.
438 llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
439 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
440
441 // Apply the standard set of call attributes.
442 unsigned CallingConv;
443 llvm::AttributeList Attrs;
444 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
445 Attrs, CallingConv, /*AttrOnCallSite=*/true,
446 /*IsThunk=*/false);
447 Call->setAttributes(Attrs);
448 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
449
450 if (Call->getType()->isVoidTy())
451 Builder.CreateRetVoid();
452 else
453 Builder.CreateRet(Call);
454
455 // Finish the function to maintain CodeGenFunction invariants.
456 // FIXME: Don't emit unreachable code.
457 EmitBlock(createBasicBlock());
458
459 FinishThunk();
460 }
461
generateThunk(llvm::Function * Fn,const CGFunctionInfo & FnInfo,GlobalDecl GD,const ThunkInfo & Thunk,bool IsUnprototyped)462 void CodeGenFunction::generateThunk(llvm::Function *Fn,
463 const CGFunctionInfo &FnInfo, GlobalDecl GD,
464 const ThunkInfo &Thunk,
465 bool IsUnprototyped) {
466 StartThunk(Fn, GD, FnInfo, IsUnprototyped);
467 // Create a scope with an artificial location for the body of this function.
468 auto AL = ApplyDebugLocation::CreateArtificial(*this);
469
470 // Get our callee. Use a placeholder type if this method is unprototyped so
471 // that CodeGenModule doesn't try to set attributes.
472 llvm::Type *Ty;
473 if (IsUnprototyped)
474 Ty = llvm::StructType::get(getLLVMContext());
475 else
476 Ty = CGM.getTypes().GetFunctionType(FnInfo);
477
478 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
479
480 // Make the call and return the result.
481 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
482 &Thunk, IsUnprototyped);
483 }
484
shouldEmitVTableThunk(CodeGenModule & CGM,const CXXMethodDecl * MD,bool IsUnprototyped,bool ForVTable)485 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
486 bool IsUnprototyped, bool ForVTable) {
487 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
488 // provide thunks for us.
489 if (CGM.getTarget().getCXXABI().isMicrosoft())
490 return true;
491
492 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
493 // definitions of the main method. Therefore, emitting thunks with the vtable
494 // is purely an optimization. Emit the thunk if optimizations are enabled and
495 // all of the parameter types are complete.
496 if (ForVTable)
497 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
498
499 // Always emit thunks along with the method definition.
500 return true;
501 }
502
maybeEmitThunk(GlobalDecl GD,const ThunkInfo & TI,bool ForVTable)503 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
504 const ThunkInfo &TI,
505 bool ForVTable) {
506 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
507
508 // First, get a declaration. Compute the mangled name. Don't worry about
509 // getting the function prototype right, since we may only need this
510 // declaration to fill in a vtable slot.
511 SmallString<256> Name;
512 MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
513 llvm::raw_svector_ostream Out(Name);
514
515 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
516 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI,
517 /* elideOverrideInfo */ false, Out);
518 } else
519 MCtx.mangleThunk(MD, TI, /* elideOverrideInfo */ false, Out);
520
521 if (CGM.getContext().useAbbreviatedThunkName(GD, Name.str())) {
522 Name = "";
523 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
524 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI,
525 /* elideOverrideInfo */ true, Out);
526 else
527 MCtx.mangleThunk(MD, TI, /* elideOverrideInfo */ true, Out);
528 }
529
530 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
531 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
532
533 // If we don't need to emit a definition, return this declaration as is.
534 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
535 MD->getType()->castAs<FunctionType>());
536 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
537 return Thunk;
538
539 // Arrange a function prototype appropriate for a function definition. In some
540 // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
541 const CGFunctionInfo &FnInfo =
542 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
543 : CGM.getTypes().arrangeGlobalDeclaration(GD);
544 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
545
546 // If the type of the underlying GlobalValue is wrong, we'll have to replace
547 // it. It should be a declaration.
548 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
549 if (ThunkFn->getFunctionType() != ThunkFnTy) {
550 llvm::GlobalValue *OldThunkFn = ThunkFn;
551
552 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
553
554 // Remove the name from the old thunk function and get a new thunk.
555 OldThunkFn->setName(StringRef());
556 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
557 Name.str(), &CGM.getModule());
558 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
559
560 if (!OldThunkFn->use_empty()) {
561 OldThunkFn->replaceAllUsesWith(ThunkFn);
562 }
563
564 // Remove the old thunk.
565 OldThunkFn->eraseFromParent();
566 }
567
568 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
569 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
570
571 if (!ThunkFn->isDeclaration()) {
572 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
573 // There is already a thunk emitted for this function, do nothing.
574 return ThunkFn;
575 }
576
577 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
578 return ThunkFn;
579 }
580
581 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
582 // that the return type is meaningless. These thunks can be used to call
583 // functions with differing return types, and the caller is required to cast
584 // the prototype appropriately to extract the correct value.
585 if (IsUnprototyped)
586 ThunkFn->addFnAttr("thunk");
587
588 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
589
590 // Thunks for variadic methods are special because in general variadic
591 // arguments cannot be perfectly forwarded. In the general case, clang
592 // implements such thunks by cloning the original function body. However, for
593 // thunks with no return adjustment on targets that support musttail, we can
594 // use musttail to perfectly forward the variadic arguments.
595 bool ShouldCloneVarArgs = false;
596 if (!IsUnprototyped && ThunkFn->isVarArg()) {
597 ShouldCloneVarArgs = true;
598 if (TI.Return.isEmpty()) {
599 switch (CGM.getTriple().getArch()) {
600 case llvm::Triple::x86_64:
601 case llvm::Triple::x86:
602 case llvm::Triple::aarch64:
603 ShouldCloneVarArgs = false;
604 break;
605 default:
606 break;
607 }
608 }
609 }
610
611 if (ShouldCloneVarArgs) {
612 if (UseAvailableExternallyLinkage)
613 return ThunkFn;
614 ThunkFn =
615 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI);
616 } else {
617 // Normal thunk body generation.
618 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
619 }
620
621 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
622 return ThunkFn;
623 }
624
EmitThunks(GlobalDecl GD)625 void CodeGenVTables::EmitThunks(GlobalDecl GD) {
626 const CXXMethodDecl *MD =
627 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
628
629 // We don't need to generate thunks for the base destructor.
630 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
631 return;
632
633 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
634 VTContext->getThunkInfo(GD);
635
636 if (!ThunkInfoVector)
637 return;
638
639 for (const ThunkInfo& Thunk : *ThunkInfoVector)
640 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
641 }
642
addRelativeComponent(ConstantArrayBuilder & builder,llvm::Constant * component,unsigned vtableAddressPoint,bool vtableHasLocalLinkage,bool isCompleteDtor) const643 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder,
644 llvm::Constant *component,
645 unsigned vtableAddressPoint,
646 bool vtableHasLocalLinkage,
647 bool isCompleteDtor) const {
648 // No need to get the offset of a nullptr.
649 if (component->isNullValue())
650 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0));
651
652 auto *globalVal =
653 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases());
654 llvm::Module &module = CGM.getModule();
655
656 // We don't want to copy the linkage of the vtable exactly because we still
657 // want the stub/proxy to be emitted for properly calculating the offset.
658 // Examples where there would be no symbol emitted are available_externally
659 // and private linkages.
660 //
661 // `internal` linkage results in STB_LOCAL Elf binding while still manifesting a
662 // local symbol.
663 //
664 // `linkonce_odr` linkage results in a STB_DEFAULT Elf binding but also allows for
665 // the rtti_proxy to be transparently replaced with a GOTPCREL reloc by a
666 // target that supports this replacement.
667 auto stubLinkage = vtableHasLocalLinkage
668 ? llvm::GlobalValue::InternalLinkage
669 : llvm::GlobalValue::LinkOnceODRLinkage;
670
671 llvm::Constant *target;
672 if (auto *func = dyn_cast<llvm::Function>(globalVal)) {
673 target = llvm::DSOLocalEquivalent::get(func);
674 } else {
675 llvm::SmallString<16> rttiProxyName(globalVal->getName());
676 rttiProxyName.append(".rtti_proxy");
677
678 // The RTTI component may not always be emitted in the same linkage unit as
679 // the vtable. As a general case, we can make a dso_local proxy to the RTTI
680 // that points to the actual RTTI struct somewhere. This will result in a
681 // GOTPCREL relocation when taking the relative offset to the proxy.
682 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName);
683 if (!proxy) {
684 proxy = new llvm::GlobalVariable(module, globalVal->getType(),
685 /*isConstant=*/true, stubLinkage,
686 globalVal, rttiProxyName);
687 proxy->setDSOLocal(true);
688 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
689 if (!proxy->hasLocalLinkage()) {
690 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility);
691 proxy->setComdat(module.getOrInsertComdat(rttiProxyName));
692 }
693 // Do not instrument the rtti proxies with hwasan to avoid a duplicate
694 // symbol error. Aliases generated by hwasan will retain the same namebut
695 // the addresses they are set to may have different tags from different
696 // compilation units. We don't run into this without hwasan because the
697 // proxies are in comdat groups, but those aren't propagated to the alias.
698 RemoveHwasanMetadata(proxy);
699 }
700 target = proxy;
701 }
702
703 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target,
704 /*position=*/vtableAddressPoint);
705 }
706
UseRelativeLayout(const CodeGenModule & CGM)707 static bool UseRelativeLayout(const CodeGenModule &CGM) {
708 return CGM.getTarget().getCXXABI().isItaniumFamily() &&
709 CGM.getItaniumVTableContext().isRelativeLayout();
710 }
711
useRelativeLayout() const712 bool CodeGenVTables::useRelativeLayout() const {
713 return UseRelativeLayout(CGM);
714 }
715
getVTableComponentType() const716 llvm::Type *CodeGenModule::getVTableComponentType() const {
717 if (UseRelativeLayout(*this))
718 return Int32Ty;
719 return GlobalsInt8PtrTy;
720 }
721
getVTableComponentType() const722 llvm::Type *CodeGenVTables::getVTableComponentType() const {
723 return CGM.getVTableComponentType();
724 }
725
AddPointerLayoutOffset(const CodeGenModule & CGM,ConstantArrayBuilder & builder,CharUnits offset)726 static void AddPointerLayoutOffset(const CodeGenModule &CGM,
727 ConstantArrayBuilder &builder,
728 CharUnits offset) {
729 builder.add(llvm::ConstantExpr::getIntToPtr(
730 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
731 CGM.GlobalsInt8PtrTy));
732 }
733
AddRelativeLayoutOffset(const CodeGenModule & CGM,ConstantArrayBuilder & builder,CharUnits offset)734 static void AddRelativeLayoutOffset(const CodeGenModule &CGM,
735 ConstantArrayBuilder &builder,
736 CharUnits offset) {
737 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity()));
738 }
739
addVTableComponent(ConstantArrayBuilder & builder,const VTableLayout & layout,unsigned componentIndex,llvm::Constant * rtti,unsigned & nextVTableThunkIndex,unsigned vtableAddressPoint,bool vtableHasLocalLinkage)740 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder,
741 const VTableLayout &layout,
742 unsigned componentIndex,
743 llvm::Constant *rtti,
744 unsigned &nextVTableThunkIndex,
745 unsigned vtableAddressPoint,
746 bool vtableHasLocalLinkage) {
747 auto &component = layout.vtable_components()[componentIndex];
748
749 auto addOffsetConstant =
750 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset;
751
752 switch (component.getKind()) {
753 case VTableComponent::CK_VCallOffset:
754 return addOffsetConstant(CGM, builder, component.getVCallOffset());
755
756 case VTableComponent::CK_VBaseOffset:
757 return addOffsetConstant(CGM, builder, component.getVBaseOffset());
758
759 case VTableComponent::CK_OffsetToTop:
760 return addOffsetConstant(CGM, builder, component.getOffsetToTop());
761
762 case VTableComponent::CK_RTTI:
763 if (useRelativeLayout())
764 return addRelativeComponent(builder, rtti, vtableAddressPoint,
765 vtableHasLocalLinkage,
766 /*isCompleteDtor=*/false);
767 else
768 return builder.add(rtti);
769
770 case VTableComponent::CK_FunctionPointer:
771 case VTableComponent::CK_CompleteDtorPointer:
772 case VTableComponent::CK_DeletingDtorPointer: {
773 GlobalDecl GD = component.getGlobalDecl();
774
775 if (CGM.getLangOpts().CUDA) {
776 // Emit NULL for methods we can't codegen on this
777 // side. Otherwise we'd end up with vtable with unresolved
778 // references.
779 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
780 // OK on device side: functions w/ __device__ attribute
781 // OK on host side: anything except __device__-only functions.
782 bool CanEmitMethod =
783 CGM.getLangOpts().CUDAIsDevice
784 ? MD->hasAttr<CUDADeviceAttr>()
785 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
786 if (!CanEmitMethod)
787 return builder.add(
788 llvm::ConstantExpr::getNullValue(CGM.GlobalsInt8PtrTy));
789 // Method is acceptable, continue processing as usual.
790 }
791
792 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * {
793 // FIXME(PR43094): When merging comdat groups, lld can select a local
794 // symbol as the signature symbol even though it cannot be accessed
795 // outside that symbol's TU. The relative vtables ABI would make
796 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and
797 // depending on link order, the comdat groups could resolve to the one
798 // with the local symbol. As a temporary solution, fill these components
799 // with zero. We shouldn't be calling these in the first place anyway.
800 if (useRelativeLayout())
801 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy);
802
803 // For NVPTX devices in OpenMP emit special functon as null pointers,
804 // otherwise linking ends up with unresolved references.
805 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsTargetDevice &&
806 CGM.getTriple().isNVPTX())
807 return llvm::ConstantPointerNull::get(CGM.GlobalsInt8PtrTy);
808 llvm::FunctionType *fnTy =
809 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
810 llvm::Constant *fn = cast<llvm::Constant>(
811 CGM.CreateRuntimeFunction(fnTy, name).getCallee());
812 if (auto f = dyn_cast<llvm::Function>(fn))
813 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
814 return fn;
815 };
816
817 llvm::Constant *fnPtr;
818
819 // Pure virtual member functions.
820 if (cast<CXXMethodDecl>(GD.getDecl())->isPureVirtual()) {
821 if (!PureVirtualFn)
822 PureVirtualFn =
823 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
824 fnPtr = PureVirtualFn;
825
826 // Deleted virtual member functions.
827 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
828 if (!DeletedVirtualFn)
829 DeletedVirtualFn =
830 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
831 fnPtr = DeletedVirtualFn;
832
833 // Thunks.
834 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
835 layout.vtable_thunks()[nextVTableThunkIndex].first ==
836 componentIndex) {
837 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
838
839 nextVTableThunkIndex++;
840 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
841 if (CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers) {
842 assert(thunkInfo.Method && "Method not set");
843 GD = GD.getWithDecl(thunkInfo.Method);
844 }
845
846 // Otherwise we can use the method definition directly.
847 } else {
848 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
849 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
850 if (CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers)
851 GD = getItaniumVTableContext().findOriginalMethod(GD);
852 }
853
854 if (useRelativeLayout()) {
855 return addRelativeComponent(
856 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage,
857 component.getKind() == VTableComponent::CK_CompleteDtorPointer);
858 } else {
859 // TODO: this icky and only exists due to functions being in the generic
860 // address space, rather than the global one, even though they are
861 // globals; fixing said issue might be intrusive, and will be done
862 // later.
863 unsigned FnAS = fnPtr->getType()->getPointerAddressSpace();
864 unsigned GVAS = CGM.GlobalsInt8PtrTy->getPointerAddressSpace();
865
866 if (FnAS != GVAS)
867 fnPtr =
868 llvm::ConstantExpr::getAddrSpaceCast(fnPtr, CGM.GlobalsInt8PtrTy);
869 if (const auto &Schema =
870 CGM.getCodeGenOpts().PointerAuth.CXXVirtualFunctionPointers)
871 return builder.addSignedPointer(fnPtr, Schema, GD, QualType());
872 return builder.add(fnPtr);
873 }
874 }
875
876 case VTableComponent::CK_UnusedFunctionPointer:
877 if (useRelativeLayout())
878 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty));
879 else
880 return builder.addNullPointer(CGM.GlobalsInt8PtrTy);
881 }
882
883 llvm_unreachable("Unexpected vtable component kind");
884 }
885
getVTableType(const VTableLayout & layout)886 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
887 SmallVector<llvm::Type *, 4> tys;
888 llvm::Type *componentType = getVTableComponentType();
889 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i)
890 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i)));
891
892 return llvm::StructType::get(CGM.getLLVMContext(), tys);
893 }
894
createVTableInitializer(ConstantStructBuilder & builder,const VTableLayout & layout,llvm::Constant * rtti,bool vtableHasLocalLinkage)895 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
896 const VTableLayout &layout,
897 llvm::Constant *rtti,
898 bool vtableHasLocalLinkage) {
899 llvm::Type *componentType = getVTableComponentType();
900
901 const auto &addressPoints = layout.getAddressPointIndices();
902 unsigned nextVTableThunkIndex = 0;
903 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables();
904 vtableIndex != endIndex; ++vtableIndex) {
905 auto vtableElem = builder.beginArray(componentType);
906
907 size_t vtableStart = layout.getVTableOffset(vtableIndex);
908 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex);
909 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd;
910 ++componentIndex) {
911 addVTableComponent(vtableElem, layout, componentIndex, rtti,
912 nextVTableThunkIndex, addressPoints[vtableIndex],
913 vtableHasLocalLinkage);
914 }
915 vtableElem.finishAndAddTo(builder);
916 }
917 }
918
GenerateConstructionVTable(const CXXRecordDecl * RD,const BaseSubobject & Base,bool BaseIsVirtual,llvm::GlobalVariable::LinkageTypes Linkage,VTableAddressPointsMapTy & AddressPoints)919 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable(
920 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual,
921 llvm::GlobalVariable::LinkageTypes Linkage,
922 VTableAddressPointsMapTy &AddressPoints) {
923 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
924 DI->completeClassData(Base.getBase());
925
926 std::unique_ptr<VTableLayout> VTLayout(
927 getItaniumVTableContext().createConstructionVTableLayout(
928 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
929
930 // Add the address points.
931 AddressPoints = VTLayout->getAddressPoints();
932
933 // Get the mangled construction vtable name.
934 SmallString<256> OutName;
935 llvm::raw_svector_ostream Out(OutName);
936 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
937 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
938 Base.getBase(), Out);
939 SmallString<256> Name(OutName);
940
941 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout();
942 bool VTableAliasExists =
943 UsingRelativeLayout && CGM.getModule().getNamedAlias(Name);
944 if (VTableAliasExists) {
945 // We previously made the vtable hidden and changed its name.
946 Name.append(".local");
947 }
948
949 llvm::Type *VTType = getVTableType(*VTLayout);
950
951 // Construction vtable symbols are not part of the Itanium ABI, so we cannot
952 // guarantee that they actually will be available externally. Instead, when
953 // emitting an available_externally VTT, we provide references to an internal
954 // linkage construction vtable. The ABI only requires complete-object vtables
955 // to be the same for all instances of a type, not construction vtables.
956 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
957 Linkage = llvm::GlobalVariable::InternalLinkage;
958
959 llvm::Align Align = CGM.getDataLayout().getABITypeAlign(VTType);
960
961 // Create the variable that will hold the construction vtable.
962 llvm::GlobalVariable *VTable =
963 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
964
965 // V-tables are always unnamed_addr.
966 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
967
968 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
969 CGM.getContext().getTagDeclType(Base.getBase()));
970
971 // Create and set the initializer.
972 ConstantInitBuilder builder(CGM);
973 auto components = builder.beginStruct();
974 createVTableInitializer(components, *VTLayout, RTTI,
975 VTable->hasLocalLinkage());
976 components.finishAndSetAsInitializer(VTable);
977
978 // Set properties only after the initializer has been set to ensure that the
979 // GV is treated as definition and not declaration.
980 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
981 CGM.setGVProperties(VTable, RD);
982
983 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get());
984
985 if (UsingRelativeLayout) {
986 RemoveHwasanMetadata(VTable);
987 if (!VTable->isDSOLocal())
988 GenerateRelativeVTableAlias(VTable, OutName);
989 }
990
991 return VTable;
992 }
993
994 // Ensure this vtable is not instrumented by hwasan. That is, a global alias is
995 // not generated for it. This is mainly used by the relative-vtables ABI where
996 // vtables instead contain 32-bit offsets between the vtable and function
997 // pointers. Hwasan is disabled for these vtables for now because the tag in a
998 // vtable pointer may fail the overflow check when resolving 32-bit PLT
999 // relocations. A future alternative for this would be finding which usages of
1000 // the vtable can continue to use the untagged hwasan value without any loss of
1001 // value in hwasan.
RemoveHwasanMetadata(llvm::GlobalValue * GV) const1002 void CodeGenVTables::RemoveHwasanMetadata(llvm::GlobalValue *GV) const {
1003 if (CGM.getLangOpts().Sanitize.has(SanitizerKind::HWAddress)) {
1004 llvm::GlobalValue::SanitizerMetadata Meta;
1005 if (GV->hasSanitizerMetadata())
1006 Meta = GV->getSanitizerMetadata();
1007 Meta.NoHWAddress = true;
1008 GV->setSanitizerMetadata(Meta);
1009 }
1010 }
1011
1012 // If the VTable is not dso_local, then we will not be able to indicate that
1013 // the VTable does not need a relocation and move into rodata. A frequent
1014 // time this can occur is for classes that should be made public from a DSO
1015 // (like in libc++). For cases like these, we can make the vtable hidden or
1016 // private and create a public alias with the same visibility and linkage as
1017 // the original vtable type.
GenerateRelativeVTableAlias(llvm::GlobalVariable * VTable,llvm::StringRef AliasNameRef)1018 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable,
1019 llvm::StringRef AliasNameRef) {
1020 assert(getItaniumVTableContext().isRelativeLayout() &&
1021 "Can only use this if the relative vtable ABI is used");
1022 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is "
1023 "not guaranteed to be dso_local");
1024
1025 // If the vtable is available_externally, we shouldn't (or need to) generate
1026 // an alias for it in the first place since the vtable won't actually by
1027 // emitted in this compilation unit.
1028 if (VTable->hasAvailableExternallyLinkage())
1029 return;
1030
1031 // Create a new string in the event the alias is already the name of the
1032 // vtable. Using the reference directly could lead to use of an inititialized
1033 // value in the module's StringMap.
1034 llvm::SmallString<256> AliasName(AliasNameRef);
1035 VTable->setName(AliasName + ".local");
1036
1037 auto Linkage = VTable->getLinkage();
1038 assert(llvm::GlobalAlias::isValidLinkage(Linkage) &&
1039 "Invalid vtable alias linkage");
1040
1041 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName);
1042 if (!VTableAlias) {
1043 VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(),
1044 VTable->getAddressSpace(), Linkage,
1045 AliasName, &CGM.getModule());
1046 } else {
1047 assert(VTableAlias->getValueType() == VTable->getValueType());
1048 assert(VTableAlias->getLinkage() == Linkage);
1049 }
1050 VTableAlias->setVisibility(VTable->getVisibility());
1051 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr());
1052
1053 // Both of these imply dso_local for the vtable.
1054 if (!VTable->hasComdat()) {
1055 // If this is in a comdat, then we shouldn't make the linkage private due to
1056 // an issue in lld where private symbols can be used as the key symbol when
1057 // choosing the prevelant group. This leads to "relocation refers to a
1058 // symbol in a discarded section".
1059 VTable->setLinkage(llvm::GlobalValue::PrivateLinkage);
1060 } else {
1061 // We should at least make this hidden since we don't want to expose it.
1062 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility);
1063 }
1064
1065 VTableAlias->setAliasee(VTable);
1066 }
1067
shouldEmitAvailableExternallyVTable(const CodeGenModule & CGM,const CXXRecordDecl * RD)1068 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
1069 const CXXRecordDecl *RD) {
1070 return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1071 CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
1072 }
1073
1074 /// Compute the required linkage of the vtable for the given class.
1075 ///
1076 /// Note that we only call this at the end of the translation unit.
1077 llvm::GlobalVariable::LinkageTypes
getVTableLinkage(const CXXRecordDecl * RD)1078 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1079 if (!RD->isExternallyVisible())
1080 return llvm::GlobalVariable::InternalLinkage;
1081
1082 // In windows, the linkage of vtable is not related to modules.
1083 bool IsInNamedModule = !getTarget().getCXXABI().isMicrosoft() &&
1084 RD->isInNamedModule();
1085 // If the CXXRecordDecl is not in a module unit, we need to get
1086 // its key function. We're at the end of the translation unit, so the current
1087 // key function is fully correct.
1088 const CXXMethodDecl *keyFunction =
1089 IsInNamedModule ? nullptr : Context.getCurrentKeyFunction(RD);
1090 if (IsInNamedModule || (keyFunction && !RD->hasAttr<DLLImportAttr>())) {
1091 // If this class has a key function, use that to determine the
1092 // linkage of the vtable.
1093 const FunctionDecl *def = nullptr;
1094 if (keyFunction && keyFunction->hasBody(def))
1095 keyFunction = cast<CXXMethodDecl>(def);
1096
1097 bool IsExternalDefinition =
1098 IsInNamedModule ? RD->shouldEmitInExternalSource() : !def;
1099
1100 TemplateSpecializationKind Kind =
1101 IsInNamedModule ? RD->getTemplateSpecializationKind()
1102 : keyFunction->getTemplateSpecializationKind();
1103
1104 switch (Kind) {
1105 case TSK_Undeclared:
1106 case TSK_ExplicitSpecialization:
1107 assert(
1108 (IsInNamedModule || def || CodeGenOpts.OptimizationLevel > 0 ||
1109 CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo) &&
1110 "Shouldn't query vtable linkage without the class in module units, "
1111 "key function, optimizations, or debug info");
1112 if (IsExternalDefinition && CodeGenOpts.OptimizationLevel > 0)
1113 return llvm::GlobalVariable::AvailableExternallyLinkage;
1114
1115 if (keyFunction && keyFunction->isInlined())
1116 return !Context.getLangOpts().AppleKext
1117 ? llvm::GlobalVariable::LinkOnceODRLinkage
1118 : llvm::Function::InternalLinkage;
1119
1120 return llvm::GlobalVariable::ExternalLinkage;
1121
1122 case TSK_ImplicitInstantiation:
1123 return !Context.getLangOpts().AppleKext ?
1124 llvm::GlobalVariable::LinkOnceODRLinkage :
1125 llvm::Function::InternalLinkage;
1126
1127 case TSK_ExplicitInstantiationDefinition:
1128 return !Context.getLangOpts().AppleKext ?
1129 llvm::GlobalVariable::WeakODRLinkage :
1130 llvm::Function::InternalLinkage;
1131
1132 case TSK_ExplicitInstantiationDeclaration:
1133 llvm_unreachable("Should not have been asked to emit this");
1134 }
1135 }
1136
1137 // -fapple-kext mode does not support weak linkage, so we must use
1138 // internal linkage.
1139 if (Context.getLangOpts().AppleKext)
1140 return llvm::Function::InternalLinkage;
1141
1142 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
1143 llvm::GlobalValue::LinkOnceODRLinkage;
1144 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
1145 llvm::GlobalValue::WeakODRLinkage;
1146 if (RD->hasAttr<DLLExportAttr>()) {
1147 // Cannot discard exported vtables.
1148 DiscardableODRLinkage = NonDiscardableODRLinkage;
1149 } else if (RD->hasAttr<DLLImportAttr>()) {
1150 // Imported vtables are available externally.
1151 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1152 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
1153 }
1154
1155 switch (RD->getTemplateSpecializationKind()) {
1156 case TSK_Undeclared:
1157 case TSK_ExplicitSpecialization:
1158 case TSK_ImplicitInstantiation:
1159 return DiscardableODRLinkage;
1160
1161 case TSK_ExplicitInstantiationDeclaration:
1162 // Explicit instantiations in MSVC do not provide vtables, so we must emit
1163 // our own.
1164 if (getTarget().getCXXABI().isMicrosoft())
1165 return DiscardableODRLinkage;
1166 return shouldEmitAvailableExternallyVTable(*this, RD)
1167 ? llvm::GlobalVariable::AvailableExternallyLinkage
1168 : llvm::GlobalVariable::ExternalLinkage;
1169
1170 case TSK_ExplicitInstantiationDefinition:
1171 return NonDiscardableODRLinkage;
1172 }
1173
1174 llvm_unreachable("Invalid TemplateSpecializationKind!");
1175 }
1176
1177 /// This is a callback from Sema to tell us that a particular vtable is
1178 /// required to be emitted in this translation unit.
1179 ///
1180 /// This is only called for vtables that _must_ be emitted (mainly due to key
1181 /// functions). For weak vtables, CodeGen tracks when they are needed and
1182 /// emits them as-needed.
EmitVTable(CXXRecordDecl * theClass)1183 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
1184 VTables.GenerateClassData(theClass);
1185 }
1186
1187 void
GenerateClassData(const CXXRecordDecl * RD)1188 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
1189 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
1190 DI->completeClassData(RD);
1191
1192 if (RD->getNumVBases())
1193 CGM.getCXXABI().emitVirtualInheritanceTables(RD);
1194
1195 CGM.getCXXABI().emitVTableDefinitions(*this, RD);
1196 }
1197
1198 /// At this point in the translation unit, does it appear that can we
1199 /// rely on the vtable being defined elsewhere in the program?
1200 ///
1201 /// The response is really only definitive when called at the end of
1202 /// the translation unit.
1203 ///
1204 /// The only semantic restriction here is that the object file should
1205 /// not contain a vtable definition when that vtable is defined
1206 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting
1207 /// vtables when unnecessary.
isVTableExternal(const CXXRecordDecl * RD)1208 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
1209 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
1210
1211 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
1212 // emit them even if there is an explicit template instantiation.
1213 if (CGM.getTarget().getCXXABI().isMicrosoft())
1214 return false;
1215
1216 // If we have an explicit instantiation declaration (and not a
1217 // definition), the vtable is defined elsewhere.
1218 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1219 if (TSK == TSK_ExplicitInstantiationDeclaration)
1220 return true;
1221
1222 // Otherwise, if the class is an instantiated template, the
1223 // vtable must be defined here.
1224 if (TSK == TSK_ImplicitInstantiation ||
1225 TSK == TSK_ExplicitInstantiationDefinition)
1226 return false;
1227
1228 // Otherwise, if the class is attached to a module, the tables are uniquely
1229 // emitted in the object for the module unit in which it is defined.
1230 if (RD->isInNamedModule())
1231 return RD->shouldEmitInExternalSource();
1232
1233 // Otherwise, if the class doesn't have a key function (possibly
1234 // anymore), the vtable must be defined here.
1235 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
1236 if (!keyFunction)
1237 return false;
1238
1239 // Otherwise, if we don't have a definition of the key function, the
1240 // vtable must be defined somewhere else.
1241 return !keyFunction->hasBody();
1242 }
1243
1244 /// Given that we're currently at the end of the translation unit, and
1245 /// we've emitted a reference to the vtable for this class, should
1246 /// we define that vtable?
shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule & CGM,const CXXRecordDecl * RD)1247 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
1248 const CXXRecordDecl *RD) {
1249 // If vtable is internal then it has to be done.
1250 if (!CGM.getVTables().isVTableExternal(RD))
1251 return true;
1252
1253 // If it's external then maybe we will need it as available_externally.
1254 return shouldEmitAvailableExternallyVTable(CGM, RD);
1255 }
1256
1257 /// Given that at some point we emitted a reference to one or more
1258 /// vtables, and that we are now at the end of the translation unit,
1259 /// decide whether we should emit them.
EmitDeferredVTables()1260 void CodeGenModule::EmitDeferredVTables() {
1261 #ifndef NDEBUG
1262 // Remember the size of DeferredVTables, because we're going to assume
1263 // that this entire operation doesn't modify it.
1264 size_t savedSize = DeferredVTables.size();
1265 #endif
1266
1267 for (const CXXRecordDecl *RD : DeferredVTables)
1268 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
1269 VTables.GenerateClassData(RD);
1270 else if (shouldOpportunisticallyEmitVTables())
1271 OpportunisticVTables.push_back(RD);
1272
1273 assert(savedSize == DeferredVTables.size() &&
1274 "deferred extra vtables during vtable emission?");
1275 DeferredVTables.clear();
1276 }
1277
AlwaysHasLTOVisibilityPublic(const CXXRecordDecl * RD)1278 bool CodeGenModule::AlwaysHasLTOVisibilityPublic(const CXXRecordDecl *RD) {
1279 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>() ||
1280 RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
1281 return true;
1282
1283 if (!getCodeGenOpts().LTOVisibilityPublicStd)
1284 return false;
1285
1286 const DeclContext *DC = RD;
1287 while (true) {
1288 auto *D = cast<Decl>(DC);
1289 DC = DC->getParent();
1290 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
1291 if (auto *ND = dyn_cast<NamespaceDecl>(D))
1292 if (const IdentifierInfo *II = ND->getIdentifier())
1293 if (II->isStr("std") || II->isStr("stdext"))
1294 return true;
1295 break;
1296 }
1297 }
1298
1299 return false;
1300 }
1301
HasHiddenLTOVisibility(const CXXRecordDecl * RD)1302 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
1303 LinkageInfo LV = RD->getLinkageAndVisibility();
1304 if (!isExternallyVisible(LV.getLinkage()))
1305 return true;
1306
1307 if (!getTriple().isOSBinFormatCOFF() &&
1308 LV.getVisibility() != HiddenVisibility)
1309 return false;
1310
1311 return !AlwaysHasLTOVisibilityPublic(RD);
1312 }
1313
GetVCallVisibilityLevel(const CXXRecordDecl * RD,llvm::DenseSet<const CXXRecordDecl * > & Visited)1314 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel(
1315 const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) {
1316 // If we have already visited this RD (which means this is a recursive call
1317 // since the initial call should have an empty Visited set), return the max
1318 // visibility. The recursive calls below compute the min between the result
1319 // of the recursive call and the current TypeVis, so returning the max here
1320 // ensures that it will have no effect on the current TypeVis.
1321 if (!Visited.insert(RD).second)
1322 return llvm::GlobalObject::VCallVisibilityTranslationUnit;
1323
1324 LinkageInfo LV = RD->getLinkageAndVisibility();
1325 llvm::GlobalObject::VCallVisibility TypeVis;
1326 if (!isExternallyVisible(LV.getLinkage()))
1327 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit;
1328 else if (HasHiddenLTOVisibility(RD))
1329 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit;
1330 else
1331 TypeVis = llvm::GlobalObject::VCallVisibilityPublic;
1332
1333 for (const auto &B : RD->bases())
1334 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1335 TypeVis = std::min(
1336 TypeVis,
1337 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1338
1339 for (const auto &B : RD->vbases())
1340 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass())
1341 TypeVis = std::min(
1342 TypeVis,
1343 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited));
1344
1345 return TypeVis;
1346 }
1347
EmitVTableTypeMetadata(const CXXRecordDecl * RD,llvm::GlobalVariable * VTable,const VTableLayout & VTLayout)1348 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD,
1349 llvm::GlobalVariable *VTable,
1350 const VTableLayout &VTLayout) {
1351 // Emit type metadata on vtables with LTO or IR instrumentation.
1352 // In IR instrumentation, the type metadata is used to find out vtable
1353 // definitions (for type profiling) among all global variables.
1354 if (!getCodeGenOpts().LTOUnit && !getCodeGenOpts().hasProfileIRInstr())
1355 return;
1356
1357 CharUnits ComponentWidth = GetTargetTypeStoreSize(getVTableComponentType());
1358
1359 struct AddressPoint {
1360 const CXXRecordDecl *Base;
1361 size_t Offset;
1362 std::string TypeName;
1363 bool operator<(const AddressPoint &RHS) const {
1364 int D = TypeName.compare(RHS.TypeName);
1365 return D < 0 || (D == 0 && Offset < RHS.Offset);
1366 }
1367 };
1368 std::vector<AddressPoint> AddressPoints;
1369 for (auto &&AP : VTLayout.getAddressPoints()) {
1370 AddressPoint N{AP.first.getBase(),
1371 VTLayout.getVTableOffset(AP.second.VTableIndex) +
1372 AP.second.AddressPointIndex,
1373 {}};
1374 llvm::raw_string_ostream Stream(N.TypeName);
1375 getCXXABI().getMangleContext().mangleCanonicalTypeName(
1376 QualType(N.Base->getTypeForDecl(), 0), Stream);
1377 AddressPoints.push_back(std::move(N));
1378 }
1379
1380 // Sort the address points for determinism.
1381 llvm::sort(AddressPoints);
1382
1383 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
1384 for (auto AP : AddressPoints) {
1385 // Create type metadata for the address point.
1386 AddVTableTypeMetadata(VTable, ComponentWidth * AP.Offset, AP.Base);
1387
1388 // The class associated with each address point could also potentially be
1389 // used for indirect calls via a member function pointer, so we need to
1390 // annotate the address of each function pointer with the appropriate member
1391 // function pointer type.
1392 for (unsigned I = 0; I != Comps.size(); ++I) {
1393 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
1394 continue;
1395 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
1396 Context.getMemberPointerType(
1397 Comps[I].getFunctionDecl()->getType(),
1398 Context.getRecordType(AP.Base).getTypePtr()));
1399 VTable->addTypeMetadata((ComponentWidth * I).getQuantity(), MD);
1400 }
1401 }
1402
1403 if (getCodeGenOpts().VirtualFunctionElimination ||
1404 getCodeGenOpts().WholeProgramVTables) {
1405 llvm::DenseSet<const CXXRecordDecl *> Visited;
1406 llvm::GlobalObject::VCallVisibility TypeVis =
1407 GetVCallVisibilityLevel(RD, Visited);
1408 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1409 VTable->setVCallVisibilityMetadata(TypeVis);
1410 }
1411 }
1412