xref: /freebsd/sys/contrib/zlib/trees.c (revision 6255c67c3d1a268535c50de74d3300fd86d8f15d)
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2024 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  *  ALGORITHM
9  *
10  *      The "deflation" process uses several Huffman trees. The more
11  *      common source values are represented by shorter bit sequences.
12  *
13  *      Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values).  The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  *  REFERENCES
20  *
21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  *      Storer, James A.
25  *          Data Compression:  Methods and Theory, pp. 49-50.
26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27  *
28  *      Sedgewick, R.
29  *          Algorithms, p290.
30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* @(#) $Id$ */
34 
35 /* #define GEN_TREES_H */
36 
37 #include "deflate.h"
38 
39 #ifdef ZLIB_DEBUG
40 #  include <ctype.h>
41 #endif
42 
43 /* ===========================================================================
44  * Constants
45  */
46 
47 #define MAX_BL_BITS 7
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
49 
50 #define END_BLOCK 256
51 /* end of block literal code */
52 
53 #define REP_3_6      16
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55 
56 #define REPZ_3_10    17
57 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
58 
59 #define REPZ_11_138  18
60 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
61 
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 
71 local const uch bl_order[BL_CODES]
72    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74  * probability, to avoid transmitting the lengths for unused bit length codes.
75  */
76 
77 /* ===========================================================================
78  * Local data. These are initialized only once.
79  */
80 
81 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82 
83 #if defined(GEN_TREES_H) || !defined(STDC)
84 /* non ANSI compilers may not accept trees.h */
85 
86 local ct_data static_ltree[L_CODES+2];
87 /* The static literal tree. Since the bit lengths are imposed, there is no
88  * need for the L_CODES extra codes used during heap construction. However
89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90  * below).
91  */
92 
93 local ct_data static_dtree[D_CODES];
94 /* The static distance tree. (Actually a trivial tree since all codes use
95  * 5 bits.)
96  */
97 
98 uch _dist_code[DIST_CODE_LEN];
99 /* Distance codes. The first 256 values correspond to the distances
100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
101  * the 15 bit distances.
102  */
103 
104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
105 /* length code for each normalized match length (0 == MIN_MATCH) */
106 
107 local int base_length[LENGTH_CODES];
108 /* First normalized length for each code (0 = MIN_MATCH) */
109 
110 local int base_dist[D_CODES];
111 /* First normalized distance for each code (0 = distance of 1) */
112 
113 #else
114 #  include "trees.h"
115 #endif /* GEN_TREES_H */
116 
117 struct static_tree_desc_s {
118     const ct_data *static_tree;  /* static tree or NULL */
119     const intf *extra_bits;      /* extra bits for each code or NULL */
120     int     extra_base;          /* base index for extra_bits */
121     int     elems;               /* max number of elements in the tree */
122     int     max_length;          /* max bit length for the codes */
123 };
124 
125 #ifdef NO_INIT_GLOBAL_POINTERS
126 #  define TCONST
127 #else
128 #  define TCONST const
129 #endif
130 
131 local TCONST static_tree_desc static_l_desc =
132 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133 
134 local TCONST static_tree_desc static_d_desc =
135 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
136 
137 local TCONST static_tree_desc static_bl_desc =
138 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
139 
140 /* ===========================================================================
141  * Output a short LSB first on the stream.
142  * IN assertion: there is enough room in pendingBuf.
143  */
144 #define put_short(s, w) { \
145     put_byte(s, (uch)((w) & 0xff)); \
146     put_byte(s, (uch)((ush)(w) >> 8)); \
147 }
148 
149 /* ===========================================================================
150  * Reverse the first len bits of a code, using straightforward code (a faster
151  * method would use a table)
152  * IN assertion: 1 <= len <= 15
153  */
bi_reverse(unsigned code,int len)154 local unsigned bi_reverse(unsigned code, int len) {
155     register unsigned res = 0;
156     do {
157         res |= code & 1;
158         code >>= 1, res <<= 1;
159     } while (--len > 0);
160     return res >> 1;
161 }
162 
163 /* ===========================================================================
164  * Flush the bit buffer, keeping at most 7 bits in it.
165  */
bi_flush(deflate_state * s)166 local void bi_flush(deflate_state *s) {
167     if (s->bi_valid == 16) {
168         put_short(s, s->bi_buf);
169         s->bi_buf = 0;
170         s->bi_valid = 0;
171     } else if (s->bi_valid >= 8) {
172         put_byte(s, (Byte)s->bi_buf);
173         s->bi_buf >>= 8;
174         s->bi_valid -= 8;
175     }
176 }
177 
178 /* ===========================================================================
179  * Flush the bit buffer and align the output on a byte boundary
180  */
bi_windup(deflate_state * s)181 local void bi_windup(deflate_state *s) {
182     if (s->bi_valid > 8) {
183         put_short(s, s->bi_buf);
184     } else if (s->bi_valid > 0) {
185         put_byte(s, (Byte)s->bi_buf);
186     }
187     s->bi_buf = 0;
188     s->bi_valid = 0;
189 #ifdef ZLIB_DEBUG
190     s->bits_sent = (s->bits_sent + 7) & ~7;
191 #endif
192 }
193 
194 /* ===========================================================================
195  * Generate the codes for a given tree and bit counts (which need not be
196  * optimal).
197  * IN assertion: the array bl_count contains the bit length statistics for
198  * the given tree and the field len is set for all tree elements.
199  * OUT assertion: the field code is set for all tree elements of non
200  *     zero code length.
201  */
gen_codes(ct_data * tree,int max_code,ushf * bl_count)202 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
203     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
204     unsigned code = 0;         /* running code value */
205     int bits;                  /* bit index */
206     int n;                     /* code index */
207 
208     /* The distribution counts are first used to generate the code values
209      * without bit reversal.
210      */
211     for (bits = 1; bits <= MAX_BITS; bits++) {
212         code = (code + bl_count[bits - 1]) << 1;
213         next_code[bits] = (ush)code;
214     }
215     /* Check that the bit counts in bl_count are consistent. The last code
216      * must be all ones.
217      */
218     Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
219             "inconsistent bit counts");
220     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
221 
222     for (n = 0;  n <= max_code; n++) {
223         int len = tree[n].Len;
224         if (len == 0) continue;
225         /* Now reverse the bits */
226         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
227 
228         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
229             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
230     }
231 }
232 
233 #ifdef GEN_TREES_H
234 local void gen_trees_header(void);
235 #endif
236 
237 #ifndef ZLIB_DEBUG
238 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
239    /* Send a code of the given tree. c and tree must not have side effects */
240 
241 #else /* !ZLIB_DEBUG */
242 #  define send_code(s, c, tree) \
243      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
244        send_bits(s, tree[c].Code, tree[c].Len); }
245 #endif
246 
247 /* ===========================================================================
248  * Send a value on a given number of bits.
249  * IN assertion: length <= 16 and value fits in length bits.
250  */
251 #ifdef ZLIB_DEBUG
send_bits(deflate_state * s,int value,int length)252 local void send_bits(deflate_state *s, int value, int length) {
253     Tracevv((stderr," l %2d v %4x ", length, value));
254     Assert(length > 0 && length <= 15, "invalid length");
255     s->bits_sent += (ulg)length;
256 
257     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
258      * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
259      * unused bits in value.
260      */
261     if (s->bi_valid > (int)Buf_size - length) {
262         s->bi_buf |= (ush)value << s->bi_valid;
263         put_short(s, s->bi_buf);
264         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
265         s->bi_valid += length - Buf_size;
266     } else {
267         s->bi_buf |= (ush)value << s->bi_valid;
268         s->bi_valid += length;
269     }
270 }
271 #else /* !ZLIB_DEBUG */
272 
273 #define send_bits(s, value, length) \
274 { int len = length;\
275   if (s->bi_valid > (int)Buf_size - len) {\
276     int val = (int)value;\
277     s->bi_buf |= (ush)val << s->bi_valid;\
278     put_short(s, s->bi_buf);\
279     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
280     s->bi_valid += len - Buf_size;\
281   } else {\
282     s->bi_buf |= (ush)(value) << s->bi_valid;\
283     s->bi_valid += len;\
284   }\
285 }
286 #endif /* ZLIB_DEBUG */
287 
288 
289 /* the arguments must not have side effects */
290 
291 /* ===========================================================================
292  * Initialize the various 'constant' tables.
293  */
tr_static_init(void)294 local void tr_static_init(void) {
295 #if defined(GEN_TREES_H) || !defined(STDC)
296     static int static_init_done = 0;
297     int n;        /* iterates over tree elements */
298     int bits;     /* bit counter */
299     int length;   /* length value */
300     int code;     /* code value */
301     int dist;     /* distance index */
302     ush bl_count[MAX_BITS+1];
303     /* number of codes at each bit length for an optimal tree */
304 
305     if (static_init_done) return;
306 
307     /* For some embedded targets, global variables are not initialized: */
308 #ifdef NO_INIT_GLOBAL_POINTERS
309     static_l_desc.static_tree = static_ltree;
310     static_l_desc.extra_bits = extra_lbits;
311     static_d_desc.static_tree = static_dtree;
312     static_d_desc.extra_bits = extra_dbits;
313     static_bl_desc.extra_bits = extra_blbits;
314 #endif
315 
316     /* Initialize the mapping length (0..255) -> length code (0..28) */
317     length = 0;
318     for (code = 0; code < LENGTH_CODES-1; code++) {
319         base_length[code] = length;
320         for (n = 0; n < (1 << extra_lbits[code]); n++) {
321             _length_code[length++] = (uch)code;
322         }
323     }
324     Assert (length == 256, "tr_static_init: length != 256");
325     /* Note that the length 255 (match length 258) can be represented
326      * in two different ways: code 284 + 5 bits or code 285, so we
327      * overwrite length_code[255] to use the best encoding:
328      */
329     _length_code[length - 1] = (uch)code;
330 
331     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
332     dist = 0;
333     for (code = 0 ; code < 16; code++) {
334         base_dist[code] = dist;
335         for (n = 0; n < (1 << extra_dbits[code]); n++) {
336             _dist_code[dist++] = (uch)code;
337         }
338     }
339     Assert (dist == 256, "tr_static_init: dist != 256");
340     dist >>= 7; /* from now on, all distances are divided by 128 */
341     for ( ; code < D_CODES; code++) {
342         base_dist[code] = dist << 7;
343         for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
344             _dist_code[256 + dist++] = (uch)code;
345         }
346     }
347     Assert (dist == 256, "tr_static_init: 256 + dist != 512");
348 
349     /* Construct the codes of the static literal tree */
350     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
351     n = 0;
352     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
353     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
354     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
355     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
356     /* Codes 286 and 287 do not exist, but we must include them in the
357      * tree construction to get a canonical Huffman tree (longest code
358      * all ones)
359      */
360     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
361 
362     /* The static distance tree is trivial: */
363     for (n = 0; n < D_CODES; n++) {
364         static_dtree[n].Len = 5;
365         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
366     }
367     static_init_done = 1;
368 
369 #  ifdef GEN_TREES_H
370     gen_trees_header();
371 #  endif
372 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
373 }
374 
375 /* ===========================================================================
376  * Generate the file trees.h describing the static trees.
377  */
378 #ifdef GEN_TREES_H
379 #  ifndef ZLIB_DEBUG
380 #    include <stdio.h>
381 #  endif
382 
383 #  define SEPARATOR(i, last, width) \
384       ((i) == (last)? "\n};\n\n" :    \
385        ((i) % (width) == (width) - 1 ? ",\n" : ", "))
386 
gen_trees_header(void)387 void gen_trees_header(void) {
388     FILE *header = fopen("trees.h", "w");
389     int i;
390 
391     Assert (header != NULL, "Can't open trees.h");
392     fprintf(header,
393             "/* header created automatically with -DGEN_TREES_H */\n\n");
394 
395     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
396     for (i = 0; i < L_CODES+2; i++) {
397         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
398                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
399     }
400 
401     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
402     for (i = 0; i < D_CODES; i++) {
403         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
404                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
405     }
406 
407     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
408     for (i = 0; i < DIST_CODE_LEN; i++) {
409         fprintf(header, "%2u%s", _dist_code[i],
410                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
411     }
412 
413     fprintf(header,
414         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
415     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
416         fprintf(header, "%2u%s", _length_code[i],
417                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
418     }
419 
420     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
421     for (i = 0; i < LENGTH_CODES; i++) {
422         fprintf(header, "%1u%s", base_length[i],
423                 SEPARATOR(i, LENGTH_CODES-1, 20));
424     }
425 
426     fprintf(header, "local const int base_dist[D_CODES] = {\n");
427     for (i = 0; i < D_CODES; i++) {
428         fprintf(header, "%5u%s", base_dist[i],
429                 SEPARATOR(i, D_CODES-1, 10));
430     }
431 
432     fclose(header);
433 }
434 #endif /* GEN_TREES_H */
435 
436 /* ===========================================================================
437  * Initialize a new block.
438  */
init_block(deflate_state * s)439 local void init_block(deflate_state *s) {
440     int n; /* iterates over tree elements */
441 
442     /* Initialize the trees. */
443     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
444     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
445     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
446 
447     s->dyn_ltree[END_BLOCK].Freq = 1;
448     s->opt_len = s->static_len = 0L;
449     s->sym_next = s->matches = 0;
450 }
451 
452 /* ===========================================================================
453  * Initialize the tree data structures for a new zlib stream.
454  */
_tr_init(deflate_state * s)455 void ZLIB_INTERNAL _tr_init(deflate_state *s) {
456     tr_static_init();
457 
458     s->l_desc.dyn_tree = s->dyn_ltree;
459     s->l_desc.stat_desc = &static_l_desc;
460 
461     s->d_desc.dyn_tree = s->dyn_dtree;
462     s->d_desc.stat_desc = &static_d_desc;
463 
464     s->bl_desc.dyn_tree = s->bl_tree;
465     s->bl_desc.stat_desc = &static_bl_desc;
466 
467     s->bi_buf = 0;
468     s->bi_valid = 0;
469 #ifdef ZLIB_DEBUG
470     s->compressed_len = 0L;
471     s->bits_sent = 0L;
472 #endif
473 
474     /* Initialize the first block of the first file: */
475     init_block(s);
476 }
477 
478 #define SMALLEST 1
479 /* Index within the heap array of least frequent node in the Huffman tree */
480 
481 
482 /* ===========================================================================
483  * Remove the smallest element from the heap and recreate the heap with
484  * one less element. Updates heap and heap_len.
485  */
486 #define pqremove(s, tree, top) \
487 {\
488     top = s->heap[SMALLEST]; \
489     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
490     pqdownheap(s, tree, SMALLEST); \
491 }
492 
493 /* ===========================================================================
494  * Compares to subtrees, using the tree depth as tie breaker when
495  * the subtrees have equal frequency. This minimizes the worst case length.
496  */
497 #define smaller(tree, n, m, depth) \
498    (tree[n].Freq < tree[m].Freq || \
499    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
500 
501 /* ===========================================================================
502  * Restore the heap property by moving down the tree starting at node k,
503  * exchanging a node with the smallest of its two sons if necessary, stopping
504  * when the heap property is re-established (each father smaller than its
505  * two sons).
506  */
pqdownheap(deflate_state * s,ct_data * tree,int k)507 local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
508     int v = s->heap[k];
509     int j = k << 1;  /* left son of k */
510     while (j <= s->heap_len) {
511         /* Set j to the smallest of the two sons: */
512         if (j < s->heap_len &&
513             smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
514             j++;
515         }
516         /* Exit if v is smaller than both sons */
517         if (smaller(tree, v, s->heap[j], s->depth)) break;
518 
519         /* Exchange v with the smallest son */
520         s->heap[k] = s->heap[j];  k = j;
521 
522         /* And continue down the tree, setting j to the left son of k */
523         j <<= 1;
524     }
525     s->heap[k] = v;
526 }
527 
528 /* ===========================================================================
529  * Compute the optimal bit lengths for a tree and update the total bit length
530  * for the current block.
531  * IN assertion: the fields freq and dad are set, heap[heap_max] and
532  *    above are the tree nodes sorted by increasing frequency.
533  * OUT assertions: the field len is set to the optimal bit length, the
534  *     array bl_count contains the frequencies for each bit length.
535  *     The length opt_len is updated; static_len is also updated if stree is
536  *     not null.
537  */
gen_bitlen(deflate_state * s,tree_desc * desc)538 local void gen_bitlen(deflate_state *s, tree_desc *desc) {
539     ct_data *tree        = desc->dyn_tree;
540     int max_code         = desc->max_code;
541     const ct_data *stree = desc->stat_desc->static_tree;
542     const intf *extra    = desc->stat_desc->extra_bits;
543     int base             = desc->stat_desc->extra_base;
544     int max_length       = desc->stat_desc->max_length;
545     int h;              /* heap index */
546     int n, m;           /* iterate over the tree elements */
547     int bits;           /* bit length */
548     int xbits;          /* extra bits */
549     ush f;              /* frequency */
550     int overflow = 0;   /* number of elements with bit length too large */
551 
552     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
553 
554     /* In a first pass, compute the optimal bit lengths (which may
555      * overflow in the case of the bit length tree).
556      */
557     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
558 
559     for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
560         n = s->heap[h];
561         bits = tree[tree[n].Dad].Len + 1;
562         if (bits > max_length) bits = max_length, overflow++;
563         tree[n].Len = (ush)bits;
564         /* We overwrite tree[n].Dad which is no longer needed */
565 
566         if (n > max_code) continue; /* not a leaf node */
567 
568         s->bl_count[bits]++;
569         xbits = 0;
570         if (n >= base) xbits = extra[n - base];
571         f = tree[n].Freq;
572         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
573         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
574     }
575     if (overflow == 0) return;
576 
577     Tracev((stderr,"\nbit length overflow\n"));
578     /* This happens for example on obj2 and pic of the Calgary corpus */
579 
580     /* Find the first bit length which could increase: */
581     do {
582         bits = max_length - 1;
583         while (s->bl_count[bits] == 0) bits--;
584         s->bl_count[bits]--;        /* move one leaf down the tree */
585         s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
586         s->bl_count[max_length]--;
587         /* The brother of the overflow item also moves one step up,
588          * but this does not affect bl_count[max_length]
589          */
590         overflow -= 2;
591     } while (overflow > 0);
592 
593     /* Now recompute all bit lengths, scanning in increasing frequency.
594      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
595      * lengths instead of fixing only the wrong ones. This idea is taken
596      * from 'ar' written by Haruhiko Okumura.)
597      */
598     for (bits = max_length; bits != 0; bits--) {
599         n = s->bl_count[bits];
600         while (n != 0) {
601             m = s->heap[--h];
602             if (m > max_code) continue;
603             if ((unsigned) tree[m].Len != (unsigned) bits) {
604                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
605                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
606                 tree[m].Len = (ush)bits;
607             }
608             n--;
609         }
610     }
611 }
612 
613 #ifdef DUMP_BL_TREE
614 #  include <stdio.h>
615 #endif
616 
617 /* ===========================================================================
618  * Construct one Huffman tree and assigns the code bit strings and lengths.
619  * Update the total bit length for the current block.
620  * IN assertion: the field freq is set for all tree elements.
621  * OUT assertions: the fields len and code are set to the optimal bit length
622  *     and corresponding code. The length opt_len is updated; static_len is
623  *     also updated if stree is not null. The field max_code is set.
624  */
build_tree(deflate_state * s,tree_desc * desc)625 local void build_tree(deflate_state *s, tree_desc *desc) {
626     ct_data *tree         = desc->dyn_tree;
627     const ct_data *stree  = desc->stat_desc->static_tree;
628     int elems             = desc->stat_desc->elems;
629     int n, m;          /* iterate over heap elements */
630     int max_code = -1; /* largest code with non zero frequency */
631     int node;          /* new node being created */
632 
633     /* Construct the initial heap, with least frequent element in
634      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
635      * heap[0] is not used.
636      */
637     s->heap_len = 0, s->heap_max = HEAP_SIZE;
638 
639     for (n = 0; n < elems; n++) {
640         if (tree[n].Freq != 0) {
641             s->heap[++(s->heap_len)] = max_code = n;
642             s->depth[n] = 0;
643         } else {
644             tree[n].Len = 0;
645         }
646     }
647 
648     /* The pkzip format requires that at least one distance code exists,
649      * and that at least one bit should be sent even if there is only one
650      * possible code. So to avoid special checks later on we force at least
651      * two codes of non zero frequency.
652      */
653     while (s->heap_len < 2) {
654         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
655         tree[node].Freq = 1;
656         s->depth[node] = 0;
657         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
658         /* node is 0 or 1 so it does not have extra bits */
659     }
660     desc->max_code = max_code;
661 
662     /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
663      * establish sub-heaps of increasing lengths:
664      */
665     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
666 
667     /* Construct the Huffman tree by repeatedly combining the least two
668      * frequent nodes.
669      */
670     node = elems;              /* next internal node of the tree */
671     do {
672         pqremove(s, tree, n);  /* n = node of least frequency */
673         m = s->heap[SMALLEST]; /* m = node of next least frequency */
674 
675         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
676         s->heap[--(s->heap_max)] = m;
677 
678         /* Create a new node father of n and m */
679         tree[node].Freq = tree[n].Freq + tree[m].Freq;
680         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
681                                 s->depth[n] : s->depth[m]) + 1);
682         tree[n].Dad = tree[m].Dad = (ush)node;
683 #ifdef DUMP_BL_TREE
684         if (tree == s->bl_tree) {
685             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
686                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
687         }
688 #endif
689         /* and insert the new node in the heap */
690         s->heap[SMALLEST] = node++;
691         pqdownheap(s, tree, SMALLEST);
692 
693     } while (s->heap_len >= 2);
694 
695     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
696 
697     /* At this point, the fields freq and dad are set. We can now
698      * generate the bit lengths.
699      */
700     gen_bitlen(s, (tree_desc *)desc);
701 
702     /* The field len is now set, we can generate the bit codes */
703     gen_codes ((ct_data *)tree, max_code, s->bl_count);
704 }
705 
706 /* ===========================================================================
707  * Scan a literal or distance tree to determine the frequencies of the codes
708  * in the bit length tree.
709  */
scan_tree(deflate_state * s,ct_data * tree,int max_code)710 local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
711     int n;                     /* iterates over all tree elements */
712     int prevlen = -1;          /* last emitted length */
713     int curlen;                /* length of current code */
714     int nextlen = tree[0].Len; /* length of next code */
715     int count = 0;             /* repeat count of the current code */
716     int max_count = 7;         /* max repeat count */
717     int min_count = 4;         /* min repeat count */
718 
719     if (nextlen == 0) max_count = 138, min_count = 3;
720     tree[max_code + 1].Len = (ush)0xffff; /* guard */
721 
722     for (n = 0; n <= max_code; n++) {
723         curlen = nextlen; nextlen = tree[n + 1].Len;
724         if (++count < max_count && curlen == nextlen) {
725             continue;
726         } else if (count < min_count) {
727             s->bl_tree[curlen].Freq += count;
728         } else if (curlen != 0) {
729             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
730             s->bl_tree[REP_3_6].Freq++;
731         } else if (count <= 10) {
732             s->bl_tree[REPZ_3_10].Freq++;
733         } else {
734             s->bl_tree[REPZ_11_138].Freq++;
735         }
736         count = 0; prevlen = curlen;
737         if (nextlen == 0) {
738             max_count = 138, min_count = 3;
739         } else if (curlen == nextlen) {
740             max_count = 6, min_count = 3;
741         } else {
742             max_count = 7, min_count = 4;
743         }
744     }
745 }
746 
747 /* ===========================================================================
748  * Send a literal or distance tree in compressed form, using the codes in
749  * bl_tree.
750  */
send_tree(deflate_state * s,ct_data * tree,int max_code)751 local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
752     int n;                     /* iterates over all tree elements */
753     int prevlen = -1;          /* last emitted length */
754     int curlen;                /* length of current code */
755     int nextlen = tree[0].Len; /* length of next code */
756     int count = 0;             /* repeat count of the current code */
757     int max_count = 7;         /* max repeat count */
758     int min_count = 4;         /* min repeat count */
759 
760     /* tree[max_code + 1].Len = -1; */  /* guard already set */
761     if (nextlen == 0) max_count = 138, min_count = 3;
762 
763     for (n = 0; n <= max_code; n++) {
764         curlen = nextlen; nextlen = tree[n + 1].Len;
765         if (++count < max_count && curlen == nextlen) {
766             continue;
767         } else if (count < min_count) {
768             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
769 
770         } else if (curlen != 0) {
771             if (curlen != prevlen) {
772                 send_code(s, curlen, s->bl_tree); count--;
773             }
774             Assert(count >= 3 && count <= 6, " 3_6?");
775             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
776 
777         } else if (count <= 10) {
778             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
779 
780         } else {
781             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
782         }
783         count = 0; prevlen = curlen;
784         if (nextlen == 0) {
785             max_count = 138, min_count = 3;
786         } else if (curlen == nextlen) {
787             max_count = 6, min_count = 3;
788         } else {
789             max_count = 7, min_count = 4;
790         }
791     }
792 }
793 
794 /* ===========================================================================
795  * Construct the Huffman tree for the bit lengths and return the index in
796  * bl_order of the last bit length code to send.
797  */
build_bl_tree(deflate_state * s)798 local int build_bl_tree(deflate_state *s) {
799     int max_blindex;  /* index of last bit length code of non zero freq */
800 
801     /* Determine the bit length frequencies for literal and distance trees */
802     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
803     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
804 
805     /* Build the bit length tree: */
806     build_tree(s, (tree_desc *)(&(s->bl_desc)));
807     /* opt_len now includes the length of the tree representations, except the
808      * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
809      */
810 
811     /* Determine the number of bit length codes to send. The pkzip format
812      * requires that at least 4 bit length codes be sent. (appnote.txt says
813      * 3 but the actual value used is 4.)
814      */
815     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
816         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
817     }
818     /* Update opt_len to include the bit length tree and counts */
819     s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
820     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
821             s->opt_len, s->static_len));
822 
823     return max_blindex;
824 }
825 
826 /* ===========================================================================
827  * Send the header for a block using dynamic Huffman trees: the counts, the
828  * lengths of the bit length codes, the literal tree and the distance tree.
829  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
830  */
send_all_trees(deflate_state * s,int lcodes,int dcodes,int blcodes)831 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
832                           int blcodes) {
833     int rank;                    /* index in bl_order */
834 
835     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
836     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
837             "too many codes");
838     Tracev((stderr, "\nbl counts: "));
839     send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
840     send_bits(s, dcodes - 1,   5);
841     send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
842     for (rank = 0; rank < blcodes; rank++) {
843         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
844         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
845     }
846     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
847 
848     send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
849     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
850 
851     send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
852     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
853 }
854 
855 /* ===========================================================================
856  * Send a stored block
857  */
_tr_stored_block(deflate_state * s,charf * buf,ulg stored_len,int last)858 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
859                                     ulg stored_len, int last) {
860     send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
861     bi_windup(s);        /* align on byte boundary */
862     put_short(s, (ush)stored_len);
863     put_short(s, (ush)~stored_len);
864     if (stored_len)
865         zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
866     s->pending += stored_len;
867 #ifdef ZLIB_DEBUG
868     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
869     s->compressed_len += (stored_len + 4) << 3;
870     s->bits_sent += 2*16;
871     s->bits_sent += stored_len << 3;
872 #endif
873 }
874 
875 /* ===========================================================================
876  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
877  */
_tr_flush_bits(deflate_state * s)878 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
879     bi_flush(s);
880 }
881 
882 /* ===========================================================================
883  * Send one empty static block to give enough lookahead for inflate.
884  * This takes 10 bits, of which 7 may remain in the bit buffer.
885  */
_tr_align(deflate_state * s)886 void ZLIB_INTERNAL _tr_align(deflate_state *s) {
887     send_bits(s, STATIC_TREES<<1, 3);
888     send_code(s, END_BLOCK, static_ltree);
889 #ifdef ZLIB_DEBUG
890     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
891 #endif
892     bi_flush(s);
893 }
894 
895 /* ===========================================================================
896  * Send the block data compressed using the given Huffman trees
897  */
compress_block(deflate_state * s,const ct_data * ltree,const ct_data * dtree)898 local void compress_block(deflate_state *s, const ct_data *ltree,
899                           const ct_data *dtree) {
900     unsigned dist;      /* distance of matched string */
901     int lc;             /* match length or unmatched char (if dist == 0) */
902     unsigned sx = 0;    /* running index in symbol buffers */
903     unsigned code;      /* the code to send */
904     int extra;          /* number of extra bits to send */
905 
906     if (s->sym_next != 0) do {
907 #ifdef LIT_MEM
908         dist = s->d_buf[sx];
909         lc = s->l_buf[sx++];
910 #else
911         dist = s->sym_buf[sx++] & 0xff;
912         dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
913         lc = s->sym_buf[sx++];
914 #endif
915         if (dist == 0) {
916             send_code(s, lc, ltree); /* send a literal byte */
917             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
918         } else {
919             /* Here, lc is the match length - MIN_MATCH */
920             code = _length_code[lc];
921             send_code(s, code + LITERALS + 1, ltree);   /* send length code */
922             extra = extra_lbits[code];
923             if (extra != 0) {
924                 lc -= base_length[code];
925                 send_bits(s, lc, extra);       /* send the extra length bits */
926             }
927             dist--; /* dist is now the match distance - 1 */
928             code = d_code(dist);
929             Assert (code < D_CODES, "bad d_code");
930 
931             send_code(s, code, dtree);       /* send the distance code */
932             extra = extra_dbits[code];
933             if (extra != 0) {
934                 dist -= (unsigned)base_dist[code];
935                 send_bits(s, dist, extra);   /* send the extra distance bits */
936             }
937         } /* literal or match pair ? */
938 
939         /* Check for no overlay of pending_buf on needed symbols */
940 #ifdef LIT_MEM
941         Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
942 #else
943         Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
944 #endif
945 
946     } while (sx < s->sym_next);
947 
948     send_code(s, END_BLOCK, ltree);
949 }
950 
951 /* ===========================================================================
952  * Check if the data type is TEXT or BINARY, using the following algorithm:
953  * - TEXT if the two conditions below are satisfied:
954  *    a) There are no non-portable control characters belonging to the
955  *       "block list" (0..6, 14..25, 28..31).
956  *    b) There is at least one printable character belonging to the
957  *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
958  * - BINARY otherwise.
959  * - The following partially-portable control characters form a
960  *   "gray list" that is ignored in this detection algorithm:
961  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
962  * IN assertion: the fields Freq of dyn_ltree are set.
963  */
detect_data_type(deflate_state * s)964 local int detect_data_type(deflate_state *s) {
965     /* block_mask is the bit mask of block-listed bytes
966      * set bits 0..6, 14..25, and 28..31
967      * 0xf3ffc07f = binary 11110011111111111100000001111111
968      */
969     unsigned long block_mask = 0xf3ffc07fUL;
970     int n;
971 
972     /* Check for non-textual ("block-listed") bytes. */
973     for (n = 0; n <= 31; n++, block_mask >>= 1)
974         if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
975             return Z_BINARY;
976 
977     /* Check for textual ("allow-listed") bytes. */
978     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
979             || s->dyn_ltree[13].Freq != 0)
980         return Z_TEXT;
981     for (n = 32; n < LITERALS; n++)
982         if (s->dyn_ltree[n].Freq != 0)
983             return Z_TEXT;
984 
985     /* There are no "block-listed" or "allow-listed" bytes:
986      * this stream either is empty or has tolerated ("gray-listed") bytes only.
987      */
988     return Z_BINARY;
989 }
990 
991 /* ===========================================================================
992  * Determine the best encoding for the current block: dynamic trees, static
993  * trees or store, and write out the encoded block.
994  */
_tr_flush_block(deflate_state * s,charf * buf,ulg stored_len,int last)995 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
996                                    ulg stored_len, int last) {
997     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
998     int max_blindex = 0;  /* index of last bit length code of non zero freq */
999 
1000     /* Build the Huffman trees unless a stored block is forced */
1001     if (s->level > 0) {
1002 
1003         /* Check if the file is binary or text */
1004         if (s->strm->data_type == Z_UNKNOWN)
1005             s->strm->data_type = detect_data_type(s);
1006 
1007         /* Construct the literal and distance trees */
1008         build_tree(s, (tree_desc *)(&(s->l_desc)));
1009         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
1010                 s->static_len));
1011 
1012         build_tree(s, (tree_desc *)(&(s->d_desc)));
1013         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
1014                 s->static_len));
1015         /* At this point, opt_len and static_len are the total bit lengths of
1016          * the compressed block data, excluding the tree representations.
1017          */
1018 
1019         /* Build the bit length tree for the above two trees, and get the index
1020          * in bl_order of the last bit length code to send.
1021          */
1022         max_blindex = build_bl_tree(s);
1023 
1024         /* Determine the best encoding. Compute the block lengths in bytes. */
1025         opt_lenb = (s->opt_len + 3 + 7) >> 3;
1026         static_lenb = (s->static_len + 3 + 7) >> 3;
1027 
1028         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
1029                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
1030                 s->sym_next / 3));
1031 
1032 #ifndef FORCE_STATIC
1033         if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
1034 #endif
1035             opt_lenb = static_lenb;
1036 
1037     } else {
1038         Assert(buf != (char*)0, "lost buf");
1039         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
1040     }
1041 
1042 #ifdef FORCE_STORED
1043     if (buf != (char*)0) { /* force stored block */
1044 #else
1045     if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
1046                        /* 4: two words for the lengths */
1047 #endif
1048         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1049          * Otherwise we can't have processed more than WSIZE input bytes since
1050          * the last block flush, because compression would have been
1051          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1052          * transform a block into a stored block.
1053          */
1054         _tr_stored_block(s, buf, stored_len, last);
1055 
1056     } else if (static_lenb == opt_lenb) {
1057         send_bits(s, (STATIC_TREES<<1) + last, 3);
1058         compress_block(s, (const ct_data *)static_ltree,
1059                        (const ct_data *)static_dtree);
1060 #ifdef ZLIB_DEBUG
1061         s->compressed_len += 3 + s->static_len;
1062 #endif
1063     } else {
1064         send_bits(s, (DYN_TREES<<1) + last, 3);
1065         send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
1066                        max_blindex + 1);
1067         compress_block(s, (const ct_data *)s->dyn_ltree,
1068                        (const ct_data *)s->dyn_dtree);
1069 #ifdef ZLIB_DEBUG
1070         s->compressed_len += 3 + s->opt_len;
1071 #endif
1072     }
1073     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1074     /* The above check is made mod 2^32, for files larger than 512 MB
1075      * and uLong implemented on 32 bits.
1076      */
1077     init_block(s);
1078 
1079     if (last) {
1080         bi_windup(s);
1081 #ifdef ZLIB_DEBUG
1082         s->compressed_len += 7;  /* align on byte boundary */
1083 #endif
1084     }
1085     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1086            s->compressed_len - 7*last));
1087 }
1088 
1089 /* ===========================================================================
1090  * Save the match info and tally the frequency counts. Return true if
1091  * the current block must be flushed.
1092  */
1093 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
1094 #ifdef LIT_MEM
1095     s->d_buf[s->sym_next] = (ush)dist;
1096     s->l_buf[s->sym_next++] = (uch)lc;
1097 #else
1098     s->sym_buf[s->sym_next++] = (uch)dist;
1099     s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1100     s->sym_buf[s->sym_next++] = (uch)lc;
1101 #endif
1102     if (dist == 0) {
1103         /* lc is the unmatched char */
1104         s->dyn_ltree[lc].Freq++;
1105     } else {
1106         s->matches++;
1107         /* Here, lc is the match length - MIN_MATCH */
1108         dist--;             /* dist = match distance - 1 */
1109         Assert((ush)dist < (ush)MAX_DIST(s) &&
1110                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1111                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1112 
1113         s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1114         s->dyn_dtree[d_code(dist)].Freq++;
1115     }
1116     return (s->sym_next == s->sym_end);
1117 }
1118