1 /*
2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 #include <config.h>
23
24 #ifdef _WIN32
25 #include <ws2tcpip.h>
26 #else
27 #include <sys/socket.h>
28
29 #ifdef __NetBSD__
30 #include <sys/param.h>
31 #endif
32
33 #include <netinet/in.h>
34 #include <arpa/inet.h>
35 #endif /* _WIN32 */
36
37 #include <stdlib.h>
38 #include <string.h>
39 #include <memory.h>
40 #include <setjmp.h>
41 #include <stdarg.h>
42 #include <stdio.h>
43
44 #ifdef MSDOS
45 #include "pcap-dos.h"
46 #endif
47
48 #include "pcap-int.h"
49
50 #include "extract.h"
51
52 #include "ethertype.h"
53 #include "nlpid.h"
54 #include "llc.h"
55 #include "gencode.h"
56 #include "ieee80211.h"
57 #include "atmuni31.h"
58 #include "sunatmpos.h"
59 #include "pflog.h"
60 #include "ppp.h"
61 #include "pcap/sll.h"
62 #include "pcap/ipnet.h"
63 #include "arcnet.h"
64 #include "diag-control.h"
65
66 #include "scanner.h"
67
68 #if defined(__linux__)
69 #include <linux/types.h>
70 #include <linux/if_packet.h>
71 #include <linux/filter.h>
72 #endif
73
74 #ifndef offsetof
75 #define offsetof(s, e) ((size_t)&((s *)0)->e)
76 #endif
77
78 #ifdef _WIN32
79 #ifdef INET6
80 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
81 /* IPv6 address */
82 struct in6_addr
83 {
84 union
85 {
86 uint8_t u6_addr8[16];
87 uint16_t u6_addr16[8];
88 uint32_t u6_addr32[4];
89 } in6_u;
90 #define s6_addr in6_u.u6_addr8
91 #define s6_addr16 in6_u.u6_addr16
92 #define s6_addr32 in6_u.u6_addr32
93 #define s6_addr64 in6_u.u6_addr64
94 };
95
96 typedef unsigned short sa_family_t;
97
98 #define __SOCKADDR_COMMON(sa_prefix) \
99 sa_family_t sa_prefix##family
100
101 /* Ditto, for IPv6. */
102 struct sockaddr_in6
103 {
104 __SOCKADDR_COMMON (sin6_);
105 uint16_t sin6_port; /* Transport layer port # */
106 uint32_t sin6_flowinfo; /* IPv6 flow information */
107 struct in6_addr sin6_addr; /* IPv6 address */
108 };
109
110 #ifndef EAI_ADDRFAMILY
111 struct addrinfo {
112 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
113 int ai_family; /* PF_xxx */
114 int ai_socktype; /* SOCK_xxx */
115 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
116 size_t ai_addrlen; /* length of ai_addr */
117 char *ai_canonname; /* canonical name for hostname */
118 struct sockaddr *ai_addr; /* binary address */
119 struct addrinfo *ai_next; /* next structure in linked list */
120 };
121 #endif /* EAI_ADDRFAMILY */
122 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
123 #endif /* INET6 */
124 #else /* _WIN32 */
125 #include <netdb.h> /* for "struct addrinfo" */
126 #endif /* _WIN32 */
127 #include <pcap/namedb.h>
128
129 #include "nametoaddr.h"
130
131 #define ETHERMTU 1500
132
133 #ifndef IPPROTO_HOPOPTS
134 #define IPPROTO_HOPOPTS 0
135 #endif
136 #ifndef IPPROTO_ROUTING
137 #define IPPROTO_ROUTING 43
138 #endif
139 #ifndef IPPROTO_FRAGMENT
140 #define IPPROTO_FRAGMENT 44
141 #endif
142 #ifndef IPPROTO_DSTOPTS
143 #define IPPROTO_DSTOPTS 60
144 #endif
145 #ifndef IPPROTO_SCTP
146 #define IPPROTO_SCTP 132
147 #endif
148
149 #define GENEVE_PORT 6081
150
151 #ifdef HAVE_OS_PROTO_H
152 #include "os-proto.h"
153 #endif
154
155 #define JMP(c) ((c)|BPF_JMP|BPF_K)
156
157 /*
158 * "Push" the current value of the link-layer header type and link-layer
159 * header offset onto a "stack", and set a new value. (It's not a
160 * full-blown stack; we keep only the top two items.)
161 */
162 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
163 { \
164 (cs)->prevlinktype = (cs)->linktype; \
165 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
166 (cs)->linktype = (new_linktype); \
167 (cs)->off_linkhdr.is_variable = (new_is_variable); \
168 (cs)->off_linkhdr.constant_part = (new_constant_part); \
169 (cs)->off_linkhdr.reg = (new_reg); \
170 (cs)->is_geneve = 0; \
171 }
172
173 /*
174 * Offset "not set" value.
175 */
176 #define OFFSET_NOT_SET 0xffffffffU
177
178 /*
179 * Absolute offsets, which are offsets from the beginning of the raw
180 * packet data, are, in the general case, the sum of a variable value
181 * and a constant value; the variable value may be absent, in which
182 * case the offset is only the constant value, and the constant value
183 * may be zero, in which case the offset is only the variable value.
184 *
185 * bpf_abs_offset is a structure containing all that information:
186 *
187 * is_variable is 1 if there's a variable part.
188 *
189 * constant_part is the constant part of the value, possibly zero;
190 *
191 * if is_variable is 1, reg is the register number for a register
192 * containing the variable value if the register has been assigned,
193 * and -1 otherwise.
194 */
195 typedef struct {
196 int is_variable;
197 u_int constant_part;
198 int reg;
199 } bpf_abs_offset;
200
201 /*
202 * Value passed to gen_load_a() to indicate what the offset argument
203 * is relative to the beginning of.
204 */
205 enum e_offrel {
206 OR_PACKET, /* full packet data */
207 OR_LINKHDR, /* link-layer header */
208 OR_PREVLINKHDR, /* previous link-layer header */
209 OR_LLC, /* 802.2 LLC header */
210 OR_PREVMPLSHDR, /* previous MPLS header */
211 OR_LINKTYPE, /* link-layer type */
212 OR_LINKPL, /* link-layer payload */
213 OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
214 OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
215 OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
216 };
217
218 /*
219 * We divvy out chunks of memory rather than call malloc each time so
220 * we don't have to worry about leaking memory. It's probably
221 * not a big deal if all this memory was wasted but if this ever
222 * goes into a library that would probably not be a good idea.
223 *
224 * XXX - this *is* in a library....
225 */
226 #define NCHUNKS 16
227 #define CHUNK0SIZE 1024
228 struct chunk {
229 size_t n_left;
230 void *m;
231 };
232
233 /* Code generator state */
234
235 struct _compiler_state {
236 jmp_buf top_ctx;
237 pcap_t *bpf_pcap;
238 int error_set;
239
240 struct icode ic;
241
242 int snaplen;
243
244 int linktype;
245 int prevlinktype;
246 int outermostlinktype;
247
248 bpf_u_int32 netmask;
249 int no_optimize;
250
251 /* Hack for handling VLAN and MPLS stacks. */
252 u_int label_stack_depth;
253 u_int vlan_stack_depth;
254
255 /* XXX */
256 u_int pcap_fddipad;
257
258 /*
259 * As errors are handled by a longjmp, anything allocated must
260 * be freed in the longjmp handler, so it must be reachable
261 * from that handler.
262 *
263 * One thing that's allocated is the result of pcap_nametoaddrinfo();
264 * it must be freed with freeaddrinfo(). This variable points to
265 * any addrinfo structure that would need to be freed.
266 */
267 struct addrinfo *ai;
268
269 /*
270 * Another thing that's allocated is the result of pcap_ether_aton();
271 * it must be freed with free(). This variable points to any
272 * address that would need to be freed.
273 */
274 u_char *e;
275
276 /*
277 * Various code constructs need to know the layout of the packet.
278 * These values give the necessary offsets from the beginning
279 * of the packet data.
280 */
281
282 /*
283 * Absolute offset of the beginning of the link-layer header.
284 */
285 bpf_abs_offset off_linkhdr;
286
287 /*
288 * If we're checking a link-layer header for a packet encapsulated
289 * in another protocol layer, this is the equivalent information
290 * for the previous layers' link-layer header from the beginning
291 * of the raw packet data.
292 */
293 bpf_abs_offset off_prevlinkhdr;
294
295 /*
296 * This is the equivalent information for the outermost layers'
297 * link-layer header.
298 */
299 bpf_abs_offset off_outermostlinkhdr;
300
301 /*
302 * Absolute offset of the beginning of the link-layer payload.
303 */
304 bpf_abs_offset off_linkpl;
305
306 /*
307 * "off_linktype" is the offset to information in the link-layer
308 * header giving the packet type. This is an absolute offset
309 * from the beginning of the packet.
310 *
311 * For Ethernet, it's the offset of the Ethernet type field; this
312 * means that it must have a value that skips VLAN tags.
313 *
314 * For link-layer types that always use 802.2 headers, it's the
315 * offset of the LLC header; this means that it must have a value
316 * that skips VLAN tags.
317 *
318 * For PPP, it's the offset of the PPP type field.
319 *
320 * For Cisco HDLC, it's the offset of the CHDLC type field.
321 *
322 * For BSD loopback, it's the offset of the AF_ value.
323 *
324 * For Linux cooked sockets, it's the offset of the type field.
325 *
326 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
327 * encapsulation, in which case, IP is assumed.
328 */
329 bpf_abs_offset off_linktype;
330
331 /*
332 * TRUE if the link layer includes an ATM pseudo-header.
333 */
334 int is_atm;
335
336 /*
337 * TRUE if "geneve" appeared in the filter; it causes us to
338 * generate code that checks for a Geneve header and assume
339 * that later filters apply to the encapsulated payload.
340 */
341 int is_geneve;
342
343 /*
344 * TRUE if we need variable length part of VLAN offset
345 */
346 int is_vlan_vloffset;
347
348 /*
349 * These are offsets for the ATM pseudo-header.
350 */
351 u_int off_vpi;
352 u_int off_vci;
353 u_int off_proto;
354
355 /*
356 * These are offsets for the MTP2 fields.
357 */
358 u_int off_li;
359 u_int off_li_hsl;
360
361 /*
362 * These are offsets for the MTP3 fields.
363 */
364 u_int off_sio;
365 u_int off_opc;
366 u_int off_dpc;
367 u_int off_sls;
368
369 /*
370 * This is the offset of the first byte after the ATM pseudo_header,
371 * or -1 if there is no ATM pseudo-header.
372 */
373 u_int off_payload;
374
375 /*
376 * These are offsets to the beginning of the network-layer header.
377 * They are relative to the beginning of the link-layer payload
378 * (i.e., they don't include off_linkhdr.constant_part or
379 * off_linkpl.constant_part).
380 *
381 * If the link layer never uses 802.2 LLC:
382 *
383 * "off_nl" and "off_nl_nosnap" are the same.
384 *
385 * If the link layer always uses 802.2 LLC:
386 *
387 * "off_nl" is the offset if there's a SNAP header following
388 * the 802.2 header;
389 *
390 * "off_nl_nosnap" is the offset if there's no SNAP header.
391 *
392 * If the link layer is Ethernet:
393 *
394 * "off_nl" is the offset if the packet is an Ethernet II packet
395 * (we assume no 802.3+802.2+SNAP);
396 *
397 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
398 * with an 802.2 header following it.
399 */
400 u_int off_nl;
401 u_int off_nl_nosnap;
402
403 /*
404 * Here we handle simple allocation of the scratch registers.
405 * If too many registers are alloc'd, the allocator punts.
406 */
407 int regused[BPF_MEMWORDS];
408 int curreg;
409
410 /*
411 * Memory chunks.
412 */
413 struct chunk chunks[NCHUNKS];
414 int cur_chunk;
415 };
416
417 /*
418 * For use by routines outside this file.
419 */
420 /* VARARGS */
421 void
bpf_set_error(compiler_state_t * cstate,const char * fmt,...)422 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
423 {
424 va_list ap;
425
426 /*
427 * If we've already set an error, don't override it.
428 * The lexical analyzer reports some errors by setting
429 * the error and then returning a LEX_ERROR token, which
430 * is not recognized by any grammar rule, and thus forces
431 * the parse to stop. We don't want the error reported
432 * by the lexical analyzer to be overwritten by the syntax
433 * error.
434 */
435 if (!cstate->error_set) {
436 va_start(ap, fmt);
437 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
438 fmt, ap);
439 va_end(ap);
440 cstate->error_set = 1;
441 }
442 }
443
444 /*
445 * For use *ONLY* in routines in this file.
446 */
447 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
448 PCAP_PRINTFLIKE(2, 3);
449
450 /* VARARGS */
451 static void PCAP_NORETURN
bpf_error(compiler_state_t * cstate,const char * fmt,...)452 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
453 {
454 va_list ap;
455
456 va_start(ap, fmt);
457 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
458 fmt, ap);
459 va_end(ap);
460 longjmp(cstate->top_ctx, 1);
461 /*NOTREACHED*/
462 #ifdef _AIX
463 PCAP_UNREACHABLE
464 #endif /* _AIX */
465 }
466
467 static int init_linktype(compiler_state_t *, pcap_t *);
468
469 static void init_regs(compiler_state_t *);
470 static int alloc_reg(compiler_state_t *);
471 static void free_reg(compiler_state_t *, int);
472
473 static void initchunks(compiler_state_t *cstate);
474 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
475 static void *newchunk(compiler_state_t *cstate, size_t);
476 static void freechunks(compiler_state_t *cstate);
477 static inline struct block *new_block(compiler_state_t *cstate, int);
478 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
479 static struct block *gen_retblk(compiler_state_t *cstate, int);
480 static inline void syntax(compiler_state_t *cstate);
481
482 static void backpatch(struct block *, struct block *);
483 static void merge(struct block *, struct block *);
484 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
485 u_int, bpf_u_int32);
486 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
487 u_int, bpf_u_int32);
488 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
489 u_int, bpf_u_int32);
490 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
491 u_int, bpf_u_int32);
492 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
493 u_int, bpf_u_int32);
494 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
495 u_int, bpf_u_int32, bpf_u_int32);
496 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
497 u_int, const u_char *);
498 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
499 u_int, bpf_u_int32, int, int, bpf_u_int32);
500 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
501 u_int, u_int);
502 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
503 u_int);
504 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
505 static struct block *gen_uncond(compiler_state_t *, int);
506 static inline struct block *gen_true(compiler_state_t *);
507 static inline struct block *gen_false(compiler_state_t *);
508 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
509 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
510 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
511 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
512 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
513 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
514 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
515 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
516 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
517 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
518 bpf_abs_offset *);
519 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
520 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
521 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
522 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
523 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
524 int, bpf_u_int32, u_int, u_int);
525 #ifdef INET6
526 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
527 struct in6_addr *, int, bpf_u_int32, u_int, u_int);
528 #endif
529 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
530 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
531 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
532 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
533 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
534 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
535 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
536 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
537 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
538 int, int, int);
539 #ifdef INET6
540 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
541 struct in6_addr *, int, int, int);
542 #endif
543 #ifndef INET6
544 static struct block *gen_gateway(compiler_state_t *, const u_char *,
545 struct addrinfo *, int, int);
546 #endif
547 static struct block *gen_ipfrag(compiler_state_t *);
548 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
549 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
550 bpf_u_int32);
551 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
552 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
553 bpf_u_int32);
554 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
555 static struct block *gen_port(compiler_state_t *, u_int, int, int);
556 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
557 bpf_u_int32, int);
558 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
559 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
560 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
561 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
562 bpf_u_int32, int);
563 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
564 static int lookup_proto(compiler_state_t *, const char *, int);
565 #if !defined(NO_PROTOCHAIN)
566 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
567 #endif /* !defined(NO_PROTOCHAIN) */
568 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
569 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
570 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
571 static struct block *gen_mac_multicast(compiler_state_t *, int);
572 static struct block *gen_len(compiler_state_t *, int, int);
573 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
574 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
575
576 static struct block *gen_ppi_dlt_check(compiler_state_t *);
577 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
578 bpf_u_int32, int, int);
579 static struct block *gen_atmtype_llc(compiler_state_t *);
580 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
581
582 static void
initchunks(compiler_state_t * cstate)583 initchunks(compiler_state_t *cstate)
584 {
585 int i;
586
587 for (i = 0; i < NCHUNKS; i++) {
588 cstate->chunks[i].n_left = 0;
589 cstate->chunks[i].m = NULL;
590 }
591 cstate->cur_chunk = 0;
592 }
593
594 static void *
newchunk_nolongjmp(compiler_state_t * cstate,size_t n)595 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
596 {
597 struct chunk *cp;
598 int k;
599 size_t size;
600
601 #ifndef __NetBSD__
602 /* XXX Round up to nearest long. */
603 n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
604 #else
605 /* XXX Round up to structure boundary. */
606 n = ALIGN(n);
607 #endif
608
609 cp = &cstate->chunks[cstate->cur_chunk];
610 if (n > cp->n_left) {
611 ++cp;
612 k = ++cstate->cur_chunk;
613 if (k >= NCHUNKS) {
614 bpf_set_error(cstate, "out of memory");
615 return (NULL);
616 }
617 size = CHUNK0SIZE << k;
618 cp->m = (void *)malloc(size);
619 if (cp->m == NULL) {
620 bpf_set_error(cstate, "out of memory");
621 return (NULL);
622 }
623 memset((char *)cp->m, 0, size);
624 cp->n_left = size;
625 if (n > size) {
626 bpf_set_error(cstate, "out of memory");
627 return (NULL);
628 }
629 }
630 cp->n_left -= n;
631 return (void *)((char *)cp->m + cp->n_left);
632 }
633
634 static void *
newchunk(compiler_state_t * cstate,size_t n)635 newchunk(compiler_state_t *cstate, size_t n)
636 {
637 void *p;
638
639 p = newchunk_nolongjmp(cstate, n);
640 if (p == NULL) {
641 longjmp(cstate->top_ctx, 1);
642 /*NOTREACHED*/
643 }
644 return (p);
645 }
646
647 static void
freechunks(compiler_state_t * cstate)648 freechunks(compiler_state_t *cstate)
649 {
650 int i;
651
652 for (i = 0; i < NCHUNKS; ++i)
653 if (cstate->chunks[i].m != NULL)
654 free(cstate->chunks[i].m);
655 }
656
657 /*
658 * A strdup whose allocations are freed after code generation is over.
659 * This is used by the lexical analyzer, so it can't longjmp; it just
660 * returns NULL on an allocation error, and the callers must check
661 * for it.
662 */
663 char *
sdup(compiler_state_t * cstate,const char * s)664 sdup(compiler_state_t *cstate, const char *s)
665 {
666 size_t n = strlen(s) + 1;
667 char *cp = newchunk_nolongjmp(cstate, n);
668
669 if (cp == NULL)
670 return (NULL);
671 pcapint_strlcpy(cp, s, n);
672 return (cp);
673 }
674
675 static inline struct block *
new_block(compiler_state_t * cstate,int code)676 new_block(compiler_state_t *cstate, int code)
677 {
678 struct block *p;
679
680 p = (struct block *)newchunk(cstate, sizeof(*p));
681 p->s.code = code;
682 p->head = p;
683
684 return p;
685 }
686
687 static inline struct slist *
new_stmt(compiler_state_t * cstate,int code)688 new_stmt(compiler_state_t *cstate, int code)
689 {
690 struct slist *p;
691
692 p = (struct slist *)newchunk(cstate, sizeof(*p));
693 p->s.code = code;
694
695 return p;
696 }
697
698 static struct block *
gen_retblk(compiler_state_t * cstate,int v)699 gen_retblk(compiler_state_t *cstate, int v)
700 {
701 struct block *b = new_block(cstate, BPF_RET|BPF_K);
702
703 b->s.k = v;
704 return b;
705 }
706
707 static inline PCAP_NORETURN_DEF void
syntax(compiler_state_t * cstate)708 syntax(compiler_state_t *cstate)
709 {
710 bpf_error(cstate, "syntax error in filter expression");
711 }
712
713 int
pcap_compile(pcap_t * p,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)714 pcap_compile(pcap_t *p, struct bpf_program *program,
715 const char *buf, int optimize, bpf_u_int32 mask)
716 {
717 #ifdef _WIN32
718 static int done = 0;
719 #endif
720 compiler_state_t cstate;
721 const char * volatile xbuf = buf;
722 yyscan_t scanner = NULL;
723 volatile YY_BUFFER_STATE in_buffer = NULL;
724 u_int len;
725 int rc;
726
727 /*
728 * If this pcap_t hasn't been activated, it doesn't have a
729 * link-layer type, so we can't use it.
730 */
731 if (!p->activated) {
732 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
733 "not-yet-activated pcap_t passed to pcap_compile");
734 return (PCAP_ERROR);
735 }
736
737 #ifdef _WIN32
738 if (!done) {
739 pcap_wsockinit();
740 done = 1;
741 }
742 #endif
743
744 #ifdef ENABLE_REMOTE
745 /*
746 * If the device on which we're capturing need to be notified
747 * that a new filter is being compiled, do so.
748 *
749 * This allows them to save a copy of it, in case, for example,
750 * they're implementing a form of remote packet capture, and
751 * want the remote machine to filter out the packets in which
752 * it's sending the packets it's captured.
753 *
754 * XXX - the fact that we happen to be compiling a filter
755 * doesn't necessarily mean we'll be installing it as the
756 * filter for this pcap_t; we might be running it from userland
757 * on captured packets to do packet classification. We really
758 * need a better way of handling this, but this is all that
759 * the WinPcap remote capture code did.
760 */
761 if (p->save_current_filter_op != NULL)
762 (p->save_current_filter_op)(p, buf);
763 #endif
764
765 initchunks(&cstate);
766 cstate.no_optimize = 0;
767 #ifdef INET6
768 cstate.ai = NULL;
769 #endif
770 cstate.e = NULL;
771 cstate.ic.root = NULL;
772 cstate.ic.cur_mark = 0;
773 cstate.bpf_pcap = p;
774 cstate.error_set = 0;
775 init_regs(&cstate);
776
777 cstate.netmask = mask;
778
779 cstate.snaplen = pcap_snapshot(p);
780 if (cstate.snaplen == 0) {
781 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
782 "snaplen of 0 rejects all packets");
783 rc = PCAP_ERROR;
784 goto quit;
785 }
786
787 if (pcap_lex_init(&scanner) != 0) {
788 pcapint_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
789 errno, "can't initialize scanner");
790 rc = PCAP_ERROR;
791 goto quit;
792 }
793 in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
794
795 /*
796 * Associate the compiler state with the lexical analyzer
797 * state.
798 */
799 pcap_set_extra(&cstate, scanner);
800
801 if (init_linktype(&cstate, p) == -1) {
802 rc = PCAP_ERROR;
803 goto quit;
804 }
805 if (pcap_parse(scanner, &cstate) != 0) {
806 #ifdef INET6
807 if (cstate.ai != NULL)
808 freeaddrinfo(cstate.ai);
809 #endif
810 if (cstate.e != NULL)
811 free(cstate.e);
812 rc = PCAP_ERROR;
813 goto quit;
814 }
815
816 if (cstate.ic.root == NULL) {
817 /*
818 * Catch errors reported by gen_retblk().
819 */
820 if (setjmp(cstate.top_ctx)) {
821 rc = PCAP_ERROR;
822 goto quit;
823 }
824 cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
825 }
826
827 if (optimize && !cstate.no_optimize) {
828 if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
829 /* Failure */
830 rc = PCAP_ERROR;
831 goto quit;
832 }
833 if (cstate.ic.root == NULL ||
834 (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
835 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
836 "expression rejects all packets");
837 rc = PCAP_ERROR;
838 goto quit;
839 }
840 }
841 program->bf_insns = icode_to_fcode(&cstate.ic,
842 cstate.ic.root, &len, p->errbuf);
843 if (program->bf_insns == NULL) {
844 /* Failure */
845 rc = PCAP_ERROR;
846 goto quit;
847 }
848 program->bf_len = len;
849
850 rc = 0; /* We're all okay */
851
852 quit:
853 /*
854 * Clean up everything for the lexical analyzer.
855 */
856 if (in_buffer != NULL)
857 pcap__delete_buffer(in_buffer, scanner);
858 if (scanner != NULL)
859 pcap_lex_destroy(scanner);
860
861 /*
862 * Clean up our own allocated memory.
863 */
864 freechunks(&cstate);
865
866 return (rc);
867 }
868
869 /*
870 * entry point for using the compiler with no pcap open
871 * pass in all the stuff that is needed explicitly instead.
872 */
873 int
pcap_compile_nopcap(int snaplen_arg,int linktype_arg,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)874 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
875 struct bpf_program *program,
876 const char *buf, int optimize, bpf_u_int32 mask)
877 {
878 pcap_t *p;
879 int ret;
880
881 p = pcap_open_dead(linktype_arg, snaplen_arg);
882 if (p == NULL)
883 return (PCAP_ERROR);
884 ret = pcap_compile(p, program, buf, optimize, mask);
885 pcap_close(p);
886 return (ret);
887 }
888
889 /*
890 * Clean up a "struct bpf_program" by freeing all the memory allocated
891 * in it.
892 */
893 void
pcap_freecode(struct bpf_program * program)894 pcap_freecode(struct bpf_program *program)
895 {
896 program->bf_len = 0;
897 if (program->bf_insns != NULL) {
898 free((char *)program->bf_insns);
899 program->bf_insns = NULL;
900 }
901 }
902
903 /*
904 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
905 * which of the jt and jf fields has been resolved and which is a pointer
906 * back to another unresolved block (or nil). At least one of the fields
907 * in each block is already resolved.
908 */
909 static void
backpatch(struct block * list,struct block * target)910 backpatch(struct block *list, struct block *target)
911 {
912 struct block *next;
913
914 while (list) {
915 if (!list->sense) {
916 next = JT(list);
917 JT(list) = target;
918 } else {
919 next = JF(list);
920 JF(list) = target;
921 }
922 list = next;
923 }
924 }
925
926 /*
927 * Merge the lists in b0 and b1, using the 'sense' field to indicate
928 * which of jt and jf is the link.
929 */
930 static void
merge(struct block * b0,struct block * b1)931 merge(struct block *b0, struct block *b1)
932 {
933 register struct block **p = &b0;
934
935 /* Find end of list. */
936 while (*p)
937 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
938
939 /* Concatenate the lists. */
940 *p = b1;
941 }
942
943 int
finish_parse(compiler_state_t * cstate,struct block * p)944 finish_parse(compiler_state_t *cstate, struct block *p)
945 {
946 struct block *ppi_dlt_check;
947
948 /*
949 * Catch errors reported by us and routines below us, and return -1
950 * on an error.
951 */
952 if (setjmp(cstate->top_ctx))
953 return (-1);
954
955 /*
956 * Insert before the statements of the first (root) block any
957 * statements needed to load the lengths of any variable-length
958 * headers into registers.
959 *
960 * XXX - a fancier strategy would be to insert those before the
961 * statements of all blocks that use those lengths and that
962 * have no predecessors that use them, so that we only compute
963 * the lengths if we need them. There might be even better
964 * approaches than that.
965 *
966 * However, those strategies would be more complicated, and
967 * as we don't generate code to compute a length if the
968 * program has no tests that use the length, and as most
969 * tests will probably use those lengths, we would just
970 * postpone computing the lengths so that it's not done
971 * for tests that fail early, and it's not clear that's
972 * worth the effort.
973 */
974 insert_compute_vloffsets(cstate, p->head);
975
976 /*
977 * For DLT_PPI captures, generate a check of the per-packet
978 * DLT value to make sure it's DLT_IEEE802_11.
979 *
980 * XXX - TurboCap cards use DLT_PPI for Ethernet.
981 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
982 * with appropriate Ethernet information and use that rather
983 * than using something such as DLT_PPI where you don't know
984 * the link-layer header type until runtime, which, in the
985 * general case, would force us to generate both Ethernet *and*
986 * 802.11 code (*and* anything else for which PPI is used)
987 * and choose between them early in the BPF program?
988 */
989 ppi_dlt_check = gen_ppi_dlt_check(cstate);
990 if (ppi_dlt_check != NULL)
991 gen_and(ppi_dlt_check, p);
992
993 backpatch(p, gen_retblk(cstate, cstate->snaplen));
994 p->sense = !p->sense;
995 backpatch(p, gen_retblk(cstate, 0));
996 cstate->ic.root = p->head;
997 return (0);
998 }
999
1000 void
gen_and(struct block * b0,struct block * b1)1001 gen_and(struct block *b0, struct block *b1)
1002 {
1003 backpatch(b0, b1->head);
1004 b0->sense = !b0->sense;
1005 b1->sense = !b1->sense;
1006 merge(b1, b0);
1007 b1->sense = !b1->sense;
1008 b1->head = b0->head;
1009 }
1010
1011 void
gen_or(struct block * b0,struct block * b1)1012 gen_or(struct block *b0, struct block *b1)
1013 {
1014 b0->sense = !b0->sense;
1015 backpatch(b0, b1->head);
1016 b0->sense = !b0->sense;
1017 merge(b1, b0);
1018 b1->head = b0->head;
1019 }
1020
1021 void
gen_not(struct block * b)1022 gen_not(struct block *b)
1023 {
1024 b->sense = !b->sense;
1025 }
1026
1027 static struct block *
gen_cmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1028 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1029 u_int size, bpf_u_int32 v)
1030 {
1031 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1032 }
1033
1034 static struct block *
gen_cmp_gt(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1035 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1036 u_int size, bpf_u_int32 v)
1037 {
1038 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1039 }
1040
1041 static struct block *
gen_cmp_ge(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1042 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1043 u_int size, bpf_u_int32 v)
1044 {
1045 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1046 }
1047
1048 static struct block *
gen_cmp_lt(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1049 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1050 u_int size, bpf_u_int32 v)
1051 {
1052 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1053 }
1054
1055 static struct block *
gen_cmp_le(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v)1056 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1057 u_int size, bpf_u_int32 v)
1058 {
1059 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1060 }
1061
1062 static struct block *
gen_mcmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 v,bpf_u_int32 mask)1063 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1064 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1065 {
1066 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1067 }
1068
1069 static struct block *
gen_bcmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,const u_char * v)1070 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1071 u_int size, const u_char *v)
1072 {
1073 register struct block *b, *tmp;
1074
1075 b = NULL;
1076 while (size >= 4) {
1077 register const u_char *p = &v[size - 4];
1078
1079 tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1080 EXTRACT_BE_U_4(p));
1081 if (b != NULL)
1082 gen_and(b, tmp);
1083 b = tmp;
1084 size -= 4;
1085 }
1086 while (size >= 2) {
1087 register const u_char *p = &v[size - 2];
1088
1089 tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1090 EXTRACT_BE_U_2(p));
1091 if (b != NULL)
1092 gen_and(b, tmp);
1093 b = tmp;
1094 size -= 2;
1095 }
1096 if (size > 0) {
1097 tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1098 if (b != NULL)
1099 gen_and(b, tmp);
1100 b = tmp;
1101 }
1102 return b;
1103 }
1104
1105 /*
1106 * AND the field of size "size" at offset "offset" relative to the header
1107 * specified by "offrel" with "mask", and compare it with the value "v"
1108 * with the test specified by "jtype"; if "reverse" is true, the test
1109 * should test the opposite of "jtype".
1110 */
1111 static struct block *
gen_ncmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_u_int32 mask,int jtype,int reverse,bpf_u_int32 v)1112 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1113 u_int size, bpf_u_int32 mask, int jtype, int reverse,
1114 bpf_u_int32 v)
1115 {
1116 struct slist *s, *s2;
1117 struct block *b;
1118
1119 s = gen_load_a(cstate, offrel, offset, size);
1120
1121 if (mask != 0xffffffff) {
1122 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1123 s2->s.k = mask;
1124 sappend(s, s2);
1125 }
1126
1127 b = new_block(cstate, JMP(jtype));
1128 b->stmts = s;
1129 b->s.k = v;
1130 if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1131 gen_not(b);
1132 return b;
1133 }
1134
1135 static int
init_linktype(compiler_state_t * cstate,pcap_t * p)1136 init_linktype(compiler_state_t *cstate, pcap_t *p)
1137 {
1138 cstate->pcap_fddipad = p->fddipad;
1139
1140 /*
1141 * We start out with only one link-layer header.
1142 */
1143 cstate->outermostlinktype = pcap_datalink(p);
1144 cstate->off_outermostlinkhdr.constant_part = 0;
1145 cstate->off_outermostlinkhdr.is_variable = 0;
1146 cstate->off_outermostlinkhdr.reg = -1;
1147
1148 cstate->prevlinktype = cstate->outermostlinktype;
1149 cstate->off_prevlinkhdr.constant_part = 0;
1150 cstate->off_prevlinkhdr.is_variable = 0;
1151 cstate->off_prevlinkhdr.reg = -1;
1152
1153 cstate->linktype = cstate->outermostlinktype;
1154 cstate->off_linkhdr.constant_part = 0;
1155 cstate->off_linkhdr.is_variable = 0;
1156 cstate->off_linkhdr.reg = -1;
1157
1158 /*
1159 * XXX
1160 */
1161 cstate->off_linkpl.constant_part = 0;
1162 cstate->off_linkpl.is_variable = 0;
1163 cstate->off_linkpl.reg = -1;
1164
1165 cstate->off_linktype.constant_part = 0;
1166 cstate->off_linktype.is_variable = 0;
1167 cstate->off_linktype.reg = -1;
1168
1169 /*
1170 * Assume it's not raw ATM with a pseudo-header, for now.
1171 */
1172 cstate->is_atm = 0;
1173 cstate->off_vpi = OFFSET_NOT_SET;
1174 cstate->off_vci = OFFSET_NOT_SET;
1175 cstate->off_proto = OFFSET_NOT_SET;
1176 cstate->off_payload = OFFSET_NOT_SET;
1177
1178 /*
1179 * And not Geneve.
1180 */
1181 cstate->is_geneve = 0;
1182
1183 /*
1184 * No variable length VLAN offset by default
1185 */
1186 cstate->is_vlan_vloffset = 0;
1187
1188 /*
1189 * And assume we're not doing SS7.
1190 */
1191 cstate->off_li = OFFSET_NOT_SET;
1192 cstate->off_li_hsl = OFFSET_NOT_SET;
1193 cstate->off_sio = OFFSET_NOT_SET;
1194 cstate->off_opc = OFFSET_NOT_SET;
1195 cstate->off_dpc = OFFSET_NOT_SET;
1196 cstate->off_sls = OFFSET_NOT_SET;
1197
1198 cstate->label_stack_depth = 0;
1199 cstate->vlan_stack_depth = 0;
1200
1201 switch (cstate->linktype) {
1202
1203 case DLT_ARCNET:
1204 cstate->off_linktype.constant_part = 2;
1205 cstate->off_linkpl.constant_part = 6;
1206 cstate->off_nl = 0; /* XXX in reality, variable! */
1207 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1208 break;
1209
1210 case DLT_ARCNET_LINUX:
1211 cstate->off_linktype.constant_part = 4;
1212 cstate->off_linkpl.constant_part = 8;
1213 cstate->off_nl = 0; /* XXX in reality, variable! */
1214 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1215 break;
1216
1217 case DLT_EN10MB:
1218 cstate->off_linktype.constant_part = 12;
1219 cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1220 cstate->off_nl = 0; /* Ethernet II */
1221 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1222 break;
1223
1224 case DLT_SLIP:
1225 /*
1226 * SLIP doesn't have a link level type. The 16 byte
1227 * header is hacked into our SLIP driver.
1228 */
1229 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1230 cstate->off_linkpl.constant_part = 16;
1231 cstate->off_nl = 0;
1232 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1233 break;
1234
1235 case DLT_SLIP_BSDOS:
1236 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1237 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1238 /* XXX end */
1239 cstate->off_linkpl.constant_part = 24;
1240 cstate->off_nl = 0;
1241 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1242 break;
1243
1244 case DLT_NULL:
1245 case DLT_LOOP:
1246 cstate->off_linktype.constant_part = 0;
1247 cstate->off_linkpl.constant_part = 4;
1248 cstate->off_nl = 0;
1249 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1250 break;
1251
1252 case DLT_ENC:
1253 cstate->off_linktype.constant_part = 0;
1254 cstate->off_linkpl.constant_part = 12;
1255 cstate->off_nl = 0;
1256 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1257 break;
1258
1259 case DLT_PPP:
1260 case DLT_PPP_PPPD:
1261 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1262 case DLT_HDLC: /* NetBSD (Cisco) HDLC */
1263 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1264 cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1265 cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1266 cstate->off_nl = 0;
1267 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1268 break;
1269
1270 case DLT_PPP_ETHER:
1271 /*
1272 * This does no include the Ethernet header, and
1273 * only covers session state.
1274 */
1275 cstate->off_linktype.constant_part = 6;
1276 cstate->off_linkpl.constant_part = 8;
1277 cstate->off_nl = 0;
1278 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1279 break;
1280
1281 case DLT_PPP_BSDOS:
1282 cstate->off_linktype.constant_part = 5;
1283 cstate->off_linkpl.constant_part = 24;
1284 cstate->off_nl = 0;
1285 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1286 break;
1287
1288 case DLT_FDDI:
1289 /*
1290 * FDDI doesn't really have a link-level type field.
1291 * We set "off_linktype" to the offset of the LLC header.
1292 *
1293 * To check for Ethernet types, we assume that SSAP = SNAP
1294 * is being used and pick out the encapsulated Ethernet type.
1295 * XXX - should we generate code to check for SNAP?
1296 */
1297 cstate->off_linktype.constant_part = 13;
1298 cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1299 cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1300 cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1301 cstate->off_nl = 8; /* 802.2+SNAP */
1302 cstate->off_nl_nosnap = 3; /* 802.2 */
1303 break;
1304
1305 case DLT_IEEE802:
1306 /*
1307 * Token Ring doesn't really have a link-level type field.
1308 * We set "off_linktype" to the offset of the LLC header.
1309 *
1310 * To check for Ethernet types, we assume that SSAP = SNAP
1311 * is being used and pick out the encapsulated Ethernet type.
1312 * XXX - should we generate code to check for SNAP?
1313 *
1314 * XXX - the header is actually variable-length.
1315 * Some various Linux patched versions gave 38
1316 * as "off_linktype" and 40 as "off_nl"; however,
1317 * if a token ring packet has *no* routing
1318 * information, i.e. is not source-routed, the correct
1319 * values are 20 and 22, as they are in the vanilla code.
1320 *
1321 * A packet is source-routed iff the uppermost bit
1322 * of the first byte of the source address, at an
1323 * offset of 8, has the uppermost bit set. If the
1324 * packet is source-routed, the total number of bytes
1325 * of routing information is 2 plus bits 0x1F00 of
1326 * the 16-bit value at an offset of 14 (shifted right
1327 * 8 - figure out which byte that is).
1328 */
1329 cstate->off_linktype.constant_part = 14;
1330 cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1331 cstate->off_nl = 8; /* 802.2+SNAP */
1332 cstate->off_nl_nosnap = 3; /* 802.2 */
1333 break;
1334
1335 case DLT_PRISM_HEADER:
1336 case DLT_IEEE802_11_RADIO_AVS:
1337 case DLT_IEEE802_11_RADIO:
1338 cstate->off_linkhdr.is_variable = 1;
1339 /* Fall through, 802.11 doesn't have a variable link
1340 * prefix but is otherwise the same. */
1341 /* FALLTHROUGH */
1342
1343 case DLT_IEEE802_11:
1344 /*
1345 * 802.11 doesn't really have a link-level type field.
1346 * We set "off_linktype.constant_part" to the offset of
1347 * the LLC header.
1348 *
1349 * To check for Ethernet types, we assume that SSAP = SNAP
1350 * is being used and pick out the encapsulated Ethernet type.
1351 * XXX - should we generate code to check for SNAP?
1352 *
1353 * We also handle variable-length radio headers here.
1354 * The Prism header is in theory variable-length, but in
1355 * practice it's always 144 bytes long. However, some
1356 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1357 * sometimes or always supply an AVS header, so we
1358 * have to check whether the radio header is a Prism
1359 * header or an AVS header, so, in practice, it's
1360 * variable-length.
1361 */
1362 cstate->off_linktype.constant_part = 24;
1363 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1364 cstate->off_linkpl.is_variable = 1;
1365 cstate->off_nl = 8; /* 802.2+SNAP */
1366 cstate->off_nl_nosnap = 3; /* 802.2 */
1367 break;
1368
1369 case DLT_PPI:
1370 /*
1371 * At the moment we treat PPI the same way that we treat
1372 * normal Radiotap encoded packets. The difference is in
1373 * the function that generates the code at the beginning
1374 * to compute the header length. Since this code generator
1375 * of PPI supports bare 802.11 encapsulation only (i.e.
1376 * the encapsulated DLT should be DLT_IEEE802_11) we
1377 * generate code to check for this too.
1378 */
1379 cstate->off_linktype.constant_part = 24;
1380 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1381 cstate->off_linkpl.is_variable = 1;
1382 cstate->off_linkhdr.is_variable = 1;
1383 cstate->off_nl = 8; /* 802.2+SNAP */
1384 cstate->off_nl_nosnap = 3; /* 802.2 */
1385 break;
1386
1387 case DLT_ATM_RFC1483:
1388 case DLT_ATM_CLIP: /* Linux ATM defines this */
1389 /*
1390 * assume routed, non-ISO PDUs
1391 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1392 *
1393 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1394 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1395 * latter would presumably be treated the way PPPoE
1396 * should be, so you can do "pppoe and udp port 2049"
1397 * or "pppoa and tcp port 80" and have it check for
1398 * PPPo{A,E} and a PPP protocol of IP and....
1399 */
1400 cstate->off_linktype.constant_part = 0;
1401 cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1402 cstate->off_nl = 8; /* 802.2+SNAP */
1403 cstate->off_nl_nosnap = 3; /* 802.2 */
1404 break;
1405
1406 case DLT_SUNATM:
1407 /*
1408 * Full Frontal ATM; you get AALn PDUs with an ATM
1409 * pseudo-header.
1410 */
1411 cstate->is_atm = 1;
1412 cstate->off_vpi = SUNATM_VPI_POS;
1413 cstate->off_vci = SUNATM_VCI_POS;
1414 cstate->off_proto = PROTO_POS;
1415 cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1416 cstate->off_linktype.constant_part = cstate->off_payload;
1417 cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1418 cstate->off_nl = 8; /* 802.2+SNAP */
1419 cstate->off_nl_nosnap = 3; /* 802.2 */
1420 break;
1421
1422 case DLT_RAW:
1423 case DLT_IPV4:
1424 case DLT_IPV6:
1425 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1426 cstate->off_linkpl.constant_part = 0;
1427 cstate->off_nl = 0;
1428 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1429 break;
1430
1431 case DLT_LINUX_SLL: /* fake header for Linux cooked socket v1 */
1432 cstate->off_linktype.constant_part = 14;
1433 cstate->off_linkpl.constant_part = 16;
1434 cstate->off_nl = 0;
1435 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1436 break;
1437
1438 case DLT_LINUX_SLL2: /* fake header for Linux cooked socket v2 */
1439 cstate->off_linktype.constant_part = 0;
1440 cstate->off_linkpl.constant_part = 20;
1441 cstate->off_nl = 0;
1442 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1443 break;
1444
1445 case DLT_LTALK:
1446 /*
1447 * LocalTalk does have a 1-byte type field in the LLAP header,
1448 * but really it just indicates whether there is a "short" or
1449 * "long" DDP packet following.
1450 */
1451 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1452 cstate->off_linkpl.constant_part = 0;
1453 cstate->off_nl = 0;
1454 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1455 break;
1456
1457 case DLT_IP_OVER_FC:
1458 /*
1459 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1460 * link-level type field. We set "off_linktype" to the
1461 * offset of the LLC header.
1462 *
1463 * To check for Ethernet types, we assume that SSAP = SNAP
1464 * is being used and pick out the encapsulated Ethernet type.
1465 * XXX - should we generate code to check for SNAP? RFC
1466 * 2625 says SNAP should be used.
1467 */
1468 cstate->off_linktype.constant_part = 16;
1469 cstate->off_linkpl.constant_part = 16;
1470 cstate->off_nl = 8; /* 802.2+SNAP */
1471 cstate->off_nl_nosnap = 3; /* 802.2 */
1472 break;
1473
1474 case DLT_FRELAY:
1475 /*
1476 * XXX - we should set this to handle SNAP-encapsulated
1477 * frames (NLPID of 0x80).
1478 */
1479 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1480 cstate->off_linkpl.constant_part = 0;
1481 cstate->off_nl = 0;
1482 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1483 break;
1484
1485 /*
1486 * the only BPF-interesting FRF.16 frames are non-control frames;
1487 * Frame Relay has a variable length link-layer
1488 * so lets start with offset 4 for now and increments later on (FIXME);
1489 */
1490 case DLT_MFR:
1491 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1492 cstate->off_linkpl.constant_part = 0;
1493 cstate->off_nl = 4;
1494 cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1495 break;
1496
1497 case DLT_APPLE_IP_OVER_IEEE1394:
1498 cstate->off_linktype.constant_part = 16;
1499 cstate->off_linkpl.constant_part = 18;
1500 cstate->off_nl = 0;
1501 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1502 break;
1503
1504 case DLT_SYMANTEC_FIREWALL:
1505 cstate->off_linktype.constant_part = 6;
1506 cstate->off_linkpl.constant_part = 44;
1507 cstate->off_nl = 0; /* Ethernet II */
1508 cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1509 break;
1510
1511 case DLT_PFLOG:
1512 cstate->off_linktype.constant_part = 0;
1513 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1514 cstate->off_linkpl.is_variable = 1;
1515 cstate->off_nl = 0;
1516 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1517 break;
1518
1519 case DLT_JUNIPER_MFR:
1520 case DLT_JUNIPER_MLFR:
1521 case DLT_JUNIPER_MLPPP:
1522 case DLT_JUNIPER_PPP:
1523 case DLT_JUNIPER_CHDLC:
1524 case DLT_JUNIPER_FRELAY:
1525 cstate->off_linktype.constant_part = 4;
1526 cstate->off_linkpl.constant_part = 4;
1527 cstate->off_nl = 0;
1528 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1529 break;
1530
1531 case DLT_JUNIPER_ATM1:
1532 cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1533 cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1534 cstate->off_nl = 0;
1535 cstate->off_nl_nosnap = 10;
1536 break;
1537
1538 case DLT_JUNIPER_ATM2:
1539 cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1540 cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1541 cstate->off_nl = 0;
1542 cstate->off_nl_nosnap = 10;
1543 break;
1544
1545 /* frames captured on a Juniper PPPoE service PIC
1546 * contain raw ethernet frames */
1547 case DLT_JUNIPER_PPPOE:
1548 case DLT_JUNIPER_ETHER:
1549 cstate->off_linkpl.constant_part = 14;
1550 cstate->off_linktype.constant_part = 16;
1551 cstate->off_nl = 18; /* Ethernet II */
1552 cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1553 break;
1554
1555 case DLT_JUNIPER_PPPOE_ATM:
1556 cstate->off_linktype.constant_part = 4;
1557 cstate->off_linkpl.constant_part = 6;
1558 cstate->off_nl = 0;
1559 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1560 break;
1561
1562 case DLT_JUNIPER_GGSN:
1563 cstate->off_linktype.constant_part = 6;
1564 cstate->off_linkpl.constant_part = 12;
1565 cstate->off_nl = 0;
1566 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1567 break;
1568
1569 case DLT_JUNIPER_ES:
1570 cstate->off_linktype.constant_part = 6;
1571 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1572 cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1573 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1574 break;
1575
1576 case DLT_JUNIPER_MONITOR:
1577 cstate->off_linktype.constant_part = 12;
1578 cstate->off_linkpl.constant_part = 12;
1579 cstate->off_nl = 0; /* raw IP/IP6 header */
1580 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1581 break;
1582
1583 case DLT_BACNET_MS_TP:
1584 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1585 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1586 cstate->off_nl = OFFSET_NOT_SET;
1587 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1588 break;
1589
1590 case DLT_JUNIPER_SERVICES:
1591 cstate->off_linktype.constant_part = 12;
1592 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1593 cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1594 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1595 break;
1596
1597 case DLT_JUNIPER_VP:
1598 cstate->off_linktype.constant_part = 18;
1599 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1600 cstate->off_nl = OFFSET_NOT_SET;
1601 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1602 break;
1603
1604 case DLT_JUNIPER_ST:
1605 cstate->off_linktype.constant_part = 18;
1606 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1607 cstate->off_nl = OFFSET_NOT_SET;
1608 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1609 break;
1610
1611 case DLT_JUNIPER_ISM:
1612 cstate->off_linktype.constant_part = 8;
1613 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1614 cstate->off_nl = OFFSET_NOT_SET;
1615 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1616 break;
1617
1618 case DLT_JUNIPER_VS:
1619 case DLT_JUNIPER_SRX_E2E:
1620 case DLT_JUNIPER_FIBRECHANNEL:
1621 case DLT_JUNIPER_ATM_CEMIC:
1622 cstate->off_linktype.constant_part = 8;
1623 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1624 cstate->off_nl = OFFSET_NOT_SET;
1625 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1626 break;
1627
1628 case DLT_MTP2:
1629 cstate->off_li = 2;
1630 cstate->off_li_hsl = 4;
1631 cstate->off_sio = 3;
1632 cstate->off_opc = 4;
1633 cstate->off_dpc = 4;
1634 cstate->off_sls = 7;
1635 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1636 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1637 cstate->off_nl = OFFSET_NOT_SET;
1638 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1639 break;
1640
1641 case DLT_MTP2_WITH_PHDR:
1642 cstate->off_li = 6;
1643 cstate->off_li_hsl = 8;
1644 cstate->off_sio = 7;
1645 cstate->off_opc = 8;
1646 cstate->off_dpc = 8;
1647 cstate->off_sls = 11;
1648 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1649 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1650 cstate->off_nl = OFFSET_NOT_SET;
1651 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1652 break;
1653
1654 case DLT_ERF:
1655 cstate->off_li = 22;
1656 cstate->off_li_hsl = 24;
1657 cstate->off_sio = 23;
1658 cstate->off_opc = 24;
1659 cstate->off_dpc = 24;
1660 cstate->off_sls = 27;
1661 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1662 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1663 cstate->off_nl = OFFSET_NOT_SET;
1664 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1665 break;
1666
1667 case DLT_PFSYNC:
1668 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1669 cstate->off_linkpl.constant_part = 4;
1670 cstate->off_nl = 0;
1671 cstate->off_nl_nosnap = 0;
1672 break;
1673
1674 case DLT_AX25_KISS:
1675 /*
1676 * Currently, only raw "link[N:M]" filtering is supported.
1677 */
1678 cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
1679 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1680 cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */
1681 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1682 break;
1683
1684 case DLT_IPNET:
1685 cstate->off_linktype.constant_part = 1;
1686 cstate->off_linkpl.constant_part = 24; /* ipnet header length */
1687 cstate->off_nl = 0;
1688 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1689 break;
1690
1691 case DLT_NETANALYZER:
1692 cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
1693 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1694 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
1695 cstate->off_nl = 0; /* Ethernet II */
1696 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1697 break;
1698
1699 case DLT_NETANALYZER_TRANSPARENT:
1700 cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1701 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1702 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1703 cstate->off_nl = 0; /* Ethernet II */
1704 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1705 break;
1706
1707 default:
1708 /*
1709 * For values in the range in which we've assigned new
1710 * DLT_ values, only raw "link[N:M]" filtering is supported.
1711 */
1712 if (cstate->linktype >= DLT_HIGH_MATCHING_MIN &&
1713 cstate->linktype <= DLT_HIGH_MATCHING_MAX) {
1714 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1715 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1716 cstate->off_nl = OFFSET_NOT_SET;
1717 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1718 } else {
1719 bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
1720 cstate->linktype, DLT_HIGH_MATCHING_MIN, DLT_HIGH_MATCHING_MAX);
1721 return (-1);
1722 }
1723 break;
1724 }
1725
1726 cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1727 return (0);
1728 }
1729
1730 /*
1731 * Load a value relative to the specified absolute offset.
1732 */
1733 static struct slist *
gen_load_absoffsetrel(compiler_state_t * cstate,bpf_abs_offset * abs_offset,u_int offset,u_int size)1734 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1735 u_int offset, u_int size)
1736 {
1737 struct slist *s, *s2;
1738
1739 s = gen_abs_offset_varpart(cstate, abs_offset);
1740
1741 /*
1742 * If "s" is non-null, it has code to arrange that the X register
1743 * contains the variable part of the absolute offset, so we
1744 * generate a load relative to that, with an offset of
1745 * abs_offset->constant_part + offset.
1746 *
1747 * Otherwise, we can do an absolute load with an offset of
1748 * abs_offset->constant_part + offset.
1749 */
1750 if (s != NULL) {
1751 /*
1752 * "s" points to a list of statements that puts the
1753 * variable part of the absolute offset into the X register.
1754 * Do an indirect load, to use the X register as an offset.
1755 */
1756 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1757 s2->s.k = abs_offset->constant_part + offset;
1758 sappend(s, s2);
1759 } else {
1760 /*
1761 * There is no variable part of the absolute offset, so
1762 * just do an absolute load.
1763 */
1764 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1765 s->s.k = abs_offset->constant_part + offset;
1766 }
1767 return s;
1768 }
1769
1770 /*
1771 * Load a value relative to the beginning of the specified header.
1772 */
1773 static struct slist *
gen_load_a(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size)1774 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1775 u_int size)
1776 {
1777 struct slist *s, *s2;
1778
1779 /*
1780 * Squelch warnings from compilers that *don't* assume that
1781 * offrel always has a valid enum value and therefore don't
1782 * assume that we'll always go through one of the case arms.
1783 *
1784 * If we have a default case, compilers that *do* assume that
1785 * will then complain about the default case code being
1786 * unreachable.
1787 *
1788 * Damned if you do, damned if you don't.
1789 */
1790 s = NULL;
1791
1792 switch (offrel) {
1793
1794 case OR_PACKET:
1795 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1796 s->s.k = offset;
1797 break;
1798
1799 case OR_LINKHDR:
1800 s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1801 break;
1802
1803 case OR_PREVLINKHDR:
1804 s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1805 break;
1806
1807 case OR_LLC:
1808 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1809 break;
1810
1811 case OR_PREVMPLSHDR:
1812 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1813 break;
1814
1815 case OR_LINKPL:
1816 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1817 break;
1818
1819 case OR_LINKPL_NOSNAP:
1820 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1821 break;
1822
1823 case OR_LINKTYPE:
1824 s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1825 break;
1826
1827 case OR_TRAN_IPV4:
1828 /*
1829 * Load the X register with the length of the IPv4 header
1830 * (plus the offset of the link-layer header, if it's
1831 * preceded by a variable-length header such as a radio
1832 * header), in bytes.
1833 */
1834 s = gen_loadx_iphdrlen(cstate);
1835
1836 /*
1837 * Load the item at {offset of the link-layer payload} +
1838 * {offset, relative to the start of the link-layer
1839 * payload, of the IPv4 header} + {length of the IPv4 header} +
1840 * {specified offset}.
1841 *
1842 * If the offset of the link-layer payload is variable,
1843 * the variable part of that offset is included in the
1844 * value in the X register, and we include the constant
1845 * part in the offset of the load.
1846 */
1847 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1848 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1849 sappend(s, s2);
1850 break;
1851
1852 case OR_TRAN_IPV6:
1853 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1854 break;
1855 }
1856 return s;
1857 }
1858
1859 /*
1860 * Generate code to load into the X register the sum of the length of
1861 * the IPv4 header and the variable part of the offset of the link-layer
1862 * payload.
1863 */
1864 static struct slist *
gen_loadx_iphdrlen(compiler_state_t * cstate)1865 gen_loadx_iphdrlen(compiler_state_t *cstate)
1866 {
1867 struct slist *s, *s2;
1868
1869 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1870 if (s != NULL) {
1871 /*
1872 * The offset of the link-layer payload has a variable
1873 * part. "s" points to a list of statements that put
1874 * the variable part of that offset into the X register.
1875 *
1876 * The 4*([k]&0xf) addressing mode can't be used, as we
1877 * don't have a constant offset, so we have to load the
1878 * value in question into the A register and add to it
1879 * the value from the X register.
1880 */
1881 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1882 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1883 sappend(s, s2);
1884 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1885 s2->s.k = 0xf;
1886 sappend(s, s2);
1887 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1888 s2->s.k = 2;
1889 sappend(s, s2);
1890
1891 /*
1892 * The A register now contains the length of the IP header.
1893 * We need to add to it the variable part of the offset of
1894 * the link-layer payload, which is still in the X
1895 * register, and move the result into the X register.
1896 */
1897 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1898 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1899 } else {
1900 /*
1901 * The offset of the link-layer payload is a constant,
1902 * so no code was generated to load the (nonexistent)
1903 * variable part of that offset.
1904 *
1905 * This means we can use the 4*([k]&0xf) addressing
1906 * mode. Load the length of the IPv4 header, which
1907 * is at an offset of cstate->off_nl from the beginning of
1908 * the link-layer payload, and thus at an offset of
1909 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1910 * of the raw packet data, using that addressing mode.
1911 */
1912 s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1913 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1914 }
1915 return s;
1916 }
1917
1918
1919 static struct block *
gen_uncond(compiler_state_t * cstate,int rsense)1920 gen_uncond(compiler_state_t *cstate, int rsense)
1921 {
1922 struct block *b;
1923 struct slist *s;
1924
1925 s = new_stmt(cstate, BPF_LD|BPF_IMM);
1926 s->s.k = !rsense;
1927 b = new_block(cstate, JMP(BPF_JEQ));
1928 b->stmts = s;
1929
1930 return b;
1931 }
1932
1933 static inline struct block *
gen_true(compiler_state_t * cstate)1934 gen_true(compiler_state_t *cstate)
1935 {
1936 return gen_uncond(cstate, 1);
1937 }
1938
1939 static inline struct block *
gen_false(compiler_state_t * cstate)1940 gen_false(compiler_state_t *cstate)
1941 {
1942 return gen_uncond(cstate, 0);
1943 }
1944
1945 /*
1946 * Byte-swap a 32-bit number.
1947 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1948 * big-endian platforms.)
1949 */
1950 #define SWAPLONG(y) \
1951 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1952
1953 /*
1954 * Generate code to match a particular packet type.
1955 *
1956 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1957 * value, if <= ETHERMTU. We use that to determine whether to
1958 * match the type/length field or to check the type/length field for
1959 * a value <= ETHERMTU to see whether it's a type field and then do
1960 * the appropriate test.
1961 */
1962 static struct block *
gen_ether_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)1963 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1964 {
1965 struct block *b0, *b1;
1966
1967 switch (ll_proto) {
1968
1969 case LLCSAP_ISONS:
1970 case LLCSAP_IP:
1971 case LLCSAP_NETBEUI:
1972 /*
1973 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1974 * so we check the DSAP and SSAP.
1975 *
1976 * LLCSAP_IP checks for IP-over-802.2, rather
1977 * than IP-over-Ethernet or IP-over-SNAP.
1978 *
1979 * XXX - should we check both the DSAP and the
1980 * SSAP, like this, or should we check just the
1981 * DSAP, as we do for other types <= ETHERMTU
1982 * (i.e., other SAP values)?
1983 */
1984 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1985 gen_not(b0);
1986 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
1987 gen_and(b0, b1);
1988 return b1;
1989
1990 case LLCSAP_IPX:
1991 /*
1992 * Check for;
1993 *
1994 * Ethernet_II frames, which are Ethernet
1995 * frames with a frame type of ETHERTYPE_IPX;
1996 *
1997 * Ethernet_802.3 frames, which are 802.3
1998 * frames (i.e., the type/length field is
1999 * a length field, <= ETHERMTU, rather than
2000 * a type field) with the first two bytes
2001 * after the Ethernet/802.3 header being
2002 * 0xFFFF;
2003 *
2004 * Ethernet_802.2 frames, which are 802.3
2005 * frames with an 802.2 LLC header and
2006 * with the IPX LSAP as the DSAP in the LLC
2007 * header;
2008 *
2009 * Ethernet_SNAP frames, which are 802.3
2010 * frames with an LLC header and a SNAP
2011 * header and with an OUI of 0x000000
2012 * (encapsulated Ethernet) and a protocol
2013 * ID of ETHERTYPE_IPX in the SNAP header.
2014 *
2015 * XXX - should we generate the same code both
2016 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2017 */
2018
2019 /*
2020 * This generates code to check both for the
2021 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2022 */
2023 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2024 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2025 gen_or(b0, b1);
2026
2027 /*
2028 * Now we add code to check for SNAP frames with
2029 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2030 */
2031 b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2032 gen_or(b0, b1);
2033
2034 /*
2035 * Now we generate code to check for 802.3
2036 * frames in general.
2037 */
2038 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2039 gen_not(b0);
2040
2041 /*
2042 * Now add the check for 802.3 frames before the
2043 * check for Ethernet_802.2 and Ethernet_802.3,
2044 * as those checks should only be done on 802.3
2045 * frames, not on Ethernet frames.
2046 */
2047 gen_and(b0, b1);
2048
2049 /*
2050 * Now add the check for Ethernet_II frames, and
2051 * do that before checking for the other frame
2052 * types.
2053 */
2054 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2055 gen_or(b0, b1);
2056 return b1;
2057
2058 case ETHERTYPE_ATALK:
2059 case ETHERTYPE_AARP:
2060 /*
2061 * EtherTalk (AppleTalk protocols on Ethernet link
2062 * layer) may use 802.2 encapsulation.
2063 */
2064
2065 /*
2066 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2067 * we check for an Ethernet type field less than
2068 * 1500, which means it's an 802.3 length field.
2069 */
2070 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2071 gen_not(b0);
2072
2073 /*
2074 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2075 * SNAP packets with an organization code of
2076 * 0x080007 (Apple, for Appletalk) and a protocol
2077 * type of ETHERTYPE_ATALK (Appletalk).
2078 *
2079 * 802.2-encapsulated ETHERTYPE_AARP packets are
2080 * SNAP packets with an organization code of
2081 * 0x000000 (encapsulated Ethernet) and a protocol
2082 * type of ETHERTYPE_AARP (Appletalk ARP).
2083 */
2084 if (ll_proto == ETHERTYPE_ATALK)
2085 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2086 else /* ll_proto == ETHERTYPE_AARP */
2087 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2088 gen_and(b0, b1);
2089
2090 /*
2091 * Check for Ethernet encapsulation (Ethertalk
2092 * phase 1?); we just check for the Ethernet
2093 * protocol type.
2094 */
2095 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2096
2097 gen_or(b0, b1);
2098 return b1;
2099
2100 default:
2101 if (ll_proto <= ETHERMTU) {
2102 /*
2103 * This is an LLC SAP value, so the frames
2104 * that match would be 802.2 frames.
2105 * Check that the frame is an 802.2 frame
2106 * (i.e., that the length/type field is
2107 * a length field, <= ETHERMTU) and
2108 * then check the DSAP.
2109 */
2110 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2111 gen_not(b0);
2112 b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2113 gen_and(b0, b1);
2114 return b1;
2115 } else {
2116 /*
2117 * This is an Ethernet type, so compare
2118 * the length/type field with it (if
2119 * the frame is an 802.2 frame, the length
2120 * field will be <= ETHERMTU, and, as
2121 * "ll_proto" is > ETHERMTU, this test
2122 * will fail and the frame won't match,
2123 * which is what we want).
2124 */
2125 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2126 }
2127 }
2128 }
2129
2130 static struct block *
gen_loopback_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)2131 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2132 {
2133 /*
2134 * For DLT_NULL, the link-layer header is a 32-bit word
2135 * containing an AF_ value in *host* byte order, and for
2136 * DLT_ENC, the link-layer header begins with a 32-bit
2137 * word containing an AF_ value in host byte order.
2138 *
2139 * In addition, if we're reading a saved capture file,
2140 * the host byte order in the capture may not be the
2141 * same as the host byte order on this machine.
2142 *
2143 * For DLT_LOOP, the link-layer header is a 32-bit
2144 * word containing an AF_ value in *network* byte order.
2145 */
2146 if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2147 /*
2148 * The AF_ value is in host byte order, but the BPF
2149 * interpreter will convert it to network byte order.
2150 *
2151 * If this is a save file, and it's from a machine
2152 * with the opposite byte order to ours, we byte-swap
2153 * the AF_ value.
2154 *
2155 * Then we run it through "htonl()", and generate
2156 * code to compare against the result.
2157 */
2158 if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2159 ll_proto = SWAPLONG(ll_proto);
2160 ll_proto = htonl(ll_proto);
2161 }
2162 return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2163 }
2164
2165 /*
2166 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2167 * or IPv6 then we have an error.
2168 */
2169 static struct block *
gen_ipnet_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)2170 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2171 {
2172 switch (ll_proto) {
2173
2174 case ETHERTYPE_IP:
2175 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2176 /*NOTREACHED*/
2177
2178 case ETHERTYPE_IPV6:
2179 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2180 /*NOTREACHED*/
2181
2182 default:
2183 break;
2184 }
2185
2186 return gen_false(cstate);
2187 }
2188
2189 /*
2190 * Generate code to match a particular packet type.
2191 *
2192 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2193 * value, if <= ETHERMTU. We use that to determine whether to
2194 * match the type field or to check the type field for the special
2195 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2196 */
2197 static struct block *
gen_linux_sll_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)2198 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2199 {
2200 struct block *b0, *b1;
2201
2202 switch (ll_proto) {
2203
2204 case LLCSAP_ISONS:
2205 case LLCSAP_IP:
2206 case LLCSAP_NETBEUI:
2207 /*
2208 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2209 * so we check the DSAP and SSAP.
2210 *
2211 * LLCSAP_IP checks for IP-over-802.2, rather
2212 * than IP-over-Ethernet or IP-over-SNAP.
2213 *
2214 * XXX - should we check both the DSAP and the
2215 * SSAP, like this, or should we check just the
2216 * DSAP, as we do for other types <= ETHERMTU
2217 * (i.e., other SAP values)?
2218 */
2219 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2220 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2221 gen_and(b0, b1);
2222 return b1;
2223
2224 case LLCSAP_IPX:
2225 /*
2226 * Ethernet_II frames, which are Ethernet
2227 * frames with a frame type of ETHERTYPE_IPX;
2228 *
2229 * Ethernet_802.3 frames, which have a frame
2230 * type of LINUX_SLL_P_802_3;
2231 *
2232 * Ethernet_802.2 frames, which are 802.3
2233 * frames with an 802.2 LLC header (i.e, have
2234 * a frame type of LINUX_SLL_P_802_2) and
2235 * with the IPX LSAP as the DSAP in the LLC
2236 * header;
2237 *
2238 * Ethernet_SNAP frames, which are 802.3
2239 * frames with an LLC header and a SNAP
2240 * header and with an OUI of 0x000000
2241 * (encapsulated Ethernet) and a protocol
2242 * ID of ETHERTYPE_IPX in the SNAP header.
2243 *
2244 * First, do the checks on LINUX_SLL_P_802_2
2245 * frames; generate the check for either
2246 * Ethernet_802.2 or Ethernet_SNAP frames, and
2247 * then put a check for LINUX_SLL_P_802_2 frames
2248 * before it.
2249 */
2250 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2251 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2252 gen_or(b0, b1);
2253 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2254 gen_and(b0, b1);
2255
2256 /*
2257 * Now check for 802.3 frames and OR that with
2258 * the previous test.
2259 */
2260 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2261 gen_or(b0, b1);
2262
2263 /*
2264 * Now add the check for Ethernet_II frames, and
2265 * do that before checking for the other frame
2266 * types.
2267 */
2268 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2269 gen_or(b0, b1);
2270 return b1;
2271
2272 case ETHERTYPE_ATALK:
2273 case ETHERTYPE_AARP:
2274 /*
2275 * EtherTalk (AppleTalk protocols on Ethernet link
2276 * layer) may use 802.2 encapsulation.
2277 */
2278
2279 /*
2280 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2281 * we check for the 802.2 protocol type in the
2282 * "Ethernet type" field.
2283 */
2284 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2285
2286 /*
2287 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2288 * SNAP packets with an organization code of
2289 * 0x080007 (Apple, for Appletalk) and a protocol
2290 * type of ETHERTYPE_ATALK (Appletalk).
2291 *
2292 * 802.2-encapsulated ETHERTYPE_AARP packets are
2293 * SNAP packets with an organization code of
2294 * 0x000000 (encapsulated Ethernet) and a protocol
2295 * type of ETHERTYPE_AARP (Appletalk ARP).
2296 */
2297 if (ll_proto == ETHERTYPE_ATALK)
2298 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2299 else /* ll_proto == ETHERTYPE_AARP */
2300 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2301 gen_and(b0, b1);
2302
2303 /*
2304 * Check for Ethernet encapsulation (Ethertalk
2305 * phase 1?); we just check for the Ethernet
2306 * protocol type.
2307 */
2308 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2309
2310 gen_or(b0, b1);
2311 return b1;
2312
2313 default:
2314 if (ll_proto <= ETHERMTU) {
2315 /*
2316 * This is an LLC SAP value, so the frames
2317 * that match would be 802.2 frames.
2318 * Check for the 802.2 protocol type
2319 * in the "Ethernet type" field, and
2320 * then check the DSAP.
2321 */
2322 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2323 b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2324 ll_proto);
2325 gen_and(b0, b1);
2326 return b1;
2327 } else {
2328 /*
2329 * This is an Ethernet type, so compare
2330 * the length/type field with it (if
2331 * the frame is an 802.2 frame, the length
2332 * field will be <= ETHERMTU, and, as
2333 * "ll_proto" is > ETHERMTU, this test
2334 * will fail and the frame won't match,
2335 * which is what we want).
2336 */
2337 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2338 }
2339 }
2340 }
2341
2342 /*
2343 * Load a value relative to the beginning of the link-layer header after the
2344 * pflog header.
2345 */
2346 static struct slist *
gen_load_pflog_llprefixlen(compiler_state_t * cstate)2347 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2348 {
2349 struct slist *s1, *s2;
2350
2351 /*
2352 * Generate code to load the length of the pflog header into
2353 * the register assigned to hold that length, if one has been
2354 * assigned. (If one hasn't been assigned, no code we've
2355 * generated uses that prefix, so we don't need to generate any
2356 * code to load it.)
2357 */
2358 if (cstate->off_linkpl.reg != -1) {
2359 /*
2360 * The length is in the first byte of the header.
2361 */
2362 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2363 s1->s.k = 0;
2364
2365 /*
2366 * Round it up to a multiple of 4.
2367 * Add 3, and clear the lower 2 bits.
2368 */
2369 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2370 s2->s.k = 3;
2371 sappend(s1, s2);
2372 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2373 s2->s.k = 0xfffffffc;
2374 sappend(s1, s2);
2375
2376 /*
2377 * Now allocate a register to hold that value and store
2378 * it.
2379 */
2380 s2 = new_stmt(cstate, BPF_ST);
2381 s2->s.k = cstate->off_linkpl.reg;
2382 sappend(s1, s2);
2383
2384 /*
2385 * Now move it into the X register.
2386 */
2387 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2388 sappend(s1, s2);
2389
2390 return (s1);
2391 } else
2392 return (NULL);
2393 }
2394
2395 static struct slist *
gen_load_prism_llprefixlen(compiler_state_t * cstate)2396 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2397 {
2398 struct slist *s1, *s2;
2399 struct slist *sjeq_avs_cookie;
2400 struct slist *sjcommon;
2401
2402 /*
2403 * This code is not compatible with the optimizer, as
2404 * we are generating jmp instructions within a normal
2405 * slist of instructions
2406 */
2407 cstate->no_optimize = 1;
2408
2409 /*
2410 * Generate code to load the length of the radio header into
2411 * the register assigned to hold that length, if one has been
2412 * assigned. (If one hasn't been assigned, no code we've
2413 * generated uses that prefix, so we don't need to generate any
2414 * code to load it.)
2415 *
2416 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2417 * or always use the AVS header rather than the Prism header.
2418 * We load a 4-byte big-endian value at the beginning of the
2419 * raw packet data, and see whether, when masked with 0xFFFFF000,
2420 * it's equal to 0x80211000. If so, that indicates that it's
2421 * an AVS header (the masked-out bits are the version number).
2422 * Otherwise, it's a Prism header.
2423 *
2424 * XXX - the Prism header is also, in theory, variable-length,
2425 * but no known software generates headers that aren't 144
2426 * bytes long.
2427 */
2428 if (cstate->off_linkhdr.reg != -1) {
2429 /*
2430 * Load the cookie.
2431 */
2432 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2433 s1->s.k = 0;
2434
2435 /*
2436 * AND it with 0xFFFFF000.
2437 */
2438 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2439 s2->s.k = 0xFFFFF000;
2440 sappend(s1, s2);
2441
2442 /*
2443 * Compare with 0x80211000.
2444 */
2445 sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2446 sjeq_avs_cookie->s.k = 0x80211000;
2447 sappend(s1, sjeq_avs_cookie);
2448
2449 /*
2450 * If it's AVS:
2451 *
2452 * The 4 bytes at an offset of 4 from the beginning of
2453 * the AVS header are the length of the AVS header.
2454 * That field is big-endian.
2455 */
2456 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2457 s2->s.k = 4;
2458 sappend(s1, s2);
2459 sjeq_avs_cookie->s.jt = s2;
2460
2461 /*
2462 * Now jump to the code to allocate a register
2463 * into which to save the header length and
2464 * store the length there. (The "jump always"
2465 * instruction needs to have the k field set;
2466 * it's added to the PC, so, as we're jumping
2467 * over a single instruction, it should be 1.)
2468 */
2469 sjcommon = new_stmt(cstate, JMP(BPF_JA));
2470 sjcommon->s.k = 1;
2471 sappend(s1, sjcommon);
2472
2473 /*
2474 * Now for the code that handles the Prism header.
2475 * Just load the length of the Prism header (144)
2476 * into the A register. Have the test for an AVS
2477 * header branch here if we don't have an AVS header.
2478 */
2479 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2480 s2->s.k = 144;
2481 sappend(s1, s2);
2482 sjeq_avs_cookie->s.jf = s2;
2483
2484 /*
2485 * Now allocate a register to hold that value and store
2486 * it. The code for the AVS header will jump here after
2487 * loading the length of the AVS header.
2488 */
2489 s2 = new_stmt(cstate, BPF_ST);
2490 s2->s.k = cstate->off_linkhdr.reg;
2491 sappend(s1, s2);
2492 sjcommon->s.jf = s2;
2493
2494 /*
2495 * Now move it into the X register.
2496 */
2497 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2498 sappend(s1, s2);
2499
2500 return (s1);
2501 } else
2502 return (NULL);
2503 }
2504
2505 static struct slist *
gen_load_avs_llprefixlen(compiler_state_t * cstate)2506 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2507 {
2508 struct slist *s1, *s2;
2509
2510 /*
2511 * Generate code to load the length of the AVS header into
2512 * the register assigned to hold that length, if one has been
2513 * assigned. (If one hasn't been assigned, no code we've
2514 * generated uses that prefix, so we don't need to generate any
2515 * code to load it.)
2516 */
2517 if (cstate->off_linkhdr.reg != -1) {
2518 /*
2519 * The 4 bytes at an offset of 4 from the beginning of
2520 * the AVS header are the length of the AVS header.
2521 * That field is big-endian.
2522 */
2523 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2524 s1->s.k = 4;
2525
2526 /*
2527 * Now allocate a register to hold that value and store
2528 * it.
2529 */
2530 s2 = new_stmt(cstate, BPF_ST);
2531 s2->s.k = cstate->off_linkhdr.reg;
2532 sappend(s1, s2);
2533
2534 /*
2535 * Now move it into the X register.
2536 */
2537 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2538 sappend(s1, s2);
2539
2540 return (s1);
2541 } else
2542 return (NULL);
2543 }
2544
2545 static struct slist *
gen_load_radiotap_llprefixlen(compiler_state_t * cstate)2546 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2547 {
2548 struct slist *s1, *s2;
2549
2550 /*
2551 * Generate code to load the length of the radiotap header into
2552 * the register assigned to hold that length, if one has been
2553 * assigned. (If one hasn't been assigned, no code we've
2554 * generated uses that prefix, so we don't need to generate any
2555 * code to load it.)
2556 */
2557 if (cstate->off_linkhdr.reg != -1) {
2558 /*
2559 * The 2 bytes at offsets of 2 and 3 from the beginning
2560 * of the radiotap header are the length of the radiotap
2561 * header; unfortunately, it's little-endian, so we have
2562 * to load it a byte at a time and construct the value.
2563 */
2564
2565 /*
2566 * Load the high-order byte, at an offset of 3, shift it
2567 * left a byte, and put the result in the X register.
2568 */
2569 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2570 s1->s.k = 3;
2571 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2572 sappend(s1, s2);
2573 s2->s.k = 8;
2574 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2575 sappend(s1, s2);
2576
2577 /*
2578 * Load the next byte, at an offset of 2, and OR the
2579 * value from the X register into it.
2580 */
2581 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2582 sappend(s1, s2);
2583 s2->s.k = 2;
2584 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2585 sappend(s1, s2);
2586
2587 /*
2588 * Now allocate a register to hold that value and store
2589 * it.
2590 */
2591 s2 = new_stmt(cstate, BPF_ST);
2592 s2->s.k = cstate->off_linkhdr.reg;
2593 sappend(s1, s2);
2594
2595 /*
2596 * Now move it into the X register.
2597 */
2598 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2599 sappend(s1, s2);
2600
2601 return (s1);
2602 } else
2603 return (NULL);
2604 }
2605
2606 /*
2607 * At the moment we treat PPI as normal Radiotap encoded
2608 * packets. The difference is in the function that generates
2609 * the code at the beginning to compute the header length.
2610 * Since this code generator of PPI supports bare 802.11
2611 * encapsulation only (i.e. the encapsulated DLT should be
2612 * DLT_IEEE802_11) we generate code to check for this too;
2613 * that's done in finish_parse().
2614 */
2615 static struct slist *
gen_load_ppi_llprefixlen(compiler_state_t * cstate)2616 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2617 {
2618 struct slist *s1, *s2;
2619
2620 /*
2621 * Generate code to load the length of the radiotap header
2622 * into the register assigned to hold that length, if one has
2623 * been assigned.
2624 */
2625 if (cstate->off_linkhdr.reg != -1) {
2626 /*
2627 * The 2 bytes at offsets of 2 and 3 from the beginning
2628 * of the radiotap header are the length of the radiotap
2629 * header; unfortunately, it's little-endian, so we have
2630 * to load it a byte at a time and construct the value.
2631 */
2632
2633 /*
2634 * Load the high-order byte, at an offset of 3, shift it
2635 * left a byte, and put the result in the X register.
2636 */
2637 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2638 s1->s.k = 3;
2639 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2640 sappend(s1, s2);
2641 s2->s.k = 8;
2642 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2643 sappend(s1, s2);
2644
2645 /*
2646 * Load the next byte, at an offset of 2, and OR the
2647 * value from the X register into it.
2648 */
2649 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2650 sappend(s1, s2);
2651 s2->s.k = 2;
2652 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2653 sappend(s1, s2);
2654
2655 /*
2656 * Now allocate a register to hold that value and store
2657 * it.
2658 */
2659 s2 = new_stmt(cstate, BPF_ST);
2660 s2->s.k = cstate->off_linkhdr.reg;
2661 sappend(s1, s2);
2662
2663 /*
2664 * Now move it into the X register.
2665 */
2666 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2667 sappend(s1, s2);
2668
2669 return (s1);
2670 } else
2671 return (NULL);
2672 }
2673
2674 /*
2675 * Load a value relative to the beginning of the link-layer header after the 802.11
2676 * header, i.e. LLC_SNAP.
2677 * The link-layer header doesn't necessarily begin at the beginning
2678 * of the packet data; there might be a variable-length prefix containing
2679 * radio information.
2680 */
2681 static struct slist *
gen_load_802_11_header_len(compiler_state_t * cstate,struct slist * s,struct slist * snext)2682 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2683 {
2684 struct slist *s2;
2685 struct slist *sjset_data_frame_1;
2686 struct slist *sjset_data_frame_2;
2687 struct slist *sjset_qos;
2688 struct slist *sjset_radiotap_flags_present;
2689 struct slist *sjset_radiotap_ext_present;
2690 struct slist *sjset_radiotap_tsft_present;
2691 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2692 struct slist *s_roundup;
2693
2694 if (cstate->off_linkpl.reg == -1) {
2695 /*
2696 * No register has been assigned to the offset of
2697 * the link-layer payload, which means nobody needs
2698 * it; don't bother computing it - just return
2699 * what we already have.
2700 */
2701 return (s);
2702 }
2703
2704 /*
2705 * This code is not compatible with the optimizer, as
2706 * we are generating jmp instructions within a normal
2707 * slist of instructions
2708 */
2709 cstate->no_optimize = 1;
2710
2711 /*
2712 * If "s" is non-null, it has code to arrange that the X register
2713 * contains the length of the prefix preceding the link-layer
2714 * header.
2715 *
2716 * Otherwise, the length of the prefix preceding the link-layer
2717 * header is "off_outermostlinkhdr.constant_part".
2718 */
2719 if (s == NULL) {
2720 /*
2721 * There is no variable-length header preceding the
2722 * link-layer header.
2723 *
2724 * Load the length of the fixed-length prefix preceding
2725 * the link-layer header (if any) into the X register,
2726 * and store it in the cstate->off_linkpl.reg register.
2727 * That length is off_outermostlinkhdr.constant_part.
2728 */
2729 s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2730 s->s.k = cstate->off_outermostlinkhdr.constant_part;
2731 }
2732
2733 /*
2734 * The X register contains the offset of the beginning of the
2735 * link-layer header; add 24, which is the minimum length
2736 * of the MAC header for a data frame, to that, and store it
2737 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2738 * which is at the offset in the X register, with an indexed load.
2739 */
2740 s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2741 sappend(s, s2);
2742 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2743 s2->s.k = 24;
2744 sappend(s, s2);
2745 s2 = new_stmt(cstate, BPF_ST);
2746 s2->s.k = cstate->off_linkpl.reg;
2747 sappend(s, s2);
2748
2749 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2750 s2->s.k = 0;
2751 sappend(s, s2);
2752
2753 /*
2754 * Check the Frame Control field to see if this is a data frame;
2755 * a data frame has the 0x08 bit (b3) in that field set and the
2756 * 0x04 bit (b2) clear.
2757 */
2758 sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2759 sjset_data_frame_1->s.k = 0x08;
2760 sappend(s, sjset_data_frame_1);
2761
2762 /*
2763 * If b3 is set, test b2, otherwise go to the first statement of
2764 * the rest of the program.
2765 */
2766 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2767 sjset_data_frame_2->s.k = 0x04;
2768 sappend(s, sjset_data_frame_2);
2769 sjset_data_frame_1->s.jf = snext;
2770
2771 /*
2772 * If b2 is not set, this is a data frame; test the QoS bit.
2773 * Otherwise, go to the first statement of the rest of the
2774 * program.
2775 */
2776 sjset_data_frame_2->s.jt = snext;
2777 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2778 sjset_qos->s.k = 0x80; /* QoS bit */
2779 sappend(s, sjset_qos);
2780
2781 /*
2782 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2783 * field.
2784 * Otherwise, go to the first statement of the rest of the
2785 * program.
2786 */
2787 sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2788 s2->s.k = cstate->off_linkpl.reg;
2789 sappend(s, s2);
2790 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2791 s2->s.k = 2;
2792 sappend(s, s2);
2793 s2 = new_stmt(cstate, BPF_ST);
2794 s2->s.k = cstate->off_linkpl.reg;
2795 sappend(s, s2);
2796
2797 /*
2798 * If we have a radiotap header, look at it to see whether
2799 * there's Atheros padding between the MAC-layer header
2800 * and the payload.
2801 *
2802 * Note: all of the fields in the radiotap header are
2803 * little-endian, so we byte-swap all of the values
2804 * we test against, as they will be loaded as big-endian
2805 * values.
2806 *
2807 * XXX - in the general case, we would have to scan through
2808 * *all* the presence bits, if there's more than one word of
2809 * presence bits. That would require a loop, meaning that
2810 * we wouldn't be able to run the filter in the kernel.
2811 *
2812 * We assume here that the Atheros adapters that insert the
2813 * annoying padding don't have multiple antennae and therefore
2814 * do not generate radiotap headers with multiple presence words.
2815 */
2816 if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2817 /*
2818 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2819 * in the first presence flag word?
2820 */
2821 sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2822 s2->s.k = 4;
2823 sappend(s, s2);
2824
2825 sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2826 sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2827 sappend(s, sjset_radiotap_flags_present);
2828
2829 /*
2830 * If not, skip all of this.
2831 */
2832 sjset_radiotap_flags_present->s.jf = snext;
2833
2834 /*
2835 * Otherwise, is the "extension" bit set in that word?
2836 */
2837 sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2838 sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2839 sappend(s, sjset_radiotap_ext_present);
2840 sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2841
2842 /*
2843 * If so, skip all of this.
2844 */
2845 sjset_radiotap_ext_present->s.jt = snext;
2846
2847 /*
2848 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2849 */
2850 sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2851 sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2852 sappend(s, sjset_radiotap_tsft_present);
2853 sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2854
2855 /*
2856 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2857 * at an offset of 16 from the beginning of the raw packet
2858 * data (8 bytes for the radiotap header and 8 bytes for
2859 * the TSFT field).
2860 *
2861 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2862 * is set.
2863 */
2864 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2865 s2->s.k = 16;
2866 sappend(s, s2);
2867 sjset_radiotap_tsft_present->s.jt = s2;
2868
2869 sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2870 sjset_tsft_datapad->s.k = 0x20;
2871 sappend(s, sjset_tsft_datapad);
2872
2873 /*
2874 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2875 * at an offset of 8 from the beginning of the raw packet
2876 * data (8 bytes for the radiotap header).
2877 *
2878 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2879 * is set.
2880 */
2881 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2882 s2->s.k = 8;
2883 sappend(s, s2);
2884 sjset_radiotap_tsft_present->s.jf = s2;
2885
2886 sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2887 sjset_notsft_datapad->s.k = 0x20;
2888 sappend(s, sjset_notsft_datapad);
2889
2890 /*
2891 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2892 * set, round the length of the 802.11 header to
2893 * a multiple of 4. Do that by adding 3 and then
2894 * dividing by and multiplying by 4, which we do by
2895 * ANDing with ~3.
2896 */
2897 s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2898 s_roundup->s.k = cstate->off_linkpl.reg;
2899 sappend(s, s_roundup);
2900 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2901 s2->s.k = 3;
2902 sappend(s, s2);
2903 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2904 s2->s.k = (bpf_u_int32)~3;
2905 sappend(s, s2);
2906 s2 = new_stmt(cstate, BPF_ST);
2907 s2->s.k = cstate->off_linkpl.reg;
2908 sappend(s, s2);
2909
2910 sjset_tsft_datapad->s.jt = s_roundup;
2911 sjset_tsft_datapad->s.jf = snext;
2912 sjset_notsft_datapad->s.jt = s_roundup;
2913 sjset_notsft_datapad->s.jf = snext;
2914 } else
2915 sjset_qos->s.jf = snext;
2916
2917 return s;
2918 }
2919
2920 static void
insert_compute_vloffsets(compiler_state_t * cstate,struct block * b)2921 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2922 {
2923 struct slist *s;
2924
2925 /* There is an implicit dependency between the link
2926 * payload and link header since the payload computation
2927 * includes the variable part of the header. Therefore,
2928 * if nobody else has allocated a register for the link
2929 * header and we need it, do it now. */
2930 if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2931 cstate->off_linkhdr.reg == -1)
2932 cstate->off_linkhdr.reg = alloc_reg(cstate);
2933
2934 /*
2935 * For link-layer types that have a variable-length header
2936 * preceding the link-layer header, generate code to load
2937 * the offset of the link-layer header into the register
2938 * assigned to that offset, if any.
2939 *
2940 * XXX - this, and the next switch statement, won't handle
2941 * encapsulation of 802.11 or 802.11+radio information in
2942 * some other protocol stack. That's significantly more
2943 * complicated.
2944 */
2945 switch (cstate->outermostlinktype) {
2946
2947 case DLT_PRISM_HEADER:
2948 s = gen_load_prism_llprefixlen(cstate);
2949 break;
2950
2951 case DLT_IEEE802_11_RADIO_AVS:
2952 s = gen_load_avs_llprefixlen(cstate);
2953 break;
2954
2955 case DLT_IEEE802_11_RADIO:
2956 s = gen_load_radiotap_llprefixlen(cstate);
2957 break;
2958
2959 case DLT_PPI:
2960 s = gen_load_ppi_llprefixlen(cstate);
2961 break;
2962
2963 default:
2964 s = NULL;
2965 break;
2966 }
2967
2968 /*
2969 * For link-layer types that have a variable-length link-layer
2970 * header, generate code to load the offset of the link-layer
2971 * payload into the register assigned to that offset, if any.
2972 */
2973 switch (cstate->outermostlinktype) {
2974
2975 case DLT_IEEE802_11:
2976 case DLT_PRISM_HEADER:
2977 case DLT_IEEE802_11_RADIO_AVS:
2978 case DLT_IEEE802_11_RADIO:
2979 case DLT_PPI:
2980 s = gen_load_802_11_header_len(cstate, s, b->stmts);
2981 break;
2982
2983 case DLT_PFLOG:
2984 s = gen_load_pflog_llprefixlen(cstate);
2985 break;
2986 }
2987
2988 /*
2989 * If there is no initialization yet and we need variable
2990 * length offsets for VLAN, initialize them to zero
2991 */
2992 if (s == NULL && cstate->is_vlan_vloffset) {
2993 struct slist *s2;
2994
2995 if (cstate->off_linkpl.reg == -1)
2996 cstate->off_linkpl.reg = alloc_reg(cstate);
2997 if (cstate->off_linktype.reg == -1)
2998 cstate->off_linktype.reg = alloc_reg(cstate);
2999
3000 s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3001 s->s.k = 0;
3002 s2 = new_stmt(cstate, BPF_ST);
3003 s2->s.k = cstate->off_linkpl.reg;
3004 sappend(s, s2);
3005 s2 = new_stmt(cstate, BPF_ST);
3006 s2->s.k = cstate->off_linktype.reg;
3007 sappend(s, s2);
3008 }
3009
3010 /*
3011 * If we have any offset-loading code, append all the
3012 * existing statements in the block to those statements,
3013 * and make the resulting list the list of statements
3014 * for the block.
3015 */
3016 if (s != NULL) {
3017 sappend(s, b->stmts);
3018 b->stmts = s;
3019 }
3020 }
3021
3022 static struct block *
gen_ppi_dlt_check(compiler_state_t * cstate)3023 gen_ppi_dlt_check(compiler_state_t *cstate)
3024 {
3025 struct slist *s_load_dlt;
3026 struct block *b;
3027
3028 if (cstate->linktype == DLT_PPI)
3029 {
3030 /* Create the statements that check for the DLT
3031 */
3032 s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
3033 s_load_dlt->s.k = 4;
3034
3035 b = new_block(cstate, JMP(BPF_JEQ));
3036
3037 b->stmts = s_load_dlt;
3038 b->s.k = SWAPLONG(DLT_IEEE802_11);
3039 }
3040 else
3041 {
3042 b = NULL;
3043 }
3044
3045 return b;
3046 }
3047
3048 /*
3049 * Take an absolute offset, and:
3050 *
3051 * if it has no variable part, return NULL;
3052 *
3053 * if it has a variable part, generate code to load the register
3054 * containing that variable part into the X register, returning
3055 * a pointer to that code - if no register for that offset has
3056 * been allocated, allocate it first.
3057 *
3058 * (The code to set that register will be generated later, but will
3059 * be placed earlier in the code sequence.)
3060 */
3061 static struct slist *
gen_abs_offset_varpart(compiler_state_t * cstate,bpf_abs_offset * off)3062 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3063 {
3064 struct slist *s;
3065
3066 if (off->is_variable) {
3067 if (off->reg == -1) {
3068 /*
3069 * We haven't yet assigned a register for the
3070 * variable part of the offset of the link-layer
3071 * header; allocate one.
3072 */
3073 off->reg = alloc_reg(cstate);
3074 }
3075
3076 /*
3077 * Load the register containing the variable part of the
3078 * offset of the link-layer header into the X register.
3079 */
3080 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3081 s->s.k = off->reg;
3082 return s;
3083 } else {
3084 /*
3085 * That offset isn't variable, there's no variable part,
3086 * so we don't need to generate any code.
3087 */
3088 return NULL;
3089 }
3090 }
3091
3092 /*
3093 * Map an Ethernet type to the equivalent PPP type.
3094 */
3095 static bpf_u_int32
ethertype_to_ppptype(bpf_u_int32 ll_proto)3096 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3097 {
3098 switch (ll_proto) {
3099
3100 case ETHERTYPE_IP:
3101 ll_proto = PPP_IP;
3102 break;
3103
3104 case ETHERTYPE_IPV6:
3105 ll_proto = PPP_IPV6;
3106 break;
3107
3108 case ETHERTYPE_DN:
3109 ll_proto = PPP_DECNET;
3110 break;
3111
3112 case ETHERTYPE_ATALK:
3113 ll_proto = PPP_APPLE;
3114 break;
3115
3116 case ETHERTYPE_NS:
3117 ll_proto = PPP_NS;
3118 break;
3119
3120 case LLCSAP_ISONS:
3121 ll_proto = PPP_OSI;
3122 break;
3123
3124 case LLCSAP_8021D:
3125 /*
3126 * I'm assuming the "Bridging PDU"s that go
3127 * over PPP are Spanning Tree Protocol
3128 * Bridging PDUs.
3129 */
3130 ll_proto = PPP_BRPDU;
3131 break;
3132
3133 case LLCSAP_IPX:
3134 ll_proto = PPP_IPX;
3135 break;
3136 }
3137 return (ll_proto);
3138 }
3139
3140 /*
3141 * Generate any tests that, for encapsulation of a link-layer packet
3142 * inside another protocol stack, need to be done to check for those
3143 * link-layer packets (and that haven't already been done by a check
3144 * for that encapsulation).
3145 */
3146 static struct block *
gen_prevlinkhdr_check(compiler_state_t * cstate)3147 gen_prevlinkhdr_check(compiler_state_t *cstate)
3148 {
3149 struct block *b0;
3150
3151 if (cstate->is_geneve)
3152 return gen_geneve_ll_check(cstate);
3153
3154 switch (cstate->prevlinktype) {
3155
3156 case DLT_SUNATM:
3157 /*
3158 * This is LANE-encapsulated Ethernet; check that the LANE
3159 * packet doesn't begin with an LE Control marker, i.e.
3160 * that it's data, not a control message.
3161 *
3162 * (We've already generated a test for LANE.)
3163 */
3164 b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3165 gen_not(b0);
3166 return b0;
3167
3168 default:
3169 /*
3170 * No such tests are necessary.
3171 */
3172 return NULL;
3173 }
3174 /*NOTREACHED*/
3175 }
3176
3177 /*
3178 * The three different values we should check for when checking for an
3179 * IPv6 packet with DLT_NULL.
3180 */
3181 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3182 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3183 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3184
3185 /*
3186 * Generate code to match a particular packet type by matching the
3187 * link-layer type field or fields in the 802.2 LLC header.
3188 *
3189 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3190 * value, if <= ETHERMTU.
3191 */
3192 static struct block *
gen_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)3193 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3194 {
3195 struct block *b0, *b1, *b2;
3196 const char *description;
3197
3198 /* are we checking MPLS-encapsulated packets? */
3199 if (cstate->label_stack_depth > 0)
3200 return gen_mpls_linktype(cstate, ll_proto);
3201
3202 switch (cstate->linktype) {
3203
3204 case DLT_EN10MB:
3205 case DLT_NETANALYZER:
3206 case DLT_NETANALYZER_TRANSPARENT:
3207 /* Geneve has an EtherType regardless of whether there is an
3208 * L2 header. */
3209 if (!cstate->is_geneve)
3210 b0 = gen_prevlinkhdr_check(cstate);
3211 else
3212 b0 = NULL;
3213
3214 b1 = gen_ether_linktype(cstate, ll_proto);
3215 if (b0 != NULL)
3216 gen_and(b0, b1);
3217 return b1;
3218 /*NOTREACHED*/
3219
3220 case DLT_C_HDLC:
3221 case DLT_HDLC:
3222 switch (ll_proto) {
3223
3224 case LLCSAP_ISONS:
3225 ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3226 /* fall through */
3227
3228 default:
3229 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3230 /*NOTREACHED*/
3231 }
3232
3233 case DLT_IEEE802_11:
3234 case DLT_PRISM_HEADER:
3235 case DLT_IEEE802_11_RADIO_AVS:
3236 case DLT_IEEE802_11_RADIO:
3237 case DLT_PPI:
3238 /*
3239 * Check that we have a data frame.
3240 */
3241 b0 = gen_check_802_11_data_frame(cstate);
3242
3243 /*
3244 * Now check for the specified link-layer type.
3245 */
3246 b1 = gen_llc_linktype(cstate, ll_proto);
3247 gen_and(b0, b1);
3248 return b1;
3249 /*NOTREACHED*/
3250
3251 case DLT_FDDI:
3252 /*
3253 * XXX - check for LLC frames.
3254 */
3255 return gen_llc_linktype(cstate, ll_proto);
3256 /*NOTREACHED*/
3257
3258 case DLT_IEEE802:
3259 /*
3260 * XXX - check for LLC PDUs, as per IEEE 802.5.
3261 */
3262 return gen_llc_linktype(cstate, ll_proto);
3263 /*NOTREACHED*/
3264
3265 case DLT_ATM_RFC1483:
3266 case DLT_ATM_CLIP:
3267 case DLT_IP_OVER_FC:
3268 return gen_llc_linktype(cstate, ll_proto);
3269 /*NOTREACHED*/
3270
3271 case DLT_SUNATM:
3272 /*
3273 * Check for an LLC-encapsulated version of this protocol;
3274 * if we were checking for LANE, linktype would no longer
3275 * be DLT_SUNATM.
3276 *
3277 * Check for LLC encapsulation and then check the protocol.
3278 */
3279 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3280 b1 = gen_llc_linktype(cstate, ll_proto);
3281 gen_and(b0, b1);
3282 return b1;
3283 /*NOTREACHED*/
3284
3285 case DLT_LINUX_SLL:
3286 return gen_linux_sll_linktype(cstate, ll_proto);
3287 /*NOTREACHED*/
3288
3289 case DLT_SLIP:
3290 case DLT_SLIP_BSDOS:
3291 case DLT_RAW:
3292 /*
3293 * These types don't provide any type field; packets
3294 * are always IPv4 or IPv6.
3295 *
3296 * XXX - for IPv4, check for a version number of 4, and,
3297 * for IPv6, check for a version number of 6?
3298 */
3299 switch (ll_proto) {
3300
3301 case ETHERTYPE_IP:
3302 /* Check for a version number of 4. */
3303 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3304
3305 case ETHERTYPE_IPV6:
3306 /* Check for a version number of 6. */
3307 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3308
3309 default:
3310 return gen_false(cstate); /* always false */
3311 }
3312 /*NOTREACHED*/
3313
3314 case DLT_IPV4:
3315 /*
3316 * Raw IPv4, so no type field.
3317 */
3318 if (ll_proto == ETHERTYPE_IP)
3319 return gen_true(cstate); /* always true */
3320
3321 /* Checking for something other than IPv4; always false */
3322 return gen_false(cstate);
3323 /*NOTREACHED*/
3324
3325 case DLT_IPV6:
3326 /*
3327 * Raw IPv6, so no type field.
3328 */
3329 if (ll_proto == ETHERTYPE_IPV6)
3330 return gen_true(cstate); /* always true */
3331
3332 /* Checking for something other than IPv6; always false */
3333 return gen_false(cstate);
3334 /*NOTREACHED*/
3335
3336 case DLT_PPP:
3337 case DLT_PPP_PPPD:
3338 case DLT_PPP_SERIAL:
3339 case DLT_PPP_ETHER:
3340 /*
3341 * We use Ethernet protocol types inside libpcap;
3342 * map them to the corresponding PPP protocol types.
3343 */
3344 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3345 ethertype_to_ppptype(ll_proto));
3346 /*NOTREACHED*/
3347
3348 case DLT_PPP_BSDOS:
3349 /*
3350 * We use Ethernet protocol types inside libpcap;
3351 * map them to the corresponding PPP protocol types.
3352 */
3353 switch (ll_proto) {
3354
3355 case ETHERTYPE_IP:
3356 /*
3357 * Also check for Van Jacobson-compressed IP.
3358 * XXX - do this for other forms of PPP?
3359 */
3360 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3361 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3362 gen_or(b0, b1);
3363 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3364 gen_or(b1, b0);
3365 return b0;
3366
3367 default:
3368 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3369 ethertype_to_ppptype(ll_proto));
3370 }
3371 /*NOTREACHED*/
3372
3373 case DLT_NULL:
3374 case DLT_LOOP:
3375 case DLT_ENC:
3376 switch (ll_proto) {
3377
3378 case ETHERTYPE_IP:
3379 return (gen_loopback_linktype(cstate, AF_INET));
3380
3381 case ETHERTYPE_IPV6:
3382 /*
3383 * AF_ values may, unfortunately, be platform-
3384 * dependent; AF_INET isn't, because everybody
3385 * used 4.2BSD's value, but AF_INET6 is, because
3386 * 4.2BSD didn't have a value for it (given that
3387 * IPv6 didn't exist back in the early 1980's),
3388 * and they all picked their own values.
3389 *
3390 * This means that, if we're reading from a
3391 * savefile, we need to check for all the
3392 * possible values.
3393 *
3394 * If we're doing a live capture, we only need
3395 * to check for this platform's value; however,
3396 * Npcap uses 24, which isn't Windows's AF_INET6
3397 * value. (Given the multiple different values,
3398 * programs that read pcap files shouldn't be
3399 * checking for their platform's AF_INET6 value
3400 * anyway, they should check for all of the
3401 * possible values. and they might as well do
3402 * that even for live captures.)
3403 */
3404 if (cstate->bpf_pcap->rfile != NULL) {
3405 /*
3406 * Savefile - check for all three
3407 * possible IPv6 values.
3408 */
3409 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3410 b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3411 gen_or(b0, b1);
3412 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3413 gen_or(b0, b1);
3414 return (b1);
3415 } else {
3416 /*
3417 * Live capture, so we only need to
3418 * check for the value used on this
3419 * platform.
3420 */
3421 #ifdef _WIN32
3422 /*
3423 * Npcap doesn't use Windows's AF_INET6,
3424 * as that collides with AF_IPX on
3425 * some BSDs (both have the value 23).
3426 * Instead, it uses 24.
3427 */
3428 return (gen_loopback_linktype(cstate, 24));
3429 #else /* _WIN32 */
3430 #ifdef AF_INET6
3431 return (gen_loopback_linktype(cstate, AF_INET6));
3432 #else /* AF_INET6 */
3433 /*
3434 * I guess this platform doesn't support
3435 * IPv6, so we just reject all packets.
3436 */
3437 return gen_false(cstate);
3438 #endif /* AF_INET6 */
3439 #endif /* _WIN32 */
3440 }
3441
3442 default:
3443 /*
3444 * Not a type on which we support filtering.
3445 * XXX - support those that have AF_ values
3446 * #defined on this platform, at least?
3447 */
3448 return gen_false(cstate);
3449 }
3450
3451 case DLT_PFLOG:
3452 /*
3453 * af field is host byte order in contrast to the rest of
3454 * the packet.
3455 */
3456 if (ll_proto == ETHERTYPE_IP)
3457 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3458 BPF_B, AF_INET));
3459 else if (ll_proto == ETHERTYPE_IPV6)
3460 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3461 BPF_B, AF_INET6));
3462 else
3463 return gen_false(cstate);
3464 /*NOTREACHED*/
3465
3466 case DLT_ARCNET:
3467 case DLT_ARCNET_LINUX:
3468 /*
3469 * XXX should we check for first fragment if the protocol
3470 * uses PHDS?
3471 */
3472 switch (ll_proto) {
3473
3474 default:
3475 return gen_false(cstate);
3476
3477 case ETHERTYPE_IPV6:
3478 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3479 ARCTYPE_INET6));
3480
3481 case ETHERTYPE_IP:
3482 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3483 ARCTYPE_IP);
3484 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3485 ARCTYPE_IP_OLD);
3486 gen_or(b0, b1);
3487 return (b1);
3488
3489 case ETHERTYPE_ARP:
3490 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3491 ARCTYPE_ARP);
3492 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3493 ARCTYPE_ARP_OLD);
3494 gen_or(b0, b1);
3495 return (b1);
3496
3497 case ETHERTYPE_REVARP:
3498 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3499 ARCTYPE_REVARP));
3500
3501 case ETHERTYPE_ATALK:
3502 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3503 ARCTYPE_ATALK));
3504 }
3505 /*NOTREACHED*/
3506
3507 case DLT_LTALK:
3508 switch (ll_proto) {
3509 case ETHERTYPE_ATALK:
3510 return gen_true(cstate);
3511 default:
3512 return gen_false(cstate);
3513 }
3514 /*NOTREACHED*/
3515
3516 case DLT_FRELAY:
3517 /*
3518 * XXX - assumes a 2-byte Frame Relay header with
3519 * DLCI and flags. What if the address is longer?
3520 */
3521 switch (ll_proto) {
3522
3523 case ETHERTYPE_IP:
3524 /*
3525 * Check for the special NLPID for IP.
3526 */
3527 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3528
3529 case ETHERTYPE_IPV6:
3530 /*
3531 * Check for the special NLPID for IPv6.
3532 */
3533 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3534
3535 case LLCSAP_ISONS:
3536 /*
3537 * Check for several OSI protocols.
3538 *
3539 * Frame Relay packets typically have an OSI
3540 * NLPID at the beginning; we check for each
3541 * of them.
3542 *
3543 * What we check for is the NLPID and a frame
3544 * control field of UI, i.e. 0x03 followed
3545 * by the NLPID.
3546 */
3547 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3548 b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3549 b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3550 gen_or(b1, b2);
3551 gen_or(b0, b2);
3552 return b2;
3553
3554 default:
3555 return gen_false(cstate);
3556 }
3557 /*NOTREACHED*/
3558
3559 case DLT_MFR:
3560 bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3561
3562 case DLT_JUNIPER_MFR:
3563 case DLT_JUNIPER_MLFR:
3564 case DLT_JUNIPER_MLPPP:
3565 case DLT_JUNIPER_ATM1:
3566 case DLT_JUNIPER_ATM2:
3567 case DLT_JUNIPER_PPPOE:
3568 case DLT_JUNIPER_PPPOE_ATM:
3569 case DLT_JUNIPER_GGSN:
3570 case DLT_JUNIPER_ES:
3571 case DLT_JUNIPER_MONITOR:
3572 case DLT_JUNIPER_SERVICES:
3573 case DLT_JUNIPER_ETHER:
3574 case DLT_JUNIPER_PPP:
3575 case DLT_JUNIPER_FRELAY:
3576 case DLT_JUNIPER_CHDLC:
3577 case DLT_JUNIPER_VP:
3578 case DLT_JUNIPER_ST:
3579 case DLT_JUNIPER_ISM:
3580 case DLT_JUNIPER_VS:
3581 case DLT_JUNIPER_SRX_E2E:
3582 case DLT_JUNIPER_FIBRECHANNEL:
3583 case DLT_JUNIPER_ATM_CEMIC:
3584
3585 /* just lets verify the magic number for now -
3586 * on ATM we may have up to 6 different encapsulations on the wire
3587 * and need a lot of heuristics to figure out that the payload
3588 * might be;
3589 *
3590 * FIXME encapsulation specific BPF_ filters
3591 */
3592 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3593
3594 case DLT_BACNET_MS_TP:
3595 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3596
3597 case DLT_IPNET:
3598 return gen_ipnet_linktype(cstate, ll_proto);
3599
3600 case DLT_LINUX_IRDA:
3601 bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3602
3603 case DLT_DOCSIS:
3604 bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3605
3606 case DLT_MTP2:
3607 case DLT_MTP2_WITH_PHDR:
3608 bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3609
3610 case DLT_ERF:
3611 bpf_error(cstate, "ERF link-layer type filtering not implemented");
3612
3613 case DLT_PFSYNC:
3614 bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3615
3616 case DLT_LINUX_LAPD:
3617 bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3618
3619 case DLT_USB_FREEBSD:
3620 case DLT_USB_LINUX:
3621 case DLT_USB_LINUX_MMAPPED:
3622 case DLT_USBPCAP:
3623 bpf_error(cstate, "USB link-layer type filtering not implemented");
3624
3625 case DLT_BLUETOOTH_HCI_H4:
3626 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3627 bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3628
3629 case DLT_CAN20B:
3630 case DLT_CAN_SOCKETCAN:
3631 bpf_error(cstate, "CAN link-layer type filtering not implemented");
3632
3633 case DLT_IEEE802_15_4:
3634 case DLT_IEEE802_15_4_LINUX:
3635 case DLT_IEEE802_15_4_NONASK_PHY:
3636 case DLT_IEEE802_15_4_NOFCS:
3637 case DLT_IEEE802_15_4_TAP:
3638 bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3639
3640 case DLT_IEEE802_16_MAC_CPS_RADIO:
3641 bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3642
3643 case DLT_SITA:
3644 bpf_error(cstate, "SITA link-layer type filtering not implemented");
3645
3646 case DLT_RAIF1:
3647 bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3648
3649 case DLT_IPMB_KONTRON:
3650 case DLT_IPMB_LINUX:
3651 bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3652
3653 case DLT_AX25_KISS:
3654 bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3655
3656 case DLT_NFLOG:
3657 /* Using the fixed-size NFLOG header it is possible to tell only
3658 * the address family of the packet, other meaningful data is
3659 * either missing or behind TLVs.
3660 */
3661 bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3662
3663 default:
3664 /*
3665 * Does this link-layer header type have a field
3666 * indicating the type of the next protocol? If
3667 * so, off_linktype.constant_part will be the offset of that
3668 * field in the packet; if not, it will be OFFSET_NOT_SET.
3669 */
3670 if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3671 /*
3672 * Yes; assume it's an Ethernet type. (If
3673 * it's not, it needs to be handled specially
3674 * above.)
3675 */
3676 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3677 /*NOTREACHED */
3678 } else {
3679 /*
3680 * No; report an error.
3681 */
3682 description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3683 bpf_error(cstate, "%s link-layer type filtering not implemented",
3684 description);
3685 /*NOTREACHED */
3686 }
3687 }
3688 }
3689
3690 /*
3691 * Check for an LLC SNAP packet with a given organization code and
3692 * protocol type; we check the entire contents of the 802.2 LLC and
3693 * snap headers, checking for DSAP and SSAP of SNAP and a control
3694 * field of 0x03 in the LLC header, and for the specified organization
3695 * code and protocol type in the SNAP header.
3696 */
3697 static struct block *
gen_snap(compiler_state_t * cstate,bpf_u_int32 orgcode,bpf_u_int32 ptype)3698 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3699 {
3700 u_char snapblock[8];
3701
3702 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
3703 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
3704 snapblock[2] = 0x03; /* control = UI */
3705 snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
3706 snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */
3707 snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */
3708 snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */
3709 snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */
3710 return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3711 }
3712
3713 /*
3714 * Generate code to match frames with an LLC header.
3715 */
3716 static struct block *
gen_llc_internal(compiler_state_t * cstate)3717 gen_llc_internal(compiler_state_t *cstate)
3718 {
3719 struct block *b0, *b1;
3720
3721 switch (cstate->linktype) {
3722
3723 case DLT_EN10MB:
3724 /*
3725 * We check for an Ethernet type field less than
3726 * 1500, which means it's an 802.3 length field.
3727 */
3728 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3729 gen_not(b0);
3730
3731 /*
3732 * Now check for the purported DSAP and SSAP not being
3733 * 0xFF, to rule out NetWare-over-802.3.
3734 */
3735 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3736 gen_not(b1);
3737 gen_and(b0, b1);
3738 return b1;
3739
3740 case DLT_SUNATM:
3741 /*
3742 * We check for LLC traffic.
3743 */
3744 b0 = gen_atmtype_llc(cstate);
3745 return b0;
3746
3747 case DLT_IEEE802: /* Token Ring */
3748 /*
3749 * XXX - check for LLC frames.
3750 */
3751 return gen_true(cstate);
3752
3753 case DLT_FDDI:
3754 /*
3755 * XXX - check for LLC frames.
3756 */
3757 return gen_true(cstate);
3758
3759 case DLT_ATM_RFC1483:
3760 /*
3761 * For LLC encapsulation, these are defined to have an
3762 * 802.2 LLC header.
3763 *
3764 * For VC encapsulation, they don't, but there's no
3765 * way to check for that; the protocol used on the VC
3766 * is negotiated out of band.
3767 */
3768 return gen_true(cstate);
3769
3770 case DLT_IEEE802_11:
3771 case DLT_PRISM_HEADER:
3772 case DLT_IEEE802_11_RADIO:
3773 case DLT_IEEE802_11_RADIO_AVS:
3774 case DLT_PPI:
3775 /*
3776 * Check that we have a data frame.
3777 */
3778 b0 = gen_check_802_11_data_frame(cstate);
3779 return b0;
3780
3781 default:
3782 bpf_error(cstate, "'llc' not supported for %s",
3783 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3784 /*NOTREACHED*/
3785 }
3786 }
3787
3788 struct block *
gen_llc(compiler_state_t * cstate)3789 gen_llc(compiler_state_t *cstate)
3790 {
3791 /*
3792 * Catch errors reported by us and routines below us, and return NULL
3793 * on an error.
3794 */
3795 if (setjmp(cstate->top_ctx))
3796 return (NULL);
3797
3798 return gen_llc_internal(cstate);
3799 }
3800
3801 struct block *
gen_llc_i(compiler_state_t * cstate)3802 gen_llc_i(compiler_state_t *cstate)
3803 {
3804 struct block *b0, *b1;
3805 struct slist *s;
3806
3807 /*
3808 * Catch errors reported by us and routines below us, and return NULL
3809 * on an error.
3810 */
3811 if (setjmp(cstate->top_ctx))
3812 return (NULL);
3813
3814 /*
3815 * Check whether this is an LLC frame.
3816 */
3817 b0 = gen_llc_internal(cstate);
3818
3819 /*
3820 * Load the control byte and test the low-order bit; it must
3821 * be clear for I frames.
3822 */
3823 s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3824 b1 = new_block(cstate, JMP(BPF_JSET));
3825 b1->s.k = 0x01;
3826 b1->stmts = s;
3827 gen_not(b1);
3828 gen_and(b0, b1);
3829 return b1;
3830 }
3831
3832 struct block *
gen_llc_s(compiler_state_t * cstate)3833 gen_llc_s(compiler_state_t *cstate)
3834 {
3835 struct block *b0, *b1;
3836
3837 /*
3838 * Catch errors reported by us and routines below us, and return NULL
3839 * on an error.
3840 */
3841 if (setjmp(cstate->top_ctx))
3842 return (NULL);
3843
3844 /*
3845 * Check whether this is an LLC frame.
3846 */
3847 b0 = gen_llc_internal(cstate);
3848
3849 /*
3850 * Now compare the low-order 2 bit of the control byte against
3851 * the appropriate value for S frames.
3852 */
3853 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3854 gen_and(b0, b1);
3855 return b1;
3856 }
3857
3858 struct block *
gen_llc_u(compiler_state_t * cstate)3859 gen_llc_u(compiler_state_t *cstate)
3860 {
3861 struct block *b0, *b1;
3862
3863 /*
3864 * Catch errors reported by us and routines below us, and return NULL
3865 * on an error.
3866 */
3867 if (setjmp(cstate->top_ctx))
3868 return (NULL);
3869
3870 /*
3871 * Check whether this is an LLC frame.
3872 */
3873 b0 = gen_llc_internal(cstate);
3874
3875 /*
3876 * Now compare the low-order 2 bit of the control byte against
3877 * the appropriate value for U frames.
3878 */
3879 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3880 gen_and(b0, b1);
3881 return b1;
3882 }
3883
3884 struct block *
gen_llc_s_subtype(compiler_state_t * cstate,bpf_u_int32 subtype)3885 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3886 {
3887 struct block *b0, *b1;
3888
3889 /*
3890 * Catch errors reported by us and routines below us, and return NULL
3891 * on an error.
3892 */
3893 if (setjmp(cstate->top_ctx))
3894 return (NULL);
3895
3896 /*
3897 * Check whether this is an LLC frame.
3898 */
3899 b0 = gen_llc_internal(cstate);
3900
3901 /*
3902 * Now check for an S frame with the appropriate type.
3903 */
3904 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3905 gen_and(b0, b1);
3906 return b1;
3907 }
3908
3909 struct block *
gen_llc_u_subtype(compiler_state_t * cstate,bpf_u_int32 subtype)3910 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3911 {
3912 struct block *b0, *b1;
3913
3914 /*
3915 * Catch errors reported by us and routines below us, and return NULL
3916 * on an error.
3917 */
3918 if (setjmp(cstate->top_ctx))
3919 return (NULL);
3920
3921 /*
3922 * Check whether this is an LLC frame.
3923 */
3924 b0 = gen_llc_internal(cstate);
3925
3926 /*
3927 * Now check for a U frame with the appropriate type.
3928 */
3929 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3930 gen_and(b0, b1);
3931 return b1;
3932 }
3933
3934 /*
3935 * Generate code to match a particular packet type, for link-layer types
3936 * using 802.2 LLC headers.
3937 *
3938 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3939 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3940 *
3941 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3942 * value, if <= ETHERMTU. We use that to determine whether to
3943 * match the DSAP or both DSAP and LSAP or to check the OUI and
3944 * protocol ID in a SNAP header.
3945 */
3946 static struct block *
gen_llc_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)3947 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3948 {
3949 /*
3950 * XXX - handle token-ring variable-length header.
3951 */
3952 switch (ll_proto) {
3953
3954 case LLCSAP_IP:
3955 case LLCSAP_ISONS:
3956 case LLCSAP_NETBEUI:
3957 /*
3958 * XXX - should we check both the DSAP and the
3959 * SSAP, like this, or should we check just the
3960 * DSAP, as we do for other SAP values?
3961 */
3962 return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3963 ((ll_proto << 8) | ll_proto));
3964
3965 case LLCSAP_IPX:
3966 /*
3967 * XXX - are there ever SNAP frames for IPX on
3968 * non-Ethernet 802.x networks?
3969 */
3970 return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3971
3972 case ETHERTYPE_ATALK:
3973 /*
3974 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3975 * SNAP packets with an organization code of
3976 * 0x080007 (Apple, for Appletalk) and a protocol
3977 * type of ETHERTYPE_ATALK (Appletalk).
3978 *
3979 * XXX - check for an organization code of
3980 * encapsulated Ethernet as well?
3981 */
3982 return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3983
3984 default:
3985 /*
3986 * XXX - we don't have to check for IPX 802.3
3987 * here, but should we check for the IPX Ethertype?
3988 */
3989 if (ll_proto <= ETHERMTU) {
3990 /*
3991 * This is an LLC SAP value, so check
3992 * the DSAP.
3993 */
3994 return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
3995 } else {
3996 /*
3997 * This is an Ethernet type; we assume that it's
3998 * unlikely that it'll appear in the right place
3999 * at random, and therefore check only the
4000 * location that would hold the Ethernet type
4001 * in a SNAP frame with an organization code of
4002 * 0x000000 (encapsulated Ethernet).
4003 *
4004 * XXX - if we were to check for the SNAP DSAP and
4005 * LSAP, as per XXX, and were also to check for an
4006 * organization code of 0x000000 (encapsulated
4007 * Ethernet), we'd do
4008 *
4009 * return gen_snap(cstate, 0x000000, ll_proto);
4010 *
4011 * here; for now, we don't, as per the above.
4012 * I don't know whether it's worth the extra CPU
4013 * time to do the right check or not.
4014 */
4015 return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4016 }
4017 }
4018 }
4019
4020 static struct block *
gen_hostop(compiler_state_t * cstate,bpf_u_int32 addr,bpf_u_int32 mask,int dir,bpf_u_int32 ll_proto,u_int src_off,u_int dst_off)4021 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4022 int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
4023 {
4024 struct block *b0, *b1;
4025 u_int offset;
4026
4027 switch (dir) {
4028
4029 case Q_SRC:
4030 offset = src_off;
4031 break;
4032
4033 case Q_DST:
4034 offset = dst_off;
4035 break;
4036
4037 case Q_AND:
4038 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4039 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4040 gen_and(b0, b1);
4041 return b1;
4042
4043 case Q_DEFAULT:
4044 case Q_OR:
4045 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4046 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4047 gen_or(b0, b1);
4048 return b1;
4049
4050 case Q_ADDR1:
4051 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4052 /*NOTREACHED*/
4053
4054 case Q_ADDR2:
4055 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4056 /*NOTREACHED*/
4057
4058 case Q_ADDR3:
4059 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4060 /*NOTREACHED*/
4061
4062 case Q_ADDR4:
4063 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4064 /*NOTREACHED*/
4065
4066 case Q_RA:
4067 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4068 /*NOTREACHED*/
4069
4070 case Q_TA:
4071 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4072 /*NOTREACHED*/
4073
4074 default:
4075 abort();
4076 /*NOTREACHED*/
4077 }
4078 b0 = gen_linktype(cstate, ll_proto);
4079 b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4080 gen_and(b0, b1);
4081 return b1;
4082 }
4083
4084 #ifdef INET6
4085 static struct block *
gen_hostop6(compiler_state_t * cstate,struct in6_addr * addr,struct in6_addr * mask,int dir,bpf_u_int32 ll_proto,u_int src_off,u_int dst_off)4086 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4087 struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4088 u_int dst_off)
4089 {
4090 struct block *b0, *b1;
4091 u_int offset;
4092 /*
4093 * Code below needs to access four separate 32-bit parts of the 128-bit
4094 * IPv6 address and mask. In some OSes this is as simple as using the
4095 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4096 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4097 * far as libpcap sees it. Hence copy the data before use to avoid
4098 * potential unaligned memory access and the associated compiler
4099 * warnings (whether genuine or not).
4100 */
4101 bpf_u_int32 a[4], m[4];
4102
4103 switch (dir) {
4104
4105 case Q_SRC:
4106 offset = src_off;
4107 break;
4108
4109 case Q_DST:
4110 offset = dst_off;
4111 break;
4112
4113 case Q_AND:
4114 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4115 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4116 gen_and(b0, b1);
4117 return b1;
4118
4119 case Q_DEFAULT:
4120 case Q_OR:
4121 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4122 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4123 gen_or(b0, b1);
4124 return b1;
4125
4126 case Q_ADDR1:
4127 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4128 /*NOTREACHED*/
4129
4130 case Q_ADDR2:
4131 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4132 /*NOTREACHED*/
4133
4134 case Q_ADDR3:
4135 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4136 /*NOTREACHED*/
4137
4138 case Q_ADDR4:
4139 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4140 /*NOTREACHED*/
4141
4142 case Q_RA:
4143 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4144 /*NOTREACHED*/
4145
4146 case Q_TA:
4147 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4148 /*NOTREACHED*/
4149
4150 default:
4151 abort();
4152 /*NOTREACHED*/
4153 }
4154 /* this order is important */
4155 memcpy(a, addr, sizeof(a));
4156 memcpy(m, mask, sizeof(m));
4157 b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4158 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4159 gen_and(b0, b1);
4160 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4161 gen_and(b0, b1);
4162 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4163 gen_and(b0, b1);
4164 b0 = gen_linktype(cstate, ll_proto);
4165 gen_and(b0, b1);
4166 return b1;
4167 }
4168 #endif
4169
4170 static struct block *
gen_ehostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4171 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4172 {
4173 register struct block *b0, *b1;
4174
4175 switch (dir) {
4176 case Q_SRC:
4177 return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4178
4179 case Q_DST:
4180 return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4181
4182 case Q_AND:
4183 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4184 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4185 gen_and(b0, b1);
4186 return b1;
4187
4188 case Q_DEFAULT:
4189 case Q_OR:
4190 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4191 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4192 gen_or(b0, b1);
4193 return b1;
4194
4195 case Q_ADDR1:
4196 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4197 /*NOTREACHED*/
4198
4199 case Q_ADDR2:
4200 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4201 /*NOTREACHED*/
4202
4203 case Q_ADDR3:
4204 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4205 /*NOTREACHED*/
4206
4207 case Q_ADDR4:
4208 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4209 /*NOTREACHED*/
4210
4211 case Q_RA:
4212 bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4213 /*NOTREACHED*/
4214
4215 case Q_TA:
4216 bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4217 /*NOTREACHED*/
4218 }
4219 abort();
4220 /*NOTREACHED*/
4221 }
4222
4223 /*
4224 * Like gen_ehostop, but for DLT_FDDI
4225 */
4226 static struct block *
gen_fhostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4227 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4228 {
4229 struct block *b0, *b1;
4230
4231 switch (dir) {
4232 case Q_SRC:
4233 return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4234
4235 case Q_DST:
4236 return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4237
4238 case Q_AND:
4239 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4240 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4241 gen_and(b0, b1);
4242 return b1;
4243
4244 case Q_DEFAULT:
4245 case Q_OR:
4246 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4247 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4248 gen_or(b0, b1);
4249 return b1;
4250
4251 case Q_ADDR1:
4252 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4253 /*NOTREACHED*/
4254
4255 case Q_ADDR2:
4256 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4257 /*NOTREACHED*/
4258
4259 case Q_ADDR3:
4260 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4261 /*NOTREACHED*/
4262
4263 case Q_ADDR4:
4264 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4265 /*NOTREACHED*/
4266
4267 case Q_RA:
4268 bpf_error(cstate, "'ra' is only supported on 802.11");
4269 /*NOTREACHED*/
4270
4271 case Q_TA:
4272 bpf_error(cstate, "'ta' is only supported on 802.11");
4273 /*NOTREACHED*/
4274 }
4275 abort();
4276 /*NOTREACHED*/
4277 }
4278
4279 /*
4280 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4281 */
4282 static struct block *
gen_thostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4283 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4284 {
4285 register struct block *b0, *b1;
4286
4287 switch (dir) {
4288 case Q_SRC:
4289 return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4290
4291 case Q_DST:
4292 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4293
4294 case Q_AND:
4295 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4296 b1 = gen_thostop(cstate, eaddr, Q_DST);
4297 gen_and(b0, b1);
4298 return b1;
4299
4300 case Q_DEFAULT:
4301 case Q_OR:
4302 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4303 b1 = gen_thostop(cstate, eaddr, Q_DST);
4304 gen_or(b0, b1);
4305 return b1;
4306
4307 case Q_ADDR1:
4308 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4309 /*NOTREACHED*/
4310
4311 case Q_ADDR2:
4312 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4313 /*NOTREACHED*/
4314
4315 case Q_ADDR3:
4316 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4317 /*NOTREACHED*/
4318
4319 case Q_ADDR4:
4320 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4321 /*NOTREACHED*/
4322
4323 case Q_RA:
4324 bpf_error(cstate, "'ra' is only supported on 802.11");
4325 /*NOTREACHED*/
4326
4327 case Q_TA:
4328 bpf_error(cstate, "'ta' is only supported on 802.11");
4329 /*NOTREACHED*/
4330 }
4331 abort();
4332 /*NOTREACHED*/
4333 }
4334
4335 /*
4336 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4337 * various 802.11 + radio headers.
4338 */
4339 static struct block *
gen_wlanhostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4340 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4341 {
4342 register struct block *b0, *b1, *b2;
4343 register struct slist *s;
4344
4345 #ifdef ENABLE_WLAN_FILTERING_PATCH
4346 /*
4347 * TODO GV 20070613
4348 * We need to disable the optimizer because the optimizer is buggy
4349 * and wipes out some LD instructions generated by the below
4350 * code to validate the Frame Control bits
4351 */
4352 cstate->no_optimize = 1;
4353 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4354
4355 switch (dir) {
4356 case Q_SRC:
4357 /*
4358 * Oh, yuk.
4359 *
4360 * For control frames, there is no SA.
4361 *
4362 * For management frames, SA is at an
4363 * offset of 10 from the beginning of
4364 * the packet.
4365 *
4366 * For data frames, SA is at an offset
4367 * of 10 from the beginning of the packet
4368 * if From DS is clear, at an offset of
4369 * 16 from the beginning of the packet
4370 * if From DS is set and To DS is clear,
4371 * and an offset of 24 from the beginning
4372 * of the packet if From DS is set and To DS
4373 * is set.
4374 */
4375
4376 /*
4377 * Generate the tests to be done for data frames
4378 * with From DS set.
4379 *
4380 * First, check for To DS set, i.e. check "link[1] & 0x01".
4381 */
4382 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4383 b1 = new_block(cstate, JMP(BPF_JSET));
4384 b1->s.k = 0x01; /* To DS */
4385 b1->stmts = s;
4386
4387 /*
4388 * If To DS is set, the SA is at 24.
4389 */
4390 b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4391 gen_and(b1, b0);
4392
4393 /*
4394 * Now, check for To DS not set, i.e. check
4395 * "!(link[1] & 0x01)".
4396 */
4397 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4398 b2 = new_block(cstate, JMP(BPF_JSET));
4399 b2->s.k = 0x01; /* To DS */
4400 b2->stmts = s;
4401 gen_not(b2);
4402
4403 /*
4404 * If To DS is not set, the SA is at 16.
4405 */
4406 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4407 gen_and(b2, b1);
4408
4409 /*
4410 * Now OR together the last two checks. That gives
4411 * the complete set of checks for data frames with
4412 * From DS set.
4413 */
4414 gen_or(b1, b0);
4415
4416 /*
4417 * Now check for From DS being set, and AND that with
4418 * the ORed-together checks.
4419 */
4420 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4421 b1 = new_block(cstate, JMP(BPF_JSET));
4422 b1->s.k = 0x02; /* From DS */
4423 b1->stmts = s;
4424 gen_and(b1, b0);
4425
4426 /*
4427 * Now check for data frames with From DS not set.
4428 */
4429 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4430 b2 = new_block(cstate, JMP(BPF_JSET));
4431 b2->s.k = 0x02; /* From DS */
4432 b2->stmts = s;
4433 gen_not(b2);
4434
4435 /*
4436 * If From DS isn't set, the SA is at 10.
4437 */
4438 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4439 gen_and(b2, b1);
4440
4441 /*
4442 * Now OR together the checks for data frames with
4443 * From DS not set and for data frames with From DS
4444 * set; that gives the checks done for data frames.
4445 */
4446 gen_or(b1, b0);
4447
4448 /*
4449 * Now check for a data frame.
4450 * I.e, check "link[0] & 0x08".
4451 */
4452 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4453 b1 = new_block(cstate, JMP(BPF_JSET));
4454 b1->s.k = 0x08;
4455 b1->stmts = s;
4456
4457 /*
4458 * AND that with the checks done for data frames.
4459 */
4460 gen_and(b1, b0);
4461
4462 /*
4463 * If the high-order bit of the type value is 0, this
4464 * is a management frame.
4465 * I.e, check "!(link[0] & 0x08)".
4466 */
4467 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4468 b2 = new_block(cstate, JMP(BPF_JSET));
4469 b2->s.k = 0x08;
4470 b2->stmts = s;
4471 gen_not(b2);
4472
4473 /*
4474 * For management frames, the SA is at 10.
4475 */
4476 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4477 gen_and(b2, b1);
4478
4479 /*
4480 * OR that with the checks done for data frames.
4481 * That gives the checks done for management and
4482 * data frames.
4483 */
4484 gen_or(b1, b0);
4485
4486 /*
4487 * If the low-order bit of the type value is 1,
4488 * this is either a control frame or a frame
4489 * with a reserved type, and thus not a
4490 * frame with an SA.
4491 *
4492 * I.e., check "!(link[0] & 0x04)".
4493 */
4494 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4495 b1 = new_block(cstate, JMP(BPF_JSET));
4496 b1->s.k = 0x04;
4497 b1->stmts = s;
4498 gen_not(b1);
4499
4500 /*
4501 * AND that with the checks for data and management
4502 * frames.
4503 */
4504 gen_and(b1, b0);
4505 return b0;
4506
4507 case Q_DST:
4508 /*
4509 * Oh, yuk.
4510 *
4511 * For control frames, there is no DA.
4512 *
4513 * For management frames, DA is at an
4514 * offset of 4 from the beginning of
4515 * the packet.
4516 *
4517 * For data frames, DA is at an offset
4518 * of 4 from the beginning of the packet
4519 * if To DS is clear and at an offset of
4520 * 16 from the beginning of the packet
4521 * if To DS is set.
4522 */
4523
4524 /*
4525 * Generate the tests to be done for data frames.
4526 *
4527 * First, check for To DS set, i.e. "link[1] & 0x01".
4528 */
4529 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4530 b1 = new_block(cstate, JMP(BPF_JSET));
4531 b1->s.k = 0x01; /* To DS */
4532 b1->stmts = s;
4533
4534 /*
4535 * If To DS is set, the DA is at 16.
4536 */
4537 b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4538 gen_and(b1, b0);
4539
4540 /*
4541 * Now, check for To DS not set, i.e. check
4542 * "!(link[1] & 0x01)".
4543 */
4544 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4545 b2 = new_block(cstate, JMP(BPF_JSET));
4546 b2->s.k = 0x01; /* To DS */
4547 b2->stmts = s;
4548 gen_not(b2);
4549
4550 /*
4551 * If To DS is not set, the DA is at 4.
4552 */
4553 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4554 gen_and(b2, b1);
4555
4556 /*
4557 * Now OR together the last two checks. That gives
4558 * the complete set of checks for data frames.
4559 */
4560 gen_or(b1, b0);
4561
4562 /*
4563 * Now check for a data frame.
4564 * I.e, check "link[0] & 0x08".
4565 */
4566 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4567 b1 = new_block(cstate, JMP(BPF_JSET));
4568 b1->s.k = 0x08;
4569 b1->stmts = s;
4570
4571 /*
4572 * AND that with the checks done for data frames.
4573 */
4574 gen_and(b1, b0);
4575
4576 /*
4577 * If the high-order bit of the type value is 0, this
4578 * is a management frame.
4579 * I.e, check "!(link[0] & 0x08)".
4580 */
4581 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4582 b2 = new_block(cstate, JMP(BPF_JSET));
4583 b2->s.k = 0x08;
4584 b2->stmts = s;
4585 gen_not(b2);
4586
4587 /*
4588 * For management frames, the DA is at 4.
4589 */
4590 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4591 gen_and(b2, b1);
4592
4593 /*
4594 * OR that with the checks done for data frames.
4595 * That gives the checks done for management and
4596 * data frames.
4597 */
4598 gen_or(b1, b0);
4599
4600 /*
4601 * If the low-order bit of the type value is 1,
4602 * this is either a control frame or a frame
4603 * with a reserved type, and thus not a
4604 * frame with an SA.
4605 *
4606 * I.e., check "!(link[0] & 0x04)".
4607 */
4608 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4609 b1 = new_block(cstate, JMP(BPF_JSET));
4610 b1->s.k = 0x04;
4611 b1->stmts = s;
4612 gen_not(b1);
4613
4614 /*
4615 * AND that with the checks for data and management
4616 * frames.
4617 */
4618 gen_and(b1, b0);
4619 return b0;
4620
4621 case Q_AND:
4622 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4623 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4624 gen_and(b0, b1);
4625 return b1;
4626
4627 case Q_DEFAULT:
4628 case Q_OR:
4629 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4630 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4631 gen_or(b0, b1);
4632 return b1;
4633
4634 /*
4635 * XXX - add BSSID keyword?
4636 */
4637 case Q_ADDR1:
4638 return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4639
4640 case Q_ADDR2:
4641 /*
4642 * Not present in CTS or ACK control frames.
4643 */
4644 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4645 IEEE80211_FC0_TYPE_MASK);
4646 gen_not(b0);
4647 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4648 IEEE80211_FC0_SUBTYPE_MASK);
4649 gen_not(b1);
4650 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4651 IEEE80211_FC0_SUBTYPE_MASK);
4652 gen_not(b2);
4653 gen_and(b1, b2);
4654 gen_or(b0, b2);
4655 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4656 gen_and(b2, b1);
4657 return b1;
4658
4659 case Q_ADDR3:
4660 /*
4661 * Not present in control frames.
4662 */
4663 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4664 IEEE80211_FC0_TYPE_MASK);
4665 gen_not(b0);
4666 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4667 gen_and(b0, b1);
4668 return b1;
4669
4670 case Q_ADDR4:
4671 /*
4672 * Present only if the direction mask has both "From DS"
4673 * and "To DS" set. Neither control frames nor management
4674 * frames should have both of those set, so we don't
4675 * check the frame type.
4676 */
4677 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4678 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4679 b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4680 gen_and(b0, b1);
4681 return b1;
4682
4683 case Q_RA:
4684 /*
4685 * Not present in management frames; addr1 in other
4686 * frames.
4687 */
4688
4689 /*
4690 * If the high-order bit of the type value is 0, this
4691 * is a management frame.
4692 * I.e, check "(link[0] & 0x08)".
4693 */
4694 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4695 b1 = new_block(cstate, JMP(BPF_JSET));
4696 b1->s.k = 0x08;
4697 b1->stmts = s;
4698
4699 /*
4700 * Check addr1.
4701 */
4702 b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4703
4704 /*
4705 * AND that with the check of addr1.
4706 */
4707 gen_and(b1, b0);
4708 return (b0);
4709
4710 case Q_TA:
4711 /*
4712 * Not present in management frames; addr2, if present,
4713 * in other frames.
4714 */
4715
4716 /*
4717 * Not present in CTS or ACK control frames.
4718 */
4719 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4720 IEEE80211_FC0_TYPE_MASK);
4721 gen_not(b0);
4722 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4723 IEEE80211_FC0_SUBTYPE_MASK);
4724 gen_not(b1);
4725 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4726 IEEE80211_FC0_SUBTYPE_MASK);
4727 gen_not(b2);
4728 gen_and(b1, b2);
4729 gen_or(b0, b2);
4730
4731 /*
4732 * If the high-order bit of the type value is 0, this
4733 * is a management frame.
4734 * I.e, check "(link[0] & 0x08)".
4735 */
4736 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4737 b1 = new_block(cstate, JMP(BPF_JSET));
4738 b1->s.k = 0x08;
4739 b1->stmts = s;
4740
4741 /*
4742 * AND that with the check for frames other than
4743 * CTS and ACK frames.
4744 */
4745 gen_and(b1, b2);
4746
4747 /*
4748 * Check addr2.
4749 */
4750 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4751 gen_and(b2, b1);
4752 return b1;
4753 }
4754 abort();
4755 /*NOTREACHED*/
4756 }
4757
4758 /*
4759 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4760 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4761 * as the RFC states.)
4762 */
4763 static struct block *
gen_ipfchostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4764 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4765 {
4766 register struct block *b0, *b1;
4767
4768 switch (dir) {
4769 case Q_SRC:
4770 return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4771
4772 case Q_DST:
4773 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4774
4775 case Q_AND:
4776 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4777 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4778 gen_and(b0, b1);
4779 return b1;
4780
4781 case Q_DEFAULT:
4782 case Q_OR:
4783 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4784 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4785 gen_or(b0, b1);
4786 return b1;
4787
4788 case Q_ADDR1:
4789 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4790 /*NOTREACHED*/
4791
4792 case Q_ADDR2:
4793 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4794 /*NOTREACHED*/
4795
4796 case Q_ADDR3:
4797 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4798 /*NOTREACHED*/
4799
4800 case Q_ADDR4:
4801 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4802 /*NOTREACHED*/
4803
4804 case Q_RA:
4805 bpf_error(cstate, "'ra' is only supported on 802.11");
4806 /*NOTREACHED*/
4807
4808 case Q_TA:
4809 bpf_error(cstate, "'ta' is only supported on 802.11");
4810 /*NOTREACHED*/
4811 }
4812 abort();
4813 /*NOTREACHED*/
4814 }
4815
4816 /*
4817 * This is quite tricky because there may be pad bytes in front of the
4818 * DECNET header, and then there are two possible data packet formats that
4819 * carry both src and dst addresses, plus 5 packet types in a format that
4820 * carries only the src node, plus 2 types that use a different format and
4821 * also carry just the src node.
4822 *
4823 * Yuck.
4824 *
4825 * Instead of doing those all right, we just look for data packets with
4826 * 0 or 1 bytes of padding. If you want to look at other packets, that
4827 * will require a lot more hacking.
4828 *
4829 * To add support for filtering on DECNET "areas" (network numbers)
4830 * one would want to add a "mask" argument to this routine. That would
4831 * make the filter even more inefficient, although one could be clever
4832 * and not generate masking instructions if the mask is 0xFFFF.
4833 */
4834 static struct block *
gen_dnhostop(compiler_state_t * cstate,bpf_u_int32 addr,int dir)4835 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4836 {
4837 struct block *b0, *b1, *b2, *tmp;
4838 u_int offset_lh; /* offset if long header is received */
4839 u_int offset_sh; /* offset if short header is received */
4840
4841 switch (dir) {
4842
4843 case Q_DST:
4844 offset_sh = 1; /* follows flags */
4845 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4846 break;
4847
4848 case Q_SRC:
4849 offset_sh = 3; /* follows flags, dstnode */
4850 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4851 break;
4852
4853 case Q_AND:
4854 /* Inefficient because we do our Calvinball dance twice */
4855 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4856 b1 = gen_dnhostop(cstate, addr, Q_DST);
4857 gen_and(b0, b1);
4858 return b1;
4859
4860 case Q_DEFAULT:
4861 case Q_OR:
4862 /* Inefficient because we do our Calvinball dance twice */
4863 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4864 b1 = gen_dnhostop(cstate, addr, Q_DST);
4865 gen_or(b0, b1);
4866 return b1;
4867
4868 case Q_ADDR1:
4869 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4870 /*NOTREACHED*/
4871
4872 case Q_ADDR2:
4873 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4874 /*NOTREACHED*/
4875
4876 case Q_ADDR3:
4877 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4878 /*NOTREACHED*/
4879
4880 case Q_ADDR4:
4881 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4882 /*NOTREACHED*/
4883
4884 case Q_RA:
4885 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4886 /*NOTREACHED*/
4887
4888 case Q_TA:
4889 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4890 /*NOTREACHED*/
4891
4892 default:
4893 abort();
4894 /*NOTREACHED*/
4895 }
4896 b0 = gen_linktype(cstate, ETHERTYPE_DN);
4897 /* Check for pad = 1, long header case */
4898 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4899 (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4900 b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4901 BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4902 gen_and(tmp, b1);
4903 /* Check for pad = 0, long header case */
4904 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4905 (bpf_u_int32)0x7);
4906 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4907 (bpf_u_int32)ntohs((u_short)addr));
4908 gen_and(tmp, b2);
4909 gen_or(b2, b1);
4910 /* Check for pad = 1, short header case */
4911 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4912 (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4913 b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4914 (bpf_u_int32)ntohs((u_short)addr));
4915 gen_and(tmp, b2);
4916 gen_or(b2, b1);
4917 /* Check for pad = 0, short header case */
4918 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4919 (bpf_u_int32)0x7);
4920 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4921 (bpf_u_int32)ntohs((u_short)addr));
4922 gen_and(tmp, b2);
4923 gen_or(b2, b1);
4924
4925 /* Combine with test for cstate->linktype */
4926 gen_and(b0, b1);
4927 return b1;
4928 }
4929
4930 /*
4931 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4932 * test the bottom-of-stack bit, and then check the version number
4933 * field in the IP header.
4934 */
4935 static struct block *
gen_mpls_linktype(compiler_state_t * cstate,bpf_u_int32 ll_proto)4936 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4937 {
4938 struct block *b0, *b1;
4939
4940 switch (ll_proto) {
4941
4942 case ETHERTYPE_IP:
4943 /* match the bottom-of-stack bit */
4944 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4945 /* match the IPv4 version number */
4946 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4947 gen_and(b0, b1);
4948 return b1;
4949
4950 case ETHERTYPE_IPV6:
4951 /* match the bottom-of-stack bit */
4952 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4953 /* match the IPv4 version number */
4954 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4955 gen_and(b0, b1);
4956 return b1;
4957
4958 default:
4959 /* FIXME add other L3 proto IDs */
4960 bpf_error(cstate, "unsupported protocol over mpls");
4961 /*NOTREACHED*/
4962 }
4963 }
4964
4965 static struct block *
gen_host(compiler_state_t * cstate,bpf_u_int32 addr,bpf_u_int32 mask,int proto,int dir,int type)4966 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4967 int proto, int dir, int type)
4968 {
4969 struct block *b0, *b1;
4970 const char *typestr;
4971
4972 if (type == Q_NET)
4973 typestr = "net";
4974 else
4975 typestr = "host";
4976
4977 switch (proto) {
4978
4979 case Q_DEFAULT:
4980 b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4981 /*
4982 * Only check for non-IPv4 addresses if we're not
4983 * checking MPLS-encapsulated packets.
4984 */
4985 if (cstate->label_stack_depth == 0) {
4986 b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4987 gen_or(b0, b1);
4988 b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4989 gen_or(b1, b0);
4990 }
4991 return b0;
4992
4993 case Q_LINK:
4994 bpf_error(cstate, "link-layer modifier applied to %s", typestr);
4995
4996 case Q_IP:
4997 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4998
4999 case Q_RARP:
5000 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
5001
5002 case Q_ARP:
5003 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
5004
5005 case Q_SCTP:
5006 bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
5007
5008 case Q_TCP:
5009 bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
5010
5011 case Q_UDP:
5012 bpf_error(cstate, "'udp' modifier applied to %s", typestr);
5013
5014 case Q_ICMP:
5015 bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
5016
5017 case Q_IGMP:
5018 bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
5019
5020 case Q_IGRP:
5021 bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
5022
5023 case Q_ATALK:
5024 bpf_error(cstate, "AppleTalk host filtering not implemented");
5025
5026 case Q_DECNET:
5027 return gen_dnhostop(cstate, addr, dir);
5028
5029 case Q_LAT:
5030 bpf_error(cstate, "LAT host filtering not implemented");
5031
5032 case Q_SCA:
5033 bpf_error(cstate, "SCA host filtering not implemented");
5034
5035 case Q_MOPRC:
5036 bpf_error(cstate, "MOPRC host filtering not implemented");
5037
5038 case Q_MOPDL:
5039 bpf_error(cstate, "MOPDL host filtering not implemented");
5040
5041 case Q_IPV6:
5042 bpf_error(cstate, "'ip6' modifier applied to ip host");
5043
5044 case Q_ICMPV6:
5045 bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
5046
5047 case Q_AH:
5048 bpf_error(cstate, "'ah' modifier applied to %s", typestr);
5049
5050 case Q_ESP:
5051 bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5052
5053 case Q_PIM:
5054 bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5055
5056 case Q_VRRP:
5057 bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5058
5059 case Q_AARP:
5060 bpf_error(cstate, "AARP host filtering not implemented");
5061
5062 case Q_ISO:
5063 bpf_error(cstate, "ISO host filtering not implemented");
5064
5065 case Q_ESIS:
5066 bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5067
5068 case Q_ISIS:
5069 bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5070
5071 case Q_CLNP:
5072 bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5073
5074 case Q_STP:
5075 bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5076
5077 case Q_IPX:
5078 bpf_error(cstate, "IPX host filtering not implemented");
5079
5080 case Q_NETBEUI:
5081 bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5082
5083 case Q_ISIS_L1:
5084 bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5085
5086 case Q_ISIS_L2:
5087 bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5088
5089 case Q_ISIS_IIH:
5090 bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5091
5092 case Q_ISIS_SNP:
5093 bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5094
5095 case Q_ISIS_CSNP:
5096 bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5097
5098 case Q_ISIS_PSNP:
5099 bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5100
5101 case Q_ISIS_LSP:
5102 bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5103
5104 case Q_RADIO:
5105 bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5106
5107 case Q_CARP:
5108 bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5109
5110 default:
5111 abort();
5112 }
5113 /*NOTREACHED*/
5114 }
5115
5116 #ifdef INET6
5117 static struct block *
gen_host6(compiler_state_t * cstate,struct in6_addr * addr,struct in6_addr * mask,int proto,int dir,int type)5118 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5119 struct in6_addr *mask, int proto, int dir, int type)
5120 {
5121 const char *typestr;
5122
5123 if (type == Q_NET)
5124 typestr = "net";
5125 else
5126 typestr = "host";
5127
5128 switch (proto) {
5129
5130 case Q_DEFAULT:
5131 return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5132
5133 case Q_LINK:
5134 bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5135
5136 case Q_IP:
5137 bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5138
5139 case Q_RARP:
5140 bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5141
5142 case Q_ARP:
5143 bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5144
5145 case Q_SCTP:
5146 bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5147
5148 case Q_TCP:
5149 bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5150
5151 case Q_UDP:
5152 bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5153
5154 case Q_ICMP:
5155 bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5156
5157 case Q_IGMP:
5158 bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5159
5160 case Q_IGRP:
5161 bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5162
5163 case Q_ATALK:
5164 bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5165
5166 case Q_DECNET:
5167 bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5168
5169 case Q_LAT:
5170 bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5171
5172 case Q_SCA:
5173 bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5174
5175 case Q_MOPRC:
5176 bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5177
5178 case Q_MOPDL:
5179 bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5180
5181 case Q_IPV6:
5182 return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5183
5184 case Q_ICMPV6:
5185 bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5186
5187 case Q_AH:
5188 bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5189
5190 case Q_ESP:
5191 bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5192
5193 case Q_PIM:
5194 bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5195
5196 case Q_VRRP:
5197 bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5198
5199 case Q_AARP:
5200 bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5201
5202 case Q_ISO:
5203 bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5204
5205 case Q_ESIS:
5206 bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5207
5208 case Q_ISIS:
5209 bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5210
5211 case Q_CLNP:
5212 bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5213
5214 case Q_STP:
5215 bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5216
5217 case Q_IPX:
5218 bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5219
5220 case Q_NETBEUI:
5221 bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5222
5223 case Q_ISIS_L1:
5224 bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5225
5226 case Q_ISIS_L2:
5227 bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5228
5229 case Q_ISIS_IIH:
5230 bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5231
5232 case Q_ISIS_SNP:
5233 bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5234
5235 case Q_ISIS_CSNP:
5236 bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5237
5238 case Q_ISIS_PSNP:
5239 bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5240
5241 case Q_ISIS_LSP:
5242 bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5243
5244 case Q_RADIO:
5245 bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5246
5247 case Q_CARP:
5248 bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5249
5250 default:
5251 abort();
5252 }
5253 /*NOTREACHED*/
5254 }
5255 #endif
5256
5257 #ifndef INET6
5258 static struct block *
gen_gateway(compiler_state_t * cstate,const u_char * eaddr,struct addrinfo * alist,int proto,int dir)5259 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5260 struct addrinfo *alist, int proto, int dir)
5261 {
5262 struct block *b0, *b1, *tmp;
5263 struct addrinfo *ai;
5264 struct sockaddr_in *sin;
5265
5266 if (dir != 0)
5267 bpf_error(cstate, "direction applied to 'gateway'");
5268
5269 switch (proto) {
5270 case Q_DEFAULT:
5271 case Q_IP:
5272 case Q_ARP:
5273 case Q_RARP:
5274 switch (cstate->linktype) {
5275 case DLT_EN10MB:
5276 case DLT_NETANALYZER:
5277 case DLT_NETANALYZER_TRANSPARENT:
5278 b1 = gen_prevlinkhdr_check(cstate);
5279 b0 = gen_ehostop(cstate, eaddr, Q_OR);
5280 if (b1 != NULL)
5281 gen_and(b1, b0);
5282 break;
5283 case DLT_FDDI:
5284 b0 = gen_fhostop(cstate, eaddr, Q_OR);
5285 break;
5286 case DLT_IEEE802:
5287 b0 = gen_thostop(cstate, eaddr, Q_OR);
5288 break;
5289 case DLT_IEEE802_11:
5290 case DLT_PRISM_HEADER:
5291 case DLT_IEEE802_11_RADIO_AVS:
5292 case DLT_IEEE802_11_RADIO:
5293 case DLT_PPI:
5294 b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5295 break;
5296 case DLT_SUNATM:
5297 /*
5298 * This is LLC-multiplexed traffic; if it were
5299 * LANE, cstate->linktype would have been set to
5300 * DLT_EN10MB.
5301 */
5302 bpf_error(cstate,
5303 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5304 case DLT_IP_OVER_FC:
5305 b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5306 break;
5307 default:
5308 bpf_error(cstate,
5309 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5310 }
5311 b1 = NULL;
5312 for (ai = alist; ai != NULL; ai = ai->ai_next) {
5313 /*
5314 * Does it have an address?
5315 */
5316 if (ai->ai_addr != NULL) {
5317 /*
5318 * Yes. Is it an IPv4 address?
5319 */
5320 if (ai->ai_addr->sa_family == AF_INET) {
5321 /*
5322 * Generate an entry for it.
5323 */
5324 sin = (struct sockaddr_in *)ai->ai_addr;
5325 tmp = gen_host(cstate,
5326 ntohl(sin->sin_addr.s_addr),
5327 0xffffffff, proto, Q_OR, Q_HOST);
5328 /*
5329 * Is it the *first* IPv4 address?
5330 */
5331 if (b1 == NULL) {
5332 /*
5333 * Yes, so start with it.
5334 */
5335 b1 = tmp;
5336 } else {
5337 /*
5338 * No, so OR it into the
5339 * existing set of
5340 * addresses.
5341 */
5342 gen_or(b1, tmp);
5343 b1 = tmp;
5344 }
5345 }
5346 }
5347 }
5348 if (b1 == NULL) {
5349 /*
5350 * No IPv4 addresses found.
5351 */
5352 return (NULL);
5353 }
5354 gen_not(b1);
5355 gen_and(b0, b1);
5356 return b1;
5357 }
5358 bpf_error(cstate, "illegal modifier of 'gateway'");
5359 /*NOTREACHED*/
5360 }
5361 #endif
5362
5363 static struct block *
gen_proto_abbrev_internal(compiler_state_t * cstate,int proto)5364 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5365 {
5366 struct block *b0;
5367 struct block *b1;
5368
5369 switch (proto) {
5370
5371 case Q_SCTP:
5372 b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5373 break;
5374
5375 case Q_TCP:
5376 b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5377 break;
5378
5379 case Q_UDP:
5380 b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5381 break;
5382
5383 case Q_ICMP:
5384 b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5385 break;
5386
5387 #ifndef IPPROTO_IGMP
5388 #define IPPROTO_IGMP 2
5389 #endif
5390
5391 case Q_IGMP:
5392 b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5393 break;
5394
5395 #ifndef IPPROTO_IGRP
5396 #define IPPROTO_IGRP 9
5397 #endif
5398 case Q_IGRP:
5399 b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5400 break;
5401
5402 #ifndef IPPROTO_PIM
5403 #define IPPROTO_PIM 103
5404 #endif
5405
5406 case Q_PIM:
5407 b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5408 break;
5409
5410 #ifndef IPPROTO_VRRP
5411 #define IPPROTO_VRRP 112
5412 #endif
5413
5414 case Q_VRRP:
5415 b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5416 break;
5417
5418 #ifndef IPPROTO_CARP
5419 #define IPPROTO_CARP 112
5420 #endif
5421
5422 case Q_CARP:
5423 b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5424 break;
5425
5426 case Q_IP:
5427 b1 = gen_linktype(cstate, ETHERTYPE_IP);
5428 break;
5429
5430 case Q_ARP:
5431 b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5432 break;
5433
5434 case Q_RARP:
5435 b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5436 break;
5437
5438 case Q_LINK:
5439 bpf_error(cstate, "link layer applied in wrong context");
5440
5441 case Q_ATALK:
5442 b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5443 break;
5444
5445 case Q_AARP:
5446 b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5447 break;
5448
5449 case Q_DECNET:
5450 b1 = gen_linktype(cstate, ETHERTYPE_DN);
5451 break;
5452
5453 case Q_SCA:
5454 b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5455 break;
5456
5457 case Q_LAT:
5458 b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5459 break;
5460
5461 case Q_MOPDL:
5462 b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5463 break;
5464
5465 case Q_MOPRC:
5466 b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5467 break;
5468
5469 case Q_IPV6:
5470 b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5471 break;
5472
5473 #ifndef IPPROTO_ICMPV6
5474 #define IPPROTO_ICMPV6 58
5475 #endif
5476 case Q_ICMPV6:
5477 b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5478 break;
5479
5480 #ifndef IPPROTO_AH
5481 #define IPPROTO_AH 51
5482 #endif
5483 case Q_AH:
5484 b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5485 break;
5486
5487 #ifndef IPPROTO_ESP
5488 #define IPPROTO_ESP 50
5489 #endif
5490 case Q_ESP:
5491 b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5492 break;
5493
5494 case Q_ISO:
5495 b1 = gen_linktype(cstate, LLCSAP_ISONS);
5496 break;
5497
5498 case Q_ESIS:
5499 b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5500 break;
5501
5502 case Q_ISIS:
5503 b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5504 break;
5505
5506 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5507 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5508 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5509 gen_or(b0, b1);
5510 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5511 gen_or(b0, b1);
5512 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5513 gen_or(b0, b1);
5514 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5515 gen_or(b0, b1);
5516 break;
5517
5518 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5519 b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5520 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5521 gen_or(b0, b1);
5522 b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5523 gen_or(b0, b1);
5524 b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5525 gen_or(b0, b1);
5526 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5527 gen_or(b0, b1);
5528 break;
5529
5530 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5531 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5532 b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5533 gen_or(b0, b1);
5534 b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5535 gen_or(b0, b1);
5536 break;
5537
5538 case Q_ISIS_LSP:
5539 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5540 b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5541 gen_or(b0, b1);
5542 break;
5543
5544 case Q_ISIS_SNP:
5545 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5546 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5547 gen_or(b0, b1);
5548 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5549 gen_or(b0, b1);
5550 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5551 gen_or(b0, b1);
5552 break;
5553
5554 case Q_ISIS_CSNP:
5555 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5556 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5557 gen_or(b0, b1);
5558 break;
5559
5560 case Q_ISIS_PSNP:
5561 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5562 b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5563 gen_or(b0, b1);
5564 break;
5565
5566 case Q_CLNP:
5567 b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5568 break;
5569
5570 case Q_STP:
5571 b1 = gen_linktype(cstate, LLCSAP_8021D);
5572 break;
5573
5574 case Q_IPX:
5575 b1 = gen_linktype(cstate, LLCSAP_IPX);
5576 break;
5577
5578 case Q_NETBEUI:
5579 b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5580 break;
5581
5582 case Q_RADIO:
5583 bpf_error(cstate, "'radio' is not a valid protocol type");
5584
5585 default:
5586 abort();
5587 }
5588 return b1;
5589 }
5590
5591 struct block *
gen_proto_abbrev(compiler_state_t * cstate,int proto)5592 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5593 {
5594 /*
5595 * Catch errors reported by us and routines below us, and return NULL
5596 * on an error.
5597 */
5598 if (setjmp(cstate->top_ctx))
5599 return (NULL);
5600
5601 return gen_proto_abbrev_internal(cstate, proto);
5602 }
5603
5604 static struct block *
gen_ipfrag(compiler_state_t * cstate)5605 gen_ipfrag(compiler_state_t *cstate)
5606 {
5607 struct slist *s;
5608 struct block *b;
5609
5610 /* not IPv4 frag other than the first frag */
5611 s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5612 b = new_block(cstate, JMP(BPF_JSET));
5613 b->s.k = 0x1fff;
5614 b->stmts = s;
5615 gen_not(b);
5616
5617 return b;
5618 }
5619
5620 /*
5621 * Generate a comparison to a port value in the transport-layer header
5622 * at the specified offset from the beginning of that header.
5623 *
5624 * XXX - this handles a variable-length prefix preceding the link-layer
5625 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5626 * variable-length link-layer headers (such as Token Ring or 802.11
5627 * headers).
5628 */
5629 static struct block *
gen_portatom(compiler_state_t * cstate,int off,bpf_u_int32 v)5630 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5631 {
5632 return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5633 }
5634
5635 static struct block *
gen_portatom6(compiler_state_t * cstate,int off,bpf_u_int32 v)5636 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5637 {
5638 return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5639 }
5640
5641 static struct block *
gen_portop(compiler_state_t * cstate,u_int port,u_int proto,int dir)5642 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5643 {
5644 struct block *b0, *b1, *tmp;
5645
5646 /* ip proto 'proto' and not a fragment other than the first fragment */
5647 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5648 b0 = gen_ipfrag(cstate);
5649 gen_and(tmp, b0);
5650
5651 switch (dir) {
5652 case Q_SRC:
5653 b1 = gen_portatom(cstate, 0, port);
5654 break;
5655
5656 case Q_DST:
5657 b1 = gen_portatom(cstate, 2, port);
5658 break;
5659
5660 case Q_AND:
5661 tmp = gen_portatom(cstate, 0, port);
5662 b1 = gen_portatom(cstate, 2, port);
5663 gen_and(tmp, b1);
5664 break;
5665
5666 case Q_DEFAULT:
5667 case Q_OR:
5668 tmp = gen_portatom(cstate, 0, port);
5669 b1 = gen_portatom(cstate, 2, port);
5670 gen_or(tmp, b1);
5671 break;
5672
5673 case Q_ADDR1:
5674 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5675 /*NOTREACHED*/
5676
5677 case Q_ADDR2:
5678 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5679 /*NOTREACHED*/
5680
5681 case Q_ADDR3:
5682 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5683 /*NOTREACHED*/
5684
5685 case Q_ADDR4:
5686 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5687 /*NOTREACHED*/
5688
5689 case Q_RA:
5690 bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5691 /*NOTREACHED*/
5692
5693 case Q_TA:
5694 bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5695 /*NOTREACHED*/
5696
5697 default:
5698 abort();
5699 /*NOTREACHED*/
5700 }
5701 gen_and(b0, b1);
5702
5703 return b1;
5704 }
5705
5706 static struct block *
gen_port(compiler_state_t * cstate,u_int port,int ip_proto,int dir)5707 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5708 {
5709 struct block *b0, *b1, *tmp;
5710
5711 /*
5712 * ether proto ip
5713 *
5714 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5715 * not LLC encapsulation with LLCSAP_IP.
5716 *
5717 * For IEEE 802 networks - which includes 802.5 token ring
5718 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5719 * says that SNAP encapsulation is used, not LLC encapsulation
5720 * with LLCSAP_IP.
5721 *
5722 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5723 * RFC 2225 say that SNAP encapsulation is used, not LLC
5724 * encapsulation with LLCSAP_IP.
5725 *
5726 * So we always check for ETHERTYPE_IP.
5727 */
5728 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5729
5730 switch (ip_proto) {
5731 case IPPROTO_UDP:
5732 case IPPROTO_TCP:
5733 case IPPROTO_SCTP:
5734 b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5735 break;
5736
5737 case PROTO_UNDEF:
5738 tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5739 b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5740 gen_or(tmp, b1);
5741 tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5742 gen_or(tmp, b1);
5743 break;
5744
5745 default:
5746 abort();
5747 }
5748 gen_and(b0, b1);
5749 return b1;
5750 }
5751
5752 struct block *
gen_portop6(compiler_state_t * cstate,u_int port,u_int proto,int dir)5753 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5754 {
5755 struct block *b0, *b1, *tmp;
5756
5757 /* ip6 proto 'proto' */
5758 /* XXX - catch the first fragment of a fragmented packet? */
5759 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5760
5761 switch (dir) {
5762 case Q_SRC:
5763 b1 = gen_portatom6(cstate, 0, port);
5764 break;
5765
5766 case Q_DST:
5767 b1 = gen_portatom6(cstate, 2, port);
5768 break;
5769
5770 case Q_AND:
5771 tmp = gen_portatom6(cstate, 0, port);
5772 b1 = gen_portatom6(cstate, 2, port);
5773 gen_and(tmp, b1);
5774 break;
5775
5776 case Q_DEFAULT:
5777 case Q_OR:
5778 tmp = gen_portatom6(cstate, 0, port);
5779 b1 = gen_portatom6(cstate, 2, port);
5780 gen_or(tmp, b1);
5781 break;
5782
5783 default:
5784 abort();
5785 }
5786 gen_and(b0, b1);
5787
5788 return b1;
5789 }
5790
5791 static struct block *
gen_port6(compiler_state_t * cstate,u_int port,int ip_proto,int dir)5792 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5793 {
5794 struct block *b0, *b1, *tmp;
5795
5796 /* link proto ip6 */
5797 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5798
5799 switch (ip_proto) {
5800 case IPPROTO_UDP:
5801 case IPPROTO_TCP:
5802 case IPPROTO_SCTP:
5803 b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5804 break;
5805
5806 case PROTO_UNDEF:
5807 tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5808 b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5809 gen_or(tmp, b1);
5810 tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5811 gen_or(tmp, b1);
5812 break;
5813
5814 default:
5815 abort();
5816 }
5817 gen_and(b0, b1);
5818 return b1;
5819 }
5820
5821 /* gen_portrange code */
5822 static struct block *
gen_portrangeatom(compiler_state_t * cstate,u_int off,bpf_u_int32 v1,bpf_u_int32 v2)5823 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5824 bpf_u_int32 v2)
5825 {
5826 struct block *b1, *b2;
5827
5828 if (v1 > v2) {
5829 /*
5830 * Reverse the order of the ports, so v1 is the lower one.
5831 */
5832 bpf_u_int32 vtemp;
5833
5834 vtemp = v1;
5835 v1 = v2;
5836 v2 = vtemp;
5837 }
5838
5839 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5840 b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5841
5842 gen_and(b1, b2);
5843
5844 return b2;
5845 }
5846
5847 static struct block *
gen_portrangeop(compiler_state_t * cstate,u_int port1,u_int port2,bpf_u_int32 proto,int dir)5848 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5849 bpf_u_int32 proto, int dir)
5850 {
5851 struct block *b0, *b1, *tmp;
5852
5853 /* ip proto 'proto' and not a fragment other than the first fragment */
5854 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5855 b0 = gen_ipfrag(cstate);
5856 gen_and(tmp, b0);
5857
5858 switch (dir) {
5859 case Q_SRC:
5860 b1 = gen_portrangeatom(cstate, 0, port1, port2);
5861 break;
5862
5863 case Q_DST:
5864 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5865 break;
5866
5867 case Q_AND:
5868 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5869 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5870 gen_and(tmp, b1);
5871 break;
5872
5873 case Q_DEFAULT:
5874 case Q_OR:
5875 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5876 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5877 gen_or(tmp, b1);
5878 break;
5879
5880 case Q_ADDR1:
5881 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5882 /*NOTREACHED*/
5883
5884 case Q_ADDR2:
5885 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5886 /*NOTREACHED*/
5887
5888 case Q_ADDR3:
5889 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5890 /*NOTREACHED*/
5891
5892 case Q_ADDR4:
5893 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5894 /*NOTREACHED*/
5895
5896 case Q_RA:
5897 bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5898 /*NOTREACHED*/
5899
5900 case Q_TA:
5901 bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5902 /*NOTREACHED*/
5903
5904 default:
5905 abort();
5906 /*NOTREACHED*/
5907 }
5908 gen_and(b0, b1);
5909
5910 return b1;
5911 }
5912
5913 static struct block *
gen_portrange(compiler_state_t * cstate,u_int port1,u_int port2,int ip_proto,int dir)5914 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5915 int dir)
5916 {
5917 struct block *b0, *b1, *tmp;
5918
5919 /* link proto ip */
5920 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5921
5922 switch (ip_proto) {
5923 case IPPROTO_UDP:
5924 case IPPROTO_TCP:
5925 case IPPROTO_SCTP:
5926 b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5927 dir);
5928 break;
5929
5930 case PROTO_UNDEF:
5931 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5932 b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5933 gen_or(tmp, b1);
5934 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5935 gen_or(tmp, b1);
5936 break;
5937
5938 default:
5939 abort();
5940 }
5941 gen_and(b0, b1);
5942 return b1;
5943 }
5944
5945 static struct block *
gen_portrangeatom6(compiler_state_t * cstate,u_int off,bpf_u_int32 v1,bpf_u_int32 v2)5946 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5947 bpf_u_int32 v2)
5948 {
5949 struct block *b1, *b2;
5950
5951 if (v1 > v2) {
5952 /*
5953 * Reverse the order of the ports, so v1 is the lower one.
5954 */
5955 bpf_u_int32 vtemp;
5956
5957 vtemp = v1;
5958 v1 = v2;
5959 v2 = vtemp;
5960 }
5961
5962 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5963 b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5964
5965 gen_and(b1, b2);
5966
5967 return b2;
5968 }
5969
5970 static struct block *
gen_portrangeop6(compiler_state_t * cstate,u_int port1,u_int port2,bpf_u_int32 proto,int dir)5971 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5972 bpf_u_int32 proto, int dir)
5973 {
5974 struct block *b0, *b1, *tmp;
5975
5976 /* ip6 proto 'proto' */
5977 /* XXX - catch the first fragment of a fragmented packet? */
5978 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5979
5980 switch (dir) {
5981 case Q_SRC:
5982 b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5983 break;
5984
5985 case Q_DST:
5986 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5987 break;
5988
5989 case Q_AND:
5990 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5991 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5992 gen_and(tmp, b1);
5993 break;
5994
5995 case Q_DEFAULT:
5996 case Q_OR:
5997 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5998 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5999 gen_or(tmp, b1);
6000 break;
6001
6002 default:
6003 abort();
6004 }
6005 gen_and(b0, b1);
6006
6007 return b1;
6008 }
6009
6010 static struct block *
gen_portrange6(compiler_state_t * cstate,u_int port1,u_int port2,int ip_proto,int dir)6011 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6012 int dir)
6013 {
6014 struct block *b0, *b1, *tmp;
6015
6016 /* link proto ip6 */
6017 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6018
6019 switch (ip_proto) {
6020 case IPPROTO_UDP:
6021 case IPPROTO_TCP:
6022 case IPPROTO_SCTP:
6023 b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6024 dir);
6025 break;
6026
6027 case PROTO_UNDEF:
6028 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6029 b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6030 gen_or(tmp, b1);
6031 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6032 gen_or(tmp, b1);
6033 break;
6034
6035 default:
6036 abort();
6037 }
6038 gen_and(b0, b1);
6039 return b1;
6040 }
6041
6042 static int
lookup_proto(compiler_state_t * cstate,const char * name,int proto)6043 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6044 {
6045 register int v;
6046
6047 switch (proto) {
6048
6049 case Q_DEFAULT:
6050 case Q_IP:
6051 case Q_IPV6:
6052 v = pcap_nametoproto(name);
6053 if (v == PROTO_UNDEF)
6054 bpf_error(cstate, "unknown ip proto '%s'", name);
6055 break;
6056
6057 case Q_LINK:
6058 /* XXX should look up h/w protocol type based on cstate->linktype */
6059 v = pcap_nametoeproto(name);
6060 if (v == PROTO_UNDEF) {
6061 v = pcap_nametollc(name);
6062 if (v == PROTO_UNDEF)
6063 bpf_error(cstate, "unknown ether proto '%s'", name);
6064 }
6065 break;
6066
6067 case Q_ISO:
6068 if (strcmp(name, "esis") == 0)
6069 v = ISO9542_ESIS;
6070 else if (strcmp(name, "isis") == 0)
6071 v = ISO10589_ISIS;
6072 else if (strcmp(name, "clnp") == 0)
6073 v = ISO8473_CLNP;
6074 else
6075 bpf_error(cstate, "unknown osi proto '%s'", name);
6076 break;
6077
6078 default:
6079 v = PROTO_UNDEF;
6080 break;
6081 }
6082 return v;
6083 }
6084
6085 #if !defined(NO_PROTOCHAIN)
6086 static struct block *
gen_protochain(compiler_state_t * cstate,bpf_u_int32 v,int proto)6087 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6088 {
6089 struct block *b0, *b;
6090 struct slist *s[100];
6091 int fix2, fix3, fix4, fix5;
6092 int ahcheck, again, end;
6093 int i, max;
6094 int reg2 = alloc_reg(cstate);
6095
6096 memset(s, 0, sizeof(s));
6097 fix3 = fix4 = fix5 = 0;
6098
6099 switch (proto) {
6100 case Q_IP:
6101 case Q_IPV6:
6102 break;
6103 case Q_DEFAULT:
6104 b0 = gen_protochain(cstate, v, Q_IP);
6105 b = gen_protochain(cstate, v, Q_IPV6);
6106 gen_or(b0, b);
6107 return b;
6108 default:
6109 bpf_error(cstate, "bad protocol applied for 'protochain'");
6110 /*NOTREACHED*/
6111 }
6112
6113 /*
6114 * We don't handle variable-length prefixes before the link-layer
6115 * header, or variable-length link-layer headers, here yet.
6116 * We might want to add BPF instructions to do the protochain
6117 * work, to simplify that and, on platforms that have a BPF
6118 * interpreter with the new instructions, let the filtering
6119 * be done in the kernel. (We already require a modified BPF
6120 * engine to do the protochain stuff, to support backward
6121 * branches, and backward branch support is unlikely to appear
6122 * in kernel BPF engines.)
6123 */
6124 if (cstate->off_linkpl.is_variable)
6125 bpf_error(cstate, "'protochain' not supported with variable length headers");
6126
6127 /*
6128 * To quote a comment in optimize.c:
6129 *
6130 * "These data structures are used in a Cocke and Schwartz style
6131 * value numbering scheme. Since the flowgraph is acyclic,
6132 * exit values can be propagated from a node's predecessors
6133 * provided it is uniquely defined."
6134 *
6135 * "Acyclic" means "no backward branches", which means "no
6136 * loops", so we have to turn the optimizer off.
6137 */
6138 cstate->no_optimize = 1;
6139
6140 /*
6141 * s[0] is a dummy entry to protect other BPF insn from damage
6142 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6143 * hard to find interdependency made by jump table fixup.
6144 */
6145 i = 0;
6146 s[i] = new_stmt(cstate, 0); /*dummy*/
6147 i++;
6148
6149 switch (proto) {
6150 case Q_IP:
6151 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6152
6153 /* A = ip->ip_p */
6154 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6155 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6156 i++;
6157 /* X = ip->ip_hl << 2 */
6158 s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6159 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6160 i++;
6161 break;
6162
6163 case Q_IPV6:
6164 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6165
6166 /* A = ip6->ip_nxt */
6167 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6168 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6169 i++;
6170 /* X = sizeof(struct ip6_hdr) */
6171 s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6172 s[i]->s.k = 40;
6173 i++;
6174 break;
6175
6176 default:
6177 bpf_error(cstate, "unsupported proto to gen_protochain");
6178 /*NOTREACHED*/
6179 }
6180
6181 /* again: if (A == v) goto end; else fall through; */
6182 again = i;
6183 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6184 s[i]->s.k = v;
6185 s[i]->s.jt = NULL; /*later*/
6186 s[i]->s.jf = NULL; /*update in next stmt*/
6187 fix5 = i;
6188 i++;
6189
6190 #ifndef IPPROTO_NONE
6191 #define IPPROTO_NONE 59
6192 #endif
6193 /* if (A == IPPROTO_NONE) goto end */
6194 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6195 s[i]->s.jt = NULL; /*later*/
6196 s[i]->s.jf = NULL; /*update in next stmt*/
6197 s[i]->s.k = IPPROTO_NONE;
6198 s[fix5]->s.jf = s[i];
6199 fix2 = i;
6200 i++;
6201
6202 if (proto == Q_IPV6) {
6203 int v6start, v6end, v6advance, j;
6204
6205 v6start = i;
6206 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6207 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6208 s[i]->s.jt = NULL; /*later*/
6209 s[i]->s.jf = NULL; /*update in next stmt*/
6210 s[i]->s.k = IPPROTO_HOPOPTS;
6211 s[fix2]->s.jf = s[i];
6212 i++;
6213 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6214 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6215 s[i]->s.jt = NULL; /*later*/
6216 s[i]->s.jf = NULL; /*update in next stmt*/
6217 s[i]->s.k = IPPROTO_DSTOPTS;
6218 i++;
6219 /* if (A == IPPROTO_ROUTING) goto v6advance */
6220 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6221 s[i]->s.jt = NULL; /*later*/
6222 s[i]->s.jf = NULL; /*update in next stmt*/
6223 s[i]->s.k = IPPROTO_ROUTING;
6224 i++;
6225 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6226 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6227 s[i]->s.jt = NULL; /*later*/
6228 s[i]->s.jf = NULL; /*later*/
6229 s[i]->s.k = IPPROTO_FRAGMENT;
6230 fix3 = i;
6231 v6end = i;
6232 i++;
6233
6234 /* v6advance: */
6235 v6advance = i;
6236
6237 /*
6238 * in short,
6239 * A = P[X + packet head];
6240 * X = X + (P[X + packet head + 1] + 1) * 8;
6241 */
6242 /* A = P[X + packet head] */
6243 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6244 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6245 i++;
6246 /* MEM[reg2] = A */
6247 s[i] = new_stmt(cstate, BPF_ST);
6248 s[i]->s.k = reg2;
6249 i++;
6250 /* A = P[X + packet head + 1]; */
6251 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6252 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6253 i++;
6254 /* A += 1 */
6255 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6256 s[i]->s.k = 1;
6257 i++;
6258 /* A *= 8 */
6259 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6260 s[i]->s.k = 8;
6261 i++;
6262 /* A += X */
6263 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6264 s[i]->s.k = 0;
6265 i++;
6266 /* X = A; */
6267 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6268 i++;
6269 /* A = MEM[reg2] */
6270 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6271 s[i]->s.k = reg2;
6272 i++;
6273
6274 /* goto again; (must use BPF_JA for backward jump) */
6275 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6276 s[i]->s.k = again - i - 1;
6277 s[i - 1]->s.jf = s[i];
6278 i++;
6279
6280 /* fixup */
6281 for (j = v6start; j <= v6end; j++)
6282 s[j]->s.jt = s[v6advance];
6283 } else {
6284 /* nop */
6285 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6286 s[i]->s.k = 0;
6287 s[fix2]->s.jf = s[i];
6288 i++;
6289 }
6290
6291 /* ahcheck: */
6292 ahcheck = i;
6293 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6294 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6295 s[i]->s.jt = NULL; /*later*/
6296 s[i]->s.jf = NULL; /*later*/
6297 s[i]->s.k = IPPROTO_AH;
6298 if (fix3)
6299 s[fix3]->s.jf = s[ahcheck];
6300 fix4 = i;
6301 i++;
6302
6303 /*
6304 * in short,
6305 * A = P[X];
6306 * X = X + (P[X + 1] + 2) * 4;
6307 */
6308 /* A = X */
6309 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6310 i++;
6311 /* A = P[X + packet head]; */
6312 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6313 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6314 i++;
6315 /* MEM[reg2] = A */
6316 s[i] = new_stmt(cstate, BPF_ST);
6317 s[i]->s.k = reg2;
6318 i++;
6319 /* A = X */
6320 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6321 i++;
6322 /* A += 1 */
6323 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6324 s[i]->s.k = 1;
6325 i++;
6326 /* X = A */
6327 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6328 i++;
6329 /* A = P[X + packet head] */
6330 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6331 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6332 i++;
6333 /* A += 2 */
6334 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6335 s[i]->s.k = 2;
6336 i++;
6337 /* A *= 4 */
6338 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6339 s[i]->s.k = 4;
6340 i++;
6341 /* X = A; */
6342 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6343 i++;
6344 /* A = MEM[reg2] */
6345 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6346 s[i]->s.k = reg2;
6347 i++;
6348
6349 /* goto again; (must use BPF_JA for backward jump) */
6350 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6351 s[i]->s.k = again - i - 1;
6352 i++;
6353
6354 /* end: nop */
6355 end = i;
6356 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6357 s[i]->s.k = 0;
6358 s[fix2]->s.jt = s[end];
6359 s[fix4]->s.jf = s[end];
6360 s[fix5]->s.jt = s[end];
6361 i++;
6362
6363 /*
6364 * make slist chain
6365 */
6366 max = i;
6367 for (i = 0; i < max - 1; i++)
6368 s[i]->next = s[i + 1];
6369 s[max - 1]->next = NULL;
6370
6371 /*
6372 * emit final check
6373 */
6374 b = new_block(cstate, JMP(BPF_JEQ));
6375 b->stmts = s[1]; /*remember, s[0] is dummy*/
6376 b->s.k = v;
6377
6378 free_reg(cstate, reg2);
6379
6380 gen_and(b0, b);
6381 return b;
6382 }
6383 #endif /* !defined(NO_PROTOCHAIN) */
6384
6385 static struct block *
gen_check_802_11_data_frame(compiler_state_t * cstate)6386 gen_check_802_11_data_frame(compiler_state_t *cstate)
6387 {
6388 struct slist *s;
6389 struct block *b0, *b1;
6390
6391 /*
6392 * A data frame has the 0x08 bit (b3) in the frame control field set
6393 * and the 0x04 bit (b2) clear.
6394 */
6395 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6396 b0 = new_block(cstate, JMP(BPF_JSET));
6397 b0->s.k = 0x08;
6398 b0->stmts = s;
6399
6400 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6401 b1 = new_block(cstate, JMP(BPF_JSET));
6402 b1->s.k = 0x04;
6403 b1->stmts = s;
6404 gen_not(b1);
6405
6406 gen_and(b1, b0);
6407
6408 return b0;
6409 }
6410
6411 /*
6412 * Generate code that checks whether the packet is a packet for protocol
6413 * <proto> and whether the type field in that protocol's header has
6414 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6415 * IP packet and checks the protocol number in the IP header against <v>.
6416 *
6417 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6418 * against Q_IP and Q_IPV6.
6419 */
6420 static struct block *
gen_proto(compiler_state_t * cstate,bpf_u_int32 v,int proto,int dir)6421 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6422 {
6423 struct block *b0, *b1;
6424 struct block *b2;
6425
6426 if (dir != Q_DEFAULT)
6427 bpf_error(cstate, "direction applied to 'proto'");
6428
6429 switch (proto) {
6430 case Q_DEFAULT:
6431 b0 = gen_proto(cstate, v, Q_IP, dir);
6432 b1 = gen_proto(cstate, v, Q_IPV6, dir);
6433 gen_or(b0, b1);
6434 return b1;
6435
6436 case Q_LINK:
6437 return gen_linktype(cstate, v);
6438
6439 case Q_IP:
6440 /*
6441 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6442 * not LLC encapsulation with LLCSAP_IP.
6443 *
6444 * For IEEE 802 networks - which includes 802.5 token ring
6445 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6446 * says that SNAP encapsulation is used, not LLC encapsulation
6447 * with LLCSAP_IP.
6448 *
6449 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6450 * RFC 2225 say that SNAP encapsulation is used, not LLC
6451 * encapsulation with LLCSAP_IP.
6452 *
6453 * So we always check for ETHERTYPE_IP.
6454 */
6455 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6456 b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6457 gen_and(b0, b1);
6458 return b1;
6459
6460 case Q_ARP:
6461 bpf_error(cstate, "arp does not encapsulate another protocol");
6462 /*NOTREACHED*/
6463
6464 case Q_RARP:
6465 bpf_error(cstate, "rarp does not encapsulate another protocol");
6466 /*NOTREACHED*/
6467
6468 case Q_SCTP:
6469 bpf_error(cstate, "'sctp proto' is bogus");
6470 /*NOTREACHED*/
6471
6472 case Q_TCP:
6473 bpf_error(cstate, "'tcp proto' is bogus");
6474 /*NOTREACHED*/
6475
6476 case Q_UDP:
6477 bpf_error(cstate, "'udp proto' is bogus");
6478 /*NOTREACHED*/
6479
6480 case Q_ICMP:
6481 bpf_error(cstate, "'icmp proto' is bogus");
6482 /*NOTREACHED*/
6483
6484 case Q_IGMP:
6485 bpf_error(cstate, "'igmp proto' is bogus");
6486 /*NOTREACHED*/
6487
6488 case Q_IGRP:
6489 bpf_error(cstate, "'igrp proto' is bogus");
6490 /*NOTREACHED*/
6491
6492 case Q_ATALK:
6493 bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6494 /*NOTREACHED*/
6495
6496 case Q_DECNET:
6497 bpf_error(cstate, "DECNET encapsulation is not specifiable");
6498 /*NOTREACHED*/
6499
6500 case Q_LAT:
6501 bpf_error(cstate, "LAT does not encapsulate another protocol");
6502 /*NOTREACHED*/
6503
6504 case Q_SCA:
6505 bpf_error(cstate, "SCA does not encapsulate another protocol");
6506 /*NOTREACHED*/
6507
6508 case Q_MOPRC:
6509 bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6510 /*NOTREACHED*/
6511
6512 case Q_MOPDL:
6513 bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6514 /*NOTREACHED*/
6515
6516 case Q_IPV6:
6517 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6518 /*
6519 * Also check for a fragment header before the final
6520 * header.
6521 */
6522 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6523 b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6524 gen_and(b2, b1);
6525 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6526 gen_or(b2, b1);
6527 gen_and(b0, b1);
6528 return b1;
6529
6530 case Q_ICMPV6:
6531 bpf_error(cstate, "'icmp6 proto' is bogus");
6532 /*NOTREACHED*/
6533
6534 case Q_AH:
6535 bpf_error(cstate, "'ah proto' is bogus");
6536 /*NOTREACHED*/
6537
6538 case Q_ESP:
6539 bpf_error(cstate, "'esp proto' is bogus");
6540 /*NOTREACHED*/
6541
6542 case Q_PIM:
6543 bpf_error(cstate, "'pim proto' is bogus");
6544 /*NOTREACHED*/
6545
6546 case Q_VRRP:
6547 bpf_error(cstate, "'vrrp proto' is bogus");
6548 /*NOTREACHED*/
6549
6550 case Q_AARP:
6551 bpf_error(cstate, "'aarp proto' is bogus");
6552 /*NOTREACHED*/
6553
6554 case Q_ISO:
6555 switch (cstate->linktype) {
6556
6557 case DLT_FRELAY:
6558 /*
6559 * Frame Relay packets typically have an OSI
6560 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6561 * generates code to check for all the OSI
6562 * NLPIDs, so calling it and then adding a check
6563 * for the particular NLPID for which we're
6564 * looking is bogus, as we can just check for
6565 * the NLPID.
6566 *
6567 * What we check for is the NLPID and a frame
6568 * control field value of UI, i.e. 0x03 followed
6569 * by the NLPID.
6570 *
6571 * XXX - assumes a 2-byte Frame Relay header with
6572 * DLCI and flags. What if the address is longer?
6573 *
6574 * XXX - what about SNAP-encapsulated frames?
6575 */
6576 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6577 /*NOTREACHED*/
6578
6579 case DLT_C_HDLC:
6580 case DLT_HDLC:
6581 /*
6582 * Cisco uses an Ethertype lookalike - for OSI,
6583 * it's 0xfefe.
6584 */
6585 b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6586 /* OSI in C-HDLC is stuffed with a fudge byte */
6587 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6588 gen_and(b0, b1);
6589 return b1;
6590
6591 default:
6592 b0 = gen_linktype(cstate, LLCSAP_ISONS);
6593 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6594 gen_and(b0, b1);
6595 return b1;
6596 }
6597
6598 case Q_ESIS:
6599 bpf_error(cstate, "'esis proto' is bogus");
6600 /*NOTREACHED*/
6601
6602 case Q_ISIS:
6603 b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6604 /*
6605 * 4 is the offset of the PDU type relative to the IS-IS
6606 * header.
6607 */
6608 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6609 gen_and(b0, b1);
6610 return b1;
6611
6612 case Q_CLNP:
6613 bpf_error(cstate, "'clnp proto' is not supported");
6614 /*NOTREACHED*/
6615
6616 case Q_STP:
6617 bpf_error(cstate, "'stp proto' is bogus");
6618 /*NOTREACHED*/
6619
6620 case Q_IPX:
6621 bpf_error(cstate, "'ipx proto' is bogus");
6622 /*NOTREACHED*/
6623
6624 case Q_NETBEUI:
6625 bpf_error(cstate, "'netbeui proto' is bogus");
6626 /*NOTREACHED*/
6627
6628 case Q_ISIS_L1:
6629 bpf_error(cstate, "'l1 proto' is bogus");
6630 /*NOTREACHED*/
6631
6632 case Q_ISIS_L2:
6633 bpf_error(cstate, "'l2 proto' is bogus");
6634 /*NOTREACHED*/
6635
6636 case Q_ISIS_IIH:
6637 bpf_error(cstate, "'iih proto' is bogus");
6638 /*NOTREACHED*/
6639
6640 case Q_ISIS_SNP:
6641 bpf_error(cstate, "'snp proto' is bogus");
6642 /*NOTREACHED*/
6643
6644 case Q_ISIS_CSNP:
6645 bpf_error(cstate, "'csnp proto' is bogus");
6646 /*NOTREACHED*/
6647
6648 case Q_ISIS_PSNP:
6649 bpf_error(cstate, "'psnp proto' is bogus");
6650 /*NOTREACHED*/
6651
6652 case Q_ISIS_LSP:
6653 bpf_error(cstate, "'lsp proto' is bogus");
6654 /*NOTREACHED*/
6655
6656 case Q_RADIO:
6657 bpf_error(cstate, "'radio proto' is bogus");
6658 /*NOTREACHED*/
6659
6660 case Q_CARP:
6661 bpf_error(cstate, "'carp proto' is bogus");
6662 /*NOTREACHED*/
6663
6664 default:
6665 abort();
6666 /*NOTREACHED*/
6667 }
6668 /*NOTREACHED*/
6669 }
6670
6671 /*
6672 * Convert a non-numeric name to a port number.
6673 */
6674 static int
nametoport(compiler_state_t * cstate,const char * name,int ipproto)6675 nametoport(compiler_state_t *cstate, const char *name, int ipproto)
6676 {
6677 struct addrinfo hints, *res, *ai;
6678 int error;
6679 struct sockaddr_in *in4;
6680 #ifdef INET6
6681 struct sockaddr_in6 *in6;
6682 #endif
6683 int port = -1;
6684
6685 /*
6686 * We check for both TCP and UDP in case there are
6687 * ambiguous entries.
6688 */
6689 memset(&hints, 0, sizeof(hints));
6690 hints.ai_family = PF_UNSPEC;
6691 hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
6692 hints.ai_protocol = ipproto;
6693 error = getaddrinfo(NULL, name, &hints, &res);
6694 if (error != 0) {
6695 switch (error) {
6696
6697 case EAI_NONAME:
6698 case EAI_SERVICE:
6699 /*
6700 * No such port. Just return -1.
6701 */
6702 break;
6703
6704 #ifdef EAI_SYSTEM
6705 case EAI_SYSTEM:
6706 /*
6707 * We don't use strerror() because it's not
6708 * guaranteed to be thread-safe on all platforms
6709 * (probably because it might use a non-thread-local
6710 * buffer into which to format an error message
6711 * if the error code isn't one for which it has
6712 * a canned string; three cheers for C string
6713 * handling).
6714 */
6715 bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
6716 name, errno);
6717 port = -2; /* a real error */
6718 break;
6719 #endif
6720
6721 default:
6722 /*
6723 * This is a real error, not just "there's
6724 * no such service name".
6725 *
6726 * We don't use gai_strerror() because it's not
6727 * guaranteed to be thread-safe on all platforms
6728 * (probably because it might use a non-thread-local
6729 * buffer into which to format an error message
6730 * if the error code isn't one for which it has
6731 * a canned string; three cheers for C string
6732 * handling).
6733 */
6734 bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
6735 name, error);
6736 port = -2; /* a real error */
6737 break;
6738 }
6739 } else {
6740 /*
6741 * OK, we found it. Did it find anything?
6742 */
6743 for (ai = res; ai != NULL; ai = ai->ai_next) {
6744 /*
6745 * Does it have an address?
6746 */
6747 if (ai->ai_addr != NULL) {
6748 /*
6749 * Yes. Get a port number; we're done.
6750 */
6751 if (ai->ai_addr->sa_family == AF_INET) {
6752 in4 = (struct sockaddr_in *)ai->ai_addr;
6753 port = ntohs(in4->sin_port);
6754 break;
6755 }
6756 #ifdef INET6
6757 if (ai->ai_addr->sa_family == AF_INET6) {
6758 in6 = (struct sockaddr_in6 *)ai->ai_addr;
6759 port = ntohs(in6->sin6_port);
6760 break;
6761 }
6762 #endif
6763 }
6764 }
6765 freeaddrinfo(res);
6766 }
6767 return port;
6768 }
6769
6770 /*
6771 * Convert a string to a port number.
6772 */
6773 static bpf_u_int32
stringtoport(compiler_state_t * cstate,const char * string,size_t string_size,int * proto)6774 stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
6775 int *proto)
6776 {
6777 stoulen_ret ret;
6778 char *cpy;
6779 bpf_u_int32 val;
6780 int tcp_port = -1;
6781 int udp_port = -1;
6782
6783 /*
6784 * See if it's a number.
6785 */
6786 ret = stoulen(string, string_size, &val, cstate);
6787 switch (ret) {
6788
6789 case STOULEN_OK:
6790 /* Unknown port type - it's just a number. */
6791 *proto = PROTO_UNDEF;
6792 break;
6793
6794 case STOULEN_NOT_OCTAL_NUMBER:
6795 case STOULEN_NOT_HEX_NUMBER:
6796 case STOULEN_NOT_DECIMAL_NUMBER:
6797 /*
6798 * Not a valid number; try looking it up as a port.
6799 */
6800 cpy = malloc(string_size + 1); /* +1 for terminating '\0' */
6801 memcpy(cpy, string, string_size);
6802 cpy[string_size] = '\0';
6803 tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
6804 if (tcp_port == -2) {
6805 /*
6806 * We got a hard error; the error string has
6807 * already been set.
6808 */
6809 free(cpy);
6810 longjmp(cstate->top_ctx, 1);
6811 /*NOTREACHED*/
6812 }
6813 udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
6814 if (udp_port == -2) {
6815 /*
6816 * We got a hard error; the error string has
6817 * already been set.
6818 */
6819 free(cpy);
6820 longjmp(cstate->top_ctx, 1);
6821 /*NOTREACHED*/
6822 }
6823
6824 /*
6825 * We need to check /etc/services for ambiguous entries.
6826 * If we find an ambiguous entry, and it has the
6827 * same port number, change the proto to PROTO_UNDEF
6828 * so both TCP and UDP will be checked.
6829 */
6830 if (tcp_port >= 0) {
6831 val = (bpf_u_int32)tcp_port;
6832 *proto = IPPROTO_TCP;
6833 if (udp_port >= 0) {
6834 if (udp_port == tcp_port)
6835 *proto = PROTO_UNDEF;
6836 #ifdef notdef
6837 else
6838 /* Can't handle ambiguous names that refer
6839 to different port numbers. */
6840 warning("ambiguous port %s in /etc/services",
6841 cpy);
6842 #endif
6843 }
6844 free(cpy);
6845 break;
6846 }
6847 if (udp_port >= 0) {
6848 val = (bpf_u_int32)udp_port;
6849 *proto = IPPROTO_UDP;
6850 free(cpy);
6851 break;
6852 }
6853 #if defined(ultrix) || defined(__osf__)
6854 /* Special hack in case NFS isn't in /etc/services */
6855 if (strcmp(cpy, "nfs") == 0) {
6856 val = 2049;
6857 *proto = PROTO_UNDEF;
6858 free(cpy);
6859 break;
6860 }
6861 #endif
6862 bpf_set_error(cstate, "'%s' is not a valid port", cpy);
6863 free(cpy);
6864 longjmp(cstate->top_ctx, 1);
6865 /*NOTREACHED*/
6866
6867 case STOULEN_ERROR:
6868 /* Error already set. */
6869 longjmp(cstate->top_ctx, 1);
6870 /*NOTREACHED*/
6871
6872 default:
6873 /* Should not happen */
6874 bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
6875 longjmp(cstate->top_ctx, 1);
6876 /*NOTREACHED*/
6877 }
6878 return (val);
6879 }
6880
6881 /*
6882 * Convert a string in the form PPP-PPP, which correspond to ports, to
6883 * a starting and ending port in a port range.
6884 */
6885 static void
stringtoportrange(compiler_state_t * cstate,const char * string,bpf_u_int32 * port1,bpf_u_int32 * port2,int * proto)6886 stringtoportrange(compiler_state_t *cstate, const char *string,
6887 bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
6888 {
6889 char *hyphen_off;
6890 const char *first, *second;
6891 size_t first_size, second_size;
6892 int save_proto;
6893
6894 if ((hyphen_off = strchr(string, '-')) == NULL)
6895 bpf_error(cstate, "port range '%s' contains no hyphen", string);
6896
6897 /*
6898 * Make sure there are no other hyphens.
6899 *
6900 * XXX - we support named ports, but there are some port names
6901 * in /etc/services that include hyphens, so this would rule
6902 * that out.
6903 */
6904 if (strchr(hyphen_off + 1, '-') != NULL)
6905 bpf_error(cstate, "port range '%s' contains more than one hyphen",
6906 string);
6907
6908 /*
6909 * Get the length of the first port.
6910 */
6911 first = string;
6912 first_size = hyphen_off - string;
6913 if (first_size == 0) {
6914 /* Range of "-port", which we don't support. */
6915 bpf_error(cstate, "port range '%s' has no starting port", string);
6916 }
6917
6918 /*
6919 * Try to convert it to a port.
6920 */
6921 *port1 = stringtoport(cstate, first, first_size, proto);
6922 save_proto = *proto;
6923
6924 /*
6925 * Get the length of the second port.
6926 */
6927 second = hyphen_off + 1;
6928 second_size = strlen(second);
6929 if (second_size == 0) {
6930 /* Range of "port-", which we don't support. */
6931 bpf_error(cstate, "port range '%s' has no ending port", string);
6932 }
6933
6934 /*
6935 * Try to convert it to a port.
6936 */
6937 *port2 = stringtoport(cstate, second, second_size, proto);
6938 if (*proto != save_proto)
6939 *proto = PROTO_UNDEF;
6940 }
6941
6942 struct block *
gen_scode(compiler_state_t * cstate,const char * name,struct qual q)6943 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6944 {
6945 int proto = q.proto;
6946 int dir = q.dir;
6947 int tproto;
6948 u_char *eaddr;
6949 bpf_u_int32 mask, addr;
6950 struct addrinfo *res, *res0;
6951 struct sockaddr_in *sin4;
6952 #ifdef INET6
6953 int tproto6;
6954 struct sockaddr_in6 *sin6;
6955 struct in6_addr mask128;
6956 #endif /*INET6*/
6957 struct block *b, *tmp;
6958 int port, real_proto;
6959 bpf_u_int32 port1, port2;
6960
6961 /*
6962 * Catch errors reported by us and routines below us, and return NULL
6963 * on an error.
6964 */
6965 if (setjmp(cstate->top_ctx))
6966 return (NULL);
6967
6968 switch (q.addr) {
6969
6970 case Q_NET:
6971 addr = pcap_nametonetaddr(name);
6972 if (addr == 0)
6973 bpf_error(cstate, "unknown network '%s'", name);
6974 /* Left justify network addr and calculate its network mask */
6975 mask = 0xffffffff;
6976 while (addr && (addr & 0xff000000) == 0) {
6977 addr <<= 8;
6978 mask <<= 8;
6979 }
6980 return gen_host(cstate, addr, mask, proto, dir, q.addr);
6981
6982 case Q_DEFAULT:
6983 case Q_HOST:
6984 if (proto == Q_LINK) {
6985 switch (cstate->linktype) {
6986
6987 case DLT_EN10MB:
6988 case DLT_NETANALYZER:
6989 case DLT_NETANALYZER_TRANSPARENT:
6990 eaddr = pcap_ether_hostton(name);
6991 if (eaddr == NULL)
6992 bpf_error(cstate,
6993 "unknown ether host '%s'", name);
6994 tmp = gen_prevlinkhdr_check(cstate);
6995 b = gen_ehostop(cstate, eaddr, dir);
6996 if (tmp != NULL)
6997 gen_and(tmp, b);
6998 free(eaddr);
6999 return b;
7000
7001 case DLT_FDDI:
7002 eaddr = pcap_ether_hostton(name);
7003 if (eaddr == NULL)
7004 bpf_error(cstate,
7005 "unknown FDDI host '%s'", name);
7006 b = gen_fhostop(cstate, eaddr, dir);
7007 free(eaddr);
7008 return b;
7009
7010 case DLT_IEEE802:
7011 eaddr = pcap_ether_hostton(name);
7012 if (eaddr == NULL)
7013 bpf_error(cstate,
7014 "unknown token ring host '%s'", name);
7015 b = gen_thostop(cstate, eaddr, dir);
7016 free(eaddr);
7017 return b;
7018
7019 case DLT_IEEE802_11:
7020 case DLT_PRISM_HEADER:
7021 case DLT_IEEE802_11_RADIO_AVS:
7022 case DLT_IEEE802_11_RADIO:
7023 case DLT_PPI:
7024 eaddr = pcap_ether_hostton(name);
7025 if (eaddr == NULL)
7026 bpf_error(cstate,
7027 "unknown 802.11 host '%s'", name);
7028 b = gen_wlanhostop(cstate, eaddr, dir);
7029 free(eaddr);
7030 return b;
7031
7032 case DLT_IP_OVER_FC:
7033 eaddr = pcap_ether_hostton(name);
7034 if (eaddr == NULL)
7035 bpf_error(cstate,
7036 "unknown Fibre Channel host '%s'", name);
7037 b = gen_ipfchostop(cstate, eaddr, dir);
7038 free(eaddr);
7039 return b;
7040 }
7041
7042 bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
7043 } else if (proto == Q_DECNET) {
7044 unsigned short dn_addr;
7045
7046 if (!__pcap_nametodnaddr(name, &dn_addr)) {
7047 #ifdef DECNETLIB
7048 bpf_error(cstate, "unknown decnet host name '%s'\n", name);
7049 #else
7050 bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
7051 name);
7052 #endif
7053 }
7054 /*
7055 * I don't think DECNET hosts can be multihomed, so
7056 * there is no need to build up a list of addresses
7057 */
7058 return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
7059 } else {
7060 #ifdef INET6
7061 memset(&mask128, 0xff, sizeof(mask128));
7062 #endif
7063 res0 = res = pcap_nametoaddrinfo(name);
7064 if (res == NULL)
7065 bpf_error(cstate, "unknown host '%s'", name);
7066 cstate->ai = res;
7067 b = tmp = NULL;
7068 tproto = proto;
7069 #ifdef INET6
7070 tproto6 = proto;
7071 #endif
7072 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
7073 tproto == Q_DEFAULT) {
7074 tproto = Q_IP;
7075 #ifdef INET6
7076 tproto6 = Q_IPV6;
7077 #endif
7078 }
7079 for (res = res0; res; res = res->ai_next) {
7080 switch (res->ai_family) {
7081 case AF_INET:
7082 #ifdef INET6
7083 if (tproto == Q_IPV6)
7084 continue;
7085 #endif
7086
7087 sin4 = (struct sockaddr_in *)
7088 res->ai_addr;
7089 tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
7090 0xffffffff, tproto, dir, q.addr);
7091 break;
7092 #ifdef INET6
7093 case AF_INET6:
7094 if (tproto6 == Q_IP)
7095 continue;
7096
7097 sin6 = (struct sockaddr_in6 *)
7098 res->ai_addr;
7099 tmp = gen_host6(cstate, &sin6->sin6_addr,
7100 &mask128, tproto6, dir, q.addr);
7101 break;
7102 #endif
7103 default:
7104 continue;
7105 }
7106 if (b)
7107 gen_or(b, tmp);
7108 b = tmp;
7109 }
7110 cstate->ai = NULL;
7111 freeaddrinfo(res0);
7112 if (b == NULL) {
7113 bpf_error(cstate, "unknown host '%s'%s", name,
7114 (proto == Q_DEFAULT)
7115 ? ""
7116 : " for specified address family");
7117 }
7118 return b;
7119 }
7120
7121 case Q_PORT:
7122 if (proto != Q_DEFAULT &&
7123 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7124 bpf_error(cstate, "illegal qualifier of 'port'");
7125 if (pcap_nametoport(name, &port, &real_proto) == 0)
7126 bpf_error(cstate, "unknown port '%s'", name);
7127 if (proto == Q_UDP) {
7128 if (real_proto == IPPROTO_TCP)
7129 bpf_error(cstate, "port '%s' is tcp", name);
7130 else if (real_proto == IPPROTO_SCTP)
7131 bpf_error(cstate, "port '%s' is sctp", name);
7132 else
7133 /* override PROTO_UNDEF */
7134 real_proto = IPPROTO_UDP;
7135 }
7136 if (proto == Q_TCP) {
7137 if (real_proto == IPPROTO_UDP)
7138 bpf_error(cstate, "port '%s' is udp", name);
7139
7140 else if (real_proto == IPPROTO_SCTP)
7141 bpf_error(cstate, "port '%s' is sctp", name);
7142 else
7143 /* override PROTO_UNDEF */
7144 real_proto = IPPROTO_TCP;
7145 }
7146 if (proto == Q_SCTP) {
7147 if (real_proto == IPPROTO_UDP)
7148 bpf_error(cstate, "port '%s' is udp", name);
7149
7150 else if (real_proto == IPPROTO_TCP)
7151 bpf_error(cstate, "port '%s' is tcp", name);
7152 else
7153 /* override PROTO_UNDEF */
7154 real_proto = IPPROTO_SCTP;
7155 }
7156 if (port < 0)
7157 bpf_error(cstate, "illegal port number %d < 0", port);
7158 if (port > 65535)
7159 bpf_error(cstate, "illegal port number %d > 65535", port);
7160 b = gen_port(cstate, port, real_proto, dir);
7161 gen_or(gen_port6(cstate, port, real_proto, dir), b);
7162 return b;
7163
7164 case Q_PORTRANGE:
7165 if (proto != Q_DEFAULT &&
7166 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7167 bpf_error(cstate, "illegal qualifier of 'portrange'");
7168 stringtoportrange(cstate, name, &port1, &port2, &real_proto);
7169 if (proto == Q_UDP) {
7170 if (real_proto == IPPROTO_TCP)
7171 bpf_error(cstate, "port in range '%s' is tcp", name);
7172 else if (real_proto == IPPROTO_SCTP)
7173 bpf_error(cstate, "port in range '%s' is sctp", name);
7174 else
7175 /* override PROTO_UNDEF */
7176 real_proto = IPPROTO_UDP;
7177 }
7178 if (proto == Q_TCP) {
7179 if (real_proto == IPPROTO_UDP)
7180 bpf_error(cstate, "port in range '%s' is udp", name);
7181 else if (real_proto == IPPROTO_SCTP)
7182 bpf_error(cstate, "port in range '%s' is sctp", name);
7183 else
7184 /* override PROTO_UNDEF */
7185 real_proto = IPPROTO_TCP;
7186 }
7187 if (proto == Q_SCTP) {
7188 if (real_proto == IPPROTO_UDP)
7189 bpf_error(cstate, "port in range '%s' is udp", name);
7190 else if (real_proto == IPPROTO_TCP)
7191 bpf_error(cstate, "port in range '%s' is tcp", name);
7192 else
7193 /* override PROTO_UNDEF */
7194 real_proto = IPPROTO_SCTP;
7195 }
7196 if (port1 > 65535)
7197 bpf_error(cstate, "illegal port number %d > 65535", port1);
7198 if (port2 > 65535)
7199 bpf_error(cstate, "illegal port number %d > 65535", port2);
7200
7201 b = gen_portrange(cstate, port1, port2, real_proto, dir);
7202 gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
7203 return b;
7204
7205 case Q_GATEWAY:
7206 #ifndef INET6
7207 eaddr = pcap_ether_hostton(name);
7208 if (eaddr == NULL)
7209 bpf_error(cstate, "unknown ether host: %s", name);
7210
7211 res = pcap_nametoaddrinfo(name);
7212 cstate->ai = res;
7213 if (res == NULL)
7214 bpf_error(cstate, "unknown host '%s'", name);
7215 b = gen_gateway(cstate, eaddr, res, proto, dir);
7216 cstate->ai = NULL;
7217 freeaddrinfo(res);
7218 if (b == NULL)
7219 bpf_error(cstate, "unknown host '%s'", name);
7220 return b;
7221 #else
7222 bpf_error(cstate, "'gateway' not supported in this configuration");
7223 #endif /*INET6*/
7224
7225 case Q_PROTO:
7226 real_proto = lookup_proto(cstate, name, proto);
7227 if (real_proto >= 0)
7228 return gen_proto(cstate, real_proto, proto, dir);
7229 else
7230 bpf_error(cstate, "unknown protocol: %s", name);
7231
7232 #if !defined(NO_PROTOCHAIN)
7233 case Q_PROTOCHAIN:
7234 real_proto = lookup_proto(cstate, name, proto);
7235 if (real_proto >= 0)
7236 return gen_protochain(cstate, real_proto, proto);
7237 else
7238 bpf_error(cstate, "unknown protocol: %s", name);
7239 #endif /* !defined(NO_PROTOCHAIN) */
7240
7241 case Q_UNDEF:
7242 syntax(cstate);
7243 /*NOTREACHED*/
7244 }
7245 abort();
7246 /*NOTREACHED*/
7247 }
7248
7249 struct block *
gen_mcode(compiler_state_t * cstate,const char * s1,const char * s2,bpf_u_int32 masklen,struct qual q)7250 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
7251 bpf_u_int32 masklen, struct qual q)
7252 {
7253 register int nlen, mlen;
7254 bpf_u_int32 n, m;
7255
7256 /*
7257 * Catch errors reported by us and routines below us, and return NULL
7258 * on an error.
7259 */
7260 if (setjmp(cstate->top_ctx))
7261 return (NULL);
7262
7263 nlen = __pcap_atoin(s1, &n);
7264 if (nlen < 0)
7265 bpf_error(cstate, "invalid IPv4 address '%s'", s1);
7266 /* Promote short ipaddr */
7267 n <<= 32 - nlen;
7268
7269 if (s2 != NULL) {
7270 mlen = __pcap_atoin(s2, &m);
7271 if (mlen < 0)
7272 bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7273 /* Promote short ipaddr */
7274 m <<= 32 - mlen;
7275 if ((n & ~m) != 0)
7276 bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7277 s1, s2);
7278 } else {
7279 /* Convert mask len to mask */
7280 if (masklen > 32)
7281 bpf_error(cstate, "mask length must be <= 32");
7282 if (masklen == 0) {
7283 /*
7284 * X << 32 is not guaranteed by C to be 0; it's
7285 * undefined.
7286 */
7287 m = 0;
7288 } else
7289 m = 0xffffffff << (32 - masklen);
7290 if ((n & ~m) != 0)
7291 bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7292 s1, masklen);
7293 }
7294
7295 switch (q.addr) {
7296
7297 case Q_NET:
7298 return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7299
7300 default:
7301 bpf_error(cstate, "Mask syntax for networks only");
7302 /*NOTREACHED*/
7303 }
7304 /*NOTREACHED*/
7305 }
7306
7307 struct block *
gen_ncode(compiler_state_t * cstate,const char * s,bpf_u_int32 v,struct qual q)7308 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7309 {
7310 bpf_u_int32 mask;
7311 int proto;
7312 int dir;
7313 register int vlen;
7314
7315 /*
7316 * Catch errors reported by us and routines below us, and return NULL
7317 * on an error.
7318 */
7319 if (setjmp(cstate->top_ctx))
7320 return (NULL);
7321
7322 proto = q.proto;
7323 dir = q.dir;
7324 if (s == NULL)
7325 vlen = 32;
7326 else if (q.proto == Q_DECNET) {
7327 vlen = __pcap_atodn(s, &v);
7328 if (vlen == 0)
7329 bpf_error(cstate, "malformed decnet address '%s'", s);
7330 } else {
7331 vlen = __pcap_atoin(s, &v);
7332 if (vlen < 0)
7333 bpf_error(cstate, "invalid IPv4 address '%s'", s);
7334 }
7335
7336 switch (q.addr) {
7337
7338 case Q_DEFAULT:
7339 case Q_HOST:
7340 case Q_NET:
7341 if (proto == Q_DECNET)
7342 return gen_host(cstate, v, 0, proto, dir, q.addr);
7343 else if (proto == Q_LINK) {
7344 bpf_error(cstate, "illegal link layer address");
7345 } else {
7346 mask = 0xffffffff;
7347 if (s == NULL && q.addr == Q_NET) {
7348 /* Promote short net number */
7349 while (v && (v & 0xff000000) == 0) {
7350 v <<= 8;
7351 mask <<= 8;
7352 }
7353 } else {
7354 /* Promote short ipaddr */
7355 v <<= 32 - vlen;
7356 mask <<= 32 - vlen ;
7357 }
7358 return gen_host(cstate, v, mask, proto, dir, q.addr);
7359 }
7360
7361 case Q_PORT:
7362 if (proto == Q_UDP)
7363 proto = IPPROTO_UDP;
7364 else if (proto == Q_TCP)
7365 proto = IPPROTO_TCP;
7366 else if (proto == Q_SCTP)
7367 proto = IPPROTO_SCTP;
7368 else if (proto == Q_DEFAULT)
7369 proto = PROTO_UNDEF;
7370 else
7371 bpf_error(cstate, "illegal qualifier of 'port'");
7372
7373 if (v > 65535)
7374 bpf_error(cstate, "illegal port number %u > 65535", v);
7375
7376 {
7377 struct block *b;
7378 b = gen_port(cstate, v, proto, dir);
7379 gen_or(gen_port6(cstate, v, proto, dir), b);
7380 return b;
7381 }
7382
7383 case Q_PORTRANGE:
7384 if (proto == Q_UDP)
7385 proto = IPPROTO_UDP;
7386 else if (proto == Q_TCP)
7387 proto = IPPROTO_TCP;
7388 else if (proto == Q_SCTP)
7389 proto = IPPROTO_SCTP;
7390 else if (proto == Q_DEFAULT)
7391 proto = PROTO_UNDEF;
7392 else
7393 bpf_error(cstate, "illegal qualifier of 'portrange'");
7394
7395 if (v > 65535)
7396 bpf_error(cstate, "illegal port number %u > 65535", v);
7397
7398 {
7399 struct block *b;
7400 b = gen_portrange(cstate, v, v, proto, dir);
7401 gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7402 return b;
7403 }
7404
7405 case Q_GATEWAY:
7406 bpf_error(cstate, "'gateway' requires a name");
7407 /*NOTREACHED*/
7408
7409 case Q_PROTO:
7410 return gen_proto(cstate, v, proto, dir);
7411
7412 #if !defined(NO_PROTOCHAIN)
7413 case Q_PROTOCHAIN:
7414 return gen_protochain(cstate, v, proto);
7415 #endif
7416
7417 case Q_UNDEF:
7418 syntax(cstate);
7419 /*NOTREACHED*/
7420
7421 default:
7422 abort();
7423 /*NOTREACHED*/
7424 }
7425 /*NOTREACHED*/
7426 }
7427
7428 #ifdef INET6
7429 struct block *
gen_mcode6(compiler_state_t * cstate,const char * s,bpf_u_int32 masklen,struct qual q)7430 gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
7431 struct qual q)
7432 {
7433 struct addrinfo *res;
7434 struct in6_addr *addr;
7435 struct in6_addr mask;
7436 struct block *b;
7437 bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */
7438
7439 /*
7440 * Catch errors reported by us and routines below us, and return NULL
7441 * on an error.
7442 */
7443 if (setjmp(cstate->top_ctx))
7444 return (NULL);
7445
7446 res = pcap_nametoaddrinfo(s);
7447 if (!res)
7448 bpf_error(cstate, "invalid ip6 address %s", s);
7449 cstate->ai = res;
7450 if (res->ai_next)
7451 bpf_error(cstate, "%s resolved to multiple address", s);
7452 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7453
7454 if (masklen > sizeof(mask.s6_addr) * 8)
7455 bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
7456 memset(&mask, 0, sizeof(mask));
7457 memset(&mask.s6_addr, 0xff, masklen / 8);
7458 if (masklen % 8) {
7459 mask.s6_addr[masklen / 8] =
7460 (0xff << (8 - masklen % 8)) & 0xff;
7461 }
7462
7463 memcpy(a, addr, sizeof(a));
7464 memcpy(m, &mask, sizeof(m));
7465 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7466 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7467 bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
7468 }
7469
7470 switch (q.addr) {
7471
7472 case Q_DEFAULT:
7473 case Q_HOST:
7474 if (masklen != 128)
7475 bpf_error(cstate, "Mask syntax for networks only");
7476 /* FALLTHROUGH */
7477
7478 case Q_NET:
7479 b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7480 cstate->ai = NULL;
7481 freeaddrinfo(res);
7482 return b;
7483
7484 default:
7485 bpf_error(cstate, "invalid qualifier against IPv6 address");
7486 /*NOTREACHED*/
7487 }
7488 }
7489 #endif /*INET6*/
7490
7491 struct block *
gen_ecode(compiler_state_t * cstate,const char * s,struct qual q)7492 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7493 {
7494 struct block *b, *tmp;
7495
7496 /*
7497 * Catch errors reported by us and routines below us, and return NULL
7498 * on an error.
7499 */
7500 if (setjmp(cstate->top_ctx))
7501 return (NULL);
7502
7503 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7504 cstate->e = pcap_ether_aton(s);
7505 if (cstate->e == NULL)
7506 bpf_error(cstate, "malloc");
7507 switch (cstate->linktype) {
7508 case DLT_EN10MB:
7509 case DLT_NETANALYZER:
7510 case DLT_NETANALYZER_TRANSPARENT:
7511 tmp = gen_prevlinkhdr_check(cstate);
7512 b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7513 if (tmp != NULL)
7514 gen_and(tmp, b);
7515 break;
7516 case DLT_FDDI:
7517 b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7518 break;
7519 case DLT_IEEE802:
7520 b = gen_thostop(cstate, cstate->e, (int)q.dir);
7521 break;
7522 case DLT_IEEE802_11:
7523 case DLT_PRISM_HEADER:
7524 case DLT_IEEE802_11_RADIO_AVS:
7525 case DLT_IEEE802_11_RADIO:
7526 case DLT_PPI:
7527 b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7528 break;
7529 case DLT_IP_OVER_FC:
7530 b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7531 break;
7532 default:
7533 free(cstate->e);
7534 cstate->e = NULL;
7535 bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7536 /*NOTREACHED*/
7537 }
7538 free(cstate->e);
7539 cstate->e = NULL;
7540 return (b);
7541 }
7542 bpf_error(cstate, "ethernet address used in non-ether expression");
7543 /*NOTREACHED*/
7544 }
7545
7546 void
sappend(struct slist * s0,struct slist * s1)7547 sappend(struct slist *s0, struct slist *s1)
7548 {
7549 /*
7550 * This is definitely not the best way to do this, but the
7551 * lists will rarely get long.
7552 */
7553 while (s0->next)
7554 s0 = s0->next;
7555 s0->next = s1;
7556 }
7557
7558 static struct slist *
xfer_to_x(compiler_state_t * cstate,struct arth * a)7559 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7560 {
7561 struct slist *s;
7562
7563 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7564 s->s.k = a->regno;
7565 return s;
7566 }
7567
7568 static struct slist *
xfer_to_a(compiler_state_t * cstate,struct arth * a)7569 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7570 {
7571 struct slist *s;
7572
7573 s = new_stmt(cstate, BPF_LD|BPF_MEM);
7574 s->s.k = a->regno;
7575 return s;
7576 }
7577
7578 /*
7579 * Modify "index" to use the value stored into its register as an
7580 * offset relative to the beginning of the header for the protocol
7581 * "proto", and allocate a register and put an item "size" bytes long
7582 * (1, 2, or 4) at that offset into that register, making it the register
7583 * for "index".
7584 */
7585 static struct arth *
gen_load_internal(compiler_state_t * cstate,int proto,struct arth * inst,bpf_u_int32 size)7586 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7587 bpf_u_int32 size)
7588 {
7589 int size_code;
7590 struct slist *s, *tmp;
7591 struct block *b;
7592 int regno = alloc_reg(cstate);
7593
7594 free_reg(cstate, inst->regno);
7595 switch (size) {
7596
7597 default:
7598 bpf_error(cstate, "data size must be 1, 2, or 4");
7599 /*NOTREACHED*/
7600
7601 case 1:
7602 size_code = BPF_B;
7603 break;
7604
7605 case 2:
7606 size_code = BPF_H;
7607 break;
7608
7609 case 4:
7610 size_code = BPF_W;
7611 break;
7612 }
7613 switch (proto) {
7614 default:
7615 bpf_error(cstate, "unsupported index operation");
7616
7617 case Q_RADIO:
7618 /*
7619 * The offset is relative to the beginning of the packet
7620 * data, if we have a radio header. (If we don't, this
7621 * is an error.)
7622 */
7623 if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7624 cstate->linktype != DLT_IEEE802_11_RADIO &&
7625 cstate->linktype != DLT_PRISM_HEADER)
7626 bpf_error(cstate, "radio information not present in capture");
7627
7628 /*
7629 * Load into the X register the offset computed into the
7630 * register specified by "index".
7631 */
7632 s = xfer_to_x(cstate, inst);
7633
7634 /*
7635 * Load the item at that offset.
7636 */
7637 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7638 sappend(s, tmp);
7639 sappend(inst->s, s);
7640 break;
7641
7642 case Q_LINK:
7643 /*
7644 * The offset is relative to the beginning of
7645 * the link-layer header.
7646 *
7647 * XXX - what about ATM LANE? Should the index be
7648 * relative to the beginning of the AAL5 frame, so
7649 * that 0 refers to the beginning of the LE Control
7650 * field, or relative to the beginning of the LAN
7651 * frame, so that 0 refers, for Ethernet LANE, to
7652 * the beginning of the destination address?
7653 */
7654 s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7655
7656 /*
7657 * If "s" is non-null, it has code to arrange that the
7658 * X register contains the length of the prefix preceding
7659 * the link-layer header. Add to it the offset computed
7660 * into the register specified by "index", and move that
7661 * into the X register. Otherwise, just load into the X
7662 * register the offset computed into the register specified
7663 * by "index".
7664 */
7665 if (s != NULL) {
7666 sappend(s, xfer_to_a(cstate, inst));
7667 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7668 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7669 } else
7670 s = xfer_to_x(cstate, inst);
7671
7672 /*
7673 * Load the item at the sum of the offset we've put in the
7674 * X register and the offset of the start of the link
7675 * layer header (which is 0 if the radio header is
7676 * variable-length; that header length is what we put
7677 * into the X register and then added to the index).
7678 */
7679 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7680 tmp->s.k = cstate->off_linkhdr.constant_part;
7681 sappend(s, tmp);
7682 sappend(inst->s, s);
7683 break;
7684
7685 case Q_IP:
7686 case Q_ARP:
7687 case Q_RARP:
7688 case Q_ATALK:
7689 case Q_DECNET:
7690 case Q_SCA:
7691 case Q_LAT:
7692 case Q_MOPRC:
7693 case Q_MOPDL:
7694 case Q_IPV6:
7695 /*
7696 * The offset is relative to the beginning of
7697 * the network-layer header.
7698 * XXX - are there any cases where we want
7699 * cstate->off_nl_nosnap?
7700 */
7701 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7702
7703 /*
7704 * If "s" is non-null, it has code to arrange that the
7705 * X register contains the variable part of the offset
7706 * of the link-layer payload. Add to it the offset
7707 * computed into the register specified by "index",
7708 * and move that into the X register. Otherwise, just
7709 * load into the X register the offset computed into
7710 * the register specified by "index".
7711 */
7712 if (s != NULL) {
7713 sappend(s, xfer_to_a(cstate, inst));
7714 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7715 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7716 } else
7717 s = xfer_to_x(cstate, inst);
7718
7719 /*
7720 * Load the item at the sum of the offset we've put in the
7721 * X register, the offset of the start of the network
7722 * layer header from the beginning of the link-layer
7723 * payload, and the constant part of the offset of the
7724 * start of the link-layer payload.
7725 */
7726 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7727 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7728 sappend(s, tmp);
7729 sappend(inst->s, s);
7730
7731 /*
7732 * Do the computation only if the packet contains
7733 * the protocol in question.
7734 */
7735 b = gen_proto_abbrev_internal(cstate, proto);
7736 if (inst->b)
7737 gen_and(inst->b, b);
7738 inst->b = b;
7739 break;
7740
7741 case Q_SCTP:
7742 case Q_TCP:
7743 case Q_UDP:
7744 case Q_ICMP:
7745 case Q_IGMP:
7746 case Q_IGRP:
7747 case Q_PIM:
7748 case Q_VRRP:
7749 case Q_CARP:
7750 /*
7751 * The offset is relative to the beginning of
7752 * the transport-layer header.
7753 *
7754 * Load the X register with the length of the IPv4 header
7755 * (plus the offset of the link-layer header, if it's
7756 * a variable-length header), in bytes.
7757 *
7758 * XXX - are there any cases where we want
7759 * cstate->off_nl_nosnap?
7760 * XXX - we should, if we're built with
7761 * IPv6 support, generate code to load either
7762 * IPv4, IPv6, or both, as appropriate.
7763 */
7764 s = gen_loadx_iphdrlen(cstate);
7765
7766 /*
7767 * The X register now contains the sum of the variable
7768 * part of the offset of the link-layer payload and the
7769 * length of the network-layer header.
7770 *
7771 * Load into the A register the offset relative to
7772 * the beginning of the transport layer header,
7773 * add the X register to that, move that to the
7774 * X register, and load with an offset from the
7775 * X register equal to the sum of the constant part of
7776 * the offset of the link-layer payload and the offset,
7777 * relative to the beginning of the link-layer payload,
7778 * of the network-layer header.
7779 */
7780 sappend(s, xfer_to_a(cstate, inst));
7781 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7782 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7783 sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7784 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7785 sappend(inst->s, s);
7786
7787 /*
7788 * Do the computation only if the packet contains
7789 * the protocol in question - which is true only
7790 * if this is an IP datagram and is the first or
7791 * only fragment of that datagram.
7792 */
7793 gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7794 if (inst->b)
7795 gen_and(inst->b, b);
7796 gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7797 inst->b = b;
7798 break;
7799 case Q_ICMPV6:
7800 /*
7801 * Do the computation only if the packet contains
7802 * the protocol in question.
7803 */
7804 b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7805 if (inst->b)
7806 gen_and(inst->b, b);
7807 inst->b = b;
7808
7809 /*
7810 * Check if we have an icmp6 next header
7811 */
7812 b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7813 if (inst->b)
7814 gen_and(inst->b, b);
7815 inst->b = b;
7816
7817 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7818 /*
7819 * If "s" is non-null, it has code to arrange that the
7820 * X register contains the variable part of the offset
7821 * of the link-layer payload. Add to it the offset
7822 * computed into the register specified by "index",
7823 * and move that into the X register. Otherwise, just
7824 * load into the X register the offset computed into
7825 * the register specified by "index".
7826 */
7827 if (s != NULL) {
7828 sappend(s, xfer_to_a(cstate, inst));
7829 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7830 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7831 } else
7832 s = xfer_to_x(cstate, inst);
7833
7834 /*
7835 * Load the item at the sum of the offset we've put in the
7836 * X register, the offset of the start of the network
7837 * layer header from the beginning of the link-layer
7838 * payload, and the constant part of the offset of the
7839 * start of the link-layer payload.
7840 */
7841 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7842 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7843
7844 sappend(s, tmp);
7845 sappend(inst->s, s);
7846
7847 break;
7848 }
7849 inst->regno = regno;
7850 s = new_stmt(cstate, BPF_ST);
7851 s->s.k = regno;
7852 sappend(inst->s, s);
7853
7854 return inst;
7855 }
7856
7857 struct arth *
gen_load(compiler_state_t * cstate,int proto,struct arth * inst,bpf_u_int32 size)7858 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7859 bpf_u_int32 size)
7860 {
7861 /*
7862 * Catch errors reported by us and routines below us, and return NULL
7863 * on an error.
7864 */
7865 if (setjmp(cstate->top_ctx))
7866 return (NULL);
7867
7868 return gen_load_internal(cstate, proto, inst, size);
7869 }
7870
7871 static struct block *
gen_relation_internal(compiler_state_t * cstate,int code,struct arth * a0,struct arth * a1,int reversed)7872 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7873 struct arth *a1, int reversed)
7874 {
7875 struct slist *s0, *s1, *s2;
7876 struct block *b, *tmp;
7877
7878 s0 = xfer_to_x(cstate, a1);
7879 s1 = xfer_to_a(cstate, a0);
7880 if (code == BPF_JEQ) {
7881 s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7882 b = new_block(cstate, JMP(code));
7883 sappend(s1, s2);
7884 }
7885 else
7886 b = new_block(cstate, BPF_JMP|code|BPF_X);
7887 if (reversed)
7888 gen_not(b);
7889
7890 sappend(s0, s1);
7891 sappend(a1->s, s0);
7892 sappend(a0->s, a1->s);
7893
7894 b->stmts = a0->s;
7895
7896 free_reg(cstate, a0->regno);
7897 free_reg(cstate, a1->regno);
7898
7899 /* 'and' together protocol checks */
7900 if (a0->b) {
7901 if (a1->b) {
7902 gen_and(a0->b, tmp = a1->b);
7903 }
7904 else
7905 tmp = a0->b;
7906 } else
7907 tmp = a1->b;
7908
7909 if (tmp)
7910 gen_and(tmp, b);
7911
7912 return b;
7913 }
7914
7915 struct block *
gen_relation(compiler_state_t * cstate,int code,struct arth * a0,struct arth * a1,int reversed)7916 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7917 struct arth *a1, int reversed)
7918 {
7919 /*
7920 * Catch errors reported by us and routines below us, and return NULL
7921 * on an error.
7922 */
7923 if (setjmp(cstate->top_ctx))
7924 return (NULL);
7925
7926 return gen_relation_internal(cstate, code, a0, a1, reversed);
7927 }
7928
7929 struct arth *
gen_loadlen(compiler_state_t * cstate)7930 gen_loadlen(compiler_state_t *cstate)
7931 {
7932 int regno;
7933 struct arth *a;
7934 struct slist *s;
7935
7936 /*
7937 * Catch errors reported by us and routines below us, and return NULL
7938 * on an error.
7939 */
7940 if (setjmp(cstate->top_ctx))
7941 return (NULL);
7942
7943 regno = alloc_reg(cstate);
7944 a = (struct arth *)newchunk(cstate, sizeof(*a));
7945 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7946 s->next = new_stmt(cstate, BPF_ST);
7947 s->next->s.k = regno;
7948 a->s = s;
7949 a->regno = regno;
7950
7951 return a;
7952 }
7953
7954 static struct arth *
gen_loadi_internal(compiler_state_t * cstate,bpf_u_int32 val)7955 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7956 {
7957 struct arth *a;
7958 struct slist *s;
7959 int reg;
7960
7961 a = (struct arth *)newchunk(cstate, sizeof(*a));
7962
7963 reg = alloc_reg(cstate);
7964
7965 s = new_stmt(cstate, BPF_LD|BPF_IMM);
7966 s->s.k = val;
7967 s->next = new_stmt(cstate, BPF_ST);
7968 s->next->s.k = reg;
7969 a->s = s;
7970 a->regno = reg;
7971
7972 return a;
7973 }
7974
7975 struct arth *
gen_loadi(compiler_state_t * cstate,bpf_u_int32 val)7976 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7977 {
7978 /*
7979 * Catch errors reported by us and routines below us, and return NULL
7980 * on an error.
7981 */
7982 if (setjmp(cstate->top_ctx))
7983 return (NULL);
7984
7985 return gen_loadi_internal(cstate, val);
7986 }
7987
7988 /*
7989 * The a_arg dance is to avoid annoying whining by compilers that
7990 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7991 * It's not *used* after setjmp returns.
7992 */
7993 struct arth *
gen_neg(compiler_state_t * cstate,struct arth * a_arg)7994 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7995 {
7996 struct arth *a = a_arg;
7997 struct slist *s;
7998
7999 /*
8000 * Catch errors reported by us and routines below us, and return NULL
8001 * on an error.
8002 */
8003 if (setjmp(cstate->top_ctx))
8004 return (NULL);
8005
8006 s = xfer_to_a(cstate, a);
8007 sappend(a->s, s);
8008 s = new_stmt(cstate, BPF_ALU|BPF_NEG);
8009 s->s.k = 0;
8010 sappend(a->s, s);
8011 s = new_stmt(cstate, BPF_ST);
8012 s->s.k = a->regno;
8013 sappend(a->s, s);
8014
8015 return a;
8016 }
8017
8018 /*
8019 * The a0_arg dance is to avoid annoying whining by compilers that
8020 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8021 * It's not *used* after setjmp returns.
8022 */
8023 struct arth *
gen_arth(compiler_state_t * cstate,int code,struct arth * a0_arg,struct arth * a1)8024 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
8025 struct arth *a1)
8026 {
8027 struct arth *a0 = a0_arg;
8028 struct slist *s0, *s1, *s2;
8029
8030 /*
8031 * Catch errors reported by us and routines below us, and return NULL
8032 * on an error.
8033 */
8034 if (setjmp(cstate->top_ctx))
8035 return (NULL);
8036
8037 /*
8038 * Disallow division by, or modulus by, zero; we do this here
8039 * so that it gets done even if the optimizer is disabled.
8040 *
8041 * Also disallow shifts by a value greater than 31; we do this
8042 * here, for the same reason.
8043 */
8044 if (code == BPF_DIV) {
8045 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8046 bpf_error(cstate, "division by zero");
8047 } else if (code == BPF_MOD) {
8048 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8049 bpf_error(cstate, "modulus by zero");
8050 } else if (code == BPF_LSH || code == BPF_RSH) {
8051 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
8052 bpf_error(cstate, "shift by more than 31 bits");
8053 }
8054 s0 = xfer_to_x(cstate, a1);
8055 s1 = xfer_to_a(cstate, a0);
8056 s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
8057
8058 sappend(s1, s2);
8059 sappend(s0, s1);
8060 sappend(a1->s, s0);
8061 sappend(a0->s, a1->s);
8062
8063 free_reg(cstate, a0->regno);
8064 free_reg(cstate, a1->regno);
8065
8066 s0 = new_stmt(cstate, BPF_ST);
8067 a0->regno = s0->s.k = alloc_reg(cstate);
8068 sappend(a0->s, s0);
8069
8070 return a0;
8071 }
8072
8073 /*
8074 * Initialize the table of used registers and the current register.
8075 */
8076 static void
init_regs(compiler_state_t * cstate)8077 init_regs(compiler_state_t *cstate)
8078 {
8079 cstate->curreg = 0;
8080 memset(cstate->regused, 0, sizeof cstate->regused);
8081 }
8082
8083 /*
8084 * Return the next free register.
8085 */
8086 static int
alloc_reg(compiler_state_t * cstate)8087 alloc_reg(compiler_state_t *cstate)
8088 {
8089 int n = BPF_MEMWORDS;
8090
8091 while (--n >= 0) {
8092 if (cstate->regused[cstate->curreg])
8093 cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
8094 else {
8095 cstate->regused[cstate->curreg] = 1;
8096 return cstate->curreg;
8097 }
8098 }
8099 bpf_error(cstate, "too many registers needed to evaluate expression");
8100 /*NOTREACHED*/
8101 }
8102
8103 /*
8104 * Return a register to the table so it can
8105 * be used later.
8106 */
8107 static void
free_reg(compiler_state_t * cstate,int n)8108 free_reg(compiler_state_t *cstate, int n)
8109 {
8110 cstate->regused[n] = 0;
8111 }
8112
8113 static struct block *
gen_len(compiler_state_t * cstate,int jmp,int n)8114 gen_len(compiler_state_t *cstate, int jmp, int n)
8115 {
8116 struct slist *s;
8117 struct block *b;
8118
8119 s = new_stmt(cstate, BPF_LD|BPF_LEN);
8120 b = new_block(cstate, JMP(jmp));
8121 b->stmts = s;
8122 b->s.k = n;
8123
8124 return b;
8125 }
8126
8127 struct block *
gen_greater(compiler_state_t * cstate,int n)8128 gen_greater(compiler_state_t *cstate, int n)
8129 {
8130 /*
8131 * Catch errors reported by us and routines below us, and return NULL
8132 * on an error.
8133 */
8134 if (setjmp(cstate->top_ctx))
8135 return (NULL);
8136
8137 return gen_len(cstate, BPF_JGE, n);
8138 }
8139
8140 /*
8141 * Actually, this is less than or equal.
8142 */
8143 struct block *
gen_less(compiler_state_t * cstate,int n)8144 gen_less(compiler_state_t *cstate, int n)
8145 {
8146 struct block *b;
8147
8148 /*
8149 * Catch errors reported by us and routines below us, and return NULL
8150 * on an error.
8151 */
8152 if (setjmp(cstate->top_ctx))
8153 return (NULL);
8154
8155 b = gen_len(cstate, BPF_JGT, n);
8156 gen_not(b);
8157
8158 return b;
8159 }
8160
8161 /*
8162 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8163 * the beginning of the link-layer header.
8164 * XXX - that means you can't test values in the radiotap header, but
8165 * as that header is difficult if not impossible to parse generally
8166 * without a loop, that might not be a severe problem. A new keyword
8167 * "radio" could be added for that, although what you'd really want
8168 * would be a way of testing particular radio header values, which
8169 * would generate code appropriate to the radio header in question.
8170 */
8171 struct block *
gen_byteop(compiler_state_t * cstate,int op,int idx,bpf_u_int32 val)8172 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
8173 {
8174 struct block *b;
8175 struct slist *s;
8176
8177 /*
8178 * Catch errors reported by us and routines below us, and return NULL
8179 * on an error.
8180 */
8181 if (setjmp(cstate->top_ctx))
8182 return (NULL);
8183
8184 switch (op) {
8185 default:
8186 abort();
8187
8188 case '=':
8189 return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8190
8191 case '<':
8192 b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8193 return b;
8194
8195 case '>':
8196 b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8197 return b;
8198
8199 case '|':
8200 s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
8201 break;
8202
8203 case '&':
8204 s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8205 break;
8206 }
8207 s->s.k = val;
8208 b = new_block(cstate, JMP(BPF_JEQ));
8209 b->stmts = s;
8210 gen_not(b);
8211
8212 return b;
8213 }
8214
8215 static const u_char abroadcast[] = { 0x0 };
8216
8217 struct block *
gen_broadcast(compiler_state_t * cstate,int proto)8218 gen_broadcast(compiler_state_t *cstate, int proto)
8219 {
8220 bpf_u_int32 hostmask;
8221 struct block *b0, *b1, *b2;
8222 static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8223
8224 /*
8225 * Catch errors reported by us and routines below us, and return NULL
8226 * on an error.
8227 */
8228 if (setjmp(cstate->top_ctx))
8229 return (NULL);
8230
8231 switch (proto) {
8232
8233 case Q_DEFAULT:
8234 case Q_LINK:
8235 switch (cstate->linktype) {
8236 case DLT_ARCNET:
8237 case DLT_ARCNET_LINUX:
8238 return gen_ahostop(cstate, abroadcast, Q_DST);
8239 case DLT_EN10MB:
8240 case DLT_NETANALYZER:
8241 case DLT_NETANALYZER_TRANSPARENT:
8242 b1 = gen_prevlinkhdr_check(cstate);
8243 b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
8244 if (b1 != NULL)
8245 gen_and(b1, b0);
8246 return b0;
8247 case DLT_FDDI:
8248 return gen_fhostop(cstate, ebroadcast, Q_DST);
8249 case DLT_IEEE802:
8250 return gen_thostop(cstate, ebroadcast, Q_DST);
8251 case DLT_IEEE802_11:
8252 case DLT_PRISM_HEADER:
8253 case DLT_IEEE802_11_RADIO_AVS:
8254 case DLT_IEEE802_11_RADIO:
8255 case DLT_PPI:
8256 return gen_wlanhostop(cstate, ebroadcast, Q_DST);
8257 case DLT_IP_OVER_FC:
8258 return gen_ipfchostop(cstate, ebroadcast, Q_DST);
8259 default:
8260 bpf_error(cstate, "not a broadcast link");
8261 }
8262 /*NOTREACHED*/
8263
8264 case Q_IP:
8265 /*
8266 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8267 * as an indication that we don't know the netmask, and fail
8268 * in that case.
8269 */
8270 if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8271 bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8272 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8273 hostmask = ~cstate->netmask;
8274 b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8275 b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
8276 ~0 & hostmask, hostmask);
8277 gen_or(b1, b2);
8278 gen_and(b0, b2);
8279 return b2;
8280 }
8281 bpf_error(cstate, "only link-layer/IP broadcast filters supported");
8282 /*NOTREACHED*/
8283 }
8284
8285 /*
8286 * Generate code to test the low-order bit of a MAC address (that's
8287 * the bottom bit of the *first* byte).
8288 */
8289 static struct block *
gen_mac_multicast(compiler_state_t * cstate,int offset)8290 gen_mac_multicast(compiler_state_t *cstate, int offset)
8291 {
8292 register struct block *b0;
8293 register struct slist *s;
8294
8295 /* link[offset] & 1 != 0 */
8296 s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8297 b0 = new_block(cstate, JMP(BPF_JSET));
8298 b0->s.k = 1;
8299 b0->stmts = s;
8300 return b0;
8301 }
8302
8303 struct block *
gen_multicast(compiler_state_t * cstate,int proto)8304 gen_multicast(compiler_state_t *cstate, int proto)
8305 {
8306 register struct block *b0, *b1, *b2;
8307 register struct slist *s;
8308
8309 /*
8310 * Catch errors reported by us and routines below us, and return NULL
8311 * on an error.
8312 */
8313 if (setjmp(cstate->top_ctx))
8314 return (NULL);
8315
8316 switch (proto) {
8317
8318 case Q_DEFAULT:
8319 case Q_LINK:
8320 switch (cstate->linktype) {
8321 case DLT_ARCNET:
8322 case DLT_ARCNET_LINUX:
8323 /* all ARCnet multicasts use the same address */
8324 return gen_ahostop(cstate, abroadcast, Q_DST);
8325 case DLT_EN10MB:
8326 case DLT_NETANALYZER:
8327 case DLT_NETANALYZER_TRANSPARENT:
8328 b1 = gen_prevlinkhdr_check(cstate);
8329 /* ether[0] & 1 != 0 */
8330 b0 = gen_mac_multicast(cstate, 0);
8331 if (b1 != NULL)
8332 gen_and(b1, b0);
8333 return b0;
8334 case DLT_FDDI:
8335 /*
8336 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8337 *
8338 * XXX - was that referring to bit-order issues?
8339 */
8340 /* fddi[1] & 1 != 0 */
8341 return gen_mac_multicast(cstate, 1);
8342 case DLT_IEEE802:
8343 /* tr[2] & 1 != 0 */
8344 return gen_mac_multicast(cstate, 2);
8345 case DLT_IEEE802_11:
8346 case DLT_PRISM_HEADER:
8347 case DLT_IEEE802_11_RADIO_AVS:
8348 case DLT_IEEE802_11_RADIO:
8349 case DLT_PPI:
8350 /*
8351 * Oh, yuk.
8352 *
8353 * For control frames, there is no DA.
8354 *
8355 * For management frames, DA is at an
8356 * offset of 4 from the beginning of
8357 * the packet.
8358 *
8359 * For data frames, DA is at an offset
8360 * of 4 from the beginning of the packet
8361 * if To DS is clear and at an offset of
8362 * 16 from the beginning of the packet
8363 * if To DS is set.
8364 */
8365
8366 /*
8367 * Generate the tests to be done for data frames.
8368 *
8369 * First, check for To DS set, i.e. "link[1] & 0x01".
8370 */
8371 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8372 b1 = new_block(cstate, JMP(BPF_JSET));
8373 b1->s.k = 0x01; /* To DS */
8374 b1->stmts = s;
8375
8376 /*
8377 * If To DS is set, the DA is at 16.
8378 */
8379 b0 = gen_mac_multicast(cstate, 16);
8380 gen_and(b1, b0);
8381
8382 /*
8383 * Now, check for To DS not set, i.e. check
8384 * "!(link[1] & 0x01)".
8385 */
8386 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8387 b2 = new_block(cstate, JMP(BPF_JSET));
8388 b2->s.k = 0x01; /* To DS */
8389 b2->stmts = s;
8390 gen_not(b2);
8391
8392 /*
8393 * If To DS is not set, the DA is at 4.
8394 */
8395 b1 = gen_mac_multicast(cstate, 4);
8396 gen_and(b2, b1);
8397
8398 /*
8399 * Now OR together the last two checks. That gives
8400 * the complete set of checks for data frames.
8401 */
8402 gen_or(b1, b0);
8403
8404 /*
8405 * Now check for a data frame.
8406 * I.e, check "link[0] & 0x08".
8407 */
8408 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8409 b1 = new_block(cstate, JMP(BPF_JSET));
8410 b1->s.k = 0x08;
8411 b1->stmts = s;
8412
8413 /*
8414 * AND that with the checks done for data frames.
8415 */
8416 gen_and(b1, b0);
8417
8418 /*
8419 * If the high-order bit of the type value is 0, this
8420 * is a management frame.
8421 * I.e, check "!(link[0] & 0x08)".
8422 */
8423 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8424 b2 = new_block(cstate, JMP(BPF_JSET));
8425 b2->s.k = 0x08;
8426 b2->stmts = s;
8427 gen_not(b2);
8428
8429 /*
8430 * For management frames, the DA is at 4.
8431 */
8432 b1 = gen_mac_multicast(cstate, 4);
8433 gen_and(b2, b1);
8434
8435 /*
8436 * OR that with the checks done for data frames.
8437 * That gives the checks done for management and
8438 * data frames.
8439 */
8440 gen_or(b1, b0);
8441
8442 /*
8443 * If the low-order bit of the type value is 1,
8444 * this is either a control frame or a frame
8445 * with a reserved type, and thus not a
8446 * frame with an SA.
8447 *
8448 * I.e., check "!(link[0] & 0x04)".
8449 */
8450 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8451 b1 = new_block(cstate, JMP(BPF_JSET));
8452 b1->s.k = 0x04;
8453 b1->stmts = s;
8454 gen_not(b1);
8455
8456 /*
8457 * AND that with the checks for data and management
8458 * frames.
8459 */
8460 gen_and(b1, b0);
8461 return b0;
8462 case DLT_IP_OVER_FC:
8463 b0 = gen_mac_multicast(cstate, 2);
8464 return b0;
8465 default:
8466 break;
8467 }
8468 /* Link not known to support multicasts */
8469 break;
8470
8471 case Q_IP:
8472 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8473 b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8474 gen_and(b0, b1);
8475 return b1;
8476
8477 case Q_IPV6:
8478 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8479 b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8480 gen_and(b0, b1);
8481 return b1;
8482 }
8483 bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8484 /*NOTREACHED*/
8485 }
8486
8487 struct block *
gen_ifindex(compiler_state_t * cstate,int ifindex)8488 gen_ifindex(compiler_state_t *cstate, int ifindex)
8489 {
8490 register struct block *b0;
8491
8492 /*
8493 * Catch errors reported by us and routines below us, and return NULL
8494 * on an error.
8495 */
8496 if (setjmp(cstate->top_ctx))
8497 return (NULL);
8498
8499 /*
8500 * Only some data link types support ifindex qualifiers.
8501 */
8502 switch (cstate->linktype) {
8503 case DLT_LINUX_SLL2:
8504 /* match packets on this interface */
8505 b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8506 break;
8507 default:
8508 #if defined(__linux__)
8509 /*
8510 * This is Linux; we require PF_PACKET support.
8511 * If this is a *live* capture, we can look at
8512 * special meta-data in the filter expression;
8513 * if it's a savefile, we can't.
8514 */
8515 if (cstate->bpf_pcap->rfile != NULL) {
8516 /* We have a FILE *, so this is a savefile */
8517 bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8518 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8519 /*NOTREACHED*/
8520 }
8521 /* match ifindex */
8522 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8523 ifindex);
8524 #else /* defined(__linux__) */
8525 bpf_error(cstate, "ifindex not supported on %s",
8526 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8527 /*NOTREACHED*/
8528 #endif /* defined(__linux__) */
8529 }
8530 return (b0);
8531 }
8532
8533 /*
8534 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8535 * Outbound traffic is sent by this machine, while inbound traffic is
8536 * sent by a remote machine (and may include packets destined for a
8537 * unicast or multicast link-layer address we are not subscribing to).
8538 * These are the same definitions implemented by pcap_setdirection().
8539 * Capturing only unicast traffic destined for this host is probably
8540 * better accomplished using a higher-layer filter.
8541 */
8542 struct block *
gen_inbound(compiler_state_t * cstate,int dir)8543 gen_inbound(compiler_state_t *cstate, int dir)
8544 {
8545 register struct block *b0;
8546
8547 /*
8548 * Catch errors reported by us and routines below us, and return NULL
8549 * on an error.
8550 */
8551 if (setjmp(cstate->top_ctx))
8552 return (NULL);
8553
8554 /*
8555 * Only some data link types support inbound/outbound qualifiers.
8556 */
8557 switch (cstate->linktype) {
8558 case DLT_SLIP:
8559 b0 = gen_relation_internal(cstate, BPF_JEQ,
8560 gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8561 gen_loadi_internal(cstate, 0),
8562 dir);
8563 break;
8564
8565 case DLT_IPNET:
8566 if (dir) {
8567 /* match outgoing packets */
8568 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8569 } else {
8570 /* match incoming packets */
8571 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8572 }
8573 break;
8574
8575 case DLT_LINUX_SLL:
8576 /* match outgoing packets */
8577 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8578 if (!dir) {
8579 /* to filter on inbound traffic, invert the match */
8580 gen_not(b0);
8581 }
8582 break;
8583
8584 case DLT_LINUX_SLL2:
8585 /* match outgoing packets */
8586 b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8587 if (!dir) {
8588 /* to filter on inbound traffic, invert the match */
8589 gen_not(b0);
8590 }
8591 break;
8592
8593 case DLT_PFLOG:
8594 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8595 ((dir == 0) ? PF_IN : PF_OUT));
8596 break;
8597
8598 case DLT_PPP_PPPD:
8599 if (dir) {
8600 /* match outgoing packets */
8601 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8602 } else {
8603 /* match incoming packets */
8604 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8605 }
8606 break;
8607
8608 case DLT_JUNIPER_MFR:
8609 case DLT_JUNIPER_MLFR:
8610 case DLT_JUNIPER_MLPPP:
8611 case DLT_JUNIPER_ATM1:
8612 case DLT_JUNIPER_ATM2:
8613 case DLT_JUNIPER_PPPOE:
8614 case DLT_JUNIPER_PPPOE_ATM:
8615 case DLT_JUNIPER_GGSN:
8616 case DLT_JUNIPER_ES:
8617 case DLT_JUNIPER_MONITOR:
8618 case DLT_JUNIPER_SERVICES:
8619 case DLT_JUNIPER_ETHER:
8620 case DLT_JUNIPER_PPP:
8621 case DLT_JUNIPER_FRELAY:
8622 case DLT_JUNIPER_CHDLC:
8623 case DLT_JUNIPER_VP:
8624 case DLT_JUNIPER_ST:
8625 case DLT_JUNIPER_ISM:
8626 case DLT_JUNIPER_VS:
8627 case DLT_JUNIPER_SRX_E2E:
8628 case DLT_JUNIPER_FIBRECHANNEL:
8629 case DLT_JUNIPER_ATM_CEMIC:
8630
8631 /* juniper flags (including direction) are stored
8632 * the byte after the 3-byte magic number */
8633 if (dir) {
8634 /* match outgoing packets */
8635 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8636 } else {
8637 /* match incoming packets */
8638 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8639 }
8640 break;
8641
8642 default:
8643 /*
8644 * If we have packet meta-data indicating a direction,
8645 * and that metadata can be checked by BPF code, check
8646 * it. Otherwise, give up, as this link-layer type has
8647 * nothing in the packet data.
8648 *
8649 * Currently, the only platform where a BPF filter can
8650 * check that metadata is Linux with the in-kernel
8651 * BPF interpreter. If other packet capture mechanisms
8652 * and BPF filters also supported this, it would be
8653 * nice. It would be even better if they made that
8654 * metadata available so that we could provide it
8655 * with newer capture APIs, allowing it to be saved
8656 * in pcapng files.
8657 */
8658 #if defined(__linux__)
8659 /*
8660 * This is Linux; we require PF_PACKET support.
8661 * If this is a *live* capture, we can look at
8662 * special meta-data in the filter expression;
8663 * if it's a savefile, we can't.
8664 */
8665 if (cstate->bpf_pcap->rfile != NULL) {
8666 /* We have a FILE *, so this is a savefile */
8667 bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8668 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8669 /*NOTREACHED*/
8670 }
8671 /* match outgoing packets */
8672 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8673 PACKET_OUTGOING);
8674 if (!dir) {
8675 /* to filter on inbound traffic, invert the match */
8676 gen_not(b0);
8677 }
8678 #else /* defined(__linux__) */
8679 bpf_error(cstate, "inbound/outbound not supported on %s",
8680 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8681 /*NOTREACHED*/
8682 #endif /* defined(__linux__) */
8683 }
8684 return (b0);
8685 }
8686
8687 /* PF firewall log matched interface */
8688 struct block *
gen_pf_ifname(compiler_state_t * cstate,const char * ifname)8689 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8690 {
8691 struct block *b0;
8692 u_int len, off;
8693
8694 /*
8695 * Catch errors reported by us and routines below us, and return NULL
8696 * on an error.
8697 */
8698 if (setjmp(cstate->top_ctx))
8699 return (NULL);
8700
8701 if (cstate->linktype != DLT_PFLOG) {
8702 bpf_error(cstate, "ifname supported only on PF linktype");
8703 /*NOTREACHED*/
8704 }
8705 len = sizeof(((struct pfloghdr *)0)->ifname);
8706 off = offsetof(struct pfloghdr, ifname);
8707 if (strlen(ifname) >= len) {
8708 bpf_error(cstate, "ifname interface names can only be %d characters",
8709 len-1);
8710 /*NOTREACHED*/
8711 }
8712 b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8713 (const u_char *)ifname);
8714 return (b0);
8715 }
8716
8717 /* PF firewall log ruleset name */
8718 struct block *
gen_pf_ruleset(compiler_state_t * cstate,char * ruleset)8719 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8720 {
8721 struct block *b0;
8722
8723 /*
8724 * Catch errors reported by us and routines below us, and return NULL
8725 * on an error.
8726 */
8727 if (setjmp(cstate->top_ctx))
8728 return (NULL);
8729
8730 if (cstate->linktype != DLT_PFLOG) {
8731 bpf_error(cstate, "ruleset supported only on PF linktype");
8732 /*NOTREACHED*/
8733 }
8734
8735 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8736 bpf_error(cstate, "ruleset names can only be %ld characters",
8737 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8738 /*NOTREACHED*/
8739 }
8740
8741 b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8742 (u_int)strlen(ruleset), (const u_char *)ruleset);
8743 return (b0);
8744 }
8745
8746 /* PF firewall log rule number */
8747 struct block *
gen_pf_rnr(compiler_state_t * cstate,int rnr)8748 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8749 {
8750 struct block *b0;
8751
8752 /*
8753 * Catch errors reported by us and routines below us, and return NULL
8754 * on an error.
8755 */
8756 if (setjmp(cstate->top_ctx))
8757 return (NULL);
8758
8759 if (cstate->linktype != DLT_PFLOG) {
8760 bpf_error(cstate, "rnr supported only on PF linktype");
8761 /*NOTREACHED*/
8762 }
8763
8764 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8765 (bpf_u_int32)rnr);
8766 return (b0);
8767 }
8768
8769 /* PF firewall log sub-rule number */
8770 struct block *
gen_pf_srnr(compiler_state_t * cstate,int srnr)8771 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8772 {
8773 struct block *b0;
8774
8775 /*
8776 * Catch errors reported by us and routines below us, and return NULL
8777 * on an error.
8778 */
8779 if (setjmp(cstate->top_ctx))
8780 return (NULL);
8781
8782 if (cstate->linktype != DLT_PFLOG) {
8783 bpf_error(cstate, "srnr supported only on PF linktype");
8784 /*NOTREACHED*/
8785 }
8786
8787 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8788 (bpf_u_int32)srnr);
8789 return (b0);
8790 }
8791
8792 /* PF firewall log reason code */
8793 struct block *
gen_pf_reason(compiler_state_t * cstate,int reason)8794 gen_pf_reason(compiler_state_t *cstate, int reason)
8795 {
8796 struct block *b0;
8797
8798 /*
8799 * Catch errors reported by us and routines below us, and return NULL
8800 * on an error.
8801 */
8802 if (setjmp(cstate->top_ctx))
8803 return (NULL);
8804
8805 if (cstate->linktype != DLT_PFLOG) {
8806 bpf_error(cstate, "reason supported only on PF linktype");
8807 /*NOTREACHED*/
8808 }
8809
8810 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8811 (bpf_u_int32)reason);
8812 return (b0);
8813 }
8814
8815 /* PF firewall log action */
8816 struct block *
gen_pf_action(compiler_state_t * cstate,int action)8817 gen_pf_action(compiler_state_t *cstate, int action)
8818 {
8819 struct block *b0;
8820
8821 /*
8822 * Catch errors reported by us and routines below us, and return NULL
8823 * on an error.
8824 */
8825 if (setjmp(cstate->top_ctx))
8826 return (NULL);
8827
8828 if (cstate->linktype != DLT_PFLOG) {
8829 bpf_error(cstate, "action supported only on PF linktype");
8830 /*NOTREACHED*/
8831 }
8832
8833 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8834 (bpf_u_int32)action);
8835 return (b0);
8836 }
8837
8838 /* IEEE 802.11 wireless header */
8839 struct block *
gen_p80211_type(compiler_state_t * cstate,bpf_u_int32 type,bpf_u_int32 mask)8840 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8841 {
8842 struct block *b0;
8843
8844 /*
8845 * Catch errors reported by us and routines below us, and return NULL
8846 * on an error.
8847 */
8848 if (setjmp(cstate->top_ctx))
8849 return (NULL);
8850
8851 switch (cstate->linktype) {
8852
8853 case DLT_IEEE802_11:
8854 case DLT_PRISM_HEADER:
8855 case DLT_IEEE802_11_RADIO_AVS:
8856 case DLT_IEEE802_11_RADIO:
8857 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8858 break;
8859
8860 default:
8861 bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8862 /*NOTREACHED*/
8863 }
8864
8865 return (b0);
8866 }
8867
8868 struct block *
gen_p80211_fcdir(compiler_state_t * cstate,bpf_u_int32 fcdir)8869 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8870 {
8871 struct block *b0;
8872
8873 /*
8874 * Catch errors reported by us and routines below us, and return NULL
8875 * on an error.
8876 */
8877 if (setjmp(cstate->top_ctx))
8878 return (NULL);
8879
8880 switch (cstate->linktype) {
8881
8882 case DLT_IEEE802_11:
8883 case DLT_PRISM_HEADER:
8884 case DLT_IEEE802_11_RADIO_AVS:
8885 case DLT_IEEE802_11_RADIO:
8886 break;
8887
8888 default:
8889 bpf_error(cstate, "frame direction supported only with 802.11 headers");
8890 /*NOTREACHED*/
8891 }
8892
8893 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8894 IEEE80211_FC1_DIR_MASK);
8895
8896 return (b0);
8897 }
8898
8899 struct block *
gen_acode(compiler_state_t * cstate,const char * s,struct qual q)8900 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8901 {
8902 struct block *b;
8903
8904 /*
8905 * Catch errors reported by us and routines below us, and return NULL
8906 * on an error.
8907 */
8908 if (setjmp(cstate->top_ctx))
8909 return (NULL);
8910
8911 switch (cstate->linktype) {
8912
8913 case DLT_ARCNET:
8914 case DLT_ARCNET_LINUX:
8915 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8916 q.proto == Q_LINK) {
8917 cstate->e = pcap_ether_aton(s);
8918 if (cstate->e == NULL)
8919 bpf_error(cstate, "malloc");
8920 b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8921 free(cstate->e);
8922 cstate->e = NULL;
8923 return (b);
8924 } else
8925 bpf_error(cstate, "ARCnet address used in non-arc expression");
8926 /*NOTREACHED*/
8927
8928 default:
8929 bpf_error(cstate, "aid supported only on ARCnet");
8930 /*NOTREACHED*/
8931 }
8932 }
8933
8934 static struct block *
gen_ahostop(compiler_state_t * cstate,const u_char * eaddr,int dir)8935 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8936 {
8937 register struct block *b0, *b1;
8938
8939 switch (dir) {
8940 /* src comes first, different from Ethernet */
8941 case Q_SRC:
8942 return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8943
8944 case Q_DST:
8945 return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8946
8947 case Q_AND:
8948 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8949 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8950 gen_and(b0, b1);
8951 return b1;
8952
8953 case Q_DEFAULT:
8954 case Q_OR:
8955 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8956 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8957 gen_or(b0, b1);
8958 return b1;
8959
8960 case Q_ADDR1:
8961 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8962 /*NOTREACHED*/
8963
8964 case Q_ADDR2:
8965 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8966 /*NOTREACHED*/
8967
8968 case Q_ADDR3:
8969 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8970 /*NOTREACHED*/
8971
8972 case Q_ADDR4:
8973 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8974 /*NOTREACHED*/
8975
8976 case Q_RA:
8977 bpf_error(cstate, "'ra' is only supported on 802.11");
8978 /*NOTREACHED*/
8979
8980 case Q_TA:
8981 bpf_error(cstate, "'ta' is only supported on 802.11");
8982 /*NOTREACHED*/
8983 }
8984 abort();
8985 /*NOTREACHED*/
8986 }
8987
8988 static struct block *
gen_vlan_tpid_test(compiler_state_t * cstate)8989 gen_vlan_tpid_test(compiler_state_t *cstate)
8990 {
8991 struct block *b0, *b1;
8992
8993 /* check for VLAN, including 802.1ad and QinQ */
8994 b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8995 b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8996 gen_or(b0,b1);
8997 b0 = b1;
8998 b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8999 gen_or(b0,b1);
9000
9001 return b1;
9002 }
9003
9004 static struct block *
gen_vlan_vid_test(compiler_state_t * cstate,bpf_u_int32 vlan_num)9005 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
9006 {
9007 if (vlan_num > 0x0fff) {
9008 bpf_error(cstate, "VLAN tag %u greater than maximum %u",
9009 vlan_num, 0x0fff);
9010 }
9011 return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
9012 }
9013
9014 static struct block *
gen_vlan_no_bpf_extensions(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)9015 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9016 int has_vlan_tag)
9017 {
9018 struct block *b0, *b1;
9019
9020 b0 = gen_vlan_tpid_test(cstate);
9021
9022 if (has_vlan_tag) {
9023 b1 = gen_vlan_vid_test(cstate, vlan_num);
9024 gen_and(b0, b1);
9025 b0 = b1;
9026 }
9027
9028 /*
9029 * Both payload and link header type follow the VLAN tags so that
9030 * both need to be updated.
9031 */
9032 cstate->off_linkpl.constant_part += 4;
9033 cstate->off_linktype.constant_part += 4;
9034
9035 return b0;
9036 }
9037
9038 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9039 /* add v to variable part of off */
9040 static void
gen_vlan_vloffset_add(compiler_state_t * cstate,bpf_abs_offset * off,bpf_u_int32 v,struct slist * s)9041 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
9042 bpf_u_int32 v, struct slist *s)
9043 {
9044 struct slist *s2;
9045
9046 if (!off->is_variable)
9047 off->is_variable = 1;
9048 if (off->reg == -1)
9049 off->reg = alloc_reg(cstate);
9050
9051 s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
9052 s2->s.k = off->reg;
9053 sappend(s, s2);
9054 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
9055 s2->s.k = v;
9056 sappend(s, s2);
9057 s2 = new_stmt(cstate, BPF_ST);
9058 s2->s.k = off->reg;
9059 sappend(s, s2);
9060 }
9061
9062 /*
9063 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
9064 * and link type offsets first
9065 */
9066 static void
gen_vlan_patch_tpid_test(compiler_state_t * cstate,struct block * b_tpid)9067 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
9068 {
9069 struct slist s;
9070
9071 /* offset determined at run time, shift variable part */
9072 s.next = NULL;
9073 cstate->is_vlan_vloffset = 1;
9074 gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
9075 gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
9076
9077 /* we get a pointer to a chain of or-ed blocks, patch first of them */
9078 sappend(s.next, b_tpid->head->stmts);
9079 b_tpid->head->stmts = s.next;
9080 }
9081
9082 /*
9083 * patch block b_vid (VLAN id test) to load VID value either from packet
9084 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
9085 */
9086 static void
gen_vlan_patch_vid_test(compiler_state_t * cstate,struct block * b_vid)9087 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
9088 {
9089 struct slist *s, *s2, *sjeq;
9090 unsigned cnt;
9091
9092 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9093 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9094
9095 /* true -> next instructions, false -> beginning of b_vid */
9096 sjeq = new_stmt(cstate, JMP(BPF_JEQ));
9097 sjeq->s.k = 1;
9098 sjeq->s.jf = b_vid->stmts;
9099 sappend(s, sjeq);
9100
9101 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9102 s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
9103 sappend(s, s2);
9104 sjeq->s.jt = s2;
9105
9106 /* Jump to the test in b_vid. We need to jump one instruction before
9107 * the end of the b_vid block so that we only skip loading the TCI
9108 * from packet data and not the 'and' instruction extracting VID.
9109 */
9110 cnt = 0;
9111 for (s2 = b_vid->stmts; s2; s2 = s2->next)
9112 cnt++;
9113 s2 = new_stmt(cstate, JMP(BPF_JA));
9114 s2->s.k = cnt - 1;
9115 sappend(s, s2);
9116
9117 /* insert our statements at the beginning of b_vid */
9118 sappend(s, b_vid->stmts);
9119 b_vid->stmts = s;
9120 }
9121
9122 /*
9123 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9124 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9125 * tag can be either in metadata or in packet data; therefore if the
9126 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9127 * header for VLAN tag. As the decision is done at run time, we need
9128 * update variable part of the offsets
9129 */
9130 static struct block *
gen_vlan_bpf_extensions(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)9131 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9132 int has_vlan_tag)
9133 {
9134 struct block *b0, *b_tpid, *b_vid = NULL;
9135 struct slist *s;
9136
9137 /* generate new filter code based on extracting packet
9138 * metadata */
9139 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9140 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9141
9142 b0 = new_block(cstate, JMP(BPF_JEQ));
9143 b0->stmts = s;
9144 b0->s.k = 1;
9145
9146 /*
9147 * This is tricky. We need to insert the statements updating variable
9148 * parts of offsets before the traditional TPID and VID tests so
9149 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9150 * we do not want this update to affect those checks. That's why we
9151 * generate both test blocks first and insert the statements updating
9152 * variable parts of both offsets after that. This wouldn't work if
9153 * there already were variable length link header when entering this
9154 * function but gen_vlan_bpf_extensions() isn't called in that case.
9155 */
9156 b_tpid = gen_vlan_tpid_test(cstate);
9157 if (has_vlan_tag)
9158 b_vid = gen_vlan_vid_test(cstate, vlan_num);
9159
9160 gen_vlan_patch_tpid_test(cstate, b_tpid);
9161 gen_or(b0, b_tpid);
9162 b0 = b_tpid;
9163
9164 if (has_vlan_tag) {
9165 gen_vlan_patch_vid_test(cstate, b_vid);
9166 gen_and(b0, b_vid);
9167 b0 = b_vid;
9168 }
9169
9170 return b0;
9171 }
9172 #endif
9173
9174 /*
9175 * support IEEE 802.1Q VLAN trunk over ethernet
9176 */
9177 struct block *
gen_vlan(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)9178 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
9179 {
9180 struct block *b0;
9181
9182 /*
9183 * Catch errors reported by us and routines below us, and return NULL
9184 * on an error.
9185 */
9186 if (setjmp(cstate->top_ctx))
9187 return (NULL);
9188
9189 /* can't check for VLAN-encapsulated packets inside MPLS */
9190 if (cstate->label_stack_depth > 0)
9191 bpf_error(cstate, "no VLAN match after MPLS");
9192
9193 /*
9194 * Check for a VLAN packet, and then change the offsets to point
9195 * to the type and data fields within the VLAN packet. Just
9196 * increment the offsets, so that we can support a hierarchy, e.g.
9197 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
9198 * VLAN 100.
9199 *
9200 * XXX - this is a bit of a kludge. If we were to split the
9201 * compiler into a parser that parses an expression and
9202 * generates an expression tree, and a code generator that
9203 * takes an expression tree (which could come from our
9204 * parser or from some other parser) and generates BPF code,
9205 * we could perhaps make the offsets parameters of routines
9206 * and, in the handler for an "AND" node, pass to subnodes
9207 * other than the VLAN node the adjusted offsets.
9208 *
9209 * This would mean that "vlan" would, instead of changing the
9210 * behavior of *all* tests after it, change only the behavior
9211 * of tests ANDed with it. That would change the documented
9212 * semantics of "vlan", which might break some expressions.
9213 * However, it would mean that "(vlan and ip) or ip" would check
9214 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9215 * checking only for VLAN-encapsulated IP, so that could still
9216 * be considered worth doing; it wouldn't break expressions
9217 * that are of the form "vlan and ..." or "vlan N and ...",
9218 * which I suspect are the most common expressions involving
9219 * "vlan". "vlan or ..." doesn't necessarily do what the user
9220 * would really want, now, as all the "or ..." tests would
9221 * be done assuming a VLAN, even though the "or" could be viewed
9222 * as meaning "or, if this isn't a VLAN packet...".
9223 */
9224 switch (cstate->linktype) {
9225
9226 case DLT_EN10MB:
9227 case DLT_NETANALYZER:
9228 case DLT_NETANALYZER_TRANSPARENT:
9229 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9230 /* Verify that this is the outer part of the packet and
9231 * not encapsulated somehow. */
9232 if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
9233 cstate->off_linkhdr.constant_part ==
9234 cstate->off_outermostlinkhdr.constant_part) {
9235 /*
9236 * Do we need special VLAN handling?
9237 */
9238 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
9239 b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
9240 has_vlan_tag);
9241 else
9242 b0 = gen_vlan_no_bpf_extensions(cstate,
9243 vlan_num, has_vlan_tag);
9244 } else
9245 #endif
9246 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
9247 has_vlan_tag);
9248 break;
9249
9250 case DLT_IEEE802_11:
9251 case DLT_PRISM_HEADER:
9252 case DLT_IEEE802_11_RADIO_AVS:
9253 case DLT_IEEE802_11_RADIO:
9254 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
9255 break;
9256
9257 default:
9258 bpf_error(cstate, "no VLAN support for %s",
9259 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9260 /*NOTREACHED*/
9261 }
9262
9263 cstate->vlan_stack_depth++;
9264
9265 return (b0);
9266 }
9267
9268 /*
9269 * support for MPLS
9270 *
9271 * The label_num_arg dance is to avoid annoying whining by compilers that
9272 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9273 * It's not *used* after setjmp returns.
9274 */
9275 struct block *
gen_mpls(compiler_state_t * cstate,bpf_u_int32 label_num_arg,int has_label_num)9276 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9277 int has_label_num)
9278 {
9279 volatile bpf_u_int32 label_num = label_num_arg;
9280 struct block *b0, *b1;
9281
9282 /*
9283 * Catch errors reported by us and routines below us, and return NULL
9284 * on an error.
9285 */
9286 if (setjmp(cstate->top_ctx))
9287 return (NULL);
9288
9289 if (cstate->label_stack_depth > 0) {
9290 /* just match the bottom-of-stack bit clear */
9291 b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9292 } else {
9293 /*
9294 * We're not in an MPLS stack yet, so check the link-layer
9295 * type against MPLS.
9296 */
9297 switch (cstate->linktype) {
9298
9299 case DLT_C_HDLC: /* fall through */
9300 case DLT_HDLC:
9301 case DLT_EN10MB:
9302 case DLT_NETANALYZER:
9303 case DLT_NETANALYZER_TRANSPARENT:
9304 b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9305 break;
9306
9307 case DLT_PPP:
9308 b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9309 break;
9310
9311 /* FIXME add other DLT_s ...
9312 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9313 * leave it for now */
9314
9315 default:
9316 bpf_error(cstate, "no MPLS support for %s",
9317 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9318 /*NOTREACHED*/
9319 }
9320 }
9321
9322 /* If a specific MPLS label is requested, check it */
9323 if (has_label_num) {
9324 if (label_num > 0xFFFFF) {
9325 bpf_error(cstate, "MPLS label %u greater than maximum %u",
9326 label_num, 0xFFFFF);
9327 }
9328 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9329 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9330 0xfffff000); /* only compare the first 20 bits */
9331 gen_and(b0, b1);
9332 b0 = b1;
9333 }
9334
9335 /*
9336 * Change the offsets to point to the type and data fields within
9337 * the MPLS packet. Just increment the offsets, so that we
9338 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9339 * capture packets with an outer label of 100000 and an inner
9340 * label of 1024.
9341 *
9342 * Increment the MPLS stack depth as well; this indicates that
9343 * we're checking MPLS-encapsulated headers, to make sure higher
9344 * level code generators don't try to match against IP-related
9345 * protocols such as Q_ARP, Q_RARP etc.
9346 *
9347 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9348 */
9349 cstate->off_nl_nosnap += 4;
9350 cstate->off_nl += 4;
9351 cstate->label_stack_depth++;
9352 return (b0);
9353 }
9354
9355 /*
9356 * Support PPPOE discovery and session.
9357 */
9358 struct block *
gen_pppoed(compiler_state_t * cstate)9359 gen_pppoed(compiler_state_t *cstate)
9360 {
9361 /*
9362 * Catch errors reported by us and routines below us, and return NULL
9363 * on an error.
9364 */
9365 if (setjmp(cstate->top_ctx))
9366 return (NULL);
9367
9368 /* check for PPPoE discovery */
9369 return gen_linktype(cstate, ETHERTYPE_PPPOED);
9370 }
9371
9372 struct block *
gen_pppoes(compiler_state_t * cstate,bpf_u_int32 sess_num,int has_sess_num)9373 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9374 {
9375 struct block *b0, *b1;
9376
9377 /*
9378 * Catch errors reported by us and routines below us, and return NULL
9379 * on an error.
9380 */
9381 if (setjmp(cstate->top_ctx))
9382 return (NULL);
9383
9384 /*
9385 * Test against the PPPoE session link-layer type.
9386 */
9387 b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9388
9389 /* If a specific session is requested, check PPPoE session id */
9390 if (has_sess_num) {
9391 if (sess_num > 0x0000ffff) {
9392 bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9393 sess_num, 0x0000ffff);
9394 }
9395 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9396 gen_and(b0, b1);
9397 b0 = b1;
9398 }
9399
9400 /*
9401 * Change the offsets to point to the type and data fields within
9402 * the PPP packet, and note that this is PPPoE rather than
9403 * raw PPP.
9404 *
9405 * XXX - this is a bit of a kludge. See the comments in
9406 * gen_vlan().
9407 *
9408 * The "network-layer" protocol is PPPoE, which has a 6-byte
9409 * PPPoE header, followed by a PPP packet.
9410 *
9411 * There is no HDLC encapsulation for the PPP packet (it's
9412 * encapsulated in PPPoES instead), so the link-layer type
9413 * starts at the first byte of the PPP packet. For PPPoE,
9414 * that offset is relative to the beginning of the total
9415 * link-layer payload, including any 802.2 LLC header, so
9416 * it's 6 bytes past cstate->off_nl.
9417 */
9418 PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9419 cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9420 cstate->off_linkpl.reg);
9421
9422 cstate->off_linktype = cstate->off_linkhdr;
9423 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9424
9425 cstate->off_nl = 0;
9426 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
9427
9428 return b0;
9429 }
9430
9431 /* Check that this is Geneve and the VNI is correct if
9432 * specified. Parameterized to handle both IPv4 and IPv6. */
9433 static struct block *
gen_geneve_check(compiler_state_t * cstate,struct block * (* gen_portfn)(compiler_state_t *,u_int,int,int),enum e_offrel offrel,bpf_u_int32 vni,int has_vni)9434 gen_geneve_check(compiler_state_t *cstate,
9435 struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9436 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9437 {
9438 struct block *b0, *b1;
9439
9440 b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9441
9442 /* Check that we are operating on version 0. Otherwise, we
9443 * can't decode the rest of the fields. The version is 2 bits
9444 * in the first byte of the Geneve header. */
9445 b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9446 gen_and(b0, b1);
9447 b0 = b1;
9448
9449 if (has_vni) {
9450 if (vni > 0xffffff) {
9451 bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9452 vni, 0xffffff);
9453 }
9454 vni <<= 8; /* VNI is in the upper 3 bytes */
9455 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9456 gen_and(b0, b1);
9457 b0 = b1;
9458 }
9459
9460 return b0;
9461 }
9462
9463 /* The IPv4 and IPv6 Geneve checks need to do two things:
9464 * - Verify that this actually is Geneve with the right VNI.
9465 * - Place the IP header length (plus variable link prefix if
9466 * needed) into register A to be used later to compute
9467 * the inner packet offsets. */
9468 static struct block *
gen_geneve4(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9469 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9470 {
9471 struct block *b0, *b1;
9472 struct slist *s, *s1;
9473
9474 b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9475
9476 /* Load the IP header length into A. */
9477 s = gen_loadx_iphdrlen(cstate);
9478
9479 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9480 sappend(s, s1);
9481
9482 /* Forcibly append these statements to the true condition
9483 * of the protocol check by creating a new block that is
9484 * always true and ANDing them. */
9485 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9486 b1->stmts = s;
9487 b1->s.k = 0;
9488
9489 gen_and(b0, b1);
9490
9491 return b1;
9492 }
9493
9494 static struct block *
gen_geneve6(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9495 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9496 {
9497 struct block *b0, *b1;
9498 struct slist *s, *s1;
9499
9500 b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9501
9502 /* Load the IP header length. We need to account for a
9503 * variable length link prefix if there is one. */
9504 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9505 if (s) {
9506 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9507 s1->s.k = 40;
9508 sappend(s, s1);
9509
9510 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9511 s1->s.k = 0;
9512 sappend(s, s1);
9513 } else {
9514 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9515 s->s.k = 40;
9516 }
9517
9518 /* Forcibly append these statements to the true condition
9519 * of the protocol check by creating a new block that is
9520 * always true and ANDing them. */
9521 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9522 sappend(s, s1);
9523
9524 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9525 b1->stmts = s;
9526 b1->s.k = 0;
9527
9528 gen_and(b0, b1);
9529
9530 return b1;
9531 }
9532
9533 /* We need to store three values based on the Geneve header::
9534 * - The offset of the linktype.
9535 * - The offset of the end of the Geneve header.
9536 * - The offset of the end of the encapsulated MAC header. */
9537 static struct slist *
gen_geneve_offsets(compiler_state_t * cstate)9538 gen_geneve_offsets(compiler_state_t *cstate)
9539 {
9540 struct slist *s, *s1, *s_proto;
9541
9542 /* First we need to calculate the offset of the Geneve header
9543 * itself. This is composed of the IP header previously calculated
9544 * (include any variable link prefix) and stored in A plus the
9545 * fixed sized headers (fixed link prefix, MAC length, and UDP
9546 * header). */
9547 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9548 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9549
9550 /* Stash this in X since we'll need it later. */
9551 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9552 sappend(s, s1);
9553
9554 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9555 * store it. */
9556 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9557 s1->s.k = 2;
9558 sappend(s, s1);
9559
9560 cstate->off_linktype.reg = alloc_reg(cstate);
9561 cstate->off_linktype.is_variable = 1;
9562 cstate->off_linktype.constant_part = 0;
9563
9564 s1 = new_stmt(cstate, BPF_ST);
9565 s1->s.k = cstate->off_linktype.reg;
9566 sappend(s, s1);
9567
9568 /* Load the Geneve option length and mask and shift to get the
9569 * number of bytes. It is stored in the first byte of the Geneve
9570 * header. */
9571 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9572 s1->s.k = 0;
9573 sappend(s, s1);
9574
9575 s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9576 s1->s.k = 0x3f;
9577 sappend(s, s1);
9578
9579 s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9580 s1->s.k = 4;
9581 sappend(s, s1);
9582
9583 /* Add in the rest of the Geneve base header. */
9584 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9585 s1->s.k = 8;
9586 sappend(s, s1);
9587
9588 /* Add the Geneve header length to its offset and store. */
9589 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9590 s1->s.k = 0;
9591 sappend(s, s1);
9592
9593 /* Set the encapsulated type as Ethernet. Even though we may
9594 * not actually have Ethernet inside there are two reasons this
9595 * is useful:
9596 * - The linktype field is always in EtherType format regardless
9597 * of whether it is in Geneve or an inner Ethernet frame.
9598 * - The only link layer that we have specific support for is
9599 * Ethernet. We will confirm that the packet actually is
9600 * Ethernet at runtime before executing these checks. */
9601 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9602
9603 s1 = new_stmt(cstate, BPF_ST);
9604 s1->s.k = cstate->off_linkhdr.reg;
9605 sappend(s, s1);
9606
9607 /* Calculate whether we have an Ethernet header or just raw IP/
9608 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9609 * and linktype by 14 bytes so that the network header can be found
9610 * seamlessly. Otherwise, keep what we've calculated already. */
9611
9612 /* We have a bare jmp so we can't use the optimizer. */
9613 cstate->no_optimize = 1;
9614
9615 /* Load the EtherType in the Geneve header, 2 bytes in. */
9616 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9617 s1->s.k = 2;
9618 sappend(s, s1);
9619
9620 /* Load X with the end of the Geneve header. */
9621 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9622 s1->s.k = cstate->off_linkhdr.reg;
9623 sappend(s, s1);
9624
9625 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9626 * end of this check, we should have the total length in X. In
9627 * the non-Ethernet case, it's already there. */
9628 s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9629 s_proto->s.k = ETHERTYPE_TEB;
9630 sappend(s, s_proto);
9631
9632 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9633 sappend(s, s1);
9634 s_proto->s.jt = s1;
9635
9636 /* Since this is Ethernet, use the EtherType of the payload
9637 * directly as the linktype. Overwrite what we already have. */
9638 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9639 s1->s.k = 12;
9640 sappend(s, s1);
9641
9642 s1 = new_stmt(cstate, BPF_ST);
9643 s1->s.k = cstate->off_linktype.reg;
9644 sappend(s, s1);
9645
9646 /* Advance two bytes further to get the end of the Ethernet
9647 * header. */
9648 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9649 s1->s.k = 2;
9650 sappend(s, s1);
9651
9652 /* Move the result to X. */
9653 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9654 sappend(s, s1);
9655
9656 /* Store the final result of our linkpl calculation. */
9657 cstate->off_linkpl.reg = alloc_reg(cstate);
9658 cstate->off_linkpl.is_variable = 1;
9659 cstate->off_linkpl.constant_part = 0;
9660
9661 s1 = new_stmt(cstate, BPF_STX);
9662 s1->s.k = cstate->off_linkpl.reg;
9663 sappend(s, s1);
9664 s_proto->s.jf = s1;
9665
9666 cstate->off_nl = 0;
9667
9668 return s;
9669 }
9670
9671 /* Check to see if this is a Geneve packet. */
9672 struct block *
gen_geneve(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9673 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9674 {
9675 struct block *b0, *b1;
9676 struct slist *s;
9677
9678 /*
9679 * Catch errors reported by us and routines below us, and return NULL
9680 * on an error.
9681 */
9682 if (setjmp(cstate->top_ctx))
9683 return (NULL);
9684
9685 b0 = gen_geneve4(cstate, vni, has_vni);
9686 b1 = gen_geneve6(cstate, vni, has_vni);
9687
9688 gen_or(b0, b1);
9689 b0 = b1;
9690
9691 /* Later filters should act on the payload of the Geneve frame,
9692 * update all of the header pointers. Attach this code so that
9693 * it gets executed in the event that the Geneve filter matches. */
9694 s = gen_geneve_offsets(cstate);
9695
9696 b1 = gen_true(cstate);
9697 sappend(s, b1->stmts);
9698 b1->stmts = s;
9699
9700 gen_and(b0, b1);
9701
9702 cstate->is_geneve = 1;
9703
9704 return b1;
9705 }
9706
9707 /* Check that the encapsulated frame has a link layer header
9708 * for Ethernet filters. */
9709 static struct block *
gen_geneve_ll_check(compiler_state_t * cstate)9710 gen_geneve_ll_check(compiler_state_t *cstate)
9711 {
9712 struct block *b0;
9713 struct slist *s, *s1;
9714
9715 /* The easiest way to see if there is a link layer present
9716 * is to check if the link layer header and payload are not
9717 * the same. */
9718
9719 /* Geneve always generates pure variable offsets so we can
9720 * compare only the registers. */
9721 s = new_stmt(cstate, BPF_LD|BPF_MEM);
9722 s->s.k = cstate->off_linkhdr.reg;
9723
9724 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9725 s1->s.k = cstate->off_linkpl.reg;
9726 sappend(s, s1);
9727
9728 b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9729 b0->stmts = s;
9730 b0->s.k = 0;
9731 gen_not(b0);
9732
9733 return b0;
9734 }
9735
9736 static struct block *
gen_atmfield_code_internal(compiler_state_t * cstate,int atmfield,bpf_u_int32 jvalue,int jtype,int reverse)9737 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9738 bpf_u_int32 jvalue, int jtype, int reverse)
9739 {
9740 struct block *b0;
9741
9742 switch (atmfield) {
9743
9744 case A_VPI:
9745 if (!cstate->is_atm)
9746 bpf_error(cstate, "'vpi' supported only on raw ATM");
9747 if (cstate->off_vpi == OFFSET_NOT_SET)
9748 abort();
9749 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9750 0xffffffffU, jtype, reverse, jvalue);
9751 break;
9752
9753 case A_VCI:
9754 if (!cstate->is_atm)
9755 bpf_error(cstate, "'vci' supported only on raw ATM");
9756 if (cstate->off_vci == OFFSET_NOT_SET)
9757 abort();
9758 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9759 0xffffffffU, jtype, reverse, jvalue);
9760 break;
9761
9762 case A_PROTOTYPE:
9763 if (cstate->off_proto == OFFSET_NOT_SET)
9764 abort(); /* XXX - this isn't on FreeBSD */
9765 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9766 0x0fU, jtype, reverse, jvalue);
9767 break;
9768
9769 case A_MSGTYPE:
9770 if (cstate->off_payload == OFFSET_NOT_SET)
9771 abort();
9772 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9773 0xffffffffU, jtype, reverse, jvalue);
9774 break;
9775
9776 case A_CALLREFTYPE:
9777 if (!cstate->is_atm)
9778 bpf_error(cstate, "'callref' supported only on raw ATM");
9779 if (cstate->off_proto == OFFSET_NOT_SET)
9780 abort();
9781 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9782 0xffffffffU, jtype, reverse, jvalue);
9783 break;
9784
9785 default:
9786 abort();
9787 }
9788 return b0;
9789 }
9790
9791 static struct block *
gen_atmtype_metac(compiler_state_t * cstate)9792 gen_atmtype_metac(compiler_state_t *cstate)
9793 {
9794 struct block *b0, *b1;
9795
9796 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9797 b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9798 gen_and(b0, b1);
9799 return b1;
9800 }
9801
9802 static struct block *
gen_atmtype_sc(compiler_state_t * cstate)9803 gen_atmtype_sc(compiler_state_t *cstate)
9804 {
9805 struct block *b0, *b1;
9806
9807 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9808 b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9809 gen_and(b0, b1);
9810 return b1;
9811 }
9812
9813 static struct block *
gen_atmtype_llc(compiler_state_t * cstate)9814 gen_atmtype_llc(compiler_state_t *cstate)
9815 {
9816 struct block *b0;
9817
9818 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9819 cstate->linktype = cstate->prevlinktype;
9820 return b0;
9821 }
9822
9823 struct block *
gen_atmfield_code(compiler_state_t * cstate,int atmfield,bpf_u_int32 jvalue,int jtype,int reverse)9824 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9825 bpf_u_int32 jvalue, int jtype, int reverse)
9826 {
9827 /*
9828 * Catch errors reported by us and routines below us, and return NULL
9829 * on an error.
9830 */
9831 if (setjmp(cstate->top_ctx))
9832 return (NULL);
9833
9834 return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9835 reverse);
9836 }
9837
9838 struct block *
gen_atmtype_abbrev(compiler_state_t * cstate,int type)9839 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9840 {
9841 struct block *b0, *b1;
9842
9843 /*
9844 * Catch errors reported by us and routines below us, and return NULL
9845 * on an error.
9846 */
9847 if (setjmp(cstate->top_ctx))
9848 return (NULL);
9849
9850 switch (type) {
9851
9852 case A_METAC:
9853 /* Get all packets in Meta signalling Circuit */
9854 if (!cstate->is_atm)
9855 bpf_error(cstate, "'metac' supported only on raw ATM");
9856 b1 = gen_atmtype_metac(cstate);
9857 break;
9858
9859 case A_BCC:
9860 /* Get all packets in Broadcast Circuit*/
9861 if (!cstate->is_atm)
9862 bpf_error(cstate, "'bcc' supported only on raw ATM");
9863 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9864 b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9865 gen_and(b0, b1);
9866 break;
9867
9868 case A_OAMF4SC:
9869 /* Get all cells in Segment OAM F4 circuit*/
9870 if (!cstate->is_atm)
9871 bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9872 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9873 b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9874 gen_and(b0, b1);
9875 break;
9876
9877 case A_OAMF4EC:
9878 /* Get all cells in End-to-End OAM F4 Circuit*/
9879 if (!cstate->is_atm)
9880 bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9881 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9882 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9883 gen_and(b0, b1);
9884 break;
9885
9886 case A_SC:
9887 /* Get all packets in connection Signalling Circuit */
9888 if (!cstate->is_atm)
9889 bpf_error(cstate, "'sc' supported only on raw ATM");
9890 b1 = gen_atmtype_sc(cstate);
9891 break;
9892
9893 case A_ILMIC:
9894 /* Get all packets in ILMI Circuit */
9895 if (!cstate->is_atm)
9896 bpf_error(cstate, "'ilmic' supported only on raw ATM");
9897 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9898 b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9899 gen_and(b0, b1);
9900 break;
9901
9902 case A_LANE:
9903 /* Get all LANE packets */
9904 if (!cstate->is_atm)
9905 bpf_error(cstate, "'lane' supported only on raw ATM");
9906 b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9907
9908 /*
9909 * Arrange that all subsequent tests assume LANE
9910 * rather than LLC-encapsulated packets, and set
9911 * the offsets appropriately for LANE-encapsulated
9912 * Ethernet.
9913 *
9914 * We assume LANE means Ethernet, not Token Ring.
9915 */
9916 PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9917 cstate->off_payload + 2, /* Ethernet header */
9918 -1);
9919 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9920 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
9921 cstate->off_nl = 0; /* Ethernet II */
9922 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
9923 break;
9924
9925 case A_LLC:
9926 /* Get all LLC-encapsulated packets */
9927 if (!cstate->is_atm)
9928 bpf_error(cstate, "'llc' supported only on raw ATM");
9929 b1 = gen_atmtype_llc(cstate);
9930 break;
9931
9932 default:
9933 abort();
9934 }
9935 return b1;
9936 }
9937
9938 /*
9939 * Filtering for MTP2 messages based on li value
9940 * FISU, length is null
9941 * LSSU, length is 1 or 2
9942 * MSU, length is 3 or more
9943 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9944 */
9945 struct block *
gen_mtp2type_abbrev(compiler_state_t * cstate,int type)9946 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9947 {
9948 struct block *b0, *b1;
9949
9950 /*
9951 * Catch errors reported by us and routines below us, and return NULL
9952 * on an error.
9953 */
9954 if (setjmp(cstate->top_ctx))
9955 return (NULL);
9956
9957 switch (type) {
9958
9959 case M_FISU:
9960 if ( (cstate->linktype != DLT_MTP2) &&
9961 (cstate->linktype != DLT_ERF) &&
9962 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9963 bpf_error(cstate, "'fisu' supported only on MTP2");
9964 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9965 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9966 0x3fU, BPF_JEQ, 0, 0U);
9967 break;
9968
9969 case M_LSSU:
9970 if ( (cstate->linktype != DLT_MTP2) &&
9971 (cstate->linktype != DLT_ERF) &&
9972 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9973 bpf_error(cstate, "'lssu' supported only on MTP2");
9974 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9975 0x3fU, BPF_JGT, 1, 2U);
9976 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9977 0x3fU, BPF_JGT, 0, 0U);
9978 gen_and(b1, b0);
9979 break;
9980
9981 case M_MSU:
9982 if ( (cstate->linktype != DLT_MTP2) &&
9983 (cstate->linktype != DLT_ERF) &&
9984 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9985 bpf_error(cstate, "'msu' supported only on MTP2");
9986 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9987 0x3fU, BPF_JGT, 0, 2U);
9988 break;
9989
9990 case MH_FISU:
9991 if ( (cstate->linktype != DLT_MTP2) &&
9992 (cstate->linktype != DLT_ERF) &&
9993 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9994 bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9995 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9996 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9997 0xff80U, BPF_JEQ, 0, 0U);
9998 break;
9999
10000 case MH_LSSU:
10001 if ( (cstate->linktype != DLT_MTP2) &&
10002 (cstate->linktype != DLT_ERF) &&
10003 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10004 bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
10005 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10006 0xff80U, BPF_JGT, 1, 0x0100U);
10007 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10008 0xff80U, BPF_JGT, 0, 0U);
10009 gen_and(b1, b0);
10010 break;
10011
10012 case MH_MSU:
10013 if ( (cstate->linktype != DLT_MTP2) &&
10014 (cstate->linktype != DLT_ERF) &&
10015 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10016 bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
10017 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10018 0xff80U, BPF_JGT, 0, 0x0100U);
10019 break;
10020
10021 default:
10022 abort();
10023 }
10024 return b0;
10025 }
10026
10027 /*
10028 * The jvalue_arg dance is to avoid annoying whining by compilers that
10029 * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
10030 * It's not *used* after setjmp returns.
10031 */
10032 struct block *
gen_mtp3field_code(compiler_state_t * cstate,int mtp3field,bpf_u_int32 jvalue_arg,int jtype,int reverse)10033 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
10034 bpf_u_int32 jvalue_arg, int jtype, int reverse)
10035 {
10036 volatile bpf_u_int32 jvalue = jvalue_arg;
10037 struct block *b0;
10038 bpf_u_int32 val1 , val2 , val3;
10039 u_int newoff_sio;
10040 u_int newoff_opc;
10041 u_int newoff_dpc;
10042 u_int newoff_sls;
10043
10044 /*
10045 * Catch errors reported by us and routines below us, and return NULL
10046 * on an error.
10047 */
10048 if (setjmp(cstate->top_ctx))
10049 return (NULL);
10050
10051 newoff_sio = cstate->off_sio;
10052 newoff_opc = cstate->off_opc;
10053 newoff_dpc = cstate->off_dpc;
10054 newoff_sls = cstate->off_sls;
10055 switch (mtp3field) {
10056
10057 case MH_SIO:
10058 newoff_sio += 3; /* offset for MTP2_HSL */
10059 /* FALLTHROUGH */
10060
10061 case M_SIO:
10062 if (cstate->off_sio == OFFSET_NOT_SET)
10063 bpf_error(cstate, "'sio' supported only on SS7");
10064 /* sio coded on 1 byte so max value 255 */
10065 if(jvalue > 255)
10066 bpf_error(cstate, "sio value %u too big; max value = 255",
10067 jvalue);
10068 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
10069 jtype, reverse, jvalue);
10070 break;
10071
10072 case MH_OPC:
10073 newoff_opc += 3;
10074
10075 /* FALLTHROUGH */
10076 case M_OPC:
10077 if (cstate->off_opc == OFFSET_NOT_SET)
10078 bpf_error(cstate, "'opc' supported only on SS7");
10079 /* opc coded on 14 bits so max value 16383 */
10080 if (jvalue > 16383)
10081 bpf_error(cstate, "opc value %u too big; max value = 16383",
10082 jvalue);
10083 /* the following instructions are made to convert jvalue
10084 * to the form used to write opc in an ss7 message*/
10085 val1 = jvalue & 0x00003c00;
10086 val1 = val1 >>10;
10087 val2 = jvalue & 0x000003fc;
10088 val2 = val2 <<6;
10089 val3 = jvalue & 0x00000003;
10090 val3 = val3 <<22;
10091 jvalue = val1 + val2 + val3;
10092 b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
10093 jtype, reverse, jvalue);
10094 break;
10095
10096 case MH_DPC:
10097 newoff_dpc += 3;
10098 /* FALLTHROUGH */
10099
10100 case M_DPC:
10101 if (cstate->off_dpc == OFFSET_NOT_SET)
10102 bpf_error(cstate, "'dpc' supported only on SS7");
10103 /* dpc coded on 14 bits so max value 16383 */
10104 if (jvalue > 16383)
10105 bpf_error(cstate, "dpc value %u too big; max value = 16383",
10106 jvalue);
10107 /* the following instructions are made to convert jvalue
10108 * to the forme used to write dpc in an ss7 message*/
10109 val1 = jvalue & 0x000000ff;
10110 val1 = val1 << 24;
10111 val2 = jvalue & 0x00003f00;
10112 val2 = val2 << 8;
10113 jvalue = val1 + val2;
10114 b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
10115 jtype, reverse, jvalue);
10116 break;
10117
10118 case MH_SLS:
10119 newoff_sls += 3;
10120 /* FALLTHROUGH */
10121
10122 case M_SLS:
10123 if (cstate->off_sls == OFFSET_NOT_SET)
10124 bpf_error(cstate, "'sls' supported only on SS7");
10125 /* sls coded on 4 bits so max value 15 */
10126 if (jvalue > 15)
10127 bpf_error(cstate, "sls value %u too big; max value = 15",
10128 jvalue);
10129 /* the following instruction is made to convert jvalue
10130 * to the forme used to write sls in an ss7 message*/
10131 jvalue = jvalue << 4;
10132 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
10133 jtype, reverse, jvalue);
10134 break;
10135
10136 default:
10137 abort();
10138 }
10139 return b0;
10140 }
10141
10142 static struct block *
gen_msg_abbrev(compiler_state_t * cstate,int type)10143 gen_msg_abbrev(compiler_state_t *cstate, int type)
10144 {
10145 struct block *b1;
10146
10147 /*
10148 * Q.2931 signalling protocol messages for handling virtual circuits
10149 * establishment and teardown
10150 */
10151 switch (type) {
10152
10153 case A_SETUP:
10154 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
10155 break;
10156
10157 case A_CALLPROCEED:
10158 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
10159 break;
10160
10161 case A_CONNECT:
10162 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
10163 break;
10164
10165 case A_CONNECTACK:
10166 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
10167 break;
10168
10169 case A_RELEASE:
10170 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
10171 break;
10172
10173 case A_RELEASE_DONE:
10174 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
10175 break;
10176
10177 default:
10178 abort();
10179 }
10180 return b1;
10181 }
10182
10183 struct block *
gen_atmmulti_abbrev(compiler_state_t * cstate,int type)10184 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
10185 {
10186 struct block *b0, *b1;
10187
10188 /*
10189 * Catch errors reported by us and routines below us, and return NULL
10190 * on an error.
10191 */
10192 if (setjmp(cstate->top_ctx))
10193 return (NULL);
10194
10195 switch (type) {
10196
10197 case A_OAM:
10198 if (!cstate->is_atm)
10199 bpf_error(cstate, "'oam' supported only on raw ATM");
10200 /* OAM F4 type */
10201 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10202 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10203 gen_or(b0, b1);
10204 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10205 gen_and(b0, b1);
10206 break;
10207
10208 case A_OAMF4:
10209 if (!cstate->is_atm)
10210 bpf_error(cstate, "'oamf4' supported only on raw ATM");
10211 /* OAM F4 type */
10212 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10213 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10214 gen_or(b0, b1);
10215 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10216 gen_and(b0, b1);
10217 break;
10218
10219 case A_CONNECTMSG:
10220 /*
10221 * Get Q.2931 signalling messages for switched
10222 * virtual connection
10223 */
10224 if (!cstate->is_atm)
10225 bpf_error(cstate, "'connectmsg' supported only on raw ATM");
10226 b0 = gen_msg_abbrev(cstate, A_SETUP);
10227 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10228 gen_or(b0, b1);
10229 b0 = gen_msg_abbrev(cstate, A_CONNECT);
10230 gen_or(b0, b1);
10231 b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
10232 gen_or(b0, b1);
10233 b0 = gen_msg_abbrev(cstate, A_RELEASE);
10234 gen_or(b0, b1);
10235 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10236 gen_or(b0, b1);
10237 b0 = gen_atmtype_sc(cstate);
10238 gen_and(b0, b1);
10239 break;
10240
10241 case A_METACONNECT:
10242 if (!cstate->is_atm)
10243 bpf_error(cstate, "'metaconnect' supported only on raw ATM");
10244 b0 = gen_msg_abbrev(cstate, A_SETUP);
10245 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10246 gen_or(b0, b1);
10247 b0 = gen_msg_abbrev(cstate, A_CONNECT);
10248 gen_or(b0, b1);
10249 b0 = gen_msg_abbrev(cstate, A_RELEASE);
10250 gen_or(b0, b1);
10251 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10252 gen_or(b0, b1);
10253 b0 = gen_atmtype_metac(cstate);
10254 gen_and(b0, b1);
10255 break;
10256
10257 default:
10258 abort();
10259 }
10260 return b1;
10261 }
10262