1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include <linux/types.h>
24 #include <linux/hmm.h>
25 #include <linux/dma-direction.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/migrate.h>
28 #include "amdgpu_sync.h"
29 #include "amdgpu_object.h"
30 #include "amdgpu_vm.h"
31 #include "amdgpu_res_cursor.h"
32 #include "kfd_priv.h"
33 #include "kfd_svm.h"
34 #include "kfd_migrate.h"
35 #include "kfd_smi_events.h"
36
37 #ifdef dev_fmt
38 #undef dev_fmt
39 #endif
40 #define dev_fmt(fmt) "kfd_migrate: " fmt
41
42 static uint64_t
svm_migrate_direct_mapping_addr(struct amdgpu_device * adev,uint64_t addr)43 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr)
44 {
45 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM);
46 }
47
48 static int
svm_migrate_gart_map(struct amdgpu_ring * ring,uint64_t npages,dma_addr_t * addr,uint64_t * gart_addr,uint64_t flags)49 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages,
50 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags)
51 {
52 struct amdgpu_device *adev = ring->adev;
53 struct amdgpu_job *job;
54 unsigned int num_dw, num_bytes;
55 struct dma_fence *fence;
56 uint64_t src_addr, dst_addr;
57 uint64_t pte_flags;
58 void *cpu_addr;
59 int r;
60
61 /* use gart window 0 */
62 *gart_addr = adev->gmc.gart_start;
63
64 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
65 num_bytes = npages * 8;
66
67 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
68 AMDGPU_FENCE_OWNER_UNDEFINED,
69 num_dw * 4 + num_bytes,
70 AMDGPU_IB_POOL_DELAYED,
71 &job);
72 if (r)
73 return r;
74
75 src_addr = num_dw * 4;
76 src_addr += job->ibs[0].gpu_addr;
77
78 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
79 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
80 dst_addr, num_bytes, 0);
81
82 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
83 WARN_ON(job->ibs[0].length_dw > num_dw);
84
85 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
86 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED;
87 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
88 pte_flags |= AMDGPU_PTE_WRITEABLE;
89 pte_flags |= adev->gart.gart_pte_flags;
90
91 cpu_addr = &job->ibs[0].ptr[num_dw];
92
93 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr);
94 fence = amdgpu_job_submit(job);
95 dma_fence_put(fence);
96
97 return r;
98 }
99
100 /**
101 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram
102 *
103 * @adev: amdgpu device the sdma ring running
104 * @sys: system DMA pointer to be copied
105 * @vram: vram destination DMA pointer
106 * @npages: number of pages to copy
107 * @direction: enum MIGRATION_COPY_DIR
108 * @mfence: output, sdma fence to signal after sdma is done
109 *
110 * ram address uses GART table continuous entries mapping to ram pages,
111 * vram address uses direct mapping of vram pages, which must have npages
112 * number of continuous pages.
113 * GART update and sdma uses same buf copy function ring, sdma is splited to
114 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for
115 * the last sdma finish fence which is returned to check copy memory is done.
116 *
117 * Context: Process context, takes and releases gtt_window_lock
118 *
119 * Return:
120 * 0 - OK, otherwise error code
121 */
122
123 static int
svm_migrate_copy_memory_gart(struct amdgpu_device * adev,dma_addr_t * sys,uint64_t * vram,uint64_t npages,enum MIGRATION_COPY_DIR direction,struct dma_fence ** mfence)124 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys,
125 uint64_t *vram, uint64_t npages,
126 enum MIGRATION_COPY_DIR direction,
127 struct dma_fence **mfence)
128 {
129 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE;
130 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
131 uint64_t gart_s, gart_d;
132 struct dma_fence *next;
133 uint64_t size;
134 int r;
135
136 mutex_lock(&adev->mman.gtt_window_lock);
137
138 while (npages) {
139 size = min(GTT_MAX_PAGES, npages);
140
141 if (direction == FROM_VRAM_TO_RAM) {
142 gart_s = svm_migrate_direct_mapping_addr(adev, *vram);
143 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0);
144
145 } else if (direction == FROM_RAM_TO_VRAM) {
146 r = svm_migrate_gart_map(ring, size, sys, &gart_s,
147 KFD_IOCTL_SVM_FLAG_GPU_RO);
148 gart_d = svm_migrate_direct_mapping_addr(adev, *vram);
149 }
150 if (r) {
151 dev_err(adev->dev, "fail %d create gart mapping\n", r);
152 goto out_unlock;
153 }
154
155 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE,
156 NULL, &next, false, true, 0);
157 if (r) {
158 dev_err(adev->dev, "fail %d to copy memory\n", r);
159 goto out_unlock;
160 }
161
162 dma_fence_put(*mfence);
163 *mfence = next;
164 npages -= size;
165 if (npages) {
166 sys += size;
167 vram += size;
168 }
169 }
170
171 out_unlock:
172 mutex_unlock(&adev->mman.gtt_window_lock);
173
174 return r;
175 }
176
177 /**
178 * svm_migrate_copy_done - wait for memory copy sdma is done
179 *
180 * @adev: amdgpu device the sdma memory copy is executing on
181 * @mfence: migrate fence
182 *
183 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma
184 * operations, this is the last sdma operation fence.
185 *
186 * Context: called after svm_migrate_copy_memory
187 *
188 * Return:
189 * 0 - success
190 * otherwise - error code from dma fence signal
191 */
192 static int
svm_migrate_copy_done(struct amdgpu_device * adev,struct dma_fence * mfence)193 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence)
194 {
195 int r = 0;
196
197 if (mfence) {
198 r = dma_fence_wait(mfence, false);
199 dma_fence_put(mfence);
200 pr_debug("sdma copy memory fence done\n");
201 }
202
203 return r;
204 }
205
206 unsigned long
svm_migrate_addr_to_pfn(struct amdgpu_device * adev,unsigned long addr)207 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr)
208 {
209 return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT;
210 }
211
212 static void
svm_migrate_get_vram_page(struct svm_range * prange,unsigned long pfn)213 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn)
214 {
215 struct page *page;
216
217 page = pfn_to_page(pfn);
218 svm_range_bo_ref(prange->svm_bo);
219 page->zone_device_data = prange->svm_bo;
220 zone_device_page_init(page);
221 }
222
223 static void
svm_migrate_put_vram_page(struct amdgpu_device * adev,unsigned long addr)224 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr)
225 {
226 struct page *page;
227
228 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr));
229 unlock_page(page);
230 put_page(page);
231 }
232
233 static unsigned long
svm_migrate_addr(struct amdgpu_device * adev,struct page * page)234 svm_migrate_addr(struct amdgpu_device *adev, struct page *page)
235 {
236 unsigned long addr;
237
238 addr = page_to_pfn(page) << PAGE_SHIFT;
239 return (addr - adev->kfd.pgmap.range.start);
240 }
241
242 static struct page *
svm_migrate_get_sys_page(struct vm_area_struct * vma,unsigned long addr)243 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr)
244 {
245 struct page *page;
246
247 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
248 if (page)
249 lock_page(page);
250
251 return page;
252 }
253
svm_migrate_put_sys_page(unsigned long addr)254 static void svm_migrate_put_sys_page(unsigned long addr)
255 {
256 struct page *page;
257
258 page = pfn_to_page(addr >> PAGE_SHIFT);
259 unlock_page(page);
260 put_page(page);
261 }
262
svm_migrate_unsuccessful_pages(struct migrate_vma * migrate)263 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate)
264 {
265 unsigned long upages = 0;
266 unsigned long i;
267
268 for (i = 0; i < migrate->npages; i++) {
269 if (migrate->src[i] & MIGRATE_PFN_VALID &&
270 !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
271 upages++;
272 }
273 return upages;
274 }
275
276 static int
svm_migrate_copy_to_vram(struct kfd_node * node,struct svm_range * prange,struct migrate_vma * migrate,struct dma_fence ** mfence,dma_addr_t * scratch,uint64_t ttm_res_offset)277 svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange,
278 struct migrate_vma *migrate, struct dma_fence **mfence,
279 dma_addr_t *scratch, uint64_t ttm_res_offset)
280 {
281 uint64_t npages = migrate->npages;
282 struct amdgpu_device *adev = node->adev;
283 struct device *dev = adev->dev;
284 struct amdgpu_res_cursor cursor;
285 uint64_t mpages = 0;
286 dma_addr_t *src;
287 uint64_t *dst;
288 uint64_t i, j;
289 int r;
290
291 pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start,
292 prange->last, ttm_res_offset);
293
294 src = scratch;
295 dst = (uint64_t *)(scratch + npages);
296
297 amdgpu_res_first(prange->ttm_res, ttm_res_offset,
298 npages << PAGE_SHIFT, &cursor);
299 for (i = j = 0; (i < npages) && (mpages < migrate->cpages); i++) {
300 struct page *spage;
301
302 if (migrate->src[i] & MIGRATE_PFN_MIGRATE) {
303 dst[i] = cursor.start + (j << PAGE_SHIFT);
304 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]);
305 svm_migrate_get_vram_page(prange, migrate->dst[i]);
306 migrate->dst[i] = migrate_pfn(migrate->dst[i]);
307 mpages++;
308 }
309 spage = migrate_pfn_to_page(migrate->src[i]);
310 if (spage && !is_zone_device_page(spage)) {
311 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE,
312 DMA_BIDIRECTIONAL);
313 r = dma_mapping_error(dev, src[i]);
314 if (r) {
315 dev_err(dev, "%s: fail %d dma_map_page\n",
316 __func__, r);
317 goto out_free_vram_pages;
318 }
319 } else {
320 if (j) {
321 r = svm_migrate_copy_memory_gart(
322 adev, src + i - j,
323 dst + i - j, j,
324 FROM_RAM_TO_VRAM,
325 mfence);
326 if (r)
327 goto out_free_vram_pages;
328 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT);
329 j = 0;
330 } else {
331 amdgpu_res_next(&cursor, PAGE_SIZE);
332 }
333 continue;
334 }
335
336 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n",
337 src[i] >> PAGE_SHIFT, page_to_pfn(spage));
338
339 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) {
340 r = svm_migrate_copy_memory_gart(adev, src + i - j,
341 dst + i - j, j + 1,
342 FROM_RAM_TO_VRAM,
343 mfence);
344 if (r)
345 goto out_free_vram_pages;
346 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE);
347 j = 0;
348 } else {
349 j++;
350 }
351 }
352
353 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j,
354 FROM_RAM_TO_VRAM, mfence);
355
356 out_free_vram_pages:
357 if (r) {
358 pr_debug("failed %d to copy memory to vram\n", r);
359 for (i = 0; i < npages && mpages; i++) {
360 if (!dst[i])
361 continue;
362 svm_migrate_put_vram_page(adev, dst[i]);
363 migrate->dst[i] = 0;
364 mpages--;
365 }
366 }
367
368 #ifdef DEBUG_FORCE_MIXED_DOMAINS
369 for (i = 0, j = 0; i < npages; i += 4, j++) {
370 if (j & 1)
371 continue;
372 svm_migrate_put_vram_page(adev, dst[i]);
373 migrate->dst[i] = 0;
374 svm_migrate_put_vram_page(adev, dst[i + 1]);
375 migrate->dst[i + 1] = 0;
376 svm_migrate_put_vram_page(adev, dst[i + 2]);
377 migrate->dst[i + 2] = 0;
378 svm_migrate_put_vram_page(adev, dst[i + 3]);
379 migrate->dst[i + 3] = 0;
380 }
381 #endif
382
383 return r;
384 }
385
386 static long
svm_migrate_vma_to_vram(struct kfd_node * node,struct svm_range * prange,struct vm_area_struct * vma,uint64_t start,uint64_t end,uint32_t trigger,uint64_t ttm_res_offset)387 svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange,
388 struct vm_area_struct *vma, uint64_t start,
389 uint64_t end, uint32_t trigger, uint64_t ttm_res_offset)
390 {
391 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
392 uint64_t npages = (end - start) >> PAGE_SHIFT;
393 struct amdgpu_device *adev = node->adev;
394 struct kfd_process_device *pdd;
395 struct dma_fence *mfence = NULL;
396 struct migrate_vma migrate = { 0 };
397 unsigned long cpages = 0;
398 unsigned long mpages = 0;
399 dma_addr_t *scratch;
400 void *buf;
401 int r = -ENOMEM;
402
403 memset(&migrate, 0, sizeof(migrate));
404 migrate.vma = vma;
405 migrate.start = start;
406 migrate.end = end;
407 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM;
408 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
409
410 buf = kvcalloc(npages,
411 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
412 GFP_KERNEL);
413 if (!buf)
414 goto out;
415
416 migrate.src = buf;
417 migrate.dst = migrate.src + npages;
418 scratch = (dma_addr_t *)(migrate.dst + npages);
419
420 kfd_smi_event_migration_start(node, p->lead_thread->pid,
421 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
422 0, node->id, prange->prefetch_loc,
423 prange->preferred_loc, trigger);
424
425 r = migrate_vma_setup(&migrate);
426 if (r) {
427 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
428 __func__, r, prange->start, prange->last);
429 goto out_free;
430 }
431
432 cpages = migrate.cpages;
433 if (!cpages) {
434 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n",
435 prange->start, prange->last);
436 goto out_free;
437 }
438 if (cpages != npages)
439 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n",
440 cpages, npages);
441 else
442 pr_debug("0x%lx pages collected\n", cpages);
443
444 r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset);
445 migrate_vma_pages(&migrate);
446
447 svm_migrate_copy_done(adev, mfence);
448 migrate_vma_finalize(&migrate);
449
450 mpages = cpages - svm_migrate_unsuccessful_pages(&migrate);
451 pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
452 mpages, cpages, migrate.npages);
453
454 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages);
455
456 out_free:
457 kvfree(buf);
458 kfd_smi_event_migration_end(node, p->lead_thread->pid,
459 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
460 0, node->id, trigger, r);
461 out:
462 if (!r && mpages) {
463 pdd = svm_range_get_pdd_by_node(prange, node);
464 if (pdd)
465 WRITE_ONCE(pdd->page_in, pdd->page_in + mpages);
466
467 return mpages;
468 }
469 return r;
470 }
471
472 /**
473 * svm_migrate_ram_to_vram - migrate svm range from system to device
474 * @prange: range structure
475 * @best_loc: the device to migrate to
476 * @start_mgr: start page to migrate
477 * @last_mgr: last page to migrate
478 * @mm: the process mm structure
479 * @trigger: reason of migration
480 *
481 * Context: Process context, caller hold mmap read lock, svms lock, prange lock
482 *
483 * Return:
484 * 0 - OK, otherwise error code
485 */
486 static int
svm_migrate_ram_to_vram(struct svm_range * prange,uint32_t best_loc,unsigned long start_mgr,unsigned long last_mgr,struct mm_struct * mm,uint32_t trigger)487 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc,
488 unsigned long start_mgr, unsigned long last_mgr,
489 struct mm_struct *mm, uint32_t trigger)
490 {
491 unsigned long addr, start, end;
492 struct vm_area_struct *vma;
493 uint64_t ttm_res_offset;
494 struct kfd_node *node;
495 unsigned long mpages = 0;
496 long r = 0;
497
498 if (start_mgr < prange->start || last_mgr > prange->last) {
499 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n",
500 start_mgr, last_mgr, prange->start, prange->last);
501 return -EFAULT;
502 }
503
504 node = svm_range_get_node_by_id(prange, best_loc);
505 if (!node) {
506 pr_debug("failed to get kfd node by id 0x%x\n", best_loc);
507 return -ENODEV;
508 }
509
510 pr_debug("svms 0x%p [0x%lx 0x%lx] in [0x%lx 0x%lx] to gpu 0x%x\n",
511 prange->svms, start_mgr, last_mgr, prange->start, prange->last,
512 best_loc);
513
514 start = start_mgr << PAGE_SHIFT;
515 end = (last_mgr + 1) << PAGE_SHIFT;
516
517 r = amdgpu_amdkfd_reserve_mem_limit(node->adev,
518 prange->npages * PAGE_SIZE,
519 KFD_IOC_ALLOC_MEM_FLAGS_VRAM,
520 node->xcp ? node->xcp->id : 0);
521 if (r) {
522 dev_dbg(node->adev->dev, "failed to reserve VRAM, r: %ld\n", r);
523 return -ENOSPC;
524 }
525
526 r = svm_range_vram_node_new(node, prange, true);
527 if (r) {
528 dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r);
529 goto out;
530 }
531 ttm_res_offset = (start_mgr - prange->start + prange->offset) << PAGE_SHIFT;
532
533 for (addr = start; addr < end;) {
534 unsigned long next;
535
536 vma = vma_lookup(mm, addr);
537 if (!vma)
538 break;
539
540 next = min(vma->vm_end, end);
541 r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset);
542 if (r < 0) {
543 pr_debug("failed %ld to migrate\n", r);
544 break;
545 } else {
546 mpages += r;
547 }
548 ttm_res_offset += next - addr;
549 addr = next;
550 }
551
552 if (mpages) {
553 prange->actual_loc = best_loc;
554 prange->vram_pages += mpages;
555 } else if (!prange->actual_loc) {
556 /* if no page migrated and all pages from prange are at
557 * sys ram drop svm_bo got from svm_range_vram_node_new
558 */
559 svm_range_vram_node_free(prange);
560 }
561
562 out:
563 amdgpu_amdkfd_unreserve_mem_limit(node->adev,
564 prange->npages * PAGE_SIZE,
565 KFD_IOC_ALLOC_MEM_FLAGS_VRAM,
566 node->xcp ? node->xcp->id : 0);
567 return r < 0 ? r : 0;
568 }
569
svm_migrate_page_free(struct page * page)570 static void svm_migrate_page_free(struct page *page)
571 {
572 struct svm_range_bo *svm_bo = page->zone_device_data;
573
574 if (svm_bo) {
575 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref));
576 svm_range_bo_unref_async(svm_bo);
577 }
578 }
579
580 static int
svm_migrate_copy_to_ram(struct amdgpu_device * adev,struct svm_range * prange,struct migrate_vma * migrate,struct dma_fence ** mfence,dma_addr_t * scratch,uint64_t npages)581 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange,
582 struct migrate_vma *migrate, struct dma_fence **mfence,
583 dma_addr_t *scratch, uint64_t npages)
584 {
585 struct device *dev = adev->dev;
586 uint64_t *src;
587 dma_addr_t *dst;
588 struct page *dpage;
589 uint64_t i = 0, j;
590 uint64_t addr;
591 int r = 0;
592
593 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start,
594 prange->last);
595
596 addr = migrate->start;
597
598 src = (uint64_t *)(scratch + npages);
599 dst = scratch;
600
601 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) {
602 struct page *spage;
603
604 spage = migrate_pfn_to_page(migrate->src[i]);
605 if (!spage || !is_zone_device_page(spage)) {
606 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n",
607 prange->svms, prange->start, prange->last);
608 if (j) {
609 r = svm_migrate_copy_memory_gart(adev, dst + i - j,
610 src + i - j, j,
611 FROM_VRAM_TO_RAM,
612 mfence);
613 if (r)
614 goto out_oom;
615 j = 0;
616 }
617 continue;
618 }
619 src[i] = svm_migrate_addr(adev, spage);
620 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) {
621 r = svm_migrate_copy_memory_gart(adev, dst + i - j,
622 src + i - j, j,
623 FROM_VRAM_TO_RAM,
624 mfence);
625 if (r)
626 goto out_oom;
627 j = 0;
628 }
629
630 dpage = svm_migrate_get_sys_page(migrate->vma, addr);
631 if (!dpage) {
632 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n",
633 prange->svms, prange->start, prange->last);
634 r = -ENOMEM;
635 goto out_oom;
636 }
637
638 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
639 r = dma_mapping_error(dev, dst[i]);
640 if (r) {
641 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r);
642 goto out_oom;
643 }
644
645 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n",
646 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage));
647
648 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage));
649 j++;
650 }
651
652 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j,
653 FROM_VRAM_TO_RAM, mfence);
654
655 out_oom:
656 if (r) {
657 pr_debug("failed %d copy to ram\n", r);
658 while (i--) {
659 svm_migrate_put_sys_page(dst[i]);
660 migrate->dst[i] = 0;
661 }
662 }
663
664 return r;
665 }
666
667 /**
668 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system
669 *
670 * @prange: svm range structure
671 * @vma: vm_area_struct that range [start, end] belongs to
672 * @start: range start virtual address in pages
673 * @end: range end virtual address in pages
674 * @node: kfd node device to migrate from
675 * @trigger: reason of migration
676 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
677 *
678 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex
679 *
680 * Return:
681 * negative values - indicate error
682 * positive values or zero - number of pages got migrated
683 */
684 static long
svm_migrate_vma_to_ram(struct kfd_node * node,struct svm_range * prange,struct vm_area_struct * vma,uint64_t start,uint64_t end,uint32_t trigger,struct page * fault_page)685 svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange,
686 struct vm_area_struct *vma, uint64_t start, uint64_t end,
687 uint32_t trigger, struct page *fault_page)
688 {
689 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
690 uint64_t npages = (end - start) >> PAGE_SHIFT;
691 unsigned long upages = npages;
692 unsigned long cpages = 0;
693 unsigned long mpages = 0;
694 struct amdgpu_device *adev = node->adev;
695 struct kfd_process_device *pdd;
696 struct dma_fence *mfence = NULL;
697 struct migrate_vma migrate = { 0 };
698 dma_addr_t *scratch;
699 void *buf;
700 int r = -ENOMEM;
701
702 memset(&migrate, 0, sizeof(migrate));
703 migrate.vma = vma;
704 migrate.start = start;
705 migrate.end = end;
706 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
707 if (adev->gmc.xgmi.connected_to_cpu)
708 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT;
709 else
710 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
711
712 buf = kvcalloc(npages,
713 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t),
714 GFP_KERNEL);
715 if (!buf)
716 goto out;
717
718 migrate.src = buf;
719 migrate.dst = migrate.src + npages;
720 migrate.fault_page = fault_page;
721 scratch = (dma_addr_t *)(migrate.dst + npages);
722
723 kfd_smi_event_migration_start(node, p->lead_thread->pid,
724 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
725 node->id, 0, prange->prefetch_loc,
726 prange->preferred_loc, trigger);
727
728 r = migrate_vma_setup(&migrate);
729 if (r) {
730 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
731 __func__, r, prange->start, prange->last);
732 goto out_free;
733 }
734
735 cpages = migrate.cpages;
736 if (!cpages) {
737 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n",
738 prange->start, prange->last);
739 upages = svm_migrate_unsuccessful_pages(&migrate);
740 goto out_free;
741 }
742 if (cpages != npages)
743 pr_debug("partial migration, 0x%lx/0x%llx pages collected\n",
744 cpages, npages);
745 else
746 pr_debug("0x%lx pages collected\n", cpages);
747
748 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence,
749 scratch, npages);
750 migrate_vma_pages(&migrate);
751
752 upages = svm_migrate_unsuccessful_pages(&migrate);
753 pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n",
754 upages, cpages, migrate.npages);
755
756 svm_migrate_copy_done(adev, mfence);
757 migrate_vma_finalize(&migrate);
758
759 svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages);
760
761 out_free:
762 kvfree(buf);
763 kfd_smi_event_migration_end(node, p->lead_thread->pid,
764 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
765 node->id, 0, trigger, r);
766 out:
767 if (!r && cpages) {
768 mpages = cpages - upages;
769 pdd = svm_range_get_pdd_by_node(prange, node);
770 if (pdd)
771 WRITE_ONCE(pdd->page_out, pdd->page_out + mpages);
772 }
773
774 return r ? r : mpages;
775 }
776
777 /**
778 * svm_migrate_vram_to_ram - migrate svm range from device to system
779 * @prange: range structure
780 * @mm: process mm, use current->mm if NULL
781 * @start_mgr: start page need be migrated to sys ram
782 * @last_mgr: last page need be migrated to sys ram
783 * @trigger: reason of migration
784 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
785 *
786 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex
787 *
788 * Return:
789 * 0 - OK, otherwise error code
790 */
svm_migrate_vram_to_ram(struct svm_range * prange,struct mm_struct * mm,unsigned long start_mgr,unsigned long last_mgr,uint32_t trigger,struct page * fault_page)791 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm,
792 unsigned long start_mgr, unsigned long last_mgr,
793 uint32_t trigger, struct page *fault_page)
794 {
795 struct kfd_node *node;
796 struct vm_area_struct *vma;
797 unsigned long addr;
798 unsigned long start;
799 unsigned long end;
800 unsigned long mpages = 0;
801 long r = 0;
802
803 /* this pragne has no any vram page to migrate to sys ram */
804 if (!prange->actual_loc) {
805 pr_debug("[0x%lx 0x%lx] already migrated to ram\n",
806 prange->start, prange->last);
807 return 0;
808 }
809
810 if (start_mgr < prange->start || last_mgr > prange->last) {
811 pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n",
812 start_mgr, last_mgr, prange->start, prange->last);
813 return -EFAULT;
814 }
815
816 node = svm_range_get_node_by_id(prange, prange->actual_loc);
817 if (!node) {
818 pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc);
819 return -ENODEV;
820 }
821 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n",
822 prange->svms, prange, start_mgr, last_mgr,
823 prange->actual_loc);
824
825 start = start_mgr << PAGE_SHIFT;
826 end = (last_mgr + 1) << PAGE_SHIFT;
827
828 for (addr = start; addr < end;) {
829 unsigned long next;
830
831 vma = vma_lookup(mm, addr);
832 if (!vma) {
833 pr_debug("failed to find vma for prange %p\n", prange);
834 r = -EFAULT;
835 break;
836 }
837
838 next = min(vma->vm_end, end);
839 r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger,
840 fault_page);
841 if (r < 0) {
842 pr_debug("failed %ld to migrate prange %p\n", r, prange);
843 break;
844 } else {
845 mpages += r;
846 }
847 addr = next;
848 }
849
850 if (r >= 0) {
851 prange->vram_pages -= mpages;
852
853 /* prange does not have vram page set its actual_loc to system
854 * and drop its svm_bo ref
855 */
856 if (prange->vram_pages == 0 && prange->ttm_res) {
857 prange->actual_loc = 0;
858 svm_range_vram_node_free(prange);
859 }
860 }
861
862 return r < 0 ? r : 0;
863 }
864
865 /**
866 * svm_migrate_vram_to_vram - migrate svm range from device to device
867 * @prange: range structure
868 * @best_loc: the device to migrate to
869 * @start: start page need be migrated to sys ram
870 * @last: last page need be migrated to sys ram
871 * @mm: process mm, use current->mm if NULL
872 * @trigger: reason of migration
873 *
874 * Context: Process context, caller hold mmap read lock, svms lock, prange lock
875 *
876 * migrate all vram pages in prange to sys ram, then migrate
877 * [start, last] pages from sys ram to gpu node best_loc.
878 *
879 * Return:
880 * 0 - OK, otherwise error code
881 */
882 static int
svm_migrate_vram_to_vram(struct svm_range * prange,uint32_t best_loc,unsigned long start,unsigned long last,struct mm_struct * mm,uint32_t trigger)883 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc,
884 unsigned long start, unsigned long last,
885 struct mm_struct *mm, uint32_t trigger)
886 {
887 int r, retries = 3;
888
889 /*
890 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip
891 * system memory as migration bridge
892 */
893
894 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc);
895
896 do {
897 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
898 trigger, NULL);
899 if (r)
900 return r;
901 } while (prange->actual_loc && --retries);
902
903 if (prange->actual_loc)
904 return -EDEADLK;
905
906 return svm_migrate_ram_to_vram(prange, best_loc, start, last, mm, trigger);
907 }
908
909 int
svm_migrate_to_vram(struct svm_range * prange,uint32_t best_loc,unsigned long start,unsigned long last,struct mm_struct * mm,uint32_t trigger)910 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc,
911 unsigned long start, unsigned long last,
912 struct mm_struct *mm, uint32_t trigger)
913 {
914 if (!prange->actual_loc || prange->actual_loc == best_loc)
915 return svm_migrate_ram_to_vram(prange, best_loc, start, last,
916 mm, trigger);
917
918 else
919 return svm_migrate_vram_to_vram(prange, best_loc, start, last,
920 mm, trigger);
921
922 }
923
924 /**
925 * svm_migrate_to_ram - CPU page fault handler
926 * @vmf: CPU vm fault vma, address
927 *
928 * Context: vm fault handler, caller holds the mmap read lock
929 *
930 * Return:
931 * 0 - OK
932 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault
933 */
svm_migrate_to_ram(struct vm_fault * vmf)934 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf)
935 {
936 unsigned long start, last, size;
937 unsigned long addr = vmf->address;
938 struct svm_range_bo *svm_bo;
939 struct svm_range *prange;
940 struct kfd_process *p;
941 struct mm_struct *mm;
942 int r = 0;
943
944 svm_bo = vmf->page->zone_device_data;
945 if (!svm_bo) {
946 pr_debug("failed get device page at addr 0x%lx\n", addr);
947 return VM_FAULT_SIGBUS;
948 }
949 if (!mmget_not_zero(svm_bo->eviction_fence->mm)) {
950 pr_debug("addr 0x%lx of process mm is destroyed\n", addr);
951 return VM_FAULT_SIGBUS;
952 }
953
954 mm = svm_bo->eviction_fence->mm;
955 if (mm != vmf->vma->vm_mm)
956 pr_debug("addr 0x%lx is COW mapping in child process\n", addr);
957
958 p = kfd_lookup_process_by_mm(mm);
959 if (!p) {
960 pr_debug("failed find process at fault address 0x%lx\n", addr);
961 r = VM_FAULT_SIGBUS;
962 goto out_mmput;
963 }
964 if (READ_ONCE(p->svms.faulting_task) == current) {
965 pr_debug("skipping ram migration\n");
966 r = 0;
967 goto out_unref_process;
968 }
969
970 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr);
971 addr >>= PAGE_SHIFT;
972
973 mutex_lock(&p->svms.lock);
974
975 prange = svm_range_from_addr(&p->svms, addr, NULL);
976 if (!prange) {
977 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr);
978 r = -EFAULT;
979 goto out_unlock_svms;
980 }
981
982 mutex_lock(&prange->migrate_mutex);
983
984 if (!prange->actual_loc)
985 goto out_unlock_prange;
986
987 /* Align migration range start and size to granularity size */
988 size = 1UL << prange->granularity;
989 start = max(ALIGN_DOWN(addr, size), prange->start);
990 last = min(ALIGN(addr + 1, size) - 1, prange->last);
991
992 r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, start, last,
993 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, vmf->page);
994 if (r)
995 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n",
996 r, prange->svms, prange, start, last);
997
998 out_unlock_prange:
999 mutex_unlock(&prange->migrate_mutex);
1000 out_unlock_svms:
1001 mutex_unlock(&p->svms.lock);
1002 out_unref_process:
1003 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr);
1004 kfd_unref_process(p);
1005 out_mmput:
1006 mmput(mm);
1007 return r ? VM_FAULT_SIGBUS : 0;
1008 }
1009
1010 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = {
1011 .page_free = svm_migrate_page_free,
1012 .migrate_to_ram = svm_migrate_to_ram,
1013 };
1014
1015 /* Each VRAM page uses sizeof(struct page) on system memory */
1016 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page))
1017
kgd2kfd_init_zone_device(struct amdgpu_device * adev)1018 int kgd2kfd_init_zone_device(struct amdgpu_device *adev)
1019 {
1020 struct amdgpu_kfd_dev *kfddev = &adev->kfd;
1021 struct dev_pagemap *pgmap;
1022 struct resource *res = NULL;
1023 unsigned long size;
1024 void *r;
1025
1026 /* Page migration works on gfx9 or newer */
1027 if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 1))
1028 return -EINVAL;
1029
1030 if (adev->flags & AMD_IS_APU)
1031 return 0;
1032
1033 pgmap = &kfddev->pgmap;
1034 memset(pgmap, 0, sizeof(*pgmap));
1035
1036 /* TODO: register all vram to HMM for now.
1037 * should remove reserved size
1038 */
1039 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20);
1040 if (adev->gmc.xgmi.connected_to_cpu) {
1041 pgmap->range.start = adev->gmc.aper_base;
1042 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1;
1043 pgmap->type = MEMORY_DEVICE_COHERENT;
1044 } else {
1045 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size);
1046 if (IS_ERR(res))
1047 return PTR_ERR(res);
1048 pgmap->range.start = res->start;
1049 pgmap->range.end = res->end;
1050 pgmap->type = MEMORY_DEVICE_PRIVATE;
1051 }
1052
1053 pgmap->nr_range = 1;
1054 pgmap->ops = &svm_migrate_pgmap_ops;
1055 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev);
1056 pgmap->flags = 0;
1057 /* Device manager releases device-specific resources, memory region and
1058 * pgmap when driver disconnects from device.
1059 */
1060 r = devm_memremap_pages(adev->dev, pgmap);
1061 if (IS_ERR(r)) {
1062 pr_err("failed to register HMM device memory\n");
1063 if (pgmap->type == MEMORY_DEVICE_PRIVATE)
1064 devm_release_mem_region(adev->dev, res->start, resource_size(res));
1065 /* Disable SVM support capability */
1066 pgmap->type = 0;
1067 return PTR_ERR(r);
1068 }
1069
1070 pr_debug("reserve %ldMB system memory for VRAM pages struct\n",
1071 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20);
1072
1073 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size));
1074
1075 pr_info("HMM registered %ldMB device memory\n", size >> 20);
1076
1077 return 0;
1078 }
1079