1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/bio.h>
32 #include <sys/eventhandler.h>
33 #include <sys/kernel.h>
34 #include <sys/kthread.h>
35 #include <sys/limits.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/reboot.h>
42 #include <sys/sbuf.h>
43 #include <sys/sched.h>
44 #include <sys/sysctl.h>
45
46 #include <vm/uma.h>
47
48 #include <geom/geom.h>
49 #include <geom/geom_dbg.h>
50 #include <geom/raid/g_raid.h>
51 #include "g_raid_md_if.h"
52 #include "g_raid_tr_if.h"
53
54 static MALLOC_DEFINE(M_RAID, "raid_data", "GEOM_RAID Data");
55
56 SYSCTL_DECL(_kern_geom);
57 SYSCTL_NODE(_kern_geom, OID_AUTO, raid, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
58 "GEOM_RAID stuff");
59 int g_raid_enable = 1;
60 SYSCTL_INT(_kern_geom_raid, OID_AUTO, enable, CTLFLAG_RWTUN,
61 &g_raid_enable, 0, "Enable on-disk metadata taste");
62 u_int g_raid_aggressive_spare = 0;
63 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, aggressive_spare, CTLFLAG_RWTUN,
64 &g_raid_aggressive_spare, 0, "Use disks without metadata as spare");
65 u_int g_raid_debug = 0;
66 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, debug, CTLFLAG_RWTUN, &g_raid_debug, 0,
67 "Debug level");
68 int g_raid_read_err_thresh = 10;
69 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, read_err_thresh, CTLFLAG_RWTUN,
70 &g_raid_read_err_thresh, 0,
71 "Number of read errors equated to disk failure");
72 u_int g_raid_start_timeout = 30;
73 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, start_timeout, CTLFLAG_RWTUN,
74 &g_raid_start_timeout, 0,
75 "Time to wait for all array components");
76 static u_int g_raid_clean_time = 5;
77 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, clean_time, CTLFLAG_RWTUN,
78 &g_raid_clean_time, 0, "Mark volume as clean when idling");
79 static u_int g_raid_disconnect_on_failure = 1;
80 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, disconnect_on_failure, CTLFLAG_RWTUN,
81 &g_raid_disconnect_on_failure, 0, "Disconnect component on I/O failure.");
82 static u_int g_raid_name_format = 0;
83 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, name_format, CTLFLAG_RWTUN,
84 &g_raid_name_format, 0, "Providers name format.");
85 static u_int g_raid_idle_threshold = 1000000;
86 SYSCTL_UINT(_kern_geom_raid, OID_AUTO, idle_threshold, CTLFLAG_RWTUN,
87 &g_raid_idle_threshold, 1000000,
88 "Time in microseconds to consider a volume idle.");
89
90 #define MSLEEP(rv, ident, mtx, priority, wmesg, timeout) do { \
91 G_RAID_DEBUG(4, "%s: Sleeping %p.", __func__, (ident)); \
92 rv = msleep((ident), (mtx), (priority), (wmesg), (timeout)); \
93 G_RAID_DEBUG(4, "%s: Woken up %p.", __func__, (ident)); \
94 } while (0)
95
96 LIST_HEAD(, g_raid_md_class) g_raid_md_classes =
97 LIST_HEAD_INITIALIZER(g_raid_md_classes);
98
99 LIST_HEAD(, g_raid_tr_class) g_raid_tr_classes =
100 LIST_HEAD_INITIALIZER(g_raid_tr_classes);
101
102 LIST_HEAD(, g_raid_volume) g_raid_volumes =
103 LIST_HEAD_INITIALIZER(g_raid_volumes);
104
105 static eventhandler_tag g_raid_post_sync = NULL;
106 static int g_raid_started = 0;
107 static int g_raid_shutdown = 0;
108
109 static int g_raid_destroy_geom(struct gctl_req *req, struct g_class *mp,
110 struct g_geom *gp);
111 static g_taste_t g_raid_taste;
112 static void g_raid_init(struct g_class *mp);
113 static void g_raid_fini(struct g_class *mp);
114
115 struct g_class g_raid_class = {
116 .name = G_RAID_CLASS_NAME,
117 .version = G_VERSION,
118 .ctlreq = g_raid_ctl,
119 .taste = g_raid_taste,
120 .destroy_geom = g_raid_destroy_geom,
121 .init = g_raid_init,
122 .fini = g_raid_fini
123 };
124
125 static void g_raid_destroy_provider(struct g_raid_volume *vol);
126 static int g_raid_update_disk(struct g_raid_disk *disk, u_int event);
127 static int g_raid_update_subdisk(struct g_raid_subdisk *subdisk, u_int event);
128 static int g_raid_update_volume(struct g_raid_volume *vol, u_int event);
129 static int g_raid_update_node(struct g_raid_softc *sc, u_int event);
130 static void g_raid_dumpconf(struct sbuf *sb, const char *indent,
131 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp);
132 static void g_raid_start(struct bio *bp);
133 static void g_raid_start_request(struct bio *bp);
134 static void g_raid_disk_done(struct bio *bp);
135 static void g_raid_poll(struct g_raid_softc *sc);
136
137 static const char *
g_raid_node_event2str(int event)138 g_raid_node_event2str(int event)
139 {
140
141 switch (event) {
142 case G_RAID_NODE_E_WAKE:
143 return ("WAKE");
144 case G_RAID_NODE_E_START:
145 return ("START");
146 default:
147 return ("INVALID");
148 }
149 }
150
151 const char *
g_raid_disk_state2str(int state)152 g_raid_disk_state2str(int state)
153 {
154
155 switch (state) {
156 case G_RAID_DISK_S_NONE:
157 return ("NONE");
158 case G_RAID_DISK_S_OFFLINE:
159 return ("OFFLINE");
160 case G_RAID_DISK_S_DISABLED:
161 return ("DISABLED");
162 case G_RAID_DISK_S_FAILED:
163 return ("FAILED");
164 case G_RAID_DISK_S_STALE_FAILED:
165 return ("STALE_FAILED");
166 case G_RAID_DISK_S_SPARE:
167 return ("SPARE");
168 case G_RAID_DISK_S_STALE:
169 return ("STALE");
170 case G_RAID_DISK_S_ACTIVE:
171 return ("ACTIVE");
172 default:
173 return ("INVALID");
174 }
175 }
176
177 static const char *
g_raid_disk_event2str(int event)178 g_raid_disk_event2str(int event)
179 {
180
181 switch (event) {
182 case G_RAID_DISK_E_DISCONNECTED:
183 return ("DISCONNECTED");
184 default:
185 return ("INVALID");
186 }
187 }
188
189 const char *
g_raid_subdisk_state2str(int state)190 g_raid_subdisk_state2str(int state)
191 {
192
193 switch (state) {
194 case G_RAID_SUBDISK_S_NONE:
195 return ("NONE");
196 case G_RAID_SUBDISK_S_FAILED:
197 return ("FAILED");
198 case G_RAID_SUBDISK_S_NEW:
199 return ("NEW");
200 case G_RAID_SUBDISK_S_REBUILD:
201 return ("REBUILD");
202 case G_RAID_SUBDISK_S_UNINITIALIZED:
203 return ("UNINITIALIZED");
204 case G_RAID_SUBDISK_S_STALE:
205 return ("STALE");
206 case G_RAID_SUBDISK_S_RESYNC:
207 return ("RESYNC");
208 case G_RAID_SUBDISK_S_ACTIVE:
209 return ("ACTIVE");
210 default:
211 return ("INVALID");
212 }
213 }
214
215 static const char *
g_raid_subdisk_event2str(int event)216 g_raid_subdisk_event2str(int event)
217 {
218
219 switch (event) {
220 case G_RAID_SUBDISK_E_NEW:
221 return ("NEW");
222 case G_RAID_SUBDISK_E_FAILED:
223 return ("FAILED");
224 case G_RAID_SUBDISK_E_DISCONNECTED:
225 return ("DISCONNECTED");
226 default:
227 return ("INVALID");
228 }
229 }
230
231 const char *
g_raid_volume_state2str(int state)232 g_raid_volume_state2str(int state)
233 {
234
235 switch (state) {
236 case G_RAID_VOLUME_S_STARTING:
237 return ("STARTING");
238 case G_RAID_VOLUME_S_BROKEN:
239 return ("BROKEN");
240 case G_RAID_VOLUME_S_DEGRADED:
241 return ("DEGRADED");
242 case G_RAID_VOLUME_S_SUBOPTIMAL:
243 return ("SUBOPTIMAL");
244 case G_RAID_VOLUME_S_OPTIMAL:
245 return ("OPTIMAL");
246 case G_RAID_VOLUME_S_UNSUPPORTED:
247 return ("UNSUPPORTED");
248 case G_RAID_VOLUME_S_STOPPED:
249 return ("STOPPED");
250 default:
251 return ("INVALID");
252 }
253 }
254
255 static const char *
g_raid_volume_event2str(int event)256 g_raid_volume_event2str(int event)
257 {
258
259 switch (event) {
260 case G_RAID_VOLUME_E_UP:
261 return ("UP");
262 case G_RAID_VOLUME_E_DOWN:
263 return ("DOWN");
264 case G_RAID_VOLUME_E_START:
265 return ("START");
266 case G_RAID_VOLUME_E_STARTMD:
267 return ("STARTMD");
268 default:
269 return ("INVALID");
270 }
271 }
272
273 const char *
g_raid_volume_level2str(int level,int qual)274 g_raid_volume_level2str(int level, int qual)
275 {
276
277 switch (level) {
278 case G_RAID_VOLUME_RL_RAID0:
279 return ("RAID0");
280 case G_RAID_VOLUME_RL_RAID1:
281 return ("RAID1");
282 case G_RAID_VOLUME_RL_RAID3:
283 if (qual == G_RAID_VOLUME_RLQ_R3P0)
284 return ("RAID3-P0");
285 if (qual == G_RAID_VOLUME_RLQ_R3PN)
286 return ("RAID3-PN");
287 return ("RAID3");
288 case G_RAID_VOLUME_RL_RAID4:
289 if (qual == G_RAID_VOLUME_RLQ_R4P0)
290 return ("RAID4-P0");
291 if (qual == G_RAID_VOLUME_RLQ_R4PN)
292 return ("RAID4-PN");
293 return ("RAID4");
294 case G_RAID_VOLUME_RL_RAID5:
295 if (qual == G_RAID_VOLUME_RLQ_R5RA)
296 return ("RAID5-RA");
297 if (qual == G_RAID_VOLUME_RLQ_R5RS)
298 return ("RAID5-RS");
299 if (qual == G_RAID_VOLUME_RLQ_R5LA)
300 return ("RAID5-LA");
301 if (qual == G_RAID_VOLUME_RLQ_R5LS)
302 return ("RAID5-LS");
303 return ("RAID5");
304 case G_RAID_VOLUME_RL_RAID6:
305 if (qual == G_RAID_VOLUME_RLQ_R6RA)
306 return ("RAID6-RA");
307 if (qual == G_RAID_VOLUME_RLQ_R6RS)
308 return ("RAID6-RS");
309 if (qual == G_RAID_VOLUME_RLQ_R6LA)
310 return ("RAID6-LA");
311 if (qual == G_RAID_VOLUME_RLQ_R6LS)
312 return ("RAID6-LS");
313 return ("RAID6");
314 case G_RAID_VOLUME_RL_RAIDMDF:
315 if (qual == G_RAID_VOLUME_RLQ_RMDFRA)
316 return ("RAIDMDF-RA");
317 if (qual == G_RAID_VOLUME_RLQ_RMDFRS)
318 return ("RAIDMDF-RS");
319 if (qual == G_RAID_VOLUME_RLQ_RMDFLA)
320 return ("RAIDMDF-LA");
321 if (qual == G_RAID_VOLUME_RLQ_RMDFLS)
322 return ("RAIDMDF-LS");
323 return ("RAIDMDF");
324 case G_RAID_VOLUME_RL_RAID1E:
325 if (qual == G_RAID_VOLUME_RLQ_R1EA)
326 return ("RAID1E-A");
327 if (qual == G_RAID_VOLUME_RLQ_R1EO)
328 return ("RAID1E-O");
329 return ("RAID1E");
330 case G_RAID_VOLUME_RL_SINGLE:
331 return ("SINGLE");
332 case G_RAID_VOLUME_RL_CONCAT:
333 return ("CONCAT");
334 case G_RAID_VOLUME_RL_RAID5E:
335 if (qual == G_RAID_VOLUME_RLQ_R5ERA)
336 return ("RAID5E-RA");
337 if (qual == G_RAID_VOLUME_RLQ_R5ERS)
338 return ("RAID5E-RS");
339 if (qual == G_RAID_VOLUME_RLQ_R5ELA)
340 return ("RAID5E-LA");
341 if (qual == G_RAID_VOLUME_RLQ_R5ELS)
342 return ("RAID5E-LS");
343 return ("RAID5E");
344 case G_RAID_VOLUME_RL_RAID5EE:
345 if (qual == G_RAID_VOLUME_RLQ_R5EERA)
346 return ("RAID5EE-RA");
347 if (qual == G_RAID_VOLUME_RLQ_R5EERS)
348 return ("RAID5EE-RS");
349 if (qual == G_RAID_VOLUME_RLQ_R5EELA)
350 return ("RAID5EE-LA");
351 if (qual == G_RAID_VOLUME_RLQ_R5EELS)
352 return ("RAID5EE-LS");
353 return ("RAID5EE");
354 case G_RAID_VOLUME_RL_RAID5R:
355 if (qual == G_RAID_VOLUME_RLQ_R5RRA)
356 return ("RAID5R-RA");
357 if (qual == G_RAID_VOLUME_RLQ_R5RRS)
358 return ("RAID5R-RS");
359 if (qual == G_RAID_VOLUME_RLQ_R5RLA)
360 return ("RAID5R-LA");
361 if (qual == G_RAID_VOLUME_RLQ_R5RLS)
362 return ("RAID5R-LS");
363 return ("RAID5E");
364 default:
365 return ("UNKNOWN");
366 }
367 }
368
369 int
g_raid_volume_str2level(const char * str,int * level,int * qual)370 g_raid_volume_str2level(const char *str, int *level, int *qual)
371 {
372
373 *level = G_RAID_VOLUME_RL_UNKNOWN;
374 *qual = G_RAID_VOLUME_RLQ_NONE;
375 if (strcasecmp(str, "RAID0") == 0)
376 *level = G_RAID_VOLUME_RL_RAID0;
377 else if (strcasecmp(str, "RAID1") == 0)
378 *level = G_RAID_VOLUME_RL_RAID1;
379 else if (strcasecmp(str, "RAID3-P0") == 0) {
380 *level = G_RAID_VOLUME_RL_RAID3;
381 *qual = G_RAID_VOLUME_RLQ_R3P0;
382 } else if (strcasecmp(str, "RAID3-PN") == 0 ||
383 strcasecmp(str, "RAID3") == 0) {
384 *level = G_RAID_VOLUME_RL_RAID3;
385 *qual = G_RAID_VOLUME_RLQ_R3PN;
386 } else if (strcasecmp(str, "RAID4-P0") == 0) {
387 *level = G_RAID_VOLUME_RL_RAID4;
388 *qual = G_RAID_VOLUME_RLQ_R4P0;
389 } else if (strcasecmp(str, "RAID4-PN") == 0 ||
390 strcasecmp(str, "RAID4") == 0) {
391 *level = G_RAID_VOLUME_RL_RAID4;
392 *qual = G_RAID_VOLUME_RLQ_R4PN;
393 } else if (strcasecmp(str, "RAID5-RA") == 0) {
394 *level = G_RAID_VOLUME_RL_RAID5;
395 *qual = G_RAID_VOLUME_RLQ_R5RA;
396 } else if (strcasecmp(str, "RAID5-RS") == 0) {
397 *level = G_RAID_VOLUME_RL_RAID5;
398 *qual = G_RAID_VOLUME_RLQ_R5RS;
399 } else if (strcasecmp(str, "RAID5") == 0 ||
400 strcasecmp(str, "RAID5-LA") == 0) {
401 *level = G_RAID_VOLUME_RL_RAID5;
402 *qual = G_RAID_VOLUME_RLQ_R5LA;
403 } else if (strcasecmp(str, "RAID5-LS") == 0) {
404 *level = G_RAID_VOLUME_RL_RAID5;
405 *qual = G_RAID_VOLUME_RLQ_R5LS;
406 } else if (strcasecmp(str, "RAID6-RA") == 0) {
407 *level = G_RAID_VOLUME_RL_RAID6;
408 *qual = G_RAID_VOLUME_RLQ_R6RA;
409 } else if (strcasecmp(str, "RAID6-RS") == 0) {
410 *level = G_RAID_VOLUME_RL_RAID6;
411 *qual = G_RAID_VOLUME_RLQ_R6RS;
412 } else if (strcasecmp(str, "RAID6") == 0 ||
413 strcasecmp(str, "RAID6-LA") == 0) {
414 *level = G_RAID_VOLUME_RL_RAID6;
415 *qual = G_RAID_VOLUME_RLQ_R6LA;
416 } else if (strcasecmp(str, "RAID6-LS") == 0) {
417 *level = G_RAID_VOLUME_RL_RAID6;
418 *qual = G_RAID_VOLUME_RLQ_R6LS;
419 } else if (strcasecmp(str, "RAIDMDF-RA") == 0) {
420 *level = G_RAID_VOLUME_RL_RAIDMDF;
421 *qual = G_RAID_VOLUME_RLQ_RMDFRA;
422 } else if (strcasecmp(str, "RAIDMDF-RS") == 0) {
423 *level = G_RAID_VOLUME_RL_RAIDMDF;
424 *qual = G_RAID_VOLUME_RLQ_RMDFRS;
425 } else if (strcasecmp(str, "RAIDMDF") == 0 ||
426 strcasecmp(str, "RAIDMDF-LA") == 0) {
427 *level = G_RAID_VOLUME_RL_RAIDMDF;
428 *qual = G_RAID_VOLUME_RLQ_RMDFLA;
429 } else if (strcasecmp(str, "RAIDMDF-LS") == 0) {
430 *level = G_RAID_VOLUME_RL_RAIDMDF;
431 *qual = G_RAID_VOLUME_RLQ_RMDFLS;
432 } else if (strcasecmp(str, "RAID10") == 0 ||
433 strcasecmp(str, "RAID1E") == 0 ||
434 strcasecmp(str, "RAID1E-A") == 0) {
435 *level = G_RAID_VOLUME_RL_RAID1E;
436 *qual = G_RAID_VOLUME_RLQ_R1EA;
437 } else if (strcasecmp(str, "RAID1E-O") == 0) {
438 *level = G_RAID_VOLUME_RL_RAID1E;
439 *qual = G_RAID_VOLUME_RLQ_R1EO;
440 } else if (strcasecmp(str, "SINGLE") == 0)
441 *level = G_RAID_VOLUME_RL_SINGLE;
442 else if (strcasecmp(str, "CONCAT") == 0)
443 *level = G_RAID_VOLUME_RL_CONCAT;
444 else if (strcasecmp(str, "RAID5E-RA") == 0) {
445 *level = G_RAID_VOLUME_RL_RAID5E;
446 *qual = G_RAID_VOLUME_RLQ_R5ERA;
447 } else if (strcasecmp(str, "RAID5E-RS") == 0) {
448 *level = G_RAID_VOLUME_RL_RAID5E;
449 *qual = G_RAID_VOLUME_RLQ_R5ERS;
450 } else if (strcasecmp(str, "RAID5E") == 0 ||
451 strcasecmp(str, "RAID5E-LA") == 0) {
452 *level = G_RAID_VOLUME_RL_RAID5E;
453 *qual = G_RAID_VOLUME_RLQ_R5ELA;
454 } else if (strcasecmp(str, "RAID5E-LS") == 0) {
455 *level = G_RAID_VOLUME_RL_RAID5E;
456 *qual = G_RAID_VOLUME_RLQ_R5ELS;
457 } else if (strcasecmp(str, "RAID5EE-RA") == 0) {
458 *level = G_RAID_VOLUME_RL_RAID5EE;
459 *qual = G_RAID_VOLUME_RLQ_R5EERA;
460 } else if (strcasecmp(str, "RAID5EE-RS") == 0) {
461 *level = G_RAID_VOLUME_RL_RAID5EE;
462 *qual = G_RAID_VOLUME_RLQ_R5EERS;
463 } else if (strcasecmp(str, "RAID5EE") == 0 ||
464 strcasecmp(str, "RAID5EE-LA") == 0) {
465 *level = G_RAID_VOLUME_RL_RAID5EE;
466 *qual = G_RAID_VOLUME_RLQ_R5EELA;
467 } else if (strcasecmp(str, "RAID5EE-LS") == 0) {
468 *level = G_RAID_VOLUME_RL_RAID5EE;
469 *qual = G_RAID_VOLUME_RLQ_R5EELS;
470 } else if (strcasecmp(str, "RAID5R-RA") == 0) {
471 *level = G_RAID_VOLUME_RL_RAID5R;
472 *qual = G_RAID_VOLUME_RLQ_R5RRA;
473 } else if (strcasecmp(str, "RAID5R-RS") == 0) {
474 *level = G_RAID_VOLUME_RL_RAID5R;
475 *qual = G_RAID_VOLUME_RLQ_R5RRS;
476 } else if (strcasecmp(str, "RAID5R") == 0 ||
477 strcasecmp(str, "RAID5R-LA") == 0) {
478 *level = G_RAID_VOLUME_RL_RAID5R;
479 *qual = G_RAID_VOLUME_RLQ_R5RLA;
480 } else if (strcasecmp(str, "RAID5R-LS") == 0) {
481 *level = G_RAID_VOLUME_RL_RAID5R;
482 *qual = G_RAID_VOLUME_RLQ_R5RLS;
483 } else
484 return (-1);
485 return (0);
486 }
487
488 const char *
g_raid_get_diskname(struct g_raid_disk * disk)489 g_raid_get_diskname(struct g_raid_disk *disk)
490 {
491
492 if (disk->d_consumer == NULL || disk->d_consumer->provider == NULL)
493 return ("[unknown]");
494 return (disk->d_consumer->provider->name);
495 }
496
497 void
g_raid_get_disk_info(struct g_raid_disk * disk)498 g_raid_get_disk_info(struct g_raid_disk *disk)
499 {
500 struct g_consumer *cp = disk->d_consumer;
501 int error, len;
502
503 /* Read kernel dumping information. */
504 disk->d_kd.offset = 0;
505 disk->d_kd.length = OFF_MAX;
506 len = sizeof(disk->d_kd);
507 error = g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
508 if (error)
509 disk->d_kd.di.dumper = NULL;
510 if (disk->d_kd.di.dumper == NULL)
511 G_RAID_DEBUG1(2, disk->d_softc,
512 "Dumping not supported by %s: %d.",
513 cp->provider->name, error);
514
515 /* Read BIO_DELETE support. */
516 error = g_getattr("GEOM::candelete", cp, &disk->d_candelete);
517 if (error)
518 disk->d_candelete = 0;
519 if (!disk->d_candelete)
520 G_RAID_DEBUG1(2, disk->d_softc,
521 "BIO_DELETE not supported by %s: %d.",
522 cp->provider->name, error);
523 }
524
525 void
g_raid_report_disk_state(struct g_raid_disk * disk)526 g_raid_report_disk_state(struct g_raid_disk *disk)
527 {
528 struct g_raid_subdisk *sd;
529 int len, state;
530 uint32_t s;
531
532 if (disk->d_consumer == NULL)
533 return;
534 if (disk->d_state == G_RAID_DISK_S_DISABLED) {
535 s = G_STATE_ACTIVE; /* XXX */
536 } else if (disk->d_state == G_RAID_DISK_S_FAILED ||
537 disk->d_state == G_RAID_DISK_S_STALE_FAILED) {
538 s = G_STATE_FAILED;
539 } else {
540 state = G_RAID_SUBDISK_S_ACTIVE;
541 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
542 if (sd->sd_state < state)
543 state = sd->sd_state;
544 }
545 if (state == G_RAID_SUBDISK_S_FAILED)
546 s = G_STATE_FAILED;
547 else if (state == G_RAID_SUBDISK_S_NEW ||
548 state == G_RAID_SUBDISK_S_REBUILD)
549 s = G_STATE_REBUILD;
550 else if (state == G_RAID_SUBDISK_S_STALE ||
551 state == G_RAID_SUBDISK_S_RESYNC)
552 s = G_STATE_RESYNC;
553 else
554 s = G_STATE_ACTIVE;
555 }
556 len = sizeof(s);
557 g_io_getattr("GEOM::setstate", disk->d_consumer, &len, &s);
558 G_RAID_DEBUG1(2, disk->d_softc, "Disk %s state reported as %d.",
559 g_raid_get_diskname(disk), s);
560 }
561
562 void
g_raid_change_disk_state(struct g_raid_disk * disk,int state)563 g_raid_change_disk_state(struct g_raid_disk *disk, int state)
564 {
565
566 G_RAID_DEBUG1(0, disk->d_softc, "Disk %s state changed from %s to %s.",
567 g_raid_get_diskname(disk),
568 g_raid_disk_state2str(disk->d_state),
569 g_raid_disk_state2str(state));
570 disk->d_state = state;
571 g_raid_report_disk_state(disk);
572 }
573
574 void
g_raid_change_subdisk_state(struct g_raid_subdisk * sd,int state)575 g_raid_change_subdisk_state(struct g_raid_subdisk *sd, int state)
576 {
577
578 G_RAID_DEBUG1(0, sd->sd_softc,
579 "Subdisk %s:%d-%s state changed from %s to %s.",
580 sd->sd_volume->v_name, sd->sd_pos,
581 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]",
582 g_raid_subdisk_state2str(sd->sd_state),
583 g_raid_subdisk_state2str(state));
584 sd->sd_state = state;
585 if (sd->sd_disk)
586 g_raid_report_disk_state(sd->sd_disk);
587 }
588
589 void
g_raid_change_volume_state(struct g_raid_volume * vol,int state)590 g_raid_change_volume_state(struct g_raid_volume *vol, int state)
591 {
592
593 G_RAID_DEBUG1(0, vol->v_softc,
594 "Volume %s state changed from %s to %s.",
595 vol->v_name,
596 g_raid_volume_state2str(vol->v_state),
597 g_raid_volume_state2str(state));
598 vol->v_state = state;
599 }
600
601 /*
602 * --- Events handling functions ---
603 * Events in geom_raid are used to maintain subdisks and volumes status
604 * from one thread to simplify locking.
605 */
606 static void
g_raid_event_free(struct g_raid_event * ep)607 g_raid_event_free(struct g_raid_event *ep)
608 {
609
610 free(ep, M_RAID);
611 }
612
613 int
g_raid_event_send(void * arg,int event,int flags)614 g_raid_event_send(void *arg, int event, int flags)
615 {
616 struct g_raid_softc *sc;
617 struct g_raid_event *ep;
618 int error;
619
620 if ((flags & G_RAID_EVENT_VOLUME) != 0) {
621 sc = ((struct g_raid_volume *)arg)->v_softc;
622 } else if ((flags & G_RAID_EVENT_DISK) != 0) {
623 sc = ((struct g_raid_disk *)arg)->d_softc;
624 } else if ((flags & G_RAID_EVENT_SUBDISK) != 0) {
625 sc = ((struct g_raid_subdisk *)arg)->sd_softc;
626 } else {
627 sc = arg;
628 }
629 ep = malloc(sizeof(*ep), M_RAID,
630 sx_xlocked(&sc->sc_lock) ? M_WAITOK : M_NOWAIT);
631 if (ep == NULL)
632 return (ENOMEM);
633 ep->e_tgt = arg;
634 ep->e_event = event;
635 ep->e_flags = flags;
636 ep->e_error = 0;
637 G_RAID_DEBUG1(4, sc, "Sending event %p. Waking up %p.", ep, sc);
638 mtx_lock(&sc->sc_queue_mtx);
639 TAILQ_INSERT_TAIL(&sc->sc_events, ep, e_next);
640 mtx_unlock(&sc->sc_queue_mtx);
641 wakeup(sc);
642
643 if ((flags & G_RAID_EVENT_WAIT) == 0)
644 return (0);
645
646 sx_assert(&sc->sc_lock, SX_XLOCKED);
647 G_RAID_DEBUG1(4, sc, "Sleeping on %p.", ep);
648 sx_xunlock(&sc->sc_lock);
649 while ((ep->e_flags & G_RAID_EVENT_DONE) == 0) {
650 mtx_lock(&sc->sc_queue_mtx);
651 MSLEEP(error, ep, &sc->sc_queue_mtx, PRIBIO | PDROP, "m:event",
652 hz * 5);
653 }
654 error = ep->e_error;
655 g_raid_event_free(ep);
656 sx_xlock(&sc->sc_lock);
657 return (error);
658 }
659
660 static void
g_raid_event_cancel(struct g_raid_softc * sc,void * tgt)661 g_raid_event_cancel(struct g_raid_softc *sc, void *tgt)
662 {
663 struct g_raid_event *ep, *tmpep;
664
665 sx_assert(&sc->sc_lock, SX_XLOCKED);
666
667 mtx_lock(&sc->sc_queue_mtx);
668 TAILQ_FOREACH_SAFE(ep, &sc->sc_events, e_next, tmpep) {
669 if (ep->e_tgt != tgt)
670 continue;
671 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
672 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0)
673 g_raid_event_free(ep);
674 else {
675 ep->e_error = ECANCELED;
676 wakeup(ep);
677 }
678 }
679 mtx_unlock(&sc->sc_queue_mtx);
680 }
681
682 static int
g_raid_event_check(struct g_raid_softc * sc,void * tgt)683 g_raid_event_check(struct g_raid_softc *sc, void *tgt)
684 {
685 struct g_raid_event *ep;
686 int res = 0;
687
688 sx_assert(&sc->sc_lock, SX_XLOCKED);
689
690 mtx_lock(&sc->sc_queue_mtx);
691 TAILQ_FOREACH(ep, &sc->sc_events, e_next) {
692 if (ep->e_tgt != tgt)
693 continue;
694 res = 1;
695 break;
696 }
697 mtx_unlock(&sc->sc_queue_mtx);
698 return (res);
699 }
700
701 /*
702 * Return the number of disks in given state.
703 * If state is equal to -1, count all connected disks.
704 */
705 u_int
g_raid_ndisks(struct g_raid_softc * sc,int state)706 g_raid_ndisks(struct g_raid_softc *sc, int state)
707 {
708 struct g_raid_disk *disk;
709 u_int n;
710
711 sx_assert(&sc->sc_lock, SX_LOCKED);
712
713 n = 0;
714 TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
715 if (disk->d_state == state || state == -1)
716 n++;
717 }
718 return (n);
719 }
720
721 /*
722 * Return the number of subdisks in given state.
723 * If state is equal to -1, count all connected disks.
724 */
725 u_int
g_raid_nsubdisks(struct g_raid_volume * vol,int state)726 g_raid_nsubdisks(struct g_raid_volume *vol, int state)
727 {
728 struct g_raid_subdisk *subdisk;
729 struct g_raid_softc *sc __diagused;
730 u_int i, n ;
731
732 sc = vol->v_softc;
733 sx_assert(&sc->sc_lock, SX_LOCKED);
734
735 n = 0;
736 for (i = 0; i < vol->v_disks_count; i++) {
737 subdisk = &vol->v_subdisks[i];
738 if ((state == -1 &&
739 subdisk->sd_state != G_RAID_SUBDISK_S_NONE) ||
740 subdisk->sd_state == state)
741 n++;
742 }
743 return (n);
744 }
745
746 /*
747 * Return the first subdisk in given state.
748 * If state is equal to -1, then the first connected disks.
749 */
750 struct g_raid_subdisk *
g_raid_get_subdisk(struct g_raid_volume * vol,int state)751 g_raid_get_subdisk(struct g_raid_volume *vol, int state)
752 {
753 struct g_raid_subdisk *sd;
754 struct g_raid_softc *sc __diagused;
755 u_int i;
756
757 sc = vol->v_softc;
758 sx_assert(&sc->sc_lock, SX_LOCKED);
759
760 for (i = 0; i < vol->v_disks_count; i++) {
761 sd = &vol->v_subdisks[i];
762 if ((state == -1 &&
763 sd->sd_state != G_RAID_SUBDISK_S_NONE) ||
764 sd->sd_state == state)
765 return (sd);
766 }
767 return (NULL);
768 }
769
770 struct g_consumer *
g_raid_open_consumer(struct g_raid_softc * sc,const char * name)771 g_raid_open_consumer(struct g_raid_softc *sc, const char *name)
772 {
773 struct g_consumer *cp;
774 struct g_provider *pp;
775
776 g_topology_assert();
777
778 if (strncmp(name, _PATH_DEV, 5) == 0)
779 name += 5;
780 pp = g_provider_by_name(name);
781 if (pp == NULL)
782 return (NULL);
783 cp = g_new_consumer(sc->sc_geom);
784 cp->flags |= G_CF_DIRECT_RECEIVE;
785 if (g_attach(cp, pp) != 0) {
786 g_destroy_consumer(cp);
787 return (NULL);
788 }
789 if (g_access(cp, 1, 1, 1) != 0) {
790 g_detach(cp);
791 g_destroy_consumer(cp);
792 return (NULL);
793 }
794 return (cp);
795 }
796
797 static u_int
g_raid_nrequests(struct g_raid_softc * sc,struct g_consumer * cp)798 g_raid_nrequests(struct g_raid_softc *sc, struct g_consumer *cp)
799 {
800 struct bio *bp;
801 u_int nreqs = 0;
802
803 mtx_lock(&sc->sc_queue_mtx);
804 TAILQ_FOREACH(bp, &sc->sc_queue.queue, bio_queue) {
805 if (bp->bio_from == cp)
806 nreqs++;
807 }
808 mtx_unlock(&sc->sc_queue_mtx);
809 return (nreqs);
810 }
811
812 u_int
g_raid_nopens(struct g_raid_softc * sc)813 g_raid_nopens(struct g_raid_softc *sc)
814 {
815 struct g_raid_volume *vol;
816 u_int opens;
817
818 opens = 0;
819 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
820 if (vol->v_provider_open != 0)
821 opens++;
822 }
823 return (opens);
824 }
825
826 static int
g_raid_consumer_is_busy(struct g_raid_softc * sc,struct g_consumer * cp)827 g_raid_consumer_is_busy(struct g_raid_softc *sc, struct g_consumer *cp)
828 {
829
830 if (cp->index > 0) {
831 G_RAID_DEBUG1(2, sc,
832 "I/O requests for %s exist, can't destroy it now.",
833 cp->provider->name);
834 return (1);
835 }
836 if (g_raid_nrequests(sc, cp) > 0) {
837 G_RAID_DEBUG1(2, sc,
838 "I/O requests for %s in queue, can't destroy it now.",
839 cp->provider->name);
840 return (1);
841 }
842 return (0);
843 }
844
845 static void
g_raid_destroy_consumer(void * arg,int flags __unused)846 g_raid_destroy_consumer(void *arg, int flags __unused)
847 {
848 struct g_consumer *cp;
849
850 g_topology_assert();
851
852 cp = arg;
853 G_RAID_DEBUG(1, "Consumer %s destroyed.", cp->provider->name);
854 g_detach(cp);
855 g_destroy_consumer(cp);
856 }
857
858 void
g_raid_kill_consumer(struct g_raid_softc * sc,struct g_consumer * cp)859 g_raid_kill_consumer(struct g_raid_softc *sc, struct g_consumer *cp)
860 {
861 struct g_provider *pp;
862 int retaste_wait;
863
864 g_topology_assert_not();
865
866 g_topology_lock();
867 cp->private = NULL;
868 if (g_raid_consumer_is_busy(sc, cp))
869 goto out;
870 pp = cp->provider;
871 retaste_wait = 0;
872 if (cp->acw == 1) {
873 if ((pp->geom->flags & G_GEOM_WITHER) == 0)
874 retaste_wait = 1;
875 }
876 if (cp->acr > 0 || cp->acw > 0 || cp->ace > 0)
877 g_access(cp, -cp->acr, -cp->acw, -cp->ace);
878 if (retaste_wait) {
879 /*
880 * After retaste event was send (inside g_access()), we can send
881 * event to detach and destroy consumer.
882 * A class, which has consumer to the given provider connected
883 * will not receive retaste event for the provider.
884 * This is the way how I ignore retaste events when I close
885 * consumers opened for write: I detach and destroy consumer
886 * after retaste event is sent.
887 */
888 g_post_event(g_raid_destroy_consumer, cp, M_WAITOK, NULL);
889 goto out;
890 }
891 G_RAID_DEBUG(1, "Consumer %s destroyed.", pp->name);
892 g_detach(cp);
893 g_destroy_consumer(cp);
894 out:
895 g_topology_unlock();
896 }
897
898 static void
g_raid_orphan(struct g_consumer * cp)899 g_raid_orphan(struct g_consumer *cp)
900 {
901 struct g_raid_disk *disk;
902
903 g_topology_assert();
904
905 disk = cp->private;
906 if (disk == NULL)
907 return;
908 g_raid_event_send(disk, G_RAID_DISK_E_DISCONNECTED,
909 G_RAID_EVENT_DISK);
910 }
911
912 static void
g_raid_clean(struct g_raid_volume * vol,int acw)913 g_raid_clean(struct g_raid_volume *vol, int acw)
914 {
915 struct g_raid_softc *sc;
916 int timeout;
917
918 sc = vol->v_softc;
919 g_topology_assert_not();
920 sx_assert(&sc->sc_lock, SX_XLOCKED);
921
922 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
923 // return;
924 if (!vol->v_dirty)
925 return;
926 if (vol->v_writes > 0)
927 return;
928 if (acw > 0 || (acw == -1 &&
929 vol->v_provider != NULL && vol->v_provider->acw > 0)) {
930 timeout = g_raid_clean_time - (time_uptime - vol->v_last_write);
931 if (!g_raid_shutdown && timeout > 0)
932 return;
933 }
934 vol->v_dirty = 0;
935 G_RAID_DEBUG1(1, sc, "Volume %s marked as clean.",
936 vol->v_name);
937 g_raid_write_metadata(sc, vol, NULL, NULL);
938 }
939
940 static void
g_raid_dirty(struct g_raid_volume * vol)941 g_raid_dirty(struct g_raid_volume *vol)
942 {
943 struct g_raid_softc *sc;
944
945 sc = vol->v_softc;
946 g_topology_assert_not();
947 sx_assert(&sc->sc_lock, SX_XLOCKED);
948
949 // if ((sc->sc_flags & G_RAID_DEVICE_FLAG_NOFAILSYNC) != 0)
950 // return;
951 vol->v_dirty = 1;
952 G_RAID_DEBUG1(1, sc, "Volume %s marked as dirty.",
953 vol->v_name);
954 g_raid_write_metadata(sc, vol, NULL, NULL);
955 }
956
957 void
g_raid_tr_flush_common(struct g_raid_tr_object * tr,struct bio * bp)958 g_raid_tr_flush_common(struct g_raid_tr_object *tr, struct bio *bp)
959 {
960 struct g_raid_volume *vol;
961 struct g_raid_subdisk *sd;
962 struct bio_queue_head queue;
963 struct bio *cbp;
964 int i;
965
966 vol = tr->tro_volume;
967
968 /*
969 * Allocate all bios before sending any request, so we can return
970 * ENOMEM in nice and clean way.
971 */
972 bioq_init(&queue);
973 for (i = 0; i < vol->v_disks_count; i++) {
974 sd = &vol->v_subdisks[i];
975 if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
976 sd->sd_state == G_RAID_SUBDISK_S_FAILED)
977 continue;
978 cbp = g_clone_bio(bp);
979 if (cbp == NULL)
980 goto failure;
981 cbp->bio_caller1 = sd;
982 bioq_insert_tail(&queue, cbp);
983 }
984 while ((cbp = bioq_takefirst(&queue)) != NULL) {
985 sd = cbp->bio_caller1;
986 cbp->bio_caller1 = NULL;
987 g_raid_subdisk_iostart(sd, cbp);
988 }
989 return;
990 failure:
991 while ((cbp = bioq_takefirst(&queue)) != NULL)
992 g_destroy_bio(cbp);
993 if (bp->bio_error == 0)
994 bp->bio_error = ENOMEM;
995 g_raid_iodone(bp, bp->bio_error);
996 }
997
998 static void
g_raid_tr_kerneldump_common_done(struct bio * bp)999 g_raid_tr_kerneldump_common_done(struct bio *bp)
1000 {
1001
1002 bp->bio_flags |= BIO_DONE;
1003 }
1004
1005 int
g_raid_tr_kerneldump_common(struct g_raid_tr_object * tr,void * virtual,vm_offset_t physical,off_t offset,size_t length)1006 g_raid_tr_kerneldump_common(struct g_raid_tr_object *tr,
1007 void *virtual, vm_offset_t physical, off_t offset, size_t length)
1008 {
1009 struct g_raid_softc *sc;
1010 struct g_raid_volume *vol;
1011 struct bio bp;
1012
1013 vol = tr->tro_volume;
1014 sc = vol->v_softc;
1015
1016 g_reset_bio(&bp);
1017 bp.bio_cmd = BIO_WRITE;
1018 bp.bio_done = g_raid_tr_kerneldump_common_done;
1019 bp.bio_attribute = NULL;
1020 bp.bio_offset = offset;
1021 bp.bio_length = length;
1022 bp.bio_data = virtual;
1023 bp.bio_to = vol->v_provider;
1024
1025 g_raid_start(&bp);
1026 while (!(bp.bio_flags & BIO_DONE)) {
1027 G_RAID_DEBUG1(4, sc, "Poll...");
1028 g_raid_poll(sc);
1029 DELAY(10);
1030 }
1031
1032 return (bp.bio_error != 0 ? EIO : 0);
1033 }
1034
1035 static int
g_raid_dump(void * arg,void * virtual,off_t offset,size_t length)1036 g_raid_dump(void *arg, void *virtual, off_t offset, size_t length)
1037 {
1038 struct g_raid_volume *vol;
1039 int error;
1040
1041 vol = (struct g_raid_volume *)arg;
1042 G_RAID_DEBUG1(3, vol->v_softc, "Dumping at off %llu len %llu.",
1043 (long long unsigned)offset, (long long unsigned)length);
1044
1045 error = G_RAID_TR_KERNELDUMP(vol->v_tr, virtual, offset, length);
1046 return (error);
1047 }
1048
1049 static void
g_raid_kerneldump(struct g_raid_softc * sc,struct bio * bp)1050 g_raid_kerneldump(struct g_raid_softc *sc, struct bio *bp)
1051 {
1052 struct g_kerneldump *gkd;
1053 struct g_provider *pp;
1054 struct g_raid_volume *vol;
1055
1056 gkd = (struct g_kerneldump*)bp->bio_data;
1057 pp = bp->bio_to;
1058 vol = pp->private;
1059 g_trace(G_T_TOPOLOGY, "g_raid_kerneldump(%s, %jd, %jd)",
1060 pp->name, (intmax_t)gkd->offset, (intmax_t)gkd->length);
1061 gkd->di.dumper = g_raid_dump;
1062 gkd->di.priv = vol;
1063 gkd->di.blocksize = vol->v_sectorsize;
1064 gkd->di.maxiosize = DFLTPHYS;
1065 gkd->di.mediaoffset = gkd->offset;
1066 if ((gkd->offset + gkd->length) > vol->v_mediasize)
1067 gkd->length = vol->v_mediasize - gkd->offset;
1068 gkd->di.mediasize = gkd->length;
1069 g_io_deliver(bp, 0);
1070 }
1071
1072 static void
g_raid_candelete(struct g_raid_softc * sc,struct bio * bp)1073 g_raid_candelete(struct g_raid_softc *sc, struct bio *bp)
1074 {
1075 struct g_provider *pp;
1076 struct g_raid_volume *vol;
1077 struct g_raid_subdisk *sd;
1078 int i, val;
1079
1080 pp = bp->bio_to;
1081 vol = pp->private;
1082 for (i = 0; i < vol->v_disks_count; i++) {
1083 sd = &vol->v_subdisks[i];
1084 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1085 continue;
1086 if (sd->sd_disk->d_candelete)
1087 break;
1088 }
1089 val = i < vol->v_disks_count;
1090 g_handleattr(bp, "GEOM::candelete", &val, sizeof(val));
1091 }
1092
1093 static void
g_raid_start(struct bio * bp)1094 g_raid_start(struct bio *bp)
1095 {
1096 struct g_raid_softc *sc;
1097
1098 sc = bp->bio_to->geom->softc;
1099 /*
1100 * If sc == NULL or there are no valid disks, provider's error
1101 * should be set and g_raid_start() should not be called at all.
1102 */
1103 // KASSERT(sc != NULL && sc->sc_state == G_RAID_VOLUME_S_RUNNING,
1104 // ("Provider's error should be set (error=%d)(mirror=%s).",
1105 // bp->bio_to->error, bp->bio_to->name));
1106 G_RAID_LOGREQ(3, bp, "Request received.");
1107
1108 switch (bp->bio_cmd) {
1109 case BIO_READ:
1110 case BIO_WRITE:
1111 case BIO_DELETE:
1112 case BIO_FLUSH:
1113 case BIO_SPEEDUP:
1114 break;
1115 case BIO_GETATTR:
1116 if (!strcmp(bp->bio_attribute, "GEOM::candelete"))
1117 g_raid_candelete(sc, bp);
1118 else if (!strcmp(bp->bio_attribute, "GEOM::kerneldump"))
1119 g_raid_kerneldump(sc, bp);
1120 else
1121 g_io_deliver(bp, EOPNOTSUPP);
1122 return;
1123 default:
1124 g_io_deliver(bp, EOPNOTSUPP);
1125 return;
1126 }
1127 mtx_lock(&sc->sc_queue_mtx);
1128 bioq_insert_tail(&sc->sc_queue, bp);
1129 mtx_unlock(&sc->sc_queue_mtx);
1130 if (!dumping) {
1131 G_RAID_DEBUG1(4, sc, "Waking up %p.", sc);
1132 wakeup(sc);
1133 }
1134 }
1135
1136 static int
g_raid_bio_overlaps(const struct bio * bp,off_t lstart,off_t len)1137 g_raid_bio_overlaps(const struct bio *bp, off_t lstart, off_t len)
1138 {
1139 /*
1140 * 5 cases:
1141 * (1) bp entirely below NO
1142 * (2) bp entirely above NO
1143 * (3) bp start below, but end in range YES
1144 * (4) bp entirely within YES
1145 * (5) bp starts within, ends above YES
1146 *
1147 * lock range 10-19 (offset 10 length 10)
1148 * (1) 1-5: first if kicks it out
1149 * (2) 30-35: second if kicks it out
1150 * (3) 5-15: passes both ifs
1151 * (4) 12-14: passes both ifs
1152 * (5) 19-20: passes both
1153 */
1154 off_t lend = lstart + len - 1;
1155 off_t bstart = bp->bio_offset;
1156 off_t bend = bp->bio_offset + bp->bio_length - 1;
1157
1158 if (bend < lstart)
1159 return (0);
1160 if (lend < bstart)
1161 return (0);
1162 return (1);
1163 }
1164
1165 static int
g_raid_is_in_locked_range(struct g_raid_volume * vol,const struct bio * bp)1166 g_raid_is_in_locked_range(struct g_raid_volume *vol, const struct bio *bp)
1167 {
1168 struct g_raid_lock *lp;
1169
1170 sx_assert(&vol->v_softc->sc_lock, SX_LOCKED);
1171
1172 LIST_FOREACH(lp, &vol->v_locks, l_next) {
1173 if (g_raid_bio_overlaps(bp, lp->l_offset, lp->l_length))
1174 return (1);
1175 }
1176 return (0);
1177 }
1178
1179 static void
g_raid_start_request(struct bio * bp)1180 g_raid_start_request(struct bio *bp)
1181 {
1182 struct g_raid_softc *sc __diagused;
1183 struct g_raid_volume *vol;
1184
1185 sc = bp->bio_to->geom->softc;
1186 sx_assert(&sc->sc_lock, SX_LOCKED);
1187 vol = bp->bio_to->private;
1188
1189 /*
1190 * Check to see if this item is in a locked range. If so,
1191 * queue it to our locked queue and return. We'll requeue
1192 * it when the range is unlocked. Internal I/O for the
1193 * rebuild/rescan/recovery process is excluded from this
1194 * check so we can actually do the recovery.
1195 */
1196 if (!(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL) &&
1197 g_raid_is_in_locked_range(vol, bp)) {
1198 G_RAID_LOGREQ(3, bp, "Defer request.");
1199 bioq_insert_tail(&vol->v_locked, bp);
1200 return;
1201 }
1202
1203 /*
1204 * If we're actually going to do the write/delete, then
1205 * update the idle stats for the volume.
1206 */
1207 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1208 if (!vol->v_dirty)
1209 g_raid_dirty(vol);
1210 vol->v_writes++;
1211 }
1212
1213 /*
1214 * Put request onto inflight queue, so we can check if new
1215 * synchronization requests don't collide with it. Then tell
1216 * the transformation layer to start the I/O.
1217 */
1218 bioq_insert_tail(&vol->v_inflight, bp);
1219 G_RAID_LOGREQ(4, bp, "Request started");
1220 G_RAID_TR_IOSTART(vol->v_tr, bp);
1221 }
1222
1223 static void
g_raid_finish_with_locked_ranges(struct g_raid_volume * vol,struct bio * bp)1224 g_raid_finish_with_locked_ranges(struct g_raid_volume *vol, struct bio *bp)
1225 {
1226 off_t off, len;
1227 struct bio *nbp;
1228 struct g_raid_lock *lp;
1229
1230 vol->v_pending_lock = 0;
1231 LIST_FOREACH(lp, &vol->v_locks, l_next) {
1232 if (lp->l_pending) {
1233 off = lp->l_offset;
1234 len = lp->l_length;
1235 lp->l_pending = 0;
1236 TAILQ_FOREACH(nbp, &vol->v_inflight.queue, bio_queue) {
1237 if (g_raid_bio_overlaps(nbp, off, len))
1238 lp->l_pending++;
1239 }
1240 if (lp->l_pending) {
1241 vol->v_pending_lock = 1;
1242 G_RAID_DEBUG1(4, vol->v_softc,
1243 "Deferred lock(%jd, %jd) has %d pending",
1244 (intmax_t)off, (intmax_t)(off + len),
1245 lp->l_pending);
1246 continue;
1247 }
1248 G_RAID_DEBUG1(4, vol->v_softc,
1249 "Deferred lock of %jd to %jd completed",
1250 (intmax_t)off, (intmax_t)(off + len));
1251 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1252 }
1253 }
1254 }
1255
1256 void
g_raid_iodone(struct bio * bp,int error)1257 g_raid_iodone(struct bio *bp, int error)
1258 {
1259 struct g_raid_softc *sc __diagused;
1260 struct g_raid_volume *vol;
1261
1262 sc = bp->bio_to->geom->softc;
1263 sx_assert(&sc->sc_lock, SX_LOCKED);
1264 vol = bp->bio_to->private;
1265 G_RAID_LOGREQ(3, bp, "Request done: %d.", error);
1266
1267 /* Update stats if we done write/delete. */
1268 if (bp->bio_cmd == BIO_WRITE || bp->bio_cmd == BIO_DELETE) {
1269 vol->v_writes--;
1270 vol->v_last_write = time_uptime;
1271 }
1272
1273 bioq_remove(&vol->v_inflight, bp);
1274 if (vol->v_pending_lock && g_raid_is_in_locked_range(vol, bp))
1275 g_raid_finish_with_locked_ranges(vol, bp);
1276 getmicrouptime(&vol->v_last_done);
1277 g_io_deliver(bp, error);
1278 }
1279
1280 int
g_raid_lock_range(struct g_raid_volume * vol,off_t off,off_t len,struct bio * ignore,void * argp)1281 g_raid_lock_range(struct g_raid_volume *vol, off_t off, off_t len,
1282 struct bio *ignore, void *argp)
1283 {
1284 struct g_raid_softc *sc;
1285 struct g_raid_lock *lp;
1286 struct bio *bp;
1287
1288 sc = vol->v_softc;
1289 lp = malloc(sizeof(*lp), M_RAID, M_WAITOK | M_ZERO);
1290 LIST_INSERT_HEAD(&vol->v_locks, lp, l_next);
1291 lp->l_offset = off;
1292 lp->l_length = len;
1293 lp->l_callback_arg = argp;
1294
1295 lp->l_pending = 0;
1296 TAILQ_FOREACH(bp, &vol->v_inflight.queue, bio_queue) {
1297 if (bp != ignore && g_raid_bio_overlaps(bp, off, len))
1298 lp->l_pending++;
1299 }
1300
1301 /*
1302 * If there are any writes that are pending, we return EBUSY. All
1303 * callers will have to wait until all pending writes clear.
1304 */
1305 if (lp->l_pending > 0) {
1306 vol->v_pending_lock = 1;
1307 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd deferred %d pend",
1308 (intmax_t)off, (intmax_t)(off+len), lp->l_pending);
1309 return (EBUSY);
1310 }
1311 G_RAID_DEBUG1(4, sc, "Locking range %jd to %jd",
1312 (intmax_t)off, (intmax_t)(off+len));
1313 G_RAID_TR_LOCKED(vol->v_tr, lp->l_callback_arg);
1314 return (0);
1315 }
1316
1317 int
g_raid_unlock_range(struct g_raid_volume * vol,off_t off,off_t len)1318 g_raid_unlock_range(struct g_raid_volume *vol, off_t off, off_t len)
1319 {
1320 struct g_raid_lock *lp;
1321 struct g_raid_softc *sc;
1322 struct bio *bp;
1323
1324 sc = vol->v_softc;
1325 LIST_FOREACH(lp, &vol->v_locks, l_next) {
1326 if (lp->l_offset == off && lp->l_length == len) {
1327 LIST_REMOVE(lp, l_next);
1328 /* XXX
1329 * Right now we just put them all back on the queue
1330 * and hope for the best. We hope this because any
1331 * locked ranges will go right back on this list
1332 * when the worker thread runs.
1333 * XXX
1334 */
1335 G_RAID_DEBUG1(4, sc, "Unlocked %jd to %jd",
1336 (intmax_t)lp->l_offset,
1337 (intmax_t)(lp->l_offset+lp->l_length));
1338 mtx_lock(&sc->sc_queue_mtx);
1339 while ((bp = bioq_takefirst(&vol->v_locked)) != NULL)
1340 bioq_insert_tail(&sc->sc_queue, bp);
1341 mtx_unlock(&sc->sc_queue_mtx);
1342 free(lp, M_RAID);
1343 return (0);
1344 }
1345 }
1346 return (EINVAL);
1347 }
1348
1349 void
g_raid_subdisk_iostart(struct g_raid_subdisk * sd,struct bio * bp)1350 g_raid_subdisk_iostart(struct g_raid_subdisk *sd, struct bio *bp)
1351 {
1352 struct g_consumer *cp;
1353 struct g_raid_disk *disk, *tdisk;
1354
1355 bp->bio_caller1 = sd;
1356
1357 /*
1358 * Make sure that the disk is present. Generally it is a task of
1359 * transformation layers to not send requests to absent disks, but
1360 * it is better to be safe and report situation then sorry.
1361 */
1362 if (sd->sd_disk == NULL) {
1363 G_RAID_LOGREQ(0, bp, "Warning! I/O request to an absent disk!");
1364 nodisk:
1365 bp->bio_from = NULL;
1366 bp->bio_to = NULL;
1367 bp->bio_error = ENXIO;
1368 g_raid_disk_done(bp);
1369 return;
1370 }
1371 disk = sd->sd_disk;
1372 if (disk->d_state != G_RAID_DISK_S_ACTIVE &&
1373 disk->d_state != G_RAID_DISK_S_FAILED) {
1374 G_RAID_LOGREQ(0, bp, "Warning! I/O request to a disk in a "
1375 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
1376 goto nodisk;
1377 }
1378
1379 cp = disk->d_consumer;
1380 bp->bio_from = cp;
1381 bp->bio_to = cp->provider;
1382 cp->index++;
1383
1384 /* Update average disks load. */
1385 TAILQ_FOREACH(tdisk, &sd->sd_softc->sc_disks, d_next) {
1386 if (tdisk->d_consumer == NULL)
1387 tdisk->d_load = 0;
1388 else
1389 tdisk->d_load = (tdisk->d_consumer->index *
1390 G_RAID_SUBDISK_LOAD_SCALE + tdisk->d_load * 7) / 8;
1391 }
1392
1393 disk->d_last_offset = bp->bio_offset + bp->bio_length;
1394 if (dumping) {
1395 G_RAID_LOGREQ(3, bp, "Sending dumping request.");
1396 if (bp->bio_cmd == BIO_WRITE) {
1397 bp->bio_error = g_raid_subdisk_kerneldump(sd,
1398 bp->bio_data, bp->bio_offset, bp->bio_length);
1399 } else
1400 bp->bio_error = EOPNOTSUPP;
1401 g_raid_disk_done(bp);
1402 } else {
1403 bp->bio_done = g_raid_disk_done;
1404 bp->bio_offset += sd->sd_offset;
1405 G_RAID_LOGREQ(3, bp, "Sending request.");
1406 g_io_request(bp, cp);
1407 }
1408 }
1409
1410 int
g_raid_subdisk_kerneldump(struct g_raid_subdisk * sd,void * virtual,off_t offset,size_t length)1411 g_raid_subdisk_kerneldump(struct g_raid_subdisk *sd, void *virtual,
1412 off_t offset, size_t length)
1413 {
1414
1415 if (sd->sd_disk == NULL)
1416 return (ENXIO);
1417 if (sd->sd_disk->d_kd.di.dumper == NULL)
1418 return (EOPNOTSUPP);
1419 return (dump_write(&sd->sd_disk->d_kd.di, virtual,
1420 sd->sd_disk->d_kd.di.mediaoffset + sd->sd_offset + offset, length));
1421 }
1422
1423 static void
g_raid_disk_done(struct bio * bp)1424 g_raid_disk_done(struct bio *bp)
1425 {
1426 struct g_raid_softc *sc;
1427 struct g_raid_subdisk *sd;
1428
1429 sd = bp->bio_caller1;
1430 sc = sd->sd_softc;
1431 mtx_lock(&sc->sc_queue_mtx);
1432 bioq_insert_tail(&sc->sc_queue, bp);
1433 mtx_unlock(&sc->sc_queue_mtx);
1434 if (!dumping)
1435 wakeup(sc);
1436 }
1437
1438 static void
g_raid_disk_done_request(struct bio * bp)1439 g_raid_disk_done_request(struct bio *bp)
1440 {
1441 struct g_raid_softc *sc;
1442 struct g_raid_disk *disk;
1443 struct g_raid_subdisk *sd;
1444 struct g_raid_volume *vol;
1445
1446 g_topology_assert_not();
1447
1448 G_RAID_LOGREQ(3, bp, "Disk request done: %d.", bp->bio_error);
1449 sd = bp->bio_caller1;
1450 sc = sd->sd_softc;
1451 vol = sd->sd_volume;
1452 if (bp->bio_from != NULL) {
1453 bp->bio_from->index--;
1454 disk = bp->bio_from->private;
1455 if (disk == NULL)
1456 g_raid_kill_consumer(sc, bp->bio_from);
1457 }
1458 bp->bio_offset -= sd->sd_offset;
1459
1460 G_RAID_TR_IODONE(vol->v_tr, sd, bp);
1461 }
1462
1463 static void
g_raid_handle_event(struct g_raid_softc * sc,struct g_raid_event * ep)1464 g_raid_handle_event(struct g_raid_softc *sc, struct g_raid_event *ep)
1465 {
1466
1467 if ((ep->e_flags & G_RAID_EVENT_VOLUME) != 0)
1468 ep->e_error = g_raid_update_volume(ep->e_tgt, ep->e_event);
1469 else if ((ep->e_flags & G_RAID_EVENT_DISK) != 0)
1470 ep->e_error = g_raid_update_disk(ep->e_tgt, ep->e_event);
1471 else if ((ep->e_flags & G_RAID_EVENT_SUBDISK) != 0)
1472 ep->e_error = g_raid_update_subdisk(ep->e_tgt, ep->e_event);
1473 else
1474 ep->e_error = g_raid_update_node(ep->e_tgt, ep->e_event);
1475 if ((ep->e_flags & G_RAID_EVENT_WAIT) == 0) {
1476 KASSERT(ep->e_error == 0,
1477 ("Error cannot be handled."));
1478 g_raid_event_free(ep);
1479 } else {
1480 ep->e_flags |= G_RAID_EVENT_DONE;
1481 G_RAID_DEBUG1(4, sc, "Waking up %p.", ep);
1482 mtx_lock(&sc->sc_queue_mtx);
1483 wakeup(ep);
1484 mtx_unlock(&sc->sc_queue_mtx);
1485 }
1486 }
1487
1488 /*
1489 * Worker thread.
1490 */
1491 static void
g_raid_worker(void * arg)1492 g_raid_worker(void *arg)
1493 {
1494 struct g_raid_softc *sc;
1495 struct g_raid_event *ep;
1496 struct g_raid_volume *vol;
1497 struct bio *bp;
1498 struct timeval now, t;
1499 int timeout, rv;
1500
1501 sc = arg;
1502 thread_lock(curthread);
1503 sched_prio(curthread, PRIBIO);
1504 thread_unlock(curthread);
1505
1506 sx_xlock(&sc->sc_lock);
1507 for (;;) {
1508 mtx_lock(&sc->sc_queue_mtx);
1509 /*
1510 * First take a look at events.
1511 * This is important to handle events before any I/O requests.
1512 */
1513 bp = NULL;
1514 vol = NULL;
1515 rv = 0;
1516 ep = TAILQ_FIRST(&sc->sc_events);
1517 if (ep != NULL)
1518 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1519 else if ((bp = bioq_takefirst(&sc->sc_queue)) != NULL)
1520 ;
1521 else {
1522 getmicrouptime(&now);
1523 t = now;
1524 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1525 if (bioq_first(&vol->v_inflight) == NULL &&
1526 vol->v_tr &&
1527 timevalcmp(&vol->v_last_done, &t, < ))
1528 t = vol->v_last_done;
1529 }
1530 timevalsub(&t, &now);
1531 timeout = g_raid_idle_threshold +
1532 t.tv_sec * 1000000 + t.tv_usec;
1533 if (timeout > 0) {
1534 /*
1535 * Two steps to avoid overflows at HZ=1000
1536 * and idle timeouts > 2.1s. Some rounding
1537 * errors can occur, but they are < 1tick,
1538 * which is deemed to be close enough for
1539 * this purpose.
1540 */
1541 int micpertic = 1000000 / hz;
1542 timeout = (timeout + micpertic - 1) / micpertic;
1543 sx_xunlock(&sc->sc_lock);
1544 MSLEEP(rv, sc, &sc->sc_queue_mtx,
1545 PRIBIO | PDROP, "-", timeout);
1546 sx_xlock(&sc->sc_lock);
1547 goto process;
1548 } else
1549 rv = EWOULDBLOCK;
1550 }
1551 mtx_unlock(&sc->sc_queue_mtx);
1552 process:
1553 if (ep != NULL) {
1554 g_raid_handle_event(sc, ep);
1555 } else if (bp != NULL) {
1556 if (bp->bio_to != NULL &&
1557 bp->bio_to->geom == sc->sc_geom)
1558 g_raid_start_request(bp);
1559 else
1560 g_raid_disk_done_request(bp);
1561 } else if (rv == EWOULDBLOCK) {
1562 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
1563 g_raid_clean(vol, -1);
1564 if (bioq_first(&vol->v_inflight) == NULL &&
1565 vol->v_tr) {
1566 t.tv_sec = g_raid_idle_threshold / 1000000;
1567 t.tv_usec = g_raid_idle_threshold % 1000000;
1568 timevaladd(&t, &vol->v_last_done);
1569 getmicrouptime(&now);
1570 if (timevalcmp(&t, &now, <= )) {
1571 G_RAID_TR_IDLE(vol->v_tr);
1572 vol->v_last_done = now;
1573 }
1574 }
1575 }
1576 }
1577 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
1578 g_raid_destroy_node(sc, 1); /* May not return. */
1579 }
1580 }
1581
1582 static void
g_raid_poll(struct g_raid_softc * sc)1583 g_raid_poll(struct g_raid_softc *sc)
1584 {
1585 struct g_raid_event *ep;
1586 struct bio *bp;
1587
1588 sx_xlock(&sc->sc_lock);
1589 mtx_lock(&sc->sc_queue_mtx);
1590 /*
1591 * First take a look at events.
1592 * This is important to handle events before any I/O requests.
1593 */
1594 ep = TAILQ_FIRST(&sc->sc_events);
1595 if (ep != NULL) {
1596 TAILQ_REMOVE(&sc->sc_events, ep, e_next);
1597 mtx_unlock(&sc->sc_queue_mtx);
1598 g_raid_handle_event(sc, ep);
1599 goto out;
1600 }
1601 bp = bioq_takefirst(&sc->sc_queue);
1602 if (bp != NULL) {
1603 mtx_unlock(&sc->sc_queue_mtx);
1604 if (bp->bio_from == NULL ||
1605 bp->bio_from->geom != sc->sc_geom)
1606 g_raid_start_request(bp);
1607 else
1608 g_raid_disk_done_request(bp);
1609 }
1610 out:
1611 sx_xunlock(&sc->sc_lock);
1612 }
1613
1614 static void
g_raid_launch_provider(struct g_raid_volume * vol)1615 g_raid_launch_provider(struct g_raid_volume *vol)
1616 {
1617 struct g_raid_disk *disk;
1618 struct g_raid_subdisk *sd;
1619 struct g_raid_softc *sc;
1620 struct g_provider *pp;
1621 char name[G_RAID_MAX_VOLUMENAME];
1622 off_t off;
1623 int i;
1624
1625 sc = vol->v_softc;
1626 sx_assert(&sc->sc_lock, SX_LOCKED);
1627
1628 g_topology_lock();
1629 /* Try to name provider with volume name. */
1630 snprintf(name, sizeof(name), "raid/%s", vol->v_name);
1631 if (g_raid_name_format == 0 || vol->v_name[0] == 0 ||
1632 g_provider_by_name(name) != NULL) {
1633 /* Otherwise use sequential volume number. */
1634 snprintf(name, sizeof(name), "raid/r%d", vol->v_global_id);
1635 }
1636
1637 pp = g_new_providerf(sc->sc_geom, "%s", name);
1638 pp->flags |= G_PF_DIRECT_RECEIVE;
1639 if (vol->v_tr->tro_class->trc_accept_unmapped) {
1640 pp->flags |= G_PF_ACCEPT_UNMAPPED;
1641 for (i = 0; i < vol->v_disks_count; i++) {
1642 sd = &vol->v_subdisks[i];
1643 if (sd->sd_state == G_RAID_SUBDISK_S_NONE)
1644 continue;
1645 if ((sd->sd_disk->d_consumer->provider->flags &
1646 G_PF_ACCEPT_UNMAPPED) == 0)
1647 pp->flags &= ~G_PF_ACCEPT_UNMAPPED;
1648 }
1649 }
1650 pp->private = vol;
1651 pp->mediasize = vol->v_mediasize;
1652 pp->sectorsize = vol->v_sectorsize;
1653 pp->stripesize = 0;
1654 pp->stripeoffset = 0;
1655 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
1656 vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
1657 vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE ||
1658 vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT) {
1659 if ((disk = vol->v_subdisks[0].sd_disk) != NULL &&
1660 disk->d_consumer != NULL &&
1661 disk->d_consumer->provider != NULL) {
1662 pp->stripesize = disk->d_consumer->provider->stripesize;
1663 off = disk->d_consumer->provider->stripeoffset;
1664 pp->stripeoffset = off + vol->v_subdisks[0].sd_offset;
1665 if (off > 0)
1666 pp->stripeoffset %= off;
1667 }
1668 if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3) {
1669 pp->stripesize *= (vol->v_disks_count - 1);
1670 pp->stripeoffset *= (vol->v_disks_count - 1);
1671 }
1672 } else
1673 pp->stripesize = vol->v_strip_size;
1674 vol->v_provider = pp;
1675 g_error_provider(pp, 0);
1676 g_topology_unlock();
1677 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s created.",
1678 pp->name, vol->v_name);
1679 }
1680
1681 static void
g_raid_destroy_provider(struct g_raid_volume * vol)1682 g_raid_destroy_provider(struct g_raid_volume *vol)
1683 {
1684 struct g_raid_softc *sc;
1685 struct g_provider *pp;
1686 struct bio *bp, *tmp;
1687
1688 g_topology_assert_not();
1689 sc = vol->v_softc;
1690 pp = vol->v_provider;
1691 KASSERT(pp != NULL, ("NULL provider (volume=%s).", vol->v_name));
1692
1693 g_topology_lock();
1694 g_error_provider(pp, ENXIO);
1695 mtx_lock(&sc->sc_queue_mtx);
1696 TAILQ_FOREACH_SAFE(bp, &sc->sc_queue.queue, bio_queue, tmp) {
1697 if (bp->bio_to != pp)
1698 continue;
1699 bioq_remove(&sc->sc_queue, bp);
1700 g_io_deliver(bp, ENXIO);
1701 }
1702 mtx_unlock(&sc->sc_queue_mtx);
1703 G_RAID_DEBUG1(0, sc, "Provider %s for volume %s destroyed.",
1704 pp->name, vol->v_name);
1705 g_wither_provider(pp, ENXIO);
1706 g_topology_unlock();
1707 vol->v_provider = NULL;
1708 }
1709
1710 /*
1711 * Update device state.
1712 */
1713 static int
g_raid_update_volume(struct g_raid_volume * vol,u_int event)1714 g_raid_update_volume(struct g_raid_volume *vol, u_int event)
1715 {
1716 struct g_raid_softc *sc;
1717
1718 sc = vol->v_softc;
1719 sx_assert(&sc->sc_lock, SX_XLOCKED);
1720
1721 G_RAID_DEBUG1(2, sc, "Event %s for volume %s.",
1722 g_raid_volume_event2str(event),
1723 vol->v_name);
1724 switch (event) {
1725 case G_RAID_VOLUME_E_DOWN:
1726 if (vol->v_provider != NULL)
1727 g_raid_destroy_provider(vol);
1728 break;
1729 case G_RAID_VOLUME_E_UP:
1730 if (vol->v_provider == NULL)
1731 g_raid_launch_provider(vol);
1732 break;
1733 case G_RAID_VOLUME_E_START:
1734 if (vol->v_tr)
1735 G_RAID_TR_START(vol->v_tr);
1736 return (0);
1737 default:
1738 if (sc->sc_md)
1739 G_RAID_MD_VOLUME_EVENT(sc->sc_md, vol, event);
1740 return (0);
1741 }
1742
1743 /* Manage root mount release. */
1744 if (vol->v_starting) {
1745 vol->v_starting = 0;
1746 G_RAID_DEBUG1(1, sc, "root_mount_rel %p", vol->v_rootmount);
1747 root_mount_rel(vol->v_rootmount);
1748 vol->v_rootmount = NULL;
1749 }
1750 if (vol->v_stopping && vol->v_provider_open == 0)
1751 g_raid_destroy_volume(vol);
1752 return (0);
1753 }
1754
1755 /*
1756 * Update subdisk state.
1757 */
1758 static int
g_raid_update_subdisk(struct g_raid_subdisk * sd,u_int event)1759 g_raid_update_subdisk(struct g_raid_subdisk *sd, u_int event)
1760 {
1761 struct g_raid_softc *sc;
1762 struct g_raid_volume *vol;
1763
1764 sc = sd->sd_softc;
1765 vol = sd->sd_volume;
1766 sx_assert(&sc->sc_lock, SX_XLOCKED);
1767
1768 G_RAID_DEBUG1(2, sc, "Event %s for subdisk %s:%d-%s.",
1769 g_raid_subdisk_event2str(event),
1770 vol->v_name, sd->sd_pos,
1771 sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
1772 if (vol->v_tr)
1773 G_RAID_TR_EVENT(vol->v_tr, sd, event);
1774
1775 return (0);
1776 }
1777
1778 /*
1779 * Update disk state.
1780 */
1781 static int
g_raid_update_disk(struct g_raid_disk * disk,u_int event)1782 g_raid_update_disk(struct g_raid_disk *disk, u_int event)
1783 {
1784 struct g_raid_softc *sc;
1785
1786 sc = disk->d_softc;
1787 sx_assert(&sc->sc_lock, SX_XLOCKED);
1788
1789 G_RAID_DEBUG1(2, sc, "Event %s for disk %s.",
1790 g_raid_disk_event2str(event),
1791 g_raid_get_diskname(disk));
1792
1793 if (sc->sc_md)
1794 G_RAID_MD_EVENT(sc->sc_md, disk, event);
1795 return (0);
1796 }
1797
1798 /*
1799 * Node event.
1800 */
1801 static int
g_raid_update_node(struct g_raid_softc * sc,u_int event)1802 g_raid_update_node(struct g_raid_softc *sc, u_int event)
1803 {
1804 sx_assert(&sc->sc_lock, SX_XLOCKED);
1805
1806 G_RAID_DEBUG1(2, sc, "Event %s for the array.",
1807 g_raid_node_event2str(event));
1808
1809 if (event == G_RAID_NODE_E_WAKE)
1810 return (0);
1811 if (sc->sc_md)
1812 G_RAID_MD_EVENT(sc->sc_md, NULL, event);
1813 return (0);
1814 }
1815
1816 static int
g_raid_access(struct g_provider * pp,int acr,int acw,int ace)1817 g_raid_access(struct g_provider *pp, int acr, int acw, int ace)
1818 {
1819 struct g_raid_volume *vol;
1820 struct g_raid_softc *sc;
1821 int dcw, opens, error = 0;
1822
1823 g_topology_assert();
1824 sc = pp->geom->softc;
1825 vol = pp->private;
1826 KASSERT(sc != NULL, ("NULL softc (provider=%s).", pp->name));
1827 KASSERT(vol != NULL, ("NULL volume (provider=%s).", pp->name));
1828
1829 G_RAID_DEBUG1(2, sc, "Access request for %s: r%dw%de%d.", pp->name,
1830 acr, acw, ace);
1831 dcw = pp->acw + acw;
1832
1833 g_topology_unlock();
1834 sx_xlock(&sc->sc_lock);
1835 /* Deny new opens while dying. */
1836 if (sc->sc_stopping != 0 && (acr > 0 || acw > 0 || ace > 0)) {
1837 error = ENXIO;
1838 goto out;
1839 }
1840 /* Deny write opens for read-only volumes. */
1841 if (vol->v_read_only && acw > 0) {
1842 error = EROFS;
1843 goto out;
1844 }
1845 if (dcw == 0)
1846 g_raid_clean(vol, dcw);
1847 vol->v_provider_open += acr + acw + ace;
1848 /* Handle delayed node destruction. */
1849 if (sc->sc_stopping == G_RAID_DESTROY_DELAYED &&
1850 vol->v_provider_open == 0) {
1851 /* Count open volumes. */
1852 opens = g_raid_nopens(sc);
1853 if (opens == 0) {
1854 sc->sc_stopping = G_RAID_DESTROY_HARD;
1855 /* Wake up worker to make it selfdestruct. */
1856 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
1857 }
1858 }
1859 /* Handle open volume destruction. */
1860 if (vol->v_stopping && vol->v_provider_open == 0)
1861 g_raid_destroy_volume(vol);
1862 out:
1863 sx_xunlock(&sc->sc_lock);
1864 g_topology_lock();
1865 return (error);
1866 }
1867
1868 struct g_raid_softc *
g_raid_create_node(struct g_class * mp,const char * name,struct g_raid_md_object * md)1869 g_raid_create_node(struct g_class *mp,
1870 const char *name, struct g_raid_md_object *md)
1871 {
1872 struct g_raid_softc *sc;
1873 struct g_geom *gp;
1874 int error;
1875
1876 g_topology_assert();
1877 G_RAID_DEBUG(1, "Creating array %s.", name);
1878
1879 gp = g_new_geomf(mp, "%s", name);
1880 sc = malloc(sizeof(*sc), M_RAID, M_WAITOK | M_ZERO);
1881 gp->start = g_raid_start;
1882 gp->orphan = g_raid_orphan;
1883 gp->access = g_raid_access;
1884 gp->dumpconf = g_raid_dumpconf;
1885
1886 sc->sc_md = md;
1887 sc->sc_geom = gp;
1888 sc->sc_flags = 0;
1889 TAILQ_INIT(&sc->sc_volumes);
1890 TAILQ_INIT(&sc->sc_disks);
1891 sx_init(&sc->sc_lock, "graid:lock");
1892 mtx_init(&sc->sc_queue_mtx, "graid:queue", NULL, MTX_DEF);
1893 TAILQ_INIT(&sc->sc_events);
1894 bioq_init(&sc->sc_queue);
1895 gp->softc = sc;
1896 error = kproc_create(g_raid_worker, sc, &sc->sc_worker, 0, 0,
1897 "g_raid %s", name);
1898 if (error != 0) {
1899 G_RAID_DEBUG(0, "Cannot create kernel thread for %s.", name);
1900 mtx_destroy(&sc->sc_queue_mtx);
1901 sx_destroy(&sc->sc_lock);
1902 g_destroy_geom(sc->sc_geom);
1903 free(sc, M_RAID);
1904 return (NULL);
1905 }
1906
1907 G_RAID_DEBUG1(0, sc, "Array %s created.", name);
1908 return (sc);
1909 }
1910
1911 struct g_raid_volume *
g_raid_create_volume(struct g_raid_softc * sc,const char * name,int id)1912 g_raid_create_volume(struct g_raid_softc *sc, const char *name, int id)
1913 {
1914 struct g_raid_volume *vol, *vol1;
1915 int i;
1916
1917 G_RAID_DEBUG1(1, sc, "Creating volume %s.", name);
1918 vol = malloc(sizeof(*vol), M_RAID, M_WAITOK | M_ZERO);
1919 vol->v_softc = sc;
1920 strlcpy(vol->v_name, name, G_RAID_MAX_VOLUMENAME);
1921 vol->v_state = G_RAID_VOLUME_S_STARTING;
1922 vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
1923 vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_UNKNOWN;
1924 vol->v_rotate_parity = 1;
1925 bioq_init(&vol->v_inflight);
1926 bioq_init(&vol->v_locked);
1927 LIST_INIT(&vol->v_locks);
1928 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
1929 vol->v_subdisks[i].sd_softc = sc;
1930 vol->v_subdisks[i].sd_volume = vol;
1931 vol->v_subdisks[i].sd_pos = i;
1932 vol->v_subdisks[i].sd_state = G_RAID_DISK_S_NONE;
1933 }
1934
1935 /* Find free ID for this volume. */
1936 g_topology_lock();
1937 vol1 = vol;
1938 if (id >= 0) {
1939 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1940 if (vol1->v_global_id == id)
1941 break;
1942 }
1943 }
1944 if (vol1 != NULL) {
1945 for (id = 0; ; id++) {
1946 LIST_FOREACH(vol1, &g_raid_volumes, v_global_next) {
1947 if (vol1->v_global_id == id)
1948 break;
1949 }
1950 if (vol1 == NULL)
1951 break;
1952 }
1953 }
1954 vol->v_global_id = id;
1955 LIST_INSERT_HEAD(&g_raid_volumes, vol, v_global_next);
1956 g_topology_unlock();
1957
1958 /* Delay root mounting. */
1959 vol->v_rootmount = root_mount_hold("GRAID");
1960 G_RAID_DEBUG1(1, sc, "root_mount_hold %p", vol->v_rootmount);
1961 vol->v_starting = 1;
1962 TAILQ_INSERT_TAIL(&sc->sc_volumes, vol, v_next);
1963 return (vol);
1964 }
1965
1966 struct g_raid_disk *
g_raid_create_disk(struct g_raid_softc * sc)1967 g_raid_create_disk(struct g_raid_softc *sc)
1968 {
1969 struct g_raid_disk *disk;
1970
1971 G_RAID_DEBUG1(1, sc, "Creating disk.");
1972 disk = malloc(sizeof(*disk), M_RAID, M_WAITOK | M_ZERO);
1973 disk->d_softc = sc;
1974 disk->d_state = G_RAID_DISK_S_NONE;
1975 TAILQ_INIT(&disk->d_subdisks);
1976 TAILQ_INSERT_TAIL(&sc->sc_disks, disk, d_next);
1977 return (disk);
1978 }
1979
g_raid_start_volume(struct g_raid_volume * vol)1980 int g_raid_start_volume(struct g_raid_volume *vol)
1981 {
1982 struct g_raid_tr_class *class;
1983 struct g_raid_tr_object *obj;
1984 int status;
1985
1986 G_RAID_DEBUG1(2, vol->v_softc, "Starting volume %s.", vol->v_name);
1987 LIST_FOREACH(class, &g_raid_tr_classes, trc_list) {
1988 if (!class->trc_enable)
1989 continue;
1990 G_RAID_DEBUG1(2, vol->v_softc,
1991 "Tasting volume %s for %s transformation.",
1992 vol->v_name, class->name);
1993 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
1994 M_WAITOK);
1995 obj->tro_class = class;
1996 obj->tro_volume = vol;
1997 status = G_RAID_TR_TASTE(obj, vol);
1998 if (status != G_RAID_TR_TASTE_FAIL)
1999 break;
2000 kobj_delete((kobj_t)obj, M_RAID);
2001 }
2002 if (class == NULL) {
2003 G_RAID_DEBUG1(0, vol->v_softc,
2004 "No transformation module found for %s.",
2005 vol->v_name);
2006 vol->v_tr = NULL;
2007 g_raid_change_volume_state(vol, G_RAID_VOLUME_S_UNSUPPORTED);
2008 g_raid_event_send(vol, G_RAID_VOLUME_E_DOWN,
2009 G_RAID_EVENT_VOLUME);
2010 return (-1);
2011 }
2012 G_RAID_DEBUG1(2, vol->v_softc,
2013 "Transformation module %s chosen for %s.",
2014 class->name, vol->v_name);
2015 vol->v_tr = obj;
2016 return (0);
2017 }
2018
2019 int
g_raid_destroy_node(struct g_raid_softc * sc,int worker)2020 g_raid_destroy_node(struct g_raid_softc *sc, int worker)
2021 {
2022 struct g_raid_volume *vol, *tmpv;
2023 struct g_raid_disk *disk, *tmpd;
2024 int error = 0;
2025
2026 sc->sc_stopping = G_RAID_DESTROY_HARD;
2027 TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tmpv) {
2028 if (g_raid_destroy_volume(vol))
2029 error = EBUSY;
2030 }
2031 if (error)
2032 return (error);
2033 TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tmpd) {
2034 if (g_raid_destroy_disk(disk))
2035 error = EBUSY;
2036 }
2037 if (error)
2038 return (error);
2039 if (sc->sc_md) {
2040 G_RAID_MD_FREE(sc->sc_md);
2041 kobj_delete((kobj_t)sc->sc_md, M_RAID);
2042 sc->sc_md = NULL;
2043 }
2044 if (sc->sc_geom != NULL) {
2045 G_RAID_DEBUG1(0, sc, "Array %s destroyed.", sc->sc_name);
2046 g_topology_lock();
2047 sc->sc_geom->softc = NULL;
2048 g_wither_geom(sc->sc_geom, ENXIO);
2049 g_topology_unlock();
2050 sc->sc_geom = NULL;
2051 } else
2052 G_RAID_DEBUG(1, "Array destroyed.");
2053 if (worker) {
2054 g_raid_event_cancel(sc, sc);
2055 mtx_destroy(&sc->sc_queue_mtx);
2056 sx_xunlock(&sc->sc_lock);
2057 sx_destroy(&sc->sc_lock);
2058 wakeup(&sc->sc_stopping);
2059 free(sc, M_RAID);
2060 curthread->td_pflags &= ~TDP_GEOM;
2061 G_RAID_DEBUG(1, "Thread exiting.");
2062 kproc_exit(0);
2063 } else {
2064 /* Wake up worker to make it selfdestruct. */
2065 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2066 }
2067 return (0);
2068 }
2069
2070 int
g_raid_destroy_volume(struct g_raid_volume * vol)2071 g_raid_destroy_volume(struct g_raid_volume *vol)
2072 {
2073 struct g_raid_softc *sc;
2074 struct g_raid_disk *disk;
2075 int i;
2076
2077 sc = vol->v_softc;
2078 G_RAID_DEBUG1(2, sc, "Destroying volume %s.", vol->v_name);
2079 vol->v_stopping = 1;
2080 if (vol->v_state != G_RAID_VOLUME_S_STOPPED) {
2081 if (vol->v_tr) {
2082 G_RAID_TR_STOP(vol->v_tr);
2083 return (EBUSY);
2084 } else
2085 vol->v_state = G_RAID_VOLUME_S_STOPPED;
2086 }
2087 if (g_raid_event_check(sc, vol) != 0)
2088 return (EBUSY);
2089 if (vol->v_provider != NULL)
2090 return (EBUSY);
2091 if (vol->v_provider_open != 0)
2092 return (EBUSY);
2093 if (vol->v_tr) {
2094 G_RAID_TR_FREE(vol->v_tr);
2095 kobj_delete((kobj_t)vol->v_tr, M_RAID);
2096 vol->v_tr = NULL;
2097 }
2098 if (vol->v_rootmount)
2099 root_mount_rel(vol->v_rootmount);
2100 g_topology_lock();
2101 LIST_REMOVE(vol, v_global_next);
2102 g_topology_unlock();
2103 TAILQ_REMOVE(&sc->sc_volumes, vol, v_next);
2104 for (i = 0; i < G_RAID_MAX_SUBDISKS; i++) {
2105 g_raid_event_cancel(sc, &vol->v_subdisks[i]);
2106 disk = vol->v_subdisks[i].sd_disk;
2107 if (disk == NULL)
2108 continue;
2109 TAILQ_REMOVE(&disk->d_subdisks, &vol->v_subdisks[i], sd_next);
2110 }
2111 G_RAID_DEBUG1(2, sc, "Volume %s destroyed.", vol->v_name);
2112 if (sc->sc_md)
2113 G_RAID_MD_FREE_VOLUME(sc->sc_md, vol);
2114 g_raid_event_cancel(sc, vol);
2115 free(vol, M_RAID);
2116 if (sc->sc_stopping == G_RAID_DESTROY_HARD) {
2117 /* Wake up worker to let it selfdestruct. */
2118 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2119 }
2120 return (0);
2121 }
2122
2123 int
g_raid_destroy_disk(struct g_raid_disk * disk)2124 g_raid_destroy_disk(struct g_raid_disk *disk)
2125 {
2126 struct g_raid_softc *sc;
2127 struct g_raid_subdisk *sd, *tmp;
2128
2129 sc = disk->d_softc;
2130 G_RAID_DEBUG1(2, sc, "Destroying disk.");
2131 if (disk->d_consumer) {
2132 g_raid_kill_consumer(sc, disk->d_consumer);
2133 disk->d_consumer = NULL;
2134 }
2135 TAILQ_FOREACH_SAFE(sd, &disk->d_subdisks, sd_next, tmp) {
2136 g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_NONE);
2137 g_raid_event_send(sd, G_RAID_SUBDISK_E_DISCONNECTED,
2138 G_RAID_EVENT_SUBDISK);
2139 TAILQ_REMOVE(&disk->d_subdisks, sd, sd_next);
2140 sd->sd_disk = NULL;
2141 }
2142 TAILQ_REMOVE(&sc->sc_disks, disk, d_next);
2143 if (sc->sc_md)
2144 G_RAID_MD_FREE_DISK(sc->sc_md, disk);
2145 g_raid_event_cancel(sc, disk);
2146 free(disk, M_RAID);
2147 return (0);
2148 }
2149
2150 int
g_raid_destroy(struct g_raid_softc * sc,int how)2151 g_raid_destroy(struct g_raid_softc *sc, int how)
2152 {
2153 int error, opens;
2154
2155 g_topology_assert_not();
2156 if (sc == NULL)
2157 return (ENXIO);
2158 sx_assert(&sc->sc_lock, SX_XLOCKED);
2159
2160 /* Count open volumes. */
2161 opens = g_raid_nopens(sc);
2162
2163 /* React on some opened volumes. */
2164 if (opens > 0) {
2165 switch (how) {
2166 case G_RAID_DESTROY_SOFT:
2167 G_RAID_DEBUG1(1, sc,
2168 "%d volumes are still open.",
2169 opens);
2170 sx_xunlock(&sc->sc_lock);
2171 return (EBUSY);
2172 case G_RAID_DESTROY_DELAYED:
2173 G_RAID_DEBUG1(1, sc,
2174 "Array will be destroyed on last close.");
2175 sc->sc_stopping = G_RAID_DESTROY_DELAYED;
2176 sx_xunlock(&sc->sc_lock);
2177 return (EBUSY);
2178 case G_RAID_DESTROY_HARD:
2179 G_RAID_DEBUG1(1, sc,
2180 "%d volumes are still open.",
2181 opens);
2182 }
2183 }
2184
2185 /* Mark node for destruction. */
2186 sc->sc_stopping = G_RAID_DESTROY_HARD;
2187 /* Wake up worker to let it selfdestruct. */
2188 g_raid_event_send(sc, G_RAID_NODE_E_WAKE, 0);
2189 /* Sleep until node destroyed. */
2190 error = sx_sleep(&sc->sc_stopping, &sc->sc_lock,
2191 PRIBIO | PDROP, "r:destroy", hz * 3);
2192 return (error == EWOULDBLOCK ? EBUSY : 0);
2193 }
2194
2195 static void
g_raid_taste_orphan(struct g_consumer * cp)2196 g_raid_taste_orphan(struct g_consumer *cp)
2197 {
2198
2199 KASSERT(1 == 0, ("%s called while tasting %s.", __func__,
2200 cp->provider->name));
2201 }
2202
2203 static struct g_geom *
g_raid_taste(struct g_class * mp,struct g_provider * pp,int flags __unused)2204 g_raid_taste(struct g_class *mp, struct g_provider *pp, int flags __unused)
2205 {
2206 struct g_consumer *cp;
2207 struct g_geom *gp, *geom;
2208 struct g_raid_md_class *class;
2209 struct g_raid_md_object *obj;
2210 int status;
2211
2212 g_topology_assert();
2213 g_trace(G_T_TOPOLOGY, "%s(%s, %s)", __func__, mp->name, pp->name);
2214 if (!g_raid_enable)
2215 return (NULL);
2216 G_RAID_DEBUG(2, "Tasting provider %s.", pp->name);
2217
2218 geom = NULL;
2219 status = G_RAID_MD_TASTE_FAIL;
2220 gp = g_new_geomf(mp, "raid:taste");
2221 /*
2222 * This orphan function should be never called.
2223 */
2224 gp->orphan = g_raid_taste_orphan;
2225 cp = g_new_consumer(gp);
2226 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2227 if (g_attach(cp, pp) != 0)
2228 goto ofail2;
2229 if (g_access(cp, 1, 0, 0) != 0)
2230 goto ofail;
2231
2232 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2233 if (!class->mdc_enable)
2234 continue;
2235 G_RAID_DEBUG(2, "Tasting provider %s for %s metadata.",
2236 pp->name, class->name);
2237 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2238 M_WAITOK);
2239 obj->mdo_class = class;
2240 status = G_RAID_MD_TASTE(obj, mp, cp, &geom);
2241 if (status != G_RAID_MD_TASTE_NEW)
2242 kobj_delete((kobj_t)obj, M_RAID);
2243 if (status != G_RAID_MD_TASTE_FAIL)
2244 break;
2245 }
2246
2247 if (status == G_RAID_MD_TASTE_FAIL)
2248 (void)g_access(cp, -1, 0, 0);
2249 ofail:
2250 g_detach(cp);
2251 ofail2:
2252 g_destroy_consumer(cp);
2253 g_destroy_geom(gp);
2254 G_RAID_DEBUG(2, "Tasting provider %s done.", pp->name);
2255 return (geom);
2256 }
2257
2258 int
g_raid_create_node_format(const char * format,struct gctl_req * req,struct g_geom ** gp)2259 g_raid_create_node_format(const char *format, struct gctl_req *req,
2260 struct g_geom **gp)
2261 {
2262 struct g_raid_md_class *class;
2263 struct g_raid_md_object *obj;
2264 int status;
2265
2266 G_RAID_DEBUG(2, "Creating array for %s metadata.", format);
2267 LIST_FOREACH(class, &g_raid_md_classes, mdc_list) {
2268 if (strcasecmp(class->name, format) == 0)
2269 break;
2270 }
2271 if (class == NULL) {
2272 G_RAID_DEBUG(1, "No support for %s metadata.", format);
2273 return (G_RAID_MD_TASTE_FAIL);
2274 }
2275 obj = (void *)kobj_create((kobj_class_t)class, M_RAID,
2276 M_WAITOK);
2277 obj->mdo_class = class;
2278 status = G_RAID_MD_CREATE_REQ(obj, &g_raid_class, req, gp);
2279 if (status != G_RAID_MD_TASTE_NEW)
2280 kobj_delete((kobj_t)obj, M_RAID);
2281 return (status);
2282 }
2283
2284 static int
g_raid_destroy_geom(struct gctl_req * req __unused,struct g_class * mp __unused,struct g_geom * gp)2285 g_raid_destroy_geom(struct gctl_req *req __unused,
2286 struct g_class *mp __unused, struct g_geom *gp)
2287 {
2288 struct g_raid_softc *sc;
2289 int error;
2290
2291 g_topology_unlock();
2292 sc = gp->softc;
2293 sx_xlock(&sc->sc_lock);
2294 g_cancel_event(sc);
2295 error = g_raid_destroy(gp->softc, G_RAID_DESTROY_SOFT);
2296 g_topology_lock();
2297 return (error);
2298 }
2299
g_raid_write_metadata(struct g_raid_softc * sc,struct g_raid_volume * vol,struct g_raid_subdisk * sd,struct g_raid_disk * disk)2300 void g_raid_write_metadata(struct g_raid_softc *sc, struct g_raid_volume *vol,
2301 struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2302 {
2303
2304 if (sc->sc_stopping == G_RAID_DESTROY_HARD)
2305 return;
2306 if (sc->sc_md)
2307 G_RAID_MD_WRITE(sc->sc_md, vol, sd, disk);
2308 }
2309
g_raid_fail_disk(struct g_raid_softc * sc,struct g_raid_subdisk * sd,struct g_raid_disk * disk)2310 void g_raid_fail_disk(struct g_raid_softc *sc,
2311 struct g_raid_subdisk *sd, struct g_raid_disk *disk)
2312 {
2313
2314 if (disk == NULL)
2315 disk = sd->sd_disk;
2316 if (disk == NULL) {
2317 G_RAID_DEBUG1(0, sc, "Warning! Fail request to an absent disk!");
2318 return;
2319 }
2320 if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
2321 G_RAID_DEBUG1(0, sc, "Warning! Fail request to a disk in a "
2322 "wrong state (%s)!", g_raid_disk_state2str(disk->d_state));
2323 return;
2324 }
2325 if (sc->sc_md)
2326 G_RAID_MD_FAIL_DISK(sc->sc_md, sd, disk);
2327 }
2328
2329 static void
g_raid_dumpconf(struct sbuf * sb,const char * indent,struct g_geom * gp,struct g_consumer * cp,struct g_provider * pp)2330 g_raid_dumpconf(struct sbuf *sb, const char *indent, struct g_geom *gp,
2331 struct g_consumer *cp, struct g_provider *pp)
2332 {
2333 struct g_raid_softc *sc;
2334 struct g_raid_volume *vol;
2335 struct g_raid_subdisk *sd;
2336 struct g_raid_disk *disk;
2337 int i, s;
2338
2339 g_topology_assert();
2340
2341 sc = gp->softc;
2342 if (sc == NULL)
2343 return;
2344 if (pp != NULL) {
2345 vol = pp->private;
2346 g_topology_unlock();
2347 sx_xlock(&sc->sc_lock);
2348 sbuf_printf(sb, "%s<descr>%s %s volume</descr>\n", indent,
2349 sc->sc_md->mdo_class->name,
2350 g_raid_volume_level2str(vol->v_raid_level,
2351 vol->v_raid_level_qualifier));
2352 sbuf_printf(sb, "%s<Label>%s</Label>\n", indent,
2353 vol->v_name);
2354 sbuf_printf(sb, "%s<RAIDLevel>%s</RAIDLevel>\n", indent,
2355 g_raid_volume_level2str(vol->v_raid_level,
2356 vol->v_raid_level_qualifier));
2357 sbuf_printf(sb,
2358 "%s<Transformation>%s</Transformation>\n", indent,
2359 vol->v_tr ? vol->v_tr->tro_class->name : "NONE");
2360 sbuf_printf(sb, "%s<Components>%u</Components>\n", indent,
2361 vol->v_disks_count);
2362 sbuf_printf(sb, "%s<Strip>%u</Strip>\n", indent,
2363 vol->v_strip_size);
2364 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2365 g_raid_volume_state2str(vol->v_state));
2366 sbuf_printf(sb, "%s<Dirty>%s</Dirty>\n", indent,
2367 vol->v_dirty ? "Yes" : "No");
2368 sbuf_printf(sb, "%s<Subdisks>", indent);
2369 for (i = 0; i < vol->v_disks_count; i++) {
2370 sd = &vol->v_subdisks[i];
2371 if (sd->sd_disk != NULL &&
2372 sd->sd_disk->d_consumer != NULL) {
2373 sbuf_printf(sb, "%s ",
2374 g_raid_get_diskname(sd->sd_disk));
2375 } else {
2376 sbuf_cat(sb, "NONE ");
2377 }
2378 sbuf_printf(sb, "(%s",
2379 g_raid_subdisk_state2str(sd->sd_state));
2380 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2381 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2382 sbuf_printf(sb, " %d%%",
2383 (int)(sd->sd_rebuild_pos * 100 /
2384 sd->sd_size));
2385 }
2386 sbuf_cat(sb, ")");
2387 if (i + 1 < vol->v_disks_count)
2388 sbuf_cat(sb, ", ");
2389 }
2390 sbuf_cat(sb, "</Subdisks>\n");
2391 sx_xunlock(&sc->sc_lock);
2392 g_topology_lock();
2393 } else if (cp != NULL) {
2394 disk = cp->private;
2395 if (disk == NULL)
2396 return;
2397 g_topology_unlock();
2398 sx_xlock(&sc->sc_lock);
2399 sbuf_printf(sb, "%s<State>%s", indent,
2400 g_raid_disk_state2str(disk->d_state));
2401 if (!TAILQ_EMPTY(&disk->d_subdisks)) {
2402 sbuf_cat(sb, " (");
2403 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2404 sbuf_printf(sb, "%s",
2405 g_raid_subdisk_state2str(sd->sd_state));
2406 if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
2407 sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
2408 sbuf_printf(sb, " %d%%",
2409 (int)(sd->sd_rebuild_pos * 100 /
2410 sd->sd_size));
2411 }
2412 if (TAILQ_NEXT(sd, sd_next))
2413 sbuf_cat(sb, ", ");
2414 }
2415 sbuf_cat(sb, ")");
2416 }
2417 sbuf_cat(sb, "</State>\n");
2418 sbuf_printf(sb, "%s<Subdisks>", indent);
2419 TAILQ_FOREACH(sd, &disk->d_subdisks, sd_next) {
2420 sbuf_printf(sb, "r%d(%s):%d@%ju",
2421 sd->sd_volume->v_global_id,
2422 sd->sd_volume->v_name,
2423 sd->sd_pos, (uintmax_t)sd->sd_offset);
2424 if (TAILQ_NEXT(sd, sd_next))
2425 sbuf_cat(sb, ", ");
2426 }
2427 sbuf_cat(sb, "</Subdisks>\n");
2428 sbuf_printf(sb, "%s<ReadErrors>%d</ReadErrors>\n", indent,
2429 disk->d_read_errs);
2430 sx_xunlock(&sc->sc_lock);
2431 g_topology_lock();
2432 } else {
2433 g_topology_unlock();
2434 sx_xlock(&sc->sc_lock);
2435 if (sc->sc_md) {
2436 sbuf_printf(sb, "%s<Metadata>%s</Metadata>\n", indent,
2437 sc->sc_md->mdo_class->name);
2438 }
2439 if (!TAILQ_EMPTY(&sc->sc_volumes)) {
2440 s = 0xff;
2441 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
2442 if (vol->v_state < s)
2443 s = vol->v_state;
2444 }
2445 sbuf_printf(sb, "%s<State>%s</State>\n", indent,
2446 g_raid_volume_state2str(s));
2447 }
2448 sx_xunlock(&sc->sc_lock);
2449 g_topology_lock();
2450 }
2451 }
2452
2453 static void
g_raid_shutdown_post_sync(void * arg,int howto)2454 g_raid_shutdown_post_sync(void *arg, int howto)
2455 {
2456 struct g_class *mp;
2457 struct g_geom *gp, *gp2;
2458 struct g_raid_softc *sc;
2459 struct g_raid_volume *vol;
2460
2461 if ((howto & RB_NOSYNC) != 0)
2462 return;
2463
2464 mp = arg;
2465 g_topology_lock();
2466 g_raid_shutdown = 1;
2467 LIST_FOREACH_SAFE(gp, &mp->geom, geom, gp2) {
2468 if ((sc = gp->softc) == NULL)
2469 continue;
2470 g_topology_unlock();
2471 sx_xlock(&sc->sc_lock);
2472 TAILQ_FOREACH(vol, &sc->sc_volumes, v_next)
2473 g_raid_clean(vol, -1);
2474 g_cancel_event(sc);
2475 g_raid_destroy(sc, G_RAID_DESTROY_DELAYED);
2476 g_topology_lock();
2477 }
2478 g_topology_unlock();
2479 }
2480
2481 static void
g_raid_init(struct g_class * mp)2482 g_raid_init(struct g_class *mp)
2483 {
2484
2485 g_raid_post_sync = EVENTHANDLER_REGISTER(shutdown_post_sync,
2486 g_raid_shutdown_post_sync, mp, SHUTDOWN_PRI_FIRST);
2487 if (g_raid_post_sync == NULL)
2488 G_RAID_DEBUG(0, "Warning! Cannot register shutdown event.");
2489 g_raid_started = 1;
2490 }
2491
2492 static void
g_raid_fini(struct g_class * mp)2493 g_raid_fini(struct g_class *mp)
2494 {
2495
2496 if (g_raid_post_sync != NULL)
2497 EVENTHANDLER_DEREGISTER(shutdown_post_sync, g_raid_post_sync);
2498 g_raid_started = 0;
2499 }
2500
2501 int
g_raid_md_modevent(module_t mod,int type,void * arg)2502 g_raid_md_modevent(module_t mod, int type, void *arg)
2503 {
2504 struct g_raid_md_class *class, *c, *nc;
2505 int error;
2506
2507 error = 0;
2508 class = arg;
2509 switch (type) {
2510 case MOD_LOAD:
2511 c = LIST_FIRST(&g_raid_md_classes);
2512 if (c == NULL || c->mdc_priority > class->mdc_priority)
2513 LIST_INSERT_HEAD(&g_raid_md_classes, class, mdc_list);
2514 else {
2515 while ((nc = LIST_NEXT(c, mdc_list)) != NULL &&
2516 nc->mdc_priority < class->mdc_priority)
2517 c = nc;
2518 LIST_INSERT_AFTER(c, class, mdc_list);
2519 }
2520 if (g_raid_started)
2521 g_retaste(&g_raid_class);
2522 break;
2523 case MOD_UNLOAD:
2524 LIST_REMOVE(class, mdc_list);
2525 break;
2526 default:
2527 error = EOPNOTSUPP;
2528 break;
2529 }
2530
2531 return (error);
2532 }
2533
2534 int
g_raid_tr_modevent(module_t mod,int type,void * arg)2535 g_raid_tr_modevent(module_t mod, int type, void *arg)
2536 {
2537 struct g_raid_tr_class *class, *c, *nc;
2538 int error;
2539
2540 error = 0;
2541 class = arg;
2542 switch (type) {
2543 case MOD_LOAD:
2544 c = LIST_FIRST(&g_raid_tr_classes);
2545 if (c == NULL || c->trc_priority > class->trc_priority)
2546 LIST_INSERT_HEAD(&g_raid_tr_classes, class, trc_list);
2547 else {
2548 while ((nc = LIST_NEXT(c, trc_list)) != NULL &&
2549 nc->trc_priority < class->trc_priority)
2550 c = nc;
2551 LIST_INSERT_AFTER(c, class, trc_list);
2552 }
2553 break;
2554 case MOD_UNLOAD:
2555 LIST_REMOVE(class, trc_list);
2556 break;
2557 default:
2558 error = EOPNOTSUPP;
2559 break;
2560 }
2561
2562 return (error);
2563 }
2564
2565 /*
2566 * Use local implementation of DECLARE_GEOM_CLASS(g_raid_class, g_raid)
2567 * to reduce module priority, allowing submodules to register them first.
2568 */
2569 static moduledata_t g_raid_mod = {
2570 "g_raid",
2571 g_modevent,
2572 &g_raid_class
2573 };
2574 DECLARE_MODULE(g_raid, g_raid_mod, SI_SUB_DRIVERS, SI_ORDER_THIRD);
2575 MODULE_VERSION(geom_raid, 0);
2576