1 /*-
2 * Copyright (c) 2014 Andrey V. Elsukov <ae@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <sys/param.h>
28 #include <sys/bio.h>
29 #include <sys/gsb_crc32.h>
30 #include <sys/disklabel.h>
31 #include <sys/endian.h>
32 #include <sys/gpt.h>
33 #include <sys/kernel.h>
34 #include <sys/kobj.h>
35 #include <sys/limits.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/queue.h>
40 #include <sys/sbuf.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <geom/geom.h>
44 #include <geom/geom_int.h>
45 #include <geom/part/g_part.h>
46
47 #include "g_part_if.h"
48
49 FEATURE(geom_part_bsd64, "GEOM partitioning class for 64-bit BSD disklabels");
50
51 /* XXX: move this to sys/disklabel64.h */
52 #define DISKMAGIC64 ((uint32_t)0xc4464c59)
53 #define MAXPARTITIONS64 16
54 #define RESPARTITIONS64 32
55
56 struct disklabel64 {
57 char d_reserved0[512]; /* reserved or unused */
58 uint32_t d_magic; /* the magic number */
59 uint32_t d_crc; /* crc32() d_magic through last part */
60 uint32_t d_align; /* partition alignment requirement */
61 uint32_t d_npartitions; /* number of partitions */
62 struct uuid d_stor_uuid; /* unique uuid for label */
63
64 uint64_t d_total_size; /* total size incl everything (bytes) */
65 uint64_t d_bbase; /* boot area base offset (bytes) */
66 /* boot area is pbase - bbase */
67 uint64_t d_pbase; /* first allocatable offset (bytes) */
68 uint64_t d_pstop; /* last allocatable offset+1 (bytes) */
69 uint64_t d_abase; /* location of backup copy if not 0 */
70
71 u_char d_packname[64];
72 u_char d_reserved[64];
73
74 /*
75 * Note: offsets are relative to the base of the slice, NOT to
76 * d_pbase. Unlike 32 bit disklabels the on-disk format for
77 * a 64 bit disklabel remains slice-relative.
78 *
79 * An uninitialized partition has a p_boffset and p_bsize of 0.
80 *
81 * If p_fstype is not supported for a live partition it is set
82 * to FS_OTHER. This is typically the case when the filesystem
83 * is identified by its uuid.
84 */
85 struct partition64 { /* the partition table */
86 uint64_t p_boffset; /* slice relative offset, in bytes */
87 uint64_t p_bsize; /* size of partition, in bytes */
88 uint8_t p_fstype;
89 uint8_t p_unused01; /* reserved, must be 0 */
90 uint8_t p_unused02; /* reserved, must be 0 */
91 uint8_t p_unused03; /* reserved, must be 0 */
92 uint32_t p_unused04; /* reserved, must be 0 */
93 uint32_t p_unused05; /* reserved, must be 0 */
94 uint32_t p_unused06; /* reserved, must be 0 */
95 struct uuid p_type_uuid;/* mount type as UUID */
96 struct uuid p_stor_uuid;/* unique uuid for storage */
97 } d_partitions[MAXPARTITIONS64];/* actually may be more */
98 };
99
100 struct g_part_bsd64_table {
101 struct g_part_table base;
102
103 uint32_t d_align;
104 uint64_t d_bbase;
105 uint64_t d_abase;
106 struct uuid d_stor_uuid;
107 char d_reserved0[512];
108 u_char d_packname[64];
109 u_char d_reserved[64];
110 };
111
112 struct g_part_bsd64_entry {
113 struct g_part_entry base;
114
115 uint8_t fstype;
116 struct uuid type_uuid;
117 struct uuid stor_uuid;
118 };
119
120 static int g_part_bsd64_add(struct g_part_table *, struct g_part_entry *,
121 struct g_part_parms *);
122 static int g_part_bsd64_bootcode(struct g_part_table *, struct g_part_parms *);
123 static int g_part_bsd64_create(struct g_part_table *, struct g_part_parms *);
124 static int g_part_bsd64_destroy(struct g_part_table *, struct g_part_parms *);
125 static void g_part_bsd64_dumpconf(struct g_part_table *, struct g_part_entry *,
126 struct sbuf *, const char *);
127 static int g_part_bsd64_dumpto(struct g_part_table *, struct g_part_entry *);
128 static int g_part_bsd64_modify(struct g_part_table *, struct g_part_entry *,
129 struct g_part_parms *);
130 static const char *g_part_bsd64_name(struct g_part_table *, struct g_part_entry *,
131 char *, size_t);
132 static int g_part_bsd64_probe(struct g_part_table *, struct g_consumer *);
133 static int g_part_bsd64_read(struct g_part_table *, struct g_consumer *);
134 static const char *g_part_bsd64_type(struct g_part_table *, struct g_part_entry *,
135 char *, size_t);
136 static int g_part_bsd64_write(struct g_part_table *, struct g_consumer *);
137 static int g_part_bsd64_resize(struct g_part_table *, struct g_part_entry *,
138 struct g_part_parms *);
139
140 static kobj_method_t g_part_bsd64_methods[] = {
141 KOBJMETHOD(g_part_add, g_part_bsd64_add),
142 KOBJMETHOD(g_part_bootcode, g_part_bsd64_bootcode),
143 KOBJMETHOD(g_part_create, g_part_bsd64_create),
144 KOBJMETHOD(g_part_destroy, g_part_bsd64_destroy),
145 KOBJMETHOD(g_part_dumpconf, g_part_bsd64_dumpconf),
146 KOBJMETHOD(g_part_dumpto, g_part_bsd64_dumpto),
147 KOBJMETHOD(g_part_modify, g_part_bsd64_modify),
148 KOBJMETHOD(g_part_resize, g_part_bsd64_resize),
149 KOBJMETHOD(g_part_name, g_part_bsd64_name),
150 KOBJMETHOD(g_part_probe, g_part_bsd64_probe),
151 KOBJMETHOD(g_part_read, g_part_bsd64_read),
152 KOBJMETHOD(g_part_type, g_part_bsd64_type),
153 KOBJMETHOD(g_part_write, g_part_bsd64_write),
154 { 0, 0 }
155 };
156
157 static struct g_part_scheme g_part_bsd64_scheme = {
158 "BSD64",
159 g_part_bsd64_methods,
160 sizeof(struct g_part_bsd64_table),
161 .gps_entrysz = sizeof(struct g_part_bsd64_entry),
162 .gps_minent = MAXPARTITIONS64,
163 .gps_defent = MAXPARTITIONS64,
164 .gps_maxent = MAXPARTITIONS64
165 };
166 G_PART_SCHEME_DECLARE(g_part_bsd64);
167 MODULE_VERSION(geom_part_bsd64, 0);
168
169 #define EQUUID(a, b) (memcmp(a, b, sizeof(struct uuid)) == 0)
170 static struct uuid bsd64_uuid_unused = GPT_ENT_TYPE_UNUSED;
171 static struct uuid bsd64_uuid_dfbsd_swap = GPT_ENT_TYPE_DRAGONFLY_SWAP;
172 static struct uuid bsd64_uuid_dfbsd_ufs1 = GPT_ENT_TYPE_DRAGONFLY_UFS1;
173 static struct uuid bsd64_uuid_dfbsd_vinum = GPT_ENT_TYPE_DRAGONFLY_VINUM;
174 static struct uuid bsd64_uuid_dfbsd_ccd = GPT_ENT_TYPE_DRAGONFLY_CCD;
175 static struct uuid bsd64_uuid_dfbsd_legacy = GPT_ENT_TYPE_DRAGONFLY_LEGACY;
176 static struct uuid bsd64_uuid_dfbsd_hammer = GPT_ENT_TYPE_DRAGONFLY_HAMMER;
177 static struct uuid bsd64_uuid_dfbsd_hammer2 = GPT_ENT_TYPE_DRAGONFLY_HAMMER2;
178 static struct uuid bsd64_uuid_freebsd_boot = GPT_ENT_TYPE_FREEBSD_BOOT;
179 static struct uuid bsd64_uuid_freebsd_nandfs = GPT_ENT_TYPE_FREEBSD_NANDFS;
180 static struct uuid bsd64_uuid_freebsd_swap = GPT_ENT_TYPE_FREEBSD_SWAP;
181 static struct uuid bsd64_uuid_freebsd_ufs = GPT_ENT_TYPE_FREEBSD_UFS;
182 static struct uuid bsd64_uuid_freebsd_vinum = GPT_ENT_TYPE_FREEBSD_VINUM;
183 static struct uuid bsd64_uuid_freebsd_zfs = GPT_ENT_TYPE_FREEBSD_ZFS;
184
185 struct bsd64_uuid_alias {
186 struct uuid *uuid;
187 uint8_t fstype;
188 int alias;
189 };
190 static struct bsd64_uuid_alias dfbsd_alias_match[] = {
191 { &bsd64_uuid_dfbsd_swap, FS_SWAP, G_PART_ALIAS_DFBSD_SWAP },
192 { &bsd64_uuid_dfbsd_ufs1, FS_BSDFFS, G_PART_ALIAS_DFBSD_UFS },
193 { &bsd64_uuid_dfbsd_vinum, FS_VINUM, G_PART_ALIAS_DFBSD_VINUM },
194 { &bsd64_uuid_dfbsd_ccd, FS_CCD, G_PART_ALIAS_DFBSD_CCD },
195 { &bsd64_uuid_dfbsd_legacy, FS_OTHER, G_PART_ALIAS_DFBSD_LEGACY },
196 { &bsd64_uuid_dfbsd_hammer, FS_HAMMER, G_PART_ALIAS_DFBSD_HAMMER },
197 { &bsd64_uuid_dfbsd_hammer2, FS_HAMMER2, G_PART_ALIAS_DFBSD_HAMMER2 },
198 { NULL, 0, 0}
199 };
200 static struct bsd64_uuid_alias fbsd_alias_match[] = {
201 { &bsd64_uuid_freebsd_boot, FS_OTHER, G_PART_ALIAS_FREEBSD_BOOT },
202 { &bsd64_uuid_freebsd_swap, FS_OTHER, G_PART_ALIAS_FREEBSD_SWAP },
203 { &bsd64_uuid_freebsd_ufs, FS_OTHER, G_PART_ALIAS_FREEBSD_UFS },
204 { &bsd64_uuid_freebsd_zfs, FS_OTHER, G_PART_ALIAS_FREEBSD_ZFS },
205 { &bsd64_uuid_freebsd_vinum, FS_OTHER, G_PART_ALIAS_FREEBSD_VINUM },
206 { &bsd64_uuid_freebsd_nandfs, FS_OTHER, G_PART_ALIAS_FREEBSD_NANDFS },
207 { NULL, 0, 0}
208 };
209
210 static int
bsd64_parse_type(const char * type,struct g_part_bsd64_entry * entry)211 bsd64_parse_type(const char *type, struct g_part_bsd64_entry *entry)
212 {
213 struct uuid tmp;
214 const struct bsd64_uuid_alias *uap;
215 const char *alias;
216 char *p;
217 long lt;
218 int error;
219
220 if (type[0] == '!') {
221 if (type[1] == '\0')
222 return (EINVAL);
223 lt = strtol(type + 1, &p, 0);
224 /* The type specified as number */
225 if (*p == '\0') {
226 if (lt <= 0 || lt > 255)
227 return (EINVAL);
228 entry->fstype = lt;
229 entry->type_uuid = bsd64_uuid_unused;
230 return (0);
231 }
232 /* The type specified as uuid */
233 error = parse_uuid(type + 1, &tmp);
234 if (error != 0)
235 return (error);
236 if (EQUUID(&tmp, &bsd64_uuid_unused))
237 return (EINVAL);
238 for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
239 if (EQUUID(&tmp, uap->uuid)) {
240 /* Prefer fstype for known uuids */
241 entry->type_uuid = bsd64_uuid_unused;
242 entry->fstype = uap->fstype;
243 return (0);
244 }
245 }
246 entry->type_uuid = tmp;
247 entry->fstype = FS_OTHER;
248 return (0);
249 }
250 /* The type specified as symbolic alias name */
251 for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++) {
252 alias = g_part_alias_name(uap->alias);
253 if (!strcasecmp(type, alias)) {
254 entry->type_uuid = *uap->uuid;
255 entry->fstype = uap->fstype;
256 return (0);
257 }
258 }
259 for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++) {
260 alias = g_part_alias_name(uap->alias);
261 if (!strcasecmp(type, alias)) {
262 entry->type_uuid = bsd64_uuid_unused;
263 entry->fstype = uap->fstype;
264 return (0);
265 }
266 }
267 return (EINVAL);
268 }
269
270 static int
g_part_bsd64_add(struct g_part_table * basetable,struct g_part_entry * baseentry,struct g_part_parms * gpp)271 g_part_bsd64_add(struct g_part_table *basetable, struct g_part_entry *baseentry,
272 struct g_part_parms *gpp)
273 {
274 struct g_part_bsd64_entry *entry;
275
276 if (gpp->gpp_parms & G_PART_PARM_LABEL)
277 return (EINVAL);
278
279 entry = (struct g_part_bsd64_entry *)baseentry;
280 if (bsd64_parse_type(gpp->gpp_type, entry) != 0)
281 return (EINVAL);
282 kern_uuidgen(&entry->stor_uuid, 1);
283 return (0);
284 }
285
286 static int
g_part_bsd64_bootcode(struct g_part_table * basetable,struct g_part_parms * gpp)287 g_part_bsd64_bootcode(struct g_part_table *basetable, struct g_part_parms *gpp)
288 {
289
290 return (EOPNOTSUPP);
291 }
292
293 #define PALIGN_SIZE (1024 * 1024)
294 #define PALIGN_MASK (PALIGN_SIZE - 1)
295 #define BLKSIZE (4 * 1024)
296 #define BOOTSIZE (32 * 1024)
297 #define DALIGN_SIZE (32 * 1024)
298 static int
g_part_bsd64_create(struct g_part_table * basetable,struct g_part_parms * gpp)299 g_part_bsd64_create(struct g_part_table *basetable, struct g_part_parms *gpp)
300 {
301 struct g_part_bsd64_table *table;
302 struct g_part_entry *baseentry;
303 struct g_provider *pp;
304 uint64_t blkmask, pbase;
305 uint32_t blksize, ressize;
306
307 pp = gpp->gpp_provider;
308 if (pp->mediasize < 2* PALIGN_SIZE)
309 return (ENOSPC);
310
311 /*
312 * Use at least 4KB block size. Blksize is stored in the d_align.
313 * XXX: Actually it is used just for calculate d_bbase and used
314 * for better alignment in bsdlabel64(8).
315 */
316 blksize = pp->sectorsize < BLKSIZE ? BLKSIZE: pp->sectorsize;
317 blkmask = blksize - 1;
318 /* Reserve enough space for RESPARTITIONS64 partitions. */
319 ressize = offsetof(struct disklabel64, d_partitions[RESPARTITIONS64]);
320 ressize = (ressize + blkmask) & ~blkmask;
321 /*
322 * Reserve enough space for bootcode and align first allocatable
323 * offset to PALIGN_SIZE.
324 * XXX: Currently DragonFlyBSD has 32KB bootcode, but the size could
325 * be bigger, because it is possible change it (it is equal pbase-bbase)
326 * in the bsdlabel64(8).
327 */
328 pbase = ressize + ((BOOTSIZE + blkmask) & ~blkmask);
329 pbase = (pbase + PALIGN_MASK) & ~PALIGN_MASK;
330 /*
331 * Take physical offset into account and make first allocatable
332 * offset 32KB aligned to the start of the physical disk.
333 * XXX: Actually there are no such restrictions, this is how
334 * DragonFlyBSD behaves.
335 */
336 pbase += DALIGN_SIZE - pp->stripeoffset % DALIGN_SIZE;
337
338 table = (struct g_part_bsd64_table *)basetable;
339 table->d_align = blksize;
340 table->d_bbase = ressize / pp->sectorsize;
341 table->d_abase = ((pp->mediasize - ressize) &
342 ~blkmask) / pp->sectorsize;
343 kern_uuidgen(&table->d_stor_uuid, 1);
344 basetable->gpt_first = pbase / pp->sectorsize;
345 basetable->gpt_last = table->d_abase - 1; /* XXX */
346 /*
347 * Create 'c' partition and make it internal, so user will not be
348 * able use it.
349 */
350 baseentry = g_part_new_entry(basetable, RAW_PART + 1, 0, 0);
351 baseentry->gpe_internal = 1;
352 return (0);
353 }
354
355 static int
g_part_bsd64_destroy(struct g_part_table * basetable,struct g_part_parms * gpp)356 g_part_bsd64_destroy(struct g_part_table *basetable, struct g_part_parms *gpp)
357 {
358 struct g_provider *pp;
359
360 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
361 if (pp->sectorsize > offsetof(struct disklabel64, d_magic))
362 basetable->gpt_smhead |= 1;
363 else
364 basetable->gpt_smhead |= 3;
365 return (0);
366 }
367
368 static void
g_part_bsd64_dumpconf(struct g_part_table * basetable,struct g_part_entry * baseentry,struct sbuf * sb,const char * indent)369 g_part_bsd64_dumpconf(struct g_part_table *basetable,
370 struct g_part_entry *baseentry, struct sbuf *sb, const char *indent)
371 {
372 struct g_part_bsd64_table *table;
373 struct g_part_bsd64_entry *entry;
374 char buf[sizeof(table->d_packname)];
375
376 entry = (struct g_part_bsd64_entry *)baseentry;
377 if (indent == NULL) {
378 /* conftxt: libdisk compatibility */
379 sbuf_printf(sb, " xs BSD64 xt %u", entry->fstype);
380 } else if (entry != NULL) {
381 /* confxml: partition entry information */
382 sbuf_printf(sb, "%s<rawtype>%u</rawtype>\n", indent,
383 entry->fstype);
384 if (!EQUUID(&bsd64_uuid_unused, &entry->type_uuid)) {
385 sbuf_printf(sb, "%s<type_uuid>", indent);
386 sbuf_printf_uuid(sb, &entry->type_uuid);
387 sbuf_cat(sb, "</type_uuid>\n");
388 }
389 sbuf_printf(sb, "%s<stor_uuid>", indent);
390 sbuf_printf_uuid(sb, &entry->stor_uuid);
391 sbuf_cat(sb, "</stor_uuid>\n");
392 } else {
393 /* confxml: scheme information */
394 table = (struct g_part_bsd64_table *)basetable;
395 sbuf_printf(sb, "%s<bootbase>%ju</bootbase>\n", indent,
396 (uintmax_t)table->d_bbase);
397 if (table->d_abase)
398 sbuf_printf(sb, "%s<backupbase>%ju</backupbase>\n",
399 indent, (uintmax_t)table->d_abase);
400 sbuf_printf(sb, "%s<stor_uuid>", indent);
401 sbuf_printf_uuid(sb, &table->d_stor_uuid);
402 sbuf_cat(sb, "</stor_uuid>\n");
403 sbuf_printf(sb, "%s<label>", indent);
404 strncpy(buf, table->d_packname, sizeof(buf) - 1);
405 buf[sizeof(buf) - 1] = '\0';
406 g_conf_cat_escaped(sb, buf);
407 sbuf_cat(sb, "</label>\n");
408 }
409 }
410
411 static int
g_part_bsd64_dumpto(struct g_part_table * table,struct g_part_entry * baseentry)412 g_part_bsd64_dumpto(struct g_part_table *table, struct g_part_entry *baseentry)
413 {
414 struct g_part_bsd64_entry *entry;
415
416 /* Allow dumping to a swap partition. */
417 entry = (struct g_part_bsd64_entry *)baseentry;
418 if (entry->fstype == FS_SWAP ||
419 EQUUID(&entry->type_uuid, &bsd64_uuid_dfbsd_swap) ||
420 EQUUID(&entry->type_uuid, &bsd64_uuid_freebsd_swap))
421 return (1);
422 return (0);
423 }
424
425 static int
g_part_bsd64_modify(struct g_part_table * basetable,struct g_part_entry * baseentry,struct g_part_parms * gpp)426 g_part_bsd64_modify(struct g_part_table *basetable,
427 struct g_part_entry *baseentry, struct g_part_parms *gpp)
428 {
429 struct g_part_bsd64_entry *entry;
430
431 if (gpp->gpp_parms & G_PART_PARM_LABEL)
432 return (EINVAL);
433
434 entry = (struct g_part_bsd64_entry *)baseentry;
435 if (gpp->gpp_parms & G_PART_PARM_TYPE)
436 return (bsd64_parse_type(gpp->gpp_type, entry));
437 return (0);
438 }
439
440 static int
g_part_bsd64_resize(struct g_part_table * basetable,struct g_part_entry * baseentry,struct g_part_parms * gpp)441 g_part_bsd64_resize(struct g_part_table *basetable,
442 struct g_part_entry *baseentry, struct g_part_parms *gpp)
443 {
444 struct g_part_bsd64_table *table;
445 struct g_provider *pp;
446
447 if (baseentry == NULL) {
448 pp = LIST_FIRST(&basetable->gpt_gp->consumer)->provider;
449 table = (struct g_part_bsd64_table *)basetable;
450 table->d_abase =
451 rounddown2(pp->mediasize - table->d_bbase * pp->sectorsize,
452 table->d_align) / pp->sectorsize;
453 basetable->gpt_last = table->d_abase - 1;
454 return (0);
455 }
456 baseentry->gpe_end = baseentry->gpe_start + gpp->gpp_size - 1;
457 return (0);
458 }
459
460 static const char *
g_part_bsd64_name(struct g_part_table * table,struct g_part_entry * baseentry,char * buf,size_t bufsz)461 g_part_bsd64_name(struct g_part_table *table, struct g_part_entry *baseentry,
462 char *buf, size_t bufsz)
463 {
464
465 snprintf(buf, bufsz, "%c", 'a' + baseentry->gpe_index - 1);
466 return (buf);
467 }
468
469 static int
g_part_bsd64_probe(struct g_part_table * table,struct g_consumer * cp)470 g_part_bsd64_probe(struct g_part_table *table, struct g_consumer *cp)
471 {
472 struct g_provider *pp;
473 uint32_t v;
474 int error;
475 u_char *buf;
476
477 pp = cp->provider;
478 if (pp->mediasize < 2 * PALIGN_SIZE)
479 return (ENOSPC);
480 v = rounddown2(pp->sectorsize + offsetof(struct disklabel64, d_magic),
481 pp->sectorsize);
482 buf = g_read_data(cp, 0, v, &error);
483 if (buf == NULL)
484 return (error);
485 v = le32dec(buf + offsetof(struct disklabel64, d_magic));
486 g_free(buf);
487 return (v == DISKMAGIC64 ? G_PART_PROBE_PRI_HIGH: ENXIO);
488 }
489
490 static int
g_part_bsd64_read(struct g_part_table * basetable,struct g_consumer * cp)491 g_part_bsd64_read(struct g_part_table *basetable, struct g_consumer *cp)
492 {
493 struct g_part_bsd64_table *table;
494 struct g_part_bsd64_entry *entry;
495 struct g_part_entry *baseentry;
496 struct g_provider *pp;
497 struct disklabel64 *dlp;
498 uint64_t v64, sz;
499 uint32_t v32;
500 int error, index;
501 u_char *buf;
502
503 pp = cp->provider;
504 table = (struct g_part_bsd64_table *)basetable;
505 v32 = roundup2(sizeof(struct disklabel64), pp->sectorsize);
506 buf = g_read_data(cp, 0, v32, &error);
507 if (buf == NULL)
508 return (error);
509
510 dlp = (struct disklabel64 *)buf;
511 basetable->gpt_entries = le32toh(dlp->d_npartitions);
512 if (basetable->gpt_entries > MAXPARTITIONS64 ||
513 basetable->gpt_entries < 1)
514 goto invalid_label;
515 v32 = le32toh(dlp->d_crc);
516 dlp->d_crc = 0;
517 if (crc32(&dlp->d_magic, offsetof(struct disklabel64,
518 d_partitions[basetable->gpt_entries]) -
519 offsetof(struct disklabel64, d_magic)) != v32)
520 goto invalid_label;
521 table->d_align = le32toh(dlp->d_align);
522 if (table->d_align == 0 || (table->d_align & (pp->sectorsize - 1)))
523 goto invalid_label;
524 if (le64toh(dlp->d_total_size) > pp->mediasize)
525 goto invalid_label;
526 v64 = le64toh(dlp->d_pbase);
527 if (v64 % pp->sectorsize)
528 goto invalid_label;
529 basetable->gpt_first = v64 / pp->sectorsize;
530 v64 = le64toh(dlp->d_pstop);
531 if (v64 % pp->sectorsize)
532 goto invalid_label;
533 basetable->gpt_last = v64 / pp->sectorsize;
534 basetable->gpt_isleaf = 1;
535 v64 = le64toh(dlp->d_bbase);
536 if (v64 % pp->sectorsize)
537 goto invalid_label;
538 table->d_bbase = v64 / pp->sectorsize;
539 v64 = le64toh(dlp->d_abase);
540 if (v64 % pp->sectorsize)
541 goto invalid_label;
542 table->d_abase = v64 / pp->sectorsize;
543 le_uuid_dec(&dlp->d_stor_uuid, &table->d_stor_uuid);
544 for (index = basetable->gpt_entries - 1; index >= 0; index--) {
545 if (index == RAW_PART) {
546 /* Skip 'c' partition. */
547 baseentry = g_part_new_entry(basetable,
548 index + 1, 0, 0);
549 baseentry->gpe_internal = 1;
550 continue;
551 }
552 v64 = le64toh(dlp->d_partitions[index].p_boffset);
553 sz = le64toh(dlp->d_partitions[index].p_bsize);
554 if (sz == 0 && v64 == 0)
555 continue;
556 if (sz == 0 || (v64 % pp->sectorsize) || (sz % pp->sectorsize))
557 goto invalid_label;
558 baseentry = g_part_new_entry(basetable, index + 1,
559 v64 / pp->sectorsize, (v64 + sz) / pp->sectorsize - 1);
560 entry = (struct g_part_bsd64_entry *)baseentry;
561 le_uuid_dec(&dlp->d_partitions[index].p_type_uuid,
562 &entry->type_uuid);
563 le_uuid_dec(&dlp->d_partitions[index].p_stor_uuid,
564 &entry->stor_uuid);
565 entry->fstype = dlp->d_partitions[index].p_fstype;
566 }
567 bcopy(dlp->d_reserved0, table->d_reserved0,
568 sizeof(table->d_reserved0));
569 bcopy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
570 bcopy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
571 g_free(buf);
572 return (0);
573
574 invalid_label:
575 g_free(buf);
576 return (EINVAL);
577 }
578
579 static const char *
g_part_bsd64_type(struct g_part_table * basetable,struct g_part_entry * baseentry,char * buf,size_t bufsz)580 g_part_bsd64_type(struct g_part_table *basetable, struct g_part_entry *baseentry,
581 char *buf, size_t bufsz)
582 {
583 struct g_part_bsd64_entry *entry;
584 struct bsd64_uuid_alias *uap;
585
586 entry = (struct g_part_bsd64_entry *)baseentry;
587 if (entry->fstype != FS_OTHER) {
588 for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
589 if (uap->fstype == entry->fstype)
590 return (g_part_alias_name(uap->alias));
591 } else {
592 for (uap = &fbsd_alias_match[0]; uap->uuid != NULL; uap++)
593 if (EQUUID(uap->uuid, &entry->type_uuid))
594 return (g_part_alias_name(uap->alias));
595 for (uap = &dfbsd_alias_match[0]; uap->uuid != NULL; uap++)
596 if (EQUUID(uap->uuid, &entry->type_uuid))
597 return (g_part_alias_name(uap->alias));
598 }
599 if (EQUUID(&bsd64_uuid_unused, &entry->type_uuid))
600 snprintf(buf, bufsz, "!%d", entry->fstype);
601 else {
602 buf[0] = '!';
603 snprintf_uuid(buf + 1, bufsz - 1, &entry->type_uuid);
604 }
605 return (buf);
606 }
607
608 static int
g_part_bsd64_write(struct g_part_table * basetable,struct g_consumer * cp)609 g_part_bsd64_write(struct g_part_table *basetable, struct g_consumer *cp)
610 {
611 struct g_provider *pp;
612 struct g_part_entry *baseentry;
613 struct g_part_bsd64_entry *entry;
614 struct g_part_bsd64_table *table;
615 struct disklabel64 *dlp;
616 uint32_t v, sz;
617 int error, index;
618
619 pp = cp->provider;
620 table = (struct g_part_bsd64_table *)basetable;
621 sz = roundup2(sizeof(struct disklabel64), pp->sectorsize);
622 dlp = g_malloc(sz, M_WAITOK | M_ZERO);
623
624 memcpy(dlp->d_reserved0, table->d_reserved0,
625 sizeof(table->d_reserved0));
626 memcpy(dlp->d_packname, table->d_packname, sizeof(table->d_packname));
627 memcpy(dlp->d_reserved, table->d_reserved, sizeof(table->d_reserved));
628 le32enc(&dlp->d_magic, DISKMAGIC64);
629 le32enc(&dlp->d_align, table->d_align);
630 le32enc(&dlp->d_npartitions, basetable->gpt_entries);
631 le_uuid_enc(&dlp->d_stor_uuid, &table->d_stor_uuid);
632 le64enc(&dlp->d_total_size, pp->mediasize);
633 le64enc(&dlp->d_bbase, table->d_bbase * pp->sectorsize);
634 le64enc(&dlp->d_pbase, basetable->gpt_first * pp->sectorsize);
635 le64enc(&dlp->d_pstop, basetable->gpt_last * pp->sectorsize);
636 le64enc(&dlp->d_abase, table->d_abase * pp->sectorsize);
637
638 LIST_FOREACH(baseentry, &basetable->gpt_entry, gpe_entry) {
639 if (baseentry->gpe_deleted)
640 continue;
641 index = baseentry->gpe_index - 1;
642 entry = (struct g_part_bsd64_entry *)baseentry;
643 if (index == RAW_PART)
644 continue;
645 le64enc(&dlp->d_partitions[index].p_boffset,
646 baseentry->gpe_start * pp->sectorsize);
647 le64enc(&dlp->d_partitions[index].p_bsize, pp->sectorsize *
648 (baseentry->gpe_end - baseentry->gpe_start + 1));
649 dlp->d_partitions[index].p_fstype = entry->fstype;
650 le_uuid_enc(&dlp->d_partitions[index].p_type_uuid,
651 &entry->type_uuid);
652 le_uuid_enc(&dlp->d_partitions[index].p_stor_uuid,
653 &entry->stor_uuid);
654 }
655 /* Calculate checksum. */
656 v = offsetof(struct disklabel64,
657 d_partitions[basetable->gpt_entries]) -
658 offsetof(struct disklabel64, d_magic);
659 le32enc(&dlp->d_crc, crc32(&dlp->d_magic, v));
660 error = g_write_data(cp, 0, dlp, sz);
661 g_free(dlp);
662 return (error);
663 }
664