1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8
9 #include "i915_reg.h"
10 #include "intel_atomic.h"
11 #include "intel_crtc.h"
12 #include "intel_cx0_phy.h"
13 #include "intel_de.h"
14 #include "intel_display.h"
15 #include "intel_display_types.h"
16 #include "intel_dpio_phy.h"
17 #include "intel_dpll.h"
18 #include "intel_lvds.h"
19 #include "intel_lvds_regs.h"
20 #include "intel_panel.h"
21 #include "intel_pps.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_dpio_phy_regs.h"
24 #include "vlv_sideband.h"
25
26 struct intel_dpll_funcs {
27 int (*crtc_compute_clock)(struct intel_atomic_state *state,
28 struct intel_crtc *crtc);
29 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
30 struct intel_crtc *crtc);
31 };
32
33 struct intel_limit {
34 struct {
35 int min, max;
36 } dot, vco, n, m, m1, m2, p, p1;
37
38 struct {
39 int dot_limit;
40 int p2_slow, p2_fast;
41 } p2;
42 };
43 static const struct intel_limit intel_limits_i8xx_dac = {
44 .dot = { .min = 25000, .max = 350000 },
45 .vco = { .min = 908000, .max = 1512000 },
46 .n = { .min = 2, .max = 16 },
47 .m = { .min = 96, .max = 140 },
48 .m1 = { .min = 18, .max = 26 },
49 .m2 = { .min = 6, .max = 16 },
50 .p = { .min = 4, .max = 128 },
51 .p1 = { .min = 2, .max = 33 },
52 .p2 = { .dot_limit = 165000,
53 .p2_slow = 4, .p2_fast = 2 },
54 };
55
56 static const struct intel_limit intel_limits_i8xx_dvo = {
57 .dot = { .min = 25000, .max = 350000 },
58 .vco = { .min = 908000, .max = 1512000 },
59 .n = { .min = 2, .max = 16 },
60 .m = { .min = 96, .max = 140 },
61 .m1 = { .min = 18, .max = 26 },
62 .m2 = { .min = 6, .max = 16 },
63 .p = { .min = 4, .max = 128 },
64 .p1 = { .min = 2, .max = 33 },
65 .p2 = { .dot_limit = 165000,
66 .p2_slow = 4, .p2_fast = 4 },
67 };
68
69 static const struct intel_limit intel_limits_i8xx_lvds = {
70 .dot = { .min = 25000, .max = 350000 },
71 .vco = { .min = 908000, .max = 1512000 },
72 .n = { .min = 2, .max = 16 },
73 .m = { .min = 96, .max = 140 },
74 .m1 = { .min = 18, .max = 26 },
75 .m2 = { .min = 6, .max = 16 },
76 .p = { .min = 4, .max = 128 },
77 .p1 = { .min = 1, .max = 6 },
78 .p2 = { .dot_limit = 165000,
79 .p2_slow = 14, .p2_fast = 7 },
80 };
81
82 static const struct intel_limit intel_limits_i9xx_sdvo = {
83 .dot = { .min = 20000, .max = 400000 },
84 .vco = { .min = 1400000, .max = 2800000 },
85 .n = { .min = 1, .max = 6 },
86 .m = { .min = 70, .max = 120 },
87 .m1 = { .min = 8, .max = 18 },
88 .m2 = { .min = 3, .max = 7 },
89 .p = { .min = 5, .max = 80 },
90 .p1 = { .min = 1, .max = 8 },
91 .p2 = { .dot_limit = 200000,
92 .p2_slow = 10, .p2_fast = 5 },
93 };
94
95 static const struct intel_limit intel_limits_i9xx_lvds = {
96 .dot = { .min = 20000, .max = 400000 },
97 .vco = { .min = 1400000, .max = 2800000 },
98 .n = { .min = 1, .max = 6 },
99 .m = { .min = 70, .max = 120 },
100 .m1 = { .min = 8, .max = 18 },
101 .m2 = { .min = 3, .max = 7 },
102 .p = { .min = 7, .max = 98 },
103 .p1 = { .min = 1, .max = 8 },
104 .p2 = { .dot_limit = 112000,
105 .p2_slow = 14, .p2_fast = 7 },
106 };
107
108
109 static const struct intel_limit intel_limits_g4x_sdvo = {
110 .dot = { .min = 25000, .max = 270000 },
111 .vco = { .min = 1750000, .max = 3500000},
112 .n = { .min = 1, .max = 4 },
113 .m = { .min = 104, .max = 138 },
114 .m1 = { .min = 17, .max = 23 },
115 .m2 = { .min = 5, .max = 11 },
116 .p = { .min = 10, .max = 30 },
117 .p1 = { .min = 1, .max = 3},
118 .p2 = { .dot_limit = 270000,
119 .p2_slow = 10,
120 .p2_fast = 10
121 },
122 };
123
124 static const struct intel_limit intel_limits_g4x_hdmi = {
125 .dot = { .min = 22000, .max = 400000 },
126 .vco = { .min = 1750000, .max = 3500000},
127 .n = { .min = 1, .max = 4 },
128 .m = { .min = 104, .max = 138 },
129 .m1 = { .min = 16, .max = 23 },
130 .m2 = { .min = 5, .max = 11 },
131 .p = { .min = 5, .max = 80 },
132 .p1 = { .min = 1, .max = 8},
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 10, .p2_fast = 5 },
135 };
136
137 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
138 .dot = { .min = 20000, .max = 115000 },
139 .vco = { .min = 1750000, .max = 3500000 },
140 .n = { .min = 1, .max = 3 },
141 .m = { .min = 104, .max = 138 },
142 .m1 = { .min = 17, .max = 23 },
143 .m2 = { .min = 5, .max = 11 },
144 .p = { .min = 28, .max = 112 },
145 .p1 = { .min = 2, .max = 8 },
146 .p2 = { .dot_limit = 0,
147 .p2_slow = 14, .p2_fast = 14
148 },
149 };
150
151 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
152 .dot = { .min = 80000, .max = 224000 },
153 .vco = { .min = 1750000, .max = 3500000 },
154 .n = { .min = 1, .max = 3 },
155 .m = { .min = 104, .max = 138 },
156 .m1 = { .min = 17, .max = 23 },
157 .m2 = { .min = 5, .max = 11 },
158 .p = { .min = 14, .max = 42 },
159 .p1 = { .min = 2, .max = 6 },
160 .p2 = { .dot_limit = 0,
161 .p2_slow = 7, .p2_fast = 7
162 },
163 };
164
165 static const struct intel_limit pnv_limits_sdvo = {
166 .dot = { .min = 20000, .max = 400000},
167 .vco = { .min = 1700000, .max = 3500000 },
168 /* Pineview's Ncounter is a ring counter */
169 .n = { .min = 3, .max = 6 },
170 .m = { .min = 2, .max = 256 },
171 /* Pineview only has one combined m divider, which we treat as m2. */
172 .m1 = { .min = 0, .max = 0 },
173 .m2 = { .min = 0, .max = 254 },
174 .p = { .min = 5, .max = 80 },
175 .p1 = { .min = 1, .max = 8 },
176 .p2 = { .dot_limit = 200000,
177 .p2_slow = 10, .p2_fast = 5 },
178 };
179
180 static const struct intel_limit pnv_limits_lvds = {
181 .dot = { .min = 20000, .max = 400000 },
182 .vco = { .min = 1700000, .max = 3500000 },
183 .n = { .min = 3, .max = 6 },
184 .m = { .min = 2, .max = 256 },
185 .m1 = { .min = 0, .max = 0 },
186 .m2 = { .min = 0, .max = 254 },
187 .p = { .min = 7, .max = 112 },
188 .p1 = { .min = 1, .max = 8 },
189 .p2 = { .dot_limit = 112000,
190 .p2_slow = 14, .p2_fast = 14 },
191 };
192
193 /* Ironlake / Sandybridge
194 *
195 * We calculate clock using (register_value + 2) for N/M1/M2, so here
196 * the range value for them is (actual_value - 2).
197 */
198 static const struct intel_limit ilk_limits_dac = {
199 .dot = { .min = 25000, .max = 350000 },
200 .vco = { .min = 1760000, .max = 3510000 },
201 .n = { .min = 1, .max = 5 },
202 .m = { .min = 79, .max = 127 },
203 .m1 = { .min = 12, .max = 22 },
204 .m2 = { .min = 5, .max = 9 },
205 .p = { .min = 5, .max = 80 },
206 .p1 = { .min = 1, .max = 8 },
207 .p2 = { .dot_limit = 225000,
208 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const struct intel_limit ilk_limits_single_lvds = {
212 .dot = { .min = 25000, .max = 350000 },
213 .vco = { .min = 1760000, .max = 3510000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 79, .max = 118 },
216 .m1 = { .min = 12, .max = 22 },
217 .m2 = { .min = 5, .max = 9 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 225000,
221 .p2_slow = 14, .p2_fast = 14 },
222 };
223
224 static const struct intel_limit ilk_limits_dual_lvds = {
225 .dot = { .min = 25000, .max = 350000 },
226 .vco = { .min = 1760000, .max = 3510000 },
227 .n = { .min = 1, .max = 3 },
228 .m = { .min = 79, .max = 127 },
229 .m1 = { .min = 12, .max = 22 },
230 .m2 = { .min = 5, .max = 9 },
231 .p = { .min = 14, .max = 56 },
232 .p1 = { .min = 2, .max = 8 },
233 .p2 = { .dot_limit = 225000,
234 .p2_slow = 7, .p2_fast = 7 },
235 };
236
237 /* LVDS 100mhz refclk limits. */
238 static const struct intel_limit ilk_limits_single_lvds_100m = {
239 .dot = { .min = 25000, .max = 350000 },
240 .vco = { .min = 1760000, .max = 3510000 },
241 .n = { .min = 1, .max = 2 },
242 .m = { .min = 79, .max = 126 },
243 .m1 = { .min = 12, .max = 22 },
244 .m2 = { .min = 5, .max = 9 },
245 .p = { .min = 28, .max = 112 },
246 .p1 = { .min = 2, .max = 8 },
247 .p2 = { .dot_limit = 225000,
248 .p2_slow = 14, .p2_fast = 14 },
249 };
250
251 static const struct intel_limit ilk_limits_dual_lvds_100m = {
252 .dot = { .min = 25000, .max = 350000 },
253 .vco = { .min = 1760000, .max = 3510000 },
254 .n = { .min = 1, .max = 3 },
255 .m = { .min = 79, .max = 126 },
256 .m1 = { .min = 12, .max = 22 },
257 .m2 = { .min = 5, .max = 9 },
258 .p = { .min = 14, .max = 42 },
259 .p1 = { .min = 2, .max = 6 },
260 .p2 = { .dot_limit = 225000,
261 .p2_slow = 7, .p2_fast = 7 },
262 };
263
264 static const struct intel_limit intel_limits_vlv = {
265 /*
266 * These are based on the data rate limits (measured in fast clocks)
267 * since those are the strictest limits we have. The fast
268 * clock and actual rate limits are more relaxed, so checking
269 * them would make no difference.
270 */
271 .dot = { .min = 25000, .max = 270000 },
272 .vco = { .min = 4000000, .max = 6000000 },
273 .n = { .min = 1, .max = 7 },
274 .m1 = { .min = 2, .max = 3 },
275 .m2 = { .min = 11, .max = 156 },
276 .p1 = { .min = 2, .max = 3 },
277 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
278 };
279
280 static const struct intel_limit intel_limits_chv = {
281 /*
282 * These are based on the data rate limits (measured in fast clocks)
283 * since those are the strictest limits we have. The fast
284 * clock and actual rate limits are more relaxed, so checking
285 * them would make no difference.
286 */
287 .dot = { .min = 25000, .max = 540000 },
288 .vco = { .min = 4800000, .max = 6480000 },
289 .n = { .min = 1, .max = 1 },
290 .m1 = { .min = 2, .max = 2 },
291 .m2 = { .min = 24 << 22, .max = 175 << 22 },
292 .p1 = { .min = 2, .max = 4 },
293 .p2 = { .p2_slow = 1, .p2_fast = 14 },
294 };
295
296 static const struct intel_limit intel_limits_bxt = {
297 .dot = { .min = 25000, .max = 594000 },
298 .vco = { .min = 4800000, .max = 6700000 },
299 .n = { .min = 1, .max = 1 },
300 .m1 = { .min = 2, .max = 2 },
301 /* FIXME: find real m2 limits */
302 .m2 = { .min = 2 << 22, .max = 255 << 22 },
303 .p1 = { .min = 2, .max = 4 },
304 .p2 = { .p2_slow = 1, .p2_fast = 20 },
305 };
306
307 /*
308 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
309 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
310 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
311 * The helpers' return value is the rate of the clock that is fed to the
312 * display engine's pipe which can be the above fast dot clock rate or a
313 * divided-down version of it.
314 */
315 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)316 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
317 {
318 clock->m = clock->m2 + 2;
319 clock->p = clock->p1 * clock->p2;
320
321 clock->vco = clock->n == 0 ? 0 :
322 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
323 clock->dot = clock->p == 0 ? 0 :
324 DIV_ROUND_CLOSEST(clock->vco, clock->p);
325
326 return clock->dot;
327 }
328
i9xx_dpll_compute_m(const struct dpll * dpll)329 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
330 {
331 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
332 }
333
i9xx_calc_dpll_params(int refclk,struct dpll * clock)334 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
335 {
336 clock->m = i9xx_dpll_compute_m(clock);
337 clock->p = clock->p1 * clock->p2;
338
339 clock->vco = clock->n + 2 == 0 ? 0 :
340 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
341 clock->dot = clock->p == 0 ? 0 :
342 DIV_ROUND_CLOSEST(clock->vco, clock->p);
343
344 return clock->dot;
345 }
346
vlv_calc_dpll_params(int refclk,struct dpll * clock)347 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
348 {
349 clock->m = clock->m1 * clock->m2;
350 clock->p = clock->p1 * clock->p2 * 5;
351
352 clock->vco = clock->n == 0 ? 0 :
353 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
354 clock->dot = clock->p == 0 ? 0 :
355 DIV_ROUND_CLOSEST(clock->vco, clock->p);
356
357 return clock->dot;
358 }
359
chv_calc_dpll_params(int refclk,struct dpll * clock)360 int chv_calc_dpll_params(int refclk, struct dpll *clock)
361 {
362 clock->m = clock->m1 * clock->m2;
363 clock->p = clock->p1 * clock->p2 * 5;
364
365 clock->vco = clock->n == 0 ? 0 :
366 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
367 clock->dot = clock->p == 0 ? 0 :
368 DIV_ROUND_CLOSEST(clock->vco, clock->p);
369
370 return clock->dot;
371 }
372
i9xx_pll_refclk(const struct intel_crtc_state * crtc_state)373 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state)
374 {
375 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
376 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
377
378 if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
379 return i915->display.vbt.lvds_ssc_freq;
380 else if (HAS_PCH_SPLIT(i915))
381 return 120000;
382 else if (DISPLAY_VER(i915) != 2)
383 return 96000;
384 else
385 return 48000;
386 }
387
i9xx_dpll_get_hw_state(struct intel_crtc * crtc,struct intel_dpll_hw_state * dpll_hw_state)388 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc,
389 struct intel_dpll_hw_state *dpll_hw_state)
390 {
391 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
392 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx;
393
394 if (DISPLAY_VER(dev_priv) >= 4) {
395 u32 tmp;
396
397 /* No way to read it out on pipes B and C */
398 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
399 tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe];
400 else
401 tmp = intel_de_read(dev_priv,
402 DPLL_MD(dev_priv, crtc->pipe));
403
404 hw_state->dpll_md = tmp;
405 }
406
407 hw_state->dpll = intel_de_read(dev_priv, DPLL(dev_priv, crtc->pipe));
408
409 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
410 hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe));
411 hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe));
412 } else {
413 /* Mask out read-only status bits. */
414 hw_state->dpll &= ~(DPLL_LOCK_VLV |
415 DPLL_PORTC_READY_MASK |
416 DPLL_PORTB_READY_MASK);
417 }
418 }
419
420 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc_state * crtc_state)421 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state)
422 {
423 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
424 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
425 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
426 u32 dpll = hw_state->dpll;
427 u32 fp;
428 struct dpll clock;
429 int port_clock;
430 int refclk = i9xx_pll_refclk(crtc_state);
431
432 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
433 fp = hw_state->fp0;
434 else
435 fp = hw_state->fp1;
436
437 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
438 if (IS_PINEVIEW(dev_priv)) {
439 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
440 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
441 } else {
442 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
443 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
444 }
445
446 if (DISPLAY_VER(dev_priv) != 2) {
447 if (IS_PINEVIEW(dev_priv))
448 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
449 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
450 else
451 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
452 DPLL_FPA01_P1_POST_DIV_SHIFT);
453
454 switch (dpll & DPLL_MODE_MASK) {
455 case DPLLB_MODE_DAC_SERIAL:
456 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
457 5 : 10;
458 break;
459 case DPLLB_MODE_LVDS:
460 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
461 7 : 14;
462 break;
463 default:
464 drm_dbg_kms(&dev_priv->drm,
465 "Unknown DPLL mode %08x in programmed "
466 "mode\n", (int)(dpll & DPLL_MODE_MASK));
467 return;
468 }
469
470 if (IS_PINEVIEW(dev_priv))
471 port_clock = pnv_calc_dpll_params(refclk, &clock);
472 else
473 port_clock = i9xx_calc_dpll_params(refclk, &clock);
474 } else {
475 enum pipe lvds_pipe;
476
477 if (IS_I85X(dev_priv) &&
478 intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
479 lvds_pipe == crtc->pipe) {
480 u32 lvds = intel_de_read(dev_priv, LVDS);
481
482 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
483 DPLL_FPA01_P1_POST_DIV_SHIFT);
484
485 if (lvds & LVDS_CLKB_POWER_UP)
486 clock.p2 = 7;
487 else
488 clock.p2 = 14;
489 } else {
490 if (dpll & PLL_P1_DIVIDE_BY_TWO)
491 clock.p1 = 2;
492 else {
493 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
494 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
495 }
496 if (dpll & PLL_P2_DIVIDE_BY_4)
497 clock.p2 = 4;
498 else
499 clock.p2 = 2;
500 }
501
502 port_clock = i9xx_calc_dpll_params(refclk, &clock);
503 }
504
505 /*
506 * This value includes pixel_multiplier. We will use
507 * port_clock to compute adjusted_mode.crtc_clock in the
508 * encoder's get_config() function.
509 */
510 crtc_state->port_clock = port_clock;
511 }
512
vlv_crtc_clock_get(struct intel_crtc_state * crtc_state)513 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state)
514 {
515 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
516 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
517 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
518 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
519 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
520 int refclk = 100000;
521 struct dpll clock;
522 u32 tmp;
523
524 /* In case of DSI, DPLL will not be used */
525 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
526 return;
527
528 vlv_dpio_get(dev_priv);
529 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch));
530 vlv_dpio_put(dev_priv);
531
532 clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp);
533 clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp);
534 clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp);
535 clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp);
536 clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp);
537
538 crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock);
539 }
540
chv_crtc_clock_get(struct intel_crtc_state * crtc_state)541 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state)
542 {
543 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
544 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
545 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
546 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
547 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
548 struct dpll clock;
549 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
550 int refclk = 100000;
551
552 /* In case of DSI, DPLL will not be used */
553 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
554 return;
555
556 vlv_dpio_get(dev_priv);
557 cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch));
558 pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch));
559 pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch));
560 pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch));
561 pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
562 vlv_dpio_put(dev_priv);
563
564 clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
565 clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22;
566 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
567 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2);
568 clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1);
569 clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13);
570 clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13);
571
572 crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock);
573 }
574
575 /*
576 * Returns whether the given set of divisors are valid for a given refclk with
577 * the given connectors.
578 */
intel_pll_is_valid(struct drm_i915_private * dev_priv,const struct intel_limit * limit,const struct dpll * clock)579 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
580 const struct intel_limit *limit,
581 const struct dpll *clock)
582 {
583 if (clock->n < limit->n.min || limit->n.max < clock->n)
584 return false;
585 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
586 return false;
587 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
588 return false;
589 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
590 return false;
591
592 if (!IS_PINEVIEW(dev_priv) &&
593 !IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
594 !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv))
595 if (clock->m1 <= clock->m2)
596 return false;
597
598 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
599 !IS_BROXTON(dev_priv) && !IS_GEMINILAKE(dev_priv)) {
600 if (clock->p < limit->p.min || limit->p.max < clock->p)
601 return false;
602 if (clock->m < limit->m.min || limit->m.max < clock->m)
603 return false;
604 }
605
606 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
607 return false;
608 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
609 * connector, etc., rather than just a single range.
610 */
611 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
612 return false;
613
614 return true;
615 }
616
617 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)618 i9xx_select_p2_div(const struct intel_limit *limit,
619 const struct intel_crtc_state *crtc_state,
620 int target)
621 {
622 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
623
624 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
625 /*
626 * For LVDS just rely on its current settings for dual-channel.
627 * We haven't figured out how to reliably set up different
628 * single/dual channel state, if we even can.
629 */
630 if (intel_is_dual_link_lvds(dev_priv))
631 return limit->p2.p2_fast;
632 else
633 return limit->p2.p2_slow;
634 } else {
635 if (target < limit->p2.dot_limit)
636 return limit->p2.p2_slow;
637 else
638 return limit->p2.p2_fast;
639 }
640 }
641
642 /*
643 * Returns a set of divisors for the desired target clock with the given
644 * refclk, or FALSE.
645 *
646 * Target and reference clocks are specified in kHz.
647 *
648 * If match_clock is provided, then best_clock P divider must match the P
649 * divider from @match_clock used for LVDS downclocking.
650 */
651 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)652 i9xx_find_best_dpll(const struct intel_limit *limit,
653 struct intel_crtc_state *crtc_state,
654 int target, int refclk,
655 const struct dpll *match_clock,
656 struct dpll *best_clock)
657 {
658 struct drm_device *dev = crtc_state->uapi.crtc->dev;
659 struct dpll clock;
660 int err = target;
661
662 memset(best_clock, 0, sizeof(*best_clock));
663
664 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
665
666 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
667 clock.m1++) {
668 for (clock.m2 = limit->m2.min;
669 clock.m2 <= limit->m2.max; clock.m2++) {
670 if (clock.m2 >= clock.m1)
671 break;
672 for (clock.n = limit->n.min;
673 clock.n <= limit->n.max; clock.n++) {
674 for (clock.p1 = limit->p1.min;
675 clock.p1 <= limit->p1.max; clock.p1++) {
676 int this_err;
677
678 i9xx_calc_dpll_params(refclk, &clock);
679 if (!intel_pll_is_valid(to_i915(dev),
680 limit,
681 &clock))
682 continue;
683 if (match_clock &&
684 clock.p != match_clock->p)
685 continue;
686
687 this_err = abs(clock.dot - target);
688 if (this_err < err) {
689 *best_clock = clock;
690 err = this_err;
691 }
692 }
693 }
694 }
695 }
696
697 return (err != target);
698 }
699
700 /*
701 * Returns a set of divisors for the desired target clock with the given
702 * refclk, or FALSE.
703 *
704 * Target and reference clocks are specified in kHz.
705 *
706 * If match_clock is provided, then best_clock P divider must match the P
707 * divider from @match_clock used for LVDS downclocking.
708 */
709 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)710 pnv_find_best_dpll(const struct intel_limit *limit,
711 struct intel_crtc_state *crtc_state,
712 int target, int refclk,
713 const struct dpll *match_clock,
714 struct dpll *best_clock)
715 {
716 struct drm_device *dev = crtc_state->uapi.crtc->dev;
717 struct dpll clock;
718 int err = target;
719
720 memset(best_clock, 0, sizeof(*best_clock));
721
722 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
723
724 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
725 clock.m1++) {
726 for (clock.m2 = limit->m2.min;
727 clock.m2 <= limit->m2.max; clock.m2++) {
728 for (clock.n = limit->n.min;
729 clock.n <= limit->n.max; clock.n++) {
730 for (clock.p1 = limit->p1.min;
731 clock.p1 <= limit->p1.max; clock.p1++) {
732 int this_err;
733
734 pnv_calc_dpll_params(refclk, &clock);
735 if (!intel_pll_is_valid(to_i915(dev),
736 limit,
737 &clock))
738 continue;
739 if (match_clock &&
740 clock.p != match_clock->p)
741 continue;
742
743 this_err = abs(clock.dot - target);
744 if (this_err < err) {
745 *best_clock = clock;
746 err = this_err;
747 }
748 }
749 }
750 }
751 }
752
753 return (err != target);
754 }
755
756 /*
757 * Returns a set of divisors for the desired target clock with the given
758 * refclk, or FALSE.
759 *
760 * Target and reference clocks are specified in kHz.
761 *
762 * If match_clock is provided, then best_clock P divider must match the P
763 * divider from @match_clock used for LVDS downclocking.
764 */
765 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)766 g4x_find_best_dpll(const struct intel_limit *limit,
767 struct intel_crtc_state *crtc_state,
768 int target, int refclk,
769 const struct dpll *match_clock,
770 struct dpll *best_clock)
771 {
772 struct drm_device *dev = crtc_state->uapi.crtc->dev;
773 struct dpll clock;
774 int max_n;
775 bool found = false;
776 /* approximately equals target * 0.00585 */
777 int err_most = (target >> 8) + (target >> 9);
778
779 memset(best_clock, 0, sizeof(*best_clock));
780
781 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
782
783 max_n = limit->n.max;
784 /* based on hardware requirement, prefer smaller n to precision */
785 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
786 /* based on hardware requirement, prefer larger m1,m2 */
787 for (clock.m1 = limit->m1.max;
788 clock.m1 >= limit->m1.min; clock.m1--) {
789 for (clock.m2 = limit->m2.max;
790 clock.m2 >= limit->m2.min; clock.m2--) {
791 for (clock.p1 = limit->p1.max;
792 clock.p1 >= limit->p1.min; clock.p1--) {
793 int this_err;
794
795 i9xx_calc_dpll_params(refclk, &clock);
796 if (!intel_pll_is_valid(to_i915(dev),
797 limit,
798 &clock))
799 continue;
800
801 this_err = abs(clock.dot - target);
802 if (this_err < err_most) {
803 *best_clock = clock;
804 err_most = this_err;
805 max_n = clock.n;
806 found = true;
807 }
808 }
809 }
810 }
811 }
812 return found;
813 }
814
815 /*
816 * Check if the calculated PLL configuration is more optimal compared to the
817 * best configuration and error found so far. Return the calculated error.
818 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)819 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
820 const struct dpll *calculated_clock,
821 const struct dpll *best_clock,
822 unsigned int best_error_ppm,
823 unsigned int *error_ppm)
824 {
825 /*
826 * For CHV ignore the error and consider only the P value.
827 * Prefer a bigger P value based on HW requirements.
828 */
829 if (IS_CHERRYVIEW(to_i915(dev))) {
830 *error_ppm = 0;
831
832 return calculated_clock->p > best_clock->p;
833 }
834
835 if (drm_WARN_ON_ONCE(dev, !target_freq))
836 return false;
837
838 *error_ppm = div_u64(1000000ULL *
839 abs(target_freq - calculated_clock->dot),
840 target_freq);
841 /*
842 * Prefer a better P value over a better (smaller) error if the error
843 * is small. Ensure this preference for future configurations too by
844 * setting the error to 0.
845 */
846 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
847 *error_ppm = 0;
848
849 return true;
850 }
851
852 return *error_ppm + 10 < best_error_ppm;
853 }
854
855 /*
856 * Returns a set of divisors for the desired target clock with the given
857 * refclk, or FALSE.
858 */
859 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)860 vlv_find_best_dpll(const struct intel_limit *limit,
861 struct intel_crtc_state *crtc_state,
862 int target, int refclk,
863 const struct dpll *match_clock,
864 struct dpll *best_clock)
865 {
866 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
867 struct drm_device *dev = crtc->base.dev;
868 struct dpll clock;
869 unsigned int bestppm = 1000000;
870 /* min update 19.2 MHz */
871 int max_n = min(limit->n.max, refclk / 19200);
872 bool found = false;
873
874 memset(best_clock, 0, sizeof(*best_clock));
875
876 /* based on hardware requirement, prefer smaller n to precision */
877 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
878 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
879 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
880 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
881 clock.p = clock.p1 * clock.p2 * 5;
882 /* based on hardware requirement, prefer bigger m1,m2 values */
883 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
884 unsigned int ppm;
885
886 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
887 refclk * clock.m1);
888
889 vlv_calc_dpll_params(refclk, &clock);
890
891 if (!intel_pll_is_valid(to_i915(dev),
892 limit,
893 &clock))
894 continue;
895
896 if (!vlv_PLL_is_optimal(dev, target,
897 &clock,
898 best_clock,
899 bestppm, &ppm))
900 continue;
901
902 *best_clock = clock;
903 bestppm = ppm;
904 found = true;
905 }
906 }
907 }
908 }
909
910 return found;
911 }
912
913 /*
914 * Returns a set of divisors for the desired target clock with the given
915 * refclk, or FALSE.
916 */
917 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,const struct dpll * match_clock,struct dpll * best_clock)918 chv_find_best_dpll(const struct intel_limit *limit,
919 struct intel_crtc_state *crtc_state,
920 int target, int refclk,
921 const struct dpll *match_clock,
922 struct dpll *best_clock)
923 {
924 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
925 struct drm_device *dev = crtc->base.dev;
926 unsigned int best_error_ppm;
927 struct dpll clock;
928 u64 m2;
929 int found = false;
930
931 memset(best_clock, 0, sizeof(*best_clock));
932 best_error_ppm = 1000000;
933
934 /*
935 * Based on hardware doc, the n always set to 1, and m1 always
936 * set to 2. If requires to support 200Mhz refclk, we need to
937 * revisit this because n may not 1 anymore.
938 */
939 clock.n = 1;
940 clock.m1 = 2;
941
942 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
943 for (clock.p2 = limit->p2.p2_fast;
944 clock.p2 >= limit->p2.p2_slow;
945 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
946 unsigned int error_ppm;
947
948 clock.p = clock.p1 * clock.p2 * 5;
949
950 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
951 refclk * clock.m1);
952
953 if (m2 > INT_MAX/clock.m1)
954 continue;
955
956 clock.m2 = m2;
957
958 chv_calc_dpll_params(refclk, &clock);
959
960 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
961 continue;
962
963 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
964 best_error_ppm, &error_ppm))
965 continue;
966
967 *best_clock = clock;
968 best_error_ppm = error_ppm;
969 found = true;
970 }
971 }
972
973 return found;
974 }
975
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,struct dpll * best_clock)976 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
977 struct dpll *best_clock)
978 {
979 const struct intel_limit *limit = &intel_limits_bxt;
980 int refclk = 100000;
981
982 return chv_find_best_dpll(limit, crtc_state,
983 crtc_state->port_clock, refclk,
984 NULL, best_clock);
985 }
986
i9xx_dpll_compute_fp(const struct dpll * dpll)987 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
988 {
989 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
990 }
991
pnv_dpll_compute_fp(const struct dpll * dpll)992 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
993 {
994 return (1 << dpll->n) << 16 | dpll->m2;
995 }
996
i965_dpll_md(const struct intel_crtc_state * crtc_state)997 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state)
998 {
999 return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1000 }
1001
i9xx_dpll(const struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1002 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state,
1003 const struct dpll *clock,
1004 const struct dpll *reduced_clock)
1005 {
1006 struct intel_display *display = to_intel_display(crtc_state);
1007 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1009 u32 dpll;
1010
1011 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1012
1013 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1014 dpll |= DPLLB_MODE_LVDS;
1015 else
1016 dpll |= DPLLB_MODE_DAC_SERIAL;
1017
1018 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
1019 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1020 dpll |= (crtc_state->pixel_multiplier - 1)
1021 << SDVO_MULTIPLIER_SHIFT_HIRES;
1022 }
1023
1024 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1025 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1026 dpll |= DPLL_SDVO_HIGH_SPEED;
1027
1028 if (intel_crtc_has_dp_encoder(crtc_state))
1029 dpll |= DPLL_SDVO_HIGH_SPEED;
1030
1031 /* compute bitmask from p1 value */
1032 if (IS_G4X(dev_priv)) {
1033 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1034 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1035 } else if (IS_PINEVIEW(dev_priv)) {
1036 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1037 WARN_ON(reduced_clock->p1 != clock->p1);
1038 } else {
1039 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1040 WARN_ON(reduced_clock->p1 != clock->p1);
1041 }
1042
1043 switch (clock->p2) {
1044 case 5:
1045 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1046 break;
1047 case 7:
1048 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1049 break;
1050 case 10:
1051 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1052 break;
1053 case 14:
1054 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1055 break;
1056 }
1057 WARN_ON(reduced_clock->p2 != clock->p2);
1058
1059 if (DISPLAY_VER(dev_priv) >= 4)
1060 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1061
1062 if (crtc_state->sdvo_tv_clock)
1063 dpll |= PLL_REF_INPUT_TVCLKINBC;
1064 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1065 intel_panel_use_ssc(display))
1066 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1067 else
1068 dpll |= PLL_REF_INPUT_DREFCLK;
1069
1070 return dpll;
1071 }
1072
i9xx_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1073 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
1074 const struct dpll *clock,
1075 const struct dpll *reduced_clock)
1076 {
1077 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1078 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1079 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1080
1081 if (IS_PINEVIEW(dev_priv)) {
1082 hw_state->fp0 = pnv_dpll_compute_fp(clock);
1083 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock);
1084 } else {
1085 hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1086 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1087 }
1088
1089 hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock);
1090
1091 if (DISPLAY_VER(dev_priv) >= 4)
1092 hw_state->dpll_md = i965_dpll_md(crtc_state);
1093 }
1094
i8xx_dpll(const struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1095 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state,
1096 const struct dpll *clock,
1097 const struct dpll *reduced_clock)
1098 {
1099 struct intel_display *display = to_intel_display(crtc_state);
1100 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1101 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1102 u32 dpll;
1103
1104 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1105
1106 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1107 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1108 } else {
1109 if (clock->p1 == 2)
1110 dpll |= PLL_P1_DIVIDE_BY_TWO;
1111 else
1112 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1113 if (clock->p2 == 4)
1114 dpll |= PLL_P2_DIVIDE_BY_4;
1115 }
1116 WARN_ON(reduced_clock->p1 != clock->p1);
1117 WARN_ON(reduced_clock->p2 != clock->p2);
1118
1119 /*
1120 * Bspec:
1121 * "[Almador Errata}: For the correct operation of the muxed DVO pins
1122 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1123 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1124 * Enable) must be set to “1” in both the DPLL A Control Register
1125 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1126 *
1127 * For simplicity We simply keep both bits always enabled in
1128 * both DPLLS. The spec says we should disable the DVO 2X clock
1129 * when not needed, but this seems to work fine in practice.
1130 */
1131 if (IS_I830(dev_priv) ||
1132 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1133 dpll |= DPLL_DVO_2X_MODE;
1134
1135 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1136 intel_panel_use_ssc(display))
1137 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1138 else
1139 dpll |= PLL_REF_INPUT_DREFCLK;
1140
1141 return dpll;
1142 }
1143
i8xx_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1144 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1145 const struct dpll *clock,
1146 const struct dpll *reduced_clock)
1147 {
1148 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1149
1150 hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1151 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1152
1153 hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock);
1154 }
1155
hsw_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1156 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1157 struct intel_crtc *crtc)
1158 {
1159 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1160 struct intel_crtc_state *crtc_state =
1161 intel_atomic_get_new_crtc_state(state, crtc);
1162 struct intel_encoder *encoder =
1163 intel_get_crtc_new_encoder(state, crtc_state);
1164 int ret;
1165
1166 if (DISPLAY_VER(dev_priv) < 11 &&
1167 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1168 return 0;
1169
1170 ret = intel_compute_shared_dplls(state, crtc, encoder);
1171 if (ret)
1172 return ret;
1173
1174 /* FIXME this is a mess */
1175 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1176 return 0;
1177
1178 /* CRT dotclock is determined via other means */
1179 if (!crtc_state->has_pch_encoder)
1180 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1181
1182 return 0;
1183 }
1184
hsw_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1185 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1186 struct intel_crtc *crtc)
1187 {
1188 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1189 struct intel_crtc_state *crtc_state =
1190 intel_atomic_get_new_crtc_state(state, crtc);
1191 struct intel_encoder *encoder =
1192 intel_get_crtc_new_encoder(state, crtc_state);
1193
1194 if (DISPLAY_VER(dev_priv) < 11 &&
1195 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1196 return 0;
1197
1198 return intel_reserve_shared_dplls(state, crtc, encoder);
1199 }
1200
dg2_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1201 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1202 struct intel_crtc *crtc)
1203 {
1204 struct intel_crtc_state *crtc_state =
1205 intel_atomic_get_new_crtc_state(state, crtc);
1206 struct intel_encoder *encoder =
1207 intel_get_crtc_new_encoder(state, crtc_state);
1208 int ret;
1209
1210 ret = intel_mpllb_calc_state(crtc_state, encoder);
1211 if (ret)
1212 return ret;
1213
1214 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1215
1216 return 0;
1217 }
1218
mtl_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1219 static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1220 struct intel_crtc *crtc)
1221 {
1222 struct intel_crtc_state *crtc_state =
1223 intel_atomic_get_new_crtc_state(state, crtc);
1224 struct intel_encoder *encoder =
1225 intel_get_crtc_new_encoder(state, crtc_state);
1226 int ret;
1227
1228 ret = intel_cx0pll_calc_state(crtc_state, encoder);
1229 if (ret)
1230 return ret;
1231
1232 /* TODO: Do the readback via intel_compute_shared_dplls() */
1233 crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll);
1234
1235 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1236
1237 return 0;
1238 }
1239
ilk_fb_cb_factor(const struct intel_crtc_state * crtc_state)1240 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state)
1241 {
1242 struct intel_display *display = to_intel_display(crtc_state);
1243 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1244 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1245
1246 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1247 ((intel_panel_use_ssc(display) && i915->display.vbt.lvds_ssc_freq == 100000) ||
1248 (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915))))
1249 return 25;
1250
1251 if (crtc_state->sdvo_tv_clock)
1252 return 20;
1253
1254 return 21;
1255 }
1256
ilk_needs_fb_cb_tune(const struct dpll * dpll,int factor)1257 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1258 {
1259 return dpll->m < factor * dpll->n;
1260 }
1261
ilk_dpll_compute_fp(const struct dpll * clock,int factor)1262 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor)
1263 {
1264 u32 fp;
1265
1266 fp = i9xx_dpll_compute_fp(clock);
1267 if (ilk_needs_fb_cb_tune(clock, factor))
1268 fp |= FP_CB_TUNE;
1269
1270 return fp;
1271 }
1272
ilk_dpll(const struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1273 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state,
1274 const struct dpll *clock,
1275 const struct dpll *reduced_clock)
1276 {
1277 struct intel_display *display = to_intel_display(crtc_state);
1278 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1280 u32 dpll;
1281
1282 dpll = DPLL_VCO_ENABLE;
1283
1284 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1285 dpll |= DPLLB_MODE_LVDS;
1286 else
1287 dpll |= DPLLB_MODE_DAC_SERIAL;
1288
1289 dpll |= (crtc_state->pixel_multiplier - 1)
1290 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1291
1292 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1293 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1294 dpll |= DPLL_SDVO_HIGH_SPEED;
1295
1296 if (intel_crtc_has_dp_encoder(crtc_state))
1297 dpll |= DPLL_SDVO_HIGH_SPEED;
1298
1299 /*
1300 * The high speed IO clock is only really required for
1301 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1302 * possible to share the DPLL between CRT and HDMI. Enabling
1303 * the clock needlessly does no real harm, except use up a
1304 * bit of power potentially.
1305 *
1306 * We'll limit this to IVB with 3 pipes, since it has only two
1307 * DPLLs and so DPLL sharing is the only way to get three pipes
1308 * driving PCH ports at the same time. On SNB we could do this,
1309 * and potentially avoid enabling the second DPLL, but it's not
1310 * clear if it''s a win or loss power wise. No point in doing
1311 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1312 */
1313 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1314 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1315 dpll |= DPLL_SDVO_HIGH_SPEED;
1316
1317 /* compute bitmask from p1 value */
1318 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1319 /* also FPA1 */
1320 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1321
1322 switch (clock->p2) {
1323 case 5:
1324 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1325 break;
1326 case 7:
1327 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1328 break;
1329 case 10:
1330 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1331 break;
1332 case 14:
1333 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1334 break;
1335 }
1336 WARN_ON(reduced_clock->p2 != clock->p2);
1337
1338 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1339 intel_panel_use_ssc(display))
1340 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1341 else
1342 dpll |= PLL_REF_INPUT_DREFCLK;
1343
1344 return dpll;
1345 }
1346
ilk_compute_dpll(struct intel_crtc_state * crtc_state,const struct dpll * clock,const struct dpll * reduced_clock)1347 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1348 const struct dpll *clock,
1349 const struct dpll *reduced_clock)
1350 {
1351 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1352 int factor = ilk_fb_cb_factor(crtc_state);
1353
1354 hw_state->fp0 = ilk_dpll_compute_fp(clock, factor);
1355 hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor);
1356
1357 hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock);
1358 }
1359
ilk_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1360 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1361 struct intel_crtc *crtc)
1362 {
1363 struct intel_display *display = to_intel_display(state);
1364 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1365 struct intel_crtc_state *crtc_state =
1366 intel_atomic_get_new_crtc_state(state, crtc);
1367 const struct intel_limit *limit;
1368 int refclk = 120000;
1369 int ret;
1370
1371 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1372 if (!crtc_state->has_pch_encoder)
1373 return 0;
1374
1375 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1376 if (intel_panel_use_ssc(display)) {
1377 drm_dbg_kms(&dev_priv->drm,
1378 "using SSC reference clock of %d kHz\n",
1379 dev_priv->display.vbt.lvds_ssc_freq);
1380 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1381 }
1382
1383 if (intel_is_dual_link_lvds(dev_priv)) {
1384 if (refclk == 100000)
1385 limit = &ilk_limits_dual_lvds_100m;
1386 else
1387 limit = &ilk_limits_dual_lvds;
1388 } else {
1389 if (refclk == 100000)
1390 limit = &ilk_limits_single_lvds_100m;
1391 else
1392 limit = &ilk_limits_single_lvds;
1393 }
1394 } else {
1395 limit = &ilk_limits_dac;
1396 }
1397
1398 if (!crtc_state->clock_set &&
1399 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1400 refclk, NULL, &crtc_state->dpll))
1401 return -EINVAL;
1402
1403 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1404
1405 ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1406 &crtc_state->dpll);
1407
1408 ret = intel_compute_shared_dplls(state, crtc, NULL);
1409 if (ret)
1410 return ret;
1411
1412 crtc_state->port_clock = crtc_state->dpll.dot;
1413 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1414
1415 return ret;
1416 }
1417
ilk_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1418 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1419 struct intel_crtc *crtc)
1420 {
1421 struct intel_crtc_state *crtc_state =
1422 intel_atomic_get_new_crtc_state(state, crtc);
1423
1424 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1425 if (!crtc_state->has_pch_encoder)
1426 return 0;
1427
1428 return intel_reserve_shared_dplls(state, crtc, NULL);
1429 }
1430
vlv_dpll(const struct intel_crtc_state * crtc_state)1431 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state)
1432 {
1433 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1434 u32 dpll;
1435
1436 dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1437 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1438
1439 if (crtc->pipe != PIPE_A)
1440 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1441
1442 /* DPLL not used with DSI, but still need the rest set up */
1443 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1444 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
1445
1446 return dpll;
1447 }
1448
vlv_compute_dpll(struct intel_crtc_state * crtc_state)1449 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1450 {
1451 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1452
1453 hw_state->dpll = vlv_dpll(crtc_state);
1454 hw_state->dpll_md = i965_dpll_md(crtc_state);
1455 }
1456
chv_dpll(const struct intel_crtc_state * crtc_state)1457 static u32 chv_dpll(const struct intel_crtc_state *crtc_state)
1458 {
1459 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1460 u32 dpll;
1461
1462 dpll = DPLL_SSC_REF_CLK_CHV |
1463 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1464
1465 if (crtc->pipe != PIPE_A)
1466 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1467
1468 /* DPLL not used with DSI, but still need the rest set up */
1469 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1470 dpll |= DPLL_VCO_ENABLE;
1471
1472 return dpll;
1473 }
1474
chv_compute_dpll(struct intel_crtc_state * crtc_state)1475 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1476 {
1477 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1478
1479 hw_state->dpll = chv_dpll(crtc_state);
1480 hw_state->dpll_md = i965_dpll_md(crtc_state);
1481 }
1482
chv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1483 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1484 struct intel_crtc *crtc)
1485 {
1486 struct intel_crtc_state *crtc_state =
1487 intel_atomic_get_new_crtc_state(state, crtc);
1488 const struct intel_limit *limit = &intel_limits_chv;
1489 int refclk = 100000;
1490
1491 if (!crtc_state->clock_set &&
1492 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1493 refclk, NULL, &crtc_state->dpll))
1494 return -EINVAL;
1495
1496 chv_calc_dpll_params(refclk, &crtc_state->dpll);
1497
1498 chv_compute_dpll(crtc_state);
1499
1500 /* FIXME this is a mess */
1501 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1502 return 0;
1503
1504 crtc_state->port_clock = crtc_state->dpll.dot;
1505 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1506
1507 return 0;
1508 }
1509
vlv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1510 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1511 struct intel_crtc *crtc)
1512 {
1513 struct intel_crtc_state *crtc_state =
1514 intel_atomic_get_new_crtc_state(state, crtc);
1515 const struct intel_limit *limit = &intel_limits_vlv;
1516 int refclk = 100000;
1517
1518 if (!crtc_state->clock_set &&
1519 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1520 refclk, NULL, &crtc_state->dpll))
1521 return -EINVAL;
1522
1523 vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1524
1525 vlv_compute_dpll(crtc_state);
1526
1527 /* FIXME this is a mess */
1528 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1529 return 0;
1530
1531 crtc_state->port_clock = crtc_state->dpll.dot;
1532 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1533
1534 return 0;
1535 }
1536
g4x_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1537 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1538 struct intel_crtc *crtc)
1539 {
1540 struct intel_display *display = to_intel_display(state);
1541 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1542 struct intel_crtc_state *crtc_state =
1543 intel_atomic_get_new_crtc_state(state, crtc);
1544 const struct intel_limit *limit;
1545 int refclk = 96000;
1546
1547 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1548 if (intel_panel_use_ssc(display)) {
1549 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1550 drm_dbg_kms(&dev_priv->drm,
1551 "using SSC reference clock of %d kHz\n",
1552 refclk);
1553 }
1554
1555 if (intel_is_dual_link_lvds(dev_priv))
1556 limit = &intel_limits_g4x_dual_channel_lvds;
1557 else
1558 limit = &intel_limits_g4x_single_channel_lvds;
1559 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1560 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1561 limit = &intel_limits_g4x_hdmi;
1562 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1563 limit = &intel_limits_g4x_sdvo;
1564 } else {
1565 /* The option is for other outputs */
1566 limit = &intel_limits_i9xx_sdvo;
1567 }
1568
1569 if (!crtc_state->clock_set &&
1570 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1571 refclk, NULL, &crtc_state->dpll))
1572 return -EINVAL;
1573
1574 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1575
1576 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1577 &crtc_state->dpll);
1578
1579 crtc_state->port_clock = crtc_state->dpll.dot;
1580 /* FIXME this is a mess */
1581 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1582 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1583
1584 return 0;
1585 }
1586
pnv_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1587 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1588 struct intel_crtc *crtc)
1589 {
1590 struct intel_display *display = to_intel_display(state);
1591 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1592 struct intel_crtc_state *crtc_state =
1593 intel_atomic_get_new_crtc_state(state, crtc);
1594 const struct intel_limit *limit;
1595 int refclk = 96000;
1596
1597 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1598 if (intel_panel_use_ssc(display)) {
1599 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1600 drm_dbg_kms(&dev_priv->drm,
1601 "using SSC reference clock of %d kHz\n",
1602 refclk);
1603 }
1604
1605 limit = &pnv_limits_lvds;
1606 } else {
1607 limit = &pnv_limits_sdvo;
1608 }
1609
1610 if (!crtc_state->clock_set &&
1611 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1612 refclk, NULL, &crtc_state->dpll))
1613 return -EINVAL;
1614
1615 pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1616
1617 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1618 &crtc_state->dpll);
1619
1620 crtc_state->port_clock = crtc_state->dpll.dot;
1621 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1622
1623 return 0;
1624 }
1625
i9xx_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1626 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1627 struct intel_crtc *crtc)
1628 {
1629 struct intel_display *display = to_intel_display(state);
1630 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1631 struct intel_crtc_state *crtc_state =
1632 intel_atomic_get_new_crtc_state(state, crtc);
1633 const struct intel_limit *limit;
1634 int refclk = 96000;
1635
1636 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1637 if (intel_panel_use_ssc(display)) {
1638 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1639 drm_dbg_kms(&dev_priv->drm,
1640 "using SSC reference clock of %d kHz\n",
1641 refclk);
1642 }
1643
1644 limit = &intel_limits_i9xx_lvds;
1645 } else {
1646 limit = &intel_limits_i9xx_sdvo;
1647 }
1648
1649 if (!crtc_state->clock_set &&
1650 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1651 refclk, NULL, &crtc_state->dpll))
1652 return -EINVAL;
1653
1654 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1655
1656 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1657 &crtc_state->dpll);
1658
1659 crtc_state->port_clock = crtc_state->dpll.dot;
1660 /* FIXME this is a mess */
1661 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1662 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1663
1664 return 0;
1665 }
1666
i8xx_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1667 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1668 struct intel_crtc *crtc)
1669 {
1670 struct intel_display *display = to_intel_display(state);
1671 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1672 struct intel_crtc_state *crtc_state =
1673 intel_atomic_get_new_crtc_state(state, crtc);
1674 const struct intel_limit *limit;
1675 int refclk = 48000;
1676
1677 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1678 if (intel_panel_use_ssc(display)) {
1679 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1680 drm_dbg_kms(&dev_priv->drm,
1681 "using SSC reference clock of %d kHz\n",
1682 refclk);
1683 }
1684
1685 limit = &intel_limits_i8xx_lvds;
1686 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1687 limit = &intel_limits_i8xx_dvo;
1688 } else {
1689 limit = &intel_limits_i8xx_dac;
1690 }
1691
1692 if (!crtc_state->clock_set &&
1693 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1694 refclk, NULL, &crtc_state->dpll))
1695 return -EINVAL;
1696
1697 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1698
1699 i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1700 &crtc_state->dpll);
1701
1702 crtc_state->port_clock = crtc_state->dpll.dot;
1703 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1704
1705 return 0;
1706 }
1707
1708 static const struct intel_dpll_funcs mtl_dpll_funcs = {
1709 .crtc_compute_clock = mtl_crtc_compute_clock,
1710 };
1711
1712 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1713 .crtc_compute_clock = dg2_crtc_compute_clock,
1714 };
1715
1716 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1717 .crtc_compute_clock = hsw_crtc_compute_clock,
1718 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1719 };
1720
1721 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1722 .crtc_compute_clock = ilk_crtc_compute_clock,
1723 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1724 };
1725
1726 static const struct intel_dpll_funcs chv_dpll_funcs = {
1727 .crtc_compute_clock = chv_crtc_compute_clock,
1728 };
1729
1730 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1731 .crtc_compute_clock = vlv_crtc_compute_clock,
1732 };
1733
1734 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1735 .crtc_compute_clock = g4x_crtc_compute_clock,
1736 };
1737
1738 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1739 .crtc_compute_clock = pnv_crtc_compute_clock,
1740 };
1741
1742 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1743 .crtc_compute_clock = i9xx_crtc_compute_clock,
1744 };
1745
1746 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1747 .crtc_compute_clock = i8xx_crtc_compute_clock,
1748 };
1749
intel_dpll_crtc_compute_clock(struct intel_atomic_state * state,struct intel_crtc * crtc)1750 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1751 struct intel_crtc *crtc)
1752 {
1753 struct drm_i915_private *i915 = to_i915(state->base.dev);
1754 struct intel_crtc_state *crtc_state =
1755 intel_atomic_get_new_crtc_state(state, crtc);
1756 int ret;
1757
1758 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1759
1760 memset(&crtc_state->dpll_hw_state, 0,
1761 sizeof(crtc_state->dpll_hw_state));
1762
1763 if (!crtc_state->hw.enable)
1764 return 0;
1765
1766 ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1767 if (ret) {
1768 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1769 crtc->base.base.id, crtc->base.name);
1770 return ret;
1771 }
1772
1773 return 0;
1774 }
1775
intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state * state,struct intel_crtc * crtc)1776 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1777 struct intel_crtc *crtc)
1778 {
1779 struct drm_i915_private *i915 = to_i915(state->base.dev);
1780 struct intel_crtc_state *crtc_state =
1781 intel_atomic_get_new_crtc_state(state, crtc);
1782 int ret;
1783
1784 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1785 drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1786
1787 if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1788 return 0;
1789
1790 if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1791 return 0;
1792
1793 ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1794 if (ret) {
1795 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1796 crtc->base.base.id, crtc->base.name);
1797 return ret;
1798 }
1799
1800 return 0;
1801 }
1802
1803 void
intel_dpll_init_clock_hook(struct drm_i915_private * dev_priv)1804 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1805 {
1806 if (DISPLAY_VER(dev_priv) >= 14)
1807 dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1808 else if (IS_DG2(dev_priv))
1809 dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1810 else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1811 dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1812 else if (HAS_PCH_SPLIT(dev_priv))
1813 dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1814 else if (IS_CHERRYVIEW(dev_priv))
1815 dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1816 else if (IS_VALLEYVIEW(dev_priv))
1817 dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1818 else if (IS_G4X(dev_priv))
1819 dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1820 else if (IS_PINEVIEW(dev_priv))
1821 dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1822 else if (DISPLAY_VER(dev_priv) != 2)
1823 dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1824 else
1825 dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1826 }
1827
i9xx_has_pps(struct drm_i915_private * dev_priv)1828 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1829 {
1830 if (IS_I830(dev_priv))
1831 return false;
1832
1833 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1834 }
1835
i9xx_enable_pll(const struct intel_crtc_state * crtc_state)1836 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1837 {
1838 struct intel_display *display = to_intel_display(crtc_state);
1839 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1840 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1841 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1842 enum pipe pipe = crtc->pipe;
1843 int i;
1844
1845 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1846
1847 /* PLL is protected by panel, make sure we can write it */
1848 if (i9xx_has_pps(dev_priv))
1849 assert_pps_unlocked(display, pipe);
1850
1851 intel_de_write(dev_priv, FP0(pipe), hw_state->fp0);
1852 intel_de_write(dev_priv, FP1(pipe), hw_state->fp1);
1853
1854 /*
1855 * Apparently we need to have VGA mode enabled prior to changing
1856 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1857 * dividers, even though the register value does change.
1858 */
1859 intel_de_write(dev_priv, DPLL(dev_priv, pipe),
1860 hw_state->dpll & ~DPLL_VGA_MODE_DIS);
1861 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1862
1863 /* Wait for the clocks to stabilize. */
1864 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1865 udelay(150);
1866
1867 if (DISPLAY_VER(dev_priv) >= 4) {
1868 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
1869 hw_state->dpll_md);
1870 } else {
1871 /* The pixel multiplier can only be updated once the
1872 * DPLL is enabled and the clocks are stable.
1873 *
1874 * So write it again.
1875 */
1876 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1877 }
1878
1879 /* We do this three times for luck */
1880 for (i = 0; i < 3; i++) {
1881 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
1882 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
1883 udelay(150); /* wait for warmup */
1884 }
1885 }
1886
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum dpio_phy phy,enum dpio_channel ch)1887 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1888 enum dpio_phy phy, enum dpio_channel ch)
1889 {
1890 u32 tmp;
1891
1892 /*
1893 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1894 * and set it to a reasonable value instead.
1895 */
1896 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1897 tmp &= 0xffffff00;
1898 tmp |= 0x00000030;
1899 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1900
1901 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1902 tmp &= 0x00ffffff;
1903 tmp |= 0x8c000000;
1904 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1905
1906 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1907 tmp &= 0xffffff00;
1908 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1909
1910 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1911 tmp &= 0x00ffffff;
1912 tmp |= 0xb0000000;
1913 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1914 }
1915
vlv_prepare_pll(const struct intel_crtc_state * crtc_state)1916 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1917 {
1918 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1919 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1920 const struct dpll *clock = &crtc_state->dpll;
1921 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
1922 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1923 enum pipe pipe = crtc->pipe;
1924 u32 tmp, coreclk;
1925
1926 vlv_dpio_get(dev_priv);
1927
1928 /* See eDP HDMI DPIO driver vbios notes doc */
1929
1930 /* PLL B needs special handling */
1931 if (pipe == PIPE_B)
1932 vlv_pllb_recal_opamp(dev_priv, phy, ch);
1933
1934 /* Set up Tx target for periodic Rcomp update */
1935 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f);
1936
1937 /* Disable target IRef on PLL */
1938 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch));
1939 tmp &= 0x00ffffff;
1940 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp);
1941
1942 /* Disable fast lock */
1943 vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1944
1945 /* Set idtafcrecal before PLL is enabled */
1946 tmp = DPIO_M1_DIV(clock->m1) |
1947 DPIO_M2_DIV(clock->m2) |
1948 DPIO_P1_DIV(clock->p1) |
1949 DPIO_P2_DIV(clock->p2) |
1950 DPIO_N_DIV(clock->n) |
1951 DPIO_K_DIV(1);
1952
1953 /*
1954 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1955 * but we don't support that).
1956 * Note: don't use the DAC post divider as it seems unstable.
1957 */
1958 tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP);
1959 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1960
1961 tmp |= DPIO_ENABLE_CALIBRATION;
1962 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1963
1964 /* Set HBR and RBR LPF coefficients */
1965 if (crtc_state->port_clock == 162000 ||
1966 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1967 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1968 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1969 0x009f0003);
1970 else
1971 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1972 0x00d0000f);
1973
1974 if (intel_crtc_has_dp_encoder(crtc_state)) {
1975 /* Use SSC source */
1976 if (pipe == PIPE_A)
1977 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1978 0x0df40000);
1979 else
1980 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1981 0x0df70000);
1982 } else { /* HDMI or VGA */
1983 /* Use bend source */
1984 if (pipe == PIPE_A)
1985 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1986 0x0df70000);
1987 else
1988 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1989 0x0df40000);
1990 }
1991
1992 coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch));
1993 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1994 if (intel_crtc_has_dp_encoder(crtc_state))
1995 coreclk |= 0x01000000;
1996 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk);
1997
1998 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000);
1999
2000 vlv_dpio_put(dev_priv);
2001 }
2002
_vlv_enable_pll(const struct intel_crtc_state * crtc_state)2003 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2004 {
2005 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2006 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2007 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2008 enum pipe pipe = crtc->pipe;
2009
2010 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
2011 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2012 udelay(150);
2013
2014 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2015 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
2016 }
2017
vlv_enable_pll(const struct intel_crtc_state * crtc_state)2018 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2019 {
2020 struct intel_display *display = to_intel_display(crtc_state);
2021 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2022 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2023 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2024 enum pipe pipe = crtc->pipe;
2025
2026 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2027
2028 /* PLL is protected by panel, make sure we can write it */
2029 assert_pps_unlocked(display, pipe);
2030
2031 /* Enable Refclk */
2032 intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2033 hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
2034
2035 if (hw_state->dpll & DPLL_VCO_ENABLE) {
2036 vlv_prepare_pll(crtc_state);
2037 _vlv_enable_pll(crtc_state);
2038 }
2039
2040 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe), hw_state->dpll_md);
2041 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2042 }
2043
chv_prepare_pll(const struct intel_crtc_state * crtc_state)2044 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
2045 {
2046 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2047 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2048 const struct dpll *clock = &crtc_state->dpll;
2049 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2050 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2051 u32 tmp, loopfilter, tribuf_calcntr;
2052 u32 m2_frac;
2053
2054 m2_frac = clock->m2 & 0x3fffff;
2055
2056 vlv_dpio_get(dev_priv);
2057
2058 /* p1 and p2 divider */
2059 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch),
2060 DPIO_CHV_S1_DIV(5) |
2061 DPIO_CHV_P1_DIV(clock->p1) |
2062 DPIO_CHV_P2_DIV(clock->p2) |
2063 DPIO_CHV_K_DIV(1));
2064
2065 /* Feedback post-divider - m2 */
2066 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch),
2067 DPIO_CHV_M2_DIV(clock->m2 >> 22));
2068
2069 /* Feedback refclk divider - n and m1 */
2070 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch),
2071 DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) |
2072 DPIO_CHV_N_DIV(1));
2073
2074 /* M2 fraction division */
2075 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch),
2076 DPIO_CHV_M2_FRAC_DIV(m2_frac));
2077
2078 /* M2 fraction division enable */
2079 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
2080 tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2081 tmp |= DPIO_CHV_FEEDFWD_GAIN(2);
2082 if (m2_frac)
2083 tmp |= DPIO_CHV_FRAC_DIV_EN;
2084 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp);
2085
2086 /* Program digital lock detect threshold */
2087 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch));
2088 tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2089 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2090 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5);
2091 if (!m2_frac)
2092 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2093 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp);
2094
2095 /* Loop filter */
2096 if (clock->vco == 5400000) {
2097 loopfilter = DPIO_CHV_PROP_COEFF(0x3) |
2098 DPIO_CHV_INT_COEFF(0x8) |
2099 DPIO_CHV_GAIN_CTRL(0x1);
2100 tribuf_calcntr = 0x9;
2101 } else if (clock->vco <= 6200000) {
2102 loopfilter = DPIO_CHV_PROP_COEFF(0x5) |
2103 DPIO_CHV_INT_COEFF(0xB) |
2104 DPIO_CHV_GAIN_CTRL(0x3);
2105 tribuf_calcntr = 0x9;
2106 } else if (clock->vco <= 6480000) {
2107 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2108 DPIO_CHV_INT_COEFF(0x9) |
2109 DPIO_CHV_GAIN_CTRL(0x3);
2110 tribuf_calcntr = 0x8;
2111 } else {
2112 /* Not supported. Apply the same limits as in the max case */
2113 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2114 DPIO_CHV_INT_COEFF(0x9) |
2115 DPIO_CHV_GAIN_CTRL(0x3);
2116 tribuf_calcntr = 0;
2117 }
2118 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter);
2119
2120 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch));
2121 tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2122 tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr);
2123 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp);
2124
2125 /* AFC Recal */
2126 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch),
2127 vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) |
2128 DPIO_AFC_RECAL);
2129
2130 vlv_dpio_put(dev_priv);
2131 }
2132
_chv_enable_pll(const struct intel_crtc_state * crtc_state)2133 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2134 {
2135 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2136 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2137 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2138 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2139 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2140 enum pipe pipe = crtc->pipe;
2141 u32 tmp;
2142
2143 vlv_dpio_get(dev_priv);
2144
2145 /* Enable back the 10bit clock to display controller */
2146 tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2147 tmp |= DPIO_DCLKP_EN;
2148 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp);
2149
2150 vlv_dpio_put(dev_priv);
2151
2152 /*
2153 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2154 */
2155 udelay(1);
2156
2157 /* Enable PLL */
2158 intel_de_write(dev_priv, DPLL(dev_priv, pipe), hw_state->dpll);
2159
2160 /* Check PLL is locked */
2161 if (intel_de_wait_for_set(dev_priv, DPLL(dev_priv, pipe), DPLL_LOCK_VLV, 1))
2162 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2163 }
2164
chv_enable_pll(const struct intel_crtc_state * crtc_state)2165 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2166 {
2167 struct intel_display *display = to_intel_display(crtc_state);
2168 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2169 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2170 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2171 enum pipe pipe = crtc->pipe;
2172
2173 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2174
2175 /* PLL is protected by panel, make sure we can write it */
2176 assert_pps_unlocked(display, pipe);
2177
2178 /* Enable Refclk and SSC */
2179 intel_de_write(dev_priv, DPLL(dev_priv, pipe),
2180 hw_state->dpll & ~DPLL_VCO_ENABLE);
2181
2182 if (hw_state->dpll & DPLL_VCO_ENABLE) {
2183 chv_prepare_pll(crtc_state);
2184 _chv_enable_pll(crtc_state);
2185 }
2186
2187 if (pipe != PIPE_A) {
2188 /*
2189 * WaPixelRepeatModeFixForC0:chv
2190 *
2191 * DPLLCMD is AWOL. Use chicken bits to propagate
2192 * the value from DPLLBMD to either pipe B or C.
2193 */
2194 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2195 intel_de_write(dev_priv, DPLL_MD(dev_priv, PIPE_B),
2196 hw_state->dpll_md);
2197 intel_de_write(dev_priv, CBR4_VLV, 0);
2198 dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md;
2199
2200 /*
2201 * DPLLB VGA mode also seems to cause problems.
2202 * We should always have it disabled.
2203 */
2204 drm_WARN_ON(&dev_priv->drm,
2205 (intel_de_read(dev_priv, DPLL(dev_priv, PIPE_B)) &
2206 DPLL_VGA_MODE_DIS) == 0);
2207 } else {
2208 intel_de_write(dev_priv, DPLL_MD(dev_priv, pipe),
2209 hw_state->dpll_md);
2210 intel_de_posting_read(dev_priv, DPLL_MD(dev_priv, pipe));
2211 }
2212 }
2213
2214 /**
2215 * vlv_force_pll_on - forcibly enable just the PLL
2216 * @dev_priv: i915 private structure
2217 * @pipe: pipe PLL to enable
2218 * @dpll: PLL configuration
2219 *
2220 * Enable the PLL for @pipe using the supplied @dpll config. To be used
2221 * in cases where we need the PLL enabled even when @pipe is not going to
2222 * be enabled.
2223 */
vlv_force_pll_on(struct drm_i915_private * dev_priv,enum pipe pipe,const struct dpll * dpll)2224 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2225 const struct dpll *dpll)
2226 {
2227 struct intel_display *display = &dev_priv->display;
2228 struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
2229 struct intel_crtc_state *crtc_state;
2230
2231 crtc_state = intel_crtc_state_alloc(crtc);
2232 if (!crtc_state)
2233 return -ENOMEM;
2234
2235 crtc_state->cpu_transcoder = (enum transcoder)pipe;
2236 crtc_state->pixel_multiplier = 1;
2237 crtc_state->dpll = *dpll;
2238 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2239
2240 if (IS_CHERRYVIEW(dev_priv)) {
2241 chv_compute_dpll(crtc_state);
2242 chv_enable_pll(crtc_state);
2243 } else {
2244 vlv_compute_dpll(crtc_state);
2245 vlv_enable_pll(crtc_state);
2246 }
2247
2248 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2249
2250 return 0;
2251 }
2252
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)2253 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2254 {
2255 u32 val;
2256
2257 /* Make sure the pipe isn't still relying on us */
2258 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2259
2260 val = DPLL_INTEGRATED_REF_CLK_VLV |
2261 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2262 if (pipe != PIPE_A)
2263 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2264
2265 intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2266 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2267 }
2268
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)2269 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2270 {
2271 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
2272 enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2273 u32 val;
2274
2275 /* Make sure the pipe isn't still relying on us */
2276 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2277
2278 val = DPLL_SSC_REF_CLK_CHV |
2279 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2280 if (pipe != PIPE_A)
2281 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2282
2283 intel_de_write(dev_priv, DPLL(dev_priv, pipe), val);
2284 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2285
2286 vlv_dpio_get(dev_priv);
2287
2288 /* Disable 10bit clock to display controller */
2289 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2290 val &= ~DPIO_DCLKP_EN;
2291 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val);
2292
2293 vlv_dpio_put(dev_priv);
2294 }
2295
i9xx_disable_pll(const struct intel_crtc_state * crtc_state)2296 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2297 {
2298 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2299 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2300 enum pipe pipe = crtc->pipe;
2301
2302 /* Don't disable pipe or pipe PLLs if needed */
2303 if (IS_I830(dev_priv))
2304 return;
2305
2306 /* Make sure the pipe isn't still relying on us */
2307 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2308
2309 intel_de_write(dev_priv, DPLL(dev_priv, pipe), DPLL_VGA_MODE_DIS);
2310 intel_de_posting_read(dev_priv, DPLL(dev_priv, pipe));
2311 }
2312
2313
2314 /**
2315 * vlv_force_pll_off - forcibly disable just the PLL
2316 * @dev_priv: i915 private structure
2317 * @pipe: pipe PLL to disable
2318 *
2319 * Disable the PLL for @pipe. To be used in cases where we need
2320 * the PLL enabled even when @pipe is not going to be enabled.
2321 */
vlv_force_pll_off(struct drm_i915_private * dev_priv,enum pipe pipe)2322 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2323 {
2324 if (IS_CHERRYVIEW(dev_priv))
2325 chv_disable_pll(dev_priv, pipe);
2326 else
2327 vlv_disable_pll(dev_priv, pipe);
2328 }
2329
2330 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)2331 static void assert_pll(struct drm_i915_private *dev_priv,
2332 enum pipe pipe, bool state)
2333 {
2334 struct intel_display *display = &dev_priv->display;
2335 bool cur_state;
2336
2337 cur_state = intel_de_read(display, DPLL(display, pipe)) & DPLL_VCO_ENABLE;
2338 INTEL_DISPLAY_STATE_WARN(display, cur_state != state,
2339 "PLL state assertion failure (expected %s, current %s)\n",
2340 str_on_off(state), str_on_off(cur_state));
2341 }
2342
assert_pll_enabled(struct drm_i915_private * i915,enum pipe pipe)2343 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2344 {
2345 assert_pll(i915, pipe, true);
2346 }
2347
assert_pll_disabled(struct drm_i915_private * i915,enum pipe pipe)2348 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2349 {
2350 assert_pll(i915, pipe, false);
2351 }
2352