1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2023 Alexander Stetsenko <alex.stetsenko@gmail.com>
27 * Copyright (c) 2023, Klara Inc.
28 */
29
30 /*
31 * This file contains the top half of the zfs directory structure
32 * implementation. The bottom half is in zap_leaf.c.
33 *
34 * The zdir is an extendable hash data structure. There is a table of
35 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
36 * each a constant size and hold a variable number of directory entries.
37 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
38 *
39 * The pointer table holds a power of 2 number of pointers.
40 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to
41 * by the pointer at index i in the table holds entries whose hash value
42 * has a zd_prefix_len - bit prefix
43 */
44
45 #include <sys/spa.h>
46 #include <sys/dmu.h>
47 #include <sys/dnode.h>
48 #include <sys/zfs_context.h>
49 #include <sys/zfs_znode.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zap.h>
52 #include <sys/zap_impl.h>
53 #include <sys/zap_leaf.h>
54
55 /*
56 * If zap_iterate_prefetch is set, we will prefetch the entire ZAP object
57 * (all leaf blocks) when we start iterating over it.
58 *
59 * For zap_cursor_init(), the callers all intend to iterate through all the
60 * entries. There are a few cases where an error (typically i/o error) could
61 * cause it to bail out early.
62 *
63 * For zap_cursor_init_serialized(), there are callers that do the iteration
64 * outside of ZFS. Typically they would iterate over everything, but we
65 * don't have control of that. E.g. zfs_ioc_snapshot_list_next(),
66 * zcp_snapshots_iter(), and other iterators over things in the MOS - these
67 * are called by /sbin/zfs and channel programs. The other example is
68 * zfs_readdir() which iterates over directory entries for the getdents()
69 * syscall. /sbin/ls iterates to the end (unless it receives a signal), but
70 * userland doesn't have to.
71 *
72 * Given that the ZAP entries aren't returned in a specific order, the only
73 * legitimate use cases for partial iteration would be:
74 *
75 * 1. Pagination: e.g. you only want to display 100 entries at a time, so you
76 * get the first 100 and then wait for the user to hit "next page", which
77 * they may never do).
78 *
79 * 2. You want to know if there are more than X entries, without relying on
80 * the zfs-specific implementation of the directory's st_size (which is
81 * the number of entries).
82 */
83 static int zap_iterate_prefetch = B_TRUE;
84
85 /*
86 * Enable ZAP shrinking. When enabled, empty sibling leaf blocks will be
87 * collapsed into a single block.
88 */
89 int zap_shrink_enabled = B_TRUE;
90
91 int fzap_default_block_shift = 14; /* 16k blocksize */
92
93 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
94 static int zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx);
95
96 void
fzap_byteswap(void * vbuf,size_t size)97 fzap_byteswap(void *vbuf, size_t size)
98 {
99 uint64_t block_type = *(uint64_t *)vbuf;
100
101 if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
102 zap_leaf_byteswap(vbuf, size);
103 else {
104 /* it's a ptrtbl block */
105 byteswap_uint64_array(vbuf, size);
106 }
107 }
108
109 void
fzap_upgrade(zap_t * zap,dmu_tx_t * tx,zap_flags_t flags)110 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
111 {
112 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
113 zap->zap_ismicro = FALSE;
114
115 zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
116 zap->zap_dbu.dbu_evict_func_async = NULL;
117
118 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
119 zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
120
121 zap_phys_t *zp = zap_f_phys(zap);
122 /*
123 * explicitly zero it since it might be coming from an
124 * initialized microzap
125 */
126 memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size);
127 zp->zap_block_type = ZBT_HEADER;
128 zp->zap_magic = ZAP_MAGIC;
129
130 zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
131
132 zp->zap_freeblk = 2; /* block 1 will be the first leaf */
133 zp->zap_num_leafs = 1;
134 zp->zap_num_entries = 0;
135 zp->zap_salt = zap->zap_salt;
136 zp->zap_normflags = zap->zap_normflags;
137 zp->zap_flags = flags;
138
139 /* block 1 will be the first leaf */
140 for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
141 ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
142
143 /*
144 * set up block 1 - the first leaf
145 */
146 dmu_buf_t *db;
147 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
148 1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
149 dmu_buf_will_dirty(db, tx);
150
151 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
152 l->l_dbuf = db;
153
154 zap_leaf_init(l, zp->zap_normflags != 0);
155
156 kmem_free(l, sizeof (zap_leaf_t));
157 dmu_buf_rele(db, FTAG);
158 }
159
160 static int
zap_tryupgradedir(zap_t * zap,dmu_tx_t * tx)161 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
162 {
163 if (RW_WRITE_HELD(&zap->zap_rwlock))
164 return (1);
165 if (rw_tryupgrade(&zap->zap_rwlock)) {
166 dmu_buf_will_dirty(zap->zap_dbuf, tx);
167 return (1);
168 }
169 return (0);
170 }
171
172 /*
173 * Generic routines for dealing with the pointer & cookie tables.
174 */
175
176 static int
zap_table_grow(zap_t * zap,zap_table_phys_t * tbl,void (* transfer_func)(const uint64_t * src,uint64_t * dst,int n),dmu_tx_t * tx)177 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
178 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
179 dmu_tx_t *tx)
180 {
181 uint64_t newblk;
182 int bs = FZAP_BLOCK_SHIFT(zap);
183 int hepb = 1<<(bs-4);
184 /* hepb = half the number of entries in a block */
185
186 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
187 ASSERT(tbl->zt_blk != 0);
188 ASSERT(tbl->zt_numblks > 0);
189
190 if (tbl->zt_nextblk != 0) {
191 newblk = tbl->zt_nextblk;
192 } else {
193 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
194 tbl->zt_nextblk = newblk;
195 ASSERT0(tbl->zt_blks_copied);
196 dmu_prefetch_by_dnode(zap->zap_dnode, 0,
197 tbl->zt_blk << bs, tbl->zt_numblks << bs,
198 ZIO_PRIORITY_SYNC_READ);
199 }
200
201 /*
202 * Copy the ptrtbl from the old to new location.
203 */
204
205 uint64_t b = tbl->zt_blks_copied;
206 dmu_buf_t *db_old;
207 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
208 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
209 if (err != 0)
210 return (err);
211
212 /* first half of entries in old[b] go to new[2*b+0] */
213 dmu_buf_t *db_new;
214 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
215 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
216 dmu_buf_will_dirty(db_new, tx);
217 transfer_func(db_old->db_data, db_new->db_data, hepb);
218 dmu_buf_rele(db_new, FTAG);
219
220 /* second half of entries in old[b] go to new[2*b+1] */
221 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
222 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
223 dmu_buf_will_dirty(db_new, tx);
224 transfer_func((uint64_t *)db_old->db_data + hepb,
225 db_new->db_data, hepb);
226 dmu_buf_rele(db_new, FTAG);
227
228 dmu_buf_rele(db_old, FTAG);
229
230 tbl->zt_blks_copied++;
231
232 dprintf("copied block %llu of %llu\n",
233 (u_longlong_t)tbl->zt_blks_copied,
234 (u_longlong_t)tbl->zt_numblks);
235
236 if (tbl->zt_blks_copied == tbl->zt_numblks) {
237 (void) dmu_free_range(zap->zap_objset, zap->zap_object,
238 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
239
240 tbl->zt_blk = newblk;
241 tbl->zt_numblks *= 2;
242 tbl->zt_shift++;
243 tbl->zt_nextblk = 0;
244 tbl->zt_blks_copied = 0;
245
246 dprintf("finished; numblocks now %llu (%uk entries)\n",
247 (u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10));
248 }
249
250 return (0);
251 }
252
253 static int
zap_table_store(zap_t * zap,zap_table_phys_t * tbl,uint64_t idx,uint64_t val,dmu_tx_t * tx)254 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
255 dmu_tx_t *tx)
256 {
257 int bs = FZAP_BLOCK_SHIFT(zap);
258
259 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
260 ASSERT(tbl->zt_blk != 0);
261
262 dprintf("storing %llx at index %llx\n", (u_longlong_t)val,
263 (u_longlong_t)idx);
264
265 uint64_t blk = idx >> (bs-3);
266 uint64_t off = idx & ((1<<(bs-3))-1);
267
268 dmu_buf_t *db;
269 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
270 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
271 if (err != 0)
272 return (err);
273 dmu_buf_will_dirty(db, tx);
274
275 if (tbl->zt_nextblk != 0) {
276 uint64_t idx2 = idx * 2;
277 uint64_t blk2 = idx2 >> (bs-3);
278 uint64_t off2 = idx2 & ((1<<(bs-3))-1);
279 dmu_buf_t *db2;
280
281 err = dmu_buf_hold_by_dnode(zap->zap_dnode,
282 (tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
283 DMU_READ_NO_PREFETCH);
284 if (err != 0) {
285 dmu_buf_rele(db, FTAG);
286 return (err);
287 }
288 dmu_buf_will_dirty(db2, tx);
289 ((uint64_t *)db2->db_data)[off2] = val;
290 ((uint64_t *)db2->db_data)[off2+1] = val;
291 dmu_buf_rele(db2, FTAG);
292 }
293
294 ((uint64_t *)db->db_data)[off] = val;
295 dmu_buf_rele(db, FTAG);
296
297 return (0);
298 }
299
300 static int
zap_table_load(zap_t * zap,zap_table_phys_t * tbl,uint64_t idx,uint64_t * valp)301 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
302 {
303 int bs = FZAP_BLOCK_SHIFT(zap);
304
305 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
306
307 uint64_t blk = idx >> (bs-3);
308 uint64_t off = idx & ((1<<(bs-3))-1);
309
310 dmu_buf_t *db;
311 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
312 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
313 if (err != 0)
314 return (err);
315 *valp = ((uint64_t *)db->db_data)[off];
316 dmu_buf_rele(db, FTAG);
317
318 if (tbl->zt_nextblk != 0) {
319 /*
320 * read the nextblk for the sake of i/o error checking,
321 * so that zap_table_load() will catch errors for
322 * zap_table_store.
323 */
324 blk = (idx*2) >> (bs-3);
325
326 err = dmu_buf_hold_by_dnode(zap->zap_dnode,
327 (tbl->zt_nextblk + blk) << bs, FTAG, &db,
328 DMU_READ_NO_PREFETCH);
329 if (err == 0)
330 dmu_buf_rele(db, FTAG);
331 }
332 return (err);
333 }
334
335 /*
336 * Routines for growing the ptrtbl.
337 */
338
339 static void
zap_ptrtbl_transfer(const uint64_t * src,uint64_t * dst,int n)340 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
341 {
342 for (int i = 0; i < n; i++) {
343 uint64_t lb = src[i];
344 dst[2 * i + 0] = lb;
345 dst[2 * i + 1] = lb;
346 }
347 }
348
349 static int
zap_grow_ptrtbl(zap_t * zap,dmu_tx_t * tx)350 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
351 {
352 /*
353 * The pointer table should never use more hash bits than we
354 * have (otherwise we'd be using useless zero bits to index it).
355 * If we are within 2 bits of running out, stop growing, since
356 * this is already an aberrant condition.
357 */
358 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
359 return (SET_ERROR(ENOSPC));
360
361 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
362 /*
363 * We are outgrowing the "embedded" ptrtbl (the one
364 * stored in the header block). Give it its own entire
365 * block, which will double the size of the ptrtbl.
366 */
367 ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
368 ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
369 ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
370
371 uint64_t newblk = zap_allocate_blocks(zap, 1);
372 dmu_buf_t *db_new;
373 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
374 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
375 DMU_READ_NO_PREFETCH);
376 if (err != 0)
377 return (err);
378 dmu_buf_will_dirty(db_new, tx);
379 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
380 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
381 dmu_buf_rele(db_new, FTAG);
382
383 zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
384 zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
385 zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
386
387 ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
388 zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
389 (FZAP_BLOCK_SHIFT(zap)-3));
390
391 return (0);
392 } else {
393 return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
394 zap_ptrtbl_transfer, tx));
395 }
396 }
397
398 static void
zap_increment_num_entries(zap_t * zap,int delta,dmu_tx_t * tx)399 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
400 {
401 dmu_buf_will_dirty(zap->zap_dbuf, tx);
402 mutex_enter(&zap->zap_f.zap_num_entries_mtx);
403 ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
404 zap_f_phys(zap)->zap_num_entries += delta;
405 mutex_exit(&zap->zap_f.zap_num_entries_mtx);
406 }
407
408 static uint64_t
zap_allocate_blocks(zap_t * zap,int nblocks)409 zap_allocate_blocks(zap_t *zap, int nblocks)
410 {
411 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
412 uint64_t newblk = zap_f_phys(zap)->zap_freeblk;
413 zap_f_phys(zap)->zap_freeblk += nblocks;
414 return (newblk);
415 }
416
417 static void
zap_leaf_evict_sync(void * dbu)418 zap_leaf_evict_sync(void *dbu)
419 {
420 zap_leaf_t *l = dbu;
421
422 rw_destroy(&l->l_rwlock);
423 kmem_free(l, sizeof (zap_leaf_t));
424 }
425
426 static zap_leaf_t *
zap_create_leaf(zap_t * zap,dmu_tx_t * tx)427 zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
428 {
429 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
430
431 uint64_t blkid = zap_allocate_blocks(zap, 1);
432 dmu_buf_t *db = NULL;
433
434 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
435 blkid << FZAP_BLOCK_SHIFT(zap), NULL, &db,
436 DMU_READ_NO_PREFETCH));
437
438 /*
439 * Create the leaf structure and stash it on the dbuf. If zap was
440 * recent shrunk or truncated, the dbuf might have been sitting in the
441 * cache waiting to be evicted, and so still have the old leaf attached
442 * to it. If so, just reuse it.
443 */
444 zap_leaf_t *l = dmu_buf_get_user(db);
445 if (l == NULL) {
446 l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
447 l->l_blkid = blkid;
448 l->l_dbuf = db;
449 rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
450 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL,
451 &l->l_dbuf);
452 dmu_buf_set_user(l->l_dbuf, &l->l_dbu);
453 } else {
454 ASSERT3U(l->l_blkid, ==, blkid);
455 ASSERT3P(l->l_dbuf, ==, db);
456 }
457
458 rw_enter(&l->l_rwlock, RW_WRITER);
459 dmu_buf_will_dirty(l->l_dbuf, tx);
460
461 zap_leaf_init(l, zap->zap_normflags != 0);
462
463 zap_f_phys(zap)->zap_num_leafs++;
464
465 return (l);
466 }
467
468 int
fzap_count(zap_t * zap,uint64_t * count)469 fzap_count(zap_t *zap, uint64_t *count)
470 {
471 ASSERT(!zap->zap_ismicro);
472 mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
473 *count = zap_f_phys(zap)->zap_num_entries;
474 mutex_exit(&zap->zap_f.zap_num_entries_mtx);
475 return (0);
476 }
477
478 /*
479 * Routines for obtaining zap_leaf_t's
480 */
481
482 void
zap_put_leaf(zap_leaf_t * l)483 zap_put_leaf(zap_leaf_t *l)
484 {
485 rw_exit(&l->l_rwlock);
486 dmu_buf_rele(l->l_dbuf, NULL);
487 }
488
489 static zap_leaf_t *
zap_open_leaf(uint64_t blkid,dmu_buf_t * db)490 zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
491 {
492 ASSERT(blkid != 0);
493
494 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
495 rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
496 rw_enter(&l->l_rwlock, RW_WRITER);
497 l->l_blkid = blkid;
498 l->l_bs = highbit64(db->db_size) - 1;
499 l->l_dbuf = db;
500
501 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
502 zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu);
503
504 rw_exit(&l->l_rwlock);
505 if (winner != NULL) {
506 /* someone else set it first */
507 zap_leaf_evict_sync(&l->l_dbu);
508 l = winner;
509 }
510
511 /*
512 * lhr_pad was previously used for the next leaf in the leaf
513 * chain. There should be no chained leafs (as we have removed
514 * support for them).
515 */
516 ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
517
518 /*
519 * There should be more hash entries than there can be
520 * chunks to put in the hash table
521 */
522 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
523
524 /* The chunks should begin at the end of the hash table */
525 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
526 &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
527
528 /* The chunks should end at the end of the block */
529 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
530 (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
531
532 return (l);
533 }
534
535 static int
zap_get_leaf_byblk(zap_t * zap,uint64_t blkid,dmu_tx_t * tx,krw_t lt,zap_leaf_t ** lp)536 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
537 zap_leaf_t **lp)
538 {
539 dmu_buf_t *db;
540
541 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
542
543 /*
544 * If system crashed just after dmu_free_long_range in zfs_rmnode, we
545 * would be left with an empty xattr dir in delete queue. blkid=0
546 * would be passed in when doing zfs_purgedir. If that's the case we
547 * should just return immediately. The underlying objects should
548 * already be freed, so this should be perfectly fine.
549 */
550 if (blkid == 0)
551 return (SET_ERROR(ENOENT));
552
553 int bs = FZAP_BLOCK_SHIFT(zap);
554 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
555 blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
556 if (err != 0)
557 return (err);
558
559 ASSERT3U(db->db_object, ==, zap->zap_object);
560 ASSERT3U(db->db_offset, ==, blkid << bs);
561 ASSERT3U(db->db_size, ==, 1 << bs);
562 ASSERT(blkid != 0);
563
564 zap_leaf_t *l = dmu_buf_get_user(db);
565
566 if (l == NULL)
567 l = zap_open_leaf(blkid, db);
568
569 rw_enter(&l->l_rwlock, lt);
570 /*
571 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
572 * causing ASSERT below to fail.
573 */
574 if (lt == RW_WRITER)
575 dmu_buf_will_dirty(db, tx);
576 ASSERT3U(l->l_blkid, ==, blkid);
577 ASSERT3P(l->l_dbuf, ==, db);
578 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
579 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
580
581 *lp = l;
582 return (0);
583 }
584
585 static int
zap_idx_to_blk(zap_t * zap,uint64_t idx,uint64_t * valp)586 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
587 {
588 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
589
590 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
591 ASSERT3U(idx, <,
592 (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
593 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
594 return (0);
595 } else {
596 return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
597 idx, valp));
598 }
599 }
600
601 static int
zap_set_idx_to_blk(zap_t * zap,uint64_t idx,uint64_t blk,dmu_tx_t * tx)602 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
603 {
604 ASSERT(tx != NULL);
605 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
606
607 if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
608 ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
609 return (0);
610 } else {
611 return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
612 idx, blk, tx));
613 }
614 }
615
616 static int
zap_set_idx_range_to_blk(zap_t * zap,uint64_t idx,uint64_t nptrs,uint64_t blk,dmu_tx_t * tx)617 zap_set_idx_range_to_blk(zap_t *zap, uint64_t idx, uint64_t nptrs, uint64_t blk,
618 dmu_tx_t *tx)
619 {
620 int bs = FZAP_BLOCK_SHIFT(zap);
621 int epb = bs >> 3; /* entries per block */
622 int err = 0;
623
624 ASSERT(tx != NULL);
625 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
626
627 /*
628 * Check for i/o errors
629 */
630 for (int i = 0; i < nptrs; i += epb) {
631 uint64_t blk;
632 err = zap_idx_to_blk(zap, idx + i, &blk);
633 if (err != 0) {
634 return (err);
635 }
636 }
637
638 for (int i = 0; i < nptrs; i++) {
639 err = zap_set_idx_to_blk(zap, idx + i, blk, tx);
640 ASSERT0(err); /* we checked for i/o errors above */
641 if (err != 0)
642 break;
643 }
644
645 return (err);
646 }
647
648 #define ZAP_PREFIX_HASH(pref, pref_len) ((pref) << (64 - (pref_len)))
649
650 /*
651 * Each leaf has single range of entries (block pointers) in the ZAP ptrtbl.
652 * If two leaves are siblings, their ranges are adjecent and contain the same
653 * number of entries. In order to find out if a leaf has a sibling, we need to
654 * check the range corresponding to the sibling leaf. There is no need to check
655 * all entries in the range, we only need to check the frist and the last one.
656 */
657 static uint64_t
check_sibling_ptrtbl_range(zap_t * zap,uint64_t prefix,uint64_t prefix_len)658 check_sibling_ptrtbl_range(zap_t *zap, uint64_t prefix, uint64_t prefix_len)
659 {
660 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
661
662 uint64_t h = ZAP_PREFIX_HASH(prefix, prefix_len);
663 uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
664 uint64_t pref_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - prefix_len;
665 uint64_t nptrs = (1 << pref_diff);
666 uint64_t first;
667 uint64_t last;
668
669 ASSERT3U(idx+nptrs, <=, (1UL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
670
671 if (zap_idx_to_blk(zap, idx, &first) != 0)
672 return (0);
673
674 if (zap_idx_to_blk(zap, idx + nptrs - 1, &last) != 0)
675 return (0);
676
677 if (first != last)
678 return (0);
679 return (first);
680 }
681
682 static int
zap_deref_leaf(zap_t * zap,uint64_t h,dmu_tx_t * tx,krw_t lt,zap_leaf_t ** lp)683 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
684 {
685 uint64_t blk;
686
687 ASSERT(zap->zap_dbuf == NULL ||
688 zap_f_phys(zap) == zap->zap_dbuf->db_data);
689
690 /* Reality check for corrupt zap objects (leaf or header). */
691 if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
692 zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
693 zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
694 return (SET_ERROR(EIO));
695 }
696
697 uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
698 int err = zap_idx_to_blk(zap, idx, &blk);
699 if (err != 0)
700 return (err);
701 err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
702
703 ASSERT(err ||
704 ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
705 zap_leaf_phys(*lp)->l_hdr.lh_prefix);
706 return (err);
707 }
708
709 static int
zap_expand_leaf(zap_name_t * zn,zap_leaf_t * l,const void * tag,dmu_tx_t * tx,zap_leaf_t ** lp)710 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
711 const void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
712 {
713 zap_t *zap = zn->zn_zap;
714 uint64_t hash = zn->zn_hash;
715 int err;
716 int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
717
718 ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
719 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
720
721 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
722 zap_leaf_phys(l)->l_hdr.lh_prefix);
723
724 if (zap_tryupgradedir(zap, tx) == 0 ||
725 old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
726 /* We failed to upgrade, or need to grow the pointer table */
727 objset_t *os = zap->zap_objset;
728 uint64_t object = zap->zap_object;
729
730 zap_put_leaf(l);
731 *lp = l = NULL;
732 zap_unlockdir(zap, tag);
733 err = zap_lockdir(os, object, tx, RW_WRITER,
734 FALSE, FALSE, tag, &zn->zn_zap);
735 zap = zn->zn_zap;
736 if (err != 0)
737 return (err);
738 ASSERT(!zap->zap_ismicro);
739
740 while (old_prefix_len ==
741 zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
742 err = zap_grow_ptrtbl(zap, tx);
743 if (err != 0)
744 return (err);
745 }
746
747 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
748 if (err != 0)
749 return (err);
750
751 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
752 /* it split while our locks were down */
753 *lp = l;
754 return (0);
755 }
756 }
757 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
758 ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
759 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
760 zap_leaf_phys(l)->l_hdr.lh_prefix);
761
762 int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
763 (old_prefix_len + 1);
764 uint64_t sibling =
765 (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
766
767 /* check for i/o errors before doing zap_leaf_split */
768 for (int i = 0; i < (1ULL << prefix_diff); i++) {
769 uint64_t blk;
770 err = zap_idx_to_blk(zap, sibling + i, &blk);
771 if (err != 0)
772 return (err);
773 ASSERT3U(blk, ==, l->l_blkid);
774 }
775
776 zap_leaf_t *nl = zap_create_leaf(zap, tx);
777 zap_leaf_split(l, nl, zap->zap_normflags != 0);
778
779 /* set sibling pointers */
780 for (int i = 0; i < (1ULL << prefix_diff); i++) {
781 err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx);
782 ASSERT0(err); /* we checked for i/o errors above */
783 }
784
785 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
786
787 if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
788 /* we want the sibling */
789 zap_put_leaf(l);
790 *lp = nl;
791 } else {
792 zap_put_leaf(nl);
793 *lp = l;
794 }
795
796 return (0);
797 }
798
799 static void
zap_put_leaf_maybe_grow_ptrtbl(zap_name_t * zn,zap_leaf_t * l,const void * tag,dmu_tx_t * tx)800 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
801 const void *tag, dmu_tx_t *tx)
802 {
803 zap_t *zap = zn->zn_zap;
804 int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
805 int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
806 zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
807
808 zap_put_leaf(l);
809
810 if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
811 /*
812 * We are in the middle of growing the pointer table, or
813 * this leaf will soon make us grow it.
814 */
815 if (zap_tryupgradedir(zap, tx) == 0) {
816 objset_t *os = zap->zap_objset;
817 uint64_t zapobj = zap->zap_object;
818
819 zap_unlockdir(zap, tag);
820 int err = zap_lockdir(os, zapobj, tx,
821 RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
822 zap = zn->zn_zap;
823 if (err != 0)
824 return;
825 }
826
827 /* could have finished growing while our locks were down */
828 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
829 (void) zap_grow_ptrtbl(zap, tx);
830 }
831 }
832
833 static int
fzap_checkname(zap_name_t * zn)834 fzap_checkname(zap_name_t *zn)
835 {
836 uint32_t maxnamelen = zn->zn_normbuf_len;
837 uint64_t len = (uint64_t)zn->zn_key_orig_numints * zn->zn_key_intlen;
838 /* Only allow directory zap to have longname */
839 if (len > maxnamelen ||
840 (len > ZAP_MAXNAMELEN &&
841 zn->zn_zap->zap_dnode->dn_type != DMU_OT_DIRECTORY_CONTENTS))
842 return (SET_ERROR(ENAMETOOLONG));
843 return (0);
844 }
845
846 static int
fzap_checksize(uint64_t integer_size,uint64_t num_integers)847 fzap_checksize(uint64_t integer_size, uint64_t num_integers)
848 {
849 /* Only integer sizes supported by C */
850 switch (integer_size) {
851 case 1:
852 case 2:
853 case 4:
854 case 8:
855 break;
856 default:
857 return (SET_ERROR(EINVAL));
858 }
859
860 if (integer_size * num_integers > ZAP_MAXVALUELEN)
861 return (SET_ERROR(E2BIG));
862
863 return (0);
864 }
865
866 static int
fzap_check(zap_name_t * zn,uint64_t integer_size,uint64_t num_integers)867 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
868 {
869 int err = fzap_checkname(zn);
870 if (err != 0)
871 return (err);
872 return (fzap_checksize(integer_size, num_integers));
873 }
874
875 /*
876 * Routines for manipulating attributes.
877 */
878 int
fzap_lookup(zap_name_t * zn,uint64_t integer_size,uint64_t num_integers,void * buf,char * realname,int rn_len,boolean_t * ncp)879 fzap_lookup(zap_name_t *zn,
880 uint64_t integer_size, uint64_t num_integers, void *buf,
881 char *realname, int rn_len, boolean_t *ncp)
882 {
883 zap_leaf_t *l;
884 zap_entry_handle_t zeh;
885
886 int err = fzap_checkname(zn);
887 if (err != 0)
888 return (err);
889
890 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
891 if (err != 0)
892 return (err);
893 err = zap_leaf_lookup(l, zn, &zeh);
894 if (err == 0) {
895 if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
896 zap_put_leaf(l);
897 return (err);
898 }
899
900 err = zap_entry_read(&zeh, integer_size, num_integers, buf);
901 (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
902 if (ncp) {
903 *ncp = zap_entry_normalization_conflict(&zeh,
904 zn, NULL, zn->zn_zap);
905 }
906 }
907
908 zap_put_leaf(l);
909 return (err);
910 }
911
912 int
fzap_add_cd(zap_name_t * zn,uint64_t integer_size,uint64_t num_integers,const void * val,uint32_t cd,const void * tag,dmu_tx_t * tx)913 fzap_add_cd(zap_name_t *zn,
914 uint64_t integer_size, uint64_t num_integers,
915 const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx)
916 {
917 zap_leaf_t *l;
918 int err;
919 zap_entry_handle_t zeh;
920 zap_t *zap = zn->zn_zap;
921
922 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
923 ASSERT(!zap->zap_ismicro);
924 ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
925
926 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
927 if (err != 0)
928 return (err);
929 retry:
930 err = zap_leaf_lookup(l, zn, &zeh);
931 if (err == 0) {
932 err = SET_ERROR(EEXIST);
933 goto out;
934 }
935 if (err != ENOENT)
936 goto out;
937
938 err = zap_entry_create(l, zn, cd,
939 integer_size, num_integers, val, &zeh);
940
941 if (err == 0) {
942 zap_increment_num_entries(zap, 1, tx);
943 } else if (err == EAGAIN) {
944 err = zap_expand_leaf(zn, l, tag, tx, &l);
945 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
946 if (err == 0)
947 goto retry;
948 }
949
950 out:
951 if (l != NULL) {
952 if (err == ENOSPC)
953 zap_put_leaf(l);
954 else
955 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
956 }
957 return (err);
958 }
959
960 int
fzap_add(zap_name_t * zn,uint64_t integer_size,uint64_t num_integers,const void * val,const void * tag,dmu_tx_t * tx)961 fzap_add(zap_name_t *zn,
962 uint64_t integer_size, uint64_t num_integers,
963 const void *val, const void *tag, dmu_tx_t *tx)
964 {
965 int err = fzap_check(zn, integer_size, num_integers);
966 if (err != 0)
967 return (err);
968
969 return (fzap_add_cd(zn, integer_size, num_integers,
970 val, ZAP_NEED_CD, tag, tx));
971 }
972
973 int
fzap_update(zap_name_t * zn,int integer_size,uint64_t num_integers,const void * val,const void * tag,dmu_tx_t * tx)974 fzap_update(zap_name_t *zn,
975 int integer_size, uint64_t num_integers, const void *val,
976 const void *tag, dmu_tx_t *tx)
977 {
978 zap_leaf_t *l;
979 int err;
980 boolean_t create;
981 zap_entry_handle_t zeh;
982 zap_t *zap = zn->zn_zap;
983
984 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
985 err = fzap_check(zn, integer_size, num_integers);
986 if (err != 0)
987 return (err);
988
989 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
990 if (err != 0)
991 return (err);
992 retry:
993 err = zap_leaf_lookup(l, zn, &zeh);
994 create = (err == ENOENT);
995 ASSERT(err == 0 || err == ENOENT);
996
997 if (create) {
998 err = zap_entry_create(l, zn, ZAP_NEED_CD,
999 integer_size, num_integers, val, &zeh);
1000 if (err == 0)
1001 zap_increment_num_entries(zap, 1, tx);
1002 } else {
1003 err = zap_entry_update(&zeh, integer_size, num_integers, val);
1004 }
1005
1006 if (err == EAGAIN) {
1007 err = zap_expand_leaf(zn, l, tag, tx, &l);
1008 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
1009 if (err == 0)
1010 goto retry;
1011 }
1012
1013 if (l != NULL) {
1014 if (err == ENOSPC)
1015 zap_put_leaf(l);
1016 else
1017 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
1018 }
1019 return (err);
1020 }
1021
1022 int
fzap_length(zap_name_t * zn,uint64_t * integer_size,uint64_t * num_integers)1023 fzap_length(zap_name_t *zn,
1024 uint64_t *integer_size, uint64_t *num_integers)
1025 {
1026 zap_leaf_t *l;
1027 int err;
1028 zap_entry_handle_t zeh;
1029
1030 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
1031 if (err != 0)
1032 return (err);
1033 err = zap_leaf_lookup(l, zn, &zeh);
1034 if (err != 0)
1035 goto out;
1036
1037 if (integer_size != NULL)
1038 *integer_size = zeh.zeh_integer_size;
1039 if (num_integers != NULL)
1040 *num_integers = zeh.zeh_num_integers;
1041 out:
1042 zap_put_leaf(l);
1043 return (err);
1044 }
1045
1046 int
fzap_remove(zap_name_t * zn,dmu_tx_t * tx)1047 fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
1048 {
1049 zap_leaf_t *l;
1050 int err;
1051 zap_entry_handle_t zeh;
1052
1053 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
1054 if (err != 0)
1055 return (err);
1056 err = zap_leaf_lookup(l, zn, &zeh);
1057 if (err == 0) {
1058 zap_entry_remove(&zeh);
1059 zap_increment_num_entries(zn->zn_zap, -1, tx);
1060
1061 if (zap_leaf_phys(l)->l_hdr.lh_nentries == 0 &&
1062 zap_shrink_enabled)
1063 return (zap_shrink(zn, l, tx));
1064 }
1065 zap_put_leaf(l);
1066 return (err);
1067 }
1068
1069 void
fzap_prefetch(zap_name_t * zn)1070 fzap_prefetch(zap_name_t *zn)
1071 {
1072 uint64_t blk;
1073 zap_t *zap = zn->zn_zap;
1074
1075 uint64_t idx = ZAP_HASH_IDX(zn->zn_hash,
1076 zap_f_phys(zap)->zap_ptrtbl.zt_shift);
1077 if (zap_idx_to_blk(zap, idx, &blk) != 0)
1078 return;
1079 int bs = FZAP_BLOCK_SHIFT(zap);
1080 dmu_prefetch_by_dnode(zap->zap_dnode, 0, blk << bs, 1 << bs,
1081 ZIO_PRIORITY_SYNC_READ);
1082 }
1083
1084 /*
1085 * Helper functions for consumers.
1086 */
1087
1088 uint64_t
zap_create_link(objset_t * os,dmu_object_type_t ot,uint64_t parent_obj,const char * name,dmu_tx_t * tx)1089 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
1090 const char *name, dmu_tx_t *tx)
1091 {
1092 return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
1093 }
1094
1095 uint64_t
zap_create_link_dnsize(objset_t * os,dmu_object_type_t ot,uint64_t parent_obj,const char * name,int dnodesize,dmu_tx_t * tx)1096 zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
1097 const char *name, int dnodesize, dmu_tx_t *tx)
1098 {
1099 uint64_t new_obj;
1100
1101 new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx);
1102 VERIFY(new_obj != 0);
1103 VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
1104 tx));
1105
1106 return (new_obj);
1107 }
1108
1109 int
zap_value_search(objset_t * os,uint64_t zapobj,uint64_t value,uint64_t mask,char * name,uint64_t namelen)1110 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
1111 char *name, uint64_t namelen)
1112 {
1113 zap_cursor_t zc;
1114 int err;
1115
1116 if (mask == 0)
1117 mask = -1ULL;
1118
1119 zap_attribute_t *za = zap_attribute_long_alloc();
1120 for (zap_cursor_init(&zc, os, zapobj);
1121 (err = zap_cursor_retrieve(&zc, za)) == 0;
1122 zap_cursor_advance(&zc)) {
1123 if ((za->za_first_integer & mask) == (value & mask)) {
1124 if (strlcpy(name, za->za_name, namelen) >= namelen)
1125 err = SET_ERROR(ENAMETOOLONG);
1126 break;
1127 }
1128 }
1129 zap_cursor_fini(&zc);
1130 zap_attribute_free(za);
1131 return (err);
1132 }
1133
1134 int
zap_join(objset_t * os,uint64_t fromobj,uint64_t intoobj,dmu_tx_t * tx)1135 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
1136 {
1137 zap_cursor_t zc;
1138 int err = 0;
1139
1140 zap_attribute_t *za = zap_attribute_long_alloc();
1141 for (zap_cursor_init(&zc, os, fromobj);
1142 zap_cursor_retrieve(&zc, za) == 0;
1143 (void) zap_cursor_advance(&zc)) {
1144 if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1145 err = SET_ERROR(EINVAL);
1146 break;
1147 }
1148 err = zap_add(os, intoobj, za->za_name,
1149 8, 1, &za->za_first_integer, tx);
1150 if (err != 0)
1151 break;
1152 }
1153 zap_cursor_fini(&zc);
1154 zap_attribute_free(za);
1155 return (err);
1156 }
1157
1158 int
zap_join_key(objset_t * os,uint64_t fromobj,uint64_t intoobj,uint64_t value,dmu_tx_t * tx)1159 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1160 uint64_t value, dmu_tx_t *tx)
1161 {
1162 zap_cursor_t zc;
1163 int err = 0;
1164
1165 zap_attribute_t *za = zap_attribute_long_alloc();
1166 for (zap_cursor_init(&zc, os, fromobj);
1167 zap_cursor_retrieve(&zc, za) == 0;
1168 (void) zap_cursor_advance(&zc)) {
1169 if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1170 err = SET_ERROR(EINVAL);
1171 break;
1172 }
1173 err = zap_add(os, intoobj, za->za_name,
1174 8, 1, &value, tx);
1175 if (err != 0)
1176 break;
1177 }
1178 zap_cursor_fini(&zc);
1179 zap_attribute_free(za);
1180 return (err);
1181 }
1182
1183 int
zap_join_increment(objset_t * os,uint64_t fromobj,uint64_t intoobj,dmu_tx_t * tx)1184 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1185 dmu_tx_t *tx)
1186 {
1187 zap_cursor_t zc;
1188 int err = 0;
1189
1190 zap_attribute_t *za = zap_attribute_long_alloc();
1191 for (zap_cursor_init(&zc, os, fromobj);
1192 zap_cursor_retrieve(&zc, za) == 0;
1193 (void) zap_cursor_advance(&zc)) {
1194 uint64_t delta = 0;
1195
1196 if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1197 err = SET_ERROR(EINVAL);
1198 break;
1199 }
1200
1201 err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta);
1202 if (err != 0 && err != ENOENT)
1203 break;
1204 delta += za->za_first_integer;
1205 err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx);
1206 if (err != 0)
1207 break;
1208 }
1209 zap_cursor_fini(&zc);
1210 zap_attribute_free(za);
1211 return (err);
1212 }
1213
1214 int
zap_add_int(objset_t * os,uint64_t obj,uint64_t value,dmu_tx_t * tx)1215 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1216 {
1217 char name[20];
1218
1219 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1220 return (zap_add(os, obj, name, 8, 1, &value, tx));
1221 }
1222
1223 int
zap_remove_int(objset_t * os,uint64_t obj,uint64_t value,dmu_tx_t * tx)1224 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1225 {
1226 char name[20];
1227
1228 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1229 return (zap_remove(os, obj, name, tx));
1230 }
1231
1232 int
zap_lookup_int(objset_t * os,uint64_t obj,uint64_t value)1233 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
1234 {
1235 char name[20];
1236
1237 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1238 return (zap_lookup(os, obj, name, 8, 1, &value));
1239 }
1240
1241 int
zap_add_int_key(objset_t * os,uint64_t obj,uint64_t key,uint64_t value,dmu_tx_t * tx)1242 zap_add_int_key(objset_t *os, uint64_t obj,
1243 uint64_t key, uint64_t value, dmu_tx_t *tx)
1244 {
1245 char name[20];
1246
1247 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1248 return (zap_add(os, obj, name, 8, 1, &value, tx));
1249 }
1250
1251 int
zap_update_int_key(objset_t * os,uint64_t obj,uint64_t key,uint64_t value,dmu_tx_t * tx)1252 zap_update_int_key(objset_t *os, uint64_t obj,
1253 uint64_t key, uint64_t value, dmu_tx_t *tx)
1254 {
1255 char name[20];
1256
1257 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1258 return (zap_update(os, obj, name, 8, 1, &value, tx));
1259 }
1260
1261 int
zap_lookup_int_key(objset_t * os,uint64_t obj,uint64_t key,uint64_t * valuep)1262 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
1263 {
1264 char name[20];
1265
1266 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1267 return (zap_lookup(os, obj, name, 8, 1, valuep));
1268 }
1269
1270 int
zap_increment(objset_t * os,uint64_t obj,const char * name,int64_t delta,dmu_tx_t * tx)1271 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
1272 dmu_tx_t *tx)
1273 {
1274 uint64_t value = 0;
1275
1276 if (delta == 0)
1277 return (0);
1278
1279 int err = zap_lookup(os, obj, name, 8, 1, &value);
1280 if (err != 0 && err != ENOENT)
1281 return (err);
1282 value += delta;
1283 if (value == 0)
1284 err = zap_remove(os, obj, name, tx);
1285 else
1286 err = zap_update(os, obj, name, 8, 1, &value, tx);
1287 return (err);
1288 }
1289
1290 int
zap_increment_int(objset_t * os,uint64_t obj,uint64_t key,int64_t delta,dmu_tx_t * tx)1291 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
1292 dmu_tx_t *tx)
1293 {
1294 char name[20];
1295
1296 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1297 return (zap_increment(os, obj, name, delta, tx));
1298 }
1299
1300 /*
1301 * Routines for iterating over the attributes.
1302 */
1303
1304 int
fzap_cursor_retrieve(zap_t * zap,zap_cursor_t * zc,zap_attribute_t * za)1305 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
1306 {
1307 int err = ENOENT;
1308 zap_entry_handle_t zeh;
1309 zap_leaf_t *l;
1310
1311 /* retrieve the next entry at or after zc_hash/zc_cd */
1312 /* if no entry, return ENOENT */
1313
1314 /*
1315 * If we are reading from the beginning, we're almost certain to
1316 * iterate over the entire ZAP object. If there are multiple leaf
1317 * blocks (freeblk > 2), prefetch the whole object (up to
1318 * dmu_prefetch_max bytes), so that we read the leaf blocks
1319 * concurrently. (Unless noprefetch was requested via
1320 * zap_cursor_init_noprefetch()).
1321 */
1322 if (zc->zc_hash == 0 && zap_iterate_prefetch &&
1323 zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) {
1324 dmu_prefetch_by_dnode(zap->zap_dnode, 0, 0,
1325 zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap),
1326 ZIO_PRIORITY_ASYNC_READ);
1327 }
1328
1329 if (zc->zc_leaf) {
1330 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1331
1332 /*
1333 * The leaf was either shrunk or split.
1334 */
1335 if ((zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_block_type == 0) ||
1336 (ZAP_HASH_IDX(zc->zc_hash,
1337 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
1338 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
1339 zap_put_leaf(zc->zc_leaf);
1340 zc->zc_leaf = NULL;
1341 }
1342 }
1343
1344 again:
1345 if (zc->zc_leaf == NULL) {
1346 err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
1347 &zc->zc_leaf);
1348 if (err != 0)
1349 return (err);
1350 }
1351 l = zc->zc_leaf;
1352
1353 err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
1354
1355 if (err == ENOENT) {
1356 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
1357 zc->zc_hash = -1ULL;
1358 zc->zc_cd = 0;
1359 } else {
1360 uint64_t nocare = (1ULL <<
1361 (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
1362
1363 zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
1364 zc->zc_cd = 0;
1365
1366 if (zc->zc_hash == 0) {
1367 zc->zc_hash = -1ULL;
1368 } else {
1369 zap_put_leaf(zc->zc_leaf);
1370 zc->zc_leaf = NULL;
1371 goto again;
1372 }
1373 }
1374 }
1375
1376 if (err == 0) {
1377 zc->zc_hash = zeh.zeh_hash;
1378 zc->zc_cd = zeh.zeh_cd;
1379 za->za_integer_length = zeh.zeh_integer_size;
1380 za->za_num_integers = zeh.zeh_num_integers;
1381 if (zeh.zeh_num_integers == 0) {
1382 za->za_first_integer = 0;
1383 } else {
1384 err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
1385 ASSERT(err == 0 || err == EOVERFLOW);
1386 }
1387 err = zap_entry_read_name(zap, &zeh,
1388 za->za_name_len, za->za_name);
1389 ASSERT(err == 0);
1390
1391 za->za_normalization_conflict =
1392 zap_entry_normalization_conflict(&zeh,
1393 NULL, za->za_name, zap);
1394 }
1395 rw_exit(&zc->zc_leaf->l_rwlock);
1396 return (err);
1397 }
1398
1399 static void
zap_stats_ptrtbl(zap_t * zap,uint64_t * tbl,int len,zap_stats_t * zs)1400 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
1401 {
1402 uint64_t lastblk = 0;
1403
1404 /*
1405 * NB: if a leaf has more pointers than an entire ptrtbl block
1406 * can hold, then it'll be accounted for more than once, since
1407 * we won't have lastblk.
1408 */
1409 for (int i = 0; i < len; i++) {
1410 zap_leaf_t *l;
1411
1412 if (tbl[i] == lastblk)
1413 continue;
1414 lastblk = tbl[i];
1415
1416 int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
1417 if (err == 0) {
1418 zap_leaf_stats(zap, l, zs);
1419 zap_put_leaf(l);
1420 }
1421 }
1422 }
1423
1424 void
fzap_get_stats(zap_t * zap,zap_stats_t * zs)1425 fzap_get_stats(zap_t *zap, zap_stats_t *zs)
1426 {
1427 int bs = FZAP_BLOCK_SHIFT(zap);
1428 zs->zs_blocksize = 1ULL << bs;
1429
1430 /*
1431 * Set zap_phys_t fields
1432 */
1433 zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
1434 zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
1435 zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
1436 zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
1437 zs->zs_magic = zap_f_phys(zap)->zap_magic;
1438 zs->zs_salt = zap_f_phys(zap)->zap_salt;
1439
1440 /*
1441 * Set zap_ptrtbl fields
1442 */
1443 zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1444 zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
1445 zs->zs_ptrtbl_blks_copied =
1446 zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
1447 zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
1448 zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1449 zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1450
1451 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
1452 /* the ptrtbl is entirely in the header block. */
1453 zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
1454 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
1455 } else {
1456 dmu_prefetch_by_dnode(zap->zap_dnode, 0,
1457 zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
1458 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
1459 ZIO_PRIORITY_SYNC_READ);
1460
1461 for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1462 b++) {
1463 dmu_buf_t *db;
1464 int err;
1465
1466 err = dmu_buf_hold_by_dnode(zap->zap_dnode,
1467 (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
1468 FTAG, &db, DMU_READ_NO_PREFETCH);
1469 if (err == 0) {
1470 zap_stats_ptrtbl(zap, db->db_data,
1471 1<<(bs-3), zs);
1472 dmu_buf_rele(db, FTAG);
1473 }
1474 }
1475 }
1476 }
1477
1478 /*
1479 * Find last allocated block and update freeblk.
1480 */
1481 static void
zap_trunc(zap_t * zap)1482 zap_trunc(zap_t *zap)
1483 {
1484 uint64_t nentries;
1485 uint64_t lastblk;
1486
1487 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1488
1489 if (zap_f_phys(zap)->zap_ptrtbl.zt_blk > 0) {
1490 /* External ptrtbl */
1491 nentries = (1 << zap_f_phys(zap)->zap_ptrtbl.zt_shift);
1492 lastblk = zap_f_phys(zap)->zap_ptrtbl.zt_blk +
1493 zap_f_phys(zap)->zap_ptrtbl.zt_numblks - 1;
1494 } else {
1495 /* Embedded ptrtbl */
1496 nentries = (1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
1497 lastblk = 0;
1498 }
1499
1500 for (uint64_t idx = 0; idx < nentries; idx++) {
1501 uint64_t blk;
1502 if (zap_idx_to_blk(zap, idx, &blk) != 0)
1503 return;
1504 if (blk > lastblk)
1505 lastblk = blk;
1506 }
1507
1508 ASSERT3U(lastblk, <, zap_f_phys(zap)->zap_freeblk);
1509
1510 zap_f_phys(zap)->zap_freeblk = lastblk + 1;
1511 }
1512
1513 /*
1514 * ZAP shrinking algorithm.
1515 *
1516 * We shrink ZAP recuresively removing empty leaves. We can remove an empty leaf
1517 * only if it has a sibling. Sibling leaves have the same prefix length and
1518 * their prefixes differ only by the least significant (sibling) bit. We require
1519 * both siblings to be empty. This eliminates a need to rehash the non-empty
1520 * remaining leaf. When we have removed one of two empty sibling, we set ptrtbl
1521 * entries of the removed leaf to point out to the remaining leaf. Prefix length
1522 * of the remaining leaf is decremented. As a result, it has a new prefix and it
1523 * might have a new sibling. So, we repeat the process.
1524 *
1525 * Steps:
1526 * 1. Check if a sibling leaf (sl) exists and it is empty.
1527 * 2. Release the leaf (l) if it has the sibling bit (slbit) equal to 1.
1528 * 3. Release the sibling (sl) to derefer it again with WRITER lock.
1529 * 4. Upgrade zapdir lock to WRITER (once).
1530 * 5. Derefer released leaves again.
1531 * 6. If it is needed, recheck whether both leaves are still siblings and empty.
1532 * 7. Set ptrtbl pointers of the removed leaf (slbit 1) to point out to blkid of
1533 * the remaining leaf (slbit 0).
1534 * 8. Free disk block of the removed leaf (dmu_free_range).
1535 * 9. Decrement prefix_len of the remaining leaf.
1536 * 10. Repeat the steps.
1537 */
1538 static int
zap_shrink(zap_name_t * zn,zap_leaf_t * l,dmu_tx_t * tx)1539 zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx)
1540 {
1541 zap_t *zap = zn->zn_zap;
1542 int64_t zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1543 uint64_t hash = zn->zn_hash;
1544 uint64_t prefix = zap_leaf_phys(l)->l_hdr.lh_prefix;
1545 uint64_t prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
1546 boolean_t trunc = B_FALSE;
1547 int err = 0;
1548
1549 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0);
1550 ASSERT3U(prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
1551 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
1552 ASSERT3U(ZAP_HASH_IDX(hash, prefix_len), ==, prefix);
1553
1554 boolean_t writer = B_FALSE;
1555
1556 /*
1557 * To avoid deadlock always deref leaves in the same order -
1558 * sibling 0 first, then sibling 1.
1559 */
1560 while (prefix_len) {
1561 zap_leaf_t *sl;
1562 int64_t prefix_diff = zt_shift - prefix_len;
1563 uint64_t sl_prefix = prefix ^ 1;
1564 uint64_t sl_hash = ZAP_PREFIX_HASH(sl_prefix, prefix_len);
1565 int slbit = prefix & 1;
1566
1567 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0);
1568
1569 /*
1570 * Check if there is a sibling by reading ptrtbl ptrs.
1571 */
1572 if (check_sibling_ptrtbl_range(zap, sl_prefix, prefix_len) == 0)
1573 break;
1574
1575 /*
1576 * sibling 1, unlock it - we haven't yet dereferenced sibling 0.
1577 */
1578 if (slbit == 1) {
1579 zap_put_leaf(l);
1580 l = NULL;
1581 }
1582
1583 /*
1584 * Dereference sibling leaf and check if it is empty.
1585 */
1586 if ((err = zap_deref_leaf(zap, sl_hash, tx, RW_READER,
1587 &sl)) != 0)
1588 break;
1589
1590 ASSERT3U(ZAP_HASH_IDX(sl_hash, prefix_len), ==, sl_prefix);
1591
1592 /*
1593 * Check if we have a sibling and it is empty.
1594 */
1595 if (zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len ||
1596 zap_leaf_phys(sl)->l_hdr.lh_nentries != 0) {
1597 zap_put_leaf(sl);
1598 break;
1599 }
1600
1601 zap_put_leaf(sl);
1602
1603 /*
1604 * If there two empty sibling, we have work to do, so
1605 * we need to lock ZAP ptrtbl as WRITER.
1606 */
1607 if (!writer && (writer = zap_tryupgradedir(zap, tx)) == 0) {
1608 /* We failed to upgrade */
1609 if (l != NULL) {
1610 zap_put_leaf(l);
1611 l = NULL;
1612 }
1613
1614 /*
1615 * Usually, the right way to upgrade from a READER lock
1616 * to a WRITER lock is to call zap_unlockdir() and
1617 * zap_lockdir(), but we do not have a tag. Instead,
1618 * we do it in more sophisticated way.
1619 */
1620 rw_exit(&zap->zap_rwlock);
1621 rw_enter(&zap->zap_rwlock, RW_WRITER);
1622 dmu_buf_will_dirty(zap->zap_dbuf, tx);
1623
1624 zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1625 writer = B_TRUE;
1626 }
1627
1628 /*
1629 * Here we have WRITER lock for ptrtbl.
1630 * Now, we need a WRITER lock for both siblings leaves.
1631 * Also, we have to recheck if the leaves are still siblings
1632 * and still empty.
1633 */
1634 if (l == NULL) {
1635 /* sibling 0 */
1636 if ((err = zap_deref_leaf(zap, (slbit ? sl_hash : hash),
1637 tx, RW_WRITER, &l)) != 0)
1638 break;
1639
1640 /*
1641 * The leaf isn't empty anymore or
1642 * it was shrunk/split while our locks were down.
1643 */
1644 if (zap_leaf_phys(l)->l_hdr.lh_nentries != 0 ||
1645 zap_leaf_phys(l)->l_hdr.lh_prefix_len != prefix_len)
1646 break;
1647 }
1648
1649 /* sibling 1 */
1650 if ((err = zap_deref_leaf(zap, (slbit ? hash : sl_hash), tx,
1651 RW_WRITER, &sl)) != 0)
1652 break;
1653
1654 /*
1655 * The leaf isn't empty anymore or
1656 * it was shrunk/split while our locks were down.
1657 */
1658 if (zap_leaf_phys(sl)->l_hdr.lh_nentries != 0 ||
1659 zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len) {
1660 zap_put_leaf(sl);
1661 break;
1662 }
1663
1664 /* If we have gotten here, we have a leaf to collapse */
1665 uint64_t idx = (slbit ? prefix : sl_prefix) << prefix_diff;
1666 uint64_t nptrs = (1ULL << prefix_diff);
1667 uint64_t sl_blkid = sl->l_blkid;
1668
1669 /*
1670 * Set ptrtbl entries to point out to the slibling 0 blkid
1671 */
1672 if ((err = zap_set_idx_range_to_blk(zap, idx, nptrs, l->l_blkid,
1673 tx)) != 0) {
1674 zap_put_leaf(sl);
1675 break;
1676 }
1677
1678 /*
1679 * Free sibling 1 disk block.
1680 */
1681 int bs = FZAP_BLOCK_SHIFT(zap);
1682 if (sl_blkid == zap_f_phys(zap)->zap_freeblk - 1)
1683 trunc = B_TRUE;
1684
1685 (void) dmu_free_range(zap->zap_objset, zap->zap_object,
1686 sl_blkid << bs, 1 << bs, tx);
1687 zap_put_leaf(sl);
1688
1689 zap_f_phys(zap)->zap_num_leafs--;
1690
1691 /*
1692 * Update prefix and prefix_len.
1693 */
1694 zap_leaf_phys(l)->l_hdr.lh_prefix >>= 1;
1695 zap_leaf_phys(l)->l_hdr.lh_prefix_len--;
1696
1697 prefix = zap_leaf_phys(l)->l_hdr.lh_prefix;
1698 prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
1699 }
1700
1701 if (trunc)
1702 zap_trunc(zap);
1703
1704 if (l != NULL)
1705 zap_put_leaf(l);
1706
1707 return (err);
1708 }
1709
1710 ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW,
1711 "When iterating ZAP object, prefetch it");
1712
1713 ZFS_MODULE_PARAM(zfs, , zap_shrink_enabled, INT, ZMOD_RW,
1714 "Enable ZAP shrinking");
1715