1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013, Joyent, Inc. All rights reserved.
25 */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/cred.h>
31 #include <sys/proc.h>
32 #include <sys/session.h>
33 #include <sys/strsubr.h>
34 #include <sys/user.h>
35 #include <sys/priocntl.h>
36 #include <sys/class.h>
37 #include <sys/disp.h>
38 #include <sys/procset.h>
39 #include <sys/debug.h>
40 #include <sys/kmem.h>
41 #include <sys/errno.h>
42 #include <sys/fx.h>
43 #include <sys/fxpriocntl.h>
44 #include <sys/cpuvar.h>
45 #include <sys/systm.h>
46 #include <sys/vtrace.h>
47 #include <sys/schedctl.h>
48 #include <sys/sunddi.h>
49 #include <sys/spl.h>
50 #include <sys/modctl.h>
51 #include <sys/policy.h>
52 #include <sys/sdt.h>
53 #include <sys/cpupart.h>
54 #include <sys/cpucaps.h>
55
56 static pri_t fx_init(id_t, int, classfuncs_t **);
57
58 static struct sclass csw = {
59 "FX",
60 fx_init,
61 0
62 };
63
64 static struct modlsched modlsched = {
65 &mod_schedops, "Fixed priority sched class", &csw
66 };
67
68 static struct modlinkage modlinkage = {
69 MODREV_1, (void *)&modlsched, NULL
70 };
71
72
73 /*
74 * control flags (kparms->fx_cflags).
75 */
76 #define FX_DOUPRILIM 0x01 /* change user priority limit */
77 #define FX_DOUPRI 0x02 /* change user priority */
78 #define FX_DOTQ 0x04 /* change FX time quantum */
79
80
81 #define FXMAXUPRI 60 /* maximum user priority setting */
82
83 #define FX_MAX_UNPRIV_PRI 0 /* maximum unpriviledge priority */
84
85 /*
86 * The fxproc_t structures that have a registered callback vector,
87 * are also kept in an array of circular doubly linked lists. A hash on
88 * the thread id (from ddi_get_kt_did()) is used to determine which list
89 * each of such fxproc structures should be placed. Each list has a dummy
90 * "head" which is never removed, so the list is never empty.
91 */
92
93 #define FX_CB_LISTS 16 /* number of lists, must be power of 2 */
94 #define FX_CB_LIST_HASH(ktid) ((uint_t)ktid & (FX_CB_LISTS - 1))
95
96 /* Insert fxproc into callback list */
97 #define FX_CB_LIST_INSERT(fxpp) \
98 { \
99 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \
100 kmutex_t *lockp = &fx_cb_list_lock[index]; \
101 fxproc_t *headp = &fx_cb_plisthead[index]; \
102 mutex_enter(lockp); \
103 fxpp->fx_cb_next = headp->fx_cb_next; \
104 fxpp->fx_cb_prev = headp; \
105 headp->fx_cb_next->fx_cb_prev = fxpp; \
106 headp->fx_cb_next = fxpp; \
107 mutex_exit(lockp); \
108 }
109
110 /*
111 * Remove thread from callback list.
112 */
113 #define FX_CB_LIST_DELETE(fxpp) \
114 { \
115 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \
116 kmutex_t *lockp = &fx_cb_list_lock[index]; \
117 mutex_enter(lockp); \
118 fxpp->fx_cb_prev->fx_cb_next = fxpp->fx_cb_next; \
119 fxpp->fx_cb_next->fx_cb_prev = fxpp->fx_cb_prev; \
120 mutex_exit(lockp); \
121 }
122
123 #define FX_HAS_CB(fxpp) (fxpp->fx_callback != NULL)
124
125 /* adjust x to be between 0 and fx_maxumdpri */
126
127 #define FX_ADJUST_PRI(pri) \
128 { \
129 if (pri < 0) \
130 pri = 0; \
131 else if (pri > fx_maxumdpri) \
132 pri = fx_maxumdpri; \
133 }
134
135 #define FX_ADJUST_QUANTUM(q) \
136 { \
137 if (q > INT_MAX) \
138 q = INT_MAX; \
139 else if (q <= 0) \
140 q = FX_TQINF; \
141 }
142
143 #define FX_ISVALID(pri, quantum) \
144 (((pri >= 0) || (pri == FX_CB_NOCHANGE)) && \
145 ((quantum >= 0) || (quantum == FX_NOCHANGE) || \
146 (quantum == FX_TQDEF) || (quantum == FX_TQINF)))
147
148
149 static id_t fx_cid; /* fixed priority class ID */
150 static fxdpent_t *fx_dptbl; /* fixed priority disp parameter table */
151
152 static pri_t fx_maxupri = FXMAXUPRI;
153 static pri_t fx_maxumdpri; /* max user mode fixed priority */
154
155 static pri_t fx_maxglobpri; /* maximum global priority used by fx class */
156 static kmutex_t fx_dptblock; /* protects fixed priority dispatch table */
157
158
159 static kmutex_t fx_cb_list_lock[FX_CB_LISTS]; /* protects list of fxprocs */
160 /* that have callbacks */
161 static fxproc_t fx_cb_plisthead[FX_CB_LISTS]; /* dummy fxproc at head of */
162 /* list of fxprocs with */
163 /* callbacks */
164
165 static int fx_admin(caddr_t, cred_t *);
166 static int fx_getclinfo(void *);
167 static int fx_parmsin(void *);
168 static int fx_parmsout(void *, pc_vaparms_t *);
169 static int fx_vaparmsin(void *, pc_vaparms_t *);
170 static int fx_vaparmsout(void *, pc_vaparms_t *);
171 static int fx_getclpri(pcpri_t *);
172 static int fx_alloc(void **, int);
173 static void fx_free(void *);
174 static int fx_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
175 static void fx_exitclass(void *);
176 static int fx_canexit(kthread_t *, cred_t *);
177 static int fx_fork(kthread_t *, kthread_t *, void *);
178 static void fx_forkret(kthread_t *, kthread_t *);
179 static void fx_parmsget(kthread_t *, void *);
180 static int fx_parmsset(kthread_t *, void *, id_t, cred_t *);
181 static void fx_stop(kthread_t *, int, int);
182 static void fx_exit(kthread_t *);
183 static pri_t fx_swapin(kthread_t *, int);
184 static pri_t fx_swapout(kthread_t *, int);
185 static void fx_trapret(kthread_t *);
186 static void fx_preempt(kthread_t *);
187 static void fx_setrun(kthread_t *);
188 static void fx_sleep(kthread_t *);
189 static void fx_tick(kthread_t *);
190 static void fx_wakeup(kthread_t *);
191 static int fx_donice(kthread_t *, cred_t *, int, int *);
192 static int fx_doprio(kthread_t *, cred_t *, int, int *);
193 static pri_t fx_globpri(kthread_t *);
194 static void fx_yield(kthread_t *);
195 static void fx_nullsys();
196
197 extern fxdpent_t *fx_getdptbl(void);
198
199 static void fx_change_priority(kthread_t *, fxproc_t *);
200 static fxproc_t *fx_list_lookup(kt_did_t);
201 static void fx_list_release(fxproc_t *);
202
203
204 static struct classfuncs fx_classfuncs = {
205 /* class functions */
206 fx_admin,
207 fx_getclinfo,
208 fx_parmsin,
209 fx_parmsout,
210 fx_vaparmsin,
211 fx_vaparmsout,
212 fx_getclpri,
213 fx_alloc,
214 fx_free,
215
216 /* thread functions */
217 fx_enterclass,
218 fx_exitclass,
219 fx_canexit,
220 fx_fork,
221 fx_forkret,
222 fx_parmsget,
223 fx_parmsset,
224 fx_stop,
225 fx_exit,
226 fx_nullsys, /* active */
227 fx_nullsys, /* inactive */
228 fx_swapin,
229 fx_swapout,
230 fx_trapret,
231 fx_preempt,
232 fx_setrun,
233 fx_sleep,
234 fx_tick,
235 fx_wakeup,
236 fx_donice,
237 fx_globpri,
238 fx_nullsys, /* set_process_group */
239 fx_yield,
240 fx_doprio,
241 };
242
243
244 int
_init()245 _init()
246 {
247 return (mod_install(&modlinkage));
248 }
249
250 int
_fini()251 _fini()
252 {
253 return (EBUSY);
254 }
255
256 int
_info(struct modinfo * modinfop)257 _info(struct modinfo *modinfop)
258 {
259 return (mod_info(&modlinkage, modinfop));
260 }
261
262 /*
263 * Fixed priority class initialization. Called by dispinit() at boot time.
264 * We can ignore the clparmsz argument since we know that the smallest
265 * possible parameter buffer is big enough for us.
266 */
267 /* ARGSUSED */
268 static pri_t
fx_init(id_t cid,int clparmsz,classfuncs_t ** clfuncspp)269 fx_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
270 {
271 int i;
272 extern pri_t fx_getmaxumdpri(void);
273
274 fx_dptbl = fx_getdptbl();
275 fx_maxumdpri = fx_getmaxumdpri();
276 fx_maxglobpri = fx_dptbl[fx_maxumdpri].fx_globpri;
277
278 fx_cid = cid; /* Record our class ID */
279
280 /*
281 * Initialize the hash table for fxprocs with callbacks
282 */
283 for (i = 0; i < FX_CB_LISTS; i++) {
284 fx_cb_plisthead[i].fx_cb_next = fx_cb_plisthead[i].fx_cb_prev =
285 &fx_cb_plisthead[i];
286 }
287
288 /*
289 * We're required to return a pointer to our classfuncs
290 * structure and the highest global priority value we use.
291 */
292 *clfuncspp = &fx_classfuncs;
293 return (fx_maxglobpri);
294 }
295
296 /*
297 * Get or reset the fx_dptbl values per the user's request.
298 */
299 static int
fx_admin(caddr_t uaddr,cred_t * reqpcredp)300 fx_admin(caddr_t uaddr, cred_t *reqpcredp)
301 {
302 fxadmin_t fxadmin;
303 fxdpent_t *tmpdpp;
304 int userdpsz;
305 int i;
306 size_t fxdpsz;
307
308 if (get_udatamodel() == DATAMODEL_NATIVE) {
309 if (copyin(uaddr, &fxadmin, sizeof (fxadmin_t)))
310 return (EFAULT);
311 }
312 #ifdef _SYSCALL32_IMPL
313 else {
314 /* get fxadmin struct from ILP32 caller */
315 fxadmin32_t fxadmin32;
316 if (copyin(uaddr, &fxadmin32, sizeof (fxadmin32_t)))
317 return (EFAULT);
318 fxadmin.fx_dpents =
319 (struct fxdpent *)(uintptr_t)fxadmin32.fx_dpents;
320 fxadmin.fx_ndpents = fxadmin32.fx_ndpents;
321 fxadmin.fx_cmd = fxadmin32.fx_cmd;
322 }
323 #endif /* _SYSCALL32_IMPL */
324
325 fxdpsz = (fx_maxumdpri + 1) * sizeof (fxdpent_t);
326
327 switch (fxadmin.fx_cmd) {
328 case FX_GETDPSIZE:
329 fxadmin.fx_ndpents = fx_maxumdpri + 1;
330
331 if (get_udatamodel() == DATAMODEL_NATIVE) {
332 if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
333 return (EFAULT);
334 }
335 #ifdef _SYSCALL32_IMPL
336 else {
337 /* return fxadmin struct to ILP32 caller */
338 fxadmin32_t fxadmin32;
339 fxadmin32.fx_dpents =
340 (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
341 fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
342 fxadmin32.fx_cmd = fxadmin.fx_cmd;
343 if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
344 return (EFAULT);
345 }
346 #endif /* _SYSCALL32_IMPL */
347 break;
348
349 case FX_GETDPTBL:
350 userdpsz = MIN(fxadmin.fx_ndpents * sizeof (fxdpent_t),
351 fxdpsz);
352 if (copyout(fx_dptbl, fxadmin.fx_dpents, userdpsz))
353 return (EFAULT);
354
355 fxadmin.fx_ndpents = userdpsz / sizeof (fxdpent_t);
356
357 if (get_udatamodel() == DATAMODEL_NATIVE) {
358 if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
359 return (EFAULT);
360 }
361 #ifdef _SYSCALL32_IMPL
362 else {
363 /* return fxadmin struct to ILP32 callers */
364 fxadmin32_t fxadmin32;
365 fxadmin32.fx_dpents =
366 (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
367 fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
368 fxadmin32.fx_cmd = fxadmin.fx_cmd;
369 if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
370 return (EFAULT);
371 }
372 #endif /* _SYSCALL32_IMPL */
373 break;
374
375 case FX_SETDPTBL:
376 /*
377 * We require that the requesting process has sufficient
378 * privileges. We also require that the table supplied by
379 * the user exactly match the current fx_dptbl in size.
380 */
381 if (secpolicy_dispadm(reqpcredp) != 0) {
382 return (EPERM);
383 }
384 if (fxadmin.fx_ndpents * sizeof (fxdpent_t) != fxdpsz) {
385 return (EINVAL);
386 }
387
388 /*
389 * We read the user supplied table into a temporary buffer
390 * where it is validated before being copied over the
391 * fx_dptbl.
392 */
393 tmpdpp = kmem_alloc(fxdpsz, KM_SLEEP);
394 if (copyin(fxadmin.fx_dpents, tmpdpp, fxdpsz)) {
395 kmem_free(tmpdpp, fxdpsz);
396 return (EFAULT);
397 }
398 for (i = 0; i < fxadmin.fx_ndpents; i++) {
399
400 /*
401 * Validate the user supplied values. All we are doing
402 * here is verifying that the values are within their
403 * allowable ranges and will not panic the system. We
404 * make no attempt to ensure that the resulting
405 * configuration makes sense or results in reasonable
406 * performance.
407 */
408 if (tmpdpp[i].fx_quantum <= 0 &&
409 tmpdpp[i].fx_quantum != FX_TQINF) {
410 kmem_free(tmpdpp, fxdpsz);
411 return (EINVAL);
412 }
413 }
414
415 /*
416 * Copy the user supplied values over the current fx_dptbl
417 * values. The fx_globpri member is read-only so we don't
418 * overwrite it.
419 */
420 mutex_enter(&fx_dptblock);
421 for (i = 0; i < fxadmin.fx_ndpents; i++) {
422 fx_dptbl[i].fx_quantum = tmpdpp[i].fx_quantum;
423 }
424 mutex_exit(&fx_dptblock);
425 kmem_free(tmpdpp, fxdpsz);
426 break;
427
428 default:
429 return (EINVAL);
430 }
431 return (0);
432 }
433
434 /*
435 * Allocate a fixed priority class specific thread structure and
436 * initialize it with the parameters supplied. Also move the thread
437 * to specified priority.
438 */
439 static int
fx_enterclass(kthread_t * t,id_t cid,void * parmsp,cred_t * reqpcredp,void * bufp)440 fx_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
441 void *bufp)
442 {
443 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
444 fxproc_t *fxpp;
445 pri_t reqfxupri;
446 pri_t reqfxuprilim;
447
448 fxpp = (fxproc_t *)bufp;
449 ASSERT(fxpp != NULL);
450
451 /*
452 * Initialize the fxproc structure.
453 */
454 fxpp->fx_flags = 0;
455 fxpp->fx_callback = NULL;
456 fxpp->fx_cookie = 0;
457
458 if (fxkparmsp == NULL) {
459 /*
460 * Use default values.
461 */
462 fxpp->fx_pri = fxpp->fx_uprilim = 0;
463 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
464 fxpp->fx_nice = NZERO;
465 } else {
466 /*
467 * Use supplied values.
468 */
469
470 if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) {
471 reqfxuprilim = 0;
472 } else {
473 if (fxkparmsp->fx_uprilim > FX_MAX_UNPRIV_PRI &&
474 secpolicy_setpriority(reqpcredp) != 0)
475 return (EPERM);
476 reqfxuprilim = fxkparmsp->fx_uprilim;
477 FX_ADJUST_PRI(reqfxuprilim);
478 }
479
480 if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) {
481 reqfxupri = reqfxuprilim;
482 } else {
483 if (fxkparmsp->fx_upri > FX_MAX_UNPRIV_PRI &&
484 secpolicy_setpriority(reqpcredp) != 0)
485 return (EPERM);
486 /*
487 * Set the user priority to the requested value
488 * or the upri limit, whichever is lower.
489 */
490 reqfxupri = fxkparmsp->fx_upri;
491 FX_ADJUST_PRI(reqfxupri);
492
493 if (reqfxupri > reqfxuprilim)
494 reqfxupri = reqfxuprilim;
495 }
496
497
498 fxpp->fx_uprilim = reqfxuprilim;
499 fxpp->fx_pri = reqfxupri;
500
501 fxpp->fx_nice = NZERO - (NZERO * reqfxupri) / fx_maxupri;
502
503 if (((fxkparmsp->fx_cflags & FX_DOTQ) == 0) ||
504 (fxkparmsp->fx_tqntm == FX_TQDEF)) {
505 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
506 } else {
507 if (secpolicy_setpriority(reqpcredp) != 0)
508 return (EPERM);
509
510 if (fxkparmsp->fx_tqntm == FX_TQINF)
511 fxpp->fx_pquantum = FX_TQINF;
512 else {
513 fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
514 }
515 }
516
517 }
518
519 fxpp->fx_timeleft = fxpp->fx_pquantum;
520 cpucaps_sc_init(&fxpp->fx_caps);
521 fxpp->fx_tp = t;
522
523 thread_lock(t); /* get dispatcher lock on thread */
524 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
525 t->t_cid = cid;
526 t->t_cldata = (void *)fxpp;
527 t->t_schedflag &= ~TS_RUNQMATCH;
528 fx_change_priority(t, fxpp);
529 thread_unlock(t);
530
531 return (0);
532 }
533
534 /*
535 * The thread is exiting.
536 */
537 static void
fx_exit(kthread_t * t)538 fx_exit(kthread_t *t)
539 {
540 fxproc_t *fxpp;
541
542 thread_lock(t);
543 fxpp = (fxproc_t *)(t->t_cldata);
544
545 /*
546 * A thread could be exiting in between clock ticks, so we need to
547 * calculate how much CPU time it used since it was charged last time.
548 *
549 * CPU caps are not enforced on exiting processes - it is usually
550 * desirable to exit as soon as possible to free resources.
551 */
552 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
553
554 if (FX_HAS_CB(fxpp)) {
555 FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
556 fxpp->fx_callback = NULL;
557 fxpp->fx_cookie = 0;
558 thread_unlock(t);
559 FX_CB_LIST_DELETE(fxpp);
560 return;
561 }
562
563 thread_unlock(t);
564 }
565
566 /*
567 * Exiting the class. Free fxproc structure of thread.
568 */
569 static void
fx_exitclass(void * procp)570 fx_exitclass(void *procp)
571 {
572 fxproc_t *fxpp = (fxproc_t *)procp;
573
574 thread_lock(fxpp->fx_tp);
575 if (FX_HAS_CB(fxpp)) {
576
577 FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
578
579 fxpp->fx_callback = NULL;
580 fxpp->fx_cookie = 0;
581 thread_unlock(fxpp->fx_tp);
582 FX_CB_LIST_DELETE(fxpp);
583 } else
584 thread_unlock(fxpp->fx_tp);
585
586 kmem_free(fxpp, sizeof (fxproc_t));
587 }
588
589 /* ARGSUSED */
590 static int
fx_canexit(kthread_t * t,cred_t * cred)591 fx_canexit(kthread_t *t, cred_t *cred)
592 {
593 /*
594 * A thread can always leave the FX class
595 */
596 return (0);
597 }
598
599 /*
600 * Initialize fixed-priority class specific proc structure for a child.
601 * callbacks are not inherited upon fork.
602 */
603 static int
fx_fork(kthread_t * t,kthread_t * ct,void * bufp)604 fx_fork(kthread_t *t, kthread_t *ct, void *bufp)
605 {
606 fxproc_t *pfxpp; /* ptr to parent's fxproc structure */
607 fxproc_t *cfxpp; /* ptr to child's fxproc structure */
608
609 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
610
611 cfxpp = (fxproc_t *)bufp;
612 ASSERT(cfxpp != NULL);
613 thread_lock(t);
614 pfxpp = (fxproc_t *)t->t_cldata;
615 /*
616 * Initialize child's fxproc structure.
617 */
618 cfxpp->fx_timeleft = cfxpp->fx_pquantum = pfxpp->fx_pquantum;
619 cfxpp->fx_pri = pfxpp->fx_pri;
620 cfxpp->fx_uprilim = pfxpp->fx_uprilim;
621 cfxpp->fx_nice = pfxpp->fx_nice;
622 cfxpp->fx_callback = NULL;
623 cfxpp->fx_cookie = 0;
624 cfxpp->fx_flags = pfxpp->fx_flags & ~(FXBACKQ);
625 cpucaps_sc_init(&cfxpp->fx_caps);
626
627 cfxpp->fx_tp = ct;
628 ct->t_cldata = (void *)cfxpp;
629 thread_unlock(t);
630
631 /*
632 * Link new structure into fxproc list.
633 */
634 return (0);
635 }
636
637
638 /*
639 * Child is placed at back of dispatcher queue and parent gives
640 * up processor so that the child runs first after the fork.
641 * This allows the child immediately execing to break the multiple
642 * use of copy on write pages with no disk home. The parent will
643 * get to steal them back rather than uselessly copying them.
644 */
645 static void
fx_forkret(kthread_t * t,kthread_t * ct)646 fx_forkret(kthread_t *t, kthread_t *ct)
647 {
648 proc_t *pp = ttoproc(t);
649 proc_t *cp = ttoproc(ct);
650 fxproc_t *fxpp;
651
652 ASSERT(t == curthread);
653 ASSERT(MUTEX_HELD(&pidlock));
654
655 /*
656 * Grab the child's p_lock before dropping pidlock to ensure
657 * the process does not disappear before we set it running.
658 */
659 mutex_enter(&cp->p_lock);
660 continuelwps(cp);
661 mutex_exit(&cp->p_lock);
662
663 mutex_enter(&pp->p_lock);
664 mutex_exit(&pidlock);
665 continuelwps(pp);
666
667 thread_lock(t);
668 fxpp = (fxproc_t *)(t->t_cldata);
669 t->t_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
670 ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
671 THREAD_TRANSITION(t);
672 fx_setrun(t);
673 thread_unlock(t);
674 /*
675 * Safe to drop p_lock now since it is safe to change
676 * the scheduling class after this point.
677 */
678 mutex_exit(&pp->p_lock);
679
680 swtch();
681 }
682
683
684 /*
685 * Get information about the fixed-priority class into the buffer
686 * pointed to by fxinfop. The maximum configured user priority
687 * is the only information we supply.
688 */
689 static int
fx_getclinfo(void * infop)690 fx_getclinfo(void *infop)
691 {
692 fxinfo_t *fxinfop = (fxinfo_t *)infop;
693 fxinfop->fx_maxupri = fx_maxupri;
694 return (0);
695 }
696
697
698
699 /*
700 * Return the user mode scheduling priority range.
701 */
702 static int
fx_getclpri(pcpri_t * pcprip)703 fx_getclpri(pcpri_t *pcprip)
704 {
705 pcprip->pc_clpmax = fx_maxupri;
706 pcprip->pc_clpmin = 0;
707 return (0);
708 }
709
710
711 static void
fx_nullsys()712 fx_nullsys()
713 {}
714
715
716 /*
717 * Get the fixed-priority parameters of the thread pointed to by
718 * fxprocp into the buffer pointed to by fxparmsp.
719 */
720 static void
fx_parmsget(kthread_t * t,void * parmsp)721 fx_parmsget(kthread_t *t, void *parmsp)
722 {
723 fxproc_t *fxpp = (fxproc_t *)t->t_cldata;
724 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
725
726 fxkparmsp->fx_upri = fxpp->fx_pri;
727 fxkparmsp->fx_uprilim = fxpp->fx_uprilim;
728 fxkparmsp->fx_tqntm = fxpp->fx_pquantum;
729 }
730
731
732
733 /*
734 * Check the validity of the fixed-priority parameters in the buffer
735 * pointed to by fxparmsp.
736 */
737 static int
fx_parmsin(void * parmsp)738 fx_parmsin(void *parmsp)
739 {
740 fxparms_t *fxparmsp = (fxparms_t *)parmsp;
741 uint_t cflags;
742 longlong_t ticks;
743 /*
744 * Check validity of parameters.
745 */
746
747 if ((fxparmsp->fx_uprilim > fx_maxupri ||
748 fxparmsp->fx_uprilim < 0) &&
749 fxparmsp->fx_uprilim != FX_NOCHANGE)
750 return (EINVAL);
751
752 if ((fxparmsp->fx_upri > fx_maxupri ||
753 fxparmsp->fx_upri < 0) &&
754 fxparmsp->fx_upri != FX_NOCHANGE)
755 return (EINVAL);
756
757 if ((fxparmsp->fx_tqsecs == 0 && fxparmsp->fx_tqnsecs == 0) ||
758 fxparmsp->fx_tqnsecs >= NANOSEC)
759 return (EINVAL);
760
761 cflags = (fxparmsp->fx_upri != FX_NOCHANGE ? FX_DOUPRI : 0);
762
763 if (fxparmsp->fx_uprilim != FX_NOCHANGE) {
764 cflags |= FX_DOUPRILIM;
765 }
766
767 if (fxparmsp->fx_tqnsecs != FX_NOCHANGE)
768 cflags |= FX_DOTQ;
769
770 /*
771 * convert the buffer to kernel format.
772 */
773
774 if (fxparmsp->fx_tqnsecs >= 0) {
775 if ((ticks = SEC_TO_TICK((longlong_t)fxparmsp->fx_tqsecs) +
776 NSEC_TO_TICK_ROUNDUP(fxparmsp->fx_tqnsecs)) > INT_MAX)
777 return (ERANGE);
778
779 ((fxkparms_t *)fxparmsp)->fx_tqntm = (int)ticks;
780 } else {
781 if ((fxparmsp->fx_tqnsecs != FX_NOCHANGE) &&
782 (fxparmsp->fx_tqnsecs != FX_TQINF) &&
783 (fxparmsp->fx_tqnsecs != FX_TQDEF))
784 return (EINVAL);
785 ((fxkparms_t *)fxparmsp)->fx_tqntm = fxparmsp->fx_tqnsecs;
786 }
787
788 ((fxkparms_t *)fxparmsp)->fx_cflags = cflags;
789
790 return (0);
791 }
792
793
794 /*
795 * Check the validity of the fixed-priority parameters in the pc_vaparms_t
796 * structure vaparmsp and put them in the buffer pointed to by fxprmsp.
797 * pc_vaparms_t contains (key, value) pairs of parameter.
798 */
799 static int
fx_vaparmsin(void * prmsp,pc_vaparms_t * vaparmsp)800 fx_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp)
801 {
802 uint_t secs = 0;
803 uint_t cnt;
804 int nsecs = 0;
805 int priflag, secflag, nsecflag, limflag;
806 longlong_t ticks;
807 fxkparms_t *fxprmsp = (fxkparms_t *)prmsp;
808 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
809
810
811 /*
812 * First check the validity of parameters and convert them
813 * from the user supplied format to the internal format.
814 */
815 priflag = secflag = nsecflag = limflag = 0;
816
817 fxprmsp->fx_cflags = 0;
818
819 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
820 return (EINVAL);
821
822 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
823
824 switch (vpp->pc_key) {
825 case FX_KY_UPRILIM:
826 if (limflag++)
827 return (EINVAL);
828 fxprmsp->fx_cflags |= FX_DOUPRILIM;
829 fxprmsp->fx_uprilim = (pri_t)vpp->pc_parm;
830 if (fxprmsp->fx_uprilim > fx_maxupri ||
831 fxprmsp->fx_uprilim < 0)
832 return (EINVAL);
833 break;
834
835 case FX_KY_UPRI:
836 if (priflag++)
837 return (EINVAL);
838 fxprmsp->fx_cflags |= FX_DOUPRI;
839 fxprmsp->fx_upri = (pri_t)vpp->pc_parm;
840 if (fxprmsp->fx_upri > fx_maxupri ||
841 fxprmsp->fx_upri < 0)
842 return (EINVAL);
843 break;
844
845 case FX_KY_TQSECS:
846 if (secflag++)
847 return (EINVAL);
848 fxprmsp->fx_cflags |= FX_DOTQ;
849 secs = (uint_t)vpp->pc_parm;
850 break;
851
852 case FX_KY_TQNSECS:
853 if (nsecflag++)
854 return (EINVAL);
855 fxprmsp->fx_cflags |= FX_DOTQ;
856 nsecs = (int)vpp->pc_parm;
857 break;
858
859 default:
860 return (EINVAL);
861 }
862 }
863
864 if (vaparmsp->pc_vaparmscnt == 0) {
865 /*
866 * Use default parameters.
867 */
868 fxprmsp->fx_upri = 0;
869 fxprmsp->fx_uprilim = 0;
870 fxprmsp->fx_tqntm = FX_TQDEF;
871 fxprmsp->fx_cflags = FX_DOUPRI | FX_DOUPRILIM | FX_DOTQ;
872 } else if ((fxprmsp->fx_cflags & FX_DOTQ) != 0) {
873 if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC)
874 return (EINVAL);
875
876 if (nsecs >= 0) {
877 if ((ticks = SEC_TO_TICK((longlong_t)secs) +
878 NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX)
879 return (ERANGE);
880
881 fxprmsp->fx_tqntm = (int)ticks;
882 } else {
883 if (nsecs != FX_TQINF && nsecs != FX_TQDEF)
884 return (EINVAL);
885 fxprmsp->fx_tqntm = nsecs;
886 }
887 }
888
889 return (0);
890 }
891
892
893 /*
894 * Nothing to do here but return success.
895 */
896 /* ARGSUSED */
897 static int
fx_parmsout(void * parmsp,pc_vaparms_t * vaparmsp)898 fx_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
899 {
900 register fxkparms_t *fxkprmsp = (fxkparms_t *)parmsp;
901
902 if (vaparmsp != NULL)
903 return (0);
904
905 if (fxkprmsp->fx_tqntm < 0) {
906 /*
907 * Quantum field set to special value (e.g. FX_TQINF)
908 */
909 ((fxparms_t *)fxkprmsp)->fx_tqnsecs = fxkprmsp->fx_tqntm;
910 ((fxparms_t *)fxkprmsp)->fx_tqsecs = 0;
911
912 } else {
913 /* Convert quantum from ticks to seconds-nanoseconds */
914
915 timestruc_t ts;
916 TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
917 ((fxparms_t *)fxkprmsp)->fx_tqsecs = ts.tv_sec;
918 ((fxparms_t *)fxkprmsp)->fx_tqnsecs = ts.tv_nsec;
919 }
920
921 return (0);
922 }
923
924
925 /*
926 * Copy all selected fixed-priority class parameters to the user.
927 * The parameters are specified by a key.
928 */
929 static int
fx_vaparmsout(void * prmsp,pc_vaparms_t * vaparmsp)930 fx_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
931 {
932 fxkparms_t *fxkprmsp = (fxkparms_t *)prmsp;
933 timestruc_t ts;
934 uint_t cnt;
935 uint_t secs;
936 int nsecs;
937 int priflag, secflag, nsecflag, limflag;
938 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
939
940 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
941
942 priflag = secflag = nsecflag = limflag = 0;
943
944 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
945 return (EINVAL);
946
947 if (fxkprmsp->fx_tqntm < 0) {
948 /*
949 * Quantum field set to special value (e.g. FX_TQINF).
950 */
951 secs = 0;
952 nsecs = fxkprmsp->fx_tqntm;
953 } else {
954 /*
955 * Convert quantum from ticks to seconds-nanoseconds.
956 */
957 TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
958 secs = ts.tv_sec;
959 nsecs = ts.tv_nsec;
960 }
961
962
963 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
964
965 switch (vpp->pc_key) {
966 case FX_KY_UPRILIM:
967 if (limflag++)
968 return (EINVAL);
969 if (copyout(&fxkprmsp->fx_uprilim,
970 (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
971 return (EFAULT);
972 break;
973
974 case FX_KY_UPRI:
975 if (priflag++)
976 return (EINVAL);
977 if (copyout(&fxkprmsp->fx_upri,
978 (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
979 return (EFAULT);
980 break;
981
982 case FX_KY_TQSECS:
983 if (secflag++)
984 return (EINVAL);
985 if (copyout(&secs,
986 (void *)(uintptr_t)vpp->pc_parm, sizeof (uint_t)))
987 return (EFAULT);
988 break;
989
990 case FX_KY_TQNSECS:
991 if (nsecflag++)
992 return (EINVAL);
993 if (copyout(&nsecs,
994 (void *)(uintptr_t)vpp->pc_parm, sizeof (int)))
995 return (EFAULT);
996 break;
997
998 default:
999 return (EINVAL);
1000 }
1001 }
1002
1003 return (0);
1004 }
1005
1006 /*
1007 * Set the scheduling parameters of the thread pointed to by fxprocp
1008 * to those specified in the buffer pointed to by fxparmsp.
1009 */
1010 /* ARGSUSED */
1011 static int
fx_parmsset(kthread_t * tx,void * parmsp,id_t reqpcid,cred_t * reqpcredp)1012 fx_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1013 {
1014 char nice;
1015 pri_t reqfxuprilim;
1016 pri_t reqfxupri;
1017 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
1018 fxproc_t *fxpp;
1019
1020
1021 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1022
1023 thread_lock(tx);
1024 fxpp = (fxproc_t *)tx->t_cldata;
1025
1026 if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0)
1027 reqfxuprilim = fxpp->fx_uprilim;
1028 else
1029 reqfxuprilim = fxkparmsp->fx_uprilim;
1030
1031 /*
1032 * Basic permissions enforced by generic kernel code
1033 * for all classes require that a thread attempting
1034 * to change the scheduling parameters of a target
1035 * thread be privileged or have a real or effective
1036 * UID matching that of the target thread. We are not
1037 * called unless these basic permission checks have
1038 * already passed. The fixed priority class requires in
1039 * addition that the calling thread be privileged if it
1040 * is attempting to raise the pri above its current
1041 * value This may have been checked previously but if our
1042 * caller passed us a non-NULL credential pointer we assume
1043 * it hasn't and we check it here.
1044 */
1045
1046 if ((reqpcredp != NULL) &&
1047 (reqfxuprilim > fxpp->fx_uprilim ||
1048 ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)) &&
1049 secpolicy_raisepriority(reqpcredp) != 0) {
1050 thread_unlock(tx);
1051 return (EPERM);
1052 }
1053
1054 FX_ADJUST_PRI(reqfxuprilim);
1055
1056 if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0)
1057 reqfxupri = fxpp->fx_pri;
1058 else
1059 reqfxupri = fxkparmsp->fx_upri;
1060
1061
1062 /*
1063 * Make sure the user priority doesn't exceed the upri limit.
1064 */
1065 if (reqfxupri > reqfxuprilim)
1066 reqfxupri = reqfxuprilim;
1067
1068 /*
1069 * Set fx_nice to the nice value corresponding to the user
1070 * priority we are setting. Note that setting the nice field
1071 * of the parameter struct won't affect upri or nice.
1072 */
1073
1074 nice = NZERO - (reqfxupri * NZERO) / fx_maxupri;
1075
1076 if (nice > NZERO)
1077 nice = NZERO;
1078
1079 fxpp->fx_uprilim = reqfxuprilim;
1080 fxpp->fx_pri = reqfxupri;
1081
1082 if (fxkparmsp->fx_tqntm == FX_TQINF)
1083 fxpp->fx_pquantum = FX_TQINF;
1084 else if (fxkparmsp->fx_tqntm == FX_TQDEF)
1085 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1086 else if ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)
1087 fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
1088
1089 fxpp->fx_nice = nice;
1090
1091 fx_change_priority(tx, fxpp);
1092 thread_unlock(tx);
1093 return (0);
1094 }
1095
1096
1097 /*
1098 * Return the global scheduling priority that would be assigned
1099 * to a thread entering the fixed-priority class with the fx_upri.
1100 */
1101 static pri_t
fx_globpri(kthread_t * t)1102 fx_globpri(kthread_t *t)
1103 {
1104 fxproc_t *fxpp;
1105
1106 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1107
1108 fxpp = (fxproc_t *)t->t_cldata;
1109 return (fx_dptbl[fxpp->fx_pri].fx_globpri);
1110
1111 }
1112
1113 /*
1114 * Arrange for thread to be placed in appropriate location
1115 * on dispatcher queue.
1116 *
1117 * This is called with the current thread in TS_ONPROC and locked.
1118 */
1119 static void
fx_preempt(kthread_t * t)1120 fx_preempt(kthread_t *t)
1121 {
1122 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1123
1124 ASSERT(t == curthread);
1125 ASSERT(THREAD_LOCK_HELD(curthread));
1126
1127 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1128
1129 /*
1130 * Check to see if we're doing "preemption control" here. If
1131 * we are, and if the user has requested that this thread not
1132 * be preempted, and if preemptions haven't been put off for
1133 * too long, let the preemption happen here but try to make
1134 * sure the thread is rescheduled as soon as possible. We do
1135 * this by putting it on the front of the highest priority run
1136 * queue in the FX class. If the preemption has been put off
1137 * for too long, clear the "nopreempt" bit and let the thread
1138 * be preempted.
1139 */
1140 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1141 if (fxpp->fx_pquantum == FX_TQINF ||
1142 fxpp->fx_timeleft > -SC_MAX_TICKS) {
1143 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1144 schedctl_set_yield(t, 1);
1145 setfrontdq(t);
1146 return;
1147 } else {
1148 schedctl_set_nopreempt(t, 0);
1149 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1150 /*
1151 * Fall through and be preempted below.
1152 */
1153 }
1154 }
1155
1156 if (FX_HAS_CB(fxpp)) {
1157 clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
1158 pri_t newpri = fxpp->fx_pri;
1159 FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1160 &new_quantum, &newpri);
1161 FX_ADJUST_QUANTUM(new_quantum);
1162 if ((int)new_quantum != fxpp->fx_pquantum) {
1163 fxpp->fx_pquantum = (int)new_quantum;
1164 fxpp->fx_timeleft = fxpp->fx_pquantum;
1165 }
1166 FX_ADJUST_PRI(newpri);
1167 fxpp->fx_pri = newpri;
1168 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1169 }
1170
1171 /*
1172 * This thread may be placed on wait queue by CPU Caps. In this case we
1173 * do not need to do anything until it is removed from the wait queue.
1174 */
1175 if (CPUCAPS_ENFORCE(t)) {
1176 return;
1177 }
1178
1179 if ((fxpp->fx_flags & (FXBACKQ)) == FXBACKQ) {
1180 fxpp->fx_timeleft = fxpp->fx_pquantum;
1181 fxpp->fx_flags &= ~FXBACKQ;
1182 setbackdq(t);
1183 } else {
1184 setfrontdq(t);
1185 }
1186 }
1187
1188 static void
fx_setrun(kthread_t * t)1189 fx_setrun(kthread_t *t)
1190 {
1191 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1192
1193 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
1194 fxpp->fx_flags &= ~FXBACKQ;
1195
1196 if (t->t_disp_time != ddi_get_lbolt())
1197 setbackdq(t);
1198 else
1199 setfrontdq(t);
1200 }
1201
1202
1203 /*
1204 * Prepare thread for sleep. We reset the thread priority so it will
1205 * run at the kernel priority level when it wakes up.
1206 */
1207 static void
fx_sleep(kthread_t * t)1208 fx_sleep(kthread_t *t)
1209 {
1210 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1211
1212 ASSERT(t == curthread);
1213 ASSERT(THREAD_LOCK_HELD(t));
1214
1215 /*
1216 * Account for time spent on CPU before going to sleep.
1217 */
1218 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1219
1220 if (FX_HAS_CB(fxpp)) {
1221 FX_CB_SLEEP(FX_CALLB(fxpp), fxpp->fx_cookie);
1222 }
1223 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1224 }
1225
1226
1227 /*
1228 * Return Values:
1229 *
1230 * -1 if the thread is loaded or is not eligible to be swapped in.
1231 *
1232 * FX and RT threads are designed so that they don't swapout; however,
1233 * it is possible that while the thread is swapped out and in another class, it
1234 * can be changed to FX or RT. Since these threads should be swapped in
1235 * as soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin
1236 * returns SHRT_MAX - 1, so that it gives deference to any swapped out
1237 * RT threads.
1238 */
1239 /* ARGSUSED */
1240 static pri_t
fx_swapin(kthread_t * t,int flags)1241 fx_swapin(kthread_t *t, int flags)
1242 {
1243 pri_t tpri = -1;
1244
1245 ASSERT(THREAD_LOCK_HELD(t));
1246
1247 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1248 tpri = (pri_t)SHRT_MAX - 1;
1249 }
1250
1251 return (tpri);
1252 }
1253
1254 /*
1255 * Return Values
1256 * -1 if the thread isn't loaded or is not eligible to be swapped out.
1257 */
1258 /* ARGSUSED */
1259 static pri_t
fx_swapout(kthread_t * t,int flags)1260 fx_swapout(kthread_t *t, int flags)
1261 {
1262 ASSERT(THREAD_LOCK_HELD(t));
1263
1264 return (-1);
1265
1266 }
1267
1268 /* ARGSUSED */
1269 static void
fx_stop(kthread_t * t,int why,int what)1270 fx_stop(kthread_t *t, int why, int what)
1271 {
1272 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1273
1274 ASSERT(THREAD_LOCK_HELD(t));
1275
1276 if (FX_HAS_CB(fxpp)) {
1277 FX_CB_STOP(FX_CALLB(fxpp), fxpp->fx_cookie);
1278 }
1279 }
1280
1281 /*
1282 * Check for time slice expiration. If time slice has expired
1283 * set runrun to cause preemption.
1284 */
1285 static void
fx_tick(kthread_t * t)1286 fx_tick(kthread_t *t)
1287 {
1288 boolean_t call_cpu_surrender = B_FALSE;
1289 fxproc_t *fxpp;
1290
1291 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1292
1293 thread_lock(t);
1294
1295 fxpp = (fxproc_t *)(t->t_cldata);
1296
1297 if (FX_HAS_CB(fxpp)) {
1298 clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
1299 pri_t newpri = fxpp->fx_pri;
1300 FX_CB_TICK(FX_CALLB(fxpp), fxpp->fx_cookie,
1301 &new_quantum, &newpri);
1302 FX_ADJUST_QUANTUM(new_quantum);
1303 if ((int)new_quantum != fxpp->fx_pquantum) {
1304 fxpp->fx_pquantum = (int)new_quantum;
1305 fxpp->fx_timeleft = fxpp->fx_pquantum;
1306 }
1307 FX_ADJUST_PRI(newpri);
1308 if (newpri != fxpp->fx_pri) {
1309 fxpp->fx_pri = newpri;
1310 fx_change_priority(t, fxpp);
1311 }
1312 }
1313
1314 /*
1315 * Keep track of thread's project CPU usage. Note that projects
1316 * get charged even when threads are running in the kernel.
1317 */
1318 call_cpu_surrender = CPUCAPS_CHARGE(t, &fxpp->fx_caps,
1319 CPUCAPS_CHARGE_ENFORCE);
1320
1321 if ((fxpp->fx_pquantum != FX_TQINF) &&
1322 (--fxpp->fx_timeleft <= 0)) {
1323 pri_t new_pri;
1324
1325 /*
1326 * If we're doing preemption control and trying to
1327 * avoid preempting this thread, just note that
1328 * the thread should yield soon and let it keep
1329 * running (unless it's been a while).
1330 */
1331 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1332 if (fxpp->fx_timeleft > -SC_MAX_TICKS) {
1333 DTRACE_SCHED1(schedctl__nopreempt,
1334 kthread_t *, t);
1335 schedctl_set_yield(t, 1);
1336 thread_unlock_nopreempt(t);
1337 return;
1338 }
1339 DTRACE_SCHED1(schedctl__failsafe,
1340 kthread_t *, t);
1341 }
1342 new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1343 ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1344 /*
1345 * When the priority of a thread is changed,
1346 * it may be necessary to adjust its position
1347 * on a sleep queue or dispatch queue. Even
1348 * when the priority is not changed, we need
1349 * to preserve round robin on dispatch queue.
1350 * The function thread_change_pri accomplishes
1351 * this.
1352 */
1353 if (thread_change_pri(t, new_pri, 0)) {
1354 fxpp->fx_timeleft = fxpp->fx_pquantum;
1355 } else {
1356 call_cpu_surrender = B_TRUE;
1357 }
1358 } else if (t->t_state == TS_ONPROC &&
1359 t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1360 call_cpu_surrender = B_TRUE;
1361 }
1362
1363 if (call_cpu_surrender) {
1364 fxpp->fx_flags |= FXBACKQ;
1365 cpu_surrender(t);
1366 }
1367 thread_unlock_nopreempt(t); /* clock thread can't be preempted */
1368 }
1369
1370
1371 static void
fx_trapret(kthread_t * t)1372 fx_trapret(kthread_t *t)
1373 {
1374 cpu_t *cp = CPU;
1375
1376 ASSERT(THREAD_LOCK_HELD(t));
1377 ASSERT(t == curthread);
1378 ASSERT(cp->cpu_dispthread == t);
1379 ASSERT(t->t_state == TS_ONPROC);
1380 }
1381
1382
1383 /*
1384 * Processes waking up go to the back of their queue.
1385 */
1386 static void
fx_wakeup(kthread_t * t)1387 fx_wakeup(kthread_t *t)
1388 {
1389 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1390
1391 ASSERT(THREAD_LOCK_HELD(t));
1392
1393 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1394 if (FX_HAS_CB(fxpp)) {
1395 clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
1396 pri_t newpri = fxpp->fx_pri;
1397 FX_CB_WAKEUP(FX_CALLB(fxpp), fxpp->fx_cookie,
1398 &new_quantum, &newpri);
1399 FX_ADJUST_QUANTUM(new_quantum);
1400 if ((int)new_quantum != fxpp->fx_pquantum) {
1401 fxpp->fx_pquantum = (int)new_quantum;
1402 fxpp->fx_timeleft = fxpp->fx_pquantum;
1403 }
1404
1405 FX_ADJUST_PRI(newpri);
1406 if (newpri != fxpp->fx_pri) {
1407 fxpp->fx_pri = newpri;
1408 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1409 }
1410 }
1411
1412 fxpp->fx_flags &= ~FXBACKQ;
1413
1414 if (t->t_disp_time != ddi_get_lbolt())
1415 setbackdq(t);
1416 else
1417 setfrontdq(t);
1418 }
1419
1420
1421 /*
1422 * When a thread yields, put it on the back of the run queue.
1423 */
1424 static void
fx_yield(kthread_t * t)1425 fx_yield(kthread_t *t)
1426 {
1427 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1428
1429 ASSERT(t == curthread);
1430 ASSERT(THREAD_LOCK_HELD(t));
1431
1432 /*
1433 * Collect CPU usage spent before yielding CPU.
1434 */
1435 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1436
1437 if (FX_HAS_CB(fxpp)) {
1438 clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
1439 pri_t newpri = fxpp->fx_pri;
1440 FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1441 &new_quantum, &newpri);
1442 FX_ADJUST_QUANTUM(new_quantum);
1443 if ((int)new_quantum != fxpp->fx_pquantum) {
1444 fxpp->fx_pquantum = (int)new_quantum;
1445 fxpp->fx_timeleft = fxpp->fx_pquantum;
1446 }
1447 FX_ADJUST_PRI(newpri);
1448 fxpp->fx_pri = newpri;
1449 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1450 }
1451
1452 /*
1453 * Clear the preemption control "yield" bit since the user is
1454 * doing a yield.
1455 */
1456 if (t->t_schedctl)
1457 schedctl_set_yield(t, 0);
1458
1459 if (fxpp->fx_timeleft <= 0) {
1460 /*
1461 * Time slice was artificially extended to avoid
1462 * preemption, so pretend we're preempting it now.
1463 */
1464 DTRACE_SCHED1(schedctl__yield, int, -fxpp->fx_timeleft);
1465 fxpp->fx_timeleft = fxpp->fx_pquantum;
1466 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1467 ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
1468 }
1469
1470 fxpp->fx_flags &= ~FXBACKQ;
1471 setbackdq(t);
1472 }
1473
1474 /*
1475 * Increment the nice value of the specified thread by incr and
1476 * return the new value in *retvalp.
1477 */
1478 static int
fx_donice(kthread_t * t,cred_t * cr,int incr,int * retvalp)1479 fx_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1480 {
1481 int newnice;
1482 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1483 fxkparms_t fxkparms;
1484
1485 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1486
1487 /* If there's no change to priority, just return current setting */
1488 if (incr == 0) {
1489 if (retvalp) {
1490 *retvalp = fxpp->fx_nice - NZERO;
1491 }
1492 return (0);
1493 }
1494
1495 if ((incr < 0 || incr > 2 * NZERO) &&
1496 secpolicy_raisepriority(cr) != 0)
1497 return (EPERM);
1498
1499 /*
1500 * Specifying a nice increment greater than the upper limit of
1501 * 2 * NZERO - 1 will result in the thread's nice value being
1502 * set to the upper limit. We check for this before computing
1503 * the new value because otherwise we could get overflow
1504 * if a privileged user specified some ridiculous increment.
1505 */
1506 if (incr > 2 * NZERO - 1)
1507 incr = 2 * NZERO - 1;
1508
1509 newnice = fxpp->fx_nice + incr;
1510 if (newnice > NZERO)
1511 newnice = NZERO;
1512 else if (newnice < 0)
1513 newnice = 0;
1514
1515 fxkparms.fx_uprilim = fxkparms.fx_upri =
1516 -((newnice - NZERO) * fx_maxupri) / NZERO;
1517
1518 fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1519
1520 fxkparms.fx_tqntm = FX_TQDEF;
1521
1522 /*
1523 * Reset the uprilim and upri values of the thread. Adjust
1524 * time quantum accordingly.
1525 */
1526
1527 (void) fx_parmsset(t, (void *)&fxkparms, (id_t)0, (cred_t *)NULL);
1528
1529 /*
1530 * Although fx_parmsset already reset fx_nice it may
1531 * not have been set to precisely the value calculated above
1532 * because fx_parmsset determines the nice value from the
1533 * user priority and we may have truncated during the integer
1534 * conversion from nice value to user priority and back.
1535 * We reset fx_nice to the value we calculated above.
1536 */
1537 fxpp->fx_nice = (char)newnice;
1538
1539 if (retvalp)
1540 *retvalp = newnice - NZERO;
1541
1542 return (0);
1543 }
1544
1545 /*
1546 * Increment the priority of the specified thread by incr and
1547 * return the new value in *retvalp.
1548 */
1549 static int
fx_doprio(kthread_t * t,cred_t * cr,int incr,int * retvalp)1550 fx_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1551 {
1552 int newpri;
1553 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1554 fxkparms_t fxkparms;
1555
1556 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1557
1558 /* If there's no change to priority, just return current setting */
1559 if (incr == 0) {
1560 *retvalp = fxpp->fx_pri;
1561 return (0);
1562 }
1563
1564 newpri = fxpp->fx_pri + incr;
1565 if (newpri > fx_maxupri || newpri < 0)
1566 return (EINVAL);
1567
1568 *retvalp = newpri;
1569 fxkparms.fx_uprilim = fxkparms.fx_upri = newpri;
1570 fxkparms.fx_tqntm = FX_NOCHANGE;
1571 fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1572
1573 /*
1574 * Reset the uprilim and upri values of the thread.
1575 */
1576 return (fx_parmsset(t, (void *)&fxkparms, (id_t)0, cr));
1577 }
1578
1579 static void
fx_change_priority(kthread_t * t,fxproc_t * fxpp)1580 fx_change_priority(kthread_t *t, fxproc_t *fxpp)
1581 {
1582 pri_t new_pri;
1583
1584 ASSERT(THREAD_LOCK_HELD(t));
1585 new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1586 ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1587 t->t_cpri = fxpp->fx_pri;
1588 if (t == curthread || t->t_state == TS_ONPROC) {
1589 /* curthread is always onproc */
1590 cpu_t *cp = t->t_disp_queue->disp_cpu;
1591 THREAD_CHANGE_PRI(t, new_pri);
1592 if (t == cp->cpu_dispthread)
1593 cp->cpu_dispatch_pri = DISP_PRIO(t);
1594 if (DISP_MUST_SURRENDER(t)) {
1595 fxpp->fx_flags |= FXBACKQ;
1596 cpu_surrender(t);
1597 } else {
1598 fxpp->fx_timeleft = fxpp->fx_pquantum;
1599 }
1600 } else {
1601 /*
1602 * When the priority of a thread is changed,
1603 * it may be necessary to adjust its position
1604 * on a sleep queue or dispatch queue.
1605 * The function thread_change_pri accomplishes
1606 * this.
1607 */
1608 if (thread_change_pri(t, new_pri, 0)) {
1609 /*
1610 * The thread was on a run queue. Reset
1611 * its CPU timeleft from the quantum
1612 * associated with the new priority.
1613 */
1614 fxpp->fx_timeleft = fxpp->fx_pquantum;
1615 } else {
1616 fxpp->fx_flags |= FXBACKQ;
1617 }
1618 }
1619 }
1620
1621 static int
fx_alloc(void ** p,int flag)1622 fx_alloc(void **p, int flag)
1623 {
1624 void *bufp;
1625
1626 bufp = kmem_alloc(sizeof (fxproc_t), flag);
1627 if (bufp == NULL) {
1628 return (ENOMEM);
1629 } else {
1630 *p = bufp;
1631 return (0);
1632 }
1633 }
1634
1635 static void
fx_free(void * bufp)1636 fx_free(void *bufp)
1637 {
1638 if (bufp)
1639 kmem_free(bufp, sizeof (fxproc_t));
1640 }
1641
1642 /*
1643 * Release the callback list mutex after successful lookup
1644 */
1645 void
fx_list_release(fxproc_t * fxpp)1646 fx_list_release(fxproc_t *fxpp)
1647 {
1648 int index = FX_CB_LIST_HASH(fxpp->fx_ktid);
1649 kmutex_t *lockp = &fx_cb_list_lock[index];
1650 mutex_exit(lockp);
1651 }
1652
1653 fxproc_t *
fx_list_lookup(kt_did_t ktid)1654 fx_list_lookup(kt_did_t ktid)
1655 {
1656 int index = FX_CB_LIST_HASH(ktid);
1657 kmutex_t *lockp = &fx_cb_list_lock[index];
1658 fxproc_t *fxpp;
1659
1660 mutex_enter(lockp);
1661
1662 for (fxpp = fx_cb_plisthead[index].fx_cb_next;
1663 fxpp != &fx_cb_plisthead[index]; fxpp = fxpp->fx_cb_next) {
1664 if (fxpp->fx_tp->t_cid == fx_cid && fxpp->fx_ktid == ktid &&
1665 fxpp->fx_callback != NULL) {
1666 /*
1667 * The caller is responsible for calling
1668 * fx_list_release to drop the lock upon
1669 * successful lookup
1670 */
1671 return (fxpp);
1672 }
1673 }
1674 mutex_exit(lockp);
1675 return ((fxproc_t *)NULL);
1676 }
1677
1678
1679 /*
1680 * register a callback set of routines for current thread
1681 * thread should already be in FX class
1682 */
1683 int
fx_register_callbacks(fx_callbacks_t * fx_callback,fx_cookie_t cookie,pri_t pri,clock_t quantum)1684 fx_register_callbacks(fx_callbacks_t *fx_callback, fx_cookie_t cookie,
1685 pri_t pri, clock_t quantum)
1686 {
1687
1688 fxproc_t *fxpp;
1689
1690 if (fx_callback == NULL)
1691 return (EINVAL);
1692
1693 if (secpolicy_dispadm(CRED()) != 0)
1694 return (EPERM);
1695
1696 if (FX_CB_VERSION(fx_callback) != FX_CALLB_REV)
1697 return (EINVAL);
1698
1699 if (!FX_ISVALID(pri, quantum))
1700 return (EINVAL);
1701
1702 thread_lock(curthread); /* get dispatcher lock on thread */
1703
1704 if (curthread->t_cid != fx_cid) {
1705 thread_unlock(curthread);
1706 return (EINVAL);
1707 }
1708
1709 fxpp = (fxproc_t *)(curthread->t_cldata);
1710 ASSERT(fxpp != NULL);
1711 if (FX_HAS_CB(fxpp)) {
1712 thread_unlock(curthread);
1713 return (EINVAL);
1714 }
1715
1716 fxpp->fx_callback = fx_callback;
1717 fxpp->fx_cookie = cookie;
1718
1719 if (pri != FX_CB_NOCHANGE) {
1720 fxpp->fx_pri = pri;
1721 FX_ADJUST_PRI(fxpp->fx_pri);
1722 if (quantum == FX_TQDEF) {
1723 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1724 } else if (quantum == FX_TQINF) {
1725 fxpp->fx_pquantum = FX_TQINF;
1726 } else if (quantum != FX_NOCHANGE) {
1727 FX_ADJUST_QUANTUM(quantum);
1728 fxpp->fx_pquantum = quantum;
1729 }
1730 } else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1731 if (quantum == FX_TQINF)
1732 fxpp->fx_pquantum = FX_TQINF;
1733 else {
1734 FX_ADJUST_QUANTUM(quantum);
1735 fxpp->fx_pquantum = quantum;
1736 }
1737 }
1738
1739 fxpp->fx_ktid = ddi_get_kt_did();
1740
1741 fx_change_priority(curthread, fxpp);
1742
1743 thread_unlock(curthread);
1744
1745 /*
1746 * Link new structure into fxproc list.
1747 */
1748 FX_CB_LIST_INSERT(fxpp);
1749 return (0);
1750 }
1751
1752 /* unregister a callback set of routines for current thread */
1753 int
fx_unregister_callbacks()1754 fx_unregister_callbacks()
1755 {
1756 fxproc_t *fxpp;
1757
1758 if ((fxpp = fx_list_lookup(ddi_get_kt_did())) == NULL) {
1759 /*
1760 * did not have a registered callback;
1761 */
1762 return (EINVAL);
1763 }
1764
1765 thread_lock(fxpp->fx_tp);
1766 fxpp->fx_callback = NULL;
1767 fxpp->fx_cookie = 0;
1768 thread_unlock(fxpp->fx_tp);
1769 fx_list_release(fxpp);
1770
1771 FX_CB_LIST_DELETE(fxpp);
1772 return (0);
1773 }
1774
1775 /*
1776 * modify priority and/or quantum value of a thread with callback
1777 */
1778 int
fx_modify_priority(kt_did_t ktid,clock_t quantum,pri_t pri)1779 fx_modify_priority(kt_did_t ktid, clock_t quantum, pri_t pri)
1780 {
1781 fxproc_t *fxpp;
1782
1783 if (!FX_ISVALID(pri, quantum))
1784 return (EINVAL);
1785
1786 if ((fxpp = fx_list_lookup(ktid)) == NULL) {
1787 /*
1788 * either thread had exited or did not have a registered
1789 * callback;
1790 */
1791 return (ESRCH);
1792 }
1793
1794 thread_lock(fxpp->fx_tp);
1795
1796 if (pri != FX_CB_NOCHANGE) {
1797 fxpp->fx_pri = pri;
1798 FX_ADJUST_PRI(fxpp->fx_pri);
1799 if (quantum == FX_TQDEF) {
1800 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1801 } else if (quantum == FX_TQINF) {
1802 fxpp->fx_pquantum = FX_TQINF;
1803 } else if (quantum != FX_NOCHANGE) {
1804 FX_ADJUST_QUANTUM(quantum);
1805 fxpp->fx_pquantum = quantum;
1806 }
1807 } else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1808 if (quantum == FX_TQINF) {
1809 fxpp->fx_pquantum = FX_TQINF;
1810 } else {
1811 FX_ADJUST_QUANTUM(quantum);
1812 fxpp->fx_pquantum = quantum;
1813 }
1814 }
1815
1816 fx_change_priority(fxpp->fx_tp, fxpp);
1817
1818 thread_unlock(fxpp->fx_tp);
1819 fx_list_release(fxpp);
1820 return (0);
1821 }
1822
1823
1824 /*
1825 * return an iblock cookie for mutex initialization to be used in callbacks
1826 */
1827 void *
fx_get_mutex_cookie()1828 fx_get_mutex_cookie()
1829 {
1830 return ((void *)(uintptr_t)__ipltospl(DISP_LEVEL));
1831 }
1832
1833 /*
1834 * return maximum relative priority
1835 */
1836 pri_t
fx_get_maxpri()1837 fx_get_maxpri()
1838 {
1839 return (fx_maxumdpri);
1840 }
1841