1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/rculist.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/timer.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27
28 #include <asm/byteorder.h>
29
30 #include "core.h"
31 #include "packet-header-definitions.h"
32 #include "phy-packet-definitions.h"
33 #include <trace/events/firewire.h>
34
35 #define HEADER_DESTINATION_IS_BROADCAST(header) \
36 ((async_header_get_destination(header) & 0x3f) == 0x3f)
37
38 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)39 static int try_cancel_split_timeout(struct fw_transaction *t)
40 {
41 if (t->is_split_transaction)
42 return timer_delete(&t->split_timeout_timer);
43 else
44 return 1;
45 }
46
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode,u32 response_tstamp)47 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
48 u32 response_tstamp)
49 {
50 struct fw_transaction *t = NULL, *iter;
51
52 scoped_guard(spinlock_irqsave, &card->lock) {
53 list_for_each_entry(iter, &card->transaction_list, link) {
54 if (iter == transaction) {
55 if (try_cancel_split_timeout(iter)) {
56 list_del_init(&iter->link);
57 card->tlabel_mask &= ~(1ULL << iter->tlabel);
58 t = iter;
59 }
60 break;
61 }
62 }
63 }
64
65 if (!t)
66 return -ENOENT;
67
68 if (!t->with_tstamp) {
69 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
70 } else {
71 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
72 t->callback_data);
73 }
74
75 return 0;
76 }
77
78 /*
79 * Only valid for transactions that are potentially pending (ie have
80 * been sent).
81 */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)82 int fw_cancel_transaction(struct fw_card *card,
83 struct fw_transaction *transaction)
84 {
85 u32 tstamp;
86
87 /*
88 * Cancel the packet transmission if it's still queued. That
89 * will call the packet transmission callback which cancels
90 * the transaction.
91 */
92
93 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
94 return 0;
95
96 /*
97 * If the request packet has already been sent, we need to see
98 * if the transaction is still pending and remove it in that case.
99 */
100
101 if (transaction->packet.ack == 0) {
102 // The timestamp is reused since it was just read now.
103 tstamp = transaction->packet.timestamp;
104 } else {
105 u32 curr_cycle_time = 0;
106
107 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
108 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
109 }
110
111 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
112 }
113 EXPORT_SYMBOL(fw_cancel_transaction);
114
split_transaction_timeout_callback(struct timer_list * timer)115 static void split_transaction_timeout_callback(struct timer_list *timer)
116 {
117 struct fw_transaction *t = timer_container_of(t, timer, split_timeout_timer);
118 struct fw_card *card = t->card;
119
120 scoped_guard(spinlock_irqsave, &card->lock) {
121 if (list_empty(&t->link))
122 return;
123 list_del(&t->link);
124 card->tlabel_mask &= ~(1ULL << t->tlabel);
125 }
126
127 if (!t->with_tstamp) {
128 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
129 } else {
130 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
131 t->split_timeout_cycle, NULL, 0, t->callback_data);
132 }
133 }
134
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)135 static void start_split_transaction_timeout(struct fw_transaction *t,
136 struct fw_card *card)
137 {
138 guard(spinlock_irqsave)(&card->lock);
139
140 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
141 return;
142
143 t->is_split_transaction = true;
144 mod_timer(&t->split_timeout_timer,
145 jiffies + card->split_timeout_jiffies);
146 }
147
148 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
149
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)150 static void transmit_complete_callback(struct fw_packet *packet,
151 struct fw_card *card, int status)
152 {
153 struct fw_transaction *t =
154 container_of(packet, struct fw_transaction, packet);
155
156 trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
157 packet->speed, status, packet->timestamp);
158
159 switch (status) {
160 case ACK_COMPLETE:
161 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
162 break;
163 case ACK_PENDING:
164 {
165 t->split_timeout_cycle =
166 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
167 start_split_transaction_timeout(t, card);
168 break;
169 }
170 case ACK_BUSY_X:
171 case ACK_BUSY_A:
172 case ACK_BUSY_B:
173 close_transaction(t, card, RCODE_BUSY, packet->timestamp);
174 break;
175 case ACK_DATA_ERROR:
176 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
177 break;
178 case ACK_TYPE_ERROR:
179 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
180 break;
181 default:
182 /*
183 * In this case the ack is really a juju specific
184 * rcode, so just forward that to the callback.
185 */
186 close_transaction(t, card, status, packet->timestamp);
187 break;
188 }
189 }
190
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)191 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
192 int destination_id, int source_id, int generation, int speed,
193 unsigned long long offset, void *payload, size_t length)
194 {
195 int ext_tcode;
196
197 if (tcode == TCODE_STREAM_DATA) {
198 // The value of destination_id argument should include tag, channel, and sy fields
199 // as isochronous packet header has.
200 packet->header[0] = destination_id;
201 isoc_header_set_data_length(packet->header, length);
202 isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
203 packet->header_length = 4;
204 packet->payload = payload;
205 packet->payload_length = length;
206
207 goto common;
208 }
209
210 if (tcode > 0x10) {
211 ext_tcode = tcode & ~0x10;
212 tcode = TCODE_LOCK_REQUEST;
213 } else
214 ext_tcode = 0;
215
216 async_header_set_retry(packet->header, RETRY_X);
217 async_header_set_tlabel(packet->header, tlabel);
218 async_header_set_tcode(packet->header, tcode);
219 async_header_set_destination(packet->header, destination_id);
220 async_header_set_source(packet->header, source_id);
221 async_header_set_offset(packet->header, offset);
222
223 switch (tcode) {
224 case TCODE_WRITE_QUADLET_REQUEST:
225 async_header_set_quadlet_data(packet->header, *(u32 *)payload);
226 packet->header_length = 16;
227 packet->payload_length = 0;
228 break;
229
230 case TCODE_LOCK_REQUEST:
231 case TCODE_WRITE_BLOCK_REQUEST:
232 async_header_set_data_length(packet->header, length);
233 async_header_set_extended_tcode(packet->header, ext_tcode);
234 packet->header_length = 16;
235 packet->payload = payload;
236 packet->payload_length = length;
237 break;
238
239 case TCODE_READ_QUADLET_REQUEST:
240 packet->header_length = 12;
241 packet->payload_length = 0;
242 break;
243
244 case TCODE_READ_BLOCK_REQUEST:
245 async_header_set_data_length(packet->header, length);
246 async_header_set_extended_tcode(packet->header, ext_tcode);
247 packet->header_length = 16;
248 packet->payload_length = 0;
249 break;
250
251 default:
252 WARN(1, "wrong tcode %d\n", tcode);
253 }
254 common:
255 packet->speed = speed;
256 packet->generation = generation;
257 packet->ack = 0;
258 packet->payload_mapped = false;
259 }
260
allocate_tlabel(struct fw_card * card)261 static int allocate_tlabel(struct fw_card *card)
262 {
263 int tlabel;
264
265 tlabel = card->current_tlabel;
266 while (card->tlabel_mask & (1ULL << tlabel)) {
267 tlabel = (tlabel + 1) & 0x3f;
268 if (tlabel == card->current_tlabel)
269 return -EBUSY;
270 }
271
272 card->current_tlabel = (tlabel + 1) & 0x3f;
273 card->tlabel_mask |= 1ULL << tlabel;
274
275 return tlabel;
276 }
277
278 /**
279 * __fw_send_request() - submit a request packet for transmission to generate callback for response
280 * subaction with or without time stamp.
281 * @card: interface to send the request at
282 * @t: transaction instance to which the request belongs
283 * @tcode: transaction code
284 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
285 * @generation: bus generation in which request and response are valid
286 * @speed: transmission speed
287 * @offset: 48bit wide offset into destination's address space
288 * @payload: data payload for the request subaction
289 * @length: length of the payload, in bytes
290 * @callback: union of two functions whether to receive time stamp or not for response
291 * subaction.
292 * @with_tstamp: Whether to receive time stamp or not for response subaction.
293 * @callback_data: data to be passed to the transaction completion callback
294 *
295 * Submit a request packet into the asynchronous request transmission queue.
296 * Can be called from atomic context. If you prefer a blocking API, use
297 * fw_run_transaction() in a context that can sleep.
298 *
299 * In case of lock requests, specify one of the firewire-core specific %TCODE_
300 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
301 *
302 * Make sure that the value in @destination_id is not older than the one in
303 * @generation. Otherwise the request is in danger to be sent to a wrong node.
304 *
305 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
306 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
307 * It will contain tag, channel, and sy data instead of a node ID then.
308 *
309 * The payload buffer at @data is going to be DMA-mapped except in case of
310 * @length <= 8 or of local (loopback) requests. Hence make sure that the
311 * buffer complies with the restrictions of the streaming DMA mapping API.
312 * @payload must not be freed before the @callback is called.
313 *
314 * In case of request types without payload, @data is NULL and @length is 0.
315 *
316 * After the transaction is completed successfully or unsuccessfully, the
317 * @callback will be called. Among its parameters is the response code which
318 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
319 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
320 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
321 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
322 * generation, or missing ACK respectively.
323 *
324 * Note some timing corner cases: fw_send_request() may complete much earlier
325 * than when the request packet actually hits the wire. On the other hand,
326 * transaction completion and hence execution of @callback may happen even
327 * before fw_send_request() returns.
328 */
__fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,union fw_transaction_callback callback,bool with_tstamp,void * callback_data)329 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
330 int destination_id, int generation, int speed, unsigned long long offset,
331 void *payload, size_t length, union fw_transaction_callback callback,
332 bool with_tstamp, void *callback_data)
333 {
334 unsigned long flags;
335 int tlabel;
336
337 /*
338 * Allocate tlabel from the bitmap and put the transaction on
339 * the list while holding the card spinlock.
340 */
341
342 spin_lock_irqsave(&card->lock, flags);
343
344 tlabel = allocate_tlabel(card);
345 if (tlabel < 0) {
346 spin_unlock_irqrestore(&card->lock, flags);
347 if (!with_tstamp) {
348 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
349 } else {
350 // Timestamping on behalf of hardware.
351 u32 curr_cycle_time = 0;
352 u32 tstamp;
353
354 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
355 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
356
357 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
358 callback_data);
359 }
360 return;
361 }
362
363 t->node_id = destination_id;
364 t->tlabel = tlabel;
365 t->card = card;
366 t->is_split_transaction = false;
367 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
368 t->callback = callback;
369 t->with_tstamp = with_tstamp;
370 t->callback_data = callback_data;
371
372 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
373 speed, offset, payload, length);
374 t->packet.callback = transmit_complete_callback;
375
376 list_add_tail(&t->link, &card->transaction_list);
377
378 spin_unlock_irqrestore(&card->lock, flags);
379
380 trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
381 t->packet.header, payload,
382 tcode_is_read_request(tcode) ? 0 : length / 4);
383
384 card->driver->send_request(card, &t->packet);
385 }
386 EXPORT_SYMBOL_GPL(__fw_send_request);
387
388 struct transaction_callback_data {
389 struct completion done;
390 void *payload;
391 int rcode;
392 };
393
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)394 static void transaction_callback(struct fw_card *card, int rcode,
395 void *payload, size_t length, void *data)
396 {
397 struct transaction_callback_data *d = data;
398
399 if (rcode == RCODE_COMPLETE)
400 memcpy(d->payload, payload, length);
401 d->rcode = rcode;
402 complete(&d->done);
403 }
404
405 /**
406 * fw_run_transaction() - send request and sleep until transaction is completed
407 * @card: card interface for this request
408 * @tcode: transaction code
409 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
410 * @generation: bus generation in which request and response are valid
411 * @speed: transmission speed
412 * @offset: 48bit wide offset into destination's address space
413 * @payload: data payload for the request subaction
414 * @length: length of the payload, in bytes
415 *
416 * Returns the RCODE. See fw_send_request() for parameter documentation.
417 * Unlike fw_send_request(), @data points to the payload of the request or/and
418 * to the payload of the response. DMA mapping restrictions apply to outbound
419 * request payloads of >= 8 bytes but not to inbound response payloads.
420 */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)421 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
422 int generation, int speed, unsigned long long offset,
423 void *payload, size_t length)
424 {
425 struct transaction_callback_data d;
426 struct fw_transaction t;
427
428 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
429 init_completion(&d.done);
430 d.payload = payload;
431 fw_send_request(card, &t, tcode, destination_id, generation, speed,
432 offset, payload, length, transaction_callback, &d);
433 wait_for_completion(&d.done);
434 timer_destroy_on_stack(&t.split_timeout_timer);
435
436 return d.rcode;
437 }
438 EXPORT_SYMBOL(fw_run_transaction);
439
440 static DEFINE_MUTEX(phy_config_mutex);
441 static DECLARE_COMPLETION(phy_config_done);
442
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)443 static void transmit_phy_packet_callback(struct fw_packet *packet,
444 struct fw_card *card, int status)
445 {
446 trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
447 packet->timestamp);
448 complete(&phy_config_done);
449 }
450
451 static struct fw_packet phy_config_packet = {
452 .header_length = 12,
453 .payload_length = 0,
454 .speed = SCODE_100,
455 .callback = transmit_phy_packet_callback,
456 };
457
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)458 void fw_send_phy_config(struct fw_card *card,
459 int node_id, int generation, int gap_count)
460 {
461 long timeout = DIV_ROUND_UP(HZ, 10);
462 u32 data = 0;
463
464 phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
465
466 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
467 phy_packet_phy_config_set_root_id(&data, node_id);
468 phy_packet_phy_config_set_force_root_node(&data, true);
469 }
470
471 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
472 gap_count = card->driver->read_phy_reg(card, 1);
473 if (gap_count < 0)
474 return;
475
476 gap_count &= 63;
477 if (gap_count == 63)
478 return;
479 }
480 phy_packet_phy_config_set_gap_count(&data, gap_count);
481 phy_packet_phy_config_set_gap_count_optimization(&data, true);
482
483 guard(mutex)(&phy_config_mutex);
484
485 async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
486 phy_config_packet.header[1] = data;
487 phy_config_packet.header[2] = ~data;
488 phy_config_packet.generation = generation;
489 reinit_completion(&phy_config_done);
490
491 trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
492 phy_config_packet.generation, phy_config_packet.header[1],
493 phy_config_packet.header[2]);
494
495 card->driver->send_request(card, &phy_config_packet);
496 wait_for_completion_timeout(&phy_config_done, timeout);
497 }
498
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)499 static struct fw_address_handler *lookup_overlapping_address_handler(
500 struct list_head *list, unsigned long long offset, size_t length)
501 {
502 struct fw_address_handler *handler;
503
504 list_for_each_entry_rcu(handler, list, link) {
505 if (handler->offset < offset + length &&
506 offset < handler->offset + handler->length)
507 return handler;
508 }
509
510 return NULL;
511 }
512
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)513 static bool is_enclosing_handler(struct fw_address_handler *handler,
514 unsigned long long offset, size_t length)
515 {
516 return handler->offset <= offset &&
517 offset + length <= handler->offset + handler->length;
518 }
519
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)520 static struct fw_address_handler *lookup_enclosing_address_handler(
521 struct list_head *list, unsigned long long offset, size_t length)
522 {
523 struct fw_address_handler *handler;
524
525 list_for_each_entry_rcu(handler, list, link) {
526 if (is_enclosing_handler(handler, offset, length))
527 return handler;
528 }
529
530 return NULL;
531 }
532
533 static DEFINE_SPINLOCK(address_handler_list_lock);
534 static LIST_HEAD(address_handler_list);
535
536 const struct fw_address_region fw_high_memory_region =
537 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
538 EXPORT_SYMBOL(fw_high_memory_region);
539
540 static const struct fw_address_region low_memory_region =
541 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
542
543 #if 0
544 const struct fw_address_region fw_private_region =
545 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
546 const struct fw_address_region fw_csr_region =
547 { .start = CSR_REGISTER_BASE,
548 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
549 const struct fw_address_region fw_unit_space_region =
550 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
551 #endif /* 0 */
552
complete_address_handler(struct kref * kref)553 static void complete_address_handler(struct kref *kref)
554 {
555 struct fw_address_handler *handler = container_of(kref, struct fw_address_handler, kref);
556
557 complete(&handler->done);
558 }
559
get_address_handler(struct fw_address_handler * handler)560 static void get_address_handler(struct fw_address_handler *handler)
561 {
562 kref_get(&handler->kref);
563 }
564
put_address_handler(struct fw_address_handler * handler)565 static int put_address_handler(struct fw_address_handler *handler)
566 {
567 return kref_put(&handler->kref, complete_address_handler);
568 }
569
570 /**
571 * fw_core_add_address_handler() - register for incoming requests
572 * @handler: callback
573 * @region: region in the IEEE 1212 node space address range
574 *
575 * region->start, ->end, and handler->length have to be quadlet-aligned.
576 *
577 * When a request is received that falls within the specified address range, the specified callback
578 * is invoked. The parameters passed to the callback give the details of the particular request.
579 * The callback is invoked in the workqueue context in most cases. However, if the request is
580 * initiated by the local node, the callback is invoked in the initiator's context.
581 *
582 * To be called in process context.
583 * Return value: 0 on success, non-zero otherwise.
584 *
585 * The start offset of the handler's address region is determined by
586 * fw_core_add_address_handler() and is returned in handler->offset.
587 *
588 * Address allocations are exclusive, except for the FCP registers.
589 */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)590 int fw_core_add_address_handler(struct fw_address_handler *handler,
591 const struct fw_address_region *region)
592 {
593 struct fw_address_handler *other;
594 int ret = -EBUSY;
595
596 if (region->start & 0xffff000000000003ULL ||
597 region->start >= region->end ||
598 region->end > 0x0001000000000000ULL ||
599 handler->length & 3 ||
600 handler->length == 0)
601 return -EINVAL;
602
603 guard(spinlock)(&address_handler_list_lock);
604
605 handler->offset = region->start;
606 while (handler->offset + handler->length <= region->end) {
607 if (is_in_fcp_region(handler->offset, handler->length))
608 other = NULL;
609 else
610 other = lookup_overlapping_address_handler
611 (&address_handler_list,
612 handler->offset, handler->length);
613 if (other != NULL) {
614 handler->offset += other->length;
615 } else {
616 init_completion(&handler->done);
617 kref_init(&handler->kref);
618 list_add_tail_rcu(&handler->link, &address_handler_list);
619 ret = 0;
620 break;
621 }
622 }
623
624 return ret;
625 }
626 EXPORT_SYMBOL(fw_core_add_address_handler);
627
628 /**
629 * fw_core_remove_address_handler() - unregister an address handler
630 * @handler: callback
631 *
632 * To be called in process context.
633 *
634 * When fw_core_remove_address_handler() returns, @handler->callback() is
635 * guaranteed to not run on any CPU anymore.
636 */
fw_core_remove_address_handler(struct fw_address_handler * handler)637 void fw_core_remove_address_handler(struct fw_address_handler *handler)
638 {
639 scoped_guard(spinlock, &address_handler_list_lock)
640 list_del_rcu(&handler->link);
641
642 synchronize_rcu();
643
644 if (!put_address_handler(handler))
645 wait_for_completion(&handler->done);
646 }
647 EXPORT_SYMBOL(fw_core_remove_address_handler);
648
649 struct fw_request {
650 struct kref kref;
651 struct fw_packet response;
652 u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
653 int ack;
654 u32 timestamp;
655 u32 length;
656 u32 data[];
657 };
658
fw_request_get(struct fw_request * request)659 void fw_request_get(struct fw_request *request)
660 {
661 kref_get(&request->kref);
662 }
663
release_request(struct kref * kref)664 static void release_request(struct kref *kref)
665 {
666 struct fw_request *request = container_of(kref, struct fw_request, kref);
667
668 kfree(request);
669 }
670
fw_request_put(struct fw_request * request)671 void fw_request_put(struct fw_request *request)
672 {
673 kref_put(&request->kref, release_request);
674 }
675
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)676 static void free_response_callback(struct fw_packet *packet,
677 struct fw_card *card, int status)
678 {
679 struct fw_request *request = container_of(packet, struct fw_request, response);
680
681 trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
682 packet->speed, status, packet->timestamp);
683
684 // Decrease the reference count since not at in-flight.
685 fw_request_put(request);
686
687 // Decrease the reference count to release the object.
688 fw_request_put(request);
689 }
690
fw_get_response_length(struct fw_request * r)691 int fw_get_response_length(struct fw_request *r)
692 {
693 int tcode, ext_tcode, data_length;
694
695 tcode = async_header_get_tcode(r->request_header);
696
697 switch (tcode) {
698 case TCODE_WRITE_QUADLET_REQUEST:
699 case TCODE_WRITE_BLOCK_REQUEST:
700 return 0;
701
702 case TCODE_READ_QUADLET_REQUEST:
703 return 4;
704
705 case TCODE_READ_BLOCK_REQUEST:
706 data_length = async_header_get_data_length(r->request_header);
707 return data_length;
708
709 case TCODE_LOCK_REQUEST:
710 ext_tcode = async_header_get_extended_tcode(r->request_header);
711 data_length = async_header_get_data_length(r->request_header);
712 switch (ext_tcode) {
713 case EXTCODE_FETCH_ADD:
714 case EXTCODE_LITTLE_ADD:
715 return data_length;
716 default:
717 return data_length / 2;
718 }
719
720 default:
721 WARN(1, "wrong tcode %d\n", tcode);
722 return 0;
723 }
724 }
725
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)726 void fw_fill_response(struct fw_packet *response, u32 *request_header,
727 int rcode, void *payload, size_t length)
728 {
729 int tcode, tlabel, extended_tcode, source, destination;
730
731 tcode = async_header_get_tcode(request_header);
732 tlabel = async_header_get_tlabel(request_header);
733 source = async_header_get_destination(request_header); // Exchange.
734 destination = async_header_get_source(request_header); // Exchange.
735 extended_tcode = async_header_get_extended_tcode(request_header);
736
737 async_header_set_retry(response->header, RETRY_1);
738 async_header_set_tlabel(response->header, tlabel);
739 async_header_set_destination(response->header, destination);
740 async_header_set_source(response->header, source);
741 async_header_set_rcode(response->header, rcode);
742 response->header[2] = 0; // The field is reserved.
743
744 switch (tcode) {
745 case TCODE_WRITE_QUADLET_REQUEST:
746 case TCODE_WRITE_BLOCK_REQUEST:
747 async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
748 response->header_length = 12;
749 response->payload_length = 0;
750 break;
751
752 case TCODE_READ_QUADLET_REQUEST:
753 async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
754 if (payload != NULL)
755 async_header_set_quadlet_data(response->header, *(u32 *)payload);
756 else
757 async_header_set_quadlet_data(response->header, 0);
758 response->header_length = 16;
759 response->payload_length = 0;
760 break;
761
762 case TCODE_READ_BLOCK_REQUEST:
763 case TCODE_LOCK_REQUEST:
764 async_header_set_tcode(response->header, tcode + 2);
765 async_header_set_data_length(response->header, length);
766 async_header_set_extended_tcode(response->header, extended_tcode);
767 response->header_length = 16;
768 response->payload = payload;
769 response->payload_length = length;
770 break;
771
772 default:
773 WARN(1, "wrong tcode %d\n", tcode);
774 }
775
776 response->payload_mapped = false;
777 }
778 EXPORT_SYMBOL(fw_fill_response);
779
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)780 static u32 compute_split_timeout_timestamp(struct fw_card *card,
781 u32 request_timestamp)
782 {
783 unsigned int cycles;
784 u32 timestamp;
785
786 cycles = card->split_timeout_cycles;
787 cycles += request_timestamp & 0x1fff;
788
789 timestamp = request_timestamp & ~0x1fff;
790 timestamp += (cycles / 8000) << 13;
791 timestamp |= cycles % 8000;
792
793 return timestamp;
794 }
795
allocate_request(struct fw_card * card,struct fw_packet * p)796 static struct fw_request *allocate_request(struct fw_card *card,
797 struct fw_packet *p)
798 {
799 struct fw_request *request;
800 u32 *data, length;
801 int request_tcode;
802
803 request_tcode = async_header_get_tcode(p->header);
804 switch (request_tcode) {
805 case TCODE_WRITE_QUADLET_REQUEST:
806 data = &p->header[3];
807 length = 4;
808 break;
809
810 case TCODE_WRITE_BLOCK_REQUEST:
811 case TCODE_LOCK_REQUEST:
812 data = p->payload;
813 length = async_header_get_data_length(p->header);
814 break;
815
816 case TCODE_READ_QUADLET_REQUEST:
817 data = NULL;
818 length = 4;
819 break;
820
821 case TCODE_READ_BLOCK_REQUEST:
822 data = NULL;
823 length = async_header_get_data_length(p->header);
824 break;
825
826 default:
827 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
828 p->header[0], p->header[1], p->header[2]);
829 return NULL;
830 }
831
832 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
833 if (request == NULL)
834 return NULL;
835 kref_init(&request->kref);
836
837 request->response.speed = p->speed;
838 request->response.timestamp =
839 compute_split_timeout_timestamp(card, p->timestamp);
840 request->response.generation = p->generation;
841 request->response.ack = 0;
842 request->response.callback = free_response_callback;
843 request->ack = p->ack;
844 request->timestamp = p->timestamp;
845 request->length = length;
846 if (data)
847 memcpy(request->data, data, length);
848
849 memcpy(request->request_header, p->header, sizeof(p->header));
850
851 return request;
852 }
853
854 /**
855 * fw_send_response: - send response packet for asynchronous transaction.
856 * @card: interface to send the response at.
857 * @request: firewire request data for the transaction.
858 * @rcode: response code to send.
859 *
860 * Submit a response packet into the asynchronous response transmission queue. The @request
861 * is going to be released when the transmission successfully finishes later.
862 */
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)863 void fw_send_response(struct fw_card *card,
864 struct fw_request *request, int rcode)
865 {
866 u32 *data = NULL;
867 unsigned int data_length = 0;
868
869 /* unified transaction or broadcast transaction: don't respond */
870 if (request->ack != ACK_PENDING ||
871 HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
872 fw_request_put(request);
873 return;
874 }
875
876 if (rcode == RCODE_COMPLETE) {
877 data = request->data;
878 data_length = fw_get_response_length(request);
879 }
880
881 fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
882
883 // Increase the reference count so that the object is kept during in-flight.
884 fw_request_get(request);
885
886 trace_async_response_outbound_initiate((uintptr_t)request, card->index,
887 request->response.generation, request->response.speed,
888 request->response.header, data,
889 data ? data_length / 4 : 0);
890
891 card->driver->send_response(card, &request->response);
892 }
893 EXPORT_SYMBOL(fw_send_response);
894
895 /**
896 * fw_get_request_speed() - returns speed at which the @request was received
897 * @request: firewire request data
898 */
fw_get_request_speed(struct fw_request * request)899 int fw_get_request_speed(struct fw_request *request)
900 {
901 return request->response.speed;
902 }
903 EXPORT_SYMBOL(fw_get_request_speed);
904
905 /**
906 * fw_request_get_timestamp: Get timestamp of the request.
907 * @request: The opaque pointer to request structure.
908 *
909 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
910 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
911 * field of isochronous cycle time register.
912 *
913 * Returns: timestamp of the request.
914 */
fw_request_get_timestamp(const struct fw_request * request)915 u32 fw_request_get_timestamp(const struct fw_request *request)
916 {
917 return request->timestamp;
918 }
919 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
920
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)921 static void handle_exclusive_region_request(struct fw_card *card,
922 struct fw_packet *p,
923 struct fw_request *request,
924 unsigned long long offset)
925 {
926 struct fw_address_handler *handler;
927 int tcode, destination, source;
928
929 destination = async_header_get_destination(p->header);
930 source = async_header_get_source(p->header);
931 tcode = async_header_get_tcode(p->header);
932 if (tcode == TCODE_LOCK_REQUEST)
933 tcode = 0x10 + async_header_get_extended_tcode(p->header);
934
935 scoped_guard(rcu) {
936 handler = lookup_enclosing_address_handler(&address_handler_list, offset,
937 request->length);
938 if (handler)
939 get_address_handler(handler);
940 }
941
942 if (!handler) {
943 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
944 return;
945 }
946
947 // Outside the RCU read-side critical section. Without spinlock. With reference count.
948 handler->address_callback(card, request, tcode, destination, source, p->generation, offset,
949 request->data, request->length, handler->callback_data);
950 put_address_handler(handler);
951 }
952
953 // To use kmalloc allocator efficiently, this should be power of two.
954 #define BUFFER_ON_KERNEL_STACK_SIZE 4
955
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)956 static void handle_fcp_region_request(struct fw_card *card,
957 struct fw_packet *p,
958 struct fw_request *request,
959 unsigned long long offset)
960 {
961 struct fw_address_handler *buffer_on_kernel_stack[BUFFER_ON_KERNEL_STACK_SIZE];
962 struct fw_address_handler *handler, **handlers;
963 int tcode, destination, source, i, count, buffer_size;
964
965 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
966 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
967 request->length > 0x200) {
968 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
969
970 return;
971 }
972
973 tcode = async_header_get_tcode(p->header);
974 destination = async_header_get_destination(p->header);
975 source = async_header_get_source(p->header);
976
977 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
978 tcode != TCODE_WRITE_BLOCK_REQUEST) {
979 fw_send_response(card, request, RCODE_TYPE_ERROR);
980
981 return;
982 }
983
984 count = 0;
985 handlers = buffer_on_kernel_stack;
986 buffer_size = ARRAY_SIZE(buffer_on_kernel_stack);
987 scoped_guard(rcu) {
988 list_for_each_entry_rcu(handler, &address_handler_list, link) {
989 if (is_enclosing_handler(handler, offset, request->length)) {
990 if (count >= buffer_size) {
991 int next_size = buffer_size * 2;
992 struct fw_address_handler **buffer_on_kernel_heap;
993
994 if (handlers == buffer_on_kernel_stack)
995 buffer_on_kernel_heap = NULL;
996 else
997 buffer_on_kernel_heap = handlers;
998
999 buffer_on_kernel_heap =
1000 krealloc_array(buffer_on_kernel_heap, next_size,
1001 sizeof(*buffer_on_kernel_heap), GFP_ATOMIC);
1002 // FCP is used for purposes unrelated to significant system
1003 // resources (e.g. storage or networking), so allocation
1004 // failures are not considered so critical.
1005 if (!buffer_on_kernel_heap)
1006 break;
1007
1008 if (handlers == buffer_on_kernel_stack) {
1009 memcpy(buffer_on_kernel_heap, buffer_on_kernel_stack,
1010 sizeof(buffer_on_kernel_stack));
1011 }
1012
1013 handlers = buffer_on_kernel_heap;
1014 buffer_size = next_size;
1015 }
1016 get_address_handler(handler);
1017 handlers[count++] = handler;
1018 }
1019 }
1020 }
1021
1022 for (i = 0; i < count; ++i) {
1023 handler = handlers[i];
1024 handler->address_callback(card, request, tcode, destination, source,
1025 p->generation, offset, request->data,
1026 request->length, handler->callback_data);
1027 put_address_handler(handler);
1028 }
1029
1030 if (handlers != buffer_on_kernel_stack)
1031 kfree(handlers);
1032
1033 fw_send_response(card, request, RCODE_COMPLETE);
1034 }
1035
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)1036 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
1037 {
1038 struct fw_request *request;
1039 unsigned long long offset;
1040 unsigned int tcode;
1041
1042 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
1043 return;
1044
1045 tcode = async_header_get_tcode(p->header);
1046 if (tcode_is_link_internal(tcode)) {
1047 trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
1048 p->header[1], p->header[2]);
1049 fw_cdev_handle_phy_packet(card, p);
1050 return;
1051 }
1052
1053 request = allocate_request(card, p);
1054 if (request == NULL) {
1055 /* FIXME: send statically allocated busy packet. */
1056 return;
1057 }
1058
1059 trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
1060 p->ack, p->timestamp, p->header, request->data,
1061 tcode_is_read_request(tcode) ? 0 : request->length / 4);
1062
1063 offset = async_header_get_offset(p->header);
1064
1065 if (!is_in_fcp_region(offset, request->length))
1066 handle_exclusive_region_request(card, p, request, offset);
1067 else
1068 handle_fcp_region_request(card, p, request, offset);
1069
1070 }
1071 EXPORT_SYMBOL(fw_core_handle_request);
1072
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)1073 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1074 {
1075 struct fw_transaction *t = NULL, *iter;
1076 u32 *data;
1077 size_t data_length;
1078 int tcode, tlabel, source, rcode;
1079
1080 tcode = async_header_get_tcode(p->header);
1081 tlabel = async_header_get_tlabel(p->header);
1082 source = async_header_get_source(p->header);
1083 rcode = async_header_get_rcode(p->header);
1084
1085 // FIXME: sanity check packet, is length correct, does tcodes
1086 // and addresses match to the transaction request queried later.
1087 //
1088 // For the tracepoints event, let us decode the header here against the concern.
1089
1090 switch (tcode) {
1091 case TCODE_READ_QUADLET_RESPONSE:
1092 data = (u32 *) &p->header[3];
1093 data_length = 4;
1094 break;
1095
1096 case TCODE_WRITE_RESPONSE:
1097 data = NULL;
1098 data_length = 0;
1099 break;
1100
1101 case TCODE_READ_BLOCK_RESPONSE:
1102 case TCODE_LOCK_RESPONSE:
1103 data = p->payload;
1104 data_length = async_header_get_data_length(p->header);
1105 break;
1106
1107 default:
1108 /* Should never happen, this is just to shut up gcc. */
1109 data = NULL;
1110 data_length = 0;
1111 break;
1112 }
1113
1114 scoped_guard(spinlock_irqsave, &card->lock) {
1115 list_for_each_entry(iter, &card->transaction_list, link) {
1116 if (iter->node_id == source && iter->tlabel == tlabel) {
1117 if (try_cancel_split_timeout(iter)) {
1118 list_del_init(&iter->link);
1119 card->tlabel_mask &= ~(1ULL << iter->tlabel);
1120 t = iter;
1121 }
1122 break;
1123 }
1124 }
1125 }
1126
1127 trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1128 p->timestamp, p->header, data, data_length / 4);
1129
1130 if (!t) {
1131 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1132 source, tlabel);
1133 return;
1134 }
1135
1136 /*
1137 * The response handler may be executed while the request handler
1138 * is still pending. Cancel the request handler.
1139 */
1140 card->driver->cancel_packet(card, &t->packet);
1141
1142 if (!t->with_tstamp) {
1143 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1144 } else {
1145 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1146 data_length, t->callback_data);
1147 }
1148 }
1149 EXPORT_SYMBOL(fw_core_handle_response);
1150
1151 /**
1152 * fw_rcode_string - convert a firewire result code to an error description
1153 * @rcode: the result code
1154 */
fw_rcode_string(int rcode)1155 const char *fw_rcode_string(int rcode)
1156 {
1157 static const char *const names[] = {
1158 [RCODE_COMPLETE] = "no error",
1159 [RCODE_CONFLICT_ERROR] = "conflict error",
1160 [RCODE_DATA_ERROR] = "data error",
1161 [RCODE_TYPE_ERROR] = "type error",
1162 [RCODE_ADDRESS_ERROR] = "address error",
1163 [RCODE_SEND_ERROR] = "send error",
1164 [RCODE_CANCELLED] = "timeout",
1165 [RCODE_BUSY] = "busy",
1166 [RCODE_GENERATION] = "bus reset",
1167 [RCODE_NO_ACK] = "no ack",
1168 };
1169
1170 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1171 return names[rcode];
1172 else
1173 return "unknown";
1174 }
1175 EXPORT_SYMBOL(fw_rcode_string);
1176
1177 static const struct fw_address_region topology_map_region =
1178 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1179 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1180
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1181 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1182 int tcode, int destination, int source, int generation,
1183 unsigned long long offset, void *payload, size_t length,
1184 void *callback_data)
1185 {
1186 int start;
1187
1188 if (!tcode_is_read_request(tcode)) {
1189 fw_send_response(card, request, RCODE_TYPE_ERROR);
1190 return;
1191 }
1192
1193 if ((offset & 3) > 0 || (length & 3) > 0) {
1194 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1195 return;
1196 }
1197
1198 start = (offset - topology_map_region.start) / 4;
1199 memcpy(payload, &card->topology_map[start], length);
1200
1201 fw_send_response(card, request, RCODE_COMPLETE);
1202 }
1203
1204 static struct fw_address_handler topology_map = {
1205 .length = 0x400,
1206 .address_callback = handle_topology_map,
1207 };
1208
1209 static const struct fw_address_region registers_region =
1210 { .start = CSR_REGISTER_BASE,
1211 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1212
update_split_timeout(struct fw_card * card)1213 static void update_split_timeout(struct fw_card *card)
1214 {
1215 unsigned int cycles;
1216
1217 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1218
1219 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1220 cycles = clamp(cycles, 800u, 3u * 8000u);
1221
1222 card->split_timeout_cycles = cycles;
1223 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1224 }
1225
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1226 static void handle_registers(struct fw_card *card, struct fw_request *request,
1227 int tcode, int destination, int source, int generation,
1228 unsigned long long offset, void *payload, size_t length,
1229 void *callback_data)
1230 {
1231 int reg = offset & ~CSR_REGISTER_BASE;
1232 __be32 *data = payload;
1233 int rcode = RCODE_COMPLETE;
1234
1235 switch (reg) {
1236 case CSR_PRIORITY_BUDGET:
1237 if (!card->priority_budget_implemented) {
1238 rcode = RCODE_ADDRESS_ERROR;
1239 break;
1240 }
1241 fallthrough;
1242
1243 case CSR_NODE_IDS:
1244 /*
1245 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1246 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1247 */
1248 fallthrough;
1249
1250 case CSR_STATE_CLEAR:
1251 case CSR_STATE_SET:
1252 case CSR_CYCLE_TIME:
1253 case CSR_BUS_TIME:
1254 case CSR_BUSY_TIMEOUT:
1255 if (tcode == TCODE_READ_QUADLET_REQUEST)
1256 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1257 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1258 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1259 else
1260 rcode = RCODE_TYPE_ERROR;
1261 break;
1262
1263 case CSR_RESET_START:
1264 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1265 card->driver->write_csr(card, CSR_STATE_CLEAR,
1266 CSR_STATE_BIT_ABDICATE);
1267 else
1268 rcode = RCODE_TYPE_ERROR;
1269 break;
1270
1271 case CSR_SPLIT_TIMEOUT_HI:
1272 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1273 *data = cpu_to_be32(card->split_timeout_hi);
1274 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1275 guard(spinlock_irqsave)(&card->lock);
1276
1277 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1278 update_split_timeout(card);
1279 } else {
1280 rcode = RCODE_TYPE_ERROR;
1281 }
1282 break;
1283
1284 case CSR_SPLIT_TIMEOUT_LO:
1285 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1286 *data = cpu_to_be32(card->split_timeout_lo);
1287 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1288 guard(spinlock_irqsave)(&card->lock);
1289
1290 card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000;
1291 update_split_timeout(card);
1292 } else {
1293 rcode = RCODE_TYPE_ERROR;
1294 }
1295 break;
1296
1297 case CSR_MAINT_UTILITY:
1298 if (tcode == TCODE_READ_QUADLET_REQUEST)
1299 *data = card->maint_utility_register;
1300 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1301 card->maint_utility_register = *data;
1302 else
1303 rcode = RCODE_TYPE_ERROR;
1304 break;
1305
1306 case CSR_BROADCAST_CHANNEL:
1307 if (tcode == TCODE_READ_QUADLET_REQUEST)
1308 *data = cpu_to_be32(card->broadcast_channel);
1309 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1310 card->broadcast_channel =
1311 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1312 BROADCAST_CHANNEL_INITIAL;
1313 else
1314 rcode = RCODE_TYPE_ERROR;
1315 break;
1316
1317 case CSR_BUS_MANAGER_ID:
1318 case CSR_BANDWIDTH_AVAILABLE:
1319 case CSR_CHANNELS_AVAILABLE_HI:
1320 case CSR_CHANNELS_AVAILABLE_LO:
1321 /*
1322 * FIXME: these are handled by the OHCI hardware and
1323 * the stack never sees these request. If we add
1324 * support for a new type of controller that doesn't
1325 * handle this in hardware we need to deal with these
1326 * transactions.
1327 */
1328 BUG();
1329 break;
1330
1331 default:
1332 rcode = RCODE_ADDRESS_ERROR;
1333 break;
1334 }
1335
1336 fw_send_response(card, request, rcode);
1337 }
1338
1339 static struct fw_address_handler registers = {
1340 .length = 0x400,
1341 .address_callback = handle_registers,
1342 };
1343
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1344 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1345 int tcode, int destination, int source, int generation,
1346 unsigned long long offset, void *payload, size_t length,
1347 void *callback_data)
1348 {
1349 /*
1350 * This catches requests not handled by the physical DMA unit,
1351 * i.e., wrong transaction types or unauthorized source nodes.
1352 */
1353 fw_send_response(card, request, RCODE_TYPE_ERROR);
1354 }
1355
1356 static struct fw_address_handler low_memory = {
1357 .length = FW_MAX_PHYSICAL_RANGE,
1358 .address_callback = handle_low_memory,
1359 };
1360
1361 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1362 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1363 MODULE_LICENSE("GPL");
1364
1365 static const u32 vendor_textual_descriptor[] = {
1366 /* textual descriptor leaf () */
1367 0x00060000,
1368 0x00000000,
1369 0x00000000,
1370 0x4c696e75, /* L i n u */
1371 0x78204669, /* x F i */
1372 0x72657769, /* r e w i */
1373 0x72650000, /* r e */
1374 };
1375
1376 static const u32 model_textual_descriptor[] = {
1377 /* model descriptor leaf () */
1378 0x00030000,
1379 0x00000000,
1380 0x00000000,
1381 0x4a756a75, /* J u j u */
1382 };
1383
1384 static struct fw_descriptor vendor_id_descriptor = {
1385 .length = ARRAY_SIZE(vendor_textual_descriptor),
1386 .immediate = 0x03001f11,
1387 .key = 0x81000000,
1388 .data = vendor_textual_descriptor,
1389 };
1390
1391 static struct fw_descriptor model_id_descriptor = {
1392 .length = ARRAY_SIZE(model_textual_descriptor),
1393 .immediate = 0x17023901,
1394 .key = 0x81000000,
1395 .data = model_textual_descriptor,
1396 };
1397
fw_core_init(void)1398 static int __init fw_core_init(void)
1399 {
1400 int ret;
1401
1402 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1403 if (!fw_workqueue)
1404 return -ENOMEM;
1405
1406 ret = bus_register(&fw_bus_type);
1407 if (ret < 0) {
1408 destroy_workqueue(fw_workqueue);
1409 return ret;
1410 }
1411
1412 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1413 if (fw_cdev_major < 0) {
1414 bus_unregister(&fw_bus_type);
1415 destroy_workqueue(fw_workqueue);
1416 return fw_cdev_major;
1417 }
1418
1419 fw_core_add_address_handler(&topology_map, &topology_map_region);
1420 fw_core_add_address_handler(®isters, ®isters_region);
1421 fw_core_add_address_handler(&low_memory, &low_memory_region);
1422 fw_core_add_descriptor(&vendor_id_descriptor);
1423 fw_core_add_descriptor(&model_id_descriptor);
1424
1425 return 0;
1426 }
1427
fw_core_cleanup(void)1428 static void __exit fw_core_cleanup(void)
1429 {
1430 unregister_chrdev(fw_cdev_major, "firewire");
1431 bus_unregister(&fw_bus_type);
1432 destroy_workqueue(fw_workqueue);
1433 xa_destroy(&fw_device_xa);
1434 }
1435
1436 module_init(fw_core_init);
1437 module_exit(fw_core_cleanup);
1438