1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/debugfs.h>
38 #include <linux/plist.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/memblock.h>
42 #include <linux/fault-inject.h>
43 #include <linux/slab.h>
44 #include <linux/prctl.h>
45 #include <linux/rcuref.h>
46 #include <linux/mempolicy.h>
47 #include <linux/mmap_lock.h>
48
49 #include "futex.h"
50 #include "../locking/rtmutex_common.h"
51
52 /*
53 * The base of the bucket array and its size are always used together
54 * (after initialization only in futex_hash()), so ensure that they
55 * reside in the same cacheline.
56 */
57 static struct {
58 unsigned long hashmask;
59 unsigned int hashshift;
60 struct futex_hash_bucket *queues[MAX_NUMNODES];
61 } __futex_data __read_mostly __aligned(2*sizeof(long));
62
63 #define futex_hashmask (__futex_data.hashmask)
64 #define futex_hashshift (__futex_data.hashshift)
65 #define futex_queues (__futex_data.queues)
66
67 struct futex_private_hash {
68 rcuref_t users;
69 unsigned int hash_mask;
70 struct rcu_head rcu;
71 void *mm;
72 bool custom;
73 bool immutable;
74 struct futex_hash_bucket queues[];
75 };
76
77 /*
78 * Fault injections for futexes.
79 */
80 #ifdef CONFIG_FAIL_FUTEX
81
82 static struct {
83 struct fault_attr attr;
84
85 bool ignore_private;
86 } fail_futex = {
87 .attr = FAULT_ATTR_INITIALIZER,
88 .ignore_private = false,
89 };
90
setup_fail_futex(char * str)91 static int __init setup_fail_futex(char *str)
92 {
93 return setup_fault_attr(&fail_futex.attr, str);
94 }
95 __setup("fail_futex=", setup_fail_futex);
96
should_fail_futex(bool fshared)97 bool should_fail_futex(bool fshared)
98 {
99 if (fail_futex.ignore_private && !fshared)
100 return false;
101
102 return should_fail(&fail_futex.attr, 1);
103 }
104
105 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
106
fail_futex_debugfs(void)107 static int __init fail_futex_debugfs(void)
108 {
109 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
110 struct dentry *dir;
111
112 dir = fault_create_debugfs_attr("fail_futex", NULL,
113 &fail_futex.attr);
114 if (IS_ERR(dir))
115 return PTR_ERR(dir);
116
117 debugfs_create_bool("ignore-private", mode, dir,
118 &fail_futex.ignore_private);
119 return 0;
120 }
121
122 late_initcall(fail_futex_debugfs);
123
124 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
125
126 #endif /* CONFIG_FAIL_FUTEX */
127
128 static struct futex_hash_bucket *
129 __futex_hash(union futex_key *key, struct futex_private_hash *fph);
130
131 #ifdef CONFIG_FUTEX_PRIVATE_HASH
futex_key_is_private(union futex_key * key)132 static inline bool futex_key_is_private(union futex_key *key)
133 {
134 /*
135 * Relies on get_futex_key() to set either bit for shared
136 * futexes -- see comment with union futex_key.
137 */
138 return !(key->both.offset & (FUT_OFF_INODE | FUT_OFF_MMSHARED));
139 }
140
futex_private_hash_get(struct futex_private_hash * fph)141 bool futex_private_hash_get(struct futex_private_hash *fph)
142 {
143 if (fph->immutable)
144 return true;
145 return rcuref_get(&fph->users);
146 }
147
futex_private_hash_put(struct futex_private_hash * fph)148 void futex_private_hash_put(struct futex_private_hash *fph)
149 {
150 /* Ignore return value, last put is verified via rcuref_is_dead() */
151 if (fph->immutable)
152 return;
153 if (rcuref_put(&fph->users))
154 wake_up_var(fph->mm);
155 }
156
157 /**
158 * futex_hash_get - Get an additional reference for the local hash.
159 * @hb: ptr to the private local hash.
160 *
161 * Obtain an additional reference for the already obtained hash bucket. The
162 * caller must already own an reference.
163 */
futex_hash_get(struct futex_hash_bucket * hb)164 void futex_hash_get(struct futex_hash_bucket *hb)
165 {
166 struct futex_private_hash *fph = hb->priv;
167
168 if (!fph)
169 return;
170 WARN_ON_ONCE(!futex_private_hash_get(fph));
171 }
172
futex_hash_put(struct futex_hash_bucket * hb)173 void futex_hash_put(struct futex_hash_bucket *hb)
174 {
175 struct futex_private_hash *fph = hb->priv;
176
177 if (!fph)
178 return;
179 futex_private_hash_put(fph);
180 }
181
182 static struct futex_hash_bucket *
__futex_hash_private(union futex_key * key,struct futex_private_hash * fph)183 __futex_hash_private(union futex_key *key, struct futex_private_hash *fph)
184 {
185 u32 hash;
186
187 if (!futex_key_is_private(key))
188 return NULL;
189
190 if (!fph)
191 fph = rcu_dereference(key->private.mm->futex_phash);
192 if (!fph || !fph->hash_mask)
193 return NULL;
194
195 hash = jhash2((void *)&key->private.address,
196 sizeof(key->private.address) / 4,
197 key->both.offset);
198 return &fph->queues[hash & fph->hash_mask];
199 }
200
futex_rehash_private(struct futex_private_hash * old,struct futex_private_hash * new)201 static void futex_rehash_private(struct futex_private_hash *old,
202 struct futex_private_hash *new)
203 {
204 struct futex_hash_bucket *hb_old, *hb_new;
205 unsigned int slots = old->hash_mask + 1;
206 unsigned int i;
207
208 for (i = 0; i < slots; i++) {
209 struct futex_q *this, *tmp;
210
211 hb_old = &old->queues[i];
212
213 spin_lock(&hb_old->lock);
214 plist_for_each_entry_safe(this, tmp, &hb_old->chain, list) {
215
216 plist_del(&this->list, &hb_old->chain);
217 futex_hb_waiters_dec(hb_old);
218
219 WARN_ON_ONCE(this->lock_ptr != &hb_old->lock);
220
221 hb_new = __futex_hash(&this->key, new);
222 futex_hb_waiters_inc(hb_new);
223 /*
224 * The new pointer isn't published yet but an already
225 * moved user can be unqueued due to timeout or signal.
226 */
227 spin_lock_nested(&hb_new->lock, SINGLE_DEPTH_NESTING);
228 plist_add(&this->list, &hb_new->chain);
229 this->lock_ptr = &hb_new->lock;
230 spin_unlock(&hb_new->lock);
231 }
232 spin_unlock(&hb_old->lock);
233 }
234 }
235
__futex_pivot_hash(struct mm_struct * mm,struct futex_private_hash * new)236 static bool __futex_pivot_hash(struct mm_struct *mm,
237 struct futex_private_hash *new)
238 {
239 struct futex_private_hash *fph;
240
241 WARN_ON_ONCE(mm->futex_phash_new);
242
243 fph = rcu_dereference_protected(mm->futex_phash,
244 lockdep_is_held(&mm->futex_hash_lock));
245 if (fph) {
246 if (!rcuref_is_dead(&fph->users)) {
247 mm->futex_phash_new = new;
248 return false;
249 }
250
251 futex_rehash_private(fph, new);
252 }
253 rcu_assign_pointer(mm->futex_phash, new);
254 kvfree_rcu(fph, rcu);
255 return true;
256 }
257
futex_pivot_hash(struct mm_struct * mm)258 static void futex_pivot_hash(struct mm_struct *mm)
259 {
260 scoped_guard(mutex, &mm->futex_hash_lock) {
261 struct futex_private_hash *fph;
262
263 fph = mm->futex_phash_new;
264 if (fph) {
265 mm->futex_phash_new = NULL;
266 __futex_pivot_hash(mm, fph);
267 }
268 }
269 }
270
futex_private_hash(void)271 struct futex_private_hash *futex_private_hash(void)
272 {
273 struct mm_struct *mm = current->mm;
274 /*
275 * Ideally we don't loop. If there is a replacement in progress
276 * then a new private hash is already prepared and a reference can't be
277 * obtained once the last user dropped it's.
278 * In that case we block on mm_struct::futex_hash_lock and either have
279 * to perform the replacement or wait while someone else is doing the
280 * job. Eitherway, on the second iteration we acquire a reference on the
281 * new private hash or loop again because a new replacement has been
282 * requested.
283 */
284 again:
285 scoped_guard(rcu) {
286 struct futex_private_hash *fph;
287
288 fph = rcu_dereference(mm->futex_phash);
289 if (!fph)
290 return NULL;
291
292 if (fph->immutable)
293 return fph;
294 if (rcuref_get(&fph->users))
295 return fph;
296 }
297 futex_pivot_hash(mm);
298 goto again;
299 }
300
futex_hash(union futex_key * key)301 struct futex_hash_bucket *futex_hash(union futex_key *key)
302 {
303 struct futex_private_hash *fph;
304 struct futex_hash_bucket *hb;
305
306 again:
307 scoped_guard(rcu) {
308 hb = __futex_hash(key, NULL);
309 fph = hb->priv;
310
311 if (!fph || futex_private_hash_get(fph))
312 return hb;
313 }
314 futex_pivot_hash(key->private.mm);
315 goto again;
316 }
317
318 #else /* !CONFIG_FUTEX_PRIVATE_HASH */
319
320 static struct futex_hash_bucket *
__futex_hash_private(union futex_key * key,struct futex_private_hash * fph)321 __futex_hash_private(union futex_key *key, struct futex_private_hash *fph)
322 {
323 return NULL;
324 }
325
futex_hash(union futex_key * key)326 struct futex_hash_bucket *futex_hash(union futex_key *key)
327 {
328 return __futex_hash(key, NULL);
329 }
330
331 #endif /* CONFIG_FUTEX_PRIVATE_HASH */
332
333 #ifdef CONFIG_FUTEX_MPOL
334
__futex_key_to_node(struct mm_struct * mm,unsigned long addr)335 static int __futex_key_to_node(struct mm_struct *mm, unsigned long addr)
336 {
337 struct vm_area_struct *vma = vma_lookup(mm, addr);
338 struct mempolicy *mpol;
339 int node = FUTEX_NO_NODE;
340
341 if (!vma)
342 return FUTEX_NO_NODE;
343
344 mpol = vma_policy(vma);
345 if (!mpol)
346 return FUTEX_NO_NODE;
347
348 switch (mpol->mode) {
349 case MPOL_PREFERRED:
350 node = first_node(mpol->nodes);
351 break;
352 case MPOL_PREFERRED_MANY:
353 case MPOL_BIND:
354 if (mpol->home_node != NUMA_NO_NODE)
355 node = mpol->home_node;
356 break;
357 default:
358 break;
359 }
360
361 return node;
362 }
363
futex_key_to_node_opt(struct mm_struct * mm,unsigned long addr)364 static int futex_key_to_node_opt(struct mm_struct *mm, unsigned long addr)
365 {
366 int seq, node;
367
368 guard(rcu)();
369
370 if (!mmap_lock_speculate_try_begin(mm, &seq))
371 return -EBUSY;
372
373 node = __futex_key_to_node(mm, addr);
374
375 if (mmap_lock_speculate_retry(mm, seq))
376 return -EAGAIN;
377
378 return node;
379 }
380
futex_mpol(struct mm_struct * mm,unsigned long addr)381 static int futex_mpol(struct mm_struct *mm, unsigned long addr)
382 {
383 int node;
384
385 node = futex_key_to_node_opt(mm, addr);
386 if (node >= FUTEX_NO_NODE)
387 return node;
388
389 guard(mmap_read_lock)(mm);
390 return __futex_key_to_node(mm, addr);
391 }
392
393 #else /* !CONFIG_FUTEX_MPOL */
394
futex_mpol(struct mm_struct * mm,unsigned long addr)395 static int futex_mpol(struct mm_struct *mm, unsigned long addr)
396 {
397 return FUTEX_NO_NODE;
398 }
399
400 #endif /* CONFIG_FUTEX_MPOL */
401
402 /**
403 * __futex_hash - Return the hash bucket
404 * @key: Pointer to the futex key for which the hash is calculated
405 * @fph: Pointer to private hash if known
406 *
407 * We hash on the keys returned from get_futex_key (see below) and return the
408 * corresponding hash bucket.
409 * If the FUTEX is PROCESS_PRIVATE then a per-process hash bucket (from the
410 * private hash) is returned if existing. Otherwise a hash bucket from the
411 * global hash is returned.
412 */
413 static struct futex_hash_bucket *
__futex_hash(union futex_key * key,struct futex_private_hash * fph)414 __futex_hash(union futex_key *key, struct futex_private_hash *fph)
415 {
416 int node = key->both.node;
417 u32 hash;
418
419 if (node == FUTEX_NO_NODE) {
420 struct futex_hash_bucket *hb;
421
422 hb = __futex_hash_private(key, fph);
423 if (hb)
424 return hb;
425 }
426
427 hash = jhash2((u32 *)key,
428 offsetof(typeof(*key), both.offset) / sizeof(u32),
429 key->both.offset);
430
431 if (node == FUTEX_NO_NODE) {
432 /*
433 * In case of !FLAGS_NUMA, use some unused hash bits to pick a
434 * node -- this ensures regular futexes are interleaved across
435 * the nodes and avoids having to allocate multiple
436 * hash-tables.
437 *
438 * NOTE: this isn't perfectly uniform, but it is fast and
439 * handles sparse node masks.
440 */
441 node = (hash >> futex_hashshift) % nr_node_ids;
442 if (!node_possible(node)) {
443 node = find_next_bit_wrap(node_possible_map.bits,
444 nr_node_ids, node);
445 }
446 }
447
448 return &futex_queues[node][hash & futex_hashmask];
449 }
450
451 /**
452 * futex_setup_timer - set up the sleeping hrtimer.
453 * @time: ptr to the given timeout value
454 * @timeout: the hrtimer_sleeper structure to be set up
455 * @flags: futex flags
456 * @range_ns: optional range in ns
457 *
458 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
459 * value given
460 */
461 struct hrtimer_sleeper *
futex_setup_timer(ktime_t * time,struct hrtimer_sleeper * timeout,int flags,u64 range_ns)462 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
463 int flags, u64 range_ns)
464 {
465 if (!time)
466 return NULL;
467
468 hrtimer_setup_sleeper_on_stack(timeout,
469 (flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC,
470 HRTIMER_MODE_ABS);
471 /*
472 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
473 * effectively the same as calling hrtimer_set_expires().
474 */
475 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
476
477 return timeout;
478 }
479
480 /*
481 * Generate a machine wide unique identifier for this inode.
482 *
483 * This relies on u64 not wrapping in the life-time of the machine; which with
484 * 1ns resolution means almost 585 years.
485 *
486 * This further relies on the fact that a well formed program will not unmap
487 * the file while it has a (shared) futex waiting on it. This mapping will have
488 * a file reference which pins the mount and inode.
489 *
490 * If for some reason an inode gets evicted and read back in again, it will get
491 * a new sequence number and will _NOT_ match, even though it is the exact same
492 * file.
493 *
494 * It is important that futex_match() will never have a false-positive, esp.
495 * for PI futexes that can mess up the state. The above argues that false-negatives
496 * are only possible for malformed programs.
497 */
get_inode_sequence_number(struct inode * inode)498 static u64 get_inode_sequence_number(struct inode *inode)
499 {
500 static atomic64_t i_seq;
501 u64 old;
502
503 /* Does the inode already have a sequence number? */
504 old = atomic64_read(&inode->i_sequence);
505 if (likely(old))
506 return old;
507
508 for (;;) {
509 u64 new = atomic64_inc_return(&i_seq);
510 if (WARN_ON_ONCE(!new))
511 continue;
512
513 old = 0;
514 if (!atomic64_try_cmpxchg_relaxed(&inode->i_sequence, &old, new))
515 return old;
516 return new;
517 }
518 }
519
520 /**
521 * get_futex_key() - Get parameters which are the keys for a futex
522 * @uaddr: virtual address of the futex
523 * @flags: FLAGS_*
524 * @key: address where result is stored.
525 * @rw: mapping needs to be read/write (values: FUTEX_READ,
526 * FUTEX_WRITE)
527 *
528 * Return: a negative error code or 0
529 *
530 * The key words are stored in @key on success.
531 *
532 * For shared mappings (when @fshared), the key is:
533 *
534 * ( inode->i_sequence, page offset within mapping, offset_within_page )
535 *
536 * [ also see get_inode_sequence_number() ]
537 *
538 * For private mappings (or when !@fshared), the key is:
539 *
540 * ( current->mm, address, 0 )
541 *
542 * This allows (cross process, where applicable) identification of the futex
543 * without keeping the page pinned for the duration of the FUTEX_WAIT.
544 *
545 * lock_page() might sleep, the caller should not hold a spinlock.
546 */
get_futex_key(u32 __user * uaddr,unsigned int flags,union futex_key * key,enum futex_access rw)547 int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
548 enum futex_access rw)
549 {
550 unsigned long address = (unsigned long)uaddr;
551 struct mm_struct *mm = current->mm;
552 struct page *page;
553 struct folio *folio;
554 struct address_space *mapping;
555 int node, err, size, ro = 0;
556 bool node_updated = false;
557 bool fshared;
558
559 fshared = flags & FLAGS_SHARED;
560 size = futex_size(flags);
561 if (flags & FLAGS_NUMA)
562 size *= 2;
563
564 /*
565 * The futex address must be "naturally" aligned.
566 */
567 key->both.offset = address % PAGE_SIZE;
568 if (unlikely((address % size) != 0))
569 return -EINVAL;
570 address -= key->both.offset;
571
572 if (unlikely(!access_ok(uaddr, size)))
573 return -EFAULT;
574
575 if (unlikely(should_fail_futex(fshared)))
576 return -EFAULT;
577
578 node = FUTEX_NO_NODE;
579
580 if (flags & FLAGS_NUMA) {
581 u32 __user *naddr = (void *)uaddr + size / 2;
582
583 if (futex_get_value(&node, naddr))
584 return -EFAULT;
585
586 if ((node != FUTEX_NO_NODE) &&
587 ((unsigned int)node >= MAX_NUMNODES || !node_possible(node)))
588 return -EINVAL;
589 }
590
591 if (node == FUTEX_NO_NODE && (flags & FLAGS_MPOL)) {
592 node = futex_mpol(mm, address);
593 node_updated = true;
594 }
595
596 if (flags & FLAGS_NUMA) {
597 u32 __user *naddr = (void *)uaddr + size / 2;
598
599 if (node == FUTEX_NO_NODE) {
600 node = numa_node_id();
601 node_updated = true;
602 }
603 if (node_updated && futex_put_value(node, naddr))
604 return -EFAULT;
605 }
606
607 key->both.node = node;
608
609 /*
610 * PROCESS_PRIVATE futexes are fast.
611 * As the mm cannot disappear under us and the 'key' only needs
612 * virtual address, we dont even have to find the underlying vma.
613 * Note : We do have to check 'uaddr' is a valid user address,
614 * but access_ok() should be faster than find_vma()
615 */
616 if (!fshared) {
617 /*
618 * On no-MMU, shared futexes are treated as private, therefore
619 * we must not include the current process in the key. Since
620 * there is only one address space, the address is a unique key
621 * on its own.
622 */
623 if (IS_ENABLED(CONFIG_MMU))
624 key->private.mm = mm;
625 else
626 key->private.mm = NULL;
627
628 key->private.address = address;
629 return 0;
630 }
631
632 again:
633 /* Ignore any VERIFY_READ mapping (futex common case) */
634 if (unlikely(should_fail_futex(true)))
635 return -EFAULT;
636
637 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
638 /*
639 * If write access is not required (eg. FUTEX_WAIT), try
640 * and get read-only access.
641 */
642 if (err == -EFAULT && rw == FUTEX_READ) {
643 err = get_user_pages_fast(address, 1, 0, &page);
644 ro = 1;
645 }
646 if (err < 0)
647 return err;
648 else
649 err = 0;
650
651 /*
652 * The treatment of mapping from this point on is critical. The folio
653 * lock protects many things but in this context the folio lock
654 * stabilizes mapping, prevents inode freeing in the shared
655 * file-backed region case and guards against movement to swap cache.
656 *
657 * Strictly speaking the folio lock is not needed in all cases being
658 * considered here and folio lock forces unnecessarily serialization.
659 * From this point on, mapping will be re-verified if necessary and
660 * folio lock will be acquired only if it is unavoidable
661 *
662 * Mapping checks require the folio so it is looked up now. For
663 * anonymous pages, it does not matter if the folio is split
664 * in the future as the key is based on the address. For
665 * filesystem-backed pages, the precise page is required as the
666 * index of the page determines the key.
667 */
668 folio = page_folio(page);
669 mapping = READ_ONCE(folio->mapping);
670
671 /*
672 * If folio->mapping is NULL, then it cannot be an anonymous
673 * page; but it might be the ZERO_PAGE or in the gate area or
674 * in a special mapping (all cases which we are happy to fail);
675 * or it may have been a good file page when get_user_pages_fast
676 * found it, but truncated or holepunched or subjected to
677 * invalidate_complete_page2 before we got the folio lock (also
678 * cases which we are happy to fail). And we hold a reference,
679 * so refcount care in invalidate_inode_page's remove_mapping
680 * prevents drop_caches from setting mapping to NULL beneath us.
681 *
682 * The case we do have to guard against is when memory pressure made
683 * shmem_writepage move it from filecache to swapcache beneath us:
684 * an unlikely race, but we do need to retry for folio->mapping.
685 */
686 if (unlikely(!mapping)) {
687 int shmem_swizzled;
688
689 /*
690 * Folio lock is required to identify which special case above
691 * applies. If this is really a shmem page then the folio lock
692 * will prevent unexpected transitions.
693 */
694 folio_lock(folio);
695 shmem_swizzled = folio_test_swapcache(folio) || folio->mapping;
696 folio_unlock(folio);
697 folio_put(folio);
698
699 if (shmem_swizzled)
700 goto again;
701
702 return -EFAULT;
703 }
704
705 /*
706 * Private mappings are handled in a simple way.
707 *
708 * If the futex key is stored in anonymous memory, then the associated
709 * object is the mm which is implicitly pinned by the calling process.
710 *
711 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
712 * it's a read-only handle, it's expected that futexes attach to
713 * the object not the particular process.
714 */
715 if (folio_test_anon(folio)) {
716 /*
717 * A RO anonymous page will never change and thus doesn't make
718 * sense for futex operations.
719 */
720 if (unlikely(should_fail_futex(true)) || ro) {
721 err = -EFAULT;
722 goto out;
723 }
724
725 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
726 key->private.mm = mm;
727 key->private.address = address;
728
729 } else {
730 struct inode *inode;
731
732 /*
733 * The associated futex object in this case is the inode and
734 * the folio->mapping must be traversed. Ordinarily this should
735 * be stabilised under folio lock but it's not strictly
736 * necessary in this case as we just want to pin the inode, not
737 * update i_pages or anything like that.
738 *
739 * The RCU read lock is taken as the inode is finally freed
740 * under RCU. If the mapping still matches expectations then the
741 * mapping->host can be safely accessed as being a valid inode.
742 */
743 rcu_read_lock();
744
745 if (READ_ONCE(folio->mapping) != mapping) {
746 rcu_read_unlock();
747 folio_put(folio);
748
749 goto again;
750 }
751
752 inode = READ_ONCE(mapping->host);
753 if (!inode) {
754 rcu_read_unlock();
755 folio_put(folio);
756
757 goto again;
758 }
759
760 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
761 key->shared.i_seq = get_inode_sequence_number(inode);
762 key->shared.pgoff = page_pgoff(folio, page);
763 rcu_read_unlock();
764 }
765
766 out:
767 folio_put(folio);
768 return err;
769 }
770
771 /**
772 * fault_in_user_writeable() - Fault in user address and verify RW access
773 * @uaddr: pointer to faulting user space address
774 *
775 * Slow path to fixup the fault we just took in the atomic write
776 * access to @uaddr.
777 *
778 * We have no generic implementation of a non-destructive write to the
779 * user address. We know that we faulted in the atomic pagefault
780 * disabled section so we can as well avoid the #PF overhead by
781 * calling get_user_pages() right away.
782 */
fault_in_user_writeable(u32 __user * uaddr)783 int fault_in_user_writeable(u32 __user *uaddr)
784 {
785 struct mm_struct *mm = current->mm;
786 int ret;
787
788 mmap_read_lock(mm);
789 ret = fixup_user_fault(mm, (unsigned long)uaddr,
790 FAULT_FLAG_WRITE, NULL);
791 mmap_read_unlock(mm);
792
793 return ret < 0 ? ret : 0;
794 }
795
796 /**
797 * futex_top_waiter() - Return the highest priority waiter on a futex
798 * @hb: the hash bucket the futex_q's reside in
799 * @key: the futex key (to distinguish it from other futex futex_q's)
800 *
801 * Must be called with the hb lock held.
802 */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)803 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
804 {
805 struct futex_q *this;
806
807 plist_for_each_entry(this, &hb->chain, list) {
808 if (futex_match(&this->key, key))
809 return this;
810 }
811 return NULL;
812 }
813
814 /**
815 * wait_for_owner_exiting - Block until the owner has exited
816 * @ret: owner's current futex lock status
817 * @exiting: Pointer to the exiting task
818 *
819 * Caller must hold a refcount on @exiting.
820 */
wait_for_owner_exiting(int ret,struct task_struct * exiting)821 void wait_for_owner_exiting(int ret, struct task_struct *exiting)
822 {
823 if (ret != -EBUSY) {
824 WARN_ON_ONCE(exiting);
825 return;
826 }
827
828 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
829 return;
830
831 mutex_lock(&exiting->futex_exit_mutex);
832 /*
833 * No point in doing state checking here. If the waiter got here
834 * while the task was in exec()->exec_futex_release() then it can
835 * have any FUTEX_STATE_* value when the waiter has acquired the
836 * mutex. OK, if running, EXITING or DEAD if it reached exit()
837 * already. Highly unlikely and not a problem. Just one more round
838 * through the futex maze.
839 */
840 mutex_unlock(&exiting->futex_exit_mutex);
841
842 put_task_struct(exiting);
843 }
844
845 /**
846 * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
847 * @q: The futex_q to unqueue
848 *
849 * The q->lock_ptr must not be NULL and must be held by the caller.
850 */
__futex_unqueue(struct futex_q * q)851 void __futex_unqueue(struct futex_q *q)
852 {
853 struct futex_hash_bucket *hb;
854
855 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
856 return;
857 lockdep_assert_held(q->lock_ptr);
858
859 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
860 plist_del(&q->list, &hb->chain);
861 futex_hb_waiters_dec(hb);
862 }
863
864 /* The key must be already stored in q->key. */
futex_q_lock(struct futex_q * q,struct futex_hash_bucket * hb)865 void futex_q_lock(struct futex_q *q, struct futex_hash_bucket *hb)
866 __acquires(&hb->lock)
867 {
868 /*
869 * Increment the counter before taking the lock so that
870 * a potential waker won't miss a to-be-slept task that is
871 * waiting for the spinlock. This is safe as all futex_q_lock()
872 * users end up calling futex_queue(). Similarly, for housekeeping,
873 * decrement the counter at futex_q_unlock() when some error has
874 * occurred and we don't end up adding the task to the list.
875 */
876 futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
877
878 q->lock_ptr = &hb->lock;
879
880 spin_lock(&hb->lock);
881 }
882
futex_q_unlock(struct futex_hash_bucket * hb)883 void futex_q_unlock(struct futex_hash_bucket *hb)
884 __releases(&hb->lock)
885 {
886 futex_hb_waiters_dec(hb);
887 spin_unlock(&hb->lock);
888 }
889
__futex_queue(struct futex_q * q,struct futex_hash_bucket * hb,struct task_struct * task)890 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb,
891 struct task_struct *task)
892 {
893 int prio;
894
895 /*
896 * The priority used to register this element is
897 * - either the real thread-priority for the real-time threads
898 * (i.e. threads with a priority lower than MAX_RT_PRIO)
899 * - or MAX_RT_PRIO for non-RT threads.
900 * Thus, all RT-threads are woken first in priority order, and
901 * the others are woken last, in FIFO order.
902 */
903 prio = min(current->normal_prio, MAX_RT_PRIO);
904
905 plist_node_init(&q->list, prio);
906 plist_add(&q->list, &hb->chain);
907 q->task = task;
908 }
909
910 /**
911 * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
912 * @q: The futex_q to unqueue
913 *
914 * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
915 * be paired with exactly one earlier call to futex_queue().
916 *
917 * Return:
918 * - 1 - if the futex_q was still queued (and we removed unqueued it);
919 * - 0 - if the futex_q was already removed by the waking thread
920 */
futex_unqueue(struct futex_q * q)921 int futex_unqueue(struct futex_q *q)
922 {
923 spinlock_t *lock_ptr;
924 int ret = 0;
925
926 /* RCU so lock_ptr is not going away during locking. */
927 guard(rcu)();
928 /* In the common case we don't take the spinlock, which is nice. */
929 retry:
930 /*
931 * q->lock_ptr can change between this read and the following spin_lock.
932 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
933 * optimizing lock_ptr out of the logic below.
934 */
935 lock_ptr = READ_ONCE(q->lock_ptr);
936 if (lock_ptr != NULL) {
937 spin_lock(lock_ptr);
938 /*
939 * q->lock_ptr can change between reading it and
940 * spin_lock(), causing us to take the wrong lock. This
941 * corrects the race condition.
942 *
943 * Reasoning goes like this: if we have the wrong lock,
944 * q->lock_ptr must have changed (maybe several times)
945 * between reading it and the spin_lock(). It can
946 * change again after the spin_lock() but only if it was
947 * already changed before the spin_lock(). It cannot,
948 * however, change back to the original value. Therefore
949 * we can detect whether we acquired the correct lock.
950 */
951 if (unlikely(lock_ptr != q->lock_ptr)) {
952 spin_unlock(lock_ptr);
953 goto retry;
954 }
955 __futex_unqueue(q);
956
957 BUG_ON(q->pi_state);
958
959 spin_unlock(lock_ptr);
960 ret = 1;
961 }
962
963 return ret;
964 }
965
futex_q_lockptr_lock(struct futex_q * q)966 void futex_q_lockptr_lock(struct futex_q *q)
967 {
968 spinlock_t *lock_ptr;
969
970 /*
971 * See futex_unqueue() why lock_ptr can change.
972 */
973 guard(rcu)();
974 retry:
975 lock_ptr = READ_ONCE(q->lock_ptr);
976 spin_lock(lock_ptr);
977
978 if (unlikely(lock_ptr != q->lock_ptr)) {
979 spin_unlock(lock_ptr);
980 goto retry;
981 }
982 }
983
984 /*
985 * PI futexes can not be requeued and must remove themselves from the hash
986 * bucket. The hash bucket lock (i.e. lock_ptr) is held.
987 */
futex_unqueue_pi(struct futex_q * q)988 void futex_unqueue_pi(struct futex_q *q)
989 {
990 /*
991 * If the lock was not acquired (due to timeout or signal) then the
992 * rt_waiter is removed before futex_q is. If this is observed by
993 * an unlocker after dropping the rtmutex wait lock and before
994 * acquiring the hash bucket lock, then the unlocker dequeues the
995 * futex_q from the hash bucket list to guarantee consistent state
996 * vs. userspace. Therefore the dequeue here must be conditional.
997 */
998 if (!plist_node_empty(&q->list))
999 __futex_unqueue(q);
1000
1001 BUG_ON(!q->pi_state);
1002 put_pi_state(q->pi_state);
1003 q->pi_state = NULL;
1004 }
1005
1006 /* Constants for the pending_op argument of handle_futex_death */
1007 #define HANDLE_DEATH_PENDING true
1008 #define HANDLE_DEATH_LIST false
1009
1010 /*
1011 * Process a futex-list entry, check whether it's owned by the
1012 * dying task, and do notification if so:
1013 */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,bool pi,bool pending_op)1014 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
1015 bool pi, bool pending_op)
1016 {
1017 u32 uval, nval, mval;
1018 pid_t owner;
1019 int err;
1020
1021 /* Futex address must be 32bit aligned */
1022 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
1023 return -1;
1024
1025 retry:
1026 if (get_user(uval, uaddr))
1027 return -1;
1028
1029 /*
1030 * Special case for regular (non PI) futexes. The unlock path in
1031 * user space has two race scenarios:
1032 *
1033 * 1. The unlock path releases the user space futex value and
1034 * before it can execute the futex() syscall to wake up
1035 * waiters it is killed.
1036 *
1037 * 2. A woken up waiter is killed before it can acquire the
1038 * futex in user space.
1039 *
1040 * In the second case, the wake up notification could be generated
1041 * by the unlock path in user space after setting the futex value
1042 * to zero or by the kernel after setting the OWNER_DIED bit below.
1043 *
1044 * In both cases the TID validation below prevents a wakeup of
1045 * potential waiters which can cause these waiters to block
1046 * forever.
1047 *
1048 * In both cases the following conditions are met:
1049 *
1050 * 1) task->robust_list->list_op_pending != NULL
1051 * @pending_op == true
1052 * 2) The owner part of user space futex value == 0
1053 * 3) Regular futex: @pi == false
1054 *
1055 * If these conditions are met, it is safe to attempt waking up a
1056 * potential waiter without touching the user space futex value and
1057 * trying to set the OWNER_DIED bit. If the futex value is zero,
1058 * the rest of the user space mutex state is consistent, so a woken
1059 * waiter will just take over the uncontended futex. Setting the
1060 * OWNER_DIED bit would create inconsistent state and malfunction
1061 * of the user space owner died handling. Otherwise, the OWNER_DIED
1062 * bit is already set, and the woken waiter is expected to deal with
1063 * this.
1064 */
1065 owner = uval & FUTEX_TID_MASK;
1066
1067 if (pending_op && !pi && !owner) {
1068 futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
1069 FUTEX_BITSET_MATCH_ANY);
1070 return 0;
1071 }
1072
1073 if (owner != task_pid_vnr(curr))
1074 return 0;
1075
1076 /*
1077 * Ok, this dying thread is truly holding a futex
1078 * of interest. Set the OWNER_DIED bit atomically
1079 * via cmpxchg, and if the value had FUTEX_WAITERS
1080 * set, wake up a waiter (if any). (We have to do a
1081 * futex_wake() even if OWNER_DIED is already set -
1082 * to handle the rare but possible case of recursive
1083 * thread-death.) The rest of the cleanup is done in
1084 * userspace.
1085 */
1086 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1087
1088 /*
1089 * We are not holding a lock here, but we want to have
1090 * the pagefault_disable/enable() protection because
1091 * we want to handle the fault gracefully. If the
1092 * access fails we try to fault in the futex with R/W
1093 * verification via get_user_pages. get_user() above
1094 * does not guarantee R/W access. If that fails we
1095 * give up and leave the futex locked.
1096 */
1097 if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
1098 switch (err) {
1099 case -EFAULT:
1100 if (fault_in_user_writeable(uaddr))
1101 return -1;
1102 goto retry;
1103
1104 case -EAGAIN:
1105 cond_resched();
1106 goto retry;
1107
1108 default:
1109 WARN_ON_ONCE(1);
1110 return err;
1111 }
1112 }
1113
1114 if (nval != uval)
1115 goto retry;
1116
1117 /*
1118 * Wake robust non-PI futexes here. The wakeup of
1119 * PI futexes happens in exit_pi_state():
1120 */
1121 if (!pi && (uval & FUTEX_WAITERS)) {
1122 futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
1123 FUTEX_BITSET_MATCH_ANY);
1124 }
1125
1126 return 0;
1127 }
1128
1129 /*
1130 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1131 */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)1132 static inline int fetch_robust_entry(struct robust_list __user **entry,
1133 struct robust_list __user * __user *head,
1134 unsigned int *pi)
1135 {
1136 unsigned long uentry;
1137
1138 if (get_user(uentry, (unsigned long __user *)head))
1139 return -EFAULT;
1140
1141 *entry = (void __user *)(uentry & ~1UL);
1142 *pi = uentry & 1;
1143
1144 return 0;
1145 }
1146
1147 /*
1148 * Walk curr->robust_list (very carefully, it's a userspace list!)
1149 * and mark any locks found there dead, and notify any waiters.
1150 *
1151 * We silently return on any sign of list-walking problem.
1152 */
exit_robust_list(struct task_struct * curr)1153 static void exit_robust_list(struct task_struct *curr)
1154 {
1155 struct robust_list_head __user *head = curr->robust_list;
1156 struct robust_list __user *entry, *next_entry, *pending;
1157 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1158 unsigned int next_pi;
1159 unsigned long futex_offset;
1160 int rc;
1161
1162 /*
1163 * Fetch the list head (which was registered earlier, via
1164 * sys_set_robust_list()):
1165 */
1166 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1167 return;
1168 /*
1169 * Fetch the relative futex offset:
1170 */
1171 if (get_user(futex_offset, &head->futex_offset))
1172 return;
1173 /*
1174 * Fetch any possibly pending lock-add first, and handle it
1175 * if it exists:
1176 */
1177 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1178 return;
1179
1180 next_entry = NULL; /* avoid warning with gcc */
1181 while (entry != &head->list) {
1182 /*
1183 * Fetch the next entry in the list before calling
1184 * handle_futex_death:
1185 */
1186 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1187 /*
1188 * A pending lock might already be on the list, so
1189 * don't process it twice:
1190 */
1191 if (entry != pending) {
1192 if (handle_futex_death((void __user *)entry + futex_offset,
1193 curr, pi, HANDLE_DEATH_LIST))
1194 return;
1195 }
1196 if (rc)
1197 return;
1198 entry = next_entry;
1199 pi = next_pi;
1200 /*
1201 * Avoid excessively long or circular lists:
1202 */
1203 if (!--limit)
1204 break;
1205
1206 cond_resched();
1207 }
1208
1209 if (pending) {
1210 handle_futex_death((void __user *)pending + futex_offset,
1211 curr, pip, HANDLE_DEATH_PENDING);
1212 }
1213 }
1214
1215 #ifdef CONFIG_COMPAT
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)1216 static void __user *futex_uaddr(struct robust_list __user *entry,
1217 compat_long_t futex_offset)
1218 {
1219 compat_uptr_t base = ptr_to_compat(entry);
1220 void __user *uaddr = compat_ptr(base + futex_offset);
1221
1222 return uaddr;
1223 }
1224
1225 /*
1226 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1227 */
1228 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)1229 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
1230 compat_uptr_t __user *head, unsigned int *pi)
1231 {
1232 if (get_user(*uentry, head))
1233 return -EFAULT;
1234
1235 *entry = compat_ptr((*uentry) & ~1);
1236 *pi = (unsigned int)(*uentry) & 1;
1237
1238 return 0;
1239 }
1240
1241 /*
1242 * Walk curr->robust_list (very carefully, it's a userspace list!)
1243 * and mark any locks found there dead, and notify any waiters.
1244 *
1245 * We silently return on any sign of list-walking problem.
1246 */
compat_exit_robust_list(struct task_struct * curr)1247 static void compat_exit_robust_list(struct task_struct *curr)
1248 {
1249 struct compat_robust_list_head __user *head = curr->compat_robust_list;
1250 struct robust_list __user *entry, *next_entry, *pending;
1251 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1252 unsigned int next_pi;
1253 compat_uptr_t uentry, next_uentry, upending;
1254 compat_long_t futex_offset;
1255 int rc;
1256
1257 /*
1258 * Fetch the list head (which was registered earlier, via
1259 * sys_set_robust_list()):
1260 */
1261 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
1262 return;
1263 /*
1264 * Fetch the relative futex offset:
1265 */
1266 if (get_user(futex_offset, &head->futex_offset))
1267 return;
1268 /*
1269 * Fetch any possibly pending lock-add first, and handle it
1270 * if it exists:
1271 */
1272 if (compat_fetch_robust_entry(&upending, &pending,
1273 &head->list_op_pending, &pip))
1274 return;
1275
1276 next_entry = NULL; /* avoid warning with gcc */
1277 while (entry != (struct robust_list __user *) &head->list) {
1278 /*
1279 * Fetch the next entry in the list before calling
1280 * handle_futex_death:
1281 */
1282 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
1283 (compat_uptr_t __user *)&entry->next, &next_pi);
1284 /*
1285 * A pending lock might already be on the list, so
1286 * dont process it twice:
1287 */
1288 if (entry != pending) {
1289 void __user *uaddr = futex_uaddr(entry, futex_offset);
1290
1291 if (handle_futex_death(uaddr, curr, pi,
1292 HANDLE_DEATH_LIST))
1293 return;
1294 }
1295 if (rc)
1296 return;
1297 uentry = next_uentry;
1298 entry = next_entry;
1299 pi = next_pi;
1300 /*
1301 * Avoid excessively long or circular lists:
1302 */
1303 if (!--limit)
1304 break;
1305
1306 cond_resched();
1307 }
1308 if (pending) {
1309 void __user *uaddr = futex_uaddr(pending, futex_offset);
1310
1311 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
1312 }
1313 }
1314 #endif
1315
1316 #ifdef CONFIG_FUTEX_PI
1317
1318 /*
1319 * This task is holding PI mutexes at exit time => bad.
1320 * Kernel cleans up PI-state, but userspace is likely hosed.
1321 * (Robust-futex cleanup is separate and might save the day for userspace.)
1322 */
exit_pi_state_list(struct task_struct * curr)1323 static void exit_pi_state_list(struct task_struct *curr)
1324 {
1325 struct list_head *next, *head = &curr->pi_state_list;
1326 struct futex_pi_state *pi_state;
1327 union futex_key key = FUTEX_KEY_INIT;
1328
1329 /*
1330 * The mutex mm_struct::futex_hash_lock might be acquired.
1331 */
1332 might_sleep();
1333 /*
1334 * Ensure the hash remains stable (no resize) during the while loop
1335 * below. The hb pointer is acquired under the pi_lock so we can't block
1336 * on the mutex.
1337 */
1338 WARN_ON(curr != current);
1339 guard(private_hash)();
1340 /*
1341 * We are a ZOMBIE and nobody can enqueue itself on
1342 * pi_state_list anymore, but we have to be careful
1343 * versus waiters unqueueing themselves:
1344 */
1345 raw_spin_lock_irq(&curr->pi_lock);
1346 while (!list_empty(head)) {
1347 next = head->next;
1348 pi_state = list_entry(next, struct futex_pi_state, list);
1349 key = pi_state->key;
1350 if (1) {
1351 CLASS(hb, hb)(&key);
1352
1353 /*
1354 * We can race against put_pi_state() removing itself from the
1355 * list (a waiter going away). put_pi_state() will first
1356 * decrement the reference count and then modify the list, so
1357 * its possible to see the list entry but fail this reference
1358 * acquire.
1359 *
1360 * In that case; drop the locks to let put_pi_state() make
1361 * progress and retry the loop.
1362 */
1363 if (!refcount_inc_not_zero(&pi_state->refcount)) {
1364 raw_spin_unlock_irq(&curr->pi_lock);
1365 cpu_relax();
1366 raw_spin_lock_irq(&curr->pi_lock);
1367 continue;
1368 }
1369 raw_spin_unlock_irq(&curr->pi_lock);
1370
1371 spin_lock(&hb->lock);
1372 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1373 raw_spin_lock(&curr->pi_lock);
1374 /*
1375 * We dropped the pi-lock, so re-check whether this
1376 * task still owns the PI-state:
1377 */
1378 if (head->next != next) {
1379 /* retain curr->pi_lock for the loop invariant */
1380 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1381 spin_unlock(&hb->lock);
1382 put_pi_state(pi_state);
1383 continue;
1384 }
1385
1386 WARN_ON(pi_state->owner != curr);
1387 WARN_ON(list_empty(&pi_state->list));
1388 list_del_init(&pi_state->list);
1389 pi_state->owner = NULL;
1390
1391 raw_spin_unlock(&curr->pi_lock);
1392 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1393 spin_unlock(&hb->lock);
1394 }
1395
1396 rt_mutex_futex_unlock(&pi_state->pi_mutex);
1397 put_pi_state(pi_state);
1398
1399 raw_spin_lock_irq(&curr->pi_lock);
1400 }
1401 raw_spin_unlock_irq(&curr->pi_lock);
1402 }
1403 #else
exit_pi_state_list(struct task_struct * curr)1404 static inline void exit_pi_state_list(struct task_struct *curr) { }
1405 #endif
1406
futex_cleanup(struct task_struct * tsk)1407 static void futex_cleanup(struct task_struct *tsk)
1408 {
1409 if (unlikely(tsk->robust_list)) {
1410 exit_robust_list(tsk);
1411 tsk->robust_list = NULL;
1412 }
1413
1414 #ifdef CONFIG_COMPAT
1415 if (unlikely(tsk->compat_robust_list)) {
1416 compat_exit_robust_list(tsk);
1417 tsk->compat_robust_list = NULL;
1418 }
1419 #endif
1420
1421 if (unlikely(!list_empty(&tsk->pi_state_list)))
1422 exit_pi_state_list(tsk);
1423 }
1424
1425 /**
1426 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1427 * @tsk: task to set the state on
1428 *
1429 * Set the futex exit state of the task lockless. The futex waiter code
1430 * observes that state when a task is exiting and loops until the task has
1431 * actually finished the futex cleanup. The worst case for this is that the
1432 * waiter runs through the wait loop until the state becomes visible.
1433 *
1434 * This is called from the recursive fault handling path in make_task_dead().
1435 *
1436 * This is best effort. Either the futex exit code has run already or
1437 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1438 * take it over. If not, the problem is pushed back to user space. If the
1439 * futex exit code did not run yet, then an already queued waiter might
1440 * block forever, but there is nothing which can be done about that.
1441 */
futex_exit_recursive(struct task_struct * tsk)1442 void futex_exit_recursive(struct task_struct *tsk)
1443 {
1444 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1445 if (tsk->futex_state == FUTEX_STATE_EXITING)
1446 mutex_unlock(&tsk->futex_exit_mutex);
1447 tsk->futex_state = FUTEX_STATE_DEAD;
1448 }
1449
futex_cleanup_begin(struct task_struct * tsk)1450 static void futex_cleanup_begin(struct task_struct *tsk)
1451 {
1452 /*
1453 * Prevent various race issues against a concurrent incoming waiter
1454 * including live locks by forcing the waiter to block on
1455 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1456 * attach_to_pi_owner().
1457 */
1458 mutex_lock(&tsk->futex_exit_mutex);
1459
1460 /*
1461 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1462 *
1463 * This ensures that all subsequent checks of tsk->futex_state in
1464 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1465 * tsk->pi_lock held.
1466 *
1467 * It guarantees also that a pi_state which was queued right before
1468 * the state change under tsk->pi_lock by a concurrent waiter must
1469 * be observed in exit_pi_state_list().
1470 */
1471 raw_spin_lock_irq(&tsk->pi_lock);
1472 tsk->futex_state = FUTEX_STATE_EXITING;
1473 raw_spin_unlock_irq(&tsk->pi_lock);
1474 }
1475
futex_cleanup_end(struct task_struct * tsk,int state)1476 static void futex_cleanup_end(struct task_struct *tsk, int state)
1477 {
1478 /*
1479 * Lockless store. The only side effect is that an observer might
1480 * take another loop until it becomes visible.
1481 */
1482 tsk->futex_state = state;
1483 /*
1484 * Drop the exit protection. This unblocks waiters which observed
1485 * FUTEX_STATE_EXITING to reevaluate the state.
1486 */
1487 mutex_unlock(&tsk->futex_exit_mutex);
1488 }
1489
futex_exec_release(struct task_struct * tsk)1490 void futex_exec_release(struct task_struct *tsk)
1491 {
1492 /*
1493 * The state handling is done for consistency, but in the case of
1494 * exec() there is no way to prevent further damage as the PID stays
1495 * the same. But for the unlikely and arguably buggy case that a
1496 * futex is held on exec(), this provides at least as much state
1497 * consistency protection which is possible.
1498 */
1499 futex_cleanup_begin(tsk);
1500 futex_cleanup(tsk);
1501 /*
1502 * Reset the state to FUTEX_STATE_OK. The task is alive and about
1503 * exec a new binary.
1504 */
1505 futex_cleanup_end(tsk, FUTEX_STATE_OK);
1506 }
1507
futex_exit_release(struct task_struct * tsk)1508 void futex_exit_release(struct task_struct *tsk)
1509 {
1510 futex_cleanup_begin(tsk);
1511 futex_cleanup(tsk);
1512 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1513 }
1514
futex_hash_bucket_init(struct futex_hash_bucket * fhb,struct futex_private_hash * fph)1515 static void futex_hash_bucket_init(struct futex_hash_bucket *fhb,
1516 struct futex_private_hash *fph)
1517 {
1518 #ifdef CONFIG_FUTEX_PRIVATE_HASH
1519 fhb->priv = fph;
1520 #endif
1521 atomic_set(&fhb->waiters, 0);
1522 plist_head_init(&fhb->chain);
1523 spin_lock_init(&fhb->lock);
1524 }
1525
1526 #define FH_CUSTOM 0x01
1527 #define FH_IMMUTABLE 0x02
1528
1529 #ifdef CONFIG_FUTEX_PRIVATE_HASH
futex_hash_free(struct mm_struct * mm)1530 void futex_hash_free(struct mm_struct *mm)
1531 {
1532 struct futex_private_hash *fph;
1533
1534 kvfree(mm->futex_phash_new);
1535 fph = rcu_dereference_raw(mm->futex_phash);
1536 if (fph) {
1537 WARN_ON_ONCE(rcuref_read(&fph->users) > 1);
1538 kvfree(fph);
1539 }
1540 }
1541
futex_pivot_pending(struct mm_struct * mm)1542 static bool futex_pivot_pending(struct mm_struct *mm)
1543 {
1544 struct futex_private_hash *fph;
1545
1546 guard(rcu)();
1547
1548 if (!mm->futex_phash_new)
1549 return true;
1550
1551 fph = rcu_dereference(mm->futex_phash);
1552 return rcuref_is_dead(&fph->users);
1553 }
1554
futex_hash_less(struct futex_private_hash * a,struct futex_private_hash * b)1555 static bool futex_hash_less(struct futex_private_hash *a,
1556 struct futex_private_hash *b)
1557 {
1558 /* user provided always wins */
1559 if (!a->custom && b->custom)
1560 return true;
1561 if (a->custom && !b->custom)
1562 return false;
1563
1564 /* zero-sized hash wins */
1565 if (!b->hash_mask)
1566 return true;
1567 if (!a->hash_mask)
1568 return false;
1569
1570 /* keep the biggest */
1571 if (a->hash_mask < b->hash_mask)
1572 return true;
1573 if (a->hash_mask > b->hash_mask)
1574 return false;
1575
1576 return false; /* equal */
1577 }
1578
futex_hash_allocate(unsigned int hash_slots,unsigned int flags)1579 static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags)
1580 {
1581 struct mm_struct *mm = current->mm;
1582 struct futex_private_hash *fph;
1583 bool custom = flags & FH_CUSTOM;
1584 int i;
1585
1586 if (hash_slots && (hash_slots == 1 || !is_power_of_2(hash_slots)))
1587 return -EINVAL;
1588
1589 /*
1590 * Once we've disabled the global hash there is no way back.
1591 */
1592 scoped_guard(rcu) {
1593 fph = rcu_dereference(mm->futex_phash);
1594 if (fph && (!fph->hash_mask || fph->immutable)) {
1595 if (custom)
1596 return -EBUSY;
1597 return 0;
1598 }
1599 }
1600
1601 fph = kvzalloc(struct_size(fph, queues, hash_slots), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1602 if (!fph)
1603 return -ENOMEM;
1604
1605 rcuref_init(&fph->users, 1);
1606 fph->hash_mask = hash_slots ? hash_slots - 1 : 0;
1607 fph->custom = custom;
1608 fph->immutable = !!(flags & FH_IMMUTABLE);
1609 fph->mm = mm;
1610
1611 for (i = 0; i < hash_slots; i++)
1612 futex_hash_bucket_init(&fph->queues[i], fph);
1613
1614 if (custom) {
1615 /*
1616 * Only let prctl() wait / retry; don't unduly delay clone().
1617 */
1618 again:
1619 wait_var_event(mm, futex_pivot_pending(mm));
1620 }
1621
1622 scoped_guard(mutex, &mm->futex_hash_lock) {
1623 struct futex_private_hash *free __free(kvfree) = NULL;
1624 struct futex_private_hash *cur, *new;
1625
1626 cur = rcu_dereference_protected(mm->futex_phash,
1627 lockdep_is_held(&mm->futex_hash_lock));
1628 new = mm->futex_phash_new;
1629 mm->futex_phash_new = NULL;
1630
1631 if (fph) {
1632 if (cur && (!cur->hash_mask || cur->immutable)) {
1633 /*
1634 * If two threads simultaneously request the global
1635 * hash then the first one performs the switch,
1636 * the second one returns here.
1637 */
1638 free = fph;
1639 mm->futex_phash_new = new;
1640 return -EBUSY;
1641 }
1642 if (cur && !new) {
1643 /*
1644 * If we have an existing hash, but do not yet have
1645 * allocated a replacement hash, drop the initial
1646 * reference on the existing hash.
1647 */
1648 futex_private_hash_put(cur);
1649 }
1650
1651 if (new) {
1652 /*
1653 * Two updates raced; throw out the lesser one.
1654 */
1655 if (futex_hash_less(new, fph)) {
1656 free = new;
1657 new = fph;
1658 } else {
1659 free = fph;
1660 }
1661 } else {
1662 new = fph;
1663 }
1664 fph = NULL;
1665 }
1666
1667 if (new) {
1668 /*
1669 * Will set mm->futex_phash_new on failure;
1670 * futex_private_hash_get() will try again.
1671 */
1672 if (!__futex_pivot_hash(mm, new) && custom)
1673 goto again;
1674 }
1675 }
1676 return 0;
1677 }
1678
futex_hash_allocate_default(void)1679 int futex_hash_allocate_default(void)
1680 {
1681 unsigned int threads, buckets, current_buckets = 0;
1682 struct futex_private_hash *fph;
1683
1684 if (!current->mm)
1685 return 0;
1686
1687 scoped_guard(rcu) {
1688 threads = min_t(unsigned int,
1689 get_nr_threads(current),
1690 num_online_cpus());
1691
1692 fph = rcu_dereference(current->mm->futex_phash);
1693 if (fph) {
1694 if (fph->custom)
1695 return 0;
1696
1697 current_buckets = fph->hash_mask + 1;
1698 }
1699 }
1700
1701 /*
1702 * The default allocation will remain within
1703 * 16 <= threads * 4 <= global hash size
1704 */
1705 buckets = roundup_pow_of_two(4 * threads);
1706 buckets = clamp(buckets, 16, futex_hashmask + 1);
1707
1708 if (current_buckets >= buckets)
1709 return 0;
1710
1711 return futex_hash_allocate(buckets, 0);
1712 }
1713
futex_hash_get_slots(void)1714 static int futex_hash_get_slots(void)
1715 {
1716 struct futex_private_hash *fph;
1717
1718 guard(rcu)();
1719 fph = rcu_dereference(current->mm->futex_phash);
1720 if (fph && fph->hash_mask)
1721 return fph->hash_mask + 1;
1722 return 0;
1723 }
1724
futex_hash_get_immutable(void)1725 static int futex_hash_get_immutable(void)
1726 {
1727 struct futex_private_hash *fph;
1728
1729 guard(rcu)();
1730 fph = rcu_dereference(current->mm->futex_phash);
1731 if (fph && fph->immutable)
1732 return 1;
1733 if (fph && !fph->hash_mask)
1734 return 1;
1735 return 0;
1736 }
1737
1738 #else
1739
futex_hash_allocate(unsigned int hash_slots,unsigned int flags)1740 static int futex_hash_allocate(unsigned int hash_slots, unsigned int flags)
1741 {
1742 return -EINVAL;
1743 }
1744
futex_hash_get_slots(void)1745 static int futex_hash_get_slots(void)
1746 {
1747 return 0;
1748 }
1749
futex_hash_get_immutable(void)1750 static int futex_hash_get_immutable(void)
1751 {
1752 return 0;
1753 }
1754 #endif
1755
futex_hash_prctl(unsigned long arg2,unsigned long arg3,unsigned long arg4)1756 int futex_hash_prctl(unsigned long arg2, unsigned long arg3, unsigned long arg4)
1757 {
1758 unsigned int flags = FH_CUSTOM;
1759 int ret;
1760
1761 switch (arg2) {
1762 case PR_FUTEX_HASH_SET_SLOTS:
1763 if (arg4 & ~FH_FLAG_IMMUTABLE)
1764 return -EINVAL;
1765 if (arg4 & FH_FLAG_IMMUTABLE)
1766 flags |= FH_IMMUTABLE;
1767 ret = futex_hash_allocate(arg3, flags);
1768 break;
1769
1770 case PR_FUTEX_HASH_GET_SLOTS:
1771 ret = futex_hash_get_slots();
1772 break;
1773
1774 case PR_FUTEX_HASH_GET_IMMUTABLE:
1775 ret = futex_hash_get_immutable();
1776 break;
1777
1778 default:
1779 ret = -EINVAL;
1780 break;
1781 }
1782 return ret;
1783 }
1784
futex_init(void)1785 static int __init futex_init(void)
1786 {
1787 unsigned long hashsize, i;
1788 unsigned int order, n;
1789 unsigned long size;
1790
1791 #ifdef CONFIG_BASE_SMALL
1792 hashsize = 16;
1793 #else
1794 hashsize = 256 * num_possible_cpus();
1795 hashsize /= num_possible_nodes();
1796 hashsize = max(4, hashsize);
1797 hashsize = roundup_pow_of_two(hashsize);
1798 #endif
1799 futex_hashshift = ilog2(hashsize);
1800 size = sizeof(struct futex_hash_bucket) * hashsize;
1801 order = get_order(size);
1802
1803 for_each_node(n) {
1804 struct futex_hash_bucket *table;
1805
1806 if (order > MAX_PAGE_ORDER)
1807 table = vmalloc_huge_node(size, GFP_KERNEL, n);
1808 else
1809 table = alloc_pages_exact_nid(n, size, GFP_KERNEL);
1810
1811 BUG_ON(!table);
1812
1813 for (i = 0; i < hashsize; i++)
1814 futex_hash_bucket_init(&table[i], NULL);
1815
1816 futex_queues[n] = table;
1817 }
1818
1819 futex_hashmask = hashsize - 1;
1820 pr_info("futex hash table entries: %lu (%lu bytes on %d NUMA nodes, total %lu KiB, %s).\n",
1821 hashsize, size, num_possible_nodes(), size * num_possible_nodes() / 1024,
1822 order > MAX_PAGE_ORDER ? "vmalloc" : "linear");
1823 return 0;
1824 }
1825 core_initcall(futex_init);
1826