1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 3 #include <linux/bpf.h> 4 #include <linux/crash_dump.h> 5 #include <linux/etherdevice.h> 6 #include <linux/ethtool.h> 7 #include <linux/filter.h> 8 #include <linux/idr.h> 9 #include <linux/if_vlan.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/pci.h> 13 #include <linux/rtnetlink.h> 14 #include <linux/inetdevice.h> 15 16 #include "funeth.h" 17 #include "funeth_devlink.h" 18 #include "funeth_ktls.h" 19 #include "fun_port.h" 20 #include "fun_queue.h" 21 #include "funeth_txrx.h" 22 23 #define ADMIN_SQ_DEPTH 32 24 #define ADMIN_CQ_DEPTH 64 25 #define ADMIN_RQ_DEPTH 16 26 27 /* Default number of Tx/Rx queues. */ 28 #define FUN_DFLT_QUEUES 16U 29 30 enum { 31 FUN_SERV_RES_CHANGE = FUN_SERV_FIRST_AVAIL, 32 FUN_SERV_DEL_PORTS, 33 }; 34 35 static const struct pci_device_id funeth_id_table[] = { 36 { PCI_VDEVICE(FUNGIBLE, 0x0101) }, 37 { PCI_VDEVICE(FUNGIBLE, 0x0181) }, 38 { 0, } 39 }; 40 41 /* Issue a port write admin command with @n key/value pairs. */ 42 static int fun_port_write_cmds(struct funeth_priv *fp, unsigned int n, 43 const int *keys, const u64 *data) 44 { 45 unsigned int cmd_size, i; 46 union { 47 struct fun_admin_port_req req; 48 struct fun_admin_port_rsp rsp; 49 u8 v[ADMIN_SQE_SIZE]; 50 } cmd; 51 52 cmd_size = offsetof(struct fun_admin_port_req, u.write.write48) + 53 n * sizeof(struct fun_admin_write48_req); 54 if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN) 55 return -EINVAL; 56 57 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, 58 cmd_size); 59 cmd.req.u.write = 60 FUN_ADMIN_PORT_WRITE_REQ_INIT(FUN_ADMIN_SUBOP_WRITE, 0, 61 fp->netdev->dev_port); 62 for (i = 0; i < n; i++) 63 cmd.req.u.write.write48[i] = 64 FUN_ADMIN_WRITE48_REQ_INIT(keys[i], data[i]); 65 66 return fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, 67 &cmd.rsp, cmd_size, 0); 68 } 69 70 int fun_port_write_cmd(struct funeth_priv *fp, int key, u64 data) 71 { 72 return fun_port_write_cmds(fp, 1, &key, &data); 73 } 74 75 /* Issue a port read admin command with @n key/value pairs. */ 76 static int fun_port_read_cmds(struct funeth_priv *fp, unsigned int n, 77 const int *keys, u64 *data) 78 { 79 const struct fun_admin_read48_rsp *r48rsp; 80 unsigned int cmd_size, i; 81 int rc; 82 union { 83 struct fun_admin_port_req req; 84 struct fun_admin_port_rsp rsp; 85 u8 v[ADMIN_SQE_SIZE]; 86 } cmd; 87 88 cmd_size = offsetof(struct fun_admin_port_req, u.read.read48) + 89 n * sizeof(struct fun_admin_read48_req); 90 if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN) 91 return -EINVAL; 92 93 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, 94 cmd_size); 95 cmd.req.u.read = 96 FUN_ADMIN_PORT_READ_REQ_INIT(FUN_ADMIN_SUBOP_READ, 0, 97 fp->netdev->dev_port); 98 for (i = 0; i < n; i++) 99 cmd.req.u.read.read48[i] = FUN_ADMIN_READ48_REQ_INIT(keys[i]); 100 101 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, 102 &cmd.rsp, cmd_size, 0); 103 if (rc) 104 return rc; 105 106 for (r48rsp = cmd.rsp.u.read.read48, i = 0; i < n; i++, r48rsp++) { 107 data[i] = FUN_ADMIN_READ48_RSP_DATA_G(r48rsp->key_to_data); 108 dev_dbg(fp->fdev->dev, 109 "port_read_rsp lport=%u (key_to_data=0x%llx) key=%d data:%lld retval:%lld", 110 fp->lport, r48rsp->key_to_data, keys[i], data[i], 111 FUN_ADMIN_READ48_RSP_RET_G(r48rsp->key_to_data)); 112 } 113 return 0; 114 } 115 116 int fun_port_read_cmd(struct funeth_priv *fp, int key, u64 *data) 117 { 118 return fun_port_read_cmds(fp, 1, &key, data); 119 } 120 121 static void fun_report_link(struct net_device *netdev) 122 { 123 if (netif_carrier_ok(netdev)) { 124 const struct funeth_priv *fp = netdev_priv(netdev); 125 const char *fec = "", *pause = ""; 126 int speed = fp->link_speed; 127 char unit = 'M'; 128 129 if (fp->link_speed >= SPEED_1000) { 130 speed /= 1000; 131 unit = 'G'; 132 } 133 134 if (fp->active_fec & FUN_PORT_FEC_RS) 135 fec = ", RS-FEC"; 136 else if (fp->active_fec & FUN_PORT_FEC_FC) 137 fec = ", BASER-FEC"; 138 139 if ((fp->active_fc & FUN_PORT_CAP_PAUSE_MASK) == FUN_PORT_CAP_PAUSE_MASK) 140 pause = ", Tx/Rx PAUSE"; 141 else if (fp->active_fc & FUN_PORT_CAP_RX_PAUSE) 142 pause = ", Rx PAUSE"; 143 else if (fp->active_fc & FUN_PORT_CAP_TX_PAUSE) 144 pause = ", Tx PAUSE"; 145 146 netdev_info(netdev, "Link up at %d %cb/s full-duplex%s%s\n", 147 speed, unit, pause, fec); 148 } else { 149 netdev_info(netdev, "Link down\n"); 150 } 151 } 152 153 static int fun_adi_write(struct fun_dev *fdev, enum fun_admin_adi_attr attr, 154 unsigned int adi_id, const struct fun_adi_param *param) 155 { 156 struct fun_admin_adi_req req = { 157 .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ADI, 158 sizeof(req)), 159 .u.write.subop = FUN_ADMIN_SUBOP_WRITE, 160 .u.write.attribute = attr, 161 .u.write.id = cpu_to_be32(adi_id), 162 .u.write.param = *param 163 }; 164 165 return fun_submit_admin_sync_cmd(fdev, &req.common, NULL, 0, 0); 166 } 167 168 /* Configure RSS for the given port. @op determines whether a new RSS context 169 * is to be created or whether an existing one should be reconfigured. The 170 * remaining parameters specify the hashing algorithm, key, and indirection 171 * table. 172 * 173 * This initiates packet delivery to the Rx queues set in the indirection 174 * table. 175 */ 176 int fun_config_rss(struct net_device *dev, int algo, const u8 *key, 177 const u32 *qtable, u8 op) 178 { 179 struct funeth_priv *fp = netdev_priv(dev); 180 unsigned int table_len = fp->indir_table_nentries; 181 unsigned int len = FUN_ETH_RSS_MAX_KEY_SIZE + sizeof(u32) * table_len; 182 struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs); 183 union { 184 struct { 185 struct fun_admin_rss_req req; 186 struct fun_dataop_gl gl; 187 }; 188 struct fun_admin_generic_create_rsp rsp; 189 } cmd; 190 __be32 *indir_tab; 191 u16 flags; 192 int rc; 193 194 if (op != FUN_ADMIN_SUBOP_CREATE && fp->rss_hw_id == FUN_HCI_ID_INVALID) 195 return -EINVAL; 196 197 flags = op == FUN_ADMIN_SUBOP_CREATE ? 198 FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR : 0; 199 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_RSS, 200 sizeof(cmd)); 201 cmd.req.u.create = 202 FUN_ADMIN_RSS_CREATE_REQ_INIT(op, flags, fp->rss_hw_id, 203 dev->dev_port, algo, 204 FUN_ETH_RSS_MAX_KEY_SIZE, 205 table_len, 0, 206 FUN_ETH_RSS_MAX_KEY_SIZE); 207 cmd.req.u.create.dataop = FUN_DATAOP_HDR_INIT(1, 0, 1, 0, len); 208 fun_dataop_gl_init(&cmd.gl, 0, 0, len, fp->rss_dma_addr); 209 210 /* write the key and indirection table into the RSS DMA area */ 211 memcpy(fp->rss_cfg, key, FUN_ETH_RSS_MAX_KEY_SIZE); 212 indir_tab = fp->rss_cfg + FUN_ETH_RSS_MAX_KEY_SIZE; 213 for (rc = 0; rc < table_len; rc++) 214 *indir_tab++ = cpu_to_be32(rxqs[*qtable++]->hw_cqid); 215 216 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, 217 &cmd.rsp, sizeof(cmd.rsp), 0); 218 if (!rc && op == FUN_ADMIN_SUBOP_CREATE) 219 fp->rss_hw_id = be32_to_cpu(cmd.rsp.id); 220 return rc; 221 } 222 223 /* Destroy the HW RSS conntext associated with the given port. This also stops 224 * all packet delivery to our Rx queues. 225 */ 226 static void fun_destroy_rss(struct funeth_priv *fp) 227 { 228 if (fp->rss_hw_id != FUN_HCI_ID_INVALID) { 229 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_RSS, 0, fp->rss_hw_id); 230 fp->rss_hw_id = FUN_HCI_ID_INVALID; 231 } 232 } 233 234 static void fun_irq_aff_notify(struct irq_affinity_notify *notify, 235 const cpumask_t *mask) 236 { 237 struct fun_irq *p = container_of(notify, struct fun_irq, aff_notify); 238 239 cpumask_copy(&p->affinity_mask, mask); 240 } 241 242 static void fun_irq_aff_release(struct kref __always_unused *ref) 243 { 244 } 245 246 /* Allocate an IRQ structure, assign an MSI-X index and initial affinity to it, 247 * and add it to the IRQ XArray. 248 */ 249 static struct fun_irq *fun_alloc_qirq(struct funeth_priv *fp, unsigned int idx, 250 int node, unsigned int xa_idx_offset) 251 { 252 struct fun_irq *irq; 253 int cpu, res; 254 255 cpu = cpumask_local_spread(idx, node); 256 node = cpu_to_mem(cpu); 257 258 irq = kzalloc_node(sizeof(*irq), GFP_KERNEL, node); 259 if (!irq) 260 return ERR_PTR(-ENOMEM); 261 262 res = fun_reserve_irqs(fp->fdev, 1, &irq->irq_idx); 263 if (res != 1) 264 goto free_irq; 265 266 res = xa_insert(&fp->irqs, idx + xa_idx_offset, irq, GFP_KERNEL); 267 if (res) 268 goto release_irq; 269 270 irq->irq = pci_irq_vector(fp->pdev, irq->irq_idx); 271 cpumask_set_cpu(cpu, &irq->affinity_mask); 272 irq->aff_notify.notify = fun_irq_aff_notify; 273 irq->aff_notify.release = fun_irq_aff_release; 274 irq->state = FUN_IRQ_INIT; 275 return irq; 276 277 release_irq: 278 fun_release_irqs(fp->fdev, 1, &irq->irq_idx); 279 free_irq: 280 kfree(irq); 281 return ERR_PTR(res); 282 } 283 284 static void fun_free_qirq(struct funeth_priv *fp, struct fun_irq *irq) 285 { 286 netif_napi_del(&irq->napi); 287 fun_release_irqs(fp->fdev, 1, &irq->irq_idx); 288 kfree(irq); 289 } 290 291 /* Release the IRQs reserved for Tx/Rx queues that aren't being used. */ 292 static void fun_prune_queue_irqs(struct net_device *dev) 293 { 294 struct funeth_priv *fp = netdev_priv(dev); 295 unsigned int nreleased = 0; 296 struct fun_irq *irq; 297 unsigned long idx; 298 299 xa_for_each(&fp->irqs, idx, irq) { 300 if (irq->txq || irq->rxq) /* skip those in use */ 301 continue; 302 303 xa_erase(&fp->irqs, idx); 304 fun_free_qirq(fp, irq); 305 nreleased++; 306 if (idx < fp->rx_irq_ofst) 307 fp->num_tx_irqs--; 308 else 309 fp->num_rx_irqs--; 310 } 311 netif_info(fp, intr, dev, "Released %u queue IRQs\n", nreleased); 312 } 313 314 /* Reserve IRQs, one per queue, to acommodate the requested queue numbers @ntx 315 * and @nrx. IRQs are added incrementally to those we already have. 316 * We hold on to allocated IRQs until garbage collection of unused IRQs is 317 * separately requested. 318 */ 319 static int fun_alloc_queue_irqs(struct net_device *dev, unsigned int ntx, 320 unsigned int nrx) 321 { 322 struct funeth_priv *fp = netdev_priv(dev); 323 int node = dev_to_node(&fp->pdev->dev); 324 struct fun_irq *irq; 325 unsigned int i; 326 327 for (i = fp->num_tx_irqs; i < ntx; i++) { 328 irq = fun_alloc_qirq(fp, i, node, 0); 329 if (IS_ERR(irq)) 330 return PTR_ERR(irq); 331 332 fp->num_tx_irqs++; 333 netif_napi_add_tx(dev, &irq->napi, fun_txq_napi_poll); 334 } 335 336 for (i = fp->num_rx_irqs; i < nrx; i++) { 337 irq = fun_alloc_qirq(fp, i, node, fp->rx_irq_ofst); 338 if (IS_ERR(irq)) 339 return PTR_ERR(irq); 340 341 fp->num_rx_irqs++; 342 netif_napi_add(dev, &irq->napi, fun_rxq_napi_poll); 343 } 344 345 netif_info(fp, intr, dev, "Reserved %u/%u IRQs for Tx/Rx queues\n", 346 ntx, nrx); 347 return 0; 348 } 349 350 static void free_txqs(struct funeth_txq **txqs, unsigned int nqs, 351 unsigned int start, int state) 352 { 353 unsigned int i; 354 355 for (i = start; i < nqs && txqs[i]; i++) 356 txqs[i] = funeth_txq_free(txqs[i], state); 357 } 358 359 static int alloc_txqs(struct net_device *dev, struct funeth_txq **txqs, 360 unsigned int nqs, unsigned int depth, unsigned int start, 361 int state) 362 { 363 struct funeth_priv *fp = netdev_priv(dev); 364 unsigned int i; 365 int err; 366 367 for (i = start; i < nqs; i++) { 368 err = funeth_txq_create(dev, i, depth, xa_load(&fp->irqs, i), 369 state, &txqs[i]); 370 if (err) { 371 free_txqs(txqs, nqs, start, FUN_QSTATE_DESTROYED); 372 return err; 373 } 374 } 375 return 0; 376 } 377 378 static void free_rxqs(struct funeth_rxq **rxqs, unsigned int nqs, 379 unsigned int start, int state) 380 { 381 unsigned int i; 382 383 for (i = start; i < nqs && rxqs[i]; i++) 384 rxqs[i] = funeth_rxq_free(rxqs[i], state); 385 } 386 387 static int alloc_rxqs(struct net_device *dev, struct funeth_rxq **rxqs, 388 unsigned int nqs, unsigned int ncqe, unsigned int nrqe, 389 unsigned int start, int state) 390 { 391 struct funeth_priv *fp = netdev_priv(dev); 392 unsigned int i; 393 int err; 394 395 for (i = start; i < nqs; i++) { 396 err = funeth_rxq_create(dev, i, ncqe, nrqe, 397 xa_load(&fp->irqs, i + fp->rx_irq_ofst), 398 state, &rxqs[i]); 399 if (err) { 400 free_rxqs(rxqs, nqs, start, FUN_QSTATE_DESTROYED); 401 return err; 402 } 403 } 404 return 0; 405 } 406 407 static void free_xdpqs(struct funeth_txq **xdpqs, unsigned int nqs, 408 unsigned int start, int state) 409 { 410 unsigned int i; 411 412 for (i = start; i < nqs && xdpqs[i]; i++) 413 xdpqs[i] = funeth_txq_free(xdpqs[i], state); 414 415 if (state == FUN_QSTATE_DESTROYED) 416 kfree(xdpqs); 417 } 418 419 static struct funeth_txq **alloc_xdpqs(struct net_device *dev, unsigned int nqs, 420 unsigned int depth, unsigned int start, 421 int state) 422 { 423 struct funeth_txq **xdpqs; 424 unsigned int i; 425 int err; 426 427 xdpqs = kcalloc(nqs, sizeof(*xdpqs), GFP_KERNEL); 428 if (!xdpqs) 429 return ERR_PTR(-ENOMEM); 430 431 for (i = start; i < nqs; i++) { 432 err = funeth_txq_create(dev, i, depth, NULL, state, &xdpqs[i]); 433 if (err) { 434 free_xdpqs(xdpqs, nqs, start, FUN_QSTATE_DESTROYED); 435 return ERR_PTR(err); 436 } 437 } 438 return xdpqs; 439 } 440 441 static void fun_free_rings(struct net_device *netdev, struct fun_qset *qset) 442 { 443 struct funeth_priv *fp = netdev_priv(netdev); 444 struct funeth_txq **xdpqs = qset->xdpqs; 445 struct funeth_rxq **rxqs = qset->rxqs; 446 447 /* qset may not specify any queues to operate on. In that case the 448 * currently installed queues are implied. 449 */ 450 if (!rxqs) { 451 rxqs = rtnl_dereference(fp->rxqs); 452 xdpqs = rtnl_dereference(fp->xdpqs); 453 qset->txqs = fp->txqs; 454 qset->nrxqs = netdev->real_num_rx_queues; 455 qset->ntxqs = netdev->real_num_tx_queues; 456 qset->nxdpqs = fp->num_xdpqs; 457 } 458 if (!rxqs) 459 return; 460 461 if (rxqs == rtnl_dereference(fp->rxqs)) { 462 rcu_assign_pointer(fp->rxqs, NULL); 463 rcu_assign_pointer(fp->xdpqs, NULL); 464 synchronize_net(); 465 fp->txqs = NULL; 466 } 467 468 free_rxqs(rxqs, qset->nrxqs, qset->rxq_start, qset->state); 469 free_txqs(qset->txqs, qset->ntxqs, qset->txq_start, qset->state); 470 free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, qset->state); 471 if (qset->state == FUN_QSTATE_DESTROYED) 472 kfree(rxqs); 473 474 /* Tell the caller which queues were operated on. */ 475 qset->rxqs = rxqs; 476 qset->xdpqs = xdpqs; 477 } 478 479 static int fun_alloc_rings(struct net_device *netdev, struct fun_qset *qset) 480 { 481 struct funeth_txq **xdpqs = NULL, **txqs; 482 struct funeth_rxq **rxqs; 483 int err; 484 485 err = fun_alloc_queue_irqs(netdev, qset->ntxqs, qset->nrxqs); 486 if (err) 487 return err; 488 489 rxqs = kcalloc(qset->ntxqs + qset->nrxqs, sizeof(*rxqs), GFP_KERNEL); 490 if (!rxqs) 491 return -ENOMEM; 492 493 if (qset->nxdpqs) { 494 xdpqs = alloc_xdpqs(netdev, qset->nxdpqs, qset->sq_depth, 495 qset->xdpq_start, qset->state); 496 if (IS_ERR(xdpqs)) { 497 err = PTR_ERR(xdpqs); 498 goto free_qvec; 499 } 500 } 501 502 txqs = (struct funeth_txq **)&rxqs[qset->nrxqs]; 503 err = alloc_txqs(netdev, txqs, qset->ntxqs, qset->sq_depth, 504 qset->txq_start, qset->state); 505 if (err) 506 goto free_xdpqs; 507 508 err = alloc_rxqs(netdev, rxqs, qset->nrxqs, qset->cq_depth, 509 qset->rq_depth, qset->rxq_start, qset->state); 510 if (err) 511 goto free_txqs; 512 513 qset->rxqs = rxqs; 514 qset->txqs = txqs; 515 qset->xdpqs = xdpqs; 516 return 0; 517 518 free_txqs: 519 free_txqs(txqs, qset->ntxqs, qset->txq_start, FUN_QSTATE_DESTROYED); 520 free_xdpqs: 521 free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, FUN_QSTATE_DESTROYED); 522 free_qvec: 523 kfree(rxqs); 524 return err; 525 } 526 527 /* Take queues to the next level. Presently this means creating them on the 528 * device. 529 */ 530 static int fun_advance_ring_state(struct net_device *dev, struct fun_qset *qset) 531 { 532 struct funeth_priv *fp = netdev_priv(dev); 533 int i, err; 534 535 for (i = 0; i < qset->nrxqs; i++) { 536 err = fun_rxq_create_dev(qset->rxqs[i], 537 xa_load(&fp->irqs, 538 i + fp->rx_irq_ofst)); 539 if (err) 540 goto out; 541 } 542 543 for (i = 0; i < qset->ntxqs; i++) { 544 err = fun_txq_create_dev(qset->txqs[i], xa_load(&fp->irqs, i)); 545 if (err) 546 goto out; 547 } 548 549 for (i = 0; i < qset->nxdpqs; i++) { 550 err = fun_txq_create_dev(qset->xdpqs[i], NULL); 551 if (err) 552 goto out; 553 } 554 555 return 0; 556 557 out: 558 fun_free_rings(dev, qset); 559 return err; 560 } 561 562 static int fun_port_create(struct net_device *netdev) 563 { 564 struct funeth_priv *fp = netdev_priv(netdev); 565 union { 566 struct fun_admin_port_req req; 567 struct fun_admin_port_rsp rsp; 568 } cmd; 569 int rc; 570 571 if (fp->lport != INVALID_LPORT) 572 return 0; 573 574 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, 575 sizeof(cmd.req)); 576 cmd.req.u.create = 577 FUN_ADMIN_PORT_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 0, 578 netdev->dev_port); 579 580 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, 581 sizeof(cmd.rsp), 0); 582 583 if (!rc) 584 fp->lport = be16_to_cpu(cmd.rsp.u.create.lport); 585 return rc; 586 } 587 588 static int fun_port_destroy(struct net_device *netdev) 589 { 590 struct funeth_priv *fp = netdev_priv(netdev); 591 592 if (fp->lport == INVALID_LPORT) 593 return 0; 594 595 fp->lport = INVALID_LPORT; 596 return fun_res_destroy(fp->fdev, FUN_ADMIN_OP_PORT, 0, 597 netdev->dev_port); 598 } 599 600 static int fun_eth_create(struct funeth_priv *fp) 601 { 602 union { 603 struct fun_admin_eth_req req; 604 struct fun_admin_generic_create_rsp rsp; 605 } cmd; 606 int rc; 607 608 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ETH, 609 sizeof(cmd.req)); 610 cmd.req.u.create = FUN_ADMIN_ETH_CREATE_REQ_INIT( 611 FUN_ADMIN_SUBOP_CREATE, 612 FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR, 613 0, fp->netdev->dev_port); 614 615 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, 616 sizeof(cmd.rsp), 0); 617 return rc ? rc : be32_to_cpu(cmd.rsp.id); 618 } 619 620 static int fun_vi_create(struct funeth_priv *fp) 621 { 622 struct fun_admin_vi_req req = { 623 .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_VI, 624 sizeof(req)), 625 .u.create = FUN_ADMIN_VI_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 626 0, 627 fp->netdev->dev_port, 628 fp->netdev->dev_port) 629 }; 630 631 return fun_submit_admin_sync_cmd(fp->fdev, &req.common, NULL, 0, 0); 632 } 633 634 /* Helper to create an ETH flow and bind an SQ to it. 635 * Returns the ETH id (>= 0) on success or a negative error. 636 */ 637 int fun_create_and_bind_tx(struct funeth_priv *fp, u32 sqid) 638 { 639 int rc, ethid; 640 641 ethid = fun_eth_create(fp); 642 if (ethid >= 0) { 643 rc = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_EPSQ, sqid, 644 FUN_ADMIN_BIND_TYPE_ETH, ethid); 645 if (rc) { 646 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, ethid); 647 ethid = rc; 648 } 649 } 650 return ethid; 651 } 652 653 static irqreturn_t fun_queue_irq_handler(int irq, void *data) 654 { 655 struct fun_irq *p = data; 656 657 if (p->rxq) { 658 prefetch(p->rxq->next_cqe_info); 659 p->rxq->irq_cnt++; 660 } 661 napi_schedule_irqoff(&p->napi); 662 return IRQ_HANDLED; 663 } 664 665 static int fun_enable_irqs(struct net_device *dev) 666 { 667 struct funeth_priv *fp = netdev_priv(dev); 668 unsigned long idx, last; 669 unsigned int qidx; 670 struct fun_irq *p; 671 const char *qtype; 672 int err; 673 674 xa_for_each(&fp->irqs, idx, p) { 675 if (p->txq) { 676 qtype = "tx"; 677 qidx = p->txq->qidx; 678 } else if (p->rxq) { 679 qtype = "rx"; 680 qidx = p->rxq->qidx; 681 } else { 682 continue; 683 } 684 685 if (p->state != FUN_IRQ_INIT) 686 continue; 687 688 snprintf(p->name, sizeof(p->name) - 1, "%s-%s-%u", dev->name, 689 qtype, qidx); 690 err = request_irq(p->irq, fun_queue_irq_handler, 0, p->name, p); 691 if (err) { 692 netdev_err(dev, "Failed to allocate IRQ %u, err %d\n", 693 p->irq, err); 694 goto unroll; 695 } 696 p->state = FUN_IRQ_REQUESTED; 697 } 698 699 xa_for_each(&fp->irqs, idx, p) { 700 if (p->state != FUN_IRQ_REQUESTED) 701 continue; 702 irq_set_affinity_notifier(p->irq, &p->aff_notify); 703 irq_set_affinity_and_hint(p->irq, &p->affinity_mask); 704 napi_enable(&p->napi); 705 p->state = FUN_IRQ_ENABLED; 706 } 707 708 return 0; 709 710 unroll: 711 last = idx - 1; 712 xa_for_each_range(&fp->irqs, idx, p, 0, last) 713 if (p->state == FUN_IRQ_REQUESTED) { 714 free_irq(p->irq, p); 715 p->state = FUN_IRQ_INIT; 716 } 717 718 return err; 719 } 720 721 static void fun_disable_one_irq(struct fun_irq *irq) 722 { 723 napi_disable(&irq->napi); 724 irq_set_affinity_notifier(irq->irq, NULL); 725 irq_update_affinity_hint(irq->irq, NULL); 726 free_irq(irq->irq, irq); 727 irq->state = FUN_IRQ_INIT; 728 } 729 730 static void fun_disable_irqs(struct net_device *dev) 731 { 732 struct funeth_priv *fp = netdev_priv(dev); 733 struct fun_irq *p; 734 unsigned long idx; 735 736 xa_for_each(&fp->irqs, idx, p) 737 if (p->state == FUN_IRQ_ENABLED) 738 fun_disable_one_irq(p); 739 } 740 741 static void fun_down(struct net_device *dev, struct fun_qset *qset) 742 { 743 struct funeth_priv *fp = netdev_priv(dev); 744 745 /* If we don't have queues the data path is already down. 746 * Note netif_running(dev) may be true. 747 */ 748 if (!rcu_access_pointer(fp->rxqs)) 749 return; 750 751 /* It is also down if the queues aren't on the device. */ 752 if (fp->txqs[0]->init_state >= FUN_QSTATE_INIT_FULL) { 753 netif_info(fp, ifdown, dev, 754 "Tearing down data path on device\n"); 755 fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_DISABLE, 0); 756 757 netif_carrier_off(dev); 758 netif_tx_disable(dev); 759 760 fun_destroy_rss(fp); 761 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port); 762 fun_disable_irqs(dev); 763 } 764 765 fun_free_rings(dev, qset); 766 } 767 768 static int fun_up(struct net_device *dev, struct fun_qset *qset) 769 { 770 static const int port_keys[] = { 771 FUN_ADMIN_PORT_KEY_STATS_DMA_LOW, 772 FUN_ADMIN_PORT_KEY_STATS_DMA_HIGH, 773 FUN_ADMIN_PORT_KEY_ENABLE 774 }; 775 776 struct funeth_priv *fp = netdev_priv(dev); 777 u64 vals[] = { 778 lower_32_bits(fp->stats_dma_addr), 779 upper_32_bits(fp->stats_dma_addr), 780 FUN_PORT_FLAG_ENABLE_NOTIFY 781 }; 782 int err; 783 784 netif_info(fp, ifup, dev, "Setting up data path on device\n"); 785 786 if (qset->rxqs[0]->init_state < FUN_QSTATE_INIT_FULL) { 787 err = fun_advance_ring_state(dev, qset); 788 if (err) 789 return err; 790 } 791 792 err = fun_vi_create(fp); 793 if (err) 794 goto free_queues; 795 796 fp->txqs = qset->txqs; 797 rcu_assign_pointer(fp->rxqs, qset->rxqs); 798 rcu_assign_pointer(fp->xdpqs, qset->xdpqs); 799 800 err = fun_enable_irqs(dev); 801 if (err) 802 goto destroy_vi; 803 804 if (fp->rss_cfg) { 805 err = fun_config_rss(dev, fp->hash_algo, fp->rss_key, 806 fp->indir_table, FUN_ADMIN_SUBOP_CREATE); 807 } else { 808 /* The non-RSS case has only 1 queue. */ 809 err = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_VI, dev->dev_port, 810 FUN_ADMIN_BIND_TYPE_EPCQ, 811 qset->rxqs[0]->hw_cqid); 812 } 813 if (err) 814 goto disable_irqs; 815 816 err = fun_port_write_cmds(fp, 3, port_keys, vals); 817 if (err) 818 goto free_rss; 819 820 netif_tx_start_all_queues(dev); 821 return 0; 822 823 free_rss: 824 fun_destroy_rss(fp); 825 disable_irqs: 826 fun_disable_irqs(dev); 827 destroy_vi: 828 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port); 829 free_queues: 830 fun_free_rings(dev, qset); 831 return err; 832 } 833 834 static int funeth_open(struct net_device *netdev) 835 { 836 struct funeth_priv *fp = netdev_priv(netdev); 837 struct fun_qset qset = { 838 .nrxqs = netdev->real_num_rx_queues, 839 .ntxqs = netdev->real_num_tx_queues, 840 .nxdpqs = fp->num_xdpqs, 841 .cq_depth = fp->cq_depth, 842 .rq_depth = fp->rq_depth, 843 .sq_depth = fp->sq_depth, 844 .state = FUN_QSTATE_INIT_FULL, 845 }; 846 int rc; 847 848 rc = fun_alloc_rings(netdev, &qset); 849 if (rc) 850 return rc; 851 852 rc = fun_up(netdev, &qset); 853 if (rc) { 854 qset.state = FUN_QSTATE_DESTROYED; 855 fun_free_rings(netdev, &qset); 856 } 857 858 return rc; 859 } 860 861 static int funeth_close(struct net_device *netdev) 862 { 863 struct fun_qset qset = { .state = FUN_QSTATE_DESTROYED }; 864 865 fun_down(netdev, &qset); 866 return 0; 867 } 868 869 static void fun_get_stats64(struct net_device *netdev, 870 struct rtnl_link_stats64 *stats) 871 { 872 struct funeth_priv *fp = netdev_priv(netdev); 873 struct funeth_txq **xdpqs; 874 struct funeth_rxq **rxqs; 875 unsigned int i, start; 876 877 stats->tx_packets = fp->tx_packets; 878 stats->tx_bytes = fp->tx_bytes; 879 stats->tx_dropped = fp->tx_dropped; 880 881 stats->rx_packets = fp->rx_packets; 882 stats->rx_bytes = fp->rx_bytes; 883 stats->rx_dropped = fp->rx_dropped; 884 885 rcu_read_lock(); 886 rxqs = rcu_dereference(fp->rxqs); 887 if (!rxqs) 888 goto unlock; 889 890 for (i = 0; i < netdev->real_num_tx_queues; i++) { 891 struct funeth_txq_stats txs; 892 893 FUN_QSTAT_READ(fp->txqs[i], start, txs); 894 stats->tx_packets += txs.tx_pkts; 895 stats->tx_bytes += txs.tx_bytes; 896 stats->tx_dropped += txs.tx_map_err; 897 } 898 899 for (i = 0; i < netdev->real_num_rx_queues; i++) { 900 struct funeth_rxq_stats rxs; 901 902 FUN_QSTAT_READ(rxqs[i], start, rxs); 903 stats->rx_packets += rxs.rx_pkts; 904 stats->rx_bytes += rxs.rx_bytes; 905 stats->rx_dropped += rxs.rx_map_err + rxs.rx_mem_drops; 906 } 907 908 xdpqs = rcu_dereference(fp->xdpqs); 909 if (!xdpqs) 910 goto unlock; 911 912 for (i = 0; i < fp->num_xdpqs; i++) { 913 struct funeth_txq_stats txs; 914 915 FUN_QSTAT_READ(xdpqs[i], start, txs); 916 stats->tx_packets += txs.tx_pkts; 917 stats->tx_bytes += txs.tx_bytes; 918 } 919 unlock: 920 rcu_read_unlock(); 921 } 922 923 static int fun_change_mtu(struct net_device *netdev, int new_mtu) 924 { 925 struct funeth_priv *fp = netdev_priv(netdev); 926 int rc; 927 928 rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MTU, new_mtu); 929 if (!rc) 930 WRITE_ONCE(netdev->mtu, new_mtu); 931 return rc; 932 } 933 934 static int fun_set_macaddr(struct net_device *netdev, void *addr) 935 { 936 struct funeth_priv *fp = netdev_priv(netdev); 937 struct sockaddr *saddr = addr; 938 int rc; 939 940 if (!is_valid_ether_addr(saddr->sa_data)) 941 return -EADDRNOTAVAIL; 942 943 if (ether_addr_equal(netdev->dev_addr, saddr->sa_data)) 944 return 0; 945 946 rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR, 947 ether_addr_to_u64(saddr->sa_data)); 948 if (!rc) 949 eth_hw_addr_set(netdev, saddr->sa_data); 950 return rc; 951 } 952 953 static int fun_get_port_attributes(struct net_device *netdev) 954 { 955 static const int keys[] = { 956 FUN_ADMIN_PORT_KEY_MACADDR, FUN_ADMIN_PORT_KEY_CAPABILITIES, 957 FUN_ADMIN_PORT_KEY_ADVERT, FUN_ADMIN_PORT_KEY_MTU 958 }; 959 static const int phys_keys[] = { 960 FUN_ADMIN_PORT_KEY_LANE_ATTRS, 961 }; 962 963 struct funeth_priv *fp = netdev_priv(netdev); 964 u64 data[ARRAY_SIZE(keys)]; 965 u8 mac[ETH_ALEN]; 966 int i, rc; 967 968 rc = fun_port_read_cmds(fp, ARRAY_SIZE(keys), keys, data); 969 if (rc) 970 return rc; 971 972 for (i = 0; i < ARRAY_SIZE(keys); i++) { 973 switch (keys[i]) { 974 case FUN_ADMIN_PORT_KEY_MACADDR: 975 u64_to_ether_addr(data[i], mac); 976 if (is_zero_ether_addr(mac)) { 977 eth_hw_addr_random(netdev); 978 } else if (is_valid_ether_addr(mac)) { 979 eth_hw_addr_set(netdev, mac); 980 } else { 981 netdev_err(netdev, 982 "device provided a bad MAC address %pM\n", 983 mac); 984 return -EINVAL; 985 } 986 break; 987 988 case FUN_ADMIN_PORT_KEY_CAPABILITIES: 989 fp->port_caps = data[i]; 990 break; 991 992 case FUN_ADMIN_PORT_KEY_ADVERT: 993 fp->advertising = data[i]; 994 break; 995 996 case FUN_ADMIN_PORT_KEY_MTU: 997 netdev->mtu = data[i]; 998 break; 999 } 1000 } 1001 1002 if (!(fp->port_caps & FUN_PORT_CAP_VPORT)) { 1003 rc = fun_port_read_cmds(fp, ARRAY_SIZE(phys_keys), phys_keys, 1004 data); 1005 if (rc) 1006 return rc; 1007 1008 fp->lane_attrs = data[0]; 1009 } 1010 1011 if (netdev->addr_assign_type == NET_ADDR_RANDOM) 1012 return fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR, 1013 ether_addr_to_u64(netdev->dev_addr)); 1014 return 0; 1015 } 1016 1017 static int fun_hwtstamp_get(struct net_device *dev, 1018 struct kernel_hwtstamp_config *config) 1019 { 1020 const struct funeth_priv *fp = netdev_priv(dev); 1021 1022 *config = fp->hwtstamp_cfg; 1023 return 0; 1024 } 1025 1026 static int fun_hwtstamp_set(struct net_device *dev, 1027 struct kernel_hwtstamp_config *config, 1028 struct netlink_ext_ack *extack) 1029 { 1030 struct funeth_priv *fp = netdev_priv(dev); 1031 1032 /* no TX HW timestamps */ 1033 config->tx_type = HWTSTAMP_TX_OFF; 1034 1035 switch (config->rx_filter) { 1036 case HWTSTAMP_FILTER_NONE: 1037 break; 1038 case HWTSTAMP_FILTER_ALL: 1039 case HWTSTAMP_FILTER_SOME: 1040 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1041 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1042 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1043 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1044 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1045 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1046 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1047 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1048 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1049 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1050 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1051 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1052 case HWTSTAMP_FILTER_NTP_ALL: 1053 config->rx_filter = HWTSTAMP_FILTER_ALL; 1054 break; 1055 default: 1056 return -ERANGE; 1057 } 1058 1059 fp->hwtstamp_cfg = *config; 1060 return 0; 1061 } 1062 1063 /* Prepare the queues for XDP. */ 1064 static int fun_enter_xdp(struct net_device *dev, struct bpf_prog *prog) 1065 { 1066 struct funeth_priv *fp = netdev_priv(dev); 1067 unsigned int i, nqs = num_online_cpus(); 1068 struct funeth_txq **xdpqs; 1069 struct funeth_rxq **rxqs; 1070 int err; 1071 1072 xdpqs = alloc_xdpqs(dev, nqs, fp->sq_depth, 0, FUN_QSTATE_INIT_FULL); 1073 if (IS_ERR(xdpqs)) 1074 return PTR_ERR(xdpqs); 1075 1076 rxqs = rtnl_dereference(fp->rxqs); 1077 for (i = 0; i < dev->real_num_rx_queues; i++) { 1078 err = fun_rxq_set_bpf(rxqs[i], prog); 1079 if (err) 1080 goto out; 1081 } 1082 1083 fp->num_xdpqs = nqs; 1084 rcu_assign_pointer(fp->xdpqs, xdpqs); 1085 return 0; 1086 out: 1087 while (i--) 1088 fun_rxq_set_bpf(rxqs[i], NULL); 1089 1090 free_xdpqs(xdpqs, nqs, 0, FUN_QSTATE_DESTROYED); 1091 return err; 1092 } 1093 1094 /* Set the queues for non-XDP operation. */ 1095 static void fun_end_xdp(struct net_device *dev) 1096 { 1097 struct funeth_priv *fp = netdev_priv(dev); 1098 struct funeth_txq **xdpqs; 1099 struct funeth_rxq **rxqs; 1100 unsigned int i; 1101 1102 xdpqs = rtnl_dereference(fp->xdpqs); 1103 rcu_assign_pointer(fp->xdpqs, NULL); 1104 synchronize_net(); 1105 /* at this point both Rx and Tx XDP processing has ended */ 1106 1107 free_xdpqs(xdpqs, fp->num_xdpqs, 0, FUN_QSTATE_DESTROYED); 1108 fp->num_xdpqs = 0; 1109 1110 rxqs = rtnl_dereference(fp->rxqs); 1111 for (i = 0; i < dev->real_num_rx_queues; i++) 1112 fun_rxq_set_bpf(rxqs[i], NULL); 1113 } 1114 1115 #define XDP_MAX_MTU \ 1116 (PAGE_SIZE - FUN_XDP_HEADROOM - VLAN_ETH_HLEN - FUN_RX_TAILROOM) 1117 1118 static int fun_xdp_setup(struct net_device *dev, struct netdev_bpf *xdp) 1119 { 1120 struct bpf_prog *old_prog, *prog = xdp->prog; 1121 struct funeth_priv *fp = netdev_priv(dev); 1122 int i, err; 1123 1124 /* XDP uses at most one buffer */ 1125 if (prog && dev->mtu > XDP_MAX_MTU) { 1126 netdev_err(dev, "device MTU %u too large for XDP\n", dev->mtu); 1127 NL_SET_ERR_MSG_MOD(xdp->extack, 1128 "Device MTU too large for XDP"); 1129 return -EINVAL; 1130 } 1131 1132 if (!netif_running(dev)) { 1133 fp->num_xdpqs = prog ? num_online_cpus() : 0; 1134 } else if (prog && !fp->xdp_prog) { 1135 err = fun_enter_xdp(dev, prog); 1136 if (err) { 1137 NL_SET_ERR_MSG_MOD(xdp->extack, 1138 "Failed to set queues for XDP."); 1139 return err; 1140 } 1141 } else if (!prog && fp->xdp_prog) { 1142 fun_end_xdp(dev); 1143 } else { 1144 struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs); 1145 1146 for (i = 0; i < dev->real_num_rx_queues; i++) 1147 WRITE_ONCE(rxqs[i]->xdp_prog, prog); 1148 } 1149 1150 if (prog) 1151 xdp_features_set_redirect_target(dev, true); 1152 else 1153 xdp_features_clear_redirect_target(dev); 1154 1155 dev->max_mtu = prog ? XDP_MAX_MTU : FUN_MAX_MTU; 1156 old_prog = xchg(&fp->xdp_prog, prog); 1157 if (old_prog) 1158 bpf_prog_put(old_prog); 1159 1160 return 0; 1161 } 1162 1163 static int fun_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1164 { 1165 switch (xdp->command) { 1166 case XDP_SETUP_PROG: 1167 return fun_xdp_setup(dev, xdp); 1168 default: 1169 return -EINVAL; 1170 } 1171 } 1172 1173 static int fun_init_vports(struct fun_ethdev *ed, unsigned int n) 1174 { 1175 if (ed->num_vports) 1176 return -EINVAL; 1177 1178 ed->vport_info = kvcalloc(n, sizeof(*ed->vport_info), GFP_KERNEL); 1179 if (!ed->vport_info) 1180 return -ENOMEM; 1181 ed->num_vports = n; 1182 return 0; 1183 } 1184 1185 static void fun_free_vports(struct fun_ethdev *ed) 1186 { 1187 kvfree(ed->vport_info); 1188 ed->vport_info = NULL; 1189 ed->num_vports = 0; 1190 } 1191 1192 static struct fun_vport_info *fun_get_vport(struct fun_ethdev *ed, 1193 unsigned int vport) 1194 { 1195 if (!ed->vport_info || vport >= ed->num_vports) 1196 return NULL; 1197 1198 return ed->vport_info + vport; 1199 } 1200 1201 static int fun_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 1202 { 1203 struct funeth_priv *fp = netdev_priv(dev); 1204 struct fun_adi_param mac_param = {}; 1205 struct fun_dev *fdev = fp->fdev; 1206 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1207 struct fun_vport_info *vi; 1208 int rc = -EINVAL; 1209 1210 if (is_multicast_ether_addr(mac)) 1211 return -EINVAL; 1212 1213 mutex_lock(&ed->state_mutex); 1214 vi = fun_get_vport(ed, vf); 1215 if (!vi) 1216 goto unlock; 1217 1218 mac_param.u.mac = FUN_ADI_MAC_INIT(ether_addr_to_u64(mac)); 1219 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_MACADDR, vf + 1, 1220 &mac_param); 1221 if (!rc) 1222 ether_addr_copy(vi->mac, mac); 1223 unlock: 1224 mutex_unlock(&ed->state_mutex); 1225 return rc; 1226 } 1227 1228 static int fun_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos, 1229 __be16 vlan_proto) 1230 { 1231 struct funeth_priv *fp = netdev_priv(dev); 1232 struct fun_adi_param vlan_param = {}; 1233 struct fun_dev *fdev = fp->fdev; 1234 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1235 struct fun_vport_info *vi; 1236 int rc = -EINVAL; 1237 1238 if (vlan > 4095 || qos > 7) 1239 return -EINVAL; 1240 if (vlan_proto && vlan_proto != htons(ETH_P_8021Q) && 1241 vlan_proto != htons(ETH_P_8021AD)) 1242 return -EINVAL; 1243 1244 mutex_lock(&ed->state_mutex); 1245 vi = fun_get_vport(ed, vf); 1246 if (!vi) 1247 goto unlock; 1248 1249 vlan_param.u.vlan = FUN_ADI_VLAN_INIT(be16_to_cpu(vlan_proto), 1250 ((u16)qos << VLAN_PRIO_SHIFT) | vlan); 1251 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_VLAN, vf + 1, &vlan_param); 1252 if (!rc) { 1253 vi->vlan = vlan; 1254 vi->qos = qos; 1255 vi->vlan_proto = vlan_proto; 1256 } 1257 unlock: 1258 mutex_unlock(&ed->state_mutex); 1259 return rc; 1260 } 1261 1262 static int fun_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate, 1263 int max_tx_rate) 1264 { 1265 struct funeth_priv *fp = netdev_priv(dev); 1266 struct fun_adi_param rate_param = {}; 1267 struct fun_dev *fdev = fp->fdev; 1268 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1269 struct fun_vport_info *vi; 1270 int rc = -EINVAL; 1271 1272 if (min_tx_rate) 1273 return -EINVAL; 1274 1275 mutex_lock(&ed->state_mutex); 1276 vi = fun_get_vport(ed, vf); 1277 if (!vi) 1278 goto unlock; 1279 1280 rate_param.u.rate = FUN_ADI_RATE_INIT(max_tx_rate); 1281 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_RATE, vf + 1, &rate_param); 1282 if (!rc) 1283 vi->max_rate = max_tx_rate; 1284 unlock: 1285 mutex_unlock(&ed->state_mutex); 1286 return rc; 1287 } 1288 1289 static int fun_get_vf_config(struct net_device *dev, int vf, 1290 struct ifla_vf_info *ivi) 1291 { 1292 struct funeth_priv *fp = netdev_priv(dev); 1293 struct fun_ethdev *ed = to_fun_ethdev(fp->fdev); 1294 const struct fun_vport_info *vi; 1295 1296 mutex_lock(&ed->state_mutex); 1297 vi = fun_get_vport(ed, vf); 1298 if (!vi) 1299 goto unlock; 1300 1301 memset(ivi, 0, sizeof(*ivi)); 1302 ivi->vf = vf; 1303 ether_addr_copy(ivi->mac, vi->mac); 1304 ivi->vlan = vi->vlan; 1305 ivi->qos = vi->qos; 1306 ivi->vlan_proto = vi->vlan_proto; 1307 ivi->max_tx_rate = vi->max_rate; 1308 ivi->spoofchk = vi->spoofchk; 1309 unlock: 1310 mutex_unlock(&ed->state_mutex); 1311 return vi ? 0 : -EINVAL; 1312 } 1313 1314 static void fun_uninit(struct net_device *dev) 1315 { 1316 struct funeth_priv *fp = netdev_priv(dev); 1317 1318 fun_prune_queue_irqs(dev); 1319 xa_destroy(&fp->irqs); 1320 } 1321 1322 static const struct net_device_ops fun_netdev_ops = { 1323 .ndo_open = funeth_open, 1324 .ndo_stop = funeth_close, 1325 .ndo_start_xmit = fun_start_xmit, 1326 .ndo_get_stats64 = fun_get_stats64, 1327 .ndo_change_mtu = fun_change_mtu, 1328 .ndo_set_mac_address = fun_set_macaddr, 1329 .ndo_validate_addr = eth_validate_addr, 1330 .ndo_uninit = fun_uninit, 1331 .ndo_bpf = fun_xdp, 1332 .ndo_xdp_xmit = fun_xdp_xmit_frames, 1333 .ndo_set_vf_mac = fun_set_vf_mac, 1334 .ndo_set_vf_vlan = fun_set_vf_vlan, 1335 .ndo_set_vf_rate = fun_set_vf_rate, 1336 .ndo_get_vf_config = fun_get_vf_config, 1337 .ndo_hwtstamp_get = fun_hwtstamp_get, 1338 .ndo_hwtstamp_set = fun_hwtstamp_set, 1339 }; 1340 1341 #define GSO_ENCAP_FLAGS (NETIF_F_GSO_GRE | NETIF_F_GSO_IPXIP4 | \ 1342 NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_TUNNEL | \ 1343 NETIF_F_GSO_UDP_TUNNEL_CSUM) 1344 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ 1345 NETIF_F_GSO_UDP_L4) 1346 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_HW_CSUM | TSO_FLAGS | \ 1347 GSO_ENCAP_FLAGS | NETIF_F_HIGHDMA) 1348 1349 static void fun_dflt_rss_indir(struct funeth_priv *fp, unsigned int nrx) 1350 { 1351 unsigned int i; 1352 1353 for (i = 0; i < fp->indir_table_nentries; i++) 1354 fp->indir_table[i] = ethtool_rxfh_indir_default(i, nrx); 1355 } 1356 1357 /* Reset the RSS indirection table to equal distribution across the current 1358 * number of Rx queues. Called at init time and whenever the number of Rx 1359 * queues changes subsequently. Note that this may also resize the indirection 1360 * table. 1361 */ 1362 static void fun_reset_rss_indir(struct net_device *dev, unsigned int nrx) 1363 { 1364 struct funeth_priv *fp = netdev_priv(dev); 1365 1366 if (!fp->rss_cfg) 1367 return; 1368 1369 /* Set the table size to the max possible that allows an equal number 1370 * of occurrences of each CQ. 1371 */ 1372 fp->indir_table_nentries = rounddown(FUN_ETH_RSS_MAX_INDIR_ENT, nrx); 1373 fun_dflt_rss_indir(fp, nrx); 1374 } 1375 1376 /* Update the RSS LUT to contain only queues in [0, nrx). Normally this will 1377 * update the LUT to an equal distribution among nrx queues, If @only_if_needed 1378 * is set the LUT is left unchanged if it already does not reference any queues 1379 * >= nrx. 1380 */ 1381 static int fun_rss_set_qnum(struct net_device *dev, unsigned int nrx, 1382 bool only_if_needed) 1383 { 1384 struct funeth_priv *fp = netdev_priv(dev); 1385 u32 old_lut[FUN_ETH_RSS_MAX_INDIR_ENT]; 1386 unsigned int i, oldsz; 1387 int err; 1388 1389 if (!fp->rss_cfg) 1390 return 0; 1391 1392 if (only_if_needed) { 1393 for (i = 0; i < fp->indir_table_nentries; i++) 1394 if (fp->indir_table[i] >= nrx) 1395 break; 1396 1397 if (i >= fp->indir_table_nentries) 1398 return 0; 1399 } 1400 1401 memcpy(old_lut, fp->indir_table, sizeof(old_lut)); 1402 oldsz = fp->indir_table_nentries; 1403 fun_reset_rss_indir(dev, nrx); 1404 1405 err = fun_config_rss(dev, fp->hash_algo, fp->rss_key, 1406 fp->indir_table, FUN_ADMIN_SUBOP_MODIFY); 1407 if (!err) 1408 return 0; 1409 1410 memcpy(fp->indir_table, old_lut, sizeof(old_lut)); 1411 fp->indir_table_nentries = oldsz; 1412 return err; 1413 } 1414 1415 /* Allocate the DMA area for the RSS configuration commands to the device, and 1416 * initialize the hash, hash key, indirection table size and its entries to 1417 * their defaults. The indirection table defaults to equal distribution across 1418 * the Rx queues. 1419 */ 1420 static int fun_init_rss(struct net_device *dev) 1421 { 1422 struct funeth_priv *fp = netdev_priv(dev); 1423 size_t size = sizeof(fp->rss_key) + sizeof(fp->indir_table); 1424 1425 fp->rss_hw_id = FUN_HCI_ID_INVALID; 1426 if (!(fp->port_caps & FUN_PORT_CAP_OFFLOADS)) 1427 return 0; 1428 1429 fp->rss_cfg = dma_alloc_coherent(&fp->pdev->dev, size, 1430 &fp->rss_dma_addr, GFP_KERNEL); 1431 if (!fp->rss_cfg) 1432 return -ENOMEM; 1433 1434 fp->hash_algo = FUN_ETH_RSS_ALG_TOEPLITZ; 1435 netdev_rss_key_fill(fp->rss_key, sizeof(fp->rss_key)); 1436 fun_reset_rss_indir(dev, dev->real_num_rx_queues); 1437 return 0; 1438 } 1439 1440 static void fun_free_rss(struct funeth_priv *fp) 1441 { 1442 if (fp->rss_cfg) { 1443 dma_free_coherent(&fp->pdev->dev, 1444 sizeof(fp->rss_key) + sizeof(fp->indir_table), 1445 fp->rss_cfg, fp->rss_dma_addr); 1446 fp->rss_cfg = NULL; 1447 } 1448 } 1449 1450 void fun_set_ring_count(struct net_device *netdev, unsigned int ntx, 1451 unsigned int nrx) 1452 { 1453 netif_set_real_num_tx_queues(netdev, ntx); 1454 if (nrx != netdev->real_num_rx_queues) { 1455 netif_set_real_num_rx_queues(netdev, nrx); 1456 fun_reset_rss_indir(netdev, nrx); 1457 } 1458 } 1459 1460 static int fun_init_stats_area(struct funeth_priv *fp) 1461 { 1462 unsigned int nstats; 1463 1464 if (!(fp->port_caps & FUN_PORT_CAP_STATS)) 1465 return 0; 1466 1467 nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX + 1468 PORT_MAC_FEC_STATS_MAX; 1469 1470 fp->stats = dma_alloc_coherent(&fp->pdev->dev, nstats * sizeof(u64), 1471 &fp->stats_dma_addr, GFP_KERNEL); 1472 if (!fp->stats) 1473 return -ENOMEM; 1474 return 0; 1475 } 1476 1477 static void fun_free_stats_area(struct funeth_priv *fp) 1478 { 1479 unsigned int nstats; 1480 1481 if (fp->stats) { 1482 nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX; 1483 dma_free_coherent(&fp->pdev->dev, nstats * sizeof(u64), 1484 fp->stats, fp->stats_dma_addr); 1485 fp->stats = NULL; 1486 } 1487 } 1488 1489 static int fun_dl_port_register(struct net_device *netdev) 1490 { 1491 struct funeth_priv *fp = netdev_priv(netdev); 1492 struct devlink *dl = priv_to_devlink(fp->fdev); 1493 struct devlink_port_attrs attrs = {}; 1494 unsigned int idx; 1495 1496 if (fp->port_caps & FUN_PORT_CAP_VPORT) { 1497 attrs.flavour = DEVLINK_PORT_FLAVOUR_VIRTUAL; 1498 idx = fp->lport; 1499 } else { 1500 idx = netdev->dev_port; 1501 attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL; 1502 attrs.lanes = fp->lane_attrs & 7; 1503 if (fp->lane_attrs & FUN_PORT_LANE_SPLIT) { 1504 attrs.split = 1; 1505 attrs.phys.port_number = fp->lport & ~3; 1506 attrs.phys.split_subport_number = fp->lport & 3; 1507 } else { 1508 attrs.phys.port_number = fp->lport; 1509 } 1510 } 1511 1512 devlink_port_attrs_set(&fp->dl_port, &attrs); 1513 1514 return devlink_port_register(dl, &fp->dl_port, idx); 1515 } 1516 1517 /* Determine the max Tx/Rx queues for a port. */ 1518 static int fun_max_qs(struct fun_ethdev *ed, unsigned int *ntx, 1519 unsigned int *nrx) 1520 { 1521 int neth; 1522 1523 if (ed->num_ports > 1 || is_kdump_kernel()) { 1524 *ntx = 1; 1525 *nrx = 1; 1526 return 0; 1527 } 1528 1529 neth = fun_get_res_count(&ed->fdev, FUN_ADMIN_OP_ETH); 1530 if (neth < 0) 1531 return neth; 1532 1533 /* We determine the max number of queues based on the CPU 1534 * cores, device interrupts and queues, RSS size, and device Tx flows. 1535 * 1536 * - At least 1 Rx and 1 Tx queues. 1537 * - At most 1 Rx/Tx queue per core. 1538 * - Each Rx/Tx queue needs 1 SQ. 1539 */ 1540 *ntx = min(ed->nsqs_per_port - 1, num_online_cpus()); 1541 *nrx = *ntx; 1542 if (*ntx > neth) 1543 *ntx = neth; 1544 if (*nrx > FUN_ETH_RSS_MAX_INDIR_ENT) 1545 *nrx = FUN_ETH_RSS_MAX_INDIR_ENT; 1546 return 0; 1547 } 1548 1549 static void fun_queue_defaults(struct net_device *dev, unsigned int nsqs) 1550 { 1551 unsigned int ntx, nrx; 1552 1553 ntx = min(dev->num_tx_queues, FUN_DFLT_QUEUES); 1554 nrx = min(dev->num_rx_queues, FUN_DFLT_QUEUES); 1555 if (ntx <= nrx) { 1556 ntx = min(ntx, nsqs / 2); 1557 nrx = min(nrx, nsqs - ntx); 1558 } else { 1559 nrx = min(nrx, nsqs / 2); 1560 ntx = min(ntx, nsqs - nrx); 1561 } 1562 1563 netif_set_real_num_tx_queues(dev, ntx); 1564 netif_set_real_num_rx_queues(dev, nrx); 1565 } 1566 1567 /* Replace the existing Rx/Tx/XDP queues with equal number of queues with 1568 * different settings, e.g. depth. This is a disruptive replacement that 1569 * temporarily shuts down the data path and should be limited to changes that 1570 * can't be applied to live queues. The old queues are always discarded. 1571 */ 1572 int fun_replace_queues(struct net_device *dev, struct fun_qset *newqs, 1573 struct netlink_ext_ack *extack) 1574 { 1575 struct fun_qset oldqs = { .state = FUN_QSTATE_DESTROYED }; 1576 struct funeth_priv *fp = netdev_priv(dev); 1577 int err; 1578 1579 newqs->nrxqs = dev->real_num_rx_queues; 1580 newqs->ntxqs = dev->real_num_tx_queues; 1581 newqs->nxdpqs = fp->num_xdpqs; 1582 newqs->state = FUN_QSTATE_INIT_SW; 1583 err = fun_alloc_rings(dev, newqs); 1584 if (err) { 1585 NL_SET_ERR_MSG_MOD(extack, 1586 "Unable to allocate memory for new queues, keeping current settings"); 1587 return err; 1588 } 1589 1590 fun_down(dev, &oldqs); 1591 1592 err = fun_up(dev, newqs); 1593 if (!err) 1594 return 0; 1595 1596 /* The new queues couldn't be installed. We do not retry the old queues 1597 * as they are the same to the device as the new queues and would 1598 * similarly fail. 1599 */ 1600 newqs->state = FUN_QSTATE_DESTROYED; 1601 fun_free_rings(dev, newqs); 1602 NL_SET_ERR_MSG_MOD(extack, "Unable to restore the data path with the new queues."); 1603 return err; 1604 } 1605 1606 /* Change the number of Rx/Tx queues of a device while it is up. This is done 1607 * by incrementally adding/removing queues to meet the new requirements while 1608 * handling ongoing traffic. 1609 */ 1610 int fun_change_num_queues(struct net_device *dev, unsigned int ntx, 1611 unsigned int nrx) 1612 { 1613 unsigned int keep_tx = min(dev->real_num_tx_queues, ntx); 1614 unsigned int keep_rx = min(dev->real_num_rx_queues, nrx); 1615 struct funeth_priv *fp = netdev_priv(dev); 1616 struct fun_qset oldqs = { 1617 .rxqs = rtnl_dereference(fp->rxqs), 1618 .txqs = fp->txqs, 1619 .nrxqs = dev->real_num_rx_queues, 1620 .ntxqs = dev->real_num_tx_queues, 1621 .rxq_start = keep_rx, 1622 .txq_start = keep_tx, 1623 .state = FUN_QSTATE_DESTROYED 1624 }; 1625 struct fun_qset newqs = { 1626 .nrxqs = nrx, 1627 .ntxqs = ntx, 1628 .rxq_start = keep_rx, 1629 .txq_start = keep_tx, 1630 .cq_depth = fp->cq_depth, 1631 .rq_depth = fp->rq_depth, 1632 .sq_depth = fp->sq_depth, 1633 .state = FUN_QSTATE_INIT_FULL 1634 }; 1635 int i, err; 1636 1637 err = fun_alloc_rings(dev, &newqs); 1638 if (err) 1639 goto free_irqs; 1640 1641 err = fun_enable_irqs(dev); /* of any newly added queues */ 1642 if (err) 1643 goto free_rings; 1644 1645 /* copy the queues we are keeping to the new set */ 1646 memcpy(newqs.rxqs, oldqs.rxqs, keep_rx * sizeof(*oldqs.rxqs)); 1647 memcpy(newqs.txqs, fp->txqs, keep_tx * sizeof(*fp->txqs)); 1648 1649 if (nrx < dev->real_num_rx_queues) { 1650 err = fun_rss_set_qnum(dev, nrx, true); 1651 if (err) 1652 goto disable_tx_irqs; 1653 1654 for (i = nrx; i < dev->real_num_rx_queues; i++) 1655 fun_disable_one_irq(container_of(oldqs.rxqs[i]->napi, 1656 struct fun_irq, napi)); 1657 1658 netif_set_real_num_rx_queues(dev, nrx); 1659 } 1660 1661 if (ntx < dev->real_num_tx_queues) 1662 netif_set_real_num_tx_queues(dev, ntx); 1663 1664 rcu_assign_pointer(fp->rxqs, newqs.rxqs); 1665 fp->txqs = newqs.txqs; 1666 synchronize_net(); 1667 1668 if (ntx > dev->real_num_tx_queues) 1669 netif_set_real_num_tx_queues(dev, ntx); 1670 1671 if (nrx > dev->real_num_rx_queues) { 1672 netif_set_real_num_rx_queues(dev, nrx); 1673 fun_rss_set_qnum(dev, nrx, false); 1674 } 1675 1676 /* disable interrupts of any excess Tx queues */ 1677 for (i = keep_tx; i < oldqs.ntxqs; i++) 1678 fun_disable_one_irq(oldqs.txqs[i]->irq); 1679 1680 fun_free_rings(dev, &oldqs); 1681 fun_prune_queue_irqs(dev); 1682 return 0; 1683 1684 disable_tx_irqs: 1685 for (i = oldqs.ntxqs; i < ntx; i++) 1686 fun_disable_one_irq(newqs.txqs[i]->irq); 1687 free_rings: 1688 newqs.state = FUN_QSTATE_DESTROYED; 1689 fun_free_rings(dev, &newqs); 1690 free_irqs: 1691 fun_prune_queue_irqs(dev); 1692 return err; 1693 } 1694 1695 static int fun_create_netdev(struct fun_ethdev *ed, unsigned int portid) 1696 { 1697 struct fun_dev *fdev = &ed->fdev; 1698 struct net_device *netdev; 1699 struct funeth_priv *fp; 1700 unsigned int ntx, nrx; 1701 int rc; 1702 1703 rc = fun_max_qs(ed, &ntx, &nrx); 1704 if (rc) 1705 return rc; 1706 1707 netdev = alloc_etherdev_mqs(sizeof(*fp), ntx, nrx); 1708 if (!netdev) { 1709 rc = -ENOMEM; 1710 goto done; 1711 } 1712 1713 netdev->dev_port = portid; 1714 fun_queue_defaults(netdev, ed->nsqs_per_port); 1715 1716 fp = netdev_priv(netdev); 1717 fp->fdev = fdev; 1718 fp->pdev = to_pci_dev(fdev->dev); 1719 fp->netdev = netdev; 1720 xa_init(&fp->irqs); 1721 fp->rx_irq_ofst = ntx; 1722 seqcount_init(&fp->link_seq); 1723 1724 fp->lport = INVALID_LPORT; 1725 rc = fun_port_create(netdev); 1726 if (rc) 1727 goto free_netdev; 1728 1729 /* bind port to admin CQ for async events */ 1730 rc = fun_bind(fdev, FUN_ADMIN_BIND_TYPE_PORT, portid, 1731 FUN_ADMIN_BIND_TYPE_EPCQ, 0); 1732 if (rc) 1733 goto destroy_port; 1734 1735 rc = fun_get_port_attributes(netdev); 1736 if (rc) 1737 goto destroy_port; 1738 1739 rc = fun_init_rss(netdev); 1740 if (rc) 1741 goto destroy_port; 1742 1743 rc = fun_init_stats_area(fp); 1744 if (rc) 1745 goto free_rss; 1746 1747 SET_NETDEV_DEV(netdev, fdev->dev); 1748 SET_NETDEV_DEVLINK_PORT(netdev, &fp->dl_port); 1749 netdev->netdev_ops = &fun_netdev_ops; 1750 1751 netdev->hw_features = NETIF_F_SG | NETIF_F_RXHASH | NETIF_F_RXCSUM; 1752 if (fp->port_caps & FUN_PORT_CAP_OFFLOADS) 1753 netdev->hw_features |= NETIF_F_HW_CSUM | TSO_FLAGS; 1754 if (fp->port_caps & FUN_PORT_CAP_ENCAP_OFFLOADS) 1755 netdev->hw_features |= GSO_ENCAP_FLAGS; 1756 1757 netdev->features |= netdev->hw_features | NETIF_F_HIGHDMA; 1758 netdev->vlan_features = netdev->features & VLAN_FEAT; 1759 netdev->mpls_features = netdev->vlan_features; 1760 netdev->hw_enc_features = netdev->hw_features; 1761 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT; 1762 1763 netdev->min_mtu = ETH_MIN_MTU; 1764 netdev->max_mtu = FUN_MAX_MTU; 1765 1766 fun_set_ethtool_ops(netdev); 1767 1768 /* configurable parameters */ 1769 fp->sq_depth = min(SQ_DEPTH, fdev->q_depth); 1770 fp->cq_depth = min(CQ_DEPTH, fdev->q_depth); 1771 fp->rq_depth = min_t(unsigned int, RQ_DEPTH, fdev->q_depth); 1772 fp->rx_coal_usec = CQ_INTCOAL_USEC; 1773 fp->rx_coal_count = CQ_INTCOAL_NPKT; 1774 fp->tx_coal_usec = SQ_INTCOAL_USEC; 1775 fp->tx_coal_count = SQ_INTCOAL_NPKT; 1776 fp->cq_irq_db = FUN_IRQ_CQ_DB(fp->rx_coal_usec, fp->rx_coal_count); 1777 1778 rc = fun_dl_port_register(netdev); 1779 if (rc) 1780 goto free_stats; 1781 1782 fp->ktls_id = FUN_HCI_ID_INVALID; 1783 fun_ktls_init(netdev); /* optional, failure OK */ 1784 1785 netif_carrier_off(netdev); 1786 ed->netdevs[portid] = netdev; 1787 rc = register_netdev(netdev); 1788 if (rc) 1789 goto unreg_devlink; 1790 return 0; 1791 1792 unreg_devlink: 1793 ed->netdevs[portid] = NULL; 1794 fun_ktls_cleanup(fp); 1795 devlink_port_unregister(&fp->dl_port); 1796 free_stats: 1797 fun_free_stats_area(fp); 1798 free_rss: 1799 fun_free_rss(fp); 1800 destroy_port: 1801 fun_port_destroy(netdev); 1802 free_netdev: 1803 free_netdev(netdev); 1804 done: 1805 dev_err(fdev->dev, "couldn't allocate port %u, error %d", portid, rc); 1806 return rc; 1807 } 1808 1809 static void fun_destroy_netdev(struct net_device *netdev) 1810 { 1811 struct funeth_priv *fp; 1812 1813 fp = netdev_priv(netdev); 1814 unregister_netdev(netdev); 1815 devlink_port_unregister(&fp->dl_port); 1816 fun_ktls_cleanup(fp); 1817 fun_free_stats_area(fp); 1818 fun_free_rss(fp); 1819 fun_port_destroy(netdev); 1820 free_netdev(netdev); 1821 } 1822 1823 static int fun_create_ports(struct fun_ethdev *ed, unsigned int nports) 1824 { 1825 struct fun_dev *fd = &ed->fdev; 1826 int i, rc; 1827 1828 /* The admin queue takes 1 IRQ and 2 SQs. */ 1829 ed->nsqs_per_port = min(fd->num_irqs - 1, 1830 fd->kern_end_qid - 2) / nports; 1831 if (ed->nsqs_per_port < 2) { 1832 dev_err(fd->dev, "Too few SQs for %u ports", nports); 1833 return -EINVAL; 1834 } 1835 1836 ed->netdevs = kcalloc(nports, sizeof(*ed->netdevs), GFP_KERNEL); 1837 if (!ed->netdevs) 1838 return -ENOMEM; 1839 1840 ed->num_ports = nports; 1841 for (i = 0; i < nports; i++) { 1842 rc = fun_create_netdev(ed, i); 1843 if (rc) 1844 goto free_netdevs; 1845 } 1846 1847 return 0; 1848 1849 free_netdevs: 1850 while (i) 1851 fun_destroy_netdev(ed->netdevs[--i]); 1852 kfree(ed->netdevs); 1853 ed->netdevs = NULL; 1854 ed->num_ports = 0; 1855 return rc; 1856 } 1857 1858 static void fun_destroy_ports(struct fun_ethdev *ed) 1859 { 1860 unsigned int i; 1861 1862 for (i = 0; i < ed->num_ports; i++) 1863 fun_destroy_netdev(ed->netdevs[i]); 1864 1865 kfree(ed->netdevs); 1866 ed->netdevs = NULL; 1867 ed->num_ports = 0; 1868 } 1869 1870 static void fun_update_link_state(const struct fun_ethdev *ed, 1871 const struct fun_admin_port_notif *notif) 1872 { 1873 unsigned int port_idx = be16_to_cpu(notif->id); 1874 struct net_device *netdev; 1875 struct funeth_priv *fp; 1876 1877 if (port_idx >= ed->num_ports) 1878 return; 1879 1880 netdev = ed->netdevs[port_idx]; 1881 fp = netdev_priv(netdev); 1882 1883 write_seqcount_begin(&fp->link_seq); 1884 fp->link_speed = be32_to_cpu(notif->speed) * 10; /* 10 Mbps->Mbps */ 1885 fp->active_fc = notif->flow_ctrl; 1886 fp->active_fec = notif->fec; 1887 fp->xcvr_type = notif->xcvr_type; 1888 fp->link_down_reason = notif->link_down_reason; 1889 fp->lp_advertising = be64_to_cpu(notif->lp_advertising); 1890 1891 if ((notif->link_state | notif->missed_events) & FUN_PORT_FLAG_MAC_DOWN) 1892 netif_carrier_off(netdev); 1893 if (notif->link_state & FUN_PORT_FLAG_MAC_UP) 1894 netif_carrier_on(netdev); 1895 1896 write_seqcount_end(&fp->link_seq); 1897 fun_report_link(netdev); 1898 } 1899 1900 /* handler for async events delivered through the admin CQ */ 1901 static void fun_event_cb(struct fun_dev *fdev, void *entry) 1902 { 1903 u8 op = ((struct fun_admin_rsp_common *)entry)->op; 1904 1905 if (op == FUN_ADMIN_OP_PORT) { 1906 const struct fun_admin_port_notif *rsp = entry; 1907 1908 if (rsp->subop == FUN_ADMIN_SUBOP_NOTIFY) { 1909 fun_update_link_state(to_fun_ethdev(fdev), rsp); 1910 } else if (rsp->subop == FUN_ADMIN_SUBOP_RES_COUNT) { 1911 const struct fun_admin_res_count_rsp *r = entry; 1912 1913 if (r->count.data) 1914 set_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags); 1915 else 1916 set_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags); 1917 fun_serv_sched(fdev); 1918 } else { 1919 dev_info(fdev->dev, "adminq event unexpected op %u subop %u", 1920 op, rsp->subop); 1921 } 1922 } else { 1923 dev_info(fdev->dev, "adminq event unexpected op %u", op); 1924 } 1925 } 1926 1927 /* handler for pending work managed by the service task */ 1928 static void fun_service_cb(struct fun_dev *fdev) 1929 { 1930 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1931 int rc; 1932 1933 if (test_and_clear_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags)) 1934 fun_destroy_ports(ed); 1935 1936 if (!test_and_clear_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags)) 1937 return; 1938 1939 rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT); 1940 if (rc < 0 || rc == ed->num_ports) 1941 return; 1942 1943 if (ed->num_ports) 1944 fun_destroy_ports(ed); 1945 if (rc) 1946 fun_create_ports(ed, rc); 1947 } 1948 1949 static int funeth_sriov_configure(struct pci_dev *pdev, int nvfs) 1950 { 1951 struct fun_dev *fdev = pci_get_drvdata(pdev); 1952 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1953 int rc; 1954 1955 if (nvfs == 0) { 1956 if (pci_vfs_assigned(pdev)) { 1957 dev_warn(&pdev->dev, 1958 "Cannot disable SR-IOV while VFs are assigned\n"); 1959 return -EPERM; 1960 } 1961 1962 mutex_lock(&ed->state_mutex); 1963 fun_free_vports(ed); 1964 mutex_unlock(&ed->state_mutex); 1965 pci_disable_sriov(pdev); 1966 return 0; 1967 } 1968 1969 rc = pci_enable_sriov(pdev, nvfs); 1970 if (rc) 1971 return rc; 1972 1973 mutex_lock(&ed->state_mutex); 1974 rc = fun_init_vports(ed, nvfs); 1975 mutex_unlock(&ed->state_mutex); 1976 if (rc) { 1977 pci_disable_sriov(pdev); 1978 return rc; 1979 } 1980 1981 return nvfs; 1982 } 1983 1984 static int funeth_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1985 { 1986 struct fun_dev_params aqreq = { 1987 .cqe_size_log2 = ilog2(ADMIN_CQE_SIZE), 1988 .sqe_size_log2 = ilog2(ADMIN_SQE_SIZE), 1989 .cq_depth = ADMIN_CQ_DEPTH, 1990 .sq_depth = ADMIN_SQ_DEPTH, 1991 .rq_depth = ADMIN_RQ_DEPTH, 1992 .min_msix = 2, /* 1 Rx + 1 Tx */ 1993 .event_cb = fun_event_cb, 1994 .serv_cb = fun_service_cb, 1995 }; 1996 struct devlink *devlink; 1997 struct fun_ethdev *ed; 1998 struct fun_dev *fdev; 1999 int rc; 2000 2001 devlink = fun_devlink_alloc(&pdev->dev); 2002 if (!devlink) { 2003 dev_err(&pdev->dev, "devlink alloc failed\n"); 2004 return -ENOMEM; 2005 } 2006 2007 ed = devlink_priv(devlink); 2008 mutex_init(&ed->state_mutex); 2009 2010 fdev = &ed->fdev; 2011 rc = fun_dev_enable(fdev, pdev, &aqreq, KBUILD_MODNAME); 2012 if (rc) 2013 goto free_devlink; 2014 2015 rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT); 2016 if (rc > 0) 2017 rc = fun_create_ports(ed, rc); 2018 if (rc < 0) 2019 goto disable_dev; 2020 2021 fun_serv_restart(fdev); 2022 fun_devlink_register(devlink); 2023 return 0; 2024 2025 disable_dev: 2026 fun_dev_disable(fdev); 2027 free_devlink: 2028 mutex_destroy(&ed->state_mutex); 2029 fun_devlink_free(devlink); 2030 return rc; 2031 } 2032 2033 static void funeth_remove(struct pci_dev *pdev) 2034 { 2035 struct fun_dev *fdev = pci_get_drvdata(pdev); 2036 struct devlink *devlink; 2037 struct fun_ethdev *ed; 2038 2039 ed = to_fun_ethdev(fdev); 2040 devlink = priv_to_devlink(ed); 2041 fun_devlink_unregister(devlink); 2042 2043 #ifdef CONFIG_PCI_IOV 2044 funeth_sriov_configure(pdev, 0); 2045 #endif 2046 2047 fun_serv_stop(fdev); 2048 fun_destroy_ports(ed); 2049 fun_dev_disable(fdev); 2050 mutex_destroy(&ed->state_mutex); 2051 2052 fun_devlink_free(devlink); 2053 } 2054 2055 static struct pci_driver funeth_driver = { 2056 .name = KBUILD_MODNAME, 2057 .id_table = funeth_id_table, 2058 .probe = funeth_probe, 2059 .remove = funeth_remove, 2060 .shutdown = funeth_remove, 2061 .sriov_configure = funeth_sriov_configure, 2062 }; 2063 2064 module_pci_driver(funeth_driver); 2065 2066 MODULE_AUTHOR("Dimitris Michailidis <dmichail@fungible.com>"); 2067 MODULE_DESCRIPTION("Fungible Ethernet Network Driver"); 2068 MODULE_LICENSE("Dual BSD/GPL"); 2069 MODULE_DEVICE_TABLE(pci, funeth_id_table); 2070