1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/dmu.h>
28 #include <sys/avl.h>
29 #include <sys/zap.h>
30 #include <sys/nvpair.h>
31 #ifdef _KERNEL
32 #include <sys/sid.h>
33 #include <sys/zfs_vfsops.h>
34 #include <sys/zfs_znode.h>
35 #endif
36 #include <sys/zfs_fuid.h>
37
38 /*
39 * FUID Domain table(s).
40 *
41 * The FUID table is stored as a packed nvlist of an array
42 * of nvlists which contain an index, domain string and offset
43 *
44 * During file system initialization the nvlist(s) are read and
45 * two AVL trees are created. One tree is keyed by the index number
46 * and the other by the domain string. Nodes are never removed from
47 * trees, but new entries may be added. If a new entry is added then
48 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
49 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
50 *
51 */
52
53 #define FUID_IDX "fuid_idx"
54 #define FUID_DOMAIN "fuid_domain"
55 #define FUID_OFFSET "fuid_offset"
56 #define FUID_NVP_ARRAY "fuid_nvlist"
57
58 typedef struct fuid_domain {
59 avl_node_t f_domnode;
60 avl_node_t f_idxnode;
61 ksiddomain_t *f_ksid;
62 uint64_t f_idx;
63 } fuid_domain_t;
64
65 static const char *const nulldomain = "";
66
67 /*
68 * Compare two indexes.
69 */
70 static int
idx_compare(const void * arg1,const void * arg2)71 idx_compare(const void *arg1, const void *arg2)
72 {
73 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
74 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
75
76 return (TREE_CMP(node1->f_idx, node2->f_idx));
77 }
78
79 /*
80 * Compare two domain strings.
81 */
82 static int
domain_compare(const void * arg1,const void * arg2)83 domain_compare(const void *arg1, const void *arg2)
84 {
85 const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
86 const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
87 int val;
88
89 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
90
91 return (TREE_ISIGN(val));
92 }
93
94 void
zfs_fuid_avl_tree_create(avl_tree_t * idx_tree,avl_tree_t * domain_tree)95 zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
96 {
97 avl_create(idx_tree, idx_compare,
98 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
99 avl_create(domain_tree, domain_compare,
100 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
101 }
102
103 /*
104 * load initial fuid domain and idx trees. This function is used by
105 * both the kernel and zdb.
106 */
107 uint64_t
zfs_fuid_table_load(objset_t * os,uint64_t fuid_obj,avl_tree_t * idx_tree,avl_tree_t * domain_tree)108 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
109 avl_tree_t *domain_tree)
110 {
111 dmu_buf_t *db;
112 uint64_t fuid_size;
113
114 ASSERT(fuid_obj != 0);
115 VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
116 FTAG, &db));
117 fuid_size = *(uint64_t *)db->db_data;
118 dmu_buf_rele(db, FTAG);
119
120 if (fuid_size) {
121 nvlist_t **fuidnvp;
122 nvlist_t *nvp = NULL;
123 uint_t count;
124 char *packed;
125 int i;
126
127 packed = kmem_alloc(fuid_size, KM_SLEEP);
128 VERIFY(dmu_read(os, fuid_obj, 0,
129 fuid_size, packed, DMU_READ_PREFETCH) == 0);
130 VERIFY(nvlist_unpack(packed, fuid_size,
131 &nvp, 0) == 0);
132 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
133 &fuidnvp, &count) == 0);
134
135 for (i = 0; i != count; i++) {
136 fuid_domain_t *domnode;
137 const char *domain;
138 uint64_t idx;
139
140 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
141 &domain) == 0);
142 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
143 &idx) == 0);
144
145 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
146
147 domnode->f_idx = idx;
148 domnode->f_ksid = ksid_lookupdomain(domain);
149 avl_add(idx_tree, domnode);
150 avl_add(domain_tree, domnode);
151 }
152 nvlist_free(nvp);
153 kmem_free(packed, fuid_size);
154 }
155 return (fuid_size);
156 }
157
158 void
zfs_fuid_table_destroy(avl_tree_t * idx_tree,avl_tree_t * domain_tree)159 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
160 {
161 fuid_domain_t *domnode;
162 void *cookie;
163
164 cookie = NULL;
165 while ((domnode = avl_destroy_nodes(domain_tree, &cookie)))
166 ksiddomain_rele(domnode->f_ksid);
167
168 avl_destroy(domain_tree);
169 cookie = NULL;
170 while ((domnode = avl_destroy_nodes(idx_tree, &cookie)))
171 kmem_free(domnode, sizeof (fuid_domain_t));
172 avl_destroy(idx_tree);
173 }
174
175 const char *
zfs_fuid_idx_domain(avl_tree_t * idx_tree,uint32_t idx)176 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
177 {
178 fuid_domain_t searchnode, *findnode;
179 avl_index_t loc;
180
181 searchnode.f_idx = idx;
182
183 findnode = avl_find(idx_tree, &searchnode, &loc);
184
185 return (findnode ? findnode->f_ksid->kd_name : nulldomain);
186 }
187
188 #ifdef _KERNEL
189 /*
190 * Load the fuid table(s) into memory.
191 */
192 static void
zfs_fuid_init(zfsvfs_t * zfsvfs)193 zfs_fuid_init(zfsvfs_t *zfsvfs)
194 {
195 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
196
197 if (zfsvfs->z_fuid_loaded) {
198 rw_exit(&zfsvfs->z_fuid_lock);
199 return;
200 }
201
202 zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
203
204 (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
205 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
206 if (zfsvfs->z_fuid_obj != 0) {
207 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
208 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
209 &zfsvfs->z_fuid_domain);
210 }
211
212 zfsvfs->z_fuid_loaded = B_TRUE;
213 rw_exit(&zfsvfs->z_fuid_lock);
214 }
215
216 /*
217 * sync out AVL trees to persistent storage.
218 */
219 void
zfs_fuid_sync(zfsvfs_t * zfsvfs,dmu_tx_t * tx)220 zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
221 {
222 nvlist_t *nvp;
223 nvlist_t **fuids;
224 size_t nvsize = 0;
225 char *packed;
226 dmu_buf_t *db;
227 fuid_domain_t *domnode;
228 int numnodes;
229 int i;
230
231 if (!zfsvfs->z_fuid_dirty) {
232 return;
233 }
234
235 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
236
237 /*
238 * First see if table needs to be created?
239 */
240 if (zfsvfs->z_fuid_obj == 0) {
241 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
242 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
243 sizeof (uint64_t), tx);
244 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
245 ZFS_FUID_TABLES, sizeof (uint64_t), 1,
246 &zfsvfs->z_fuid_obj, tx) == 0);
247 }
248
249 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
250
251 numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
252 fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
253 for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
254 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
255 VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
256 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
257 domnode->f_idx) == 0);
258 VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
259 VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
260 domnode->f_ksid->kd_name) == 0);
261 }
262 fnvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
263 (const nvlist_t * const *)fuids, numnodes);
264 for (i = 0; i != numnodes; i++)
265 nvlist_free(fuids[i]);
266 kmem_free(fuids, numnodes * sizeof (void *));
267 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
268 packed = kmem_alloc(nvsize, KM_SLEEP);
269 VERIFY(nvlist_pack(nvp, &packed, &nvsize,
270 NV_ENCODE_XDR, KM_SLEEP) == 0);
271 nvlist_free(nvp);
272 zfsvfs->z_fuid_size = nvsize;
273 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
274 zfsvfs->z_fuid_size, packed, tx);
275 kmem_free(packed, zfsvfs->z_fuid_size);
276 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
277 FTAG, &db));
278 dmu_buf_will_dirty(db, tx);
279 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
280 dmu_buf_rele(db, FTAG);
281
282 zfsvfs->z_fuid_dirty = B_FALSE;
283 rw_exit(&zfsvfs->z_fuid_lock);
284 }
285
286 /*
287 * Query domain table for a given domain.
288 *
289 * If domain isn't found and addok is set, it is added to AVL trees and
290 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be
291 * necessary for the caller or another thread to detect the dirty table
292 * and sync out the changes.
293 */
294 static int
zfs_fuid_find_by_domain(zfsvfs_t * zfsvfs,const char * domain,const char ** retdomain,boolean_t addok)295 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
296 const char **retdomain, boolean_t addok)
297 {
298 fuid_domain_t searchnode, *findnode;
299 avl_index_t loc;
300 krw_t rw = RW_READER;
301
302 /*
303 * If the dummy "nobody" domain then return an index of 0
304 * to cause the created FUID to be a standard POSIX id
305 * for the user nobody.
306 */
307 if (domain[0] == '\0') {
308 if (retdomain)
309 *retdomain = nulldomain;
310 return (0);
311 }
312
313 searchnode.f_ksid = ksid_lookupdomain(domain);
314 if (retdomain)
315 *retdomain = searchnode.f_ksid->kd_name;
316 if (!zfsvfs->z_fuid_loaded)
317 zfs_fuid_init(zfsvfs);
318
319 retry:
320 rw_enter(&zfsvfs->z_fuid_lock, rw);
321 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
322
323 if (findnode) {
324 rw_exit(&zfsvfs->z_fuid_lock);
325 ksiddomain_rele(searchnode.f_ksid);
326 return (findnode->f_idx);
327 } else if (addok) {
328 fuid_domain_t *domnode;
329 uint64_t retidx;
330
331 if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
332 rw_exit(&zfsvfs->z_fuid_lock);
333 rw = RW_WRITER;
334 goto retry;
335 }
336
337 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
338 domnode->f_ksid = searchnode.f_ksid;
339
340 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
341
342 avl_add(&zfsvfs->z_fuid_domain, domnode);
343 avl_add(&zfsvfs->z_fuid_idx, domnode);
344 zfsvfs->z_fuid_dirty = B_TRUE;
345 rw_exit(&zfsvfs->z_fuid_lock);
346 return (retidx);
347 } else {
348 rw_exit(&zfsvfs->z_fuid_lock);
349 return (-1);
350 }
351 }
352
353 /*
354 * Query domain table by index, returning domain string
355 *
356 * Returns a pointer from an avl node of the domain string.
357 *
358 */
359 const char *
zfs_fuid_find_by_idx(zfsvfs_t * zfsvfs,uint32_t idx)360 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
361 {
362 const char *domain;
363
364 if (idx == 0 || !zfsvfs->z_use_fuids)
365 return (NULL);
366
367 if (!zfsvfs->z_fuid_loaded)
368 zfs_fuid_init(zfsvfs);
369
370 rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
371
372 if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
373 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
374 else
375 domain = nulldomain;
376 rw_exit(&zfsvfs->z_fuid_lock);
377
378 ASSERT(domain);
379 return (domain);
380 }
381
382 void
zfs_fuid_map_ids(znode_t * zp,cred_t * cr,uid_t * uidp,uid_t * gidp)383 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
384 {
385 *uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOUID(zp)),
386 cr, ZFS_OWNER);
387 *gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOGID(zp)),
388 cr, ZFS_GROUP);
389 }
390
391 #ifdef __FreeBSD__
392 uid_t
zfs_fuid_map_id(zfsvfs_t * zfsvfs,uint64_t fuid,cred_t * cr,zfs_fuid_type_t type)393 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
394 cred_t *cr, zfs_fuid_type_t type)
395 {
396 uint32_t index = FUID_INDEX(fuid);
397
398 if (index == 0)
399 return (fuid);
400
401 return (UID_NOBODY);
402 }
403 #elif defined(__linux__)
404 uid_t
zfs_fuid_map_id(zfsvfs_t * zfsvfs,uint64_t fuid,cred_t * cr,zfs_fuid_type_t type)405 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
406 cred_t *cr, zfs_fuid_type_t type)
407 {
408 /*
409 * The Linux port only supports POSIX IDs, use the passed id.
410 */
411 return (fuid);
412 }
413
414 #else
415 uid_t
zfs_fuid_map_id(zfsvfs_t * zfsvfs,uint64_t fuid,cred_t * cr,zfs_fuid_type_t type)416 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
417 cred_t *cr, zfs_fuid_type_t type)
418 {
419 uint32_t index = FUID_INDEX(fuid);
420 const char *domain;
421 uid_t id;
422
423 if (index == 0)
424 return (fuid);
425
426 domain = zfs_fuid_find_by_idx(zfsvfs, index);
427 ASSERT(domain != NULL);
428
429 if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
430 (void) kidmap_getuidbysid(crgetzone(cr), domain,
431 FUID_RID(fuid), &id);
432 } else {
433 (void) kidmap_getgidbysid(crgetzone(cr), domain,
434 FUID_RID(fuid), &id);
435 }
436 return (id);
437 }
438 #endif
439
440 /*
441 * Add a FUID node to the list of fuid's being created for this
442 * ACL
443 *
444 * If ACL has multiple domains, then keep only one copy of each unique
445 * domain.
446 */
447 void
zfs_fuid_node_add(zfs_fuid_info_t ** fuidpp,const char * domain,uint32_t rid,uint64_t idx,uint64_t id,zfs_fuid_type_t type)448 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
449 uint64_t idx, uint64_t id, zfs_fuid_type_t type)
450 {
451 zfs_fuid_t *fuid;
452 zfs_fuid_domain_t *fuid_domain;
453 zfs_fuid_info_t *fuidp;
454 uint64_t fuididx;
455 boolean_t found = B_FALSE;
456
457 if (*fuidpp == NULL)
458 *fuidpp = zfs_fuid_info_alloc();
459
460 fuidp = *fuidpp;
461 /*
462 * First find fuid domain index in linked list
463 *
464 * If one isn't found then create an entry.
465 */
466
467 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
468 fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
469 fuid_domain), fuididx++) {
470 if (idx == fuid_domain->z_domidx) {
471 found = B_TRUE;
472 break;
473 }
474 }
475
476 if (!found) {
477 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
478 fuid_domain->z_domain = domain;
479 fuid_domain->z_domidx = idx;
480 list_insert_tail(&fuidp->z_domains, fuid_domain);
481 fuidp->z_domain_str_sz += strlen(domain) + 1;
482 fuidp->z_domain_cnt++;
483 }
484
485 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
486
487 /*
488 * Now allocate fuid entry and add it on the end of the list
489 */
490
491 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
492 fuid->z_id = id;
493 fuid->z_domidx = idx;
494 fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
495
496 list_insert_tail(&fuidp->z_fuids, fuid);
497 fuidp->z_fuid_cnt++;
498 } else {
499 if (type == ZFS_OWNER)
500 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
501 else
502 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
503 }
504 }
505
506 #ifdef HAVE_KSID
507 /*
508 * Create a file system FUID, based on information in the users cred
509 *
510 * If cred contains KSID_OWNER then it should be used to determine
511 * the uid otherwise cred's uid will be used. By default cred's gid
512 * is used unless it's an ephemeral ID in which case KSID_GROUP will
513 * be used if it exists.
514 */
515 uint64_t
zfs_fuid_create_cred(zfsvfs_t * zfsvfs,zfs_fuid_type_t type,cred_t * cr,zfs_fuid_info_t ** fuidp)516 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
517 cred_t *cr, zfs_fuid_info_t **fuidp)
518 {
519 uint64_t idx;
520 ksid_t *ksid;
521 uint32_t rid;
522 const char *kdomain, *domain;
523 uid_t id;
524
525 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
526
527 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
528
529 if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
530 id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
531
532 if (IS_EPHEMERAL(id))
533 return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
534
535 return ((uint64_t)id);
536 }
537
538 /*
539 * ksid is present and FUID is supported
540 */
541 id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
542
543 if (!IS_EPHEMERAL(id))
544 return ((uint64_t)id);
545
546 if (type == ZFS_GROUP)
547 id = ksid_getid(ksid);
548
549 rid = ksid_getrid(ksid);
550 domain = ksid_getdomain(ksid);
551
552 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
553
554 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
555
556 return (FUID_ENCODE(idx, rid));
557 }
558 #endif /* HAVE_KSID */
559
560 /*
561 * Create a file system FUID for an ACL ace
562 * or a chown/chgrp of the file.
563 * This is similar to zfs_fuid_create_cred, except that
564 * we can't find the domain + rid information in the
565 * cred. Instead we have to query Winchester for the
566 * domain and rid.
567 *
568 * During replay operations the domain+rid information is
569 * found in the zfs_fuid_info_t that the replay code has
570 * attached to the zfsvfs of the file system.
571 */
572 uint64_t
zfs_fuid_create(zfsvfs_t * zfsvfs,uint64_t id,cred_t * cr,zfs_fuid_type_t type,zfs_fuid_info_t ** fuidpp)573 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
574 zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
575 {
576 #ifdef HAVE_KSID
577 const char *domain, *kdomain;
578 uint32_t fuid_idx = FUID_INDEX(id);
579 uint32_t rid = 0;
580 idmap_stat status;
581 uint64_t idx = UID_NOBODY;
582 zfs_fuid_t *zfuid = NULL;
583 zfs_fuid_info_t *fuidp = NULL;
584
585 /*
586 * If POSIX ID, or entry is already a FUID then
587 * just return the id
588 *
589 * We may also be handed an already FUID'ized id via
590 * chmod.
591 */
592
593 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
594 return (id);
595
596 if (zfsvfs->z_replay) {
597 fuidp = zfsvfs->z_fuid_replay;
598
599 /*
600 * If we are passed an ephemeral id, but no
601 * fuid_info was logged then return NOBODY.
602 * This is most likely a result of idmap service
603 * not being available.
604 */
605 if (fuidp == NULL)
606 return (UID_NOBODY);
607
608 VERIFY3U(type, >=, ZFS_OWNER);
609 VERIFY3U(type, <=, ZFS_ACE_GROUP);
610
611 switch (type) {
612 case ZFS_ACE_USER:
613 case ZFS_ACE_GROUP:
614 zfuid = list_head(&fuidp->z_fuids);
615 rid = FUID_RID(zfuid->z_logfuid);
616 idx = FUID_INDEX(zfuid->z_logfuid);
617 break;
618 case ZFS_OWNER:
619 rid = FUID_RID(fuidp->z_fuid_owner);
620 idx = FUID_INDEX(fuidp->z_fuid_owner);
621 break;
622 case ZFS_GROUP:
623 rid = FUID_RID(fuidp->z_fuid_group);
624 idx = FUID_INDEX(fuidp->z_fuid_group);
625 break;
626 }
627 domain = fuidp->z_domain_table[idx - 1];
628 } else {
629 if (type == ZFS_OWNER || type == ZFS_ACE_USER)
630 status = kidmap_getsidbyuid(crgetzone(cr), id,
631 &domain, &rid);
632 else
633 status = kidmap_getsidbygid(crgetzone(cr), id,
634 &domain, &rid);
635
636 if (status != 0) {
637 /*
638 * When returning nobody we will need to
639 * make a dummy fuid table entry for logging
640 * purposes.
641 */
642 rid = UID_NOBODY;
643 domain = nulldomain;
644 }
645 }
646
647 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
648
649 if (!zfsvfs->z_replay)
650 zfs_fuid_node_add(fuidpp, kdomain,
651 rid, idx, id, type);
652 else if (zfuid != NULL) {
653 list_remove(&fuidp->z_fuids, zfuid);
654 kmem_free(zfuid, sizeof (zfs_fuid_t));
655 }
656 return (FUID_ENCODE(idx, rid));
657 #else
658 /*
659 * The Linux port only supports POSIX IDs, use the passed id.
660 */
661 return (id);
662 #endif
663 }
664
665 void
zfs_fuid_destroy(zfsvfs_t * zfsvfs)666 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
667 {
668 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
669 if (!zfsvfs->z_fuid_loaded) {
670 rw_exit(&zfsvfs->z_fuid_lock);
671 return;
672 }
673 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
674 rw_exit(&zfsvfs->z_fuid_lock);
675 }
676
677 /*
678 * Allocate zfs_fuid_info for tracking FUIDs created during
679 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
680 */
681 zfs_fuid_info_t *
zfs_fuid_info_alloc(void)682 zfs_fuid_info_alloc(void)
683 {
684 zfs_fuid_info_t *fuidp;
685
686 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
687 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
688 offsetof(zfs_fuid_domain_t, z_next));
689 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
690 offsetof(zfs_fuid_t, z_next));
691 return (fuidp);
692 }
693
694 /*
695 * Release all memory associated with zfs_fuid_info_t
696 */
697 void
zfs_fuid_info_free(zfs_fuid_info_t * fuidp)698 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
699 {
700 zfs_fuid_t *zfuid;
701 zfs_fuid_domain_t *zdomain;
702
703 while ((zfuid = list_remove_head(&fuidp->z_fuids)) != NULL)
704 kmem_free(zfuid, sizeof (zfs_fuid_t));
705
706 if (fuidp->z_domain_table != NULL)
707 kmem_free(fuidp->z_domain_table,
708 (sizeof (char *)) * fuidp->z_domain_cnt);
709
710 while ((zdomain = list_remove_head(&fuidp->z_domains)) != NULL)
711 kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
712
713 kmem_free(fuidp, sizeof (zfs_fuid_info_t));
714 }
715
716 /*
717 * Check to see if id is a groupmember. If cred
718 * has ksid info then sidlist is checked first
719 * and if still not found then POSIX groups are checked
720 *
721 * Will use a straight FUID compare when possible.
722 */
723 boolean_t
zfs_groupmember(zfsvfs_t * zfsvfs,uint64_t id,cred_t * cr)724 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
725 {
726 uid_t gid;
727
728 #ifdef illumos
729 ksid_t *ksid = crgetsid(cr, KSID_GROUP);
730 ksidlist_t *ksidlist = crgetsidlist(cr);
731
732 if (ksid && ksidlist) {
733 int i;
734 ksid_t *ksid_groups;
735 uint32_t idx = FUID_INDEX(id);
736 uint32_t rid = FUID_RID(id);
737
738 ksid_groups = ksidlist->ksl_sids;
739
740 for (i = 0; i != ksidlist->ksl_nsid; i++) {
741 if (idx == 0) {
742 if (id != IDMAP_WK_CREATOR_GROUP_GID &&
743 id == ksid_groups[i].ks_id) {
744 return (B_TRUE);
745 }
746 } else {
747 const char *domain;
748
749 domain = zfs_fuid_find_by_idx(zfsvfs, idx);
750 ASSERT(domain != NULL);
751
752 if (strcmp(domain,
753 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
754 return (B_FALSE);
755
756 if ((strcmp(domain,
757 ksid_groups[i].ks_domain->kd_name) == 0) &&
758 rid == ksid_groups[i].ks_rid)
759 return (B_TRUE);
760 }
761 }
762 }
763 #endif /* illumos */
764
765 /*
766 * Not found in ksidlist, check posix groups
767 */
768 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
769 return (groupmember(gid, cr));
770 }
771
772 void
zfs_fuid_txhold(zfsvfs_t * zfsvfs,dmu_tx_t * tx)773 zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
774 {
775 if (zfsvfs->z_fuid_obj == 0) {
776 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
777 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
778 FUID_SIZE_ESTIMATE(zfsvfs));
779 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
780 } else {
781 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
782 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
783 FUID_SIZE_ESTIMATE(zfsvfs));
784 }
785 }
786
787 /*
788 * buf must be big enough (eg, 32 bytes)
789 */
790 int
zfs_id_to_fuidstr(zfsvfs_t * zfsvfs,const char * domain,uid_t rid,char * buf,size_t len,boolean_t addok)791 zfs_id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
792 char *buf, size_t len, boolean_t addok)
793 {
794 uint64_t fuid;
795 int domainid = 0;
796
797 if (domain && domain[0]) {
798 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
799 if (domainid == -1)
800 return (SET_ERROR(ENOENT));
801 }
802 fuid = FUID_ENCODE(domainid, rid);
803 (void) snprintf(buf, len, "%llx", (longlong_t)fuid);
804 return (0);
805 }
806 #endif
807