1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2017 Dell EMC
5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
6 * Copyright (c) 1988, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <sys/param.h>
39 #include <sys/elf.h>
40 #include <sys/time.h>
41 #include <sys/resourcevar.h>
42 #define _WANT_UCRED
43 #include <sys/ucred.h>
44 #undef _WANT_UCRED
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/stat.h>
48 #include <sys/vnode.h>
49 #include <sys/socket.h>
50 #define _WANT_SOCKET
51 #include <sys/socketvar.h>
52 #include <sys/domain.h>
53 #define _WANT_PROTOSW
54 #include <sys/protosw.h>
55 #include <sys/un.h>
56 #define _WANT_UNPCB
57 #include <sys/unpcb.h>
58 #include <sys/sysctl.h>
59 #include <sys/tty.h>
60 #include <sys/filedesc.h>
61 #include <sys/queue.h>
62 #define _WANT_FILE
63 #include <sys/file.h>
64 #include <sys/conf.h>
65 #include <sys/ksem.h>
66 #include <sys/mman.h>
67 #include <sys/capsicum.h>
68 #include <sys/ptrace.h>
69 #define _WANT_MOUNT
70 #include <sys/mount.h>
71 #include <sys/filedesc.h>
72 #include <sys/pipe.h>
73 #include <fs/devfs/devfs.h>
74 #include <fs/devfs/devfs_int.h>
75 #include <nfs/nfsproto.h>
76 #include <nfsclient/nfs.h>
77 #include <nfsclient/nfsnode.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82
83 #include <net/route.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87
88 #include <assert.h>
89 #include <ctype.h>
90 #include <err.h>
91 #include <fcntl.h>
92 #include <kvm.h>
93 #include <libutil.h>
94 #include <limits.h>
95 #include <paths.h>
96 #include <pwd.h>
97 #include <stdio.h>
98 #include <stdlib.h>
99 #include <stddef.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <netdb.h>
103
104 #include <libprocstat.h>
105 #include "libprocstat_internal.h"
106 #include "common_kvm.h"
107 #include "core.h"
108
109 int statfs(const char *, struct statfs *); /* XXX */
110
111 #define PROCSTAT_KVM 1
112 #define PROCSTAT_SYSCTL 2
113 #define PROCSTAT_CORE 3
114
115 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp,
116 size_t nchr, int env);
117 static char *getmnton(kvm_t *kd, struct mount *m);
118 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core,
119 int *cntp);
120 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core,
121 unsigned int *cntp);
122 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
123 static struct filestat_list *procstat_getfiles_kvm(
124 struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
125 static struct filestat_list *procstat_getfiles_sysctl(
126 struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
127 static int procstat_get_pipe_info_sysctl(struct filestat *fst,
128 struct pipestat *pipe, char *errbuf);
129 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
130 struct pipestat *pipe, char *errbuf);
131 static int procstat_get_pts_info_sysctl(struct filestat *fst,
132 struct ptsstat *pts, char *errbuf);
133 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
134 struct ptsstat *pts, char *errbuf);
135 static int procstat_get_sem_info_sysctl(struct filestat *fst,
136 struct semstat *sem, char *errbuf);
137 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
138 struct semstat *sem, char *errbuf);
139 static int procstat_get_shm_info_sysctl(struct filestat *fst,
140 struct shmstat *shm, char *errbuf);
141 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
142 struct shmstat *shm, char *errbuf);
143 static int procstat_get_socket_info_sysctl(struct filestat *fst,
144 struct sockstat *sock, char *errbuf);
145 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
146 struct sockstat *sock, char *errbuf);
147 static int to_filestat_flags(int flags);
148 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
149 struct vnstat *vn, char *errbuf);
150 static int procstat_get_vnode_info_sysctl(struct filestat *fst,
151 struct vnstat *vn, char *errbuf);
152 static gid_t *procstat_getgroups_core(struct procstat_core *core,
153 unsigned int *count);
154 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
155 unsigned int *count);
156 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
157 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid,
158 int *cntp);
159 static int procstat_getosrel_core(struct procstat_core *core,
160 int *osrelp);
161 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
162 int *osrelp);
163 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp);
164 static int procstat_getpathname_core(struct procstat_core *core,
165 char *pathname, size_t maxlen);
166 static int procstat_getpathname_sysctl(pid_t pid, char *pathname,
167 size_t maxlen);
168 static int procstat_getrlimit_core(struct procstat_core *core, int which,
169 struct rlimit* rlimit);
170 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
171 int which, struct rlimit* rlimit);
172 static int procstat_getrlimit_sysctl(pid_t pid, int which,
173 struct rlimit* rlimit);
174 static int procstat_getumask_core(struct procstat_core *core,
175 unsigned short *maskp);
176 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
177 unsigned short *maskp);
178 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
179 static int vntype2psfsttype(int type);
180
181 void
procstat_close(struct procstat * procstat)182 procstat_close(struct procstat *procstat)
183 {
184
185 assert(procstat);
186 if (procstat->type == PROCSTAT_KVM)
187 kvm_close(procstat->kd);
188 else if (procstat->type == PROCSTAT_CORE)
189 procstat_core_close(procstat->core);
190 procstat_freeargv(procstat);
191 procstat_freeenvv(procstat);
192 free(procstat);
193 }
194
195 struct procstat *
procstat_open_sysctl(void)196 procstat_open_sysctl(void)
197 {
198 struct procstat *procstat;
199
200 procstat = calloc(1, sizeof(*procstat));
201 if (procstat == NULL) {
202 warn("malloc()");
203 return (NULL);
204 }
205 procstat->type = PROCSTAT_SYSCTL;
206 return (procstat);
207 }
208
209 struct procstat *
procstat_open_kvm(const char * nlistf,const char * memf)210 procstat_open_kvm(const char *nlistf, const char *memf)
211 {
212 struct procstat *procstat;
213 kvm_t *kd;
214 char buf[_POSIX2_LINE_MAX];
215
216 procstat = calloc(1, sizeof(*procstat));
217 if (procstat == NULL) {
218 warn("malloc()");
219 return (NULL);
220 }
221 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
222 if (kd == NULL) {
223 warnx("kvm_openfiles(): %s", buf);
224 free(procstat);
225 return (NULL);
226 }
227 procstat->type = PROCSTAT_KVM;
228 procstat->kd = kd;
229 return (procstat);
230 }
231
232 struct procstat *
procstat_open_core(const char * filename)233 procstat_open_core(const char *filename)
234 {
235 struct procstat *procstat;
236 struct procstat_core *core;
237
238 procstat = calloc(1, sizeof(*procstat));
239 if (procstat == NULL) {
240 warn("malloc()");
241 return (NULL);
242 }
243 core = procstat_core_open(filename);
244 if (core == NULL) {
245 free(procstat);
246 return (NULL);
247 }
248 procstat->type = PROCSTAT_CORE;
249 procstat->core = core;
250 return (procstat);
251 }
252
253 struct kinfo_proc *
procstat_getprocs(struct procstat * procstat,int what,int arg,unsigned int * count)254 procstat_getprocs(struct procstat *procstat, int what, int arg,
255 unsigned int *count)
256 {
257 struct kinfo_proc *p0, *p;
258 size_t len, olen;
259 int name[4];
260 int cnt;
261 int error;
262
263 assert(procstat);
264 assert(count);
265 p = NULL;
266 if (procstat->type == PROCSTAT_KVM) {
267 *count = 0;
268 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
269 if (p0 == NULL || cnt <= 0)
270 return (NULL);
271 *count = cnt;
272 len = *count * sizeof(*p);
273 p = malloc(len);
274 if (p == NULL) {
275 warnx("malloc(%zu)", len);
276 goto fail;
277 }
278 bcopy(p0, p, len);
279 return (p);
280 } else if (procstat->type == PROCSTAT_SYSCTL) {
281 len = 0;
282 name[0] = CTL_KERN;
283 name[1] = KERN_PROC;
284 name[2] = what;
285 name[3] = arg;
286 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
287 if (error < 0 && errno != EPERM) {
288 warn("sysctl(kern.proc)");
289 goto fail;
290 }
291 if (len == 0) {
292 warnx("no processes?");
293 goto fail;
294 }
295 do {
296 len += len / 10;
297 p = reallocf(p, len);
298 if (p == NULL) {
299 warnx("reallocf(%zu)", len);
300 goto fail;
301 }
302 olen = len;
303 error = sysctl(name, nitems(name), p, &len, NULL, 0);
304 } while (error < 0 && errno == ENOMEM && olen == len);
305 if (error < 0 && errno != EPERM) {
306 warn("sysctl(kern.proc)");
307 goto fail;
308 }
309 /* Perform simple consistency checks. */
310 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
311 warnx("kinfo_proc structure size mismatch (len = %zu)", len);
312 goto fail;
313 }
314 *count = len / sizeof(*p);
315 return (p);
316 } else if (procstat->type == PROCSTAT_CORE) {
317 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
318 &len);
319 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
320 warnx("kinfo_proc structure size mismatch");
321 goto fail;
322 }
323 *count = len / sizeof(*p);
324 return (p);
325 } else {
326 warnx("unknown access method: %d", procstat->type);
327 return (NULL);
328 }
329 fail:
330 if (p)
331 free(p);
332 return (NULL);
333 }
334
335 void
procstat_freeprocs(struct procstat * procstat __unused,struct kinfo_proc * p)336 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
337 {
338
339 if (p != NULL)
340 free(p);
341 p = NULL;
342 }
343
344 struct filestat_list *
procstat_getfiles(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)345 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
346 {
347
348 switch (procstat->type) {
349 case PROCSTAT_KVM:
350 return (procstat_getfiles_kvm(procstat, kp, mmapped));
351 case PROCSTAT_SYSCTL:
352 case PROCSTAT_CORE:
353 return (procstat_getfiles_sysctl(procstat, kp, mmapped));
354 default:
355 warnx("unknown access method: %d", procstat->type);
356 return (NULL);
357 }
358 }
359
360 void
procstat_freefiles(struct procstat * procstat,struct filestat_list * head)361 procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
362 {
363 struct filestat *fst, *tmp;
364
365 STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
366 if (fst->fs_path != NULL)
367 free(fst->fs_path);
368 free(fst);
369 }
370 free(head);
371 if (procstat->vmentries != NULL) {
372 free(procstat->vmentries);
373 procstat->vmentries = NULL;
374 }
375 if (procstat->files != NULL) {
376 free(procstat->files);
377 procstat->files = NULL;
378 }
379 }
380
381 static struct filestat *
filestat_new_entry(void * typedep,int type,int fd,int fflags,int uflags,int refcount,off_t offset,char * path,cap_rights_t * cap_rightsp)382 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
383 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
384 {
385 struct filestat *entry;
386
387 entry = calloc(1, sizeof(*entry));
388 if (entry == NULL) {
389 warn("malloc()");
390 return (NULL);
391 }
392 entry->fs_typedep = typedep;
393 entry->fs_fflags = fflags;
394 entry->fs_uflags = uflags;
395 entry->fs_fd = fd;
396 entry->fs_type = type;
397 entry->fs_ref_count = refcount;
398 entry->fs_offset = offset;
399 entry->fs_path = path;
400 if (cap_rightsp != NULL)
401 entry->fs_cap_rights = *cap_rightsp;
402 else
403 cap_rights_init(&entry->fs_cap_rights);
404 return (entry);
405 }
406
407 static struct vnode *
getctty(kvm_t * kd,struct kinfo_proc * kp)408 getctty(kvm_t *kd, struct kinfo_proc *kp)
409 {
410 struct pgrp pgrp;
411 struct proc proc;
412 struct session sess;
413 int error;
414
415 assert(kp);
416 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
417 sizeof(proc));
418 if (error == 0) {
419 warnx("can't read proc struct at %p for pid %d",
420 kp->ki_paddr, kp->ki_pid);
421 return (NULL);
422 }
423 if (proc.p_pgrp == NULL)
424 return (NULL);
425 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
426 sizeof(pgrp));
427 if (error == 0) {
428 warnx("can't read pgrp struct at %p for pid %d",
429 proc.p_pgrp, kp->ki_pid);
430 return (NULL);
431 }
432 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
433 sizeof(sess));
434 if (error == 0) {
435 warnx("can't read session struct at %p for pid %d",
436 pgrp.pg_session, kp->ki_pid);
437 return (NULL);
438 }
439 return (sess.s_ttyvp);
440 }
441
442 static int
procstat_vm_map_reader(void * token,vm_map_entry_t addr,vm_map_entry_t dest)443 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest)
444 {
445 kvm_t *kd;
446
447 kd = (kvm_t *)token;
448 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest)));
449 }
450
451 static struct filestat_list *
procstat_getfiles_kvm(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)452 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
453 {
454 struct file file;
455 struct filedesc filed;
456 struct pwddesc pathsd;
457 struct fdescenttbl *fdt;
458 struct pwd pwd;
459 unsigned long pwd_addr;
460 struct vm_map_entry vmentry;
461 struct vm_object object;
462 struct vmspace vmspace;
463 vm_map_entry_t entryp;
464 vm_object_t objp;
465 struct vnode *vp;
466 struct filestat *entry;
467 struct filestat_list *head;
468 kvm_t *kd;
469 void *data;
470 int fflags;
471 unsigned int i;
472 int prot, type;
473 size_t fdt_size;
474 unsigned int nfiles;
475 bool haspwd;
476
477 assert(procstat);
478 kd = procstat->kd;
479 if (kd == NULL)
480 return (NULL);
481 if (kp->ki_fd == NULL || kp->ki_pd == NULL)
482 return (NULL);
483 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
484 sizeof(filed))) {
485 warnx("can't read filedesc at %p", (void *)kp->ki_fd);
486 return (NULL);
487 }
488 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd,
489 sizeof(pathsd))) {
490 warnx("can't read pwddesc at %p", (void *)kp->ki_pd);
491 return (NULL);
492 }
493 haspwd = false;
494 pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd));
495 if (pwd_addr != 0) {
496 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) {
497 warnx("can't read fd_pwd at %p", (void *)pwd_addr);
498 return (NULL);
499 }
500 haspwd = true;
501 }
502
503 /*
504 * Allocate list head.
505 */
506 head = malloc(sizeof(*head));
507 if (head == NULL)
508 return (NULL);
509 STAILQ_INIT(head);
510
511 /* root directory vnode, if one. */
512 if (haspwd) {
513 if (pwd.pwd_rdir) {
514 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1,
515 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL);
516 if (entry != NULL)
517 STAILQ_INSERT_TAIL(head, entry, next);
518 }
519 /* current working directory vnode. */
520 if (pwd.pwd_cdir) {
521 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1,
522 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL);
523 if (entry != NULL)
524 STAILQ_INSERT_TAIL(head, entry, next);
525 }
526 /* jail root, if any. */
527 if (pwd.pwd_jdir) {
528 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1,
529 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL);
530 if (entry != NULL)
531 STAILQ_INSERT_TAIL(head, entry, next);
532 }
533 }
534 /* ktrace vnode, if one */
535 if (kp->ki_tracep) {
536 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
537 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
538 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL);
539 if (entry != NULL)
540 STAILQ_INSERT_TAIL(head, entry, next);
541 }
542 /* text vnode, if one */
543 if (kp->ki_textvp) {
544 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
545 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL);
546 if (entry != NULL)
547 STAILQ_INSERT_TAIL(head, entry, next);
548 }
549 /* Controlling terminal. */
550 if ((vp = getctty(kd, kp)) != NULL) {
551 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
552 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
553 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL);
554 if (entry != NULL)
555 STAILQ_INSERT_TAIL(head, entry, next);
556 }
557
558 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles,
559 sizeof(nfiles))) {
560 warnx("can't read fd_files at %p", (void *)filed.fd_files);
561 return (NULL);
562 }
563
564 fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent);
565 fdt = malloc(fdt_size);
566 if (fdt == NULL) {
567 warn("malloc(%zu)", fdt_size);
568 goto do_mmapped;
569 }
570 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) {
571 warnx("cannot read file structures at %p", (void *)filed.fd_files);
572 free(fdt);
573 goto do_mmapped;
574 }
575 for (i = 0; i < nfiles; i++) {
576 if (fdt->fdt_ofiles[i].fde_file == NULL) {
577 continue;
578 }
579 if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file,
580 sizeof(struct file))) {
581 warnx("can't read file %d at %p", i,
582 (void *)fdt->fdt_ofiles[i].fde_file);
583 continue;
584 }
585 switch (file.f_type) {
586 case DTYPE_VNODE:
587 type = PS_FST_TYPE_VNODE;
588 data = file.f_vnode;
589 break;
590 case DTYPE_SOCKET:
591 type = PS_FST_TYPE_SOCKET;
592 data = file.f_data;
593 break;
594 case DTYPE_PIPE:
595 type = PS_FST_TYPE_PIPE;
596 data = file.f_data;
597 break;
598 case DTYPE_FIFO:
599 type = PS_FST_TYPE_FIFO;
600 data = file.f_vnode;
601 break;
602 #ifdef DTYPE_PTS
603 case DTYPE_PTS:
604 type = PS_FST_TYPE_PTS;
605 data = file.f_data;
606 break;
607 #endif
608 case DTYPE_SEM:
609 type = PS_FST_TYPE_SEM;
610 data = file.f_data;
611 break;
612 case DTYPE_SHM:
613 type = PS_FST_TYPE_SHM;
614 data = file.f_data;
615 break;
616 case DTYPE_PROCDESC:
617 type = PS_FST_TYPE_PROCDESC;
618 data = file.f_data;
619 break;
620 case DTYPE_DEV:
621 type = PS_FST_TYPE_DEV;
622 data = file.f_data;
623 break;
624 case DTYPE_EVENTFD:
625 type = PS_FST_TYPE_EVENTFD;
626 data = file.f_data;
627 break;
628 case DTYPE_INOTIFY:
629 type = PS_FST_TYPE_INOTIFY;
630 data = file.f_data;
631 break;
632 default:
633 continue;
634 }
635 /* XXXRW: No capability rights support for kvm yet. */
636 entry = filestat_new_entry(data, type, i,
637 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL);
638 if (entry != NULL)
639 STAILQ_INSERT_TAIL(head, entry, next);
640 }
641 free(fdt);
642
643 do_mmapped:
644
645 /*
646 * Process mmapped files if requested.
647 */
648 if (mmapped) {
649 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
650 sizeof(vmspace))) {
651 warnx("can't read vmspace at %p",
652 (void *)kp->ki_vmspace);
653 goto exit;
654 }
655
656 vmentry = vmspace.vm_map.header;
657 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader);
658 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header;
659 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) {
660 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
661 continue;
662 if ((objp = vmentry.object.vm_object) == NULL)
663 continue;
664 for (; objp; objp = object.backing_object) {
665 if (!kvm_read_all(kd, (unsigned long)objp,
666 &object, sizeof(object))) {
667 warnx("can't read vm_object at %p",
668 (void *)objp);
669 break;
670 }
671 }
672
673 /* We want only vnode objects. */
674 if (object.type != OBJT_VNODE)
675 continue;
676
677 prot = vmentry.protection;
678 fflags = 0;
679 if (prot & VM_PROT_READ)
680 fflags = PS_FST_FFLAG_READ;
681 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
682 prot & VM_PROT_WRITE)
683 fflags |= PS_FST_FFLAG_WRITE;
684
685 /*
686 * Create filestat entry.
687 */
688 entry = filestat_new_entry(object.handle,
689 PS_FST_TYPE_VNODE, -1, fflags,
690 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL);
691 if (entry != NULL)
692 STAILQ_INSERT_TAIL(head, entry, next);
693 }
694 if (entryp == NULL)
695 warnx("can't read vm_map_entry");
696 }
697 exit:
698 return (head);
699 }
700
701 /*
702 * kinfo types to filestat translation.
703 */
704 static int
kinfo_type2fst(int kftype)705 kinfo_type2fst(int kftype)
706 {
707 static struct {
708 int kf_type;
709 int fst_type;
710 } kftypes2fst[] = {
711 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC },
712 { KF_TYPE_DEV, PS_FST_TYPE_DEV },
713 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
714 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
715 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
716 { KF_TYPE_NONE, PS_FST_TYPE_NONE },
717 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
718 { KF_TYPE_PTS, PS_FST_TYPE_PTS },
719 { KF_TYPE_SEM, PS_FST_TYPE_SEM },
720 { KF_TYPE_SHM, PS_FST_TYPE_SHM },
721 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
722 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
723 { KF_TYPE_EVENTFD, PS_FST_TYPE_EVENTFD },
724 { KF_TYPE_INOTIFY, PS_FST_TYPE_INOTIFY },
725 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
726 };
727 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst))
728 unsigned int i;
729
730 for (i = 0; i < NKFTYPES; i++)
731 if (kftypes2fst[i].kf_type == kftype)
732 break;
733 if (i == NKFTYPES)
734 return (PS_FST_TYPE_UNKNOWN);
735 return (kftypes2fst[i].fst_type);
736 }
737
738 /*
739 * kinfo flags to filestat translation.
740 */
741 static int
kinfo_fflags2fst(int kfflags)742 kinfo_fflags2fst(int kfflags)
743 {
744 static struct {
745 int kf_flag;
746 int fst_flag;
747 } kfflags2fst[] = {
748 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
749 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
750 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
751 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
752 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
753 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
754 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
755 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
756 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
757 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
758 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
759 { KF_FLAG_READ, PS_FST_FFLAG_READ },
760 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
761 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
762 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
763 };
764 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst))
765 unsigned int i;
766 int flags;
767
768 flags = 0;
769 for (i = 0; i < NKFFLAGS; i++)
770 if ((kfflags & kfflags2fst[i].kf_flag) != 0)
771 flags |= kfflags2fst[i].fst_flag;
772 return (flags);
773 }
774
775 static int
kinfo_uflags2fst(int fd)776 kinfo_uflags2fst(int fd)
777 {
778
779 switch (fd) {
780 case KF_FD_TYPE_CTTY:
781 return (PS_FST_UFLAG_CTTY);
782 case KF_FD_TYPE_CWD:
783 return (PS_FST_UFLAG_CDIR);
784 case KF_FD_TYPE_JAIL:
785 return (PS_FST_UFLAG_JAIL);
786 case KF_FD_TYPE_TEXT:
787 return (PS_FST_UFLAG_TEXT);
788 case KF_FD_TYPE_TRACE:
789 return (PS_FST_UFLAG_TRACE);
790 case KF_FD_TYPE_ROOT:
791 return (PS_FST_UFLAG_RDIR);
792 }
793 return (0);
794 }
795
796 static struct kinfo_file *
kinfo_getfile_core(struct procstat_core * core,int * cntp)797 kinfo_getfile_core(struct procstat_core *core, int *cntp)
798 {
799 int cnt;
800 size_t len;
801 char *buf, *bp, *eb;
802 struct kinfo_file *kif, *kp, *kf;
803
804 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
805 if (buf == NULL)
806 return (NULL);
807 /*
808 * XXXMG: The code below is just copy&past from libutil.
809 * The code duplication can be avoided if libutil
810 * is extended to provide something like:
811 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
812 * size_t len, int *cntp);
813 */
814
815 /* Pass 1: count items */
816 cnt = 0;
817 bp = buf;
818 eb = buf + len;
819 while (bp < eb) {
820 kf = (struct kinfo_file *)(uintptr_t)bp;
821 if (kf->kf_structsize == 0)
822 break;
823 bp += kf->kf_structsize;
824 cnt++;
825 }
826
827 kif = calloc(cnt, sizeof(*kif));
828 if (kif == NULL) {
829 free(buf);
830 return (NULL);
831 }
832 bp = buf;
833 eb = buf + len;
834 kp = kif;
835 /* Pass 2: unpack */
836 while (bp < eb) {
837 kf = (struct kinfo_file *)(uintptr_t)bp;
838 if (kf->kf_structsize == 0)
839 break;
840 /* Copy/expand into pre-zeroed buffer */
841 memcpy(kp, kf, kf->kf_structsize);
842 /* Advance to next packed record */
843 bp += kf->kf_structsize;
844 /* Set field size to fixed length, advance */
845 kp->kf_structsize = sizeof(*kp);
846 kp++;
847 }
848 free(buf);
849 *cntp = cnt;
850 return (kif); /* Caller must free() return value */
851 }
852
853 static struct filestat_list *
procstat_getfiles_sysctl(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)854 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
855 int mmapped)
856 {
857 struct kinfo_file *kif, *files;
858 struct kinfo_vmentry *kve, *vmentries;
859 struct filestat_list *head;
860 struct filestat *entry;
861 char *path;
862 off_t offset;
863 int cnt, fd, fflags;
864 int i, type, uflags;
865 int refcount;
866 cap_rights_t cap_rights;
867
868 assert(kp);
869 switch (procstat->type) {
870 case PROCSTAT_SYSCTL:
871 files = kinfo_getfile(kp->ki_pid, &cnt);
872 break;
873 case PROCSTAT_CORE:
874 files = kinfo_getfile_core(procstat->core, &cnt);
875 break;
876 default:
877 assert(!"invalid type");
878 }
879 if (files == NULL && errno != EPERM) {
880 warn("kinfo_getfile()");
881 return (NULL);
882 }
883 procstat->files = files;
884
885 /*
886 * Allocate list head.
887 */
888 head = malloc(sizeof(*head));
889 if (head == NULL)
890 return (NULL);
891 STAILQ_INIT(head);
892 for (i = 0; i < cnt; i++) {
893 kif = &files[i];
894
895 type = kinfo_type2fst(kif->kf_type);
896 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
897 fflags = kinfo_fflags2fst(kif->kf_flags);
898 uflags = kinfo_uflags2fst(kif->kf_fd);
899 refcount = kif->kf_ref_count;
900 offset = kif->kf_offset;
901 if (*kif->kf_path != '\0')
902 path = strdup(kif->kf_path);
903 else
904 path = NULL;
905 cap_rights = kif->kf_cap_rights;
906
907 /*
908 * Create filestat entry.
909 */
910 entry = filestat_new_entry(kif, type, fd, fflags, uflags,
911 refcount, offset, path, &cap_rights);
912 if (entry != NULL)
913 STAILQ_INSERT_TAIL(head, entry, next);
914 }
915 if (mmapped != 0) {
916 vmentries = procstat_getvmmap(procstat, kp, &cnt);
917 procstat->vmentries = vmentries;
918 if (vmentries == NULL || cnt == 0)
919 goto fail;
920 for (i = 0; i < cnt; i++) {
921 kve = &vmentries[i];
922 if (kve->kve_type != KVME_TYPE_VNODE)
923 continue;
924 fflags = 0;
925 if (kve->kve_protection & KVME_PROT_READ)
926 fflags = PS_FST_FFLAG_READ;
927 if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
928 kve->kve_protection & KVME_PROT_WRITE)
929 fflags |= PS_FST_FFLAG_WRITE;
930 offset = kve->kve_offset;
931 refcount = kve->kve_ref_count;
932 if (*kve->kve_path != '\0')
933 path = strdup(kve->kve_path);
934 else
935 path = NULL;
936 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
937 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
938 NULL);
939 if (entry != NULL)
940 STAILQ_INSERT_TAIL(head, entry, next);
941 }
942 }
943 fail:
944 return (head);
945 }
946
947 int
procstat_get_pipe_info(struct procstat * procstat,struct filestat * fst,struct pipestat * ps,char * errbuf)948 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
949 struct pipestat *ps, char *errbuf)
950 {
951
952 assert(ps);
953 if (procstat->type == PROCSTAT_KVM) {
954 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
955 errbuf));
956 } else if (procstat->type == PROCSTAT_SYSCTL ||
957 procstat->type == PROCSTAT_CORE) {
958 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
959 } else {
960 warnx("unknown access method: %d", procstat->type);
961 if (errbuf != NULL)
962 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
963 return (1);
964 }
965 }
966
967 static int
procstat_get_pipe_info_kvm(kvm_t * kd,struct filestat * fst,struct pipestat * ps,char * errbuf)968 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
969 struct pipestat *ps, char *errbuf)
970 {
971 struct pipe pi;
972 void *pipep;
973
974 assert(kd);
975 assert(ps);
976 assert(fst);
977 bzero(ps, sizeof(*ps));
978 pipep = fst->fs_typedep;
979 if (pipep == NULL)
980 goto fail;
981 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
982 warnx("can't read pipe at %p", (void *)pipep);
983 goto fail;
984 }
985 ps->addr = (uintptr_t)pipep;
986 ps->peer = (uintptr_t)pi.pipe_peer;
987 ps->buffer_cnt = pi.pipe_buffer.cnt;
988 return (0);
989
990 fail:
991 if (errbuf != NULL)
992 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
993 return (1);
994 }
995
996 static int
procstat_get_pipe_info_sysctl(struct filestat * fst,struct pipestat * ps,char * errbuf __unused)997 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
998 char *errbuf __unused)
999 {
1000 struct kinfo_file *kif;
1001
1002 assert(ps);
1003 assert(fst);
1004 bzero(ps, sizeof(*ps));
1005 kif = fst->fs_typedep;
1006 if (kif == NULL)
1007 return (1);
1008 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
1009 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
1010 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
1011 return (0);
1012 }
1013
1014 int
procstat_get_pts_info(struct procstat * procstat,struct filestat * fst,struct ptsstat * pts,char * errbuf)1015 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
1016 struct ptsstat *pts, char *errbuf)
1017 {
1018
1019 assert(pts);
1020 if (procstat->type == PROCSTAT_KVM) {
1021 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
1022 errbuf));
1023 } else if (procstat->type == PROCSTAT_SYSCTL ||
1024 procstat->type == PROCSTAT_CORE) {
1025 return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
1026 } else {
1027 warnx("unknown access method: %d", procstat->type);
1028 if (errbuf != NULL)
1029 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1030 return (1);
1031 }
1032 }
1033
1034 static int
procstat_get_pts_info_kvm(kvm_t * kd,struct filestat * fst,struct ptsstat * pts,char * errbuf)1035 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
1036 struct ptsstat *pts, char *errbuf)
1037 {
1038 struct tty tty;
1039 void *ttyp;
1040
1041 assert(kd);
1042 assert(pts);
1043 assert(fst);
1044 bzero(pts, sizeof(*pts));
1045 ttyp = fst->fs_typedep;
1046 if (ttyp == NULL)
1047 goto fail;
1048 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
1049 warnx("can't read tty at %p", (void *)ttyp);
1050 goto fail;
1051 }
1052 pts->dev = dev2udev(kd, tty.t_dev);
1053 (void)kdevtoname(kd, tty.t_dev, pts->devname);
1054 return (0);
1055
1056 fail:
1057 if (errbuf != NULL)
1058 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1059 return (1);
1060 }
1061
1062 static int
procstat_get_pts_info_sysctl(struct filestat * fst,struct ptsstat * pts,char * errbuf __unused)1063 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
1064 char *errbuf __unused)
1065 {
1066 struct kinfo_file *kif;
1067
1068 assert(pts);
1069 assert(fst);
1070 bzero(pts, sizeof(*pts));
1071 kif = fst->fs_typedep;
1072 if (kif == NULL)
1073 return (0);
1074 pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
1075 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
1076 return (0);
1077 }
1078
1079 int
procstat_get_sem_info(struct procstat * procstat,struct filestat * fst,struct semstat * sem,char * errbuf)1080 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
1081 struct semstat *sem, char *errbuf)
1082 {
1083
1084 assert(sem);
1085 if (procstat->type == PROCSTAT_KVM) {
1086 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
1087 errbuf));
1088 } else if (procstat->type == PROCSTAT_SYSCTL ||
1089 procstat->type == PROCSTAT_CORE) {
1090 return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
1091 } else {
1092 warnx("unknown access method: %d", procstat->type);
1093 if (errbuf != NULL)
1094 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1095 return (1);
1096 }
1097 }
1098
1099 static int
procstat_get_sem_info_kvm(kvm_t * kd,struct filestat * fst,struct semstat * sem,char * errbuf)1100 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
1101 struct semstat *sem, char *errbuf)
1102 {
1103 struct ksem ksem;
1104 void *ksemp;
1105 char *path;
1106 int i;
1107
1108 assert(kd);
1109 assert(sem);
1110 assert(fst);
1111 bzero(sem, sizeof(*sem));
1112 ksemp = fst->fs_typedep;
1113 if (ksemp == NULL)
1114 goto fail;
1115 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
1116 sizeof(struct ksem))) {
1117 warnx("can't read ksem at %p", (void *)ksemp);
1118 goto fail;
1119 }
1120 sem->mode = S_IFREG | ksem.ks_mode;
1121 sem->value = ksem.ks_value;
1122 if (fst->fs_path == NULL && ksem.ks_path != NULL) {
1123 path = malloc(MAXPATHLEN);
1124 for (i = 0; i < MAXPATHLEN - 1; i++) {
1125 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
1126 path + i, 1))
1127 break;
1128 if (path[i] == '\0')
1129 break;
1130 }
1131 path[i] = '\0';
1132 if (i == 0)
1133 free(path);
1134 else
1135 fst->fs_path = path;
1136 }
1137 return (0);
1138
1139 fail:
1140 if (errbuf != NULL)
1141 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1142 return (1);
1143 }
1144
1145 static int
procstat_get_sem_info_sysctl(struct filestat * fst,struct semstat * sem,char * errbuf __unused)1146 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
1147 char *errbuf __unused)
1148 {
1149 struct kinfo_file *kif;
1150
1151 assert(sem);
1152 assert(fst);
1153 bzero(sem, sizeof(*sem));
1154 kif = fst->fs_typedep;
1155 if (kif == NULL)
1156 return (0);
1157 sem->value = kif->kf_un.kf_sem.kf_sem_value;
1158 sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
1159 return (0);
1160 }
1161
1162 int
procstat_get_shm_info(struct procstat * procstat,struct filestat * fst,struct shmstat * shm,char * errbuf)1163 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
1164 struct shmstat *shm, char *errbuf)
1165 {
1166
1167 assert(shm);
1168 if (procstat->type == PROCSTAT_KVM) {
1169 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
1170 errbuf));
1171 } else if (procstat->type == PROCSTAT_SYSCTL ||
1172 procstat->type == PROCSTAT_CORE) {
1173 return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
1174 } else {
1175 warnx("unknown access method: %d", procstat->type);
1176 if (errbuf != NULL)
1177 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1178 return (1);
1179 }
1180 }
1181
1182 static int
procstat_get_shm_info_kvm(kvm_t * kd,struct filestat * fst,struct shmstat * shm,char * errbuf)1183 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
1184 struct shmstat *shm, char *errbuf)
1185 {
1186 struct shmfd shmfd;
1187 void *shmfdp;
1188 char *path;
1189 int i;
1190
1191 assert(kd);
1192 assert(shm);
1193 assert(fst);
1194 bzero(shm, sizeof(*shm));
1195 shmfdp = fst->fs_typedep;
1196 if (shmfdp == NULL)
1197 goto fail;
1198 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
1199 sizeof(struct shmfd))) {
1200 warnx("can't read shmfd at %p", (void *)shmfdp);
1201 goto fail;
1202 }
1203 shm->mode = S_IFREG | shmfd.shm_mode;
1204 shm->size = shmfd.shm_size;
1205 if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
1206 path = malloc(MAXPATHLEN);
1207 for (i = 0; i < MAXPATHLEN - 1; i++) {
1208 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
1209 path + i, 1))
1210 break;
1211 if (path[i] == '\0')
1212 break;
1213 }
1214 path[i] = '\0';
1215 if (i == 0)
1216 free(path);
1217 else
1218 fst->fs_path = path;
1219 }
1220 return (0);
1221
1222 fail:
1223 if (errbuf != NULL)
1224 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1225 return (1);
1226 }
1227
1228 static int
procstat_get_shm_info_sysctl(struct filestat * fst,struct shmstat * shm,char * errbuf __unused)1229 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
1230 char *errbuf __unused)
1231 {
1232 struct kinfo_file *kif;
1233
1234 assert(shm);
1235 assert(fst);
1236 bzero(shm, sizeof(*shm));
1237 kif = fst->fs_typedep;
1238 if (kif == NULL)
1239 return (0);
1240 shm->size = kif->kf_un.kf_file.kf_file_size;
1241 shm->mode = kif->kf_un.kf_file.kf_file_mode;
1242 return (0);
1243 }
1244
1245 int
procstat_get_vnode_info(struct procstat * procstat,struct filestat * fst,struct vnstat * vn,char * errbuf)1246 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
1247 struct vnstat *vn, char *errbuf)
1248 {
1249
1250 assert(vn);
1251 if (procstat->type == PROCSTAT_KVM) {
1252 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
1253 errbuf));
1254 } else if (procstat->type == PROCSTAT_SYSCTL ||
1255 procstat->type == PROCSTAT_CORE) {
1256 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
1257 } else {
1258 warnx("unknown access method: %d", procstat->type);
1259 if (errbuf != NULL)
1260 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1261 return (1);
1262 }
1263 }
1264
1265 static int
procstat_get_vnode_info_kvm(kvm_t * kd,struct filestat * fst,struct vnstat * vn,char * errbuf)1266 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
1267 struct vnstat *vn, char *errbuf)
1268 {
1269 /* Filesystem specific handlers. */
1270 #define FSTYPE(fst) {#fst, fst##_filestat}
1271 struct {
1272 const char *tag;
1273 int (*handler)(kvm_t *kd, struct vnode *vp,
1274 struct vnstat *vn);
1275 } fstypes[] = {
1276 FSTYPE(devfs),
1277 FSTYPE(isofs),
1278 FSTYPE(msdosfs),
1279 FSTYPE(nfs),
1280 FSTYPE(smbfs),
1281 FSTYPE(udf),
1282 FSTYPE(ufs),
1283 #ifdef LIBPROCSTAT_ZFS
1284 FSTYPE(zfs),
1285 #endif
1286 };
1287 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes))
1288 struct vnode vnode;
1289 char tagstr[12];
1290 void *vp;
1291 int error;
1292 unsigned int i;
1293
1294 assert(kd);
1295 assert(vn);
1296 assert(fst);
1297 vp = fst->fs_typedep;
1298 if (vp == NULL)
1299 goto fail;
1300 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
1301 if (error == 0) {
1302 warnx("can't read vnode at %p", (void *)vp);
1303 goto fail;
1304 }
1305 bzero(vn, sizeof(*vn));
1306 vn->vn_type = vntype2psfsttype(vnode.v_type);
1307 if (vnode.v_type == VNON || vnode.v_type == VBAD)
1308 return (0);
1309 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name,
1310 tagstr, sizeof(tagstr));
1311 if (error == 0) {
1312 warnx("can't read lo_name at %p", (void *)vp);
1313 goto fail;
1314 }
1315 tagstr[sizeof(tagstr) - 1] = '\0';
1316
1317 /*
1318 * Find appropriate handler.
1319 */
1320 for (i = 0; i < NTYPES; i++)
1321 if (!strcmp(fstypes[i].tag, tagstr)) {
1322 if (fstypes[i].handler(kd, &vnode, vn) != 0) {
1323 goto fail;
1324 }
1325 break;
1326 }
1327 if (i == NTYPES) {
1328 if (errbuf != NULL)
1329 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
1330 return (1);
1331 }
1332 vn->vn_mntdir = getmnton(kd, vnode.v_mount);
1333 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) &&
1334 vnode.v_rdev != NULL){
1335 vn->vn_dev = dev2udev(kd, vnode.v_rdev);
1336 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
1337 } else {
1338 vn->vn_dev = -1;
1339 }
1340 return (0);
1341
1342 fail:
1343 if (errbuf != NULL)
1344 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1345 return (1);
1346 }
1347
1348 /*
1349 * kinfo vnode type to filestat translation.
1350 */
1351 static int
kinfo_vtype2fst(int kfvtype)1352 kinfo_vtype2fst(int kfvtype)
1353 {
1354 static struct {
1355 int kf_vtype;
1356 int fst_vtype;
1357 } kfvtypes2fst[] = {
1358 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
1359 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
1360 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
1361 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
1362 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
1363 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
1364 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
1365 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
1366 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
1367 };
1368 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
1369 unsigned int i;
1370
1371 for (i = 0; i < NKFVTYPES; i++)
1372 if (kfvtypes2fst[i].kf_vtype == kfvtype)
1373 break;
1374 if (i == NKFVTYPES)
1375 return (PS_FST_VTYPE_UNKNOWN);
1376 return (kfvtypes2fst[i].fst_vtype);
1377 }
1378
1379 static int
procstat_get_vnode_info_sysctl(struct filestat * fst,struct vnstat * vn,char * errbuf)1380 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
1381 char *errbuf)
1382 {
1383 struct statfs stbuf;
1384 struct kinfo_file *kif;
1385 struct kinfo_vmentry *kve;
1386 char *name, *path;
1387 uint64_t fileid;
1388 uint64_t size;
1389 uint64_t fsid;
1390 uint64_t rdev;
1391 uint16_t mode;
1392 int vntype;
1393 int status;
1394
1395 assert(fst);
1396 assert(vn);
1397 bzero(vn, sizeof(*vn));
1398 if (fst->fs_typedep == NULL)
1399 return (1);
1400 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
1401 kve = fst->fs_typedep;
1402 fileid = kve->kve_vn_fileid;
1403 fsid = kve->kve_vn_fsid;
1404 mode = kve->kve_vn_mode;
1405 path = kve->kve_path;
1406 rdev = kve->kve_vn_rdev;
1407 size = kve->kve_vn_size;
1408 vntype = kinfo_vtype2fst(kve->kve_vn_type);
1409 status = kve->kve_status;
1410 } else {
1411 kif = fst->fs_typedep;
1412 fileid = kif->kf_un.kf_file.kf_file_fileid;
1413 fsid = kif->kf_un.kf_file.kf_file_fsid;
1414 mode = kif->kf_un.kf_file.kf_file_mode;
1415 path = kif->kf_path;
1416 rdev = kif->kf_un.kf_file.kf_file_rdev;
1417 size = kif->kf_un.kf_file.kf_file_size;
1418 vntype = kinfo_vtype2fst(kif->kf_vnode_type);
1419 status = kif->kf_status;
1420 }
1421 vn->vn_type = vntype;
1422 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
1423 return (0);
1424 if ((status & KF_ATTR_VALID) == 0) {
1425 if (errbuf != NULL) {
1426 snprintf(errbuf, _POSIX2_LINE_MAX,
1427 "? (no info available)");
1428 }
1429 return (1);
1430 }
1431 if (path && *path) {
1432 statfs(path, &stbuf);
1433 vn->vn_mntdir = strdup(stbuf.f_mntonname);
1434 } else
1435 vn->vn_mntdir = strdup("-");
1436 vn->vn_dev = rdev;
1437 if (vntype == PS_FST_VTYPE_VBLK) {
1438 name = devname(rdev, S_IFBLK);
1439 if (name != NULL)
1440 strlcpy(vn->vn_devname, name,
1441 sizeof(vn->vn_devname));
1442 } else if (vntype == PS_FST_VTYPE_VCHR) {
1443 name = devname(vn->vn_dev, S_IFCHR);
1444 if (name != NULL)
1445 strlcpy(vn->vn_devname, name,
1446 sizeof(vn->vn_devname));
1447 }
1448 vn->vn_fsid = fsid;
1449 vn->vn_fileid = fileid;
1450 vn->vn_size = size;
1451 vn->vn_mode = mode;
1452 return (0);
1453 }
1454
1455 int
procstat_get_socket_info(struct procstat * procstat,struct filestat * fst,struct sockstat * sock,char * errbuf)1456 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
1457 struct sockstat *sock, char *errbuf)
1458 {
1459
1460 assert(sock);
1461 if (procstat->type == PROCSTAT_KVM) {
1462 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
1463 errbuf));
1464 } else if (procstat->type == PROCSTAT_SYSCTL ||
1465 procstat->type == PROCSTAT_CORE) {
1466 return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
1467 } else {
1468 warnx("unknown access method: %d", procstat->type);
1469 if (errbuf != NULL)
1470 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1471 return (1);
1472 }
1473 }
1474
1475 static int
procstat_get_socket_info_kvm(kvm_t * kd,struct filestat * fst,struct sockstat * sock,char * errbuf)1476 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
1477 struct sockstat *sock, char *errbuf)
1478 {
1479 struct domain dom;
1480 struct protosw proto;
1481 struct socket s;
1482 struct unpcb unpcb;
1483 ssize_t len;
1484 void *so;
1485
1486 assert(kd);
1487 assert(sock);
1488 assert(fst);
1489 bzero(sock, sizeof(*sock));
1490 so = fst->fs_typedep;
1491 if (so == NULL)
1492 goto fail;
1493 sock->so_addr = (uintptr_t)so;
1494 /* fill in socket */
1495 if (!kvm_read_all(kd, (unsigned long)so, &s,
1496 sizeof(struct socket))) {
1497 warnx("can't read sock at %p", (void *)so);
1498 goto fail;
1499 }
1500 /* fill in protosw entry */
1501 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
1502 sizeof(struct protosw))) {
1503 warnx("can't read protosw at %p", (void *)s.so_proto);
1504 goto fail;
1505 }
1506 /* fill in domain */
1507 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
1508 sizeof(struct domain))) {
1509 warnx("can't read domain at %p",
1510 (void *)proto.pr_domain);
1511 goto fail;
1512 }
1513 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
1514 sizeof(sock->dname) - 1)) < 0) {
1515 warnx("can't read domain name at %p", (void *)dom.dom_name);
1516 sock->dname[0] = '\0';
1517 }
1518 else
1519 sock->dname[len] = '\0';
1520
1521 /*
1522 * Fill in known data.
1523 */
1524 sock->type = s.so_type;
1525 sock->proto = proto.pr_protocol;
1526 sock->dom_family = dom.dom_family;
1527 sock->so_pcb = (uintptr_t)s.so_pcb;
1528 sock->sendq = s.so_snd.sb_ccc;
1529 sock->recvq = s.so_rcv.sb_ccc;
1530 sock->so_rcv_sb_state = s.so_rcv.sb_state;
1531 sock->so_snd_sb_state = s.so_snd.sb_state;
1532
1533 /*
1534 * Protocol specific data.
1535 */
1536 switch (dom.dom_family) {
1537 case AF_UNIX:
1538 if (s.so_pcb) {
1539 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
1540 sizeof(struct unpcb)) != sizeof(struct unpcb)){
1541 warnx("can't read unpcb at %p",
1542 (void *)s.so_pcb);
1543 } else if (unpcb.unp_conn) {
1544 sock->unp_conn = (uintptr_t)unpcb.unp_conn;
1545 }
1546 }
1547 break;
1548 default:
1549 break;
1550 }
1551 return (0);
1552
1553 fail:
1554 if (errbuf != NULL)
1555 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1556 return (1);
1557 }
1558
1559 static int
procstat_get_socket_info_sysctl(struct filestat * fst,struct sockstat * sock,char * errbuf __unused)1560 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
1561 char *errbuf __unused)
1562 {
1563 struct kinfo_file *kif;
1564
1565 assert(sock);
1566 assert(fst);
1567 bzero(sock, sizeof(*sock));
1568 kif = fst->fs_typedep;
1569 if (kif == NULL)
1570 return (0);
1571
1572 /*
1573 * Fill in known data.
1574 */
1575 sock->type = kif->kf_sock_type;
1576 sock->proto = kif->kf_sock_protocol;
1577 sock->dom_family = kif->kf_sock_domain;
1578 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
1579 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
1580 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local,
1581 kif->kf_un.kf_sock.kf_sa_local.ss_len);
1582 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer,
1583 kif->kf_un.kf_sock.kf_sa_peer.ss_len);
1584
1585 /*
1586 * Protocol specific data.
1587 */
1588 switch (sock->dom_family) {
1589 case AF_INET:
1590 case AF_INET6:
1591 if (sock->proto == IPPROTO_TCP) {
1592 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1593 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1594 }
1595 break;
1596 case AF_UNIX:
1597 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
1598 sock->so_rcv_sb_state =
1599 kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
1600 sock->so_snd_sb_state =
1601 kif->kf_un.kf_sock.kf_sock_snd_sb_state;
1602 sock->unp_conn =
1603 kif->kf_un.kf_sock.kf_sock_unpconn;
1604 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1605 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1606 }
1607 break;
1608 default:
1609 break;
1610 }
1611 return (0);
1612 }
1613
1614 /*
1615 * Descriptor flags to filestat translation.
1616 */
1617 static int
to_filestat_flags(int flags)1618 to_filestat_flags(int flags)
1619 {
1620 static struct {
1621 int flag;
1622 int fst_flag;
1623 } fstflags[] = {
1624 { FREAD, PS_FST_FFLAG_READ },
1625 { FWRITE, PS_FST_FFLAG_WRITE },
1626 { O_APPEND, PS_FST_FFLAG_APPEND },
1627 { O_ASYNC, PS_FST_FFLAG_ASYNC },
1628 { O_CREAT, PS_FST_FFLAG_CREAT },
1629 { O_DIRECT, PS_FST_FFLAG_DIRECT },
1630 { O_EXCL, PS_FST_FFLAG_EXCL },
1631 { O_EXEC, PS_FST_FFLAG_EXEC },
1632 { O_EXLOCK, PS_FST_FFLAG_EXLOCK },
1633 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
1634 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
1635 { O_SHLOCK, PS_FST_FFLAG_SHLOCK },
1636 { O_SYNC, PS_FST_FFLAG_SYNC },
1637 { O_TRUNC, PS_FST_FFLAG_TRUNC }
1638 };
1639 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags))
1640 int fst_flags;
1641 unsigned int i;
1642
1643 fst_flags = 0;
1644 for (i = 0; i < NFSTFLAGS; i++)
1645 if (flags & fstflags[i].flag)
1646 fst_flags |= fstflags[i].fst_flag;
1647 return (fst_flags);
1648 }
1649
1650 /*
1651 * Vnode type to filestate translation.
1652 */
1653 static int
vntype2psfsttype(int type)1654 vntype2psfsttype(int type)
1655 {
1656 static struct {
1657 int vtype;
1658 int fst_vtype;
1659 } vt2fst[] = {
1660 { VBAD, PS_FST_VTYPE_VBAD },
1661 { VBLK, PS_FST_VTYPE_VBLK },
1662 { VCHR, PS_FST_VTYPE_VCHR },
1663 { VDIR, PS_FST_VTYPE_VDIR },
1664 { VFIFO, PS_FST_VTYPE_VFIFO },
1665 { VLNK, PS_FST_VTYPE_VLNK },
1666 { VNON, PS_FST_VTYPE_VNON },
1667 { VREG, PS_FST_VTYPE_VREG },
1668 { VSOCK, PS_FST_VTYPE_VSOCK }
1669 };
1670 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst))
1671 unsigned int i, fst_type;
1672
1673 fst_type = PS_FST_VTYPE_UNKNOWN;
1674 for (i = 0; i < NVFTYPES; i++) {
1675 if (type == vt2fst[i].vtype) {
1676 fst_type = vt2fst[i].fst_vtype;
1677 break;
1678 }
1679 }
1680 return (fst_type);
1681 }
1682
1683 static char *
getmnton(kvm_t * kd,struct mount * m)1684 getmnton(kvm_t *kd, struct mount *m)
1685 {
1686 struct mount mnt;
1687 static struct mtab {
1688 struct mtab *next;
1689 struct mount *m;
1690 char mntonname[MNAMELEN + 1];
1691 } *mhead = NULL;
1692 struct mtab *mt;
1693
1694 for (mt = mhead; mt != NULL; mt = mt->next)
1695 if (m == mt->m)
1696 return (mt->mntonname);
1697 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
1698 warnx("can't read mount table at %p", (void *)m);
1699 return (NULL);
1700 }
1701 if ((mt = malloc(sizeof (struct mtab))) == NULL)
1702 err(1, NULL);
1703 mt->m = m;
1704 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
1705 mt->mntonname[MNAMELEN] = '\0';
1706 mt->next = mhead;
1707 mhead = mt;
1708 return (mt->mntonname);
1709 }
1710
1711 /*
1712 * Auxiliary structures and functions to get process environment or
1713 * command line arguments.
1714 */
1715 struct argvec {
1716 char *buf;
1717 size_t bufsize;
1718 char **argv;
1719 size_t argc;
1720 };
1721
1722 static struct argvec *
argvec_alloc(size_t bufsize)1723 argvec_alloc(size_t bufsize)
1724 {
1725 struct argvec *av;
1726
1727 av = malloc(sizeof(*av));
1728 if (av == NULL)
1729 return (NULL);
1730 av->bufsize = bufsize;
1731 av->buf = malloc(av->bufsize);
1732 if (av->buf == NULL) {
1733 free(av);
1734 return (NULL);
1735 }
1736 av->argc = 32;
1737 av->argv = malloc(sizeof(char *) * av->argc);
1738 if (av->argv == NULL) {
1739 free(av->buf);
1740 free(av);
1741 return (NULL);
1742 }
1743 return av;
1744 }
1745
1746 static void
argvec_free(struct argvec * av)1747 argvec_free(struct argvec * av)
1748 {
1749
1750 free(av->argv);
1751 free(av->buf);
1752 free(av);
1753 }
1754
1755 static char **
getargv(struct procstat * procstat,struct kinfo_proc * kp,size_t nchr,int env)1756 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
1757 {
1758 int error, name[4], argc, i;
1759 struct argvec *av, **avp;
1760 enum psc_type type;
1761 size_t len;
1762 char *p, **argv;
1763
1764 assert(procstat);
1765 assert(kp);
1766 if (procstat->type == PROCSTAT_KVM) {
1767 warnx("can't use kvm access method");
1768 return (NULL);
1769 }
1770 if (procstat->type != PROCSTAT_SYSCTL &&
1771 procstat->type != PROCSTAT_CORE) {
1772 warnx("unknown access method: %d", procstat->type);
1773 return (NULL);
1774 }
1775
1776 if (nchr == 0 || nchr > ARG_MAX)
1777 nchr = ARG_MAX;
1778
1779 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
1780 av = *avp;
1781
1782 if (av == NULL)
1783 {
1784 av = argvec_alloc(nchr);
1785 if (av == NULL)
1786 {
1787 warn("malloc(%zu)", nchr);
1788 return (NULL);
1789 }
1790 *avp = av;
1791 } else if (av->bufsize < nchr) {
1792 av->buf = reallocf(av->buf, nchr);
1793 if (av->buf == NULL) {
1794 warn("malloc(%zu)", nchr);
1795 return (NULL);
1796 }
1797 }
1798 if (procstat->type == PROCSTAT_SYSCTL) {
1799 name[0] = CTL_KERN;
1800 name[1] = KERN_PROC;
1801 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
1802 name[3] = kp->ki_pid;
1803 len = nchr;
1804 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0);
1805 if (error != 0 && errno != ESRCH && errno != EPERM)
1806 warn("sysctl(kern.proc.%s)", env ? "env" : "args");
1807 if (error != 0 || len == 0)
1808 return (NULL);
1809 } else /* procstat->type == PROCSTAT_CORE */ {
1810 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
1811 len = nchr;
1812 if (procstat_core_get(procstat->core, type, av->buf, &len)
1813 == NULL) {
1814 return (NULL);
1815 }
1816 }
1817
1818 argv = av->argv;
1819 argc = av->argc;
1820 i = 0;
1821 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
1822 argv[i++] = p;
1823 if (i < argc)
1824 continue;
1825 /* Grow argv. */
1826 argc += argc;
1827 argv = realloc(argv, sizeof(char *) * argc);
1828 if (argv == NULL) {
1829 warn("malloc(%zu)", sizeof(char *) * argc);
1830 return (NULL);
1831 }
1832 av->argv = argv;
1833 av->argc = argc;
1834 }
1835 argv[i] = NULL;
1836
1837 return (argv);
1838 }
1839
1840 /*
1841 * Return process command line arguments.
1842 */
1843 char **
procstat_getargv(struct procstat * procstat,struct kinfo_proc * p,size_t nchr)1844 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1845 {
1846
1847 return (getargv(procstat, p, nchr, 0));
1848 }
1849
1850 /*
1851 * Free the buffer allocated by procstat_getargv().
1852 */
1853 void
procstat_freeargv(struct procstat * procstat)1854 procstat_freeargv(struct procstat *procstat)
1855 {
1856
1857 if (procstat->argv != NULL) {
1858 argvec_free(procstat->argv);
1859 procstat->argv = NULL;
1860 }
1861 }
1862
1863 /*
1864 * Return process environment.
1865 */
1866 char **
procstat_getenvv(struct procstat * procstat,struct kinfo_proc * p,size_t nchr)1867 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1868 {
1869
1870 return (getargv(procstat, p, nchr, 1));
1871 }
1872
1873 /*
1874 * Free the buffer allocated by procstat_getenvv().
1875 */
1876 void
procstat_freeenvv(struct procstat * procstat)1877 procstat_freeenvv(struct procstat *procstat)
1878 {
1879 if (procstat->envv != NULL) {
1880 argvec_free(procstat->envv);
1881 procstat->envv = NULL;
1882 }
1883 }
1884
1885 static struct kinfo_vmentry *
kinfo_getvmmap_core(struct procstat_core * core,int * cntp)1886 kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
1887 {
1888 int cnt;
1889 size_t len;
1890 char *buf, *bp, *eb;
1891 struct kinfo_vmentry *kiv, *kp, *kv;
1892
1893 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
1894 if (buf == NULL)
1895 return (NULL);
1896
1897 /*
1898 * XXXMG: The code below is just copy&past from libutil.
1899 * The code duplication can be avoided if libutil
1900 * is extended to provide something like:
1901 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
1902 * size_t len, int *cntp);
1903 */
1904
1905 /* Pass 1: count items */
1906 cnt = 0;
1907 bp = buf;
1908 eb = buf + len;
1909 while (bp < eb) {
1910 kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1911 if (kv->kve_structsize == 0)
1912 break;
1913 bp += kv->kve_structsize;
1914 cnt++;
1915 }
1916
1917 kiv = calloc(cnt, sizeof(*kiv));
1918 if (kiv == NULL) {
1919 free(buf);
1920 return (NULL);
1921 }
1922 bp = buf;
1923 eb = buf + len;
1924 kp = kiv;
1925 /* Pass 2: unpack */
1926 while (bp < eb) {
1927 kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1928 if (kv->kve_structsize == 0)
1929 break;
1930 /* Copy/expand into pre-zeroed buffer */
1931 memcpy(kp, kv, kv->kve_structsize);
1932 /* Advance to next packed record */
1933 bp += kv->kve_structsize;
1934 /* Set field size to fixed length, advance */
1935 kp->kve_structsize = sizeof(*kp);
1936 kp++;
1937 }
1938 free(buf);
1939 *cntp = cnt;
1940 return (kiv); /* Caller must free() return value */
1941 }
1942
1943 struct kinfo_vmentry *
procstat_getvmmap(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)1944 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
1945 unsigned int *cntp)
1946 {
1947
1948 switch (procstat->type) {
1949 case PROCSTAT_KVM:
1950 warnx("kvm method is not supported");
1951 return (NULL);
1952 case PROCSTAT_SYSCTL:
1953 return (kinfo_getvmmap(kp->ki_pid, cntp));
1954 case PROCSTAT_CORE:
1955 return (kinfo_getvmmap_core(procstat->core, cntp));
1956 default:
1957 warnx("unknown access method: %d", procstat->type);
1958 return (NULL);
1959 }
1960 }
1961
1962 void
procstat_freevmmap(struct procstat * procstat __unused,struct kinfo_vmentry * vmmap)1963 procstat_freevmmap(struct procstat *procstat __unused,
1964 struct kinfo_vmentry *vmmap)
1965 {
1966
1967 free(vmmap);
1968 }
1969
1970 static gid_t *
procstat_getgroups_kvm(kvm_t * kd,struct kinfo_proc * kp,unsigned int * cntp)1971 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
1972 {
1973 struct proc proc;
1974 struct ucred ucred;
1975 gid_t *groups;
1976 size_t len;
1977
1978 assert(kd != NULL);
1979 assert(kp != NULL);
1980 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
1981 sizeof(proc))) {
1982 warnx("can't read proc struct at %p for pid %d",
1983 kp->ki_paddr, kp->ki_pid);
1984 return (NULL);
1985 }
1986 if (proc.p_ucred == NOCRED)
1987 return (NULL);
1988 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
1989 sizeof(ucred))) {
1990 warnx("can't read ucred struct at %p for pid %d",
1991 proc.p_ucred, kp->ki_pid);
1992 return (NULL);
1993 }
1994 len = ucred.cr_ngroups * sizeof(gid_t);
1995 groups = malloc(len);
1996 if (groups == NULL) {
1997 warn("malloc(%zu)", len);
1998 return (NULL);
1999 }
2000 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
2001 warnx("can't read groups at %p for pid %d",
2002 ucred.cr_groups, kp->ki_pid);
2003 free(groups);
2004 return (NULL);
2005 }
2006 *cntp = ucred.cr_ngroups;
2007 return (groups);
2008 }
2009
2010 static gid_t *
procstat_getgroups_sysctl(pid_t pid,unsigned int * cntp)2011 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
2012 {
2013 int mib[4];
2014 size_t len;
2015 gid_t *groups;
2016
2017 mib[0] = CTL_KERN;
2018 mib[1] = KERN_PROC;
2019 mib[2] = KERN_PROC_GROUPS;
2020 mib[3] = pid;
2021 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
2022 groups = malloc(len);
2023 if (groups == NULL) {
2024 warn("malloc(%zu)", len);
2025 return (NULL);
2026 }
2027 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) {
2028 warn("sysctl: kern.proc.groups: %d", pid);
2029 free(groups);
2030 return (NULL);
2031 }
2032 *cntp = len / sizeof(gid_t);
2033 return (groups);
2034 }
2035
2036 static gid_t *
procstat_getgroups_core(struct procstat_core * core,unsigned int * cntp)2037 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
2038 {
2039 size_t len;
2040 gid_t *groups;
2041
2042 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
2043 if (groups == NULL)
2044 return (NULL);
2045 *cntp = len / sizeof(gid_t);
2046 return (groups);
2047 }
2048
2049 gid_t *
procstat_getgroups(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2050 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
2051 unsigned int *cntp)
2052 {
2053 switch (procstat->type) {
2054 case PROCSTAT_KVM:
2055 return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
2056 case PROCSTAT_SYSCTL:
2057 return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
2058 case PROCSTAT_CORE:
2059 return (procstat_getgroups_core(procstat->core, cntp));
2060 default:
2061 warnx("unknown access method: %d", procstat->type);
2062 return (NULL);
2063 }
2064 }
2065
2066 void
procstat_freegroups(struct procstat * procstat __unused,gid_t * groups)2067 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
2068 {
2069
2070 free(groups);
2071 }
2072
2073 static int
procstat_getumask_kvm(kvm_t * kd,struct kinfo_proc * kp,unsigned short * maskp)2074 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
2075 {
2076 struct pwddesc pd;
2077
2078 assert(kd != NULL);
2079 assert(kp != NULL);
2080 if (kp->ki_pd == NULL)
2081 return (-1);
2082 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) {
2083 warnx("can't read pwddesc at %p for pid %d", kp->ki_pd,
2084 kp->ki_pid);
2085 return (-1);
2086 }
2087 *maskp = pd.pd_cmask;
2088 return (0);
2089 }
2090
2091 static int
procstat_getumask_sysctl(pid_t pid,unsigned short * maskp)2092 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
2093 {
2094 int error;
2095 int mib[4];
2096 size_t len;
2097
2098 mib[0] = CTL_KERN;
2099 mib[1] = KERN_PROC;
2100 mib[2] = KERN_PROC_UMASK;
2101 mib[3] = pid;
2102 len = sizeof(*maskp);
2103 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0);
2104 if (error != 0 && errno != ESRCH && errno != EPERM)
2105 warn("sysctl: kern.proc.umask: %d", pid);
2106 return (error);
2107 }
2108
2109 static int
procstat_getumask_core(struct procstat_core * core,unsigned short * maskp)2110 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
2111 {
2112 size_t len;
2113 unsigned short *buf;
2114
2115 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
2116 if (buf == NULL)
2117 return (-1);
2118 if (len < sizeof(*maskp)) {
2119 free(buf);
2120 return (-1);
2121 }
2122 *maskp = *buf;
2123 free(buf);
2124 return (0);
2125 }
2126
2127 int
procstat_getumask(struct procstat * procstat,struct kinfo_proc * kp,unsigned short * maskp)2128 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
2129 unsigned short *maskp)
2130 {
2131 switch (procstat->type) {
2132 case PROCSTAT_KVM:
2133 return (procstat_getumask_kvm(procstat->kd, kp, maskp));
2134 case PROCSTAT_SYSCTL:
2135 return (procstat_getumask_sysctl(kp->ki_pid, maskp));
2136 case PROCSTAT_CORE:
2137 return (procstat_getumask_core(procstat->core, maskp));
2138 default:
2139 warnx("unknown access method: %d", procstat->type);
2140 return (-1);
2141 }
2142 }
2143
2144 static int
procstat_getrlimit_kvm(kvm_t * kd,struct kinfo_proc * kp,int which,struct rlimit * rlimit)2145 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
2146 struct rlimit* rlimit)
2147 {
2148 struct proc proc;
2149 unsigned long offset;
2150
2151 assert(kd != NULL);
2152 assert(kp != NULL);
2153 assert(which >= 0 && which < RLIM_NLIMITS);
2154 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2155 sizeof(proc))) {
2156 warnx("can't read proc struct at %p for pid %d",
2157 kp->ki_paddr, kp->ki_pid);
2158 return (-1);
2159 }
2160 if (proc.p_limit == NULL)
2161 return (-1);
2162 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
2163 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
2164 warnx("can't read rlimit struct at %p for pid %d",
2165 (void *)offset, kp->ki_pid);
2166 return (-1);
2167 }
2168 return (0);
2169 }
2170
2171 static int
procstat_getrlimit_sysctl(pid_t pid,int which,struct rlimit * rlimit)2172 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
2173 {
2174 int error, name[5];
2175 size_t len;
2176
2177 name[0] = CTL_KERN;
2178 name[1] = KERN_PROC;
2179 name[2] = KERN_PROC_RLIMIT;
2180 name[3] = pid;
2181 name[4] = which;
2182 len = sizeof(struct rlimit);
2183 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0);
2184 if (error < 0 && errno != ESRCH) {
2185 warn("sysctl: kern.proc.rlimit: %d", pid);
2186 return (-1);
2187 }
2188 if (error < 0 || len != sizeof(struct rlimit))
2189 return (-1);
2190 return (0);
2191 }
2192
2193 static int
procstat_getrlimit_core(struct procstat_core * core,int which,struct rlimit * rlimit)2194 procstat_getrlimit_core(struct procstat_core *core, int which,
2195 struct rlimit* rlimit)
2196 {
2197 size_t len;
2198 struct rlimit* rlimits;
2199
2200 if (which < 0 || which >= RLIM_NLIMITS) {
2201 errno = EINVAL;
2202 warn("getrlimit: which");
2203 return (-1);
2204 }
2205 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
2206 if (rlimits == NULL)
2207 return (-1);
2208 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
2209 free(rlimits);
2210 return (-1);
2211 }
2212 *rlimit = rlimits[which];
2213 free(rlimits);
2214 return (0);
2215 }
2216
2217 int
procstat_getrlimit(struct procstat * procstat,struct kinfo_proc * kp,int which,struct rlimit * rlimit)2218 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
2219 struct rlimit* rlimit)
2220 {
2221 switch (procstat->type) {
2222 case PROCSTAT_KVM:
2223 return (procstat_getrlimit_kvm(procstat->kd, kp, which,
2224 rlimit));
2225 case PROCSTAT_SYSCTL:
2226 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
2227 case PROCSTAT_CORE:
2228 return (procstat_getrlimit_core(procstat->core, which, rlimit));
2229 default:
2230 warnx("unknown access method: %d", procstat->type);
2231 return (-1);
2232 }
2233 }
2234
2235 static int
procstat_getpathname_sysctl(pid_t pid,char * pathname,size_t maxlen)2236 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
2237 {
2238 int error, name[4];
2239 size_t len;
2240
2241 name[0] = CTL_KERN;
2242 name[1] = KERN_PROC;
2243 name[2] = KERN_PROC_PATHNAME;
2244 name[3] = pid;
2245 len = maxlen;
2246 error = sysctl(name, nitems(name), pathname, &len, NULL, 0);
2247 if (error != 0 && errno != ESRCH)
2248 warn("sysctl: kern.proc.pathname: %d", pid);
2249 if (len == 0)
2250 pathname[0] = '\0';
2251 return (error);
2252 }
2253
2254 static int
procstat_getpathname_core(struct procstat_core * core,char * pathname,size_t maxlen)2255 procstat_getpathname_core(struct procstat_core *core, char *pathname,
2256 size_t maxlen)
2257 {
2258 struct kinfo_file *files;
2259 int cnt, i, result;
2260
2261 files = kinfo_getfile_core(core, &cnt);
2262 if (files == NULL)
2263 return (-1);
2264 result = -1;
2265 for (i = 0; i < cnt; i++) {
2266 if (files[i].kf_fd != KF_FD_TYPE_TEXT)
2267 continue;
2268 strncpy(pathname, files[i].kf_path, maxlen);
2269 result = 0;
2270 break;
2271 }
2272 free(files);
2273 return (result);
2274 }
2275
2276 int
procstat_getpathname(struct procstat * procstat,struct kinfo_proc * kp,char * pathname,size_t maxlen)2277 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
2278 char *pathname, size_t maxlen)
2279 {
2280 switch (procstat->type) {
2281 case PROCSTAT_KVM:
2282 /* XXX: Return empty string. */
2283 if (maxlen > 0)
2284 pathname[0] = '\0';
2285 return (0);
2286 case PROCSTAT_SYSCTL:
2287 return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
2288 maxlen));
2289 case PROCSTAT_CORE:
2290 return (procstat_getpathname_core(procstat->core, pathname,
2291 maxlen));
2292 default:
2293 warnx("unknown access method: %d", procstat->type);
2294 return (-1);
2295 }
2296 }
2297
2298 static int
procstat_getosrel_kvm(kvm_t * kd,struct kinfo_proc * kp,int * osrelp)2299 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
2300 {
2301 struct proc proc;
2302
2303 assert(kd != NULL);
2304 assert(kp != NULL);
2305 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2306 sizeof(proc))) {
2307 warnx("can't read proc struct at %p for pid %d",
2308 kp->ki_paddr, kp->ki_pid);
2309 return (-1);
2310 }
2311 *osrelp = proc.p_osrel;
2312 return (0);
2313 }
2314
2315 static int
procstat_getosrel_sysctl(pid_t pid,int * osrelp)2316 procstat_getosrel_sysctl(pid_t pid, int *osrelp)
2317 {
2318 int error, name[4];
2319 size_t len;
2320
2321 name[0] = CTL_KERN;
2322 name[1] = KERN_PROC;
2323 name[2] = KERN_PROC_OSREL;
2324 name[3] = pid;
2325 len = sizeof(*osrelp);
2326 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0);
2327 if (error != 0 && errno != ESRCH)
2328 warn("sysctl: kern.proc.osrel: %d", pid);
2329 return (error);
2330 }
2331
2332 static int
procstat_getosrel_core(struct procstat_core * core,int * osrelp)2333 procstat_getosrel_core(struct procstat_core *core, int *osrelp)
2334 {
2335 size_t len;
2336 int *buf;
2337
2338 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
2339 if (buf == NULL)
2340 return (-1);
2341 if (len < sizeof(*osrelp)) {
2342 free(buf);
2343 return (-1);
2344 }
2345 *osrelp = *buf;
2346 free(buf);
2347 return (0);
2348 }
2349
2350 int
procstat_getosrel(struct procstat * procstat,struct kinfo_proc * kp,int * osrelp)2351 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
2352 {
2353 switch (procstat->type) {
2354 case PROCSTAT_KVM:
2355 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
2356 case PROCSTAT_SYSCTL:
2357 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
2358 case PROCSTAT_CORE:
2359 return (procstat_getosrel_core(procstat->core, osrelp));
2360 default:
2361 warnx("unknown access method: %d", procstat->type);
2362 return (-1);
2363 }
2364 }
2365
2366 #define PROC_AUXV_MAX 256
2367
2368 #ifdef PS_ARCH_HAS_FREEBSD32
2369 static const char *elf32_sv_names[] = {
2370 "Linux ELF32",
2371 "FreeBSD ELF32",
2372 };
2373
2374 static int
is_elf32_sysctl(pid_t pid)2375 is_elf32_sysctl(pid_t pid)
2376 {
2377 int error, name[4];
2378 size_t len, i;
2379 char sv_name[32];
2380
2381 name[0] = CTL_KERN;
2382 name[1] = KERN_PROC;
2383 name[2] = KERN_PROC_SV_NAME;
2384 name[3] = pid;
2385 len = sizeof(sv_name);
2386 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0);
2387 if (error != 0 || len == 0)
2388 return (0);
2389 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
2390 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
2391 return (1);
2392 }
2393 return (0);
2394 }
2395
2396 static Elf_Auxinfo *
procstat_getauxv32_sysctl(pid_t pid,unsigned int * cntp)2397 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
2398 {
2399 Elf_Auxinfo *auxv;
2400 Elf32_Auxinfo *auxv32;
2401 size_t len;
2402 unsigned int i, count;
2403 int name[4];
2404
2405 name[0] = CTL_KERN;
2406 name[1] = KERN_PROC;
2407 name[2] = KERN_PROC_AUXV;
2408 name[3] = pid;
2409 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
2410 auxv = NULL;
2411 auxv32 = malloc(len);
2412 if (auxv32 == NULL) {
2413 warn("malloc(%zu)", len);
2414 goto out;
2415 }
2416 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) {
2417 if (errno != ESRCH && errno != EPERM)
2418 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2419 goto out;
2420 }
2421 count = len / sizeof(Elf32_Auxinfo);
2422 auxv = malloc(count * sizeof(Elf_Auxinfo));
2423 if (auxv == NULL) {
2424 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
2425 goto out;
2426 }
2427 for (i = 0; i < count; i++) {
2428 /*
2429 * XXX: We expect that values for a_type on a 32-bit platform
2430 * are directly mapped to values on 64-bit one, which is not
2431 * necessarily true.
2432 */
2433 auxv[i].a_type = auxv32[i].a_type;
2434 /*
2435 * Don't sign extend values. Existing entries are positive
2436 * integers or pointers. Under freebsd32, programs typically
2437 * have a full [0, 2^32) address space (perhaps minus the last
2438 * page) and treating this as a signed integer would be
2439 * confusing since these are not kernel pointers.
2440 *
2441 * XXX: A more complete translation would be ABI and
2442 * type-aware.
2443 */
2444 auxv[i].a_un.a_val = (uint32_t)auxv32[i].a_un.a_val;
2445 }
2446 *cntp = count;
2447 out:
2448 free(auxv32);
2449 return (auxv);
2450 }
2451 #endif /* PS_ARCH_HAS_FREEBSD32 */
2452
2453 static Elf_Auxinfo *
procstat_getauxv_sysctl(pid_t pid,unsigned int * cntp)2454 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
2455 {
2456 Elf_Auxinfo *auxv;
2457 int name[4];
2458 size_t len;
2459
2460 #ifdef PS_ARCH_HAS_FREEBSD32
2461 if (is_elf32_sysctl(pid))
2462 return (procstat_getauxv32_sysctl(pid, cntp));
2463 #endif
2464 name[0] = CTL_KERN;
2465 name[1] = KERN_PROC;
2466 name[2] = KERN_PROC_AUXV;
2467 name[3] = pid;
2468 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
2469 auxv = malloc(len);
2470 if (auxv == NULL) {
2471 warn("malloc(%zu)", len);
2472 return (NULL);
2473 }
2474 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) {
2475 if (errno != ESRCH && errno != EPERM)
2476 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2477 free(auxv);
2478 return (NULL);
2479 }
2480 *cntp = len / sizeof(Elf_Auxinfo);
2481 return (auxv);
2482 }
2483
2484 static Elf_Auxinfo *
procstat_getauxv_core(struct procstat_core * core,unsigned int * cntp)2485 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
2486 {
2487 Elf_Auxinfo *auxv;
2488 size_t len;
2489
2490 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
2491 if (auxv == NULL)
2492 return (NULL);
2493 *cntp = len / sizeof(Elf_Auxinfo);
2494 return (auxv);
2495 }
2496
2497 Elf_Auxinfo *
procstat_getauxv(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2498 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
2499 unsigned int *cntp)
2500 {
2501 switch (procstat->type) {
2502 case PROCSTAT_KVM:
2503 warnx("kvm method is not supported");
2504 return (NULL);
2505 case PROCSTAT_SYSCTL:
2506 return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
2507 case PROCSTAT_CORE:
2508 return (procstat_getauxv_core(procstat->core, cntp));
2509 default:
2510 warnx("unknown access method: %d", procstat->type);
2511 return (NULL);
2512 }
2513 }
2514
2515 void
procstat_freeauxv(struct procstat * procstat __unused,Elf_Auxinfo * auxv)2516 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
2517 {
2518
2519 free(auxv);
2520 }
2521
2522 static struct ptrace_lwpinfo *
procstat_getptlwpinfo_core(struct procstat_core * core,unsigned int * cntp)2523 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp)
2524 {
2525 void *buf;
2526 struct ptrace_lwpinfo *pl;
2527 unsigned int cnt;
2528 size_t len;
2529
2530 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO);
2531 if (cnt == 0)
2532 return (NULL);
2533
2534 len = cnt * sizeof(*pl);
2535 buf = calloc(1, len);
2536 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len);
2537 if (pl == NULL) {
2538 free(buf);
2539 return (NULL);
2540 }
2541 *cntp = len / sizeof(*pl);
2542 return (pl);
2543 }
2544
2545 struct ptrace_lwpinfo *
procstat_getptlwpinfo(struct procstat * procstat,unsigned int * cntp)2546 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp)
2547 {
2548 switch (procstat->type) {
2549 case PROCSTAT_KVM:
2550 warnx("kvm method is not supported");
2551 return (NULL);
2552 case PROCSTAT_SYSCTL:
2553 warnx("sysctl method is not supported");
2554 return (NULL);
2555 case PROCSTAT_CORE:
2556 return (procstat_getptlwpinfo_core(procstat->core, cntp));
2557 default:
2558 warnx("unknown access method: %d", procstat->type);
2559 return (NULL);
2560 }
2561 }
2562
2563 void
procstat_freeptlwpinfo(struct procstat * procstat __unused,struct ptrace_lwpinfo * pl)2564 procstat_freeptlwpinfo(struct procstat *procstat __unused,
2565 struct ptrace_lwpinfo *pl)
2566 {
2567 free(pl);
2568 }
2569
2570 static struct kinfo_kstack *
procstat_getkstack_sysctl(pid_t pid,int * cntp)2571 procstat_getkstack_sysctl(pid_t pid, int *cntp)
2572 {
2573 struct kinfo_kstack *kkstp;
2574 int error, name[4];
2575 size_t len;
2576
2577 name[0] = CTL_KERN;
2578 name[1] = KERN_PROC;
2579 name[2] = KERN_PROC_KSTACK;
2580 name[3] = pid;
2581
2582 len = 0;
2583 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2584 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
2585 warn("sysctl: kern.proc.kstack: %d", pid);
2586 return (NULL);
2587 }
2588 if (error == -1 && errno == ENOENT) {
2589 warnx("sysctl: kern.proc.kstack unavailable"
2590 " (options DDB or options STACK required in kernel)");
2591 return (NULL);
2592 }
2593 if (error == -1)
2594 return (NULL);
2595 kkstp = malloc(len);
2596 if (kkstp == NULL) {
2597 warn("malloc(%zu)", len);
2598 return (NULL);
2599 }
2600 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1 &&
2601 errno != ENOMEM) {
2602 warn("sysctl: kern.proc.pid: %d", pid);
2603 free(kkstp);
2604 return (NULL);
2605 }
2606 *cntp = len / sizeof(*kkstp);
2607
2608 return (kkstp);
2609 }
2610
2611 struct kinfo_kstack *
procstat_getkstack(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2612 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
2613 unsigned int *cntp)
2614 {
2615 switch (procstat->type) {
2616 case PROCSTAT_KVM:
2617 warnx("kvm method is not supported");
2618 return (NULL);
2619 case PROCSTAT_SYSCTL:
2620 return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
2621 case PROCSTAT_CORE:
2622 warnx("core method is not supported");
2623 return (NULL);
2624 default:
2625 warnx("unknown access method: %d", procstat->type);
2626 return (NULL);
2627 }
2628 }
2629
2630 void
procstat_freekstack(struct procstat * procstat __unused,struct kinfo_kstack * kkstp)2631 procstat_freekstack(struct procstat *procstat __unused,
2632 struct kinfo_kstack *kkstp)
2633 {
2634
2635 free(kkstp);
2636 }
2637
2638 static struct advlock_list *
procstat_getadvlock_sysctl(struct procstat * procstat __unused)2639 procstat_getadvlock_sysctl(struct procstat *procstat __unused)
2640 {
2641 struct advlock_list *res;
2642 struct advlock *a;
2643 void *buf;
2644 char *c;
2645 struct kinfo_lockf *kl;
2646 size_t buf_len;
2647 int error;
2648 static const int kl_name[] = { CTL_KERN, KERN_LOCKF };
2649
2650 res = malloc(sizeof(*res));
2651 if (res == NULL)
2652 return (NULL);
2653 STAILQ_INIT(res);
2654 buf = NULL;
2655
2656 buf_len = 0;
2657 error = sysctl(kl_name, nitems(kl_name), NULL, &buf_len, NULL, 0);
2658 if (error != 0) {
2659 warn("sysctl KERN_LOCKF size");
2660 goto fail;
2661 }
2662 buf_len *= 2;
2663 buf = malloc(buf_len);
2664 if (buf == NULL) {
2665 warn("malloc");
2666 goto fail;
2667 }
2668 error = sysctl(kl_name, nitems(kl_name), buf, &buf_len, NULL, 0);
2669 if (error != 0) {
2670 warn("sysctl KERN_LOCKF data");
2671 goto fail;
2672 }
2673
2674 for (c = buf; (char *)c < (char *)buf + buf_len;
2675 c += kl->kl_structsize) {
2676 kl = (struct kinfo_lockf *)(void *)c;
2677 if (sizeof(*kl) < (size_t)kl->kl_structsize) {
2678 warn("ABI broken");
2679 goto fail;
2680 }
2681 a = malloc(sizeof(*a));
2682 if (a == NULL) {
2683 warn("malloc advlock");
2684 goto fail;
2685 }
2686 switch (kl->kl_rw) {
2687 case KLOCKF_RW_READ:
2688 a->rw = PS_ADVLOCK_RO;
2689 break;
2690 case KLOCKF_RW_WRITE:
2691 a->rw = PS_ADVLOCK_RW;
2692 break;
2693 default:
2694 warn("ABI broken");
2695 free(a);
2696 goto fail;
2697 }
2698 switch (kl->kl_type) {
2699 case KLOCKF_TYPE_FLOCK:
2700 a->type = PS_ADVLOCK_TYPE_FLOCK;
2701 break;
2702 case KLOCKF_TYPE_PID:
2703 a->type = PS_ADVLOCK_TYPE_PID;
2704 break;
2705 case KLOCKF_TYPE_REMOTE:
2706 a->type = PS_ADVLOCK_TYPE_REMOTE;
2707 break;
2708 default:
2709 warn("ABI broken");
2710 free(a);
2711 goto fail;
2712 }
2713 a->pid = kl->kl_pid;
2714 a->sysid = kl->kl_sysid;
2715 a->file_fsid = kl->kl_file_fsid;
2716 a->file_rdev = kl->kl_file_rdev;
2717 a->file_fileid = kl->kl_file_fileid;
2718 a->start = kl->kl_start;
2719 a->len = kl->kl_len;
2720 if (kl->kl_path[0] != '\0') {
2721 a->path = strdup(kl->kl_path);
2722 if (a->path == NULL) {
2723 warn("malloc");
2724 free(a);
2725 goto fail;
2726 }
2727 } else
2728 a->path = NULL;
2729 STAILQ_INSERT_TAIL(res, a, next);
2730 }
2731
2732 free(buf);
2733 return (res);
2734
2735 fail:
2736 free(buf);
2737 procstat_freeadvlock(procstat, res);
2738 return (NULL);
2739 }
2740
2741 struct advlock_list *
procstat_getadvlock(struct procstat * procstat)2742 procstat_getadvlock(struct procstat *procstat)
2743 {
2744 switch (procstat->type) {
2745 case PROCSTAT_KVM:
2746 warnx("kvm method is not supported");
2747 return (NULL);
2748 case PROCSTAT_SYSCTL:
2749 return (procstat_getadvlock_sysctl(procstat));
2750 case PROCSTAT_CORE:
2751 warnx("core method is not supported");
2752 return (NULL);
2753 default:
2754 warnx("unknown access method: %d", procstat->type);
2755 return (NULL);
2756 }
2757 }
2758
2759 void
procstat_freeadvlock(struct procstat * procstat __unused,struct advlock_list * lst)2760 procstat_freeadvlock(struct procstat *procstat __unused,
2761 struct advlock_list *lst)
2762 {
2763 struct advlock *a, *a1;
2764
2765 STAILQ_FOREACH_SAFE(a, lst, next, a1) {
2766 free(__DECONST(char *, a->path));
2767 free(a);
2768 }
2769 free(lst);
2770 }
2771
2772 static rlim_t *
procstat_getrlimitusage_sysctl(pid_t pid,unsigned * cntp)2773 procstat_getrlimitusage_sysctl(pid_t pid, unsigned *cntp)
2774 {
2775 int error, name[4];
2776 rlim_t *val;
2777 size_t len;
2778
2779 name[0] = CTL_KERN;
2780 name[1] = KERN_PROC;
2781 name[2] = KERN_PROC_RLIMIT_USAGE;
2782 name[3] = pid;
2783
2784 len = 0;
2785 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2786 if (error == -1)
2787 return (NULL);
2788 val = malloc(len);
2789 if (val == NULL)
2790 return (NULL);
2791
2792 error = sysctl(name, nitems(name), val, &len, NULL, 0);
2793 if (error == -1) {
2794 free(val);
2795 return (NULL);
2796 }
2797 *cntp = len / sizeof(rlim_t);
2798 return (val);
2799 }
2800
2801 rlim_t *
procstat_getrlimitusage(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2802 procstat_getrlimitusage(struct procstat *procstat, struct kinfo_proc *kp,
2803 unsigned int *cntp)
2804 {
2805 switch (procstat->type) {
2806 case PROCSTAT_KVM:
2807 warnx("kvm method is not supported");
2808 return (NULL);
2809 case PROCSTAT_SYSCTL:
2810 return (procstat_getrlimitusage_sysctl(kp->ki_pid, cntp));
2811 case PROCSTAT_CORE:
2812 warnx("core method is not supported");
2813 return (NULL);
2814 default:
2815 warnx("unknown access method: %d", procstat->type);
2816 return (NULL);
2817 }
2818 }
2819
2820 void
procstat_freerlimitusage(struct procstat * procstat __unused,rlim_t * resusage)2821 procstat_freerlimitusage(struct procstat *procstat __unused, rlim_t *resusage)
2822 {
2823 free(resusage);
2824 }
2825
2826 static struct kinfo_knote *
procstat_get_kqueue_info_sysctl(pid_t pid,int kqfd,unsigned int * cntp,char * errbuf)2827 procstat_get_kqueue_info_sysctl(pid_t pid, int kqfd, unsigned int *cntp,
2828 char *errbuf)
2829 {
2830 int error, name[5];
2831 struct kinfo_knote *val;
2832 size_t len;
2833
2834 name[0] = CTL_KERN;
2835 name[1] = KERN_PROC;
2836 name[2] = KERN_PROC_KQUEUE;
2837 name[3] = pid;
2838 name[4] = kqfd;
2839
2840 len = 0;
2841 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2842 if (error == -1) {
2843 snprintf(errbuf, _POSIX2_LINE_MAX,
2844 "KERN_PROC_KQUEUE.pid<%d>.kq<%d> (size q) failed: %s",
2845 pid, kqfd, strerror(errno));
2846 return (NULL);
2847 }
2848 val = malloc(len);
2849 if (val == NULL) {
2850 snprintf(errbuf, _POSIX2_LINE_MAX, "no memory");
2851 return (NULL);
2852 }
2853
2854 error = sysctl(name, nitems(name), val, &len, NULL, 0);
2855 if (error == -1) {
2856 snprintf(errbuf, _POSIX2_LINE_MAX,
2857 "KERN_PROC_KQUEUE.pid<%d>.kq<%d> failed: %s",
2858 pid, kqfd, strerror(errno));
2859 free(val);
2860 return (NULL);
2861 }
2862 *cntp = len / sizeof(*val);
2863 return (val);
2864 }
2865
2866 struct kinfo_knote *
procstat_get_kqueue_info(struct procstat * procstat,struct kinfo_proc * kp,int kqfd,unsigned int * count,char * errbuf)2867 procstat_get_kqueue_info(struct procstat *procstat,
2868 struct kinfo_proc *kp, int kqfd, unsigned int *count, char *errbuf)
2869 {
2870 struct kinfo_knote *kn, *k, *res, *rn;
2871 size_t len, kqn;
2872
2873 switch (procstat->type) {
2874 case PROCSTAT_KVM:
2875 warnx("kvm method is not supported");
2876 return (NULL);
2877 case PROCSTAT_SYSCTL:
2878 return (procstat_get_kqueue_info_sysctl(kp->ki_pid, kqfd,
2879 count, errbuf));
2880 case PROCSTAT_CORE:
2881 k = procstat_core_get(procstat->core, PSC_TYPE_KQUEUES,
2882 NULL, &len);
2883 if (k == NULL) {
2884 snprintf(errbuf, _POSIX2_LINE_MAX,
2885 "getting NT_PROCSTAT_KQUEUES note failed");
2886 *count = 0;
2887 return (NULL);
2888 }
2889 for (kqn = 0, kn = k; kn < k + len / sizeof(*kn); kn++) {
2890 if (kn->knt_kq_fd == kqfd)
2891 kqn++;
2892 }
2893 res = calloc(kqn, sizeof(*res));
2894 if (res == NULL) {
2895 free(k);
2896 snprintf(errbuf, _POSIX2_LINE_MAX,
2897 "no memory");
2898 return (NULL);
2899 }
2900 for (kn = k, rn = res; kn < k + len / sizeof(*kn); kn++) {
2901 if (kn->knt_kq_fd != kqfd)
2902 continue;
2903 *rn = *kn;
2904 rn++;
2905 }
2906 *count = kqn;
2907 free(k);
2908 return (res);
2909 default:
2910 warnx("unknown access method: %d", procstat->type);
2911 return (NULL);
2912 }
2913 }
2914
2915 void
procstat_freekqinfo(struct procstat * procstat __unused,struct kinfo_knote * v)2916 procstat_freekqinfo(struct procstat *procstat __unused, struct kinfo_knote *v)
2917 {
2918 free(v);
2919 }
2920