1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2017 Dell EMC
5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
6 * Copyright (c) 1988, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <sys/param.h>
39 #include <sys/elf.h>
40 #include <sys/time.h>
41 #include <sys/resourcevar.h>
42 #define _WANT_UCRED
43 #include <sys/ucred.h>
44 #undef _WANT_UCRED
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/stat.h>
48 #include <sys/vnode.h>
49 #include <sys/socket.h>
50 #define _WANT_SOCKET
51 #include <sys/socketvar.h>
52 #include <sys/domain.h>
53 #define _WANT_PROTOSW
54 #include <sys/protosw.h>
55 #include <sys/un.h>
56 #define _WANT_UNPCB
57 #include <sys/unpcb.h>
58 #include <sys/sysctl.h>
59 #include <sys/tty.h>
60 #include <sys/filedesc.h>
61 #include <sys/queue.h>
62 #define _WANT_FILE
63 #include <sys/file.h>
64 #include <sys/conf.h>
65 #include <sys/ksem.h>
66 #include <sys/mman.h>
67 #include <sys/capsicum.h>
68 #include <sys/ptrace.h>
69 #define _WANT_MOUNT
70 #include <sys/mount.h>
71 #include <sys/filedesc.h>
72 #include <sys/pipe.h>
73 #include <fs/devfs/devfs.h>
74 #include <fs/devfs/devfs_int.h>
75 #include <nfs/nfsproto.h>
76 #include <nfsclient/nfs.h>
77 #include <nfsclient/nfsnode.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82
83 #include <net/route.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87
88 #include <assert.h>
89 #include <ctype.h>
90 #include <err.h>
91 #include <fcntl.h>
92 #include <kvm.h>
93 #include <libutil.h>
94 #include <limits.h>
95 #include <paths.h>
96 #include <pwd.h>
97 #include <stdio.h>
98 #include <stdlib.h>
99 #include <stddef.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <netdb.h>
103
104 #include <libprocstat.h>
105 #include "libprocstat_internal.h"
106 #include "common_kvm.h"
107 #include "core.h"
108
109 int statfs(const char *, struct statfs *); /* XXX */
110
111 #define PROCSTAT_KVM 1
112 #define PROCSTAT_SYSCTL 2
113 #define PROCSTAT_CORE 3
114
115 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp,
116 size_t nchr, int env);
117 static char *getmnton(kvm_t *kd, struct mount *m);
118 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core,
119 int *cntp);
120 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core,
121 unsigned int *cntp);
122 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
123 static struct filestat_list *procstat_getfiles_kvm(
124 struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
125 static struct filestat_list *procstat_getfiles_sysctl(
126 struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
127 static int procstat_get_pipe_info_sysctl(struct filestat *fst,
128 struct pipestat *pipe, char *errbuf);
129 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
130 struct pipestat *pipe, char *errbuf);
131 static int procstat_get_pts_info_sysctl(struct filestat *fst,
132 struct ptsstat *pts, char *errbuf);
133 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
134 struct ptsstat *pts, char *errbuf);
135 static int procstat_get_sem_info_sysctl(struct filestat *fst,
136 struct semstat *sem, char *errbuf);
137 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
138 struct semstat *sem, char *errbuf);
139 static int procstat_get_shm_info_sysctl(struct filestat *fst,
140 struct shmstat *shm, char *errbuf);
141 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
142 struct shmstat *shm, char *errbuf);
143 static int procstat_get_socket_info_sysctl(struct filestat *fst,
144 struct sockstat *sock, char *errbuf);
145 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
146 struct sockstat *sock, char *errbuf);
147 static int to_filestat_flags(int flags);
148 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
149 struct vnstat *vn, char *errbuf);
150 static int procstat_get_vnode_info_sysctl(struct filestat *fst,
151 struct vnstat *vn, char *errbuf);
152 static gid_t *procstat_getgroups_core(struct procstat_core *core,
153 unsigned int *count);
154 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
155 unsigned int *count);
156 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
157 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid,
158 int *cntp);
159 static int procstat_getosrel_core(struct procstat_core *core,
160 int *osrelp);
161 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
162 int *osrelp);
163 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp);
164 static int procstat_getpathname_core(struct procstat_core *core,
165 char *pathname, size_t maxlen);
166 static int procstat_getpathname_sysctl(pid_t pid, char *pathname,
167 size_t maxlen);
168 static int procstat_getrlimit_core(struct procstat_core *core, int which,
169 struct rlimit* rlimit);
170 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
171 int which, struct rlimit* rlimit);
172 static int procstat_getrlimit_sysctl(pid_t pid, int which,
173 struct rlimit* rlimit);
174 static int procstat_getumask_core(struct procstat_core *core,
175 unsigned short *maskp);
176 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
177 unsigned short *maskp);
178 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
179 static int vntype2psfsttype(int type);
180
181 void
procstat_close(struct procstat * procstat)182 procstat_close(struct procstat *procstat)
183 {
184
185 assert(procstat);
186 if (procstat->type == PROCSTAT_KVM)
187 kvm_close(procstat->kd);
188 else if (procstat->type == PROCSTAT_CORE)
189 procstat_core_close(procstat->core);
190 procstat_freeargv(procstat);
191 procstat_freeenvv(procstat);
192 free(procstat);
193 }
194
195 struct procstat *
procstat_open_sysctl(void)196 procstat_open_sysctl(void)
197 {
198 struct procstat *procstat;
199
200 procstat = calloc(1, sizeof(*procstat));
201 if (procstat == NULL) {
202 warn("malloc()");
203 return (NULL);
204 }
205 procstat->type = PROCSTAT_SYSCTL;
206 return (procstat);
207 }
208
209 struct procstat *
procstat_open_kvm(const char * nlistf,const char * memf)210 procstat_open_kvm(const char *nlistf, const char *memf)
211 {
212 struct procstat *procstat;
213 kvm_t *kd;
214 char buf[_POSIX2_LINE_MAX];
215
216 procstat = calloc(1, sizeof(*procstat));
217 if (procstat == NULL) {
218 warn("malloc()");
219 return (NULL);
220 }
221 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
222 if (kd == NULL) {
223 warnx("kvm_openfiles(): %s", buf);
224 free(procstat);
225 return (NULL);
226 }
227 procstat->type = PROCSTAT_KVM;
228 procstat->kd = kd;
229 return (procstat);
230 }
231
232 struct procstat *
procstat_open_core(const char * filename)233 procstat_open_core(const char *filename)
234 {
235 struct procstat *procstat;
236 struct procstat_core *core;
237
238 procstat = calloc(1, sizeof(*procstat));
239 if (procstat == NULL) {
240 warn("malloc()");
241 return (NULL);
242 }
243 core = procstat_core_open(filename);
244 if (core == NULL) {
245 free(procstat);
246 return (NULL);
247 }
248 procstat->type = PROCSTAT_CORE;
249 procstat->core = core;
250 return (procstat);
251 }
252
253 struct kinfo_proc *
procstat_getprocs(struct procstat * procstat,int what,int arg,unsigned int * count)254 procstat_getprocs(struct procstat *procstat, int what, int arg,
255 unsigned int *count)
256 {
257 struct kinfo_proc *p0, *p;
258 size_t len, olen;
259 int name[4];
260 int cnt;
261 int error;
262
263 assert(procstat);
264 assert(count);
265 p = NULL;
266 if (procstat->type == PROCSTAT_KVM) {
267 *count = 0;
268 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
269 if (p0 == NULL || cnt <= 0)
270 return (NULL);
271 *count = cnt;
272 len = *count * sizeof(*p);
273 p = malloc(len);
274 if (p == NULL) {
275 warnx("malloc(%zu)", len);
276 goto fail;
277 }
278 bcopy(p0, p, len);
279 return (p);
280 } else if (procstat->type == PROCSTAT_SYSCTL) {
281 len = 0;
282 name[0] = CTL_KERN;
283 name[1] = KERN_PROC;
284 name[2] = what;
285 name[3] = arg;
286 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
287 if (error < 0 && errno != EPERM) {
288 warn("sysctl(kern.proc)");
289 goto fail;
290 }
291 if (len == 0) {
292 warnx("no processes?");
293 goto fail;
294 }
295 do {
296 len += len / 10;
297 p = reallocf(p, len);
298 if (p == NULL) {
299 warnx("reallocf(%zu)", len);
300 goto fail;
301 }
302 olen = len;
303 error = sysctl(name, nitems(name), p, &len, NULL, 0);
304 } while (error < 0 && errno == ENOMEM && olen == len);
305 if (error < 0 && errno != EPERM) {
306 warn("sysctl(kern.proc)");
307 goto fail;
308 }
309 /* Perform simple consistency checks. */
310 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
311 warnx("kinfo_proc structure size mismatch (len = %zu)", len);
312 goto fail;
313 }
314 *count = len / sizeof(*p);
315 return (p);
316 } else if (procstat->type == PROCSTAT_CORE) {
317 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
318 &len);
319 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
320 warnx("kinfo_proc structure size mismatch");
321 goto fail;
322 }
323 *count = len / sizeof(*p);
324 return (p);
325 } else {
326 warnx("unknown access method: %d", procstat->type);
327 return (NULL);
328 }
329 fail:
330 if (p)
331 free(p);
332 return (NULL);
333 }
334
335 void
procstat_freeprocs(struct procstat * procstat __unused,struct kinfo_proc * p)336 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
337 {
338
339 if (p != NULL)
340 free(p);
341 p = NULL;
342 }
343
344 struct filestat_list *
procstat_getfiles(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)345 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
346 {
347
348 switch (procstat->type) {
349 case PROCSTAT_KVM:
350 return (procstat_getfiles_kvm(procstat, kp, mmapped));
351 case PROCSTAT_SYSCTL:
352 case PROCSTAT_CORE:
353 return (procstat_getfiles_sysctl(procstat, kp, mmapped));
354 default:
355 warnx("unknown access method: %d", procstat->type);
356 return (NULL);
357 }
358 }
359
360 void
procstat_freefiles(struct procstat * procstat,struct filestat_list * head)361 procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
362 {
363 struct filestat *fst, *tmp;
364
365 STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
366 if (fst->fs_path != NULL)
367 free(fst->fs_path);
368 free(fst);
369 }
370 free(head);
371 if (procstat->vmentries != NULL) {
372 free(procstat->vmentries);
373 procstat->vmentries = NULL;
374 }
375 if (procstat->files != NULL) {
376 free(procstat->files);
377 procstat->files = NULL;
378 }
379 }
380
381 static struct filestat *
filestat_new_entry(void * typedep,int type,int fd,int fflags,int uflags,int refcount,off_t offset,char * path,cap_rights_t * cap_rightsp)382 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
383 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
384 {
385 struct filestat *entry;
386
387 entry = calloc(1, sizeof(*entry));
388 if (entry == NULL) {
389 warn("malloc()");
390 return (NULL);
391 }
392 entry->fs_typedep = typedep;
393 entry->fs_fflags = fflags;
394 entry->fs_uflags = uflags;
395 entry->fs_fd = fd;
396 entry->fs_type = type;
397 entry->fs_ref_count = refcount;
398 entry->fs_offset = offset;
399 entry->fs_path = path;
400 if (cap_rightsp != NULL)
401 entry->fs_cap_rights = *cap_rightsp;
402 else
403 cap_rights_init(&entry->fs_cap_rights);
404 return (entry);
405 }
406
407 static struct vnode *
getctty(kvm_t * kd,struct kinfo_proc * kp)408 getctty(kvm_t *kd, struct kinfo_proc *kp)
409 {
410 struct pgrp pgrp;
411 struct proc proc;
412 struct session sess;
413 int error;
414
415 assert(kp);
416 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
417 sizeof(proc));
418 if (error == 0) {
419 warnx("can't read proc struct at %p for pid %d",
420 kp->ki_paddr, kp->ki_pid);
421 return (NULL);
422 }
423 if (proc.p_pgrp == NULL)
424 return (NULL);
425 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
426 sizeof(pgrp));
427 if (error == 0) {
428 warnx("can't read pgrp struct at %p for pid %d",
429 proc.p_pgrp, kp->ki_pid);
430 return (NULL);
431 }
432 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
433 sizeof(sess));
434 if (error == 0) {
435 warnx("can't read session struct at %p for pid %d",
436 pgrp.pg_session, kp->ki_pid);
437 return (NULL);
438 }
439 return (sess.s_ttyvp);
440 }
441
442 static int
procstat_vm_map_reader(void * token,vm_map_entry_t addr,vm_map_entry_t dest)443 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest)
444 {
445 kvm_t *kd;
446
447 kd = (kvm_t *)token;
448 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest)));
449 }
450
451 static struct filestat_list *
procstat_getfiles_kvm(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)452 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
453 {
454 struct file file;
455 struct filedesc filed;
456 struct pwddesc pathsd;
457 struct fdescenttbl *fdt;
458 struct pwd pwd;
459 unsigned long pwd_addr;
460 struct vm_map_entry vmentry;
461 struct vm_object object;
462 struct vmspace vmspace;
463 vm_map_entry_t entryp;
464 vm_object_t objp;
465 struct vnode *vp;
466 struct filestat *entry;
467 struct filestat_list *head;
468 kvm_t *kd;
469 void *data;
470 int fflags;
471 unsigned int i;
472 int prot, type;
473 size_t fdt_size;
474 unsigned int nfiles;
475 bool haspwd;
476
477 assert(procstat);
478 kd = procstat->kd;
479 if (kd == NULL)
480 return (NULL);
481 if (kp->ki_fd == NULL || kp->ki_pd == NULL)
482 return (NULL);
483 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
484 sizeof(filed))) {
485 warnx("can't read filedesc at %p", (void *)kp->ki_fd);
486 return (NULL);
487 }
488 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd,
489 sizeof(pathsd))) {
490 warnx("can't read pwddesc at %p", (void *)kp->ki_pd);
491 return (NULL);
492 }
493 haspwd = false;
494 pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd));
495 if (pwd_addr != 0) {
496 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) {
497 warnx("can't read fd_pwd at %p", (void *)pwd_addr);
498 return (NULL);
499 }
500 haspwd = true;
501 }
502
503 /*
504 * Allocate list head.
505 */
506 head = malloc(sizeof(*head));
507 if (head == NULL)
508 return (NULL);
509 STAILQ_INIT(head);
510
511 /* root directory vnode, if one. */
512 if (haspwd) {
513 if (pwd.pwd_rdir) {
514 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1,
515 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL);
516 if (entry != NULL)
517 STAILQ_INSERT_TAIL(head, entry, next);
518 }
519 /* current working directory vnode. */
520 if (pwd.pwd_cdir) {
521 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1,
522 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL);
523 if (entry != NULL)
524 STAILQ_INSERT_TAIL(head, entry, next);
525 }
526 /* jail root, if any. */
527 if (pwd.pwd_jdir) {
528 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1,
529 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL);
530 if (entry != NULL)
531 STAILQ_INSERT_TAIL(head, entry, next);
532 }
533 }
534 /* ktrace vnode, if one */
535 if (kp->ki_tracep) {
536 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
537 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
538 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL);
539 if (entry != NULL)
540 STAILQ_INSERT_TAIL(head, entry, next);
541 }
542 /* text vnode, if one */
543 if (kp->ki_textvp) {
544 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
545 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL);
546 if (entry != NULL)
547 STAILQ_INSERT_TAIL(head, entry, next);
548 }
549 /* Controlling terminal. */
550 if ((vp = getctty(kd, kp)) != NULL) {
551 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
552 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
553 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL);
554 if (entry != NULL)
555 STAILQ_INSERT_TAIL(head, entry, next);
556 }
557
558 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles,
559 sizeof(nfiles))) {
560 warnx("can't read fd_files at %p", (void *)filed.fd_files);
561 return (NULL);
562 }
563
564 fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent);
565 fdt = malloc(fdt_size);
566 if (fdt == NULL) {
567 warn("malloc(%zu)", fdt_size);
568 goto do_mmapped;
569 }
570 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) {
571 warnx("cannot read file structures at %p", (void *)filed.fd_files);
572 free(fdt);
573 goto do_mmapped;
574 }
575 for (i = 0; i < nfiles; i++) {
576 if (fdt->fdt_ofiles[i].fde_file == NULL) {
577 continue;
578 }
579 if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file,
580 sizeof(struct file))) {
581 warnx("can't read file %d at %p", i,
582 (void *)fdt->fdt_ofiles[i].fde_file);
583 continue;
584 }
585 switch (file.f_type) {
586 case DTYPE_VNODE:
587 type = PS_FST_TYPE_VNODE;
588 data = file.f_vnode;
589 break;
590 case DTYPE_SOCKET:
591 type = PS_FST_TYPE_SOCKET;
592 data = file.f_data;
593 break;
594 case DTYPE_PIPE:
595 type = PS_FST_TYPE_PIPE;
596 data = file.f_data;
597 break;
598 case DTYPE_FIFO:
599 type = PS_FST_TYPE_FIFO;
600 data = file.f_vnode;
601 break;
602 #ifdef DTYPE_PTS
603 case DTYPE_PTS:
604 type = PS_FST_TYPE_PTS;
605 data = file.f_data;
606 break;
607 #endif
608 case DTYPE_SEM:
609 type = PS_FST_TYPE_SEM;
610 data = file.f_data;
611 break;
612 case DTYPE_SHM:
613 type = PS_FST_TYPE_SHM;
614 data = file.f_data;
615 break;
616 case DTYPE_PROCDESC:
617 type = PS_FST_TYPE_PROCDESC;
618 data = file.f_data;
619 break;
620 case DTYPE_DEV:
621 type = PS_FST_TYPE_DEV;
622 data = file.f_data;
623 break;
624 case DTYPE_EVENTFD:
625 type = PS_FST_TYPE_EVENTFD;
626 data = file.f_data;
627 break;
628 default:
629 continue;
630 }
631 /* XXXRW: No capability rights support for kvm yet. */
632 entry = filestat_new_entry(data, type, i,
633 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL);
634 if (entry != NULL)
635 STAILQ_INSERT_TAIL(head, entry, next);
636 }
637 free(fdt);
638
639 do_mmapped:
640
641 /*
642 * Process mmapped files if requested.
643 */
644 if (mmapped) {
645 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
646 sizeof(vmspace))) {
647 warnx("can't read vmspace at %p",
648 (void *)kp->ki_vmspace);
649 goto exit;
650 }
651
652 vmentry = vmspace.vm_map.header;
653 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader);
654 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header;
655 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) {
656 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
657 continue;
658 if ((objp = vmentry.object.vm_object) == NULL)
659 continue;
660 for (; objp; objp = object.backing_object) {
661 if (!kvm_read_all(kd, (unsigned long)objp,
662 &object, sizeof(object))) {
663 warnx("can't read vm_object at %p",
664 (void *)objp);
665 break;
666 }
667 }
668
669 /* We want only vnode objects. */
670 if (object.type != OBJT_VNODE)
671 continue;
672
673 prot = vmentry.protection;
674 fflags = 0;
675 if (prot & VM_PROT_READ)
676 fflags = PS_FST_FFLAG_READ;
677 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
678 prot & VM_PROT_WRITE)
679 fflags |= PS_FST_FFLAG_WRITE;
680
681 /*
682 * Create filestat entry.
683 */
684 entry = filestat_new_entry(object.handle,
685 PS_FST_TYPE_VNODE, -1, fflags,
686 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL);
687 if (entry != NULL)
688 STAILQ_INSERT_TAIL(head, entry, next);
689 }
690 if (entryp == NULL)
691 warnx("can't read vm_map_entry");
692 }
693 exit:
694 return (head);
695 }
696
697 /*
698 * kinfo types to filestat translation.
699 */
700 static int
kinfo_type2fst(int kftype)701 kinfo_type2fst(int kftype)
702 {
703 static struct {
704 int kf_type;
705 int fst_type;
706 } kftypes2fst[] = {
707 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC },
708 { KF_TYPE_DEV, PS_FST_TYPE_DEV },
709 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
710 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
711 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
712 { KF_TYPE_NONE, PS_FST_TYPE_NONE },
713 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
714 { KF_TYPE_PTS, PS_FST_TYPE_PTS },
715 { KF_TYPE_SEM, PS_FST_TYPE_SEM },
716 { KF_TYPE_SHM, PS_FST_TYPE_SHM },
717 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
718 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
719 { KF_TYPE_EVENTFD, PS_FST_TYPE_EVENTFD },
720 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
721 };
722 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst))
723 unsigned int i;
724
725 for (i = 0; i < NKFTYPES; i++)
726 if (kftypes2fst[i].kf_type == kftype)
727 break;
728 if (i == NKFTYPES)
729 return (PS_FST_TYPE_UNKNOWN);
730 return (kftypes2fst[i].fst_type);
731 }
732
733 /*
734 * kinfo flags to filestat translation.
735 */
736 static int
kinfo_fflags2fst(int kfflags)737 kinfo_fflags2fst(int kfflags)
738 {
739 static struct {
740 int kf_flag;
741 int fst_flag;
742 } kfflags2fst[] = {
743 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
744 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
745 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
746 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
747 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
748 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
749 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
750 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
751 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
752 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
753 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
754 { KF_FLAG_READ, PS_FST_FFLAG_READ },
755 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
756 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
757 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
758 };
759 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst))
760 unsigned int i;
761 int flags;
762
763 flags = 0;
764 for (i = 0; i < NKFFLAGS; i++)
765 if ((kfflags & kfflags2fst[i].kf_flag) != 0)
766 flags |= kfflags2fst[i].fst_flag;
767 return (flags);
768 }
769
770 static int
kinfo_uflags2fst(int fd)771 kinfo_uflags2fst(int fd)
772 {
773
774 switch (fd) {
775 case KF_FD_TYPE_CTTY:
776 return (PS_FST_UFLAG_CTTY);
777 case KF_FD_TYPE_CWD:
778 return (PS_FST_UFLAG_CDIR);
779 case KF_FD_TYPE_JAIL:
780 return (PS_FST_UFLAG_JAIL);
781 case KF_FD_TYPE_TEXT:
782 return (PS_FST_UFLAG_TEXT);
783 case KF_FD_TYPE_TRACE:
784 return (PS_FST_UFLAG_TRACE);
785 case KF_FD_TYPE_ROOT:
786 return (PS_FST_UFLAG_RDIR);
787 }
788 return (0);
789 }
790
791 static struct kinfo_file *
kinfo_getfile_core(struct procstat_core * core,int * cntp)792 kinfo_getfile_core(struct procstat_core *core, int *cntp)
793 {
794 int cnt;
795 size_t len;
796 char *buf, *bp, *eb;
797 struct kinfo_file *kif, *kp, *kf;
798
799 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
800 if (buf == NULL)
801 return (NULL);
802 /*
803 * XXXMG: The code below is just copy&past from libutil.
804 * The code duplication can be avoided if libutil
805 * is extended to provide something like:
806 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
807 * size_t len, int *cntp);
808 */
809
810 /* Pass 1: count items */
811 cnt = 0;
812 bp = buf;
813 eb = buf + len;
814 while (bp < eb) {
815 kf = (struct kinfo_file *)(uintptr_t)bp;
816 if (kf->kf_structsize == 0)
817 break;
818 bp += kf->kf_structsize;
819 cnt++;
820 }
821
822 kif = calloc(cnt, sizeof(*kif));
823 if (kif == NULL) {
824 free(buf);
825 return (NULL);
826 }
827 bp = buf;
828 eb = buf + len;
829 kp = kif;
830 /* Pass 2: unpack */
831 while (bp < eb) {
832 kf = (struct kinfo_file *)(uintptr_t)bp;
833 if (kf->kf_structsize == 0)
834 break;
835 /* Copy/expand into pre-zeroed buffer */
836 memcpy(kp, kf, kf->kf_structsize);
837 /* Advance to next packed record */
838 bp += kf->kf_structsize;
839 /* Set field size to fixed length, advance */
840 kp->kf_structsize = sizeof(*kp);
841 kp++;
842 }
843 free(buf);
844 *cntp = cnt;
845 return (kif); /* Caller must free() return value */
846 }
847
848 static struct filestat_list *
procstat_getfiles_sysctl(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)849 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
850 int mmapped)
851 {
852 struct kinfo_file *kif, *files;
853 struct kinfo_vmentry *kve, *vmentries;
854 struct filestat_list *head;
855 struct filestat *entry;
856 char *path;
857 off_t offset;
858 int cnt, fd, fflags;
859 int i, type, uflags;
860 int refcount;
861 cap_rights_t cap_rights;
862
863 assert(kp);
864 switch (procstat->type) {
865 case PROCSTAT_SYSCTL:
866 files = kinfo_getfile(kp->ki_pid, &cnt);
867 break;
868 case PROCSTAT_CORE:
869 files = kinfo_getfile_core(procstat->core, &cnt);
870 break;
871 default:
872 assert(!"invalid type");
873 }
874 if (files == NULL && errno != EPERM) {
875 warn("kinfo_getfile()");
876 return (NULL);
877 }
878 procstat->files = files;
879
880 /*
881 * Allocate list head.
882 */
883 head = malloc(sizeof(*head));
884 if (head == NULL)
885 return (NULL);
886 STAILQ_INIT(head);
887 for (i = 0; i < cnt; i++) {
888 kif = &files[i];
889
890 type = kinfo_type2fst(kif->kf_type);
891 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
892 fflags = kinfo_fflags2fst(kif->kf_flags);
893 uflags = kinfo_uflags2fst(kif->kf_fd);
894 refcount = kif->kf_ref_count;
895 offset = kif->kf_offset;
896 if (*kif->kf_path != '\0')
897 path = strdup(kif->kf_path);
898 else
899 path = NULL;
900 cap_rights = kif->kf_cap_rights;
901
902 /*
903 * Create filestat entry.
904 */
905 entry = filestat_new_entry(kif, type, fd, fflags, uflags,
906 refcount, offset, path, &cap_rights);
907 if (entry != NULL)
908 STAILQ_INSERT_TAIL(head, entry, next);
909 }
910 if (mmapped != 0) {
911 vmentries = procstat_getvmmap(procstat, kp, &cnt);
912 procstat->vmentries = vmentries;
913 if (vmentries == NULL || cnt == 0)
914 goto fail;
915 for (i = 0; i < cnt; i++) {
916 kve = &vmentries[i];
917 if (kve->kve_type != KVME_TYPE_VNODE)
918 continue;
919 fflags = 0;
920 if (kve->kve_protection & KVME_PROT_READ)
921 fflags = PS_FST_FFLAG_READ;
922 if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
923 kve->kve_protection & KVME_PROT_WRITE)
924 fflags |= PS_FST_FFLAG_WRITE;
925 offset = kve->kve_offset;
926 refcount = kve->kve_ref_count;
927 if (*kve->kve_path != '\0')
928 path = strdup(kve->kve_path);
929 else
930 path = NULL;
931 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
932 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
933 NULL);
934 if (entry != NULL)
935 STAILQ_INSERT_TAIL(head, entry, next);
936 }
937 }
938 fail:
939 return (head);
940 }
941
942 int
procstat_get_pipe_info(struct procstat * procstat,struct filestat * fst,struct pipestat * ps,char * errbuf)943 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
944 struct pipestat *ps, char *errbuf)
945 {
946
947 assert(ps);
948 if (procstat->type == PROCSTAT_KVM) {
949 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
950 errbuf));
951 } else if (procstat->type == PROCSTAT_SYSCTL ||
952 procstat->type == PROCSTAT_CORE) {
953 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
954 } else {
955 warnx("unknown access method: %d", procstat->type);
956 if (errbuf != NULL)
957 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
958 return (1);
959 }
960 }
961
962 static int
procstat_get_pipe_info_kvm(kvm_t * kd,struct filestat * fst,struct pipestat * ps,char * errbuf)963 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
964 struct pipestat *ps, char *errbuf)
965 {
966 struct pipe pi;
967 void *pipep;
968
969 assert(kd);
970 assert(ps);
971 assert(fst);
972 bzero(ps, sizeof(*ps));
973 pipep = fst->fs_typedep;
974 if (pipep == NULL)
975 goto fail;
976 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
977 warnx("can't read pipe at %p", (void *)pipep);
978 goto fail;
979 }
980 ps->addr = (uintptr_t)pipep;
981 ps->peer = (uintptr_t)pi.pipe_peer;
982 ps->buffer_cnt = pi.pipe_buffer.cnt;
983 return (0);
984
985 fail:
986 if (errbuf != NULL)
987 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
988 return (1);
989 }
990
991 static int
procstat_get_pipe_info_sysctl(struct filestat * fst,struct pipestat * ps,char * errbuf __unused)992 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
993 char *errbuf __unused)
994 {
995 struct kinfo_file *kif;
996
997 assert(ps);
998 assert(fst);
999 bzero(ps, sizeof(*ps));
1000 kif = fst->fs_typedep;
1001 if (kif == NULL)
1002 return (1);
1003 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
1004 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
1005 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
1006 return (0);
1007 }
1008
1009 int
procstat_get_pts_info(struct procstat * procstat,struct filestat * fst,struct ptsstat * pts,char * errbuf)1010 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
1011 struct ptsstat *pts, char *errbuf)
1012 {
1013
1014 assert(pts);
1015 if (procstat->type == PROCSTAT_KVM) {
1016 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
1017 errbuf));
1018 } else if (procstat->type == PROCSTAT_SYSCTL ||
1019 procstat->type == PROCSTAT_CORE) {
1020 return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
1021 } else {
1022 warnx("unknown access method: %d", procstat->type);
1023 if (errbuf != NULL)
1024 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1025 return (1);
1026 }
1027 }
1028
1029 static int
procstat_get_pts_info_kvm(kvm_t * kd,struct filestat * fst,struct ptsstat * pts,char * errbuf)1030 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
1031 struct ptsstat *pts, char *errbuf)
1032 {
1033 struct tty tty;
1034 void *ttyp;
1035
1036 assert(kd);
1037 assert(pts);
1038 assert(fst);
1039 bzero(pts, sizeof(*pts));
1040 ttyp = fst->fs_typedep;
1041 if (ttyp == NULL)
1042 goto fail;
1043 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
1044 warnx("can't read tty at %p", (void *)ttyp);
1045 goto fail;
1046 }
1047 pts->dev = dev2udev(kd, tty.t_dev);
1048 (void)kdevtoname(kd, tty.t_dev, pts->devname);
1049 return (0);
1050
1051 fail:
1052 if (errbuf != NULL)
1053 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1054 return (1);
1055 }
1056
1057 static int
procstat_get_pts_info_sysctl(struct filestat * fst,struct ptsstat * pts,char * errbuf __unused)1058 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
1059 char *errbuf __unused)
1060 {
1061 struct kinfo_file *kif;
1062
1063 assert(pts);
1064 assert(fst);
1065 bzero(pts, sizeof(*pts));
1066 kif = fst->fs_typedep;
1067 if (kif == NULL)
1068 return (0);
1069 pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
1070 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
1071 return (0);
1072 }
1073
1074 int
procstat_get_sem_info(struct procstat * procstat,struct filestat * fst,struct semstat * sem,char * errbuf)1075 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
1076 struct semstat *sem, char *errbuf)
1077 {
1078
1079 assert(sem);
1080 if (procstat->type == PROCSTAT_KVM) {
1081 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
1082 errbuf));
1083 } else if (procstat->type == PROCSTAT_SYSCTL ||
1084 procstat->type == PROCSTAT_CORE) {
1085 return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
1086 } else {
1087 warnx("unknown access method: %d", procstat->type);
1088 if (errbuf != NULL)
1089 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1090 return (1);
1091 }
1092 }
1093
1094 static int
procstat_get_sem_info_kvm(kvm_t * kd,struct filestat * fst,struct semstat * sem,char * errbuf)1095 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
1096 struct semstat *sem, char *errbuf)
1097 {
1098 struct ksem ksem;
1099 void *ksemp;
1100 char *path;
1101 int i;
1102
1103 assert(kd);
1104 assert(sem);
1105 assert(fst);
1106 bzero(sem, sizeof(*sem));
1107 ksemp = fst->fs_typedep;
1108 if (ksemp == NULL)
1109 goto fail;
1110 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
1111 sizeof(struct ksem))) {
1112 warnx("can't read ksem at %p", (void *)ksemp);
1113 goto fail;
1114 }
1115 sem->mode = S_IFREG | ksem.ks_mode;
1116 sem->value = ksem.ks_value;
1117 if (fst->fs_path == NULL && ksem.ks_path != NULL) {
1118 path = malloc(MAXPATHLEN);
1119 for (i = 0; i < MAXPATHLEN - 1; i++) {
1120 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
1121 path + i, 1))
1122 break;
1123 if (path[i] == '\0')
1124 break;
1125 }
1126 path[i] = '\0';
1127 if (i == 0)
1128 free(path);
1129 else
1130 fst->fs_path = path;
1131 }
1132 return (0);
1133
1134 fail:
1135 if (errbuf != NULL)
1136 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1137 return (1);
1138 }
1139
1140 static int
procstat_get_sem_info_sysctl(struct filestat * fst,struct semstat * sem,char * errbuf __unused)1141 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
1142 char *errbuf __unused)
1143 {
1144 struct kinfo_file *kif;
1145
1146 assert(sem);
1147 assert(fst);
1148 bzero(sem, sizeof(*sem));
1149 kif = fst->fs_typedep;
1150 if (kif == NULL)
1151 return (0);
1152 sem->value = kif->kf_un.kf_sem.kf_sem_value;
1153 sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
1154 return (0);
1155 }
1156
1157 int
procstat_get_shm_info(struct procstat * procstat,struct filestat * fst,struct shmstat * shm,char * errbuf)1158 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
1159 struct shmstat *shm, char *errbuf)
1160 {
1161
1162 assert(shm);
1163 if (procstat->type == PROCSTAT_KVM) {
1164 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
1165 errbuf));
1166 } else if (procstat->type == PROCSTAT_SYSCTL ||
1167 procstat->type == PROCSTAT_CORE) {
1168 return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
1169 } else {
1170 warnx("unknown access method: %d", procstat->type);
1171 if (errbuf != NULL)
1172 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1173 return (1);
1174 }
1175 }
1176
1177 static int
procstat_get_shm_info_kvm(kvm_t * kd,struct filestat * fst,struct shmstat * shm,char * errbuf)1178 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
1179 struct shmstat *shm, char *errbuf)
1180 {
1181 struct shmfd shmfd;
1182 void *shmfdp;
1183 char *path;
1184 int i;
1185
1186 assert(kd);
1187 assert(shm);
1188 assert(fst);
1189 bzero(shm, sizeof(*shm));
1190 shmfdp = fst->fs_typedep;
1191 if (shmfdp == NULL)
1192 goto fail;
1193 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
1194 sizeof(struct shmfd))) {
1195 warnx("can't read shmfd at %p", (void *)shmfdp);
1196 goto fail;
1197 }
1198 shm->mode = S_IFREG | shmfd.shm_mode;
1199 shm->size = shmfd.shm_size;
1200 if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
1201 path = malloc(MAXPATHLEN);
1202 for (i = 0; i < MAXPATHLEN - 1; i++) {
1203 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
1204 path + i, 1))
1205 break;
1206 if (path[i] == '\0')
1207 break;
1208 }
1209 path[i] = '\0';
1210 if (i == 0)
1211 free(path);
1212 else
1213 fst->fs_path = path;
1214 }
1215 return (0);
1216
1217 fail:
1218 if (errbuf != NULL)
1219 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1220 return (1);
1221 }
1222
1223 static int
procstat_get_shm_info_sysctl(struct filestat * fst,struct shmstat * shm,char * errbuf __unused)1224 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
1225 char *errbuf __unused)
1226 {
1227 struct kinfo_file *kif;
1228
1229 assert(shm);
1230 assert(fst);
1231 bzero(shm, sizeof(*shm));
1232 kif = fst->fs_typedep;
1233 if (kif == NULL)
1234 return (0);
1235 shm->size = kif->kf_un.kf_file.kf_file_size;
1236 shm->mode = kif->kf_un.kf_file.kf_file_mode;
1237 return (0);
1238 }
1239
1240 int
procstat_get_vnode_info(struct procstat * procstat,struct filestat * fst,struct vnstat * vn,char * errbuf)1241 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
1242 struct vnstat *vn, char *errbuf)
1243 {
1244
1245 assert(vn);
1246 if (procstat->type == PROCSTAT_KVM) {
1247 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
1248 errbuf));
1249 } else if (procstat->type == PROCSTAT_SYSCTL ||
1250 procstat->type == PROCSTAT_CORE) {
1251 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
1252 } else {
1253 warnx("unknown access method: %d", procstat->type);
1254 if (errbuf != NULL)
1255 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1256 return (1);
1257 }
1258 }
1259
1260 static int
procstat_get_vnode_info_kvm(kvm_t * kd,struct filestat * fst,struct vnstat * vn,char * errbuf)1261 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
1262 struct vnstat *vn, char *errbuf)
1263 {
1264 /* Filesystem specific handlers. */
1265 #define FSTYPE(fst) {#fst, fst##_filestat}
1266 struct {
1267 const char *tag;
1268 int (*handler)(kvm_t *kd, struct vnode *vp,
1269 struct vnstat *vn);
1270 } fstypes[] = {
1271 FSTYPE(devfs),
1272 FSTYPE(isofs),
1273 FSTYPE(msdosfs),
1274 FSTYPE(nfs),
1275 FSTYPE(smbfs),
1276 FSTYPE(udf),
1277 FSTYPE(ufs),
1278 #ifdef LIBPROCSTAT_ZFS
1279 FSTYPE(zfs),
1280 #endif
1281 };
1282 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes))
1283 struct vnode vnode;
1284 char tagstr[12];
1285 void *vp;
1286 int error;
1287 unsigned int i;
1288
1289 assert(kd);
1290 assert(vn);
1291 assert(fst);
1292 vp = fst->fs_typedep;
1293 if (vp == NULL)
1294 goto fail;
1295 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
1296 if (error == 0) {
1297 warnx("can't read vnode at %p", (void *)vp);
1298 goto fail;
1299 }
1300 bzero(vn, sizeof(*vn));
1301 vn->vn_type = vntype2psfsttype(vnode.v_type);
1302 if (vnode.v_type == VNON || vnode.v_type == VBAD)
1303 return (0);
1304 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name,
1305 tagstr, sizeof(tagstr));
1306 if (error == 0) {
1307 warnx("can't read lo_name at %p", (void *)vp);
1308 goto fail;
1309 }
1310 tagstr[sizeof(tagstr) - 1] = '\0';
1311
1312 /*
1313 * Find appropriate handler.
1314 */
1315 for (i = 0; i < NTYPES; i++)
1316 if (!strcmp(fstypes[i].tag, tagstr)) {
1317 if (fstypes[i].handler(kd, &vnode, vn) != 0) {
1318 goto fail;
1319 }
1320 break;
1321 }
1322 if (i == NTYPES) {
1323 if (errbuf != NULL)
1324 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
1325 return (1);
1326 }
1327 vn->vn_mntdir = getmnton(kd, vnode.v_mount);
1328 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) &&
1329 vnode.v_rdev != NULL){
1330 vn->vn_dev = dev2udev(kd, vnode.v_rdev);
1331 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
1332 } else {
1333 vn->vn_dev = -1;
1334 }
1335 return (0);
1336
1337 fail:
1338 if (errbuf != NULL)
1339 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1340 return (1);
1341 }
1342
1343 /*
1344 * kinfo vnode type to filestat translation.
1345 */
1346 static int
kinfo_vtype2fst(int kfvtype)1347 kinfo_vtype2fst(int kfvtype)
1348 {
1349 static struct {
1350 int kf_vtype;
1351 int fst_vtype;
1352 } kfvtypes2fst[] = {
1353 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
1354 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
1355 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
1356 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
1357 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
1358 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
1359 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
1360 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
1361 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
1362 };
1363 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
1364 unsigned int i;
1365
1366 for (i = 0; i < NKFVTYPES; i++)
1367 if (kfvtypes2fst[i].kf_vtype == kfvtype)
1368 break;
1369 if (i == NKFVTYPES)
1370 return (PS_FST_VTYPE_UNKNOWN);
1371 return (kfvtypes2fst[i].fst_vtype);
1372 }
1373
1374 static int
procstat_get_vnode_info_sysctl(struct filestat * fst,struct vnstat * vn,char * errbuf)1375 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
1376 char *errbuf)
1377 {
1378 struct statfs stbuf;
1379 struct kinfo_file *kif;
1380 struct kinfo_vmentry *kve;
1381 char *name, *path;
1382 uint64_t fileid;
1383 uint64_t size;
1384 uint64_t fsid;
1385 uint64_t rdev;
1386 uint16_t mode;
1387 int vntype;
1388 int status;
1389
1390 assert(fst);
1391 assert(vn);
1392 bzero(vn, sizeof(*vn));
1393 if (fst->fs_typedep == NULL)
1394 return (1);
1395 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
1396 kve = fst->fs_typedep;
1397 fileid = kve->kve_vn_fileid;
1398 fsid = kve->kve_vn_fsid;
1399 mode = kve->kve_vn_mode;
1400 path = kve->kve_path;
1401 rdev = kve->kve_vn_rdev;
1402 size = kve->kve_vn_size;
1403 vntype = kinfo_vtype2fst(kve->kve_vn_type);
1404 status = kve->kve_status;
1405 } else {
1406 kif = fst->fs_typedep;
1407 fileid = kif->kf_un.kf_file.kf_file_fileid;
1408 fsid = kif->kf_un.kf_file.kf_file_fsid;
1409 mode = kif->kf_un.kf_file.kf_file_mode;
1410 path = kif->kf_path;
1411 rdev = kif->kf_un.kf_file.kf_file_rdev;
1412 size = kif->kf_un.kf_file.kf_file_size;
1413 vntype = kinfo_vtype2fst(kif->kf_vnode_type);
1414 status = kif->kf_status;
1415 }
1416 vn->vn_type = vntype;
1417 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
1418 return (0);
1419 if ((status & KF_ATTR_VALID) == 0) {
1420 if (errbuf != NULL) {
1421 snprintf(errbuf, _POSIX2_LINE_MAX,
1422 "? (no info available)");
1423 }
1424 return (1);
1425 }
1426 if (path && *path) {
1427 statfs(path, &stbuf);
1428 vn->vn_mntdir = strdup(stbuf.f_mntonname);
1429 } else
1430 vn->vn_mntdir = strdup("-");
1431 vn->vn_dev = rdev;
1432 if (vntype == PS_FST_VTYPE_VBLK) {
1433 name = devname(rdev, S_IFBLK);
1434 if (name != NULL)
1435 strlcpy(vn->vn_devname, name,
1436 sizeof(vn->vn_devname));
1437 } else if (vntype == PS_FST_VTYPE_VCHR) {
1438 name = devname(vn->vn_dev, S_IFCHR);
1439 if (name != NULL)
1440 strlcpy(vn->vn_devname, name,
1441 sizeof(vn->vn_devname));
1442 }
1443 vn->vn_fsid = fsid;
1444 vn->vn_fileid = fileid;
1445 vn->vn_size = size;
1446 vn->vn_mode = mode;
1447 return (0);
1448 }
1449
1450 int
procstat_get_socket_info(struct procstat * procstat,struct filestat * fst,struct sockstat * sock,char * errbuf)1451 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
1452 struct sockstat *sock, char *errbuf)
1453 {
1454
1455 assert(sock);
1456 if (procstat->type == PROCSTAT_KVM) {
1457 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
1458 errbuf));
1459 } else if (procstat->type == PROCSTAT_SYSCTL ||
1460 procstat->type == PROCSTAT_CORE) {
1461 return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
1462 } else {
1463 warnx("unknown access method: %d", procstat->type);
1464 if (errbuf != NULL)
1465 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1466 return (1);
1467 }
1468 }
1469
1470 static int
procstat_get_socket_info_kvm(kvm_t * kd,struct filestat * fst,struct sockstat * sock,char * errbuf)1471 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
1472 struct sockstat *sock, char *errbuf)
1473 {
1474 struct domain dom;
1475 struct protosw proto;
1476 struct socket s;
1477 struct unpcb unpcb;
1478 ssize_t len;
1479 void *so;
1480
1481 assert(kd);
1482 assert(sock);
1483 assert(fst);
1484 bzero(sock, sizeof(*sock));
1485 so = fst->fs_typedep;
1486 if (so == NULL)
1487 goto fail;
1488 sock->so_addr = (uintptr_t)so;
1489 /* fill in socket */
1490 if (!kvm_read_all(kd, (unsigned long)so, &s,
1491 sizeof(struct socket))) {
1492 warnx("can't read sock at %p", (void *)so);
1493 goto fail;
1494 }
1495 /* fill in protosw entry */
1496 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
1497 sizeof(struct protosw))) {
1498 warnx("can't read protosw at %p", (void *)s.so_proto);
1499 goto fail;
1500 }
1501 /* fill in domain */
1502 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
1503 sizeof(struct domain))) {
1504 warnx("can't read domain at %p",
1505 (void *)proto.pr_domain);
1506 goto fail;
1507 }
1508 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
1509 sizeof(sock->dname) - 1)) < 0) {
1510 warnx("can't read domain name at %p", (void *)dom.dom_name);
1511 sock->dname[0] = '\0';
1512 }
1513 else
1514 sock->dname[len] = '\0';
1515
1516 /*
1517 * Fill in known data.
1518 */
1519 sock->type = s.so_type;
1520 sock->proto = proto.pr_protocol;
1521 sock->dom_family = dom.dom_family;
1522 sock->so_pcb = (uintptr_t)s.so_pcb;
1523 sock->sendq = s.so_snd.sb_ccc;
1524 sock->recvq = s.so_rcv.sb_ccc;
1525 sock->so_rcv_sb_state = s.so_rcv.sb_state;
1526 sock->so_snd_sb_state = s.so_snd.sb_state;
1527
1528 /*
1529 * Protocol specific data.
1530 */
1531 switch (dom.dom_family) {
1532 case AF_UNIX:
1533 if (s.so_pcb) {
1534 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
1535 sizeof(struct unpcb)) != sizeof(struct unpcb)){
1536 warnx("can't read unpcb at %p",
1537 (void *)s.so_pcb);
1538 } else if (unpcb.unp_conn) {
1539 sock->unp_conn = (uintptr_t)unpcb.unp_conn;
1540 }
1541 }
1542 break;
1543 default:
1544 break;
1545 }
1546 return (0);
1547
1548 fail:
1549 if (errbuf != NULL)
1550 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1551 return (1);
1552 }
1553
1554 static int
procstat_get_socket_info_sysctl(struct filestat * fst,struct sockstat * sock,char * errbuf __unused)1555 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
1556 char *errbuf __unused)
1557 {
1558 struct kinfo_file *kif;
1559
1560 assert(sock);
1561 assert(fst);
1562 bzero(sock, sizeof(*sock));
1563 kif = fst->fs_typedep;
1564 if (kif == NULL)
1565 return (0);
1566
1567 /*
1568 * Fill in known data.
1569 */
1570 sock->type = kif->kf_sock_type;
1571 sock->proto = kif->kf_sock_protocol;
1572 sock->dom_family = kif->kf_sock_domain;
1573 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
1574 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
1575 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local,
1576 kif->kf_un.kf_sock.kf_sa_local.ss_len);
1577 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer,
1578 kif->kf_un.kf_sock.kf_sa_peer.ss_len);
1579
1580 /*
1581 * Protocol specific data.
1582 */
1583 switch (sock->dom_family) {
1584 case AF_INET:
1585 case AF_INET6:
1586 if (sock->proto == IPPROTO_TCP) {
1587 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1588 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1589 }
1590 break;
1591 case AF_UNIX:
1592 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
1593 sock->so_rcv_sb_state =
1594 kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
1595 sock->so_snd_sb_state =
1596 kif->kf_un.kf_sock.kf_sock_snd_sb_state;
1597 sock->unp_conn =
1598 kif->kf_un.kf_sock.kf_sock_unpconn;
1599 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1600 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1601 }
1602 break;
1603 default:
1604 break;
1605 }
1606 return (0);
1607 }
1608
1609 /*
1610 * Descriptor flags to filestat translation.
1611 */
1612 static int
to_filestat_flags(int flags)1613 to_filestat_flags(int flags)
1614 {
1615 static struct {
1616 int flag;
1617 int fst_flag;
1618 } fstflags[] = {
1619 { FREAD, PS_FST_FFLAG_READ },
1620 { FWRITE, PS_FST_FFLAG_WRITE },
1621 { O_APPEND, PS_FST_FFLAG_APPEND },
1622 { O_ASYNC, PS_FST_FFLAG_ASYNC },
1623 { O_CREAT, PS_FST_FFLAG_CREAT },
1624 { O_DIRECT, PS_FST_FFLAG_DIRECT },
1625 { O_EXCL, PS_FST_FFLAG_EXCL },
1626 { O_EXEC, PS_FST_FFLAG_EXEC },
1627 { O_EXLOCK, PS_FST_FFLAG_EXLOCK },
1628 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
1629 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
1630 { O_SHLOCK, PS_FST_FFLAG_SHLOCK },
1631 { O_SYNC, PS_FST_FFLAG_SYNC },
1632 { O_TRUNC, PS_FST_FFLAG_TRUNC }
1633 };
1634 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags))
1635 int fst_flags;
1636 unsigned int i;
1637
1638 fst_flags = 0;
1639 for (i = 0; i < NFSTFLAGS; i++)
1640 if (flags & fstflags[i].flag)
1641 fst_flags |= fstflags[i].fst_flag;
1642 return (fst_flags);
1643 }
1644
1645 /*
1646 * Vnode type to filestate translation.
1647 */
1648 static int
vntype2psfsttype(int type)1649 vntype2psfsttype(int type)
1650 {
1651 static struct {
1652 int vtype;
1653 int fst_vtype;
1654 } vt2fst[] = {
1655 { VBAD, PS_FST_VTYPE_VBAD },
1656 { VBLK, PS_FST_VTYPE_VBLK },
1657 { VCHR, PS_FST_VTYPE_VCHR },
1658 { VDIR, PS_FST_VTYPE_VDIR },
1659 { VFIFO, PS_FST_VTYPE_VFIFO },
1660 { VLNK, PS_FST_VTYPE_VLNK },
1661 { VNON, PS_FST_VTYPE_VNON },
1662 { VREG, PS_FST_VTYPE_VREG },
1663 { VSOCK, PS_FST_VTYPE_VSOCK }
1664 };
1665 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst))
1666 unsigned int i, fst_type;
1667
1668 fst_type = PS_FST_VTYPE_UNKNOWN;
1669 for (i = 0; i < NVFTYPES; i++) {
1670 if (type == vt2fst[i].vtype) {
1671 fst_type = vt2fst[i].fst_vtype;
1672 break;
1673 }
1674 }
1675 return (fst_type);
1676 }
1677
1678 static char *
getmnton(kvm_t * kd,struct mount * m)1679 getmnton(kvm_t *kd, struct mount *m)
1680 {
1681 struct mount mnt;
1682 static struct mtab {
1683 struct mtab *next;
1684 struct mount *m;
1685 char mntonname[MNAMELEN + 1];
1686 } *mhead = NULL;
1687 struct mtab *mt;
1688
1689 for (mt = mhead; mt != NULL; mt = mt->next)
1690 if (m == mt->m)
1691 return (mt->mntonname);
1692 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
1693 warnx("can't read mount table at %p", (void *)m);
1694 return (NULL);
1695 }
1696 if ((mt = malloc(sizeof (struct mtab))) == NULL)
1697 err(1, NULL);
1698 mt->m = m;
1699 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
1700 mt->mntonname[MNAMELEN] = '\0';
1701 mt->next = mhead;
1702 mhead = mt;
1703 return (mt->mntonname);
1704 }
1705
1706 /*
1707 * Auxiliary structures and functions to get process environment or
1708 * command line arguments.
1709 */
1710 struct argvec {
1711 char *buf;
1712 size_t bufsize;
1713 char **argv;
1714 size_t argc;
1715 };
1716
1717 static struct argvec *
argvec_alloc(size_t bufsize)1718 argvec_alloc(size_t bufsize)
1719 {
1720 struct argvec *av;
1721
1722 av = malloc(sizeof(*av));
1723 if (av == NULL)
1724 return (NULL);
1725 av->bufsize = bufsize;
1726 av->buf = malloc(av->bufsize);
1727 if (av->buf == NULL) {
1728 free(av);
1729 return (NULL);
1730 }
1731 av->argc = 32;
1732 av->argv = malloc(sizeof(char *) * av->argc);
1733 if (av->argv == NULL) {
1734 free(av->buf);
1735 free(av);
1736 return (NULL);
1737 }
1738 return av;
1739 }
1740
1741 static void
argvec_free(struct argvec * av)1742 argvec_free(struct argvec * av)
1743 {
1744
1745 free(av->argv);
1746 free(av->buf);
1747 free(av);
1748 }
1749
1750 static char **
getargv(struct procstat * procstat,struct kinfo_proc * kp,size_t nchr,int env)1751 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
1752 {
1753 int error, name[4], argc, i;
1754 struct argvec *av, **avp;
1755 enum psc_type type;
1756 size_t len;
1757 char *p, **argv;
1758
1759 assert(procstat);
1760 assert(kp);
1761 if (procstat->type == PROCSTAT_KVM) {
1762 warnx("can't use kvm access method");
1763 return (NULL);
1764 }
1765 if (procstat->type != PROCSTAT_SYSCTL &&
1766 procstat->type != PROCSTAT_CORE) {
1767 warnx("unknown access method: %d", procstat->type);
1768 return (NULL);
1769 }
1770
1771 if (nchr == 0 || nchr > ARG_MAX)
1772 nchr = ARG_MAX;
1773
1774 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
1775 av = *avp;
1776
1777 if (av == NULL)
1778 {
1779 av = argvec_alloc(nchr);
1780 if (av == NULL)
1781 {
1782 warn("malloc(%zu)", nchr);
1783 return (NULL);
1784 }
1785 *avp = av;
1786 } else if (av->bufsize < nchr) {
1787 av->buf = reallocf(av->buf, nchr);
1788 if (av->buf == NULL) {
1789 warn("malloc(%zu)", nchr);
1790 return (NULL);
1791 }
1792 }
1793 if (procstat->type == PROCSTAT_SYSCTL) {
1794 name[0] = CTL_KERN;
1795 name[1] = KERN_PROC;
1796 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
1797 name[3] = kp->ki_pid;
1798 len = nchr;
1799 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0);
1800 if (error != 0 && errno != ESRCH && errno != EPERM)
1801 warn("sysctl(kern.proc.%s)", env ? "env" : "args");
1802 if (error != 0 || len == 0)
1803 return (NULL);
1804 } else /* procstat->type == PROCSTAT_CORE */ {
1805 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
1806 len = nchr;
1807 if (procstat_core_get(procstat->core, type, av->buf, &len)
1808 == NULL) {
1809 return (NULL);
1810 }
1811 }
1812
1813 argv = av->argv;
1814 argc = av->argc;
1815 i = 0;
1816 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
1817 argv[i++] = p;
1818 if (i < argc)
1819 continue;
1820 /* Grow argv. */
1821 argc += argc;
1822 argv = realloc(argv, sizeof(char *) * argc);
1823 if (argv == NULL) {
1824 warn("malloc(%zu)", sizeof(char *) * argc);
1825 return (NULL);
1826 }
1827 av->argv = argv;
1828 av->argc = argc;
1829 }
1830 argv[i] = NULL;
1831
1832 return (argv);
1833 }
1834
1835 /*
1836 * Return process command line arguments.
1837 */
1838 char **
procstat_getargv(struct procstat * procstat,struct kinfo_proc * p,size_t nchr)1839 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1840 {
1841
1842 return (getargv(procstat, p, nchr, 0));
1843 }
1844
1845 /*
1846 * Free the buffer allocated by procstat_getargv().
1847 */
1848 void
procstat_freeargv(struct procstat * procstat)1849 procstat_freeargv(struct procstat *procstat)
1850 {
1851
1852 if (procstat->argv != NULL) {
1853 argvec_free(procstat->argv);
1854 procstat->argv = NULL;
1855 }
1856 }
1857
1858 /*
1859 * Return process environment.
1860 */
1861 char **
procstat_getenvv(struct procstat * procstat,struct kinfo_proc * p,size_t nchr)1862 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1863 {
1864
1865 return (getargv(procstat, p, nchr, 1));
1866 }
1867
1868 /*
1869 * Free the buffer allocated by procstat_getenvv().
1870 */
1871 void
procstat_freeenvv(struct procstat * procstat)1872 procstat_freeenvv(struct procstat *procstat)
1873 {
1874 if (procstat->envv != NULL) {
1875 argvec_free(procstat->envv);
1876 procstat->envv = NULL;
1877 }
1878 }
1879
1880 static struct kinfo_vmentry *
kinfo_getvmmap_core(struct procstat_core * core,int * cntp)1881 kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
1882 {
1883 int cnt;
1884 size_t len;
1885 char *buf, *bp, *eb;
1886 struct kinfo_vmentry *kiv, *kp, *kv;
1887
1888 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
1889 if (buf == NULL)
1890 return (NULL);
1891
1892 /*
1893 * XXXMG: The code below is just copy&past from libutil.
1894 * The code duplication can be avoided if libutil
1895 * is extended to provide something like:
1896 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
1897 * size_t len, int *cntp);
1898 */
1899
1900 /* Pass 1: count items */
1901 cnt = 0;
1902 bp = buf;
1903 eb = buf + len;
1904 while (bp < eb) {
1905 kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1906 if (kv->kve_structsize == 0)
1907 break;
1908 bp += kv->kve_structsize;
1909 cnt++;
1910 }
1911
1912 kiv = calloc(cnt, sizeof(*kiv));
1913 if (kiv == NULL) {
1914 free(buf);
1915 return (NULL);
1916 }
1917 bp = buf;
1918 eb = buf + len;
1919 kp = kiv;
1920 /* Pass 2: unpack */
1921 while (bp < eb) {
1922 kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1923 if (kv->kve_structsize == 0)
1924 break;
1925 /* Copy/expand into pre-zeroed buffer */
1926 memcpy(kp, kv, kv->kve_structsize);
1927 /* Advance to next packed record */
1928 bp += kv->kve_structsize;
1929 /* Set field size to fixed length, advance */
1930 kp->kve_structsize = sizeof(*kp);
1931 kp++;
1932 }
1933 free(buf);
1934 *cntp = cnt;
1935 return (kiv); /* Caller must free() return value */
1936 }
1937
1938 struct kinfo_vmentry *
procstat_getvmmap(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)1939 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
1940 unsigned int *cntp)
1941 {
1942
1943 switch (procstat->type) {
1944 case PROCSTAT_KVM:
1945 warnx("kvm method is not supported");
1946 return (NULL);
1947 case PROCSTAT_SYSCTL:
1948 return (kinfo_getvmmap(kp->ki_pid, cntp));
1949 case PROCSTAT_CORE:
1950 return (kinfo_getvmmap_core(procstat->core, cntp));
1951 default:
1952 warnx("unknown access method: %d", procstat->type);
1953 return (NULL);
1954 }
1955 }
1956
1957 void
procstat_freevmmap(struct procstat * procstat __unused,struct kinfo_vmentry * vmmap)1958 procstat_freevmmap(struct procstat *procstat __unused,
1959 struct kinfo_vmentry *vmmap)
1960 {
1961
1962 free(vmmap);
1963 }
1964
1965 static gid_t *
procstat_getgroups_kvm(kvm_t * kd,struct kinfo_proc * kp,unsigned int * cntp)1966 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
1967 {
1968 struct proc proc;
1969 struct ucred ucred;
1970 gid_t *groups;
1971 size_t len;
1972
1973 assert(kd != NULL);
1974 assert(kp != NULL);
1975 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
1976 sizeof(proc))) {
1977 warnx("can't read proc struct at %p for pid %d",
1978 kp->ki_paddr, kp->ki_pid);
1979 return (NULL);
1980 }
1981 if (proc.p_ucred == NOCRED)
1982 return (NULL);
1983 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
1984 sizeof(ucred))) {
1985 warnx("can't read ucred struct at %p for pid %d",
1986 proc.p_ucred, kp->ki_pid);
1987 return (NULL);
1988 }
1989 len = ucred.cr_ngroups * sizeof(gid_t);
1990 groups = malloc(len);
1991 if (groups == NULL) {
1992 warn("malloc(%zu)", len);
1993 return (NULL);
1994 }
1995 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
1996 warnx("can't read groups at %p for pid %d",
1997 ucred.cr_groups, kp->ki_pid);
1998 free(groups);
1999 return (NULL);
2000 }
2001 *cntp = ucred.cr_ngroups;
2002 return (groups);
2003 }
2004
2005 static gid_t *
procstat_getgroups_sysctl(pid_t pid,unsigned int * cntp)2006 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
2007 {
2008 int mib[4];
2009 size_t len;
2010 gid_t *groups;
2011
2012 mib[0] = CTL_KERN;
2013 mib[1] = KERN_PROC;
2014 mib[2] = KERN_PROC_GROUPS;
2015 mib[3] = pid;
2016 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
2017 groups = malloc(len);
2018 if (groups == NULL) {
2019 warn("malloc(%zu)", len);
2020 return (NULL);
2021 }
2022 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) {
2023 warn("sysctl: kern.proc.groups: %d", pid);
2024 free(groups);
2025 return (NULL);
2026 }
2027 *cntp = len / sizeof(gid_t);
2028 return (groups);
2029 }
2030
2031 static gid_t *
procstat_getgroups_core(struct procstat_core * core,unsigned int * cntp)2032 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
2033 {
2034 size_t len;
2035 gid_t *groups;
2036
2037 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
2038 if (groups == NULL)
2039 return (NULL);
2040 *cntp = len / sizeof(gid_t);
2041 return (groups);
2042 }
2043
2044 gid_t *
procstat_getgroups(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2045 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
2046 unsigned int *cntp)
2047 {
2048 switch (procstat->type) {
2049 case PROCSTAT_KVM:
2050 return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
2051 case PROCSTAT_SYSCTL:
2052 return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
2053 case PROCSTAT_CORE:
2054 return (procstat_getgroups_core(procstat->core, cntp));
2055 default:
2056 warnx("unknown access method: %d", procstat->type);
2057 return (NULL);
2058 }
2059 }
2060
2061 void
procstat_freegroups(struct procstat * procstat __unused,gid_t * groups)2062 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
2063 {
2064
2065 free(groups);
2066 }
2067
2068 static int
procstat_getumask_kvm(kvm_t * kd,struct kinfo_proc * kp,unsigned short * maskp)2069 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
2070 {
2071 struct pwddesc pd;
2072
2073 assert(kd != NULL);
2074 assert(kp != NULL);
2075 if (kp->ki_pd == NULL)
2076 return (-1);
2077 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) {
2078 warnx("can't read pwddesc at %p for pid %d", kp->ki_pd,
2079 kp->ki_pid);
2080 return (-1);
2081 }
2082 *maskp = pd.pd_cmask;
2083 return (0);
2084 }
2085
2086 static int
procstat_getumask_sysctl(pid_t pid,unsigned short * maskp)2087 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
2088 {
2089 int error;
2090 int mib[4];
2091 size_t len;
2092
2093 mib[0] = CTL_KERN;
2094 mib[1] = KERN_PROC;
2095 mib[2] = KERN_PROC_UMASK;
2096 mib[3] = pid;
2097 len = sizeof(*maskp);
2098 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0);
2099 if (error != 0 && errno != ESRCH && errno != EPERM)
2100 warn("sysctl: kern.proc.umask: %d", pid);
2101 return (error);
2102 }
2103
2104 static int
procstat_getumask_core(struct procstat_core * core,unsigned short * maskp)2105 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
2106 {
2107 size_t len;
2108 unsigned short *buf;
2109
2110 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
2111 if (buf == NULL)
2112 return (-1);
2113 if (len < sizeof(*maskp)) {
2114 free(buf);
2115 return (-1);
2116 }
2117 *maskp = *buf;
2118 free(buf);
2119 return (0);
2120 }
2121
2122 int
procstat_getumask(struct procstat * procstat,struct kinfo_proc * kp,unsigned short * maskp)2123 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
2124 unsigned short *maskp)
2125 {
2126 switch (procstat->type) {
2127 case PROCSTAT_KVM:
2128 return (procstat_getumask_kvm(procstat->kd, kp, maskp));
2129 case PROCSTAT_SYSCTL:
2130 return (procstat_getumask_sysctl(kp->ki_pid, maskp));
2131 case PROCSTAT_CORE:
2132 return (procstat_getumask_core(procstat->core, maskp));
2133 default:
2134 warnx("unknown access method: %d", procstat->type);
2135 return (-1);
2136 }
2137 }
2138
2139 static int
procstat_getrlimit_kvm(kvm_t * kd,struct kinfo_proc * kp,int which,struct rlimit * rlimit)2140 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
2141 struct rlimit* rlimit)
2142 {
2143 struct proc proc;
2144 unsigned long offset;
2145
2146 assert(kd != NULL);
2147 assert(kp != NULL);
2148 assert(which >= 0 && which < RLIM_NLIMITS);
2149 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2150 sizeof(proc))) {
2151 warnx("can't read proc struct at %p for pid %d",
2152 kp->ki_paddr, kp->ki_pid);
2153 return (-1);
2154 }
2155 if (proc.p_limit == NULL)
2156 return (-1);
2157 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
2158 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
2159 warnx("can't read rlimit struct at %p for pid %d",
2160 (void *)offset, kp->ki_pid);
2161 return (-1);
2162 }
2163 return (0);
2164 }
2165
2166 static int
procstat_getrlimit_sysctl(pid_t pid,int which,struct rlimit * rlimit)2167 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
2168 {
2169 int error, name[5];
2170 size_t len;
2171
2172 name[0] = CTL_KERN;
2173 name[1] = KERN_PROC;
2174 name[2] = KERN_PROC_RLIMIT;
2175 name[3] = pid;
2176 name[4] = which;
2177 len = sizeof(struct rlimit);
2178 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0);
2179 if (error < 0 && errno != ESRCH) {
2180 warn("sysctl: kern.proc.rlimit: %d", pid);
2181 return (-1);
2182 }
2183 if (error < 0 || len != sizeof(struct rlimit))
2184 return (-1);
2185 return (0);
2186 }
2187
2188 static int
procstat_getrlimit_core(struct procstat_core * core,int which,struct rlimit * rlimit)2189 procstat_getrlimit_core(struct procstat_core *core, int which,
2190 struct rlimit* rlimit)
2191 {
2192 size_t len;
2193 struct rlimit* rlimits;
2194
2195 if (which < 0 || which >= RLIM_NLIMITS) {
2196 errno = EINVAL;
2197 warn("getrlimit: which");
2198 return (-1);
2199 }
2200 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
2201 if (rlimits == NULL)
2202 return (-1);
2203 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
2204 free(rlimits);
2205 return (-1);
2206 }
2207 *rlimit = rlimits[which];
2208 free(rlimits);
2209 return (0);
2210 }
2211
2212 int
procstat_getrlimit(struct procstat * procstat,struct kinfo_proc * kp,int which,struct rlimit * rlimit)2213 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
2214 struct rlimit* rlimit)
2215 {
2216 switch (procstat->type) {
2217 case PROCSTAT_KVM:
2218 return (procstat_getrlimit_kvm(procstat->kd, kp, which,
2219 rlimit));
2220 case PROCSTAT_SYSCTL:
2221 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
2222 case PROCSTAT_CORE:
2223 return (procstat_getrlimit_core(procstat->core, which, rlimit));
2224 default:
2225 warnx("unknown access method: %d", procstat->type);
2226 return (-1);
2227 }
2228 }
2229
2230 static int
procstat_getpathname_sysctl(pid_t pid,char * pathname,size_t maxlen)2231 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
2232 {
2233 int error, name[4];
2234 size_t len;
2235
2236 name[0] = CTL_KERN;
2237 name[1] = KERN_PROC;
2238 name[2] = KERN_PROC_PATHNAME;
2239 name[3] = pid;
2240 len = maxlen;
2241 error = sysctl(name, nitems(name), pathname, &len, NULL, 0);
2242 if (error != 0 && errno != ESRCH)
2243 warn("sysctl: kern.proc.pathname: %d", pid);
2244 if (len == 0)
2245 pathname[0] = '\0';
2246 return (error);
2247 }
2248
2249 static int
procstat_getpathname_core(struct procstat_core * core,char * pathname,size_t maxlen)2250 procstat_getpathname_core(struct procstat_core *core, char *pathname,
2251 size_t maxlen)
2252 {
2253 struct kinfo_file *files;
2254 int cnt, i, result;
2255
2256 files = kinfo_getfile_core(core, &cnt);
2257 if (files == NULL)
2258 return (-1);
2259 result = -1;
2260 for (i = 0; i < cnt; i++) {
2261 if (files[i].kf_fd != KF_FD_TYPE_TEXT)
2262 continue;
2263 strncpy(pathname, files[i].kf_path, maxlen);
2264 result = 0;
2265 break;
2266 }
2267 free(files);
2268 return (result);
2269 }
2270
2271 int
procstat_getpathname(struct procstat * procstat,struct kinfo_proc * kp,char * pathname,size_t maxlen)2272 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
2273 char *pathname, size_t maxlen)
2274 {
2275 switch (procstat->type) {
2276 case PROCSTAT_KVM:
2277 /* XXX: Return empty string. */
2278 if (maxlen > 0)
2279 pathname[0] = '\0';
2280 return (0);
2281 case PROCSTAT_SYSCTL:
2282 return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
2283 maxlen));
2284 case PROCSTAT_CORE:
2285 return (procstat_getpathname_core(procstat->core, pathname,
2286 maxlen));
2287 default:
2288 warnx("unknown access method: %d", procstat->type);
2289 return (-1);
2290 }
2291 }
2292
2293 static int
procstat_getosrel_kvm(kvm_t * kd,struct kinfo_proc * kp,int * osrelp)2294 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
2295 {
2296 struct proc proc;
2297
2298 assert(kd != NULL);
2299 assert(kp != NULL);
2300 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2301 sizeof(proc))) {
2302 warnx("can't read proc struct at %p for pid %d",
2303 kp->ki_paddr, kp->ki_pid);
2304 return (-1);
2305 }
2306 *osrelp = proc.p_osrel;
2307 return (0);
2308 }
2309
2310 static int
procstat_getosrel_sysctl(pid_t pid,int * osrelp)2311 procstat_getosrel_sysctl(pid_t pid, int *osrelp)
2312 {
2313 int error, name[4];
2314 size_t len;
2315
2316 name[0] = CTL_KERN;
2317 name[1] = KERN_PROC;
2318 name[2] = KERN_PROC_OSREL;
2319 name[3] = pid;
2320 len = sizeof(*osrelp);
2321 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0);
2322 if (error != 0 && errno != ESRCH)
2323 warn("sysctl: kern.proc.osrel: %d", pid);
2324 return (error);
2325 }
2326
2327 static int
procstat_getosrel_core(struct procstat_core * core,int * osrelp)2328 procstat_getosrel_core(struct procstat_core *core, int *osrelp)
2329 {
2330 size_t len;
2331 int *buf;
2332
2333 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
2334 if (buf == NULL)
2335 return (-1);
2336 if (len < sizeof(*osrelp)) {
2337 free(buf);
2338 return (-1);
2339 }
2340 *osrelp = *buf;
2341 free(buf);
2342 return (0);
2343 }
2344
2345 int
procstat_getosrel(struct procstat * procstat,struct kinfo_proc * kp,int * osrelp)2346 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
2347 {
2348 switch (procstat->type) {
2349 case PROCSTAT_KVM:
2350 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
2351 case PROCSTAT_SYSCTL:
2352 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
2353 case PROCSTAT_CORE:
2354 return (procstat_getosrel_core(procstat->core, osrelp));
2355 default:
2356 warnx("unknown access method: %d", procstat->type);
2357 return (-1);
2358 }
2359 }
2360
2361 #define PROC_AUXV_MAX 256
2362
2363 #ifdef PS_ARCH_HAS_FREEBSD32
2364 static const char *elf32_sv_names[] = {
2365 "Linux ELF32",
2366 "FreeBSD ELF32",
2367 };
2368
2369 static int
is_elf32_sysctl(pid_t pid)2370 is_elf32_sysctl(pid_t pid)
2371 {
2372 int error, name[4];
2373 size_t len, i;
2374 char sv_name[32];
2375
2376 name[0] = CTL_KERN;
2377 name[1] = KERN_PROC;
2378 name[2] = KERN_PROC_SV_NAME;
2379 name[3] = pid;
2380 len = sizeof(sv_name);
2381 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0);
2382 if (error != 0 || len == 0)
2383 return (0);
2384 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
2385 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
2386 return (1);
2387 }
2388 return (0);
2389 }
2390
2391 static Elf_Auxinfo *
procstat_getauxv32_sysctl(pid_t pid,unsigned int * cntp)2392 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
2393 {
2394 Elf_Auxinfo *auxv;
2395 Elf32_Auxinfo *auxv32;
2396 size_t len;
2397 unsigned int i, count;
2398 int name[4];
2399
2400 name[0] = CTL_KERN;
2401 name[1] = KERN_PROC;
2402 name[2] = KERN_PROC_AUXV;
2403 name[3] = pid;
2404 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
2405 auxv = NULL;
2406 auxv32 = malloc(len);
2407 if (auxv32 == NULL) {
2408 warn("malloc(%zu)", len);
2409 goto out;
2410 }
2411 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) {
2412 if (errno != ESRCH && errno != EPERM)
2413 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2414 goto out;
2415 }
2416 count = len / sizeof(Elf32_Auxinfo);
2417 auxv = malloc(count * sizeof(Elf_Auxinfo));
2418 if (auxv == NULL) {
2419 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
2420 goto out;
2421 }
2422 for (i = 0; i < count; i++) {
2423 /*
2424 * XXX: We expect that values for a_type on a 32-bit platform
2425 * are directly mapped to values on 64-bit one, which is not
2426 * necessarily true.
2427 */
2428 auxv[i].a_type = auxv32[i].a_type;
2429 /*
2430 * Don't sign extend values. Existing entries are positive
2431 * integers or pointers. Under freebsd32, programs typically
2432 * have a full [0, 2^32) address space (perhaps minus the last
2433 * page) and treating this as a signed integer would be
2434 * confusing since these are not kernel pointers.
2435 *
2436 * XXX: A more complete translation would be ABI and
2437 * type-aware.
2438 */
2439 auxv[i].a_un.a_val = (uint32_t)auxv32[i].a_un.a_val;
2440 }
2441 *cntp = count;
2442 out:
2443 free(auxv32);
2444 return (auxv);
2445 }
2446 #endif /* PS_ARCH_HAS_FREEBSD32 */
2447
2448 static Elf_Auxinfo *
procstat_getauxv_sysctl(pid_t pid,unsigned int * cntp)2449 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
2450 {
2451 Elf_Auxinfo *auxv;
2452 int name[4];
2453 size_t len;
2454
2455 #ifdef PS_ARCH_HAS_FREEBSD32
2456 if (is_elf32_sysctl(pid))
2457 return (procstat_getauxv32_sysctl(pid, cntp));
2458 #endif
2459 name[0] = CTL_KERN;
2460 name[1] = KERN_PROC;
2461 name[2] = KERN_PROC_AUXV;
2462 name[3] = pid;
2463 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
2464 auxv = malloc(len);
2465 if (auxv == NULL) {
2466 warn("malloc(%zu)", len);
2467 return (NULL);
2468 }
2469 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) {
2470 if (errno != ESRCH && errno != EPERM)
2471 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2472 free(auxv);
2473 return (NULL);
2474 }
2475 *cntp = len / sizeof(Elf_Auxinfo);
2476 return (auxv);
2477 }
2478
2479 static Elf_Auxinfo *
procstat_getauxv_core(struct procstat_core * core,unsigned int * cntp)2480 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
2481 {
2482 Elf_Auxinfo *auxv;
2483 size_t len;
2484
2485 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
2486 if (auxv == NULL)
2487 return (NULL);
2488 *cntp = len / sizeof(Elf_Auxinfo);
2489 return (auxv);
2490 }
2491
2492 Elf_Auxinfo *
procstat_getauxv(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2493 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
2494 unsigned int *cntp)
2495 {
2496 switch (procstat->type) {
2497 case PROCSTAT_KVM:
2498 warnx("kvm method is not supported");
2499 return (NULL);
2500 case PROCSTAT_SYSCTL:
2501 return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
2502 case PROCSTAT_CORE:
2503 return (procstat_getauxv_core(procstat->core, cntp));
2504 default:
2505 warnx("unknown access method: %d", procstat->type);
2506 return (NULL);
2507 }
2508 }
2509
2510 void
procstat_freeauxv(struct procstat * procstat __unused,Elf_Auxinfo * auxv)2511 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
2512 {
2513
2514 free(auxv);
2515 }
2516
2517 static struct ptrace_lwpinfo *
procstat_getptlwpinfo_core(struct procstat_core * core,unsigned int * cntp)2518 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp)
2519 {
2520 void *buf;
2521 struct ptrace_lwpinfo *pl;
2522 unsigned int cnt;
2523 size_t len;
2524
2525 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO);
2526 if (cnt == 0)
2527 return (NULL);
2528
2529 len = cnt * sizeof(*pl);
2530 buf = calloc(1, len);
2531 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len);
2532 if (pl == NULL) {
2533 free(buf);
2534 return (NULL);
2535 }
2536 *cntp = len / sizeof(*pl);
2537 return (pl);
2538 }
2539
2540 struct ptrace_lwpinfo *
procstat_getptlwpinfo(struct procstat * procstat,unsigned int * cntp)2541 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp)
2542 {
2543 switch (procstat->type) {
2544 case PROCSTAT_KVM:
2545 warnx("kvm method is not supported");
2546 return (NULL);
2547 case PROCSTAT_SYSCTL:
2548 warnx("sysctl method is not supported");
2549 return (NULL);
2550 case PROCSTAT_CORE:
2551 return (procstat_getptlwpinfo_core(procstat->core, cntp));
2552 default:
2553 warnx("unknown access method: %d", procstat->type);
2554 return (NULL);
2555 }
2556 }
2557
2558 void
procstat_freeptlwpinfo(struct procstat * procstat __unused,struct ptrace_lwpinfo * pl)2559 procstat_freeptlwpinfo(struct procstat *procstat __unused,
2560 struct ptrace_lwpinfo *pl)
2561 {
2562 free(pl);
2563 }
2564
2565 static struct kinfo_kstack *
procstat_getkstack_sysctl(pid_t pid,int * cntp)2566 procstat_getkstack_sysctl(pid_t pid, int *cntp)
2567 {
2568 struct kinfo_kstack *kkstp;
2569 int error, name[4];
2570 size_t len;
2571
2572 name[0] = CTL_KERN;
2573 name[1] = KERN_PROC;
2574 name[2] = KERN_PROC_KSTACK;
2575 name[3] = pid;
2576
2577 len = 0;
2578 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2579 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
2580 warn("sysctl: kern.proc.kstack: %d", pid);
2581 return (NULL);
2582 }
2583 if (error == -1 && errno == ENOENT) {
2584 warnx("sysctl: kern.proc.kstack unavailable"
2585 " (options DDB or options STACK required in kernel)");
2586 return (NULL);
2587 }
2588 if (error == -1)
2589 return (NULL);
2590 kkstp = malloc(len);
2591 if (kkstp == NULL) {
2592 warn("malloc(%zu)", len);
2593 return (NULL);
2594 }
2595 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1 &&
2596 errno != ENOMEM) {
2597 warn("sysctl: kern.proc.pid: %d", pid);
2598 free(kkstp);
2599 return (NULL);
2600 }
2601 *cntp = len / sizeof(*kkstp);
2602
2603 return (kkstp);
2604 }
2605
2606 struct kinfo_kstack *
procstat_getkstack(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2607 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
2608 unsigned int *cntp)
2609 {
2610 switch (procstat->type) {
2611 case PROCSTAT_KVM:
2612 warnx("kvm method is not supported");
2613 return (NULL);
2614 case PROCSTAT_SYSCTL:
2615 return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
2616 case PROCSTAT_CORE:
2617 warnx("core method is not supported");
2618 return (NULL);
2619 default:
2620 warnx("unknown access method: %d", procstat->type);
2621 return (NULL);
2622 }
2623 }
2624
2625 void
procstat_freekstack(struct procstat * procstat __unused,struct kinfo_kstack * kkstp)2626 procstat_freekstack(struct procstat *procstat __unused,
2627 struct kinfo_kstack *kkstp)
2628 {
2629
2630 free(kkstp);
2631 }
2632
2633 static struct advlock_list *
procstat_getadvlock_sysctl(struct procstat * procstat __unused)2634 procstat_getadvlock_sysctl(struct procstat *procstat __unused)
2635 {
2636 struct advlock_list *res;
2637 struct advlock *a;
2638 void *buf;
2639 char *c;
2640 struct kinfo_lockf *kl;
2641 size_t buf_len;
2642 int error;
2643 static const int kl_name[] = { CTL_KERN, KERN_LOCKF };
2644
2645 res = malloc(sizeof(*res));
2646 if (res == NULL)
2647 return (NULL);
2648 STAILQ_INIT(res);
2649 buf = NULL;
2650
2651 buf_len = 0;
2652 error = sysctl(kl_name, nitems(kl_name), NULL, &buf_len, NULL, 0);
2653 if (error != 0) {
2654 warn("sysctl KERN_LOCKF size");
2655 goto fail;
2656 }
2657 buf_len *= 2;
2658 buf = malloc(buf_len);
2659 if (buf == NULL) {
2660 warn("malloc");
2661 goto fail;
2662 }
2663 error = sysctl(kl_name, nitems(kl_name), buf, &buf_len, NULL, 0);
2664 if (error != 0) {
2665 warn("sysctl KERN_LOCKF data");
2666 goto fail;
2667 }
2668
2669 for (c = buf; (char *)c < (char *)buf + buf_len;
2670 c += kl->kl_structsize) {
2671 kl = (struct kinfo_lockf *)(void *)c;
2672 if (sizeof(*kl) < (size_t)kl->kl_structsize) {
2673 warn("ABI broken");
2674 goto fail;
2675 }
2676 a = malloc(sizeof(*a));
2677 if (a == NULL) {
2678 warn("malloc advlock");
2679 goto fail;
2680 }
2681 switch (kl->kl_rw) {
2682 case KLOCKF_RW_READ:
2683 a->rw = PS_ADVLOCK_RO;
2684 break;
2685 case KLOCKF_RW_WRITE:
2686 a->rw = PS_ADVLOCK_RW;
2687 break;
2688 default:
2689 warn("ABI broken");
2690 free(a);
2691 goto fail;
2692 }
2693 switch (kl->kl_type) {
2694 case KLOCKF_TYPE_FLOCK:
2695 a->type = PS_ADVLOCK_TYPE_FLOCK;
2696 break;
2697 case KLOCKF_TYPE_PID:
2698 a->type = PS_ADVLOCK_TYPE_PID;
2699 break;
2700 case KLOCKF_TYPE_REMOTE:
2701 a->type = PS_ADVLOCK_TYPE_REMOTE;
2702 break;
2703 default:
2704 warn("ABI broken");
2705 free(a);
2706 goto fail;
2707 }
2708 a->pid = kl->kl_pid;
2709 a->sysid = kl->kl_sysid;
2710 a->file_fsid = kl->kl_file_fsid;
2711 a->file_rdev = kl->kl_file_rdev;
2712 a->file_fileid = kl->kl_file_fileid;
2713 a->start = kl->kl_start;
2714 a->len = kl->kl_len;
2715 if (kl->kl_path[0] != '\0') {
2716 a->path = strdup(kl->kl_path);
2717 if (a->path == NULL) {
2718 warn("malloc");
2719 free(a);
2720 goto fail;
2721 }
2722 } else
2723 a->path = NULL;
2724 STAILQ_INSERT_TAIL(res, a, next);
2725 }
2726
2727 free(buf);
2728 return (res);
2729
2730 fail:
2731 free(buf);
2732 procstat_freeadvlock(procstat, res);
2733 return (NULL);
2734 }
2735
2736 struct advlock_list *
procstat_getadvlock(struct procstat * procstat)2737 procstat_getadvlock(struct procstat *procstat)
2738 {
2739 switch (procstat->type) {
2740 case PROCSTAT_KVM:
2741 warnx("kvm method is not supported");
2742 return (NULL);
2743 case PROCSTAT_SYSCTL:
2744 return (procstat_getadvlock_sysctl(procstat));
2745 case PROCSTAT_CORE:
2746 warnx("core method is not supported");
2747 return (NULL);
2748 default:
2749 warnx("unknown access method: %d", procstat->type);
2750 return (NULL);
2751 }
2752 }
2753
2754 void
procstat_freeadvlock(struct procstat * procstat __unused,struct advlock_list * lst)2755 procstat_freeadvlock(struct procstat *procstat __unused,
2756 struct advlock_list *lst)
2757 {
2758 struct advlock *a, *a1;
2759
2760 STAILQ_FOREACH_SAFE(a, lst, next, a1) {
2761 free(__DECONST(char *, a->path));
2762 free(a);
2763 }
2764 free(lst);
2765 }
2766
2767 static rlim_t *
procstat_getrlimitusage_sysctl(pid_t pid,unsigned * cntp)2768 procstat_getrlimitusage_sysctl(pid_t pid, unsigned *cntp)
2769 {
2770 int error, name[4];
2771 rlim_t *val;
2772 size_t len;
2773
2774 name[0] = CTL_KERN;
2775 name[1] = KERN_PROC;
2776 name[2] = KERN_PROC_RLIMIT_USAGE;
2777 name[3] = pid;
2778
2779 len = 0;
2780 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2781 if (error == -1)
2782 return (NULL);
2783 val = malloc(len);
2784 if (val == NULL)
2785 return (NULL);
2786
2787 error = sysctl(name, nitems(name), val, &len, NULL, 0);
2788 if (error == -1) {
2789 free(val);
2790 return (NULL);
2791 }
2792 *cntp = len / sizeof(rlim_t);
2793 return (val);
2794 }
2795
2796 rlim_t *
procstat_getrlimitusage(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2797 procstat_getrlimitusage(struct procstat *procstat, struct kinfo_proc *kp,
2798 unsigned int *cntp)
2799 {
2800 switch (procstat->type) {
2801 case PROCSTAT_KVM:
2802 warnx("kvm method is not supported");
2803 return (NULL);
2804 case PROCSTAT_SYSCTL:
2805 return (procstat_getrlimitusage_sysctl(kp->ki_pid, cntp));
2806 case PROCSTAT_CORE:
2807 warnx("core method is not supported");
2808 return (NULL);
2809 default:
2810 warnx("unknown access method: %d", procstat->type);
2811 return (NULL);
2812 }
2813 }
2814
2815 void
procstat_freerlimitusage(struct procstat * procstat __unused,rlim_t * resusage)2816 procstat_freerlimitusage(struct procstat *procstat __unused, rlim_t *resusage)
2817 {
2818 free(resusage);
2819 }
2820