1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/cred.h>
31 #include <sys/proc.h>
32 #include <sys/strsubr.h>
33 #include <sys/priocntl.h>
34 #include <sys/class.h>
35 #include <sys/disp.h>
36 #include <sys/procset.h>
37 #include <sys/debug.h>
38 #include <sys/kmem.h>
39 #include <sys/errno.h>
40 #include <sys/systm.h>
41 #include <sys/schedctl.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/project.h>
45 #include <sys/modctl.h>
46 #include <sys/fss.h>
47 #include <sys/fsspriocntl.h>
48 #include <sys/cpupart.h>
49 #include <sys/zone.h>
50 #include <vm/rm.h>
51 #include <vm/seg_kmem.h>
52 #include <sys/policy.h>
53 #include <sys/sdt.h>
54 #include <sys/cpucaps.h>
55
56 /*
57 * The fair share scheduling class ensures that collections of processes
58 * (zones and projects) each get their configured share of CPU. This is in
59 * contrast to the TS class which considers individual processes.
60 *
61 * The FSS cpu-share is set on zones using the zone.cpu-shares rctl and on
62 * projects using the project.cpu-shares rctl. By default the value is 1
63 * and it can range from 0 - 64k. A value of 0 means that processes in the
64 * collection will only get CPU resources when there are no other processes
65 * that need CPU. The cpu-share is used as one of the inputs to calculate a
66 * thread's "user-mode" priority (umdpri) for the scheduler. The umdpri falls
67 * in the range 0-59. FSS calculates other, internal, priorities which are not
68 * visible outside of the FSS class.
69 *
70 * The FSS class should approximate TS behavior when there are excess CPU
71 * resources. When there is a backlog of runnable processes, then the share
72 * is used as input into the runnable process's priority calculation, where
73 * the final umdpri is used by the scheduler to determine when the process runs.
74 *
75 * Projects in a zone compete with each other for CPU time, receiving CPU
76 * allocation within a zone proportional to the project's share; at a higher
77 * level zones compete with each other, receiving allocation in a pset
78 * proportional to the zone's share.
79 *
80 * The FSS priority calculation consists of several parts.
81 *
82 * 1) Once per second the fss_update function runs. The first thing it does is
83 * call fss_decay_usage. This function does three things.
84 *
85 * a) fss_decay_usage first decays the maxfsspri value for the pset. This
86 * value is used in the per-process priority calculation described in step
87 * (2b). The maxfsspri is decayed using the following formula:
88 *
89 * maxfsspri * fss_nice_decay[NZERO])
90 * maxfsspri = ------------------------------------
91 * FSS_DECAY_BASE
92 *
93 *
94 * - NZERO is the default process priority (i.e. 20)
95 *
96 * The fss_nice_decay array is a fixed set of values used to adjust the
97 * decay rate of processes based on their nice value. Entries in this
98 * array are initialized in fss_init using the following formula:
99 *
100 * (FSS_DECAY_MAX - FSS_DECAY_MIN) * i
101 * FSS_DECAY_MIN + -------------------------------------
102 * FSS_NICE_RANGE - 1
103 *
104 * - FSS_DECAY_MIN is 82 = approximates 65% (82/128)
105 * - FSS_DECAY_MAX is 108 = approximates 85% (108/128)
106 * - FSS_NICE_RANGE is 40 (range is 0 - 39)
107 *
108 * b) The second thing fss_decay_usage does is update each project's "usage"
109 * for the last second and then recalculates the project's "share usage".
110 *
111 * The usage value is the recent CPU usage for all of the threads in the
112 * project. It is decayed and updated this way:
113 *
114 * (usage * FSS_DECAY_USG)
115 * usage = ------------------------- + ticks;
116 * FSS_DECAY_BASE
117 *
118 * - FSS_DECAY_BASE is 128 - used instead of 100 so we can shift vs divide
119 * - FSS_DECAY_USG is 96 - approximates 75% (96/128)
120 * - ticks is updated whenever a process in this project is running
121 * when the scheduler's tick processing fires. This is not a simple
122 * counter, the values are based on the entries in the fss_nice_tick
123 * array (see section 3 below). ticks is then reset to 0 so it can track
124 * the next seconds worth of nice-adjusted time for the project.
125 *
126 * c) The third thing fss_decay_usage does is update each project's "share
127 * usage" (shusage). This is the normalized usage value for the project and
128 * is calculated this way:
129 *
130 * pset_shares^2 zone_int_shares^2
131 * usage * ------------- * ------------------
132 * kpj_shares^2 zone_ext_shares^2
133 *
134 * - usage - see (1b) for more details
135 * - pset_shares is the total of all *active* zone shares in the pset (by
136 * default there is only one pset)
137 * - kpj_shares is the individual project's share (project.cpu-shares rctl)
138 * - zone_int_shares is the sum of shares of all active projects within the
139 * zone (the zone-internal total)
140 * - zone_ext_shares is the share value for the zone (zone.cpu-shares rctl)
141 *
142 * The shusage is used in step (2b) to calculate the thread's new internal
143 * priority. A larger shusage value leads to a lower priority.
144 *
145 * 2) The fss_update function then calls fss_update_list to update the priority
146 * of all threads. This does two things.
147 *
148 * a) First the thread's internal priority is decayed using the following
149 * formula:
150 *
151 * fsspri * fss_nice_decay[nice_value])
152 * fsspri = ------------------------------------
153 * FSS_DECAY_BASE
154 *
155 * - FSS_DECAY_BASE is 128 as described above
156 *
157 * b) Second, if the thread is runnable (TS_RUN or TS_WAIT) calls fss_newpri
158 * to update the user-mode priority (umdpri) of the runnable thread.
159 * Threads that are running (TS_ONPROC) or waiting for an event (TS_SLEEP)
160 * are not updated at this time. The updated user-mode priority can cause
161 * threads to change their position in the run queue.
162 *
163 * The process's new internal fsspri is calculated using the following
164 * formula. All runnable threads in the project will use the same shusage
165 * and nrunnable values in their calculation.
166 *
167 * fsspri += shusage * nrunnable * ticks
168 *
169 * - shusage is the project's share usage, calculated in (1c)
170 * - nrunnable is the number of runnable threads in the project
171 * - ticks is the number of ticks this thread ran since the last fss_newpri
172 * invocation.
173 *
174 * Finally the process's new user-mode priority is calculated using the
175 * following formula:
176 *
177 * (fsspri * umdprirange)
178 * umdpri = maxumdpri - ------------------------
179 * maxfsspri
180 *
181 * - maxumdpri is MINCLSYSPRI - 1 (i.e. 59)
182 * - umdprirange is maxumdpri - 1 (i.e. 58)
183 * - maxfsspri is the largest fsspri seen so far, as we're iterating all
184 * runnable processes
185 *
186 * Thus, a higher internal priority (fsspri) leads to a lower user-mode
187 * priority which means the thread runs less. The fsspri is higher when
188 * the project's normalized share usage is higher, when the project has
189 * more runnable threads, or when the thread has accumulated more run-time.
190 *
191 * This code has various checks to ensure the resulting umdpri is in the
192 * range 1-59. See fss_newpri for more details.
193 *
194 * To reiterate, the above processing is performed once per second to recompute
195 * the runnable thread user-mode priorities.
196 *
197 * 3) The final major component in the priority calculation is the tick
198 * processing which occurs on a thread that is running when the clock
199 * calls fss_tick.
200 *
201 * A thread can run continuously in user-land (compute-bound) for the
202 * fss_quantum (see "dispadmin -c FSS -g" for the configurable properties).
203 * The fss_quantum defaults to 11 (i.e. 11 ticks).
204 *
205 * Once the quantum has been consumed, the thread will call fss_newpri to
206 * recompute its umdpri priority, as described above in (2b). Threads that
207 * were T_ONPROC at the one second interval when runnable thread priorities
208 * were recalculated will have their umdpri priority recalculated when their
209 * quanta expires.
210 *
211 * To ensure that runnable threads within a project see the expected
212 * round-robin behavior, there is a special case in fss_newpri for a thread
213 * that has run for its quanta within the one second update interval. See
214 * the handling for the quanta_up parameter within fss_newpri.
215 *
216 * Also of interest, the fss_tick code increments the project's tick value
217 * using the fss_nice_tick array entry for the thread's nice value. The idea
218 * behind the fss_nice_tick array is that the cost of a tick is lower at
219 * positive nice values (so that it doesn't increase the project's usage
220 * as much as normal) with a 50% drop at the maximum level and a 50%
221 * increase at the minimum level. See (1b). The fss_nice_tick array is
222 * initialized in fss_init using the following formula:
223 *
224 * FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2) - i)
225 * --------------------------------------------------
226 * FSS_NICE_RANGE
227 *
228 * - FSS_TICK_COST is 1000, the tick cost for threads with nice level 0
229 *
230 * FSS Data Structures:
231 *
232 * fsszone
233 * ----- -----
234 * ----- | | | |
235 * | |-------->| |<------->| |<---->...
236 * | | ----- -----
237 * | | ^ ^ ^
238 * | |--- | \ \
239 * ----- | | \ \
240 * fsspset | | \ \
241 * | | \ \
242 * | ----- ----- -----
243 * -->| |<--->| |<--->| |
244 * | | | | | |
245 * ----- ----- -----
246 * fssproj
247 *
248 * That is, fsspsets contain a list of fsszone's that are currently active in
249 * the pset, and a list of fssproj's, corresponding to projects with runnable
250 * threads on the pset. fssproj's in turn point to the fsszone which they
251 * are a member of.
252 *
253 * An fssproj_t is removed when there are no threads in it.
254 *
255 * An fsszone_t is removed when there are no projects with threads in it.
256 */
257
258 static pri_t fss_init(id_t, int, classfuncs_t **);
259
260 static struct sclass fss = {
261 "FSS",
262 fss_init,
263 0
264 };
265
266 extern struct mod_ops mod_schedops;
267
268 /*
269 * Module linkage information for the kernel.
270 */
271 static struct modlsched modlsched = {
272 &mod_schedops, "fair share scheduling class", &fss
273 };
274
275 static struct modlinkage modlinkage = {
276 MODREV_1, (void *)&modlsched, NULL
277 };
278
279 #define FSS_MAXUPRI 60
280
281 /*
282 * The fssproc_t structures are kept in an array of circular doubly linked
283 * lists. A hash on the thread pointer is used to determine which list each
284 * thread should be placed in. Each list has a dummy "head" which is never
285 * removed, so the list is never empty. fss_update traverses these lists to
286 * update the priorities of threads that have been waiting on the run queue.
287 */
288 #define FSS_LISTS 16 /* number of lists, must be power of 2 */
289 #define FSS_LIST_HASH(t) (((uintptr_t)(t) >> 9) & (FSS_LISTS - 1))
290 #define FSS_LIST_NEXT(i) (((i) + 1) & (FSS_LISTS - 1))
291
292 #define FSS_LIST_INSERT(fssproc) \
293 { \
294 int index = FSS_LIST_HASH(fssproc->fss_tp); \
295 kmutex_t *lockp = &fss_listlock[index]; \
296 fssproc_t *headp = &fss_listhead[index]; \
297 mutex_enter(lockp); \
298 fssproc->fss_next = headp->fss_next; \
299 fssproc->fss_prev = headp; \
300 headp->fss_next->fss_prev = fssproc; \
301 headp->fss_next = fssproc; \
302 mutex_exit(lockp); \
303 }
304
305 #define FSS_LIST_DELETE(fssproc) \
306 { \
307 int index = FSS_LIST_HASH(fssproc->fss_tp); \
308 kmutex_t *lockp = &fss_listlock[index]; \
309 mutex_enter(lockp); \
310 fssproc->fss_prev->fss_next = fssproc->fss_next; \
311 fssproc->fss_next->fss_prev = fssproc->fss_prev; \
312 mutex_exit(lockp); \
313 }
314
315 #define FSS_TICK_COST 1000 /* tick cost for threads with nice level = 0 */
316
317 /*
318 * Decay rate percentages are based on n/128 rather than n/100 so that
319 * calculations can avoid having to do an integer divide by 100 (divide
320 * by FSS_DECAY_BASE == 128 optimizes to an arithmetic shift).
321 *
322 * FSS_DECAY_MIN = 83/128 ~= 65%
323 * FSS_DECAY_MAX = 108/128 ~= 85%
324 * FSS_DECAY_USG = 96/128 ~= 75%
325 */
326 #define FSS_DECAY_MIN 83 /* fsspri decay pct for threads w/ nice -20 */
327 #define FSS_DECAY_MAX 108 /* fsspri decay pct for threads w/ nice +19 */
328 #define FSS_DECAY_USG 96 /* fssusage decay pct for projects */
329 #define FSS_DECAY_BASE 128 /* base for decay percentages above */
330
331 #define FSS_NICE_MIN 0
332 #define FSS_NICE_MAX (2 * NZERO - 1)
333 #define FSS_NICE_RANGE (FSS_NICE_MAX - FSS_NICE_MIN + 1)
334
335 static int fss_nice_tick[FSS_NICE_RANGE];
336 static int fss_nice_decay[FSS_NICE_RANGE];
337
338 static pri_t fss_maxupri = FSS_MAXUPRI; /* maximum FSS user priority */
339 static pri_t fss_maxumdpri; /* maximum user mode fss priority */
340 static pri_t fss_maxglobpri; /* maximum global priority used by fss class */
341 static pri_t fss_minglobpri; /* minimum global priority */
342
343 static fssproc_t fss_listhead[FSS_LISTS];
344 static kmutex_t fss_listlock[FSS_LISTS];
345
346 static fsspset_t *fsspsets;
347 static kmutex_t fsspsets_lock; /* protects fsspsets */
348
349 static id_t fss_cid;
350
351 static time_t fss_minrun = 2; /* t_pri becomes 59 within 2 secs */
352 static time_t fss_minslp = 2; /* min time on sleep queue for hardswap */
353 static int fss_quantum = 11;
354
355 static void fss_newpri(fssproc_t *, boolean_t);
356 static void fss_update(void *);
357 static int fss_update_list(int);
358 static void fss_change_priority(kthread_t *, fssproc_t *);
359
360 static int fss_admin(caddr_t, cred_t *);
361 static int fss_getclinfo(void *);
362 static int fss_parmsin(void *);
363 static int fss_parmsout(void *, pc_vaparms_t *);
364 static int fss_vaparmsin(void *, pc_vaparms_t *);
365 static int fss_vaparmsout(void *, pc_vaparms_t *);
366 static int fss_getclpri(pcpri_t *);
367 static int fss_alloc(void **, int);
368 static void fss_free(void *);
369
370 static int fss_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
371 static void fss_exitclass(void *);
372 static int fss_canexit(kthread_t *, cred_t *);
373 static int fss_fork(kthread_t *, kthread_t *, void *);
374 static void fss_forkret(kthread_t *, kthread_t *);
375 static void fss_parmsget(kthread_t *, void *);
376 static int fss_parmsset(kthread_t *, void *, id_t, cred_t *);
377 static void fss_stop(kthread_t *, int, int);
378 static void fss_exit(kthread_t *);
379 static void fss_active(kthread_t *);
380 static void fss_inactive(kthread_t *);
381 static pri_t fss_swapin(kthread_t *, int);
382 static pri_t fss_swapout(kthread_t *, int);
383 static void fss_trapret(kthread_t *);
384 static void fss_preempt(kthread_t *);
385 static void fss_setrun(kthread_t *);
386 static void fss_sleep(kthread_t *);
387 static void fss_tick(kthread_t *);
388 static void fss_wakeup(kthread_t *);
389 static int fss_donice(kthread_t *, cred_t *, int, int *);
390 static int fss_doprio(kthread_t *, cred_t *, int, int *);
391 static pri_t fss_globpri(kthread_t *);
392 static void fss_yield(kthread_t *);
393 static void fss_nullsys();
394
395 static struct classfuncs fss_classfuncs = {
396 /* class functions */
397 fss_admin,
398 fss_getclinfo,
399 fss_parmsin,
400 fss_parmsout,
401 fss_vaparmsin,
402 fss_vaparmsout,
403 fss_getclpri,
404 fss_alloc,
405 fss_free,
406
407 /* thread functions */
408 fss_enterclass,
409 fss_exitclass,
410 fss_canexit,
411 fss_fork,
412 fss_forkret,
413 fss_parmsget,
414 fss_parmsset,
415 fss_stop,
416 fss_exit,
417 fss_active,
418 fss_inactive,
419 fss_swapin,
420 fss_swapout,
421 fss_trapret,
422 fss_preempt,
423 fss_setrun,
424 fss_sleep,
425 fss_tick,
426 fss_wakeup,
427 fss_donice,
428 fss_globpri,
429 fss_nullsys, /* set_process_group */
430 fss_yield,
431 fss_doprio,
432 };
433
434 int
_init()435 _init()
436 {
437 return (mod_install(&modlinkage));
438 }
439
440 int
_fini()441 _fini()
442 {
443 return (EBUSY);
444 }
445
446 int
_info(struct modinfo * modinfop)447 _info(struct modinfo *modinfop)
448 {
449 return (mod_info(&modlinkage, modinfop));
450 }
451
452 /*ARGSUSED*/
453 static int
fss_project_walker(kproject_t * kpj,void * buf)454 fss_project_walker(kproject_t *kpj, void *buf)
455 {
456 return (0);
457 }
458
459 void *
fss_allocbuf(int op,int type)460 fss_allocbuf(int op, int type)
461 {
462 fssbuf_t *fssbuf;
463 void **fsslist;
464 int cnt;
465 int i;
466 size_t size;
467
468 ASSERT(op == FSS_NPSET_BUF || op == FSS_NPROJ_BUF || op == FSS_ONE_BUF);
469 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
470 ASSERT(MUTEX_HELD(&cpu_lock));
471
472 fssbuf = kmem_zalloc(sizeof (fssbuf_t), KM_SLEEP);
473 switch (op) {
474 case FSS_NPSET_BUF:
475 cnt = cpupart_list(NULL, 0, CP_NONEMPTY);
476 break;
477 case FSS_NPROJ_BUF:
478 cnt = project_walk_all(ALL_ZONES, fss_project_walker, NULL);
479 break;
480 case FSS_ONE_BUF:
481 cnt = 1;
482 break;
483 }
484
485 switch (type) {
486 case FSS_ALLOC_PROJ:
487 size = sizeof (fssproj_t);
488 break;
489 case FSS_ALLOC_ZONE:
490 size = sizeof (fsszone_t);
491 break;
492 }
493 fsslist = kmem_zalloc(cnt * sizeof (void *), KM_SLEEP);
494 fssbuf->fssb_size = cnt;
495 fssbuf->fssb_list = fsslist;
496 for (i = 0; i < cnt; i++)
497 fsslist[i] = kmem_zalloc(size, KM_SLEEP);
498 return (fssbuf);
499 }
500
501 void
fss_freebuf(fssbuf_t * fssbuf,int type)502 fss_freebuf(fssbuf_t *fssbuf, int type)
503 {
504 void **fsslist;
505 int i;
506 size_t size;
507
508 ASSERT(fssbuf != NULL);
509 ASSERT(type == FSS_ALLOC_PROJ || type == FSS_ALLOC_ZONE);
510 fsslist = fssbuf->fssb_list;
511
512 switch (type) {
513 case FSS_ALLOC_PROJ:
514 size = sizeof (fssproj_t);
515 break;
516 case FSS_ALLOC_ZONE:
517 size = sizeof (fsszone_t);
518 break;
519 }
520
521 for (i = 0; i < fssbuf->fssb_size; i++) {
522 if (fsslist[i] != NULL)
523 kmem_free(fsslist[i], size);
524 }
525 kmem_free(fsslist, sizeof (void *) * fssbuf->fssb_size);
526 kmem_free(fssbuf, sizeof (fssbuf_t));
527 }
528
529 static fsspset_t *
fss_find_fsspset(cpupart_t * cpupart)530 fss_find_fsspset(cpupart_t *cpupart)
531 {
532 int i;
533 fsspset_t *fsspset = NULL;
534 int found = 0;
535
536 ASSERT(cpupart != NULL);
537 ASSERT(MUTEX_HELD(&fsspsets_lock));
538
539 /*
540 * Search for the cpupart pointer in the array of fsspsets.
541 */
542 for (i = 0; i < max_ncpus; i++) {
543 fsspset = &fsspsets[i];
544 if (fsspset->fssps_cpupart == cpupart) {
545 ASSERT(fsspset->fssps_nproj > 0);
546 found = 1;
547 break;
548 }
549 }
550 if (found == 0) {
551 /*
552 * If we didn't find anything, then use the first
553 * available slot in the fsspsets array.
554 */
555 for (i = 0; i < max_ncpus; i++) {
556 fsspset = &fsspsets[i];
557 if (fsspset->fssps_cpupart == NULL) {
558 ASSERT(fsspset->fssps_nproj == 0);
559 found = 1;
560 break;
561 }
562 }
563 fsspset->fssps_cpupart = cpupart;
564 }
565 ASSERT(found == 1);
566 return (fsspset);
567 }
568
569 static void
fss_del_fsspset(fsspset_t * fsspset)570 fss_del_fsspset(fsspset_t *fsspset)
571 {
572 ASSERT(MUTEX_HELD(&fsspsets_lock));
573 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
574 ASSERT(fsspset->fssps_nproj == 0);
575 ASSERT(fsspset->fssps_list == NULL);
576 ASSERT(fsspset->fssps_zones == NULL);
577 fsspset->fssps_cpupart = NULL;
578 fsspset->fssps_maxfsspri = 0;
579 fsspset->fssps_shares = 0;
580 }
581
582 /*
583 * The following routine returns a pointer to the fsszone structure which
584 * belongs to zone "zone" and cpu partition fsspset, if such structure exists.
585 */
586 static fsszone_t *
fss_find_fsszone(fsspset_t * fsspset,zone_t * zone)587 fss_find_fsszone(fsspset_t *fsspset, zone_t *zone)
588 {
589 fsszone_t *fsszone;
590
591 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
592
593 if (fsspset->fssps_list != NULL) {
594 /*
595 * There are projects/zones active on this cpu partition
596 * already. Try to find our zone among them.
597 */
598 fsszone = fsspset->fssps_zones;
599 do {
600 if (fsszone->fssz_zone == zone) {
601 return (fsszone);
602 }
603 fsszone = fsszone->fssz_next;
604 } while (fsszone != fsspset->fssps_zones);
605 }
606 return (NULL);
607 }
608
609 /*
610 * The following routine links new fsszone structure into doubly linked list of
611 * zones active on the specified cpu partition.
612 */
613 static void
fss_insert_fsszone(fsspset_t * fsspset,zone_t * zone,fsszone_t * fsszone)614 fss_insert_fsszone(fsspset_t *fsspset, zone_t *zone, fsszone_t *fsszone)
615 {
616 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
617
618 fsszone->fssz_zone = zone;
619 fsszone->fssz_rshares = zone->zone_shares;
620
621 if (fsspset->fssps_zones == NULL) {
622 /*
623 * This will be the first fsszone for this fsspset
624 */
625 fsszone->fssz_next = fsszone->fssz_prev = fsszone;
626 fsspset->fssps_zones = fsszone;
627 } else {
628 /*
629 * Insert this fsszone to the doubly linked list.
630 */
631 fsszone_t *fssz_head = fsspset->fssps_zones;
632
633 fsszone->fssz_next = fssz_head;
634 fsszone->fssz_prev = fssz_head->fssz_prev;
635 fssz_head->fssz_prev->fssz_next = fsszone;
636 fssz_head->fssz_prev = fsszone;
637 fsspset->fssps_zones = fsszone;
638 }
639 }
640
641 /*
642 * The following routine removes a single fsszone structure from the doubly
643 * linked list of zones active on the specified cpu partition. Note that
644 * global fsspsets_lock must be held in case this fsszone structure is the last
645 * on the above mentioned list. Also note that the fsszone structure is not
646 * freed here, it is the responsibility of the caller to call kmem_free for it.
647 */
648 static void
fss_remove_fsszone(fsspset_t * fsspset,fsszone_t * fsszone)649 fss_remove_fsszone(fsspset_t *fsspset, fsszone_t *fsszone)
650 {
651 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
652 ASSERT(fsszone->fssz_nproj == 0);
653 ASSERT(fsszone->fssz_shares == 0);
654 ASSERT(fsszone->fssz_runnable == 0);
655
656 if (fsszone->fssz_next != fsszone) {
657 /*
658 * This is not the last zone in the list.
659 */
660 fsszone->fssz_prev->fssz_next = fsszone->fssz_next;
661 fsszone->fssz_next->fssz_prev = fsszone->fssz_prev;
662 if (fsspset->fssps_zones == fsszone)
663 fsspset->fssps_zones = fsszone->fssz_next;
664 } else {
665 /*
666 * This was the last zone active in this cpu partition.
667 */
668 fsspset->fssps_zones = NULL;
669 }
670 }
671
672 /*
673 * The following routine returns a pointer to the fssproj structure
674 * which belongs to project kpj and cpu partition fsspset, if such structure
675 * exists.
676 */
677 static fssproj_t *
fss_find_fssproj(fsspset_t * fsspset,kproject_t * kpj)678 fss_find_fssproj(fsspset_t *fsspset, kproject_t *kpj)
679 {
680 fssproj_t *fssproj;
681
682 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
683
684 if (fsspset->fssps_list != NULL) {
685 /*
686 * There are projects running on this cpu partition already.
687 * Try to find our project among them.
688 */
689 fssproj = fsspset->fssps_list;
690 do {
691 if (fssproj->fssp_proj == kpj) {
692 ASSERT(fssproj->fssp_pset == fsspset);
693 return (fssproj);
694 }
695 fssproj = fssproj->fssp_next;
696 } while (fssproj != fsspset->fssps_list);
697 }
698 return (NULL);
699 }
700
701 /*
702 * The following routine links new fssproj structure into doubly linked list
703 * of projects running on the specified cpu partition.
704 */
705 static void
fss_insert_fssproj(fsspset_t * fsspset,kproject_t * kpj,fsszone_t * fsszone,fssproj_t * fssproj)706 fss_insert_fssproj(fsspset_t *fsspset, kproject_t *kpj, fsszone_t *fsszone,
707 fssproj_t *fssproj)
708 {
709 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
710
711 fssproj->fssp_pset = fsspset;
712 fssproj->fssp_proj = kpj;
713 fssproj->fssp_shares = kpj->kpj_shares;
714
715 fsspset->fssps_nproj++;
716
717 if (fsspset->fssps_list == NULL) {
718 /*
719 * This will be the first fssproj for this fsspset
720 */
721 fssproj->fssp_next = fssproj->fssp_prev = fssproj;
722 fsspset->fssps_list = fssproj;
723 } else {
724 /*
725 * Insert this fssproj to the doubly linked list.
726 */
727 fssproj_t *fssp_head = fsspset->fssps_list;
728
729 fssproj->fssp_next = fssp_head;
730 fssproj->fssp_prev = fssp_head->fssp_prev;
731 fssp_head->fssp_prev->fssp_next = fssproj;
732 fssp_head->fssp_prev = fssproj;
733 fsspset->fssps_list = fssproj;
734 }
735 fssproj->fssp_fsszone = fsszone;
736 fsszone->fssz_nproj++;
737 ASSERT(fsszone->fssz_nproj != 0);
738 }
739
740 /*
741 * The following routine removes a single fssproj structure from the doubly
742 * linked list of projects running on the specified cpu partition. Note that
743 * global fsspsets_lock must be held in case if this fssproj structure is the
744 * last on the above mentioned list. Also note that the fssproj structure is
745 * not freed here, it is the responsibility of the caller to call kmem_free
746 * for it.
747 */
748 static void
fss_remove_fssproj(fsspset_t * fsspset,fssproj_t * fssproj)749 fss_remove_fssproj(fsspset_t *fsspset, fssproj_t *fssproj)
750 {
751 fsszone_t *fsszone;
752
753 ASSERT(MUTEX_HELD(&fsspsets_lock));
754 ASSERT(MUTEX_HELD(&fsspset->fssps_lock));
755 ASSERT(fssproj->fssp_runnable == 0);
756
757 fsspset->fssps_nproj--;
758
759 fsszone = fssproj->fssp_fsszone;
760 fsszone->fssz_nproj--;
761
762 if (fssproj->fssp_next != fssproj) {
763 /*
764 * This is not the last part in the list.
765 */
766 fssproj->fssp_prev->fssp_next = fssproj->fssp_next;
767 fssproj->fssp_next->fssp_prev = fssproj->fssp_prev;
768 if (fsspset->fssps_list == fssproj)
769 fsspset->fssps_list = fssproj->fssp_next;
770 if (fsszone->fssz_nproj == 0)
771 fss_remove_fsszone(fsspset, fsszone);
772 } else {
773 /*
774 * This was the last project part running
775 * at this cpu partition.
776 */
777 fsspset->fssps_list = NULL;
778 ASSERT(fsspset->fssps_nproj == 0);
779 ASSERT(fsszone->fssz_nproj == 0);
780 fss_remove_fsszone(fsspset, fsszone);
781 fss_del_fsspset(fsspset);
782 }
783 }
784
785 static void
fss_inactive(kthread_t * t)786 fss_inactive(kthread_t *t)
787 {
788 fssproc_t *fssproc;
789 fssproj_t *fssproj;
790 fsspset_t *fsspset;
791 fsszone_t *fsszone;
792
793 ASSERT(THREAD_LOCK_HELD(t));
794 fssproc = FSSPROC(t);
795 fssproj = FSSPROC2FSSPROJ(fssproc);
796 if (fssproj == NULL) /* if this thread already exited */
797 return;
798 fsspset = FSSPROJ2FSSPSET(fssproj);
799 fsszone = fssproj->fssp_fsszone;
800 disp_lock_enter_high(&fsspset->fssps_displock);
801 ASSERT(fssproj->fssp_runnable > 0);
802 if (--fssproj->fssp_runnable == 0) {
803 fsszone->fssz_shares -= fssproj->fssp_shares;
804 if (--fsszone->fssz_runnable == 0)
805 fsspset->fssps_shares -= fsszone->fssz_rshares;
806 }
807 ASSERT(fssproc->fss_runnable == 1);
808 fssproc->fss_runnable = 0;
809 disp_lock_exit_high(&fsspset->fssps_displock);
810 }
811
812 static void
fss_active(kthread_t * t)813 fss_active(kthread_t *t)
814 {
815 fssproc_t *fssproc;
816 fssproj_t *fssproj;
817 fsspset_t *fsspset;
818 fsszone_t *fsszone;
819
820 ASSERT(THREAD_LOCK_HELD(t));
821 fssproc = FSSPROC(t);
822 fssproj = FSSPROC2FSSPROJ(fssproc);
823 if (fssproj == NULL) /* if this thread already exited */
824 return;
825 fsspset = FSSPROJ2FSSPSET(fssproj);
826 fsszone = fssproj->fssp_fsszone;
827 disp_lock_enter_high(&fsspset->fssps_displock);
828 if (++fssproj->fssp_runnable == 1) {
829 fsszone->fssz_shares += fssproj->fssp_shares;
830 if (++fsszone->fssz_runnable == 1)
831 fsspset->fssps_shares += fsszone->fssz_rshares;
832 }
833 ASSERT(fssproc->fss_runnable == 0);
834 fssproc->fss_runnable = 1;
835 disp_lock_exit_high(&fsspset->fssps_displock);
836 }
837
838 /*
839 * Fair share scheduler initialization. Called by dispinit() at boot time.
840 * We can ignore clparmsz argument since we know that the smallest possible
841 * parameter buffer is big enough for us.
842 */
843 /*ARGSUSED*/
844 static pri_t
fss_init(id_t cid,int clparmsz,classfuncs_t ** clfuncspp)845 fss_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
846 {
847 int i;
848
849 ASSERT(MUTEX_HELD(&cpu_lock));
850
851 fss_cid = cid;
852 fss_maxumdpri = minclsyspri - 1;
853 fss_maxglobpri = minclsyspri;
854 fss_minglobpri = 0;
855 fsspsets = kmem_zalloc(sizeof (fsspset_t) * max_ncpus, KM_SLEEP);
856
857 /*
858 * Initialize the fssproc hash table.
859 */
860 for (i = 0; i < FSS_LISTS; i++)
861 fss_listhead[i].fss_next = fss_listhead[i].fss_prev =
862 &fss_listhead[i];
863
864 *clfuncspp = &fss_classfuncs;
865
866 /*
867 * Fill in fss_nice_tick and fss_nice_decay arrays:
868 * The cost of a tick is lower at positive nice values (so that it
869 * will not increase its project's usage as much as normal) with 50%
870 * drop at the maximum level and 50% increase at the minimum level.
871 * The fsspri decay is slower at positive nice values. fsspri values
872 * of processes with negative nice levels must decay faster to receive
873 * time slices more frequently than normal.
874 */
875 for (i = 0; i < FSS_NICE_RANGE; i++) {
876 fss_nice_tick[i] = (FSS_TICK_COST * (((3 * FSS_NICE_RANGE) / 2)
877 - i)) / FSS_NICE_RANGE;
878 fss_nice_decay[i] = FSS_DECAY_MIN +
879 ((FSS_DECAY_MAX - FSS_DECAY_MIN) * i) /
880 (FSS_NICE_RANGE - 1);
881 }
882
883 return (fss_maxglobpri);
884 }
885
886 /*
887 * Calculate the new fss_umdpri based on the usage, the normalized share usage
888 * and the number of active threads. Reset the tick counter for this thread.
889 *
890 * When calculating the new priority using the standard formula we can hit
891 * a scenario where we don't have good round-robin behavior. This would be
892 * most commonly seen when there is a zone with lots of runnable threads.
893 * In the bad scenario we will see the following behavior when using the
894 * standard formula and these conditions:
895 *
896 * - there are multiple runnable threads in the zone (project)
897 * - the fssps_maxfsspri is a very large value
898 * - (we also know all of these threads will use the project's
899 * fssp_shusage)
900 *
901 * Under these conditions, a thread with a low fss_fsspri value is chosen
902 * to run and the thread gets a high fss_umdpri. This thread can run for
903 * its full quanta (fss_timeleft) at which time fss_newpri is called to
904 * calculate the thread's new priority.
905 *
906 * In this case, because the newly calculated fsspri value is much smaller
907 * (orders of magnitude) than the fssps_maxfsspri value, if we used the
908 * standard formula the thread will still get a high fss_umdpri value and
909 * will run again for another quanta, even though there are other runnable
910 * threads in the project.
911 *
912 * For a thread that is runnable for a long time, the thread can continue
913 * to run for many quanta (totaling many seconds) before the thread's fsspri
914 * exceeds the fssps_maxfsspri and the thread's fss_umdpri is reset back
915 * down to 1. This behavior also keeps the fssps_maxfsspr at a high value,
916 * so that the next runnable thread might repeat this cycle.
917 *
918 * This leads to the case where we don't have round-robin behavior at quanta
919 * granularity, but instead, runnable threads within the project only run
920 * at several second intervals.
921 *
922 * To prevent this scenario from occuring, when a thread has consumed its
923 * quanta and there are multiple runnable threads in the project, we
924 * immediately cause the thread to hit fssps_maxfsspri so that it gets
925 * reset back to 1 and another runnable thread in the project can run.
926 */
927 static void
fss_newpri(fssproc_t * fssproc,boolean_t quanta_up)928 fss_newpri(fssproc_t *fssproc, boolean_t quanta_up)
929 {
930 kthread_t *tp;
931 fssproj_t *fssproj;
932 fsspset_t *fsspset;
933 fsszone_t *fsszone;
934 fsspri_t fsspri, maxfsspri;
935 uint32_t n_runnable;
936 pri_t invpri;
937 uint32_t ticks;
938
939 tp = fssproc->fss_tp;
940 ASSERT(tp != NULL);
941
942 if (tp->t_cid != fss_cid)
943 return;
944
945 ASSERT(THREAD_LOCK_HELD(tp));
946
947 fssproj = FSSPROC2FSSPROJ(fssproc);
948 fsszone = FSSPROJ2FSSZONE(fssproj);
949 if (fssproj == NULL)
950 /*
951 * No need to change priority of exited threads.
952 */
953 return;
954
955 fsspset = FSSPROJ2FSSPSET(fssproj);
956 disp_lock_enter_high(&fsspset->fssps_displock);
957
958 ticks = fssproc->fss_ticks;
959 fssproc->fss_ticks = 0;
960
961 if (fssproj->fssp_shares == 0 || fsszone->fssz_rshares == 0) {
962 /*
963 * Special case: threads with no shares.
964 */
965 fssproc->fss_umdpri = fss_minglobpri;
966 disp_lock_exit_high(&fsspset->fssps_displock);
967 return;
968 }
969
970 maxfsspri = fsspset->fssps_maxfsspri;
971 n_runnable = fssproj->fssp_runnable;
972
973 if (quanta_up && n_runnable > 1) {
974 fsspri = maxfsspri;
975 } else {
976 /*
977 * fsspri += fssp_shusage * nrunnable * ticks
978 * If all three values are non-0, this typically calculates to
979 * a large number (sometimes > 1M, sometimes > 100B) due to
980 * fssp_shusage which can be > 1T.
981 */
982 fsspri = fssproc->fss_fsspri;
983 fsspri += fssproj->fssp_shusage * n_runnable * ticks;
984 }
985
986 fssproc->fss_fsspri = fsspri;
987
988 /*
989 * fss_maxumdpri is normally 59, since FSS priorities are 0-59.
990 * If the previous calculation resulted in 0 (e.g. was 0 and added 0
991 * because ticks == 0), then instead of 0, we use the largest priority,
992 * which is still small in comparison to the large numbers we typically
993 * see.
994 */
995 if (fsspri < fss_maxumdpri)
996 fsspri = fss_maxumdpri; /* so that maxfsspri is != 0 */
997
998 /*
999 * The general priority formula:
1000 *
1001 * (fsspri * umdprirange)
1002 * pri = maxumdpri - ------------------------
1003 * maxfsspri
1004 *
1005 * If this thread's fsspri is greater than the previous largest
1006 * fsspri, then record it as the new high and priority for this
1007 * thread will be one (the lowest priority assigned to a thread
1008 * that has non-zero shares). Because of this check, maxfsspri can
1009 * change as this function is called via the
1010 * fss_update -> fss_update_list -> fss_newpri code path to update
1011 * all runnable threads. See the code in fss_update for how we
1012 * mitigate this issue.
1013 *
1014 * Note that this formula cannot produce out of bounds priority
1015 * values (0-59); if it is changed, additional checks may need to be
1016 * added.
1017 */
1018 if (fsspri >= maxfsspri) {
1019 fsspset->fssps_maxfsspri = fsspri;
1020 disp_lock_exit_high(&fsspset->fssps_displock);
1021 fssproc->fss_umdpri = 1;
1022 } else {
1023 disp_lock_exit_high(&fsspset->fssps_displock);
1024 invpri = (fsspri * (fss_maxumdpri - 1)) / maxfsspri;
1025 fssproc->fss_umdpri = fss_maxumdpri - invpri;
1026 }
1027 }
1028
1029 /*
1030 * Decays usages of all running projects, resets their tick counters and
1031 * calcluates the projects normalized share usage. Called once per second from
1032 * fss_update().
1033 */
1034 static void
fss_decay_usage()1035 fss_decay_usage()
1036 {
1037 uint32_t zone_ext_shares, zone_int_shares;
1038 uint32_t kpj_shares, pset_shares;
1039 fsspset_t *fsspset;
1040 fssproj_t *fssproj;
1041 fsszone_t *fsszone;
1042 fsspri_t maxfsspri;
1043 int psetid;
1044 struct zone *zp;
1045
1046 mutex_enter(&fsspsets_lock);
1047 /*
1048 * Go through all active processor sets and decay usages of projects
1049 * running on them.
1050 */
1051 for (psetid = 0; psetid < max_ncpus; psetid++) {
1052 fsspset = &fsspsets[psetid];
1053 mutex_enter(&fsspset->fssps_lock);
1054
1055 fsspset->fssps_gen++;
1056
1057 if (fsspset->fssps_cpupart == NULL ||
1058 (fssproj = fsspset->fssps_list) == NULL) {
1059 mutex_exit(&fsspset->fssps_lock);
1060 continue;
1061 }
1062
1063 /*
1064 * Decay maxfsspri for this cpu partition with the
1065 * fastest possible decay rate.
1066 */
1067 disp_lock_enter(&fsspset->fssps_displock);
1068
1069 pset_shares = fsspset->fssps_shares;
1070
1071 maxfsspri = (fsspset->fssps_maxfsspri *
1072 fss_nice_decay[NZERO]) / FSS_DECAY_BASE;
1073 if (maxfsspri < fss_maxumdpri)
1074 maxfsspri = fss_maxumdpri;
1075 fsspset->fssps_maxfsspri = maxfsspri;
1076
1077 do {
1078 fsszone = fssproj->fssp_fsszone;
1079 zp = fsszone->fssz_zone;
1080
1081 /*
1082 * Reset zone's FSS stats if they are from a
1083 * previous cycle.
1084 */
1085 if (fsspset->fssps_gen != zp->zone_fss_gen) {
1086 zp->zone_fss_gen = fsspset->fssps_gen;
1087 zp->zone_run_ticks = 0;
1088 }
1089
1090 /*
1091 * Decay project usage, then add in this cycle's
1092 * nice tick value.
1093 */
1094 fssproj->fssp_usage =
1095 (fssproj->fssp_usage * FSS_DECAY_USG) /
1096 FSS_DECAY_BASE +
1097 fssproj->fssp_ticks;
1098
1099 fssproj->fssp_ticks = 0;
1100 zp->zone_run_ticks += fssproj->fssp_tick_cnt;
1101 fssproj->fssp_tick_cnt = 0;
1102
1103 /*
1104 * Readjust the project's number of shares if it has
1105 * changed since we checked it last time.
1106 */
1107 kpj_shares = fssproj->fssp_proj->kpj_shares;
1108 if (fssproj->fssp_shares != kpj_shares) {
1109 if (fssproj->fssp_runnable != 0) {
1110 fsszone->fssz_shares -=
1111 fssproj->fssp_shares;
1112 fsszone->fssz_shares += kpj_shares;
1113 }
1114 fssproj->fssp_shares = kpj_shares;
1115 }
1116
1117 /*
1118 * Readjust the zone's number of shares if it
1119 * has changed since we checked it last time.
1120 */
1121 zone_ext_shares = zp->zone_shares;
1122 if (fsszone->fssz_rshares != zone_ext_shares) {
1123 if (fsszone->fssz_runnable != 0) {
1124 fsspset->fssps_shares -=
1125 fsszone->fssz_rshares;
1126 fsspset->fssps_shares +=
1127 zone_ext_shares;
1128 pset_shares = fsspset->fssps_shares;
1129 }
1130 fsszone->fssz_rshares = zone_ext_shares;
1131 }
1132 zone_int_shares = fsszone->fssz_shares;
1133
1134 /*
1135 * If anything is runnable in the project, track the
1136 * overall project share percent for monitoring useage.
1137 */
1138 if (fssproj->fssp_runnable > 0) {
1139 uint32_t zone_shr_pct;
1140 uint32_t int_shr_pct;
1141
1142 /*
1143 * Times 1000 to get tenths of a percent
1144 *
1145 * zone_ext_shares
1146 * zone_shr_pct = ---------------
1147 * pset_shares
1148 *
1149 * kpj_shares
1150 * int_shr_pct = ---------------
1151 * zone_int_shares
1152 */
1153 if (pset_shares == 0 || zone_int_shares == 0) {
1154 fssproj->fssp_shr_pct = 0;
1155 } else {
1156 zone_shr_pct =
1157 (zone_ext_shares * 1000) /
1158 pset_shares;
1159 int_shr_pct = (kpj_shares * 1000) /
1160 zone_int_shares;
1161 fssproj->fssp_shr_pct =
1162 (zone_shr_pct * int_shr_pct) /
1163 1000;
1164 }
1165 } else {
1166 DTRACE_PROBE1(fss__prj__norun, fssproj_t *,
1167 fssproj);
1168 }
1169
1170 /*
1171 * Calculate fssp_shusage value to be used
1172 * for fsspri increments for the next second.
1173 */
1174 if (kpj_shares == 0 || zone_ext_shares == 0) {
1175 fssproj->fssp_shusage = 0;
1176 } else if (FSSPROJ2KPROJ(fssproj) == proj0p) {
1177 uint32_t zone_shr_pct;
1178
1179 /*
1180 * Project 0 in the global zone has 50%
1181 * of its zone. See calculation above for
1182 * the zone's share percent.
1183 */
1184 if (pset_shares == 0)
1185 zone_shr_pct = 1000;
1186 else
1187 zone_shr_pct =
1188 (zone_ext_shares * 1000) /
1189 pset_shares;
1190
1191 fssproj->fssp_shr_pct = zone_shr_pct / 2;
1192
1193 fssproj->fssp_shusage = (fssproj->fssp_usage *
1194 zone_int_shares * zone_int_shares) /
1195 (zone_ext_shares * zone_ext_shares);
1196 } else {
1197 /*
1198 * Thread's priority is based on its project's
1199 * normalized usage (shusage) value which gets
1200 * calculated this way:
1201 *
1202 * pset_shares^2 zone_int_shares^2
1203 * usage * ------------- * ------------------
1204 * kpj_shares^2 zone_ext_shares^2
1205 *
1206 * Where zone_int_shares is the sum of shares
1207 * of all active projects within the zone (and
1208 * the pset), and zone_ext_shares is the number
1209 * of zone shares (ie, zone.cpu-shares).
1210 *
1211 * If there is only one zone active on the pset
1212 * the above reduces to:
1213 *
1214 * zone_int_shares^2
1215 * shusage = usage * ---------------------
1216 * kpj_shares^2
1217 *
1218 * If there's only one project active in the
1219 * zone this formula reduces to:
1220 *
1221 * pset_shares^2
1222 * shusage = usage * ----------------------
1223 * zone_ext_shares^2
1224 *
1225 * shusage is one input to calculating fss_pri
1226 * in fss_newpri(). Larger values tend toward
1227 * lower priorities for processes in the proj.
1228 */
1229 fssproj->fssp_shusage = fssproj->fssp_usage *
1230 pset_shares * zone_int_shares;
1231 fssproj->fssp_shusage /=
1232 kpj_shares * zone_ext_shares;
1233 fssproj->fssp_shusage *=
1234 pset_shares * zone_int_shares;
1235 fssproj->fssp_shusage /=
1236 kpj_shares * zone_ext_shares;
1237 }
1238 fssproj = fssproj->fssp_next;
1239 } while (fssproj != fsspset->fssps_list);
1240
1241 disp_lock_exit(&fsspset->fssps_displock);
1242 mutex_exit(&fsspset->fssps_lock);
1243 }
1244 mutex_exit(&fsspsets_lock);
1245 }
1246
1247 static void
fss_change_priority(kthread_t * t,fssproc_t * fssproc)1248 fss_change_priority(kthread_t *t, fssproc_t *fssproc)
1249 {
1250 pri_t new_pri;
1251
1252 ASSERT(THREAD_LOCK_HELD(t));
1253 new_pri = fssproc->fss_umdpri;
1254 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
1255
1256 t->t_cpri = fssproc->fss_upri;
1257 fssproc->fss_flags &= ~FSSRESTORE;
1258 if (t == curthread || t->t_state == TS_ONPROC) {
1259 /*
1260 * curthread is always onproc
1261 */
1262 cpu_t *cp = t->t_disp_queue->disp_cpu;
1263 THREAD_CHANGE_PRI(t, new_pri);
1264 if (t == cp->cpu_dispthread)
1265 cp->cpu_dispatch_pri = DISP_PRIO(t);
1266 if (DISP_MUST_SURRENDER(t)) {
1267 fssproc->fss_flags |= FSSBACKQ;
1268 cpu_surrender(t);
1269 } else {
1270 fssproc->fss_timeleft = fss_quantum;
1271 }
1272 } else {
1273 /*
1274 * When the priority of a thread is changed, it may be
1275 * necessary to adjust its position on a sleep queue or
1276 * dispatch queue. The function thread_change_pri accomplishes
1277 * this.
1278 */
1279 if (thread_change_pri(t, new_pri, 0)) {
1280 /*
1281 * The thread was on a run queue.
1282 */
1283 fssproc->fss_timeleft = fss_quantum;
1284 } else {
1285 fssproc->fss_flags |= FSSBACKQ;
1286 }
1287 }
1288 }
1289
1290 /*
1291 * Update priorities of all fair-sharing threads that are currently runnable
1292 * at a user mode priority based on the number of shares and current usage.
1293 * Called once per second via timeout which we reset here.
1294 *
1295 * There are several lists of fair-sharing threads broken up by a hash on the
1296 * thread pointer. Each list has its own lock. This avoids blocking all
1297 * fss_enterclass, fss_fork, and fss_exitclass operations while fss_update runs.
1298 * fss_update traverses each list in turn.
1299 *
1300 * Each time we're run (once/second) we may start at the next list and iterate
1301 * through all of the lists. By starting with a different list, we mitigate any
1302 * effects we would see updating the fssps_maxfsspri value in fss_newpri.
1303 */
1304 static void
fss_update(void * arg)1305 fss_update(void *arg)
1306 {
1307 int i;
1308 int new_marker = -1;
1309 static int fss_update_marker;
1310
1311 /*
1312 * Decay and update usages for all projects.
1313 */
1314 fss_decay_usage();
1315
1316 /*
1317 * Start with the fss_update_marker list, then do the rest.
1318 */
1319 i = fss_update_marker;
1320
1321 /*
1322 * Go around all threads, set new priorities and decay
1323 * per-thread CPU usages.
1324 */
1325 do {
1326 /*
1327 * If this is the first list after the current marker to have
1328 * threads with priority updates, advance the marker to this
1329 * list for the next time fss_update runs.
1330 */
1331 if (fss_update_list(i) &&
1332 new_marker == -1 && i != fss_update_marker)
1333 new_marker = i;
1334 } while ((i = FSS_LIST_NEXT(i)) != fss_update_marker);
1335
1336 /*
1337 * Advance marker for the next fss_update call
1338 */
1339 if (new_marker != -1)
1340 fss_update_marker = new_marker;
1341
1342 (void) timeout(fss_update, arg, hz);
1343 }
1344
1345 /*
1346 * Updates priority for a list of threads. Returns 1 if the priority of one
1347 * of the threads was actually updated, 0 if none were for various reasons
1348 * (thread is no longer in the FSS class, is not runnable, has the preemption
1349 * control no-preempt bit set, etc.)
1350 */
1351 static int
fss_update_list(int i)1352 fss_update_list(int i)
1353 {
1354 fssproc_t *fssproc;
1355 fssproj_t *fssproj;
1356 fsspri_t fsspri;
1357 pri_t fss_umdpri;
1358 kthread_t *t;
1359 int updated = 0;
1360
1361 mutex_enter(&fss_listlock[i]);
1362 for (fssproc = fss_listhead[i].fss_next; fssproc != &fss_listhead[i];
1363 fssproc = fssproc->fss_next) {
1364 t = fssproc->fss_tp;
1365 /*
1366 * Lock the thread and verify the state.
1367 */
1368 thread_lock(t);
1369 /*
1370 * Skip the thread if it is no longer in the FSS class or
1371 * is running with kernel mode priority.
1372 */
1373 if (t->t_cid != fss_cid)
1374 goto next;
1375
1376 fssproj = FSSPROC2FSSPROJ(fssproc);
1377 if (fssproj == NULL)
1378 goto next;
1379
1380 if (fssproj->fssp_shares != 0) {
1381 /*
1382 * Decay fsspri value.
1383 */
1384 fsspri = fssproc->fss_fsspri;
1385 fsspri = (fsspri * fss_nice_decay[fssproc->fss_nice]) /
1386 FSS_DECAY_BASE;
1387 fssproc->fss_fsspri = fsspri;
1388 }
1389
1390 if (t->t_schedctl && schedctl_get_nopreempt(t))
1391 goto next;
1392 if (t->t_state != TS_RUN && t->t_state != TS_WAIT) {
1393 /*
1394 * Make next syscall/trap call fss_trapret
1395 */
1396 t->t_trapret = 1;
1397 aston(t);
1398 if (t->t_state == TS_ONPROC)
1399 DTRACE_PROBE1(fss__onproc, fssproc_t *,
1400 fssproc);
1401 goto next;
1402 }
1403 fss_newpri(fssproc, B_FALSE);
1404 updated = 1;
1405
1406 fss_umdpri = fssproc->fss_umdpri;
1407
1408 /*
1409 * Only dequeue the thread if it needs to be moved; otherwise
1410 * it should just round-robin here.
1411 */
1412 if (t->t_pri != fss_umdpri)
1413 fss_change_priority(t, fssproc);
1414 next:
1415 thread_unlock(t);
1416 }
1417 mutex_exit(&fss_listlock[i]);
1418 return (updated);
1419 }
1420
1421 /*ARGSUSED*/
1422 static int
fss_admin(caddr_t uaddr,cred_t * reqpcredp)1423 fss_admin(caddr_t uaddr, cred_t *reqpcredp)
1424 {
1425 fssadmin_t fssadmin;
1426
1427 if (copyin(uaddr, &fssadmin, sizeof (fssadmin_t)))
1428 return (EFAULT);
1429
1430 switch (fssadmin.fss_cmd) {
1431 case FSS_SETADMIN:
1432 if (secpolicy_dispadm(reqpcredp) != 0)
1433 return (EPERM);
1434 if (fssadmin.fss_quantum <= 0 || fssadmin.fss_quantum >= hz)
1435 return (EINVAL);
1436 fss_quantum = fssadmin.fss_quantum;
1437 break;
1438 case FSS_GETADMIN:
1439 fssadmin.fss_quantum = fss_quantum;
1440 if (copyout(&fssadmin, uaddr, sizeof (fssadmin_t)))
1441 return (EFAULT);
1442 break;
1443 default:
1444 return (EINVAL);
1445 }
1446 return (0);
1447 }
1448
1449 static int
fss_getclinfo(void * infop)1450 fss_getclinfo(void *infop)
1451 {
1452 fssinfo_t *fssinfo = (fssinfo_t *)infop;
1453 fssinfo->fss_maxupri = fss_maxupri;
1454 return (0);
1455 }
1456
1457 static int
fss_parmsin(void * parmsp)1458 fss_parmsin(void *parmsp)
1459 {
1460 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1461
1462 /*
1463 * Check validity of parameters.
1464 */
1465 if ((fssparmsp->fss_uprilim > fss_maxupri ||
1466 fssparmsp->fss_uprilim < -fss_maxupri) &&
1467 fssparmsp->fss_uprilim != FSS_NOCHANGE)
1468 return (EINVAL);
1469
1470 if ((fssparmsp->fss_upri > fss_maxupri ||
1471 fssparmsp->fss_upri < -fss_maxupri) &&
1472 fssparmsp->fss_upri != FSS_NOCHANGE)
1473 return (EINVAL);
1474
1475 return (0);
1476 }
1477
1478 /*ARGSUSED*/
1479 static int
fss_parmsout(void * parmsp,pc_vaparms_t * vaparmsp)1480 fss_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1481 {
1482 return (0);
1483 }
1484
1485 static int
fss_vaparmsin(void * parmsp,pc_vaparms_t * vaparmsp)1486 fss_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
1487 {
1488 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1489 int priflag = 0;
1490 int limflag = 0;
1491 uint_t cnt;
1492 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1493
1494 /*
1495 * FSS_NOCHANGE (-32768) is outside of the range of values for
1496 * fss_uprilim and fss_upri. If the structure fssparms_t is changed,
1497 * FSS_NOCHANGE should be replaced by a flag word.
1498 */
1499 fssparmsp->fss_uprilim = FSS_NOCHANGE;
1500 fssparmsp->fss_upri = FSS_NOCHANGE;
1501
1502 /*
1503 * Get the varargs parameter and check validity of parameters.
1504 */
1505 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1506 return (EINVAL);
1507
1508 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1509 switch (vpp->pc_key) {
1510 case FSS_KY_UPRILIM:
1511 if (limflag++)
1512 return (EINVAL);
1513 fssparmsp->fss_uprilim = (pri_t)vpp->pc_parm;
1514 if (fssparmsp->fss_uprilim > fss_maxupri ||
1515 fssparmsp->fss_uprilim < -fss_maxupri)
1516 return (EINVAL);
1517 break;
1518 case FSS_KY_UPRI:
1519 if (priflag++)
1520 return (EINVAL);
1521 fssparmsp->fss_upri = (pri_t)vpp->pc_parm;
1522 if (fssparmsp->fss_upri > fss_maxupri ||
1523 fssparmsp->fss_upri < -fss_maxupri)
1524 return (EINVAL);
1525 break;
1526 default:
1527 return (EINVAL);
1528 }
1529 }
1530
1531 if (vaparmsp->pc_vaparmscnt == 0) {
1532 /*
1533 * Use default parameters.
1534 */
1535 fssparmsp->fss_upri = fssparmsp->fss_uprilim = 0;
1536 }
1537
1538 return (0);
1539 }
1540
1541 /*
1542 * Copy all selected fair-sharing class parameters to the user. The parameters
1543 * are specified by a key.
1544 */
1545 static int
fss_vaparmsout(void * parmsp,pc_vaparms_t * vaparmsp)1546 fss_vaparmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1547 {
1548 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1549 int priflag = 0;
1550 int limflag = 0;
1551 uint_t cnt;
1552 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
1553
1554 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1555
1556 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1557 return (EINVAL);
1558
1559 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1560 switch (vpp->pc_key) {
1561 case FSS_KY_UPRILIM:
1562 if (limflag++)
1563 return (EINVAL);
1564 if (copyout(&fssparmsp->fss_uprilim,
1565 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1566 return (EFAULT);
1567 break;
1568 case FSS_KY_UPRI:
1569 if (priflag++)
1570 return (EINVAL);
1571 if (copyout(&fssparmsp->fss_upri,
1572 (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1573 return (EFAULT);
1574 break;
1575 default:
1576 return (EINVAL);
1577 }
1578 }
1579
1580 return (0);
1581 }
1582
1583 /*
1584 * Return the user mode scheduling priority range.
1585 */
1586 static int
fss_getclpri(pcpri_t * pcprip)1587 fss_getclpri(pcpri_t *pcprip)
1588 {
1589 pcprip->pc_clpmax = fss_maxupri;
1590 pcprip->pc_clpmin = -fss_maxupri;
1591 return (0);
1592 }
1593
1594 static int
fss_alloc(void ** p,int flag)1595 fss_alloc(void **p, int flag)
1596 {
1597 void *bufp;
1598
1599 if ((bufp = kmem_zalloc(sizeof (fssproc_t), flag)) == NULL) {
1600 return (ENOMEM);
1601 } else {
1602 *p = bufp;
1603 return (0);
1604 }
1605 }
1606
1607 static void
fss_free(void * bufp)1608 fss_free(void *bufp)
1609 {
1610 if (bufp)
1611 kmem_free(bufp, sizeof (fssproc_t));
1612 }
1613
1614 /*
1615 * Thread functions
1616 */
1617 static int
fss_enterclass(kthread_t * t,id_t cid,void * parmsp,cred_t * reqpcredp,void * bufp)1618 fss_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
1619 void *bufp)
1620 {
1621 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1622 fssproc_t *fssproc;
1623 pri_t reqfssuprilim;
1624 pri_t reqfssupri;
1625 static uint32_t fssexists = 0;
1626 fsspset_t *fsspset;
1627 fssproj_t *fssproj;
1628 fsszone_t *fsszone;
1629 kproject_t *kpj;
1630 zone_t *zone;
1631 int fsszone_allocated = 0;
1632
1633 fssproc = (fssproc_t *)bufp;
1634 ASSERT(fssproc != NULL);
1635
1636 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1637
1638 /*
1639 * Only root can move threads to FSS class.
1640 */
1641 if (reqpcredp != NULL && secpolicy_setpriority(reqpcredp) != 0)
1642 return (EPERM);
1643 /*
1644 * Initialize the fssproc structure.
1645 */
1646 fssproc->fss_umdpri = fss_maxumdpri / 2;
1647
1648 if (fssparmsp == NULL) {
1649 /*
1650 * Use default values.
1651 */
1652 fssproc->fss_nice = NZERO;
1653 fssproc->fss_uprilim = fssproc->fss_upri = 0;
1654 } else {
1655 /*
1656 * Use supplied values.
1657 */
1658 if (fssparmsp->fss_uprilim == FSS_NOCHANGE) {
1659 reqfssuprilim = 0;
1660 } else {
1661 if (fssparmsp->fss_uprilim > 0 &&
1662 secpolicy_setpriority(reqpcredp) != 0)
1663 return (EPERM);
1664 reqfssuprilim = fssparmsp->fss_uprilim;
1665 }
1666 if (fssparmsp->fss_upri == FSS_NOCHANGE) {
1667 reqfssupri = reqfssuprilim;
1668 } else {
1669 if (fssparmsp->fss_upri > 0 &&
1670 secpolicy_setpriority(reqpcredp) != 0)
1671 return (EPERM);
1672 /*
1673 * Set the user priority to the requested value or
1674 * the upri limit, whichever is lower.
1675 */
1676 reqfssupri = fssparmsp->fss_upri;
1677 if (reqfssupri > reqfssuprilim)
1678 reqfssupri = reqfssuprilim;
1679 }
1680 fssproc->fss_uprilim = reqfssuprilim;
1681 fssproc->fss_upri = reqfssupri;
1682 fssproc->fss_nice = NZERO - (NZERO * reqfssupri) / fss_maxupri;
1683 if (fssproc->fss_nice > FSS_NICE_MAX)
1684 fssproc->fss_nice = FSS_NICE_MAX;
1685 }
1686
1687 fssproc->fss_timeleft = fss_quantum;
1688 fssproc->fss_tp = t;
1689 cpucaps_sc_init(&fssproc->fss_caps);
1690
1691 /*
1692 * Put a lock on our fsspset structure.
1693 */
1694 mutex_enter(&fsspsets_lock);
1695 fsspset = fss_find_fsspset(t->t_cpupart);
1696 mutex_enter(&fsspset->fssps_lock);
1697 mutex_exit(&fsspsets_lock);
1698
1699 zone = ttoproc(t)->p_zone;
1700 if ((fsszone = fss_find_fsszone(fsspset, zone)) == NULL) {
1701 if ((fsszone = kmem_zalloc(sizeof (fsszone_t), KM_NOSLEEP))
1702 == NULL) {
1703 mutex_exit(&fsspset->fssps_lock);
1704 return (ENOMEM);
1705 } else {
1706 fsszone_allocated = 1;
1707 fss_insert_fsszone(fsspset, zone, fsszone);
1708 }
1709 }
1710 kpj = ttoproj(t);
1711 if ((fssproj = fss_find_fssproj(fsspset, kpj)) == NULL) {
1712 if ((fssproj = kmem_zalloc(sizeof (fssproj_t), KM_NOSLEEP))
1713 == NULL) {
1714 if (fsszone_allocated) {
1715 fss_remove_fsszone(fsspset, fsszone);
1716 kmem_free(fsszone, sizeof (fsszone_t));
1717 }
1718 mutex_exit(&fsspset->fssps_lock);
1719 return (ENOMEM);
1720 } else {
1721 fss_insert_fssproj(fsspset, kpj, fsszone, fssproj);
1722 }
1723 }
1724 fssproj->fssp_threads++;
1725 fssproc->fss_proj = fssproj;
1726
1727 /*
1728 * Reset priority. Process goes to a "user mode" priority here
1729 * regardless of whether or not it has slept since entering the kernel.
1730 */
1731 thread_lock(t);
1732 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
1733 t->t_cid = cid;
1734 t->t_cldata = (void *)fssproc;
1735 t->t_schedflag |= TS_RUNQMATCH;
1736 fss_change_priority(t, fssproc);
1737 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
1738 t->t_state == TS_WAIT)
1739 fss_active(t);
1740 thread_unlock(t);
1741
1742 mutex_exit(&fsspset->fssps_lock);
1743
1744 /*
1745 * Link new structure into fssproc list.
1746 */
1747 FSS_LIST_INSERT(fssproc);
1748
1749 /*
1750 * If this is the first fair-sharing thread to occur since boot,
1751 * we set up the initial call to fss_update() here. Use an atomic
1752 * compare-and-swap since that's easier and faster than a mutex
1753 * (but check with an ordinary load first since most of the time
1754 * this will already be done).
1755 */
1756 if (fssexists == 0 && atomic_cas_32(&fssexists, 0, 1) == 0)
1757 (void) timeout(fss_update, NULL, hz);
1758
1759 return (0);
1760 }
1761
1762 /*
1763 * Remove fssproc_t from the list.
1764 */
1765 static void
fss_exitclass(void * procp)1766 fss_exitclass(void *procp)
1767 {
1768 fssproc_t *fssproc = (fssproc_t *)procp;
1769 fssproj_t *fssproj;
1770 fsspset_t *fsspset;
1771 fsszone_t *fsszone;
1772 kthread_t *t = fssproc->fss_tp;
1773
1774 /*
1775 * We should be either getting this thread off the deathrow or
1776 * this thread has already moved to another scheduling class and
1777 * we're being called with its old cldata buffer pointer. In both
1778 * cases, the content of this buffer can not be changed while we're
1779 * here.
1780 */
1781 mutex_enter(&fsspsets_lock);
1782 thread_lock(t);
1783 if (t->t_cid != fss_cid) {
1784 /*
1785 * We're being called as a result of the priocntl() system
1786 * call -- someone is trying to move our thread to another
1787 * scheduling class. We can't call fss_inactive() here
1788 * because our thread's t_cldata pointer already points
1789 * to another scheduling class specific data.
1790 */
1791 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1792
1793 fssproj = FSSPROC2FSSPROJ(fssproc);
1794 fsspset = FSSPROJ2FSSPSET(fssproj);
1795 fsszone = fssproj->fssp_fsszone;
1796
1797 if (fssproc->fss_runnable) {
1798 disp_lock_enter_high(&fsspset->fssps_displock);
1799 if (--fssproj->fssp_runnable == 0) {
1800 fsszone->fssz_shares -= fssproj->fssp_shares;
1801 if (--fsszone->fssz_runnable == 0)
1802 fsspset->fssps_shares -=
1803 fsszone->fssz_rshares;
1804 }
1805 disp_lock_exit_high(&fsspset->fssps_displock);
1806 }
1807 thread_unlock(t);
1808
1809 mutex_enter(&fsspset->fssps_lock);
1810 if (--fssproj->fssp_threads == 0) {
1811 fss_remove_fssproj(fsspset, fssproj);
1812 if (fsszone->fssz_nproj == 0)
1813 kmem_free(fsszone, sizeof (fsszone_t));
1814 kmem_free(fssproj, sizeof (fssproj_t));
1815 }
1816 mutex_exit(&fsspset->fssps_lock);
1817
1818 } else {
1819 ASSERT(t->t_state == TS_FREE);
1820 /*
1821 * We're being called from thread_free() when our thread
1822 * is removed from the deathrow. There is nothing we need
1823 * do here since everything should've been done earlier
1824 * in fss_exit().
1825 */
1826 thread_unlock(t);
1827 }
1828 mutex_exit(&fsspsets_lock);
1829
1830 FSS_LIST_DELETE(fssproc);
1831 fss_free(fssproc);
1832 }
1833
1834 /*ARGSUSED*/
1835 static int
fss_canexit(kthread_t * t,cred_t * credp)1836 fss_canexit(kthread_t *t, cred_t *credp)
1837 {
1838 /*
1839 * A thread is allowed to exit FSS only if we have sufficient
1840 * privileges.
1841 */
1842 if (credp != NULL && secpolicy_setpriority(credp) != 0)
1843 return (EPERM);
1844 else
1845 return (0);
1846 }
1847
1848 /*
1849 * Initialize fair-share class specific proc structure for a child.
1850 */
1851 static int
fss_fork(kthread_t * pt,kthread_t * ct,void * bufp)1852 fss_fork(kthread_t *pt, kthread_t *ct, void *bufp)
1853 {
1854 fssproc_t *pfssproc; /* ptr to parent's fssproc structure */
1855 fssproc_t *cfssproc; /* ptr to child's fssproc structure */
1856 fssproj_t *fssproj;
1857 fsspset_t *fsspset;
1858
1859 ASSERT(MUTEX_HELD(&ttoproc(pt)->p_lock));
1860 ASSERT(ct->t_state == TS_STOPPED);
1861
1862 cfssproc = (fssproc_t *)bufp;
1863 ASSERT(cfssproc != NULL);
1864 bzero(cfssproc, sizeof (fssproc_t));
1865
1866 thread_lock(pt);
1867 pfssproc = FSSPROC(pt);
1868 fssproj = FSSPROC2FSSPROJ(pfssproc);
1869 fsspset = FSSPROJ2FSSPSET(fssproj);
1870 thread_unlock(pt);
1871
1872 mutex_enter(&fsspset->fssps_lock);
1873 /*
1874 * Initialize child's fssproc structure.
1875 */
1876 thread_lock(pt);
1877 ASSERT(FSSPROJ(pt) == fssproj);
1878 cfssproc->fss_proj = fssproj;
1879 cfssproc->fss_timeleft = fss_quantum;
1880 cfssproc->fss_umdpri = pfssproc->fss_umdpri;
1881 cfssproc->fss_fsspri = 0;
1882 cfssproc->fss_uprilim = pfssproc->fss_uprilim;
1883 cfssproc->fss_upri = pfssproc->fss_upri;
1884 cfssproc->fss_tp = ct;
1885 cfssproc->fss_nice = pfssproc->fss_nice;
1886 cpucaps_sc_init(&cfssproc->fss_caps);
1887
1888 cfssproc->fss_flags =
1889 pfssproc->fss_flags & ~(FSSBACKQ | FSSRESTORE);
1890 ct->t_cldata = (void *)cfssproc;
1891 ct->t_schedflag |= TS_RUNQMATCH;
1892 thread_unlock(pt);
1893
1894 fssproj->fssp_threads++;
1895 mutex_exit(&fsspset->fssps_lock);
1896
1897 /*
1898 * Link new structure into fssproc hash table.
1899 */
1900 FSS_LIST_INSERT(cfssproc);
1901 return (0);
1902 }
1903
1904 /*
1905 * Child is placed at back of dispatcher queue and parent gives up processor
1906 * so that the child runs first after the fork. This allows the child
1907 * immediately execing to break the multiple use of copy on write pages with no
1908 * disk home. The parent will get to steal them back rather than uselessly
1909 * copying them.
1910 */
1911 static void
fss_forkret(kthread_t * t,kthread_t * ct)1912 fss_forkret(kthread_t *t, kthread_t *ct)
1913 {
1914 proc_t *pp = ttoproc(t);
1915 proc_t *cp = ttoproc(ct);
1916 fssproc_t *fssproc;
1917
1918 ASSERT(t == curthread);
1919 ASSERT(MUTEX_HELD(&pidlock));
1920
1921 /*
1922 * Grab the child's p_lock before dropping pidlock to ensure the
1923 * process does not disappear before we set it running.
1924 */
1925 mutex_enter(&cp->p_lock);
1926 continuelwps(cp);
1927 mutex_exit(&cp->p_lock);
1928
1929 mutex_enter(&pp->p_lock);
1930 mutex_exit(&pidlock);
1931 continuelwps(pp);
1932
1933 thread_lock(t);
1934
1935 fssproc = FSSPROC(t);
1936 fss_newpri(fssproc, B_FALSE);
1937 fssproc->fss_timeleft = fss_quantum;
1938 t->t_pri = fssproc->fss_umdpri;
1939 ASSERT(t->t_pri >= 0 && t->t_pri <= fss_maxglobpri);
1940 THREAD_TRANSITION(t);
1941
1942 /*
1943 * We don't want to call fss_setrun(t) here because it may call
1944 * fss_active, which we don't need.
1945 */
1946 fssproc->fss_flags &= ~FSSBACKQ;
1947
1948 if (t->t_disp_time != ddi_get_lbolt())
1949 setbackdq(t);
1950 else
1951 setfrontdq(t);
1952
1953 thread_unlock(t);
1954 /*
1955 * Safe to drop p_lock now since it is safe to change
1956 * the scheduling class after this point.
1957 */
1958 mutex_exit(&pp->p_lock);
1959
1960 swtch();
1961 }
1962
1963 /*
1964 * Get the fair-sharing parameters of the thread pointed to by fssprocp into
1965 * the buffer pointed by fssparmsp.
1966 */
1967 static void
fss_parmsget(kthread_t * t,void * parmsp)1968 fss_parmsget(kthread_t *t, void *parmsp)
1969 {
1970 fssproc_t *fssproc = FSSPROC(t);
1971 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1972
1973 fssparmsp->fss_uprilim = fssproc->fss_uprilim;
1974 fssparmsp->fss_upri = fssproc->fss_upri;
1975 }
1976
1977 /*ARGSUSED*/
1978 static int
fss_parmsset(kthread_t * t,void * parmsp,id_t reqpcid,cred_t * reqpcredp)1979 fss_parmsset(kthread_t *t, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1980 {
1981 char nice;
1982 pri_t reqfssuprilim;
1983 pri_t reqfssupri;
1984 fssproc_t *fssproc = FSSPROC(t);
1985 fssparms_t *fssparmsp = (fssparms_t *)parmsp;
1986
1987 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1988
1989 if (fssparmsp->fss_uprilim == FSS_NOCHANGE)
1990 reqfssuprilim = fssproc->fss_uprilim;
1991 else
1992 reqfssuprilim = fssparmsp->fss_uprilim;
1993
1994 if (fssparmsp->fss_upri == FSS_NOCHANGE)
1995 reqfssupri = fssproc->fss_upri;
1996 else
1997 reqfssupri = fssparmsp->fss_upri;
1998
1999 /*
2000 * Make sure the user priority doesn't exceed the upri limit.
2001 */
2002 if (reqfssupri > reqfssuprilim)
2003 reqfssupri = reqfssuprilim;
2004
2005 /*
2006 * Basic permissions enforced by generic kernel code for all classes
2007 * require that a thread attempting to change the scheduling parameters
2008 * of a target thread be privileged or have a real or effective UID
2009 * matching that of the target thread. We are not called unless these
2010 * basic permission checks have already passed. The fair-sharing class
2011 * requires in addition that the calling thread be privileged if it
2012 * is attempting to raise the upri limit above its current value.
2013 * This may have been checked previously but if our caller passed us
2014 * a non-NULL credential pointer we assume it hasn't and we check it
2015 * here.
2016 */
2017 if ((reqpcredp != NULL) &&
2018 (reqfssuprilim > fssproc->fss_uprilim) &&
2019 secpolicy_raisepriority(reqpcredp) != 0)
2020 return (EPERM);
2021
2022 /*
2023 * Set fss_nice to the nice value corresponding to the user priority we
2024 * are setting. Note that setting the nice field of the parameter
2025 * struct won't affect upri or nice.
2026 */
2027 nice = NZERO - (reqfssupri * NZERO) / fss_maxupri;
2028 if (nice > FSS_NICE_MAX)
2029 nice = FSS_NICE_MAX;
2030
2031 thread_lock(t);
2032
2033 fssproc->fss_uprilim = reqfssuprilim;
2034 fssproc->fss_upri = reqfssupri;
2035 fssproc->fss_nice = nice;
2036 fss_newpri(fssproc, B_FALSE);
2037
2038 fss_change_priority(t, fssproc);
2039 thread_unlock(t);
2040 return (0);
2041
2042 }
2043
2044 /*
2045 * The thread is being stopped.
2046 */
2047 /*ARGSUSED*/
2048 static void
fss_stop(kthread_t * t,int why,int what)2049 fss_stop(kthread_t *t, int why, int what)
2050 {
2051 ASSERT(THREAD_LOCK_HELD(t));
2052 ASSERT(t == curthread);
2053
2054 fss_inactive(t);
2055 }
2056
2057 /*
2058 * The current thread is exiting, do necessary adjustments to its project
2059 */
2060 static void
fss_exit(kthread_t * t)2061 fss_exit(kthread_t *t)
2062 {
2063 fsspset_t *fsspset;
2064 fssproj_t *fssproj;
2065 fssproc_t *fssproc;
2066 fsszone_t *fsszone;
2067 int free = 0;
2068
2069 /*
2070 * Thread t here is either a current thread (in which case we hold
2071 * its process' p_lock), or a thread being destroyed by forklwp_fail(),
2072 * in which case we hold pidlock and thread is no longer on the
2073 * thread list.
2074 */
2075 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock) || MUTEX_HELD(&pidlock));
2076
2077 fssproc = FSSPROC(t);
2078 fssproj = FSSPROC2FSSPROJ(fssproc);
2079 fsspset = FSSPROJ2FSSPSET(fssproj);
2080 fsszone = fssproj->fssp_fsszone;
2081
2082 mutex_enter(&fsspsets_lock);
2083 mutex_enter(&fsspset->fssps_lock);
2084
2085 thread_lock(t);
2086 disp_lock_enter_high(&fsspset->fssps_displock);
2087 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) {
2088 if (--fssproj->fssp_runnable == 0) {
2089 fsszone->fssz_shares -= fssproj->fssp_shares;
2090 if (--fsszone->fssz_runnable == 0)
2091 fsspset->fssps_shares -= fsszone->fssz_rshares;
2092 }
2093 ASSERT(fssproc->fss_runnable == 1);
2094 fssproc->fss_runnable = 0;
2095 }
2096 if (--fssproj->fssp_threads == 0) {
2097 fss_remove_fssproj(fsspset, fssproj);
2098 free = 1;
2099 }
2100 disp_lock_exit_high(&fsspset->fssps_displock);
2101 fssproc->fss_proj = NULL; /* mark this thread as already exited */
2102 thread_unlock(t);
2103
2104 if (free) {
2105 if (fsszone->fssz_nproj == 0)
2106 kmem_free(fsszone, sizeof (fsszone_t));
2107 kmem_free(fssproj, sizeof (fssproj_t));
2108 }
2109 mutex_exit(&fsspset->fssps_lock);
2110 mutex_exit(&fsspsets_lock);
2111
2112 /*
2113 * A thread could be exiting in between clock ticks, so we need to
2114 * calculate how much CPU time it used since it was charged last time.
2115 *
2116 * CPU caps are not enforced on exiting processes - it is usually
2117 * desirable to exit as soon as possible to free resources.
2118 */
2119 if (CPUCAPS_ON()) {
2120 thread_lock(t);
2121 fssproc = FSSPROC(t);
2122 (void) cpucaps_charge(t, &fssproc->fss_caps,
2123 CPUCAPS_CHARGE_ONLY);
2124 thread_unlock(t);
2125 }
2126 }
2127
2128 static void
fss_nullsys()2129 fss_nullsys()
2130 {
2131 }
2132
2133 /*
2134 * fss_swapin() returns -1 if the thread is loaded or is not eligible to be
2135 * swapped in. Otherwise, it returns the thread's effective priority based
2136 * on swapout time and size of process (0 <= epri <= 0 SHRT_MAX).
2137 */
2138 /*ARGSUSED*/
2139 static pri_t
fss_swapin(kthread_t * t,int flags)2140 fss_swapin(kthread_t *t, int flags)
2141 {
2142 fssproc_t *fssproc = FSSPROC(t);
2143 long epri = -1;
2144 proc_t *pp = ttoproc(t);
2145
2146 ASSERT(THREAD_LOCK_HELD(t));
2147
2148 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
2149 time_t swapout_time;
2150
2151 swapout_time = (ddi_get_lbolt() - t->t_stime) / hz;
2152 if (INHERITED(t)) {
2153 epri = (long)DISP_PRIO(t) + swapout_time;
2154 } else {
2155 /*
2156 * Threads which have been out for a long time,
2157 * have high user mode priority and are associated
2158 * with a small address space are more deserving.
2159 */
2160 epri = fssproc->fss_umdpri;
2161 ASSERT(epri >= 0 && epri <= fss_maxumdpri);
2162 epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
2163 }
2164 /*
2165 * Scale epri so that SHRT_MAX / 2 represents zero priority.
2166 */
2167 epri += SHRT_MAX / 2;
2168 if (epri < 0)
2169 epri = 0;
2170 else if (epri > SHRT_MAX)
2171 epri = SHRT_MAX;
2172 }
2173 return ((pri_t)epri);
2174 }
2175
2176 /*
2177 * fss_swapout() returns -1 if the thread isn't loaded or is not eligible to
2178 * be swapped out. Otherwise, it returns the thread's effective priority
2179 * based on if the swapper is in softswap or hardswap mode.
2180 */
2181 static pri_t
fss_swapout(kthread_t * t,int flags)2182 fss_swapout(kthread_t *t, int flags)
2183 {
2184 long epri = -1;
2185 proc_t *pp = ttoproc(t);
2186 time_t swapin_time;
2187
2188 ASSERT(THREAD_LOCK_HELD(t));
2189
2190 if (INHERITED(t) ||
2191 (t->t_proc_flag & TP_LWPEXIT) ||
2192 (t->t_state & (TS_ZOMB|TS_FREE|TS_STOPPED|TS_ONPROC|TS_WAIT)) ||
2193 !(t->t_schedflag & TS_LOAD) ||
2194 !(SWAP_OK(t)))
2195 return (-1);
2196
2197 ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
2198
2199 swapin_time = (ddi_get_lbolt() - t->t_stime) / hz;
2200
2201 if (flags == SOFTSWAP) {
2202 if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
2203 epri = 0;
2204 } else {
2205 return ((pri_t)epri);
2206 }
2207 } else {
2208 pri_t pri;
2209
2210 if ((t->t_state == TS_SLEEP && swapin_time > fss_minslp) ||
2211 (t->t_state == TS_RUN && swapin_time > fss_minrun)) {
2212 pri = fss_maxumdpri;
2213 epri = swapin_time -
2214 (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
2215 } else {
2216 return ((pri_t)epri);
2217 }
2218 }
2219
2220 /*
2221 * Scale epri so that SHRT_MAX / 2 represents zero priority.
2222 */
2223 epri += SHRT_MAX / 2;
2224 if (epri < 0)
2225 epri = 0;
2226 else if (epri > SHRT_MAX)
2227 epri = SHRT_MAX;
2228
2229 return ((pri_t)epri);
2230 }
2231
2232 /*
2233 * Run swap-out checks when returning to userspace.
2234 */
2235 static void
fss_trapret(kthread_t * t)2236 fss_trapret(kthread_t *t)
2237 {
2238 cpu_t *cp = CPU;
2239
2240 ASSERT(THREAD_LOCK_HELD(t));
2241 ASSERT(t == curthread);
2242 ASSERT(cp->cpu_dispthread == t);
2243 ASSERT(t->t_state == TS_ONPROC);
2244
2245 /*
2246 * Swapout lwp if the swapper is waiting for this thread to reach
2247 * a safe point.
2248 */
2249 if (t->t_schedflag & TS_SWAPENQ) {
2250 thread_unlock(t);
2251 swapout_lwp(ttolwp(t));
2252 thread_lock(t);
2253 }
2254 }
2255
2256 /*
2257 * Arrange for thread to be placed in appropriate location on dispatcher queue.
2258 * This is called with the current thread in TS_ONPROC and locked.
2259 */
2260 static void
fss_preempt(kthread_t * t)2261 fss_preempt(kthread_t *t)
2262 {
2263 fssproc_t *fssproc = FSSPROC(t);
2264 klwp_t *lwp;
2265 uint_t flags;
2266
2267 ASSERT(t == curthread);
2268 ASSERT(THREAD_LOCK_HELD(curthread));
2269 ASSERT(t->t_state == TS_ONPROC);
2270
2271 /*
2272 * This thread may be placed on wait queue by CPU Caps. In this case we
2273 * do not need to do anything until it is removed from the wait queue.
2274 * Do not enforce CPU caps on threads running at a kernel priority
2275 */
2276 if (CPUCAPS_ON()) {
2277 (void) cpucaps_charge(t, &fssproc->fss_caps,
2278 CPUCAPS_CHARGE_ENFORCE);
2279
2280 if (CPUCAPS_ENFORCE(t))
2281 return;
2282 }
2283
2284 /*
2285 * If preempted in user-land mark the thread as swappable because it
2286 * cannot be holding any kernel locks.
2287 */
2288 ASSERT(t->t_schedflag & TS_DONT_SWAP);
2289 lwp = ttolwp(t);
2290 if (lwp != NULL && lwp->lwp_state == LWP_USER)
2291 t->t_schedflag &= ~TS_DONT_SWAP;
2292
2293 /*
2294 * Check to see if we're doing "preemption control" here. If
2295 * we are, and if the user has requested that this thread not
2296 * be preempted, and if preemptions haven't been put off for
2297 * too long, let the preemption happen here but try to make
2298 * sure the thread is rescheduled as soon as possible. We do
2299 * this by putting it on the front of the highest priority run
2300 * queue in the FSS class. If the preemption has been put off
2301 * for too long, clear the "nopreempt" bit and let the thread
2302 * be preempted.
2303 */
2304 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
2305 if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
2306 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
2307 /*
2308 * If not already remembered, remember current
2309 * priority for restoration in fss_yield().
2310 */
2311 if (!(fssproc->fss_flags & FSSRESTORE)) {
2312 fssproc->fss_scpri = t->t_pri;
2313 fssproc->fss_flags |= FSSRESTORE;
2314 }
2315 THREAD_CHANGE_PRI(t, fss_maxumdpri);
2316 t->t_schedflag |= TS_DONT_SWAP;
2317 schedctl_set_yield(t, 1);
2318 setfrontdq(t);
2319 return;
2320 } else {
2321 if (fssproc->fss_flags & FSSRESTORE) {
2322 THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
2323 fssproc->fss_flags &= ~FSSRESTORE;
2324 }
2325 schedctl_set_nopreempt(t, 0);
2326 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
2327 /*
2328 * Fall through and be preempted below.
2329 */
2330 }
2331 }
2332
2333 flags = fssproc->fss_flags & FSSBACKQ;
2334
2335 if (flags == FSSBACKQ) {
2336 fssproc->fss_timeleft = fss_quantum;
2337 fssproc->fss_flags &= ~FSSBACKQ;
2338 setbackdq(t);
2339 } else {
2340 setfrontdq(t);
2341 }
2342 }
2343
2344 /*
2345 * Called when a thread is waking up and is to be placed on the run queue.
2346 */
2347 static void
fss_setrun(kthread_t * t)2348 fss_setrun(kthread_t *t)
2349 {
2350 fssproc_t *fssproc = FSSPROC(t);
2351
2352 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
2353
2354 if (t->t_state == TS_SLEEP || t->t_state == TS_STOPPED)
2355 fss_active(t);
2356
2357 fssproc->fss_timeleft = fss_quantum;
2358
2359 fssproc->fss_flags &= ~FSSBACKQ;
2360 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2361
2362 if (t->t_disp_time != ddi_get_lbolt())
2363 setbackdq(t);
2364 else
2365 setfrontdq(t);
2366 }
2367
2368 /*
2369 * Prepare thread for sleep.
2370 */
2371 static void
fss_sleep(kthread_t * t)2372 fss_sleep(kthread_t *t)
2373 {
2374 fssproc_t *fssproc = FSSPROC(t);
2375
2376 ASSERT(t == curthread);
2377 ASSERT(THREAD_LOCK_HELD(t));
2378
2379 ASSERT(t->t_state == TS_ONPROC);
2380
2381 /*
2382 * Account for time spent on CPU before going to sleep.
2383 */
2384 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2385
2386 fss_inactive(t);
2387 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
2388 }
2389
2390 /*
2391 * A tick interrupt has ocurrend on a running thread. Check to see if our
2392 * time slice has expired. We must also clear the TS_DONT_SWAP flag in
2393 * t_schedflag if the thread is eligible to be swapped out.
2394 */
2395 static void
fss_tick(kthread_t * t)2396 fss_tick(kthread_t *t)
2397 {
2398 fssproc_t *fssproc;
2399 fssproj_t *fssproj;
2400 klwp_t *lwp;
2401 boolean_t call_cpu_surrender = B_FALSE;
2402 boolean_t cpucaps_enforce = B_FALSE;
2403
2404 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2405
2406 /*
2407 * It's safe to access fsspset and fssproj structures because we're
2408 * holding our p_lock here.
2409 */
2410 thread_lock(t);
2411 fssproc = FSSPROC(t);
2412 fssproj = FSSPROC2FSSPROJ(fssproc);
2413 if (fssproj != NULL) {
2414 fsspset_t *fsspset = FSSPROJ2FSSPSET(fssproj);
2415 disp_lock_enter_high(&fsspset->fssps_displock);
2416 fssproj->fssp_ticks += fss_nice_tick[fssproc->fss_nice];
2417 fssproj->fssp_tick_cnt++;
2418 fssproc->fss_ticks++;
2419 disp_lock_exit_high(&fsspset->fssps_displock);
2420 }
2421
2422 /*
2423 * Keep track of thread's project CPU usage. Note that projects
2424 * get charged even when threads are running in the kernel.
2425 * Do not surrender CPU if running in the SYS class.
2426 */
2427 if (CPUCAPS_ON()) {
2428 cpucaps_enforce = cpucaps_charge(t, &fssproc->fss_caps,
2429 CPUCAPS_CHARGE_ENFORCE);
2430 }
2431
2432 if (--fssproc->fss_timeleft <= 0) {
2433 pri_t new_pri;
2434
2435 /*
2436 * If we're doing preemption control and trying to avoid
2437 * preempting this thread, just note that the thread should
2438 * yield soon and let it keep running (unless it's been a
2439 * while).
2440 */
2441 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
2442 if (fssproc->fss_timeleft > -SC_MAX_TICKS) {
2443 DTRACE_SCHED1(schedctl__nopreempt,
2444 kthread_t *, t);
2445 schedctl_set_yield(t, 1);
2446 thread_unlock_nopreempt(t);
2447 return;
2448 }
2449 }
2450 fssproc->fss_flags &= ~FSSRESTORE;
2451
2452 fss_newpri(fssproc, B_TRUE);
2453 new_pri = fssproc->fss_umdpri;
2454 ASSERT(new_pri >= 0 && new_pri <= fss_maxglobpri);
2455
2456 /*
2457 * When the priority of a thread is changed, it may be
2458 * necessary to adjust its position on a sleep queue or
2459 * dispatch queue. The function thread_change_pri accomplishes
2460 * this.
2461 */
2462 if (thread_change_pri(t, new_pri, 0)) {
2463 if ((t->t_schedflag & TS_LOAD) &&
2464 (lwp = t->t_lwp) &&
2465 lwp->lwp_state == LWP_USER)
2466 t->t_schedflag &= ~TS_DONT_SWAP;
2467 fssproc->fss_timeleft = fss_quantum;
2468 } else {
2469 call_cpu_surrender = B_TRUE;
2470 }
2471 } else if (t->t_state == TS_ONPROC &&
2472 t->t_pri < t->t_disp_queue->disp_maxrunpri) {
2473 /*
2474 * If there is a higher-priority thread which is waiting for a
2475 * processor, then thread surrenders the processor.
2476 */
2477 call_cpu_surrender = B_TRUE;
2478 }
2479
2480 if (cpucaps_enforce && 2 * fssproc->fss_timeleft > fss_quantum) {
2481 /*
2482 * The thread used more than half of its quantum, so assume that
2483 * it used the whole quantum.
2484 *
2485 * Update thread's priority just before putting it on the wait
2486 * queue so that it gets charged for the CPU time from its
2487 * quantum even before that quantum expires.
2488 */
2489 fss_newpri(fssproc, B_FALSE);
2490 if (t->t_pri != fssproc->fss_umdpri)
2491 fss_change_priority(t, fssproc);
2492
2493 /*
2494 * We need to call cpu_surrender for this thread due to cpucaps
2495 * enforcement, but fss_change_priority may have already done
2496 * so. In this case FSSBACKQ is set and there is no need to call
2497 * cpu-surrender again.
2498 */
2499 if (!(fssproc->fss_flags & FSSBACKQ))
2500 call_cpu_surrender = B_TRUE;
2501 }
2502
2503 if (call_cpu_surrender) {
2504 fssproc->fss_flags |= FSSBACKQ;
2505 cpu_surrender(t);
2506 }
2507
2508 thread_unlock_nopreempt(t); /* clock thread can't be preempted */
2509 }
2510
2511 /*
2512 * Processes waking up go to the back of their queue. We don't need to assign
2513 * a time quantum here because thread is still at a kernel mode priority and
2514 * the time slicing is not done for threads running in the kernel after
2515 * sleeping. The proper time quantum will be assigned by fss_trapret before the
2516 * thread returns to user mode.
2517 */
2518 static void
fss_wakeup(kthread_t * t)2519 fss_wakeup(kthread_t *t)
2520 {
2521 fssproc_t *fssproc;
2522
2523 ASSERT(THREAD_LOCK_HELD(t));
2524 ASSERT(t->t_state == TS_SLEEP);
2525
2526 fss_active(t);
2527
2528 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
2529 fssproc = FSSPROC(t);
2530 fssproc->fss_flags &= ~FSSBACKQ;
2531
2532 /* Recalculate the priority. */
2533 if (t->t_disp_time == ddi_get_lbolt()) {
2534 setfrontdq(t);
2535 } else {
2536 fssproc->fss_timeleft = fss_quantum;
2537 THREAD_CHANGE_PRI(t, fssproc->fss_umdpri);
2538 setbackdq(t);
2539 }
2540 }
2541
2542 /*
2543 * fss_donice() is called when a nice(1) command is issued on the thread to
2544 * alter the priority. The nice(1) command exists in Solaris for compatibility.
2545 * Thread priority adjustments should be done via priocntl(1).
2546 */
2547 static int
fss_donice(kthread_t * t,cred_t * cr,int incr,int * retvalp)2548 fss_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2549 {
2550 int newnice;
2551 fssproc_t *fssproc = FSSPROC(t);
2552 fssparms_t fssparms;
2553
2554 /*
2555 * If there is no change to priority, just return current setting.
2556 */
2557 if (incr == 0) {
2558 if (retvalp)
2559 *retvalp = fssproc->fss_nice - NZERO;
2560 return (0);
2561 }
2562
2563 if ((incr < 0 || incr > 2 * NZERO) && secpolicy_raisepriority(cr) != 0)
2564 return (EPERM);
2565
2566 /*
2567 * Specifying a nice increment greater than the upper limit of
2568 * FSS_NICE_MAX (== 2 * NZERO - 1) will result in the thread's nice
2569 * value being set to the upper limit. We check for this before
2570 * computing the new value because otherwise we could get overflow
2571 * if a privileged user specified some ridiculous increment.
2572 */
2573 if (incr > FSS_NICE_MAX)
2574 incr = FSS_NICE_MAX;
2575
2576 newnice = fssproc->fss_nice + incr;
2577 if (newnice > FSS_NICE_MAX)
2578 newnice = FSS_NICE_MAX;
2579 else if (newnice < FSS_NICE_MIN)
2580 newnice = FSS_NICE_MIN;
2581
2582 fssparms.fss_uprilim = fssparms.fss_upri =
2583 -((newnice - NZERO) * fss_maxupri) / NZERO;
2584
2585 /*
2586 * Reset the uprilim and upri values of the thread.
2587 */
2588 (void) fss_parmsset(t, (void *)&fssparms, (id_t)0, (cred_t *)NULL);
2589
2590 /*
2591 * Although fss_parmsset already reset fss_nice it may not have been
2592 * set to precisely the value calculated above because fss_parmsset
2593 * determines the nice value from the user priority and we may have
2594 * truncated during the integer conversion from nice value to user
2595 * priority and back. We reset fss_nice to the value we calculated
2596 * above.
2597 */
2598 fssproc->fss_nice = (char)newnice;
2599
2600 if (retvalp)
2601 *retvalp = newnice - NZERO;
2602 return (0);
2603 }
2604
2605 /*
2606 * Increment the priority of the specified thread by incr and
2607 * return the new value in *retvalp.
2608 */
2609 static int
fss_doprio(kthread_t * t,cred_t * cr,int incr,int * retvalp)2610 fss_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2611 {
2612 int newpri;
2613 fssproc_t *fssproc = FSSPROC(t);
2614 fssparms_t fssparms;
2615
2616 /*
2617 * If there is no change to priority, just return current setting.
2618 */
2619 if (incr == 0) {
2620 *retvalp = fssproc->fss_upri;
2621 return (0);
2622 }
2623
2624 newpri = fssproc->fss_upri + incr;
2625 if (newpri > fss_maxupri || newpri < -fss_maxupri)
2626 return (EINVAL);
2627
2628 *retvalp = newpri;
2629 fssparms.fss_uprilim = fssparms.fss_upri = newpri;
2630
2631 /*
2632 * Reset the uprilim and upri values of the thread.
2633 */
2634 return (fss_parmsset(t, &fssparms, (id_t)0, cr));
2635 }
2636
2637 /*
2638 * Return the global scheduling priority that would be assigned to a thread
2639 * entering the fair-sharing class with the fss_upri.
2640 */
2641 /*ARGSUSED*/
2642 static pri_t
fss_globpri(kthread_t * t)2643 fss_globpri(kthread_t *t)
2644 {
2645 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2646
2647 return (fss_maxumdpri / 2);
2648 }
2649
2650 /*
2651 * Called from the yield(2) system call when a thread is yielding (surrendering)
2652 * the processor. The kernel thread is placed at the back of a dispatch queue.
2653 */
2654 static void
fss_yield(kthread_t * t)2655 fss_yield(kthread_t *t)
2656 {
2657 fssproc_t *fssproc = FSSPROC(t);
2658
2659 ASSERT(t == curthread);
2660 ASSERT(THREAD_LOCK_HELD(t));
2661
2662 /*
2663 * Collect CPU usage spent before yielding
2664 */
2665 (void) CPUCAPS_CHARGE(t, &fssproc->fss_caps, CPUCAPS_CHARGE_ENFORCE);
2666
2667 /*
2668 * Clear the preemption control "yield" bit since the user is
2669 * doing a yield.
2670 */
2671 if (t->t_schedctl)
2672 schedctl_set_yield(t, 0);
2673 /*
2674 * If fss_preempt() artifically increased the thread's priority
2675 * to avoid preemption, restore the original priority now.
2676 */
2677 if (fssproc->fss_flags & FSSRESTORE) {
2678 THREAD_CHANGE_PRI(t, fssproc->fss_scpri);
2679 fssproc->fss_flags &= ~FSSRESTORE;
2680 }
2681 if (fssproc->fss_timeleft < 0) {
2682 /*
2683 * Time slice was artificially extended to avoid preemption,
2684 * so pretend we're preempting it now.
2685 */
2686 DTRACE_SCHED1(schedctl__yield, int, -fssproc->fss_timeleft);
2687 fssproc->fss_timeleft = fss_quantum;
2688 }
2689 fssproc->fss_flags &= ~FSSBACKQ;
2690 setbackdq(t);
2691 }
2692
2693 void
fss_changeproj(kthread_t * t,void * kp,void * zp,fssbuf_t * projbuf,fssbuf_t * zonebuf)2694 fss_changeproj(kthread_t *t, void *kp, void *zp, fssbuf_t *projbuf,
2695 fssbuf_t *zonebuf)
2696 {
2697 kproject_t *kpj_new = kp;
2698 zone_t *zone = zp;
2699 fssproj_t *fssproj_old, *fssproj_new;
2700 fsspset_t *fsspset;
2701 kproject_t *kpj_old;
2702 fssproc_t *fssproc;
2703 fsszone_t *fsszone_old, *fsszone_new;
2704 int free = 0;
2705 int id;
2706
2707 ASSERT(MUTEX_HELD(&cpu_lock));
2708 ASSERT(MUTEX_HELD(&pidlock));
2709 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2710
2711 if (t->t_cid != fss_cid)
2712 return;
2713
2714 fssproc = FSSPROC(t);
2715 mutex_enter(&fsspsets_lock);
2716 fssproj_old = FSSPROC2FSSPROJ(fssproc);
2717 if (fssproj_old == NULL) {
2718 mutex_exit(&fsspsets_lock);
2719 return;
2720 }
2721
2722 fsspset = FSSPROJ2FSSPSET(fssproj_old);
2723 mutex_enter(&fsspset->fssps_lock);
2724 kpj_old = FSSPROJ2KPROJ(fssproj_old);
2725 fsszone_old = fssproj_old->fssp_fsszone;
2726
2727 ASSERT(t->t_cpupart == fsspset->fssps_cpupart);
2728
2729 if (kpj_old == kpj_new) {
2730 mutex_exit(&fsspset->fssps_lock);
2731 mutex_exit(&fsspsets_lock);
2732 return;
2733 }
2734
2735 if ((fsszone_new = fss_find_fsszone(fsspset, zone)) == NULL) {
2736 /*
2737 * If the zone for the new project is not currently active on
2738 * the cpu partition we're on, get one of the pre-allocated
2739 * buffers and link it in our per-pset zone list. Such buffers
2740 * should already exist.
2741 */
2742 for (id = 0; id < zonebuf->fssb_size; id++) {
2743 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2744 fss_insert_fsszone(fsspset, zone, fsszone_new);
2745 zonebuf->fssb_list[id] = NULL;
2746 break;
2747 }
2748 }
2749 }
2750 ASSERT(fsszone_new != NULL);
2751 if ((fssproj_new = fss_find_fssproj(fsspset, kpj_new)) == NULL) {
2752 /*
2753 * If our new project is not currently running
2754 * on the cpu partition we're on, get one of the
2755 * pre-allocated buffers and link it in our new cpu
2756 * partition doubly linked list. Such buffers should already
2757 * exist.
2758 */
2759 for (id = 0; id < projbuf->fssb_size; id++) {
2760 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2761 fss_insert_fssproj(fsspset, kpj_new,
2762 fsszone_new, fssproj_new);
2763 projbuf->fssb_list[id] = NULL;
2764 break;
2765 }
2766 }
2767 }
2768 ASSERT(fssproj_new != NULL);
2769
2770 thread_lock(t);
2771 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2772 t->t_state == TS_WAIT)
2773 fss_inactive(t);
2774 ASSERT(fssproj_old->fssp_threads > 0);
2775 if (--fssproj_old->fssp_threads == 0) {
2776 fss_remove_fssproj(fsspset, fssproj_old);
2777 free = 1;
2778 }
2779 fssproc->fss_proj = fssproj_new;
2780 fssproc->fss_fsspri = 0;
2781 fssproj_new->fssp_threads++;
2782 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2783 t->t_state == TS_WAIT)
2784 fss_active(t);
2785 thread_unlock(t);
2786 if (free) {
2787 if (fsszone_old->fssz_nproj == 0)
2788 kmem_free(fsszone_old, sizeof (fsszone_t));
2789 kmem_free(fssproj_old, sizeof (fssproj_t));
2790 }
2791
2792 mutex_exit(&fsspset->fssps_lock);
2793 mutex_exit(&fsspsets_lock);
2794 }
2795
2796 void
fss_changepset(kthread_t * t,void * newcp,fssbuf_t * projbuf,fssbuf_t * zonebuf)2797 fss_changepset(kthread_t *t, void *newcp, fssbuf_t *projbuf,
2798 fssbuf_t *zonebuf)
2799 {
2800 fsspset_t *fsspset_old, *fsspset_new;
2801 fssproj_t *fssproj_old, *fssproj_new;
2802 fsszone_t *fsszone_old, *fsszone_new;
2803 fssproc_t *fssproc;
2804 kproject_t *kpj;
2805 zone_t *zone;
2806 int id;
2807
2808 ASSERT(MUTEX_HELD(&cpu_lock));
2809 ASSERT(MUTEX_HELD(&pidlock));
2810 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2811
2812 if (t->t_cid != fss_cid)
2813 return;
2814
2815 fssproc = FSSPROC(t);
2816 zone = ttoproc(t)->p_zone;
2817 mutex_enter(&fsspsets_lock);
2818 fssproj_old = FSSPROC2FSSPROJ(fssproc);
2819 if (fssproj_old == NULL) {
2820 mutex_exit(&fsspsets_lock);
2821 return;
2822 }
2823 fsszone_old = fssproj_old->fssp_fsszone;
2824 fsspset_old = FSSPROJ2FSSPSET(fssproj_old);
2825 kpj = FSSPROJ2KPROJ(fssproj_old);
2826
2827 if (fsspset_old->fssps_cpupart == newcp) {
2828 mutex_exit(&fsspsets_lock);
2829 return;
2830 }
2831
2832 ASSERT(ttoproj(t) == kpj);
2833
2834 fsspset_new = fss_find_fsspset(newcp);
2835
2836 mutex_enter(&fsspset_new->fssps_lock);
2837 if ((fsszone_new = fss_find_fsszone(fsspset_new, zone)) == NULL) {
2838 for (id = 0; id < zonebuf->fssb_size; id++) {
2839 if ((fsszone_new = zonebuf->fssb_list[id]) != NULL) {
2840 fss_insert_fsszone(fsspset_new, zone,
2841 fsszone_new);
2842 zonebuf->fssb_list[id] = NULL;
2843 break;
2844 }
2845 }
2846 }
2847 ASSERT(fsszone_new != NULL);
2848 if ((fssproj_new = fss_find_fssproj(fsspset_new, kpj)) == NULL) {
2849 for (id = 0; id < projbuf->fssb_size; id++) {
2850 if ((fssproj_new = projbuf->fssb_list[id]) != NULL) {
2851 fss_insert_fssproj(fsspset_new, kpj,
2852 fsszone_new, fssproj_new);
2853 projbuf->fssb_list[id] = NULL;
2854 break;
2855 }
2856 }
2857 }
2858 ASSERT(fssproj_new != NULL);
2859
2860 fssproj_new->fssp_threads++;
2861 thread_lock(t);
2862 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2863 t->t_state == TS_WAIT)
2864 fss_inactive(t);
2865 fssproc->fss_proj = fssproj_new;
2866 fssproc->fss_fsspri = 0;
2867 if (t->t_state == TS_RUN || t->t_state == TS_ONPROC ||
2868 t->t_state == TS_WAIT)
2869 fss_active(t);
2870 thread_unlock(t);
2871 mutex_exit(&fsspset_new->fssps_lock);
2872
2873 mutex_enter(&fsspset_old->fssps_lock);
2874 if (--fssproj_old->fssp_threads == 0) {
2875 fss_remove_fssproj(fsspset_old, fssproj_old);
2876 if (fsszone_old->fssz_nproj == 0)
2877 kmem_free(fsszone_old, sizeof (fsszone_t));
2878 kmem_free(fssproj_old, sizeof (fssproj_t));
2879 }
2880 mutex_exit(&fsspset_old->fssps_lock);
2881
2882 mutex_exit(&fsspsets_lock);
2883 }
2884