1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Freescale Management Complex (MC) bus driver
4 *
5 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
6 * Copyright 2019-2020 NXP
7 * Author: German Rivera <German.Rivera@freescale.com>
8 *
9 */
10
11 #define pr_fmt(fmt) "fsl-mc: " fmt
12
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/of_address.h>
16 #include <linux/ioport.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
19 #include <linux/limits.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/acpi.h>
23 #include <linux/iommu.h>
24 #include <linux/dma-map-ops.h>
25
26 #include "fsl-mc-private.h"
27
28 /*
29 * Default DMA mask for devices on a fsl-mc bus
30 */
31 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL)
32
33 static struct fsl_mc_version mc_version;
34
35 /**
36 * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device
37 * @root_mc_bus_dev: fsl-mc device representing the root DPRC
38 * @num_translation_ranges: number of entries in addr_translation_ranges
39 * @translation_ranges: array of bus to system address translation ranges
40 * @fsl_mc_regs: base address of register bank
41 */
42 struct fsl_mc {
43 struct fsl_mc_device *root_mc_bus_dev;
44 u8 num_translation_ranges;
45 struct fsl_mc_addr_translation_range *translation_ranges;
46 void __iomem *fsl_mc_regs;
47 };
48
49 /**
50 * struct fsl_mc_addr_translation_range - bus to system address translation
51 * range
52 * @mc_region_type: Type of MC region for the range being translated
53 * @start_mc_offset: Start MC offset of the range being translated
54 * @end_mc_offset: MC offset of the first byte after the range (last MC
55 * offset of the range is end_mc_offset - 1)
56 * @start_phys_addr: system physical address corresponding to start_mc_addr
57 */
58 struct fsl_mc_addr_translation_range {
59 enum dprc_region_type mc_region_type;
60 u64 start_mc_offset;
61 u64 end_mc_offset;
62 phys_addr_t start_phys_addr;
63 };
64
65 #define FSL_MC_GCR1 0x0
66 #define GCR1_P1_STOP BIT(31)
67 #define GCR1_P2_STOP BIT(30)
68
69 #define FSL_MC_FAPR 0x28
70 #define MC_FAPR_PL BIT(18)
71 #define MC_FAPR_BMT BIT(17)
72
73 static phys_addr_t mc_portal_base_phys_addr;
74
75 /**
76 * fsl_mc_bus_match - device to driver matching callback
77 * @dev: the fsl-mc device to match against
78 * @drv: the device driver to search for matching fsl-mc object type
79 * structures
80 *
81 * Returns 1 on success, 0 otherwise.
82 */
fsl_mc_bus_match(struct device * dev,const struct device_driver * drv)83 static int fsl_mc_bus_match(struct device *dev, const struct device_driver *drv)
84 {
85 const struct fsl_mc_device_id *id;
86 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
87 const struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv);
88 bool found = false;
89
90 /* When driver_override is set, only bind to the matching driver */
91 if (mc_dev->driver_override) {
92 found = !strcmp(mc_dev->driver_override, mc_drv->driver.name);
93 goto out;
94 }
95
96 if (!mc_drv->match_id_table)
97 goto out;
98
99 /*
100 * If the object is not 'plugged' don't match.
101 * Only exception is the root DPRC, which is a special case.
102 */
103 if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 &&
104 !fsl_mc_is_root_dprc(&mc_dev->dev))
105 goto out;
106
107 /*
108 * Traverse the match_id table of the given driver, trying to find
109 * a matching for the given device.
110 */
111 for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) {
112 if (id->vendor == mc_dev->obj_desc.vendor &&
113 strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) {
114 found = true;
115
116 break;
117 }
118 }
119
120 out:
121 dev_dbg(dev, "%smatched\n", found ? "" : "not ");
122 return found;
123 }
124
125 /*
126 * fsl_mc_bus_uevent - callback invoked when a device is added
127 */
fsl_mc_bus_uevent(const struct device * dev,struct kobj_uevent_env * env)128 static int fsl_mc_bus_uevent(const struct device *dev, struct kobj_uevent_env *env)
129 {
130 const struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
131
132 if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s",
133 mc_dev->obj_desc.vendor,
134 mc_dev->obj_desc.type))
135 return -ENOMEM;
136
137 return 0;
138 }
139
fsl_mc_dma_configure(struct device * dev)140 static int fsl_mc_dma_configure(struct device *dev)
141 {
142 const struct device_driver *drv = READ_ONCE(dev->driver);
143 struct device *dma_dev = dev;
144 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
145 u32 input_id = mc_dev->icid;
146 int ret;
147
148 while (dev_is_fsl_mc(dma_dev))
149 dma_dev = dma_dev->parent;
150
151 if (dev_of_node(dma_dev))
152 ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id);
153 else
154 ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id);
155
156 /* @drv may not be valid when we're called from the IOMMU layer */
157 if (!ret && drv && !to_fsl_mc_driver(drv)->driver_managed_dma) {
158 ret = iommu_device_use_default_domain(dev);
159 if (ret)
160 arch_teardown_dma_ops(dev);
161 }
162
163 return ret;
164 }
165
fsl_mc_dma_cleanup(struct device * dev)166 static void fsl_mc_dma_cleanup(struct device *dev)
167 {
168 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
169
170 if (!mc_drv->driver_managed_dma)
171 iommu_device_unuse_default_domain(dev);
172 }
173
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)174 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
175 char *buf)
176 {
177 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
178
179 return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor,
180 mc_dev->obj_desc.type);
181 }
182 static DEVICE_ATTR_RO(modalias);
183
driver_override_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)184 static ssize_t driver_override_store(struct device *dev,
185 struct device_attribute *attr,
186 const char *buf, size_t count)
187 {
188 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
189 int ret;
190
191 if (WARN_ON(dev->bus != &fsl_mc_bus_type))
192 return -EINVAL;
193
194 ret = driver_set_override(dev, &mc_dev->driver_override, buf, count);
195 if (ret)
196 return ret;
197
198 return count;
199 }
200
driver_override_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t driver_override_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203 {
204 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
205
206 return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override);
207 }
208 static DEVICE_ATTR_RW(driver_override);
209
210 static struct attribute *fsl_mc_dev_attrs[] = {
211 &dev_attr_modalias.attr,
212 &dev_attr_driver_override.attr,
213 NULL,
214 };
215
216 ATTRIBUTE_GROUPS(fsl_mc_dev);
217
scan_fsl_mc_bus(struct device * dev,void * data)218 static int scan_fsl_mc_bus(struct device *dev, void *data)
219 {
220 struct fsl_mc_device *root_mc_dev;
221 struct fsl_mc_bus *root_mc_bus;
222
223 if (!fsl_mc_is_root_dprc(dev))
224 goto exit;
225
226 root_mc_dev = to_fsl_mc_device(dev);
227 root_mc_bus = to_fsl_mc_bus(root_mc_dev);
228 mutex_lock(&root_mc_bus->scan_mutex);
229 dprc_scan_objects(root_mc_dev, false);
230 mutex_unlock(&root_mc_bus->scan_mutex);
231
232 exit:
233 return 0;
234 }
235
rescan_store(const struct bus_type * bus,const char * buf,size_t count)236 static ssize_t rescan_store(const struct bus_type *bus,
237 const char *buf, size_t count)
238 {
239 unsigned long val;
240
241 if (kstrtoul(buf, 0, &val) < 0)
242 return -EINVAL;
243
244 if (val)
245 bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus);
246
247 return count;
248 }
249 static BUS_ATTR_WO(rescan);
250
fsl_mc_bus_set_autorescan(struct device * dev,void * data)251 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data)
252 {
253 struct fsl_mc_device *root_mc_dev;
254 unsigned long val;
255 char *buf = data;
256
257 if (!fsl_mc_is_root_dprc(dev))
258 goto exit;
259
260 root_mc_dev = to_fsl_mc_device(dev);
261
262 if (kstrtoul(buf, 0, &val) < 0)
263 return -EINVAL;
264
265 if (val)
266 enable_dprc_irq(root_mc_dev);
267 else
268 disable_dprc_irq(root_mc_dev);
269
270 exit:
271 return 0;
272 }
273
fsl_mc_bus_get_autorescan(struct device * dev,void * data)274 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data)
275 {
276 struct fsl_mc_device *root_mc_dev;
277 char *buf = data;
278
279 if (!fsl_mc_is_root_dprc(dev))
280 goto exit;
281
282 root_mc_dev = to_fsl_mc_device(dev);
283
284 sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev));
285 exit:
286 return 0;
287 }
288
autorescan_store(const struct bus_type * bus,const char * buf,size_t count)289 static ssize_t autorescan_store(const struct bus_type *bus,
290 const char *buf, size_t count)
291 {
292 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan);
293
294 return count;
295 }
296
autorescan_show(const struct bus_type * bus,char * buf)297 static ssize_t autorescan_show(const struct bus_type *bus, char *buf)
298 {
299 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan);
300 return strlen(buf);
301 }
302
303 static BUS_ATTR_RW(autorescan);
304
305 static struct attribute *fsl_mc_bus_attrs[] = {
306 &bus_attr_rescan.attr,
307 &bus_attr_autorescan.attr,
308 NULL,
309 };
310
311 ATTRIBUTE_GROUPS(fsl_mc_bus);
312
313 const struct bus_type fsl_mc_bus_type = {
314 .name = "fsl-mc",
315 .match = fsl_mc_bus_match,
316 .uevent = fsl_mc_bus_uevent,
317 .dma_configure = fsl_mc_dma_configure,
318 .dma_cleanup = fsl_mc_dma_cleanup,
319 .dev_groups = fsl_mc_dev_groups,
320 .bus_groups = fsl_mc_bus_groups,
321 };
322 EXPORT_SYMBOL_GPL(fsl_mc_bus_type);
323
324 const struct device_type fsl_mc_bus_dprc_type = {
325 .name = "fsl_mc_bus_dprc"
326 };
327 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type);
328
329 const struct device_type fsl_mc_bus_dpni_type = {
330 .name = "fsl_mc_bus_dpni"
331 };
332 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type);
333
334 const struct device_type fsl_mc_bus_dpio_type = {
335 .name = "fsl_mc_bus_dpio"
336 };
337 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type);
338
339 const struct device_type fsl_mc_bus_dpsw_type = {
340 .name = "fsl_mc_bus_dpsw"
341 };
342 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type);
343
344 const struct device_type fsl_mc_bus_dpbp_type = {
345 .name = "fsl_mc_bus_dpbp"
346 };
347 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type);
348
349 const struct device_type fsl_mc_bus_dpcon_type = {
350 .name = "fsl_mc_bus_dpcon"
351 };
352 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type);
353
354 const struct device_type fsl_mc_bus_dpmcp_type = {
355 .name = "fsl_mc_bus_dpmcp"
356 };
357 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type);
358
359 const struct device_type fsl_mc_bus_dpmac_type = {
360 .name = "fsl_mc_bus_dpmac"
361 };
362 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type);
363
364 const struct device_type fsl_mc_bus_dprtc_type = {
365 .name = "fsl_mc_bus_dprtc"
366 };
367 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type);
368
369 const struct device_type fsl_mc_bus_dpseci_type = {
370 .name = "fsl_mc_bus_dpseci"
371 };
372 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type);
373
374 const struct device_type fsl_mc_bus_dpdmux_type = {
375 .name = "fsl_mc_bus_dpdmux"
376 };
377 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type);
378
379 const struct device_type fsl_mc_bus_dpdcei_type = {
380 .name = "fsl_mc_bus_dpdcei"
381 };
382 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type);
383
384 const struct device_type fsl_mc_bus_dpaiop_type = {
385 .name = "fsl_mc_bus_dpaiop"
386 };
387 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type);
388
389 const struct device_type fsl_mc_bus_dpci_type = {
390 .name = "fsl_mc_bus_dpci"
391 };
392 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type);
393
394 const struct device_type fsl_mc_bus_dpdmai_type = {
395 .name = "fsl_mc_bus_dpdmai"
396 };
397 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type);
398
399 const struct device_type fsl_mc_bus_dpdbg_type = {
400 .name = "fsl_mc_bus_dpdbg"
401 };
402 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type);
403
fsl_mc_get_device_type(const char * type)404 static const struct device_type *fsl_mc_get_device_type(const char *type)
405 {
406 static const struct {
407 const struct device_type *dev_type;
408 const char *type;
409 } dev_types[] = {
410 { &fsl_mc_bus_dprc_type, "dprc" },
411 { &fsl_mc_bus_dpni_type, "dpni" },
412 { &fsl_mc_bus_dpio_type, "dpio" },
413 { &fsl_mc_bus_dpsw_type, "dpsw" },
414 { &fsl_mc_bus_dpbp_type, "dpbp" },
415 { &fsl_mc_bus_dpcon_type, "dpcon" },
416 { &fsl_mc_bus_dpmcp_type, "dpmcp" },
417 { &fsl_mc_bus_dpmac_type, "dpmac" },
418 { &fsl_mc_bus_dprtc_type, "dprtc" },
419 { &fsl_mc_bus_dpseci_type, "dpseci" },
420 { &fsl_mc_bus_dpdmux_type, "dpdmux" },
421 { &fsl_mc_bus_dpdcei_type, "dpdcei" },
422 { &fsl_mc_bus_dpaiop_type, "dpaiop" },
423 { &fsl_mc_bus_dpci_type, "dpci" },
424 { &fsl_mc_bus_dpdmai_type, "dpdmai" },
425 { &fsl_mc_bus_dpdbg_type, "dpdbg" },
426 { NULL, NULL }
427 };
428 int i;
429
430 for (i = 0; dev_types[i].dev_type; i++)
431 if (!strcmp(dev_types[i].type, type))
432 return dev_types[i].dev_type;
433
434 return NULL;
435 }
436
fsl_mc_driver_probe(struct device * dev)437 static int fsl_mc_driver_probe(struct device *dev)
438 {
439 struct fsl_mc_driver *mc_drv;
440 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
441 int error;
442
443 mc_drv = to_fsl_mc_driver(dev->driver);
444
445 error = mc_drv->probe(mc_dev);
446 if (error < 0) {
447 if (error != -EPROBE_DEFER)
448 dev_err(dev, "%s failed: %d\n", __func__, error);
449 return error;
450 }
451
452 return 0;
453 }
454
fsl_mc_driver_remove(struct device * dev)455 static int fsl_mc_driver_remove(struct device *dev)
456 {
457 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
458 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
459
460 mc_drv->remove(mc_dev);
461
462 return 0;
463 }
464
fsl_mc_driver_shutdown(struct device * dev)465 static void fsl_mc_driver_shutdown(struct device *dev)
466 {
467 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
468 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
469
470 mc_drv->shutdown(mc_dev);
471 }
472
473 /*
474 * __fsl_mc_driver_register - registers a child device driver with the
475 * MC bus
476 *
477 * This function is implicitly invoked from the registration function of
478 * fsl_mc device drivers, which is generated by the
479 * module_fsl_mc_driver() macro.
480 */
__fsl_mc_driver_register(struct fsl_mc_driver * mc_driver,struct module * owner)481 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver,
482 struct module *owner)
483 {
484 int error;
485
486 mc_driver->driver.owner = owner;
487 mc_driver->driver.bus = &fsl_mc_bus_type;
488
489 if (mc_driver->probe)
490 mc_driver->driver.probe = fsl_mc_driver_probe;
491
492 if (mc_driver->remove)
493 mc_driver->driver.remove = fsl_mc_driver_remove;
494
495 if (mc_driver->shutdown)
496 mc_driver->driver.shutdown = fsl_mc_driver_shutdown;
497
498 error = driver_register(&mc_driver->driver);
499 if (error < 0) {
500 pr_err("driver_register() failed for %s: %d\n",
501 mc_driver->driver.name, error);
502 return error;
503 }
504
505 return 0;
506 }
507 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register);
508
509 /*
510 * fsl_mc_driver_unregister - unregisters a device driver from the
511 * MC bus
512 */
fsl_mc_driver_unregister(struct fsl_mc_driver * mc_driver)513 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver)
514 {
515 driver_unregister(&mc_driver->driver);
516 }
517 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister);
518
519 /**
520 * mc_get_version() - Retrieves the Management Complex firmware
521 * version information
522 * @mc_io: Pointer to opaque I/O object
523 * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
524 * @mc_ver_info: Returned version information structure
525 *
526 * Return: '0' on Success; Error code otherwise.
527 */
mc_get_version(struct fsl_mc_io * mc_io,u32 cmd_flags,struct fsl_mc_version * mc_ver_info)528 static int mc_get_version(struct fsl_mc_io *mc_io,
529 u32 cmd_flags,
530 struct fsl_mc_version *mc_ver_info)
531 {
532 struct fsl_mc_command cmd = { 0 };
533 struct dpmng_rsp_get_version *rsp_params;
534 int err;
535
536 /* prepare command */
537 cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION,
538 cmd_flags,
539 0);
540
541 /* send command to mc*/
542 err = mc_send_command(mc_io, &cmd);
543 if (err)
544 return err;
545
546 /* retrieve response parameters */
547 rsp_params = (struct dpmng_rsp_get_version *)cmd.params;
548 mc_ver_info->revision = le32_to_cpu(rsp_params->revision);
549 mc_ver_info->major = le32_to_cpu(rsp_params->version_major);
550 mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor);
551
552 return 0;
553 }
554
555 /**
556 * fsl_mc_get_version - function to retrieve the MC f/w version information
557 *
558 * Return: mc version when called after fsl-mc-bus probe; NULL otherwise.
559 */
fsl_mc_get_version(void)560 struct fsl_mc_version *fsl_mc_get_version(void)
561 {
562 if (mc_version.major)
563 return &mc_version;
564
565 return NULL;
566 }
567 EXPORT_SYMBOL_GPL(fsl_mc_get_version);
568
569 /*
570 * fsl_mc_get_root_dprc - function to traverse to the root dprc
571 */
fsl_mc_get_root_dprc(struct device * dev,struct device ** root_dprc_dev)572 void fsl_mc_get_root_dprc(struct device *dev,
573 struct device **root_dprc_dev)
574 {
575 if (!dev) {
576 *root_dprc_dev = NULL;
577 } else if (!dev_is_fsl_mc(dev)) {
578 *root_dprc_dev = NULL;
579 } else {
580 *root_dprc_dev = dev;
581 while (dev_is_fsl_mc((*root_dprc_dev)->parent))
582 *root_dprc_dev = (*root_dprc_dev)->parent;
583 }
584 }
585
get_dprc_attr(struct fsl_mc_io * mc_io,int container_id,struct dprc_attributes * attr)586 static int get_dprc_attr(struct fsl_mc_io *mc_io,
587 int container_id, struct dprc_attributes *attr)
588 {
589 u16 dprc_handle;
590 int error;
591
592 error = dprc_open(mc_io, 0, container_id, &dprc_handle);
593 if (error < 0) {
594 dev_err(mc_io->dev, "dprc_open() failed: %d\n", error);
595 return error;
596 }
597
598 memset(attr, 0, sizeof(struct dprc_attributes));
599 error = dprc_get_attributes(mc_io, 0, dprc_handle, attr);
600 if (error < 0) {
601 dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n",
602 error);
603 goto common_cleanup;
604 }
605
606 error = 0;
607
608 common_cleanup:
609 (void)dprc_close(mc_io, 0, dprc_handle);
610 return error;
611 }
612
get_dprc_icid(struct fsl_mc_io * mc_io,int container_id,u32 * icid)613 static int get_dprc_icid(struct fsl_mc_io *mc_io,
614 int container_id, u32 *icid)
615 {
616 struct dprc_attributes attr;
617 int error;
618
619 error = get_dprc_attr(mc_io, container_id, &attr);
620 if (error == 0)
621 *icid = attr.icid;
622
623 return error;
624 }
625
translate_mc_addr(struct fsl_mc_device * mc_dev,enum dprc_region_type mc_region_type,u64 mc_offset,phys_addr_t * phys_addr)626 static int translate_mc_addr(struct fsl_mc_device *mc_dev,
627 enum dprc_region_type mc_region_type,
628 u64 mc_offset, phys_addr_t *phys_addr)
629 {
630 int i;
631 struct device *root_dprc_dev;
632 struct fsl_mc *mc;
633
634 fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev);
635 mc = dev_get_drvdata(root_dprc_dev->parent);
636
637 if (mc->num_translation_ranges == 0) {
638 /*
639 * Do identity mapping:
640 */
641 *phys_addr = mc_offset;
642 return 0;
643 }
644
645 for (i = 0; i < mc->num_translation_ranges; i++) {
646 struct fsl_mc_addr_translation_range *range =
647 &mc->translation_ranges[i];
648
649 if (mc_region_type == range->mc_region_type &&
650 mc_offset >= range->start_mc_offset &&
651 mc_offset < range->end_mc_offset) {
652 *phys_addr = range->start_phys_addr +
653 (mc_offset - range->start_mc_offset);
654 return 0;
655 }
656 }
657
658 return -EFAULT;
659 }
660
fsl_mc_device_get_mmio_regions(struct fsl_mc_device * mc_dev,struct fsl_mc_device * mc_bus_dev)661 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev,
662 struct fsl_mc_device *mc_bus_dev)
663 {
664 int i;
665 int error;
666 struct resource *regions;
667 struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc;
668 struct device *parent_dev = mc_dev->dev.parent;
669 enum dprc_region_type mc_region_type;
670
671 if (is_fsl_mc_bus_dprc(mc_dev) ||
672 is_fsl_mc_bus_dpmcp(mc_dev)) {
673 mc_region_type = DPRC_REGION_TYPE_MC_PORTAL;
674 } else if (is_fsl_mc_bus_dpio(mc_dev)) {
675 mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL;
676 } else {
677 /*
678 * This function should not have been called for this MC object
679 * type, as this object type is not supposed to have MMIO
680 * regions
681 */
682 return -EINVAL;
683 }
684
685 regions = kmalloc_array(obj_desc->region_count,
686 sizeof(regions[0]), GFP_KERNEL);
687 if (!regions)
688 return -ENOMEM;
689
690 for (i = 0; i < obj_desc->region_count; i++) {
691 struct dprc_region_desc region_desc;
692
693 error = dprc_get_obj_region(mc_bus_dev->mc_io,
694 0,
695 mc_bus_dev->mc_handle,
696 obj_desc->type,
697 obj_desc->id, i, ®ion_desc);
698 if (error < 0) {
699 dev_err(parent_dev,
700 "dprc_get_obj_region() failed: %d\n", error);
701 goto error_cleanup_regions;
702 }
703 /*
704 * Older MC only returned region offset and no base address
705 * If base address is in the region_desc use it otherwise
706 * revert to old mechanism
707 */
708 if (region_desc.base_address) {
709 regions[i].start = region_desc.base_address +
710 region_desc.base_offset;
711 } else {
712 error = translate_mc_addr(mc_dev, mc_region_type,
713 region_desc.base_offset,
714 ®ions[i].start);
715
716 /*
717 * Some versions of the MC firmware wrongly report
718 * 0 for register base address of the DPMCP associated
719 * with child DPRC objects thus rendering them unusable.
720 * This is particularly troublesome in ACPI boot
721 * scenarios where the legacy way of extracting this
722 * base address from the device tree does not apply.
723 * Given that DPMCPs share the same base address,
724 * workaround this by using the base address extracted
725 * from the root DPRC container.
726 */
727 if (is_fsl_mc_bus_dprc(mc_dev) &&
728 regions[i].start == region_desc.base_offset)
729 regions[i].start += mc_portal_base_phys_addr;
730 }
731
732 if (error < 0) {
733 dev_err(parent_dev,
734 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n",
735 region_desc.base_offset,
736 obj_desc->type, obj_desc->id, i);
737 goto error_cleanup_regions;
738 }
739
740 regions[i].end = regions[i].start + region_desc.size - 1;
741 regions[i].name = "fsl-mc object MMIO region";
742 regions[i].flags = region_desc.flags & IORESOURCE_BITS;
743 regions[i].flags |= IORESOURCE_MEM;
744 }
745
746 mc_dev->regions = regions;
747 return 0;
748
749 error_cleanup_regions:
750 kfree(regions);
751 return error;
752 }
753
754 /*
755 * fsl_mc_is_root_dprc - function to check if a given device is a root dprc
756 */
fsl_mc_is_root_dprc(struct device * dev)757 bool fsl_mc_is_root_dprc(struct device *dev)
758 {
759 struct device *root_dprc_dev;
760
761 fsl_mc_get_root_dprc(dev, &root_dprc_dev);
762 if (!root_dprc_dev)
763 return false;
764 return dev == root_dprc_dev;
765 }
766
fsl_mc_device_release(struct device * dev)767 static void fsl_mc_device_release(struct device *dev)
768 {
769 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
770
771 kfree(mc_dev->regions);
772
773 if (is_fsl_mc_bus_dprc(mc_dev))
774 kfree(to_fsl_mc_bus(mc_dev));
775 else
776 kfree(mc_dev);
777 }
778
779 /*
780 * Add a newly discovered fsl-mc device to be visible in Linux
781 */
fsl_mc_device_add(struct fsl_mc_obj_desc * obj_desc,struct fsl_mc_io * mc_io,struct device * parent_dev,struct fsl_mc_device ** new_mc_dev)782 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc,
783 struct fsl_mc_io *mc_io,
784 struct device *parent_dev,
785 struct fsl_mc_device **new_mc_dev)
786 {
787 int error;
788 struct fsl_mc_device *mc_dev = NULL;
789 struct fsl_mc_bus *mc_bus = NULL;
790 struct fsl_mc_device *parent_mc_dev;
791
792 if (dev_is_fsl_mc(parent_dev))
793 parent_mc_dev = to_fsl_mc_device(parent_dev);
794 else
795 parent_mc_dev = NULL;
796
797 if (strcmp(obj_desc->type, "dprc") == 0) {
798 /*
799 * Allocate an MC bus device object:
800 */
801 mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL);
802 if (!mc_bus)
803 return -ENOMEM;
804
805 mutex_init(&mc_bus->scan_mutex);
806 mc_dev = &mc_bus->mc_dev;
807 } else {
808 /*
809 * Allocate a regular fsl_mc_device object:
810 */
811 mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL);
812 if (!mc_dev)
813 return -ENOMEM;
814 }
815
816 mc_dev->obj_desc = *obj_desc;
817 mc_dev->mc_io = mc_io;
818 device_initialize(&mc_dev->dev);
819 mc_dev->dev.parent = parent_dev;
820 mc_dev->dev.bus = &fsl_mc_bus_type;
821 mc_dev->dev.release = fsl_mc_device_release;
822 mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type);
823 if (!mc_dev->dev.type) {
824 error = -ENODEV;
825 dev_err(parent_dev, "unknown device type %s\n", obj_desc->type);
826 goto error_cleanup_dev;
827 }
828 dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id);
829
830 if (strcmp(obj_desc->type, "dprc") == 0) {
831 struct fsl_mc_io *mc_io2;
832
833 mc_dev->flags |= FSL_MC_IS_DPRC;
834
835 /*
836 * To get the DPRC's ICID, we need to open the DPRC
837 * in get_dprc_icid(). For child DPRCs, we do so using the
838 * parent DPRC's MC portal instead of the child DPRC's MC
839 * portal, in case the child DPRC is already opened with
840 * its own portal (e.g., the DPRC used by AIOP).
841 *
842 * NOTE: There cannot be more than one active open for a
843 * given MC object, using the same MC portal.
844 */
845 if (parent_mc_dev) {
846 /*
847 * device being added is a child DPRC device
848 */
849 mc_io2 = parent_mc_dev->mc_io;
850 } else {
851 /*
852 * device being added is the root DPRC device
853 */
854 if (!mc_io) {
855 error = -EINVAL;
856 goto error_cleanup_dev;
857 }
858
859 mc_io2 = mc_io;
860 }
861
862 error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid);
863 if (error < 0)
864 goto error_cleanup_dev;
865 } else {
866 /*
867 * A non-DPRC object has to be a child of a DPRC, use the
868 * parent's ICID and interrupt domain.
869 */
870 mc_dev->icid = parent_mc_dev->icid;
871 mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK;
872 mc_dev->dev.dma_mask = &mc_dev->dma_mask;
873 mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask;
874 dev_set_msi_domain(&mc_dev->dev,
875 dev_get_msi_domain(&parent_mc_dev->dev));
876 }
877
878 /*
879 * Get MMIO regions for the device from the MC:
880 *
881 * NOTE: the root DPRC is a special case as its MMIO region is
882 * obtained from the device tree
883 */
884 if (parent_mc_dev && obj_desc->region_count != 0) {
885 error = fsl_mc_device_get_mmio_regions(mc_dev,
886 parent_mc_dev);
887 if (error < 0)
888 goto error_cleanup_dev;
889 }
890
891 /*
892 * The device-specific probe callback will get invoked by device_add()
893 */
894 error = device_add(&mc_dev->dev);
895 if (error < 0) {
896 dev_err(parent_dev,
897 "device_add() failed for device %s: %d\n",
898 dev_name(&mc_dev->dev), error);
899 goto error_cleanup_dev;
900 }
901
902 dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev));
903
904 *new_mc_dev = mc_dev;
905 return 0;
906
907 error_cleanup_dev:
908 kfree(mc_dev->regions);
909 if (mc_bus)
910 kfree(mc_bus);
911 else
912 kfree(mc_dev);
913
914 return error;
915 }
916 EXPORT_SYMBOL_GPL(fsl_mc_device_add);
917
918 static struct notifier_block fsl_mc_nb;
919
920 /**
921 * fsl_mc_device_remove - Remove an fsl-mc device from being visible to
922 * Linux
923 *
924 * @mc_dev: Pointer to an fsl-mc device
925 */
fsl_mc_device_remove(struct fsl_mc_device * mc_dev)926 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev)
927 {
928 kfree(mc_dev->driver_override);
929 mc_dev->driver_override = NULL;
930
931 /*
932 * The device-specific remove callback will get invoked by device_del()
933 */
934 device_del(&mc_dev->dev);
935 put_device(&mc_dev->dev);
936 }
937 EXPORT_SYMBOL_GPL(fsl_mc_device_remove);
938
fsl_mc_get_endpoint(struct fsl_mc_device * mc_dev,u16 if_id)939 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev,
940 u16 if_id)
941 {
942 struct fsl_mc_device *mc_bus_dev, *endpoint;
943 struct fsl_mc_obj_desc endpoint_desc = {{ 0 }};
944 struct dprc_endpoint endpoint1 = {{ 0 }};
945 struct dprc_endpoint endpoint2 = {{ 0 }};
946 int state, err;
947
948 mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent);
949 strcpy(endpoint1.type, mc_dev->obj_desc.type);
950 endpoint1.id = mc_dev->obj_desc.id;
951 endpoint1.if_id = if_id;
952
953 err = dprc_get_connection(mc_bus_dev->mc_io, 0,
954 mc_bus_dev->mc_handle,
955 &endpoint1, &endpoint2,
956 &state);
957
958 if (err == -ENOTCONN || state == -1)
959 return ERR_PTR(-ENOTCONN);
960
961 if (err < 0) {
962 dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err);
963 return ERR_PTR(err);
964 }
965
966 strcpy(endpoint_desc.type, endpoint2.type);
967 endpoint_desc.id = endpoint2.id;
968 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
969
970 /*
971 * We know that the device has an endpoint because we verified by
972 * interrogating the firmware. This is the case when the device was not
973 * yet discovered by the fsl-mc bus, thus the lookup returned NULL.
974 * Force a rescan of the devices in this container and retry the lookup.
975 */
976 if (!endpoint) {
977 struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev);
978
979 if (mutex_trylock(&mc_bus->scan_mutex)) {
980 err = dprc_scan_objects(mc_bus_dev, true);
981 mutex_unlock(&mc_bus->scan_mutex);
982 }
983
984 if (err < 0)
985 return ERR_PTR(err);
986 }
987
988 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
989 /*
990 * This means that the endpoint might reside in a different isolation
991 * context (DPRC/container). Not much to do, so return a permssion
992 * error.
993 */
994 if (!endpoint)
995 return ERR_PTR(-EPERM);
996
997 return endpoint;
998 }
999 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint);
1000
get_mc_addr_translation_ranges(struct device * dev,struct fsl_mc_addr_translation_range ** ranges,u8 * num_ranges)1001 static int get_mc_addr_translation_ranges(struct device *dev,
1002 struct fsl_mc_addr_translation_range
1003 **ranges,
1004 u8 *num_ranges)
1005 {
1006 struct fsl_mc_addr_translation_range *r;
1007 struct of_range_parser parser;
1008 struct of_range range;
1009
1010 of_range_parser_init(&parser, dev->of_node);
1011 *num_ranges = of_range_count(&parser);
1012 if (!*num_ranges) {
1013 /*
1014 * Missing or empty ranges property ("ranges;") for the
1015 * 'fsl,qoriq-mc' node. In this case, identity mapping
1016 * will be used.
1017 */
1018 *ranges = NULL;
1019 return 0;
1020 }
1021
1022 *ranges = devm_kcalloc(dev, *num_ranges,
1023 sizeof(struct fsl_mc_addr_translation_range),
1024 GFP_KERNEL);
1025 if (!(*ranges))
1026 return -ENOMEM;
1027
1028 r = *ranges;
1029 for_each_of_range(&parser, &range) {
1030 r->mc_region_type = range.flags;
1031 r->start_mc_offset = range.bus_addr;
1032 r->end_mc_offset = range.bus_addr + range.size;
1033 r->start_phys_addr = range.cpu_addr;
1034 r++;
1035 }
1036
1037 return 0;
1038 }
1039
1040 /*
1041 * fsl_mc_bus_probe - callback invoked when the root MC bus is being
1042 * added
1043 */
fsl_mc_bus_probe(struct platform_device * pdev)1044 static int fsl_mc_bus_probe(struct platform_device *pdev)
1045 {
1046 struct fsl_mc_obj_desc obj_desc;
1047 int error;
1048 struct fsl_mc *mc;
1049 struct fsl_mc_device *mc_bus_dev = NULL;
1050 struct fsl_mc_io *mc_io = NULL;
1051 int container_id;
1052 phys_addr_t mc_portal_phys_addr;
1053 u32 mc_portal_size, mc_stream_id;
1054 struct resource *plat_res;
1055
1056 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
1057 if (!mc)
1058 return -ENOMEM;
1059
1060 platform_set_drvdata(pdev, mc);
1061
1062 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1063 if (plat_res) {
1064 mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res);
1065 if (IS_ERR(mc->fsl_mc_regs))
1066 return PTR_ERR(mc->fsl_mc_regs);
1067 }
1068
1069 if (mc->fsl_mc_regs) {
1070 if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) {
1071 mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR);
1072 /*
1073 * HW ORs the PL and BMT bit, places the result in bit
1074 * 14 of the StreamID and ORs in the ICID. Calculate it
1075 * accordingly.
1076 */
1077 mc_stream_id = (mc_stream_id & 0xffff) |
1078 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ?
1079 BIT(14) : 0);
1080 error = acpi_dma_configure_id(&pdev->dev,
1081 DEV_DMA_COHERENT,
1082 &mc_stream_id);
1083 if (error == -EPROBE_DEFER)
1084 return error;
1085 if (error)
1086 dev_warn(&pdev->dev,
1087 "failed to configure dma: %d.\n",
1088 error);
1089 }
1090
1091 /*
1092 * Some bootloaders pause the MC firmware before booting the
1093 * kernel so that MC will not cause faults as soon as the
1094 * SMMU probes due to the fact that there's no configuration
1095 * in place for MC.
1096 * At this point MC should have all its SMMU setup done so make
1097 * sure it is resumed.
1098 */
1099 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) &
1100 (~(GCR1_P1_STOP | GCR1_P2_STOP)),
1101 mc->fsl_mc_regs + FSL_MC_GCR1);
1102 }
1103
1104 /*
1105 * Get physical address of MC portal for the root DPRC:
1106 */
1107 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1108 mc_portal_phys_addr = plat_res->start;
1109 mc_portal_size = resource_size(plat_res);
1110 mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff;
1111
1112 error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr,
1113 mc_portal_size, NULL,
1114 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io);
1115 if (error < 0)
1116 return error;
1117
1118 error = mc_get_version(mc_io, 0, &mc_version);
1119 if (error != 0) {
1120 dev_err(&pdev->dev,
1121 "mc_get_version() failed with error %d\n", error);
1122 goto error_cleanup_mc_io;
1123 }
1124
1125 dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n",
1126 mc_version.major, mc_version.minor, mc_version.revision);
1127
1128 if (dev_of_node(&pdev->dev)) {
1129 error = get_mc_addr_translation_ranges(&pdev->dev,
1130 &mc->translation_ranges,
1131 &mc->num_translation_ranges);
1132 if (error < 0)
1133 goto error_cleanup_mc_io;
1134 }
1135
1136 error = dprc_get_container_id(mc_io, 0, &container_id);
1137 if (error < 0) {
1138 dev_err(&pdev->dev,
1139 "dprc_get_container_id() failed: %d\n", error);
1140 goto error_cleanup_mc_io;
1141 }
1142
1143 memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc));
1144 error = dprc_get_api_version(mc_io, 0,
1145 &obj_desc.ver_major,
1146 &obj_desc.ver_minor);
1147 if (error < 0)
1148 goto error_cleanup_mc_io;
1149
1150 obj_desc.vendor = FSL_MC_VENDOR_FREESCALE;
1151 strcpy(obj_desc.type, "dprc");
1152 obj_desc.id = container_id;
1153 obj_desc.irq_count = 1;
1154 obj_desc.region_count = 0;
1155
1156 error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev);
1157 if (error < 0)
1158 goto error_cleanup_mc_io;
1159
1160 mc->root_mc_bus_dev = mc_bus_dev;
1161 mc_bus_dev->dev.fwnode = pdev->dev.fwnode;
1162 return 0;
1163
1164 error_cleanup_mc_io:
1165 fsl_destroy_mc_io(mc_io);
1166 return error;
1167 }
1168
1169 /*
1170 * fsl_mc_bus_remove - callback invoked when the root MC bus is being
1171 * removed
1172 */
fsl_mc_bus_remove(struct platform_device * pdev)1173 static void fsl_mc_bus_remove(struct platform_device *pdev)
1174 {
1175 struct fsl_mc *mc = platform_get_drvdata(pdev);
1176 struct fsl_mc_io *mc_io;
1177
1178 mc_io = mc->root_mc_bus_dev->mc_io;
1179 fsl_mc_device_remove(mc->root_mc_bus_dev);
1180 fsl_destroy_mc_io(mc_io);
1181
1182 bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb);
1183
1184 if (mc->fsl_mc_regs) {
1185 /*
1186 * Pause the MC firmware so that it doesn't crash in certain
1187 * scenarios, such as kexec.
1188 */
1189 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) |
1190 (GCR1_P1_STOP | GCR1_P2_STOP),
1191 mc->fsl_mc_regs + FSL_MC_GCR1);
1192 }
1193 }
1194
1195 static const struct of_device_id fsl_mc_bus_match_table[] = {
1196 {.compatible = "fsl,qoriq-mc",},
1197 {},
1198 };
1199
1200 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table);
1201
1202 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = {
1203 {"NXP0008", 0 },
1204 { }
1205 };
1206 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table);
1207
1208 static struct platform_driver fsl_mc_bus_driver = {
1209 .driver = {
1210 .name = "fsl_mc_bus",
1211 .pm = NULL,
1212 .of_match_table = fsl_mc_bus_match_table,
1213 .acpi_match_table = fsl_mc_bus_acpi_match_table,
1214 },
1215 .probe = fsl_mc_bus_probe,
1216 .remove = fsl_mc_bus_remove,
1217 .shutdown = fsl_mc_bus_remove,
1218 };
1219
fsl_mc_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1220 static int fsl_mc_bus_notifier(struct notifier_block *nb,
1221 unsigned long action, void *data)
1222 {
1223 struct device *dev = data;
1224 struct resource *res;
1225 void __iomem *fsl_mc_regs;
1226
1227 if (action != BUS_NOTIFY_ADD_DEVICE)
1228 return 0;
1229
1230 if (!of_match_device(fsl_mc_bus_match_table, dev) &&
1231 !acpi_match_device(fsl_mc_bus_acpi_match_table, dev))
1232 return 0;
1233
1234 res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1);
1235 if (!res)
1236 return 0;
1237
1238 fsl_mc_regs = ioremap(res->start, resource_size(res));
1239 if (!fsl_mc_regs)
1240 return 0;
1241
1242 /*
1243 * Make sure that the MC firmware is paused before the IOMMU setup for
1244 * it is done or otherwise the firmware will crash right after the SMMU
1245 * gets probed and enabled.
1246 */
1247 writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP),
1248 fsl_mc_regs + FSL_MC_GCR1);
1249 iounmap(fsl_mc_regs);
1250
1251 return 0;
1252 }
1253
1254 static struct notifier_block fsl_mc_nb = {
1255 .notifier_call = fsl_mc_bus_notifier,
1256 };
1257
fsl_mc_bus_driver_init(void)1258 static int __init fsl_mc_bus_driver_init(void)
1259 {
1260 int error;
1261
1262 error = bus_register(&fsl_mc_bus_type);
1263 if (error < 0) {
1264 pr_err("bus type registration failed: %d\n", error);
1265 goto error_cleanup_cache;
1266 }
1267
1268 error = platform_driver_register(&fsl_mc_bus_driver);
1269 if (error < 0) {
1270 pr_err("platform_driver_register() failed: %d\n", error);
1271 goto error_cleanup_bus;
1272 }
1273
1274 error = dprc_driver_init();
1275 if (error < 0)
1276 goto error_cleanup_driver;
1277
1278 error = fsl_mc_allocator_driver_init();
1279 if (error < 0)
1280 goto error_cleanup_dprc_driver;
1281
1282 return bus_register_notifier(&platform_bus_type, &fsl_mc_nb);
1283
1284 error_cleanup_dprc_driver:
1285 dprc_driver_exit();
1286
1287 error_cleanup_driver:
1288 platform_driver_unregister(&fsl_mc_bus_driver);
1289
1290 error_cleanup_bus:
1291 bus_unregister(&fsl_mc_bus_type);
1292
1293 error_cleanup_cache:
1294 return error;
1295 }
1296 postcore_initcall(fsl_mc_bus_driver_init);
1297