1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 * Copyright (c) 2018, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Copyright 2015 Gary Mills
30 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
31 * Copyright 2024 Oxide Computer Company
32 */
33
34 #include <sys/types.h>
35 #include <sys/utsname.h>
36 #include <sys/sysmacros.h>
37 #include <sys/proc.h>
38
39 #include <alloca.h>
40 #include <rtld_db.h>
41 #include <libgen.h>
42 #include <limits.h>
43 #include <string.h>
44 #include <stdlib.h>
45 #include <unistd.h>
46 #include <errno.h>
47 #include <gelf.h>
48 #include <stddef.h>
49 #include <signal.h>
50
51 #include "libproc.h"
52 #include "Pcontrol.h"
53 #include "P32ton.h"
54 #include "Putil.h"
55 #include "proc_fd.h"
56 #ifdef __x86
57 #include "Pcore_linux.h"
58 #endif
59
60 /*
61 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
62 * allocate an additional structure to hold information from the core
63 * file, and attach this to the standard ps_prochandle in place of the
64 * ability to examine /proc/<pid>/ files.
65 */
66
67 /*
68 * Basic i/o function for reading and writing from the process address space
69 * stored in the core file and associated shared libraries. We compute the
70 * appropriate fd and offsets, and let the provided prw function do the rest.
71 */
72 static ssize_t
core_rw(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,ssize_t (* prw)(int,void *,size_t,off64_t))73 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
74 ssize_t (*prw)(int, void *, size_t, off64_t))
75 {
76 ssize_t resid = n;
77
78 while (resid != 0) {
79 map_info_t *mp = Paddr2mptr(P, addr);
80
81 uintptr_t mapoff;
82 ssize_t len;
83 off64_t off;
84 int fd;
85
86 if (mp == NULL)
87 break; /* No mapping for this address */
88
89 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
90 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
91 break; /* No file or file not open */
92
93 fd = mp->map_file->file_fd;
94 } else
95 fd = P->asfd;
96
97 mapoff = addr - mp->map_pmap.pr_vaddr;
98 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
99 off = mp->map_offset + mapoff;
100
101 if ((len = prw(fd, buf, len, off)) <= 0)
102 break;
103
104 resid -= len;
105 addr += len;
106 buf = (char *)buf + len;
107 }
108
109 /*
110 * Important: Be consistent with the behavior of i/o on the as file:
111 * writing to an invalid address yields EIO; reading from an invalid
112 * address falls through to returning success and zero bytes.
113 */
114 if (resid == n && n != 0 && prw != pread64) {
115 errno = EIO;
116 return (-1);
117 }
118
119 return (n - resid);
120 }
121
122 static ssize_t
Pread_core(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,void * data)123 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
124 void *data)
125 {
126 return (core_rw(P, buf, n, addr, pread64));
127 }
128
129 static ssize_t
Pwrite_core(struct ps_prochandle * P,const void * buf,size_t n,uintptr_t addr,void * data)130 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
131 void *data)
132 {
133 return (core_rw(P, (void *)buf, n, addr,
134 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
135 }
136
137 static int
Pcred_core(struct ps_prochandle * P,prcred_t * pcrp,int ngroups,void * data)138 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
139 {
140 core_info_t *core = data;
141
142 if (core->core_cred != NULL) {
143 /*
144 * Avoid returning more supplementary group data than the
145 * caller has allocated in their buffer. We expect them to
146 * check pr_ngroups afterward and potentially call us again.
147 */
148 ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
149
150 (void) memcpy(pcrp, core->core_cred,
151 sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
152
153 return (0);
154 }
155
156 errno = ENODATA;
157 return (-1);
158 }
159
160 static int
Psecflags_core(struct ps_prochandle * P,prsecflags_t ** psf,void * data)161 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
162 {
163 core_info_t *core = data;
164
165 if (core->core_secflags == NULL) {
166 errno = ENODATA;
167 return (-1);
168 }
169
170 if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
171 return (-1);
172
173 (void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
174
175 return (0);
176 }
177
178 static int
Ppriv_core(struct ps_prochandle * P,prpriv_t ** pprv,void * data)179 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
180 {
181 core_info_t *core = data;
182
183 if (core->core_priv == NULL) {
184 errno = ENODATA;
185 return (-1);
186 }
187
188 *pprv = malloc(core->core_priv_size);
189 if (*pprv == NULL) {
190 return (-1);
191 }
192
193 (void) memcpy(*pprv, core->core_priv, core->core_priv_size);
194 return (0);
195 }
196
197 static const psinfo_t *
Ppsinfo_core(struct ps_prochandle * P,psinfo_t * psinfo,void * data)198 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
199 {
200 return (&P->psinfo);
201 }
202
203 static void
Pfini_core(struct ps_prochandle * P,void * data)204 Pfini_core(struct ps_prochandle *P, void *data)
205 {
206 core_info_t *core = data;
207
208 if (core != NULL) {
209 extern void __priv_free_info(void *);
210 lwp_info_t *lwp;
211
212 while ((lwp = list_remove_head(&core->core_lwp_head)) != NULL) {
213 #ifdef __sparc
214 if (lwp->lwp_gwins != NULL)
215 free(lwp->lwp_gwins);
216 if (lwp->lwp_xregs != NULL)
217 free(lwp->lwp_xregs);
218 if (lwp->lwp_asrs != NULL)
219 free(lwp->lwp_asrs);
220 #endif
221 free(lwp);
222 }
223
224 if (core->core_platform != NULL)
225 free(core->core_platform);
226 if (core->core_uts != NULL)
227 free(core->core_uts);
228 if (core->core_cred != NULL)
229 free(core->core_cred);
230 if (core->core_priv != NULL)
231 free(core->core_priv);
232 if (core->core_privinfo != NULL)
233 __priv_free_info(core->core_privinfo);
234 if (core->core_ppii != NULL)
235 free(core->core_ppii);
236 if (core->core_zonename != NULL)
237 free(core->core_zonename);
238 if (core->core_secflags != NULL)
239 free(core->core_secflags);
240 if (core->core_upanic != NULL)
241 free(core->core_upanic);
242 if (core->core_cwd != NULL)
243 free(core->core_cwd);
244 #ifdef __x86
245 if (core->core_ldt != NULL)
246 free(core->core_ldt);
247 #endif
248
249 free(core);
250 }
251 }
252
253 static char *
Pplatform_core(struct ps_prochandle * P,char * s,size_t n,void * data)254 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
255 {
256 core_info_t *core = data;
257
258 if (core->core_platform == NULL) {
259 errno = ENODATA;
260 return (NULL);
261 }
262 (void) strncpy(s, core->core_platform, n - 1);
263 s[n - 1] = '\0';
264 return (s);
265 }
266
267 static int
Puname_core(struct ps_prochandle * P,struct utsname * u,void * data)268 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
269 {
270 core_info_t *core = data;
271
272 if (core->core_uts == NULL) {
273 errno = ENODATA;
274 return (-1);
275 }
276 (void) memcpy(u, core->core_uts, sizeof (struct utsname));
277 return (0);
278 }
279
280 static char *
Pzonename_core(struct ps_prochandle * P,char * s,size_t n,void * data)281 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
282 {
283 core_info_t *core = data;
284
285 if (core->core_zonename == NULL) {
286 errno = ENODATA;
287 return (NULL);
288 }
289 (void) strlcpy(s, core->core_zonename, n);
290 return (s);
291 }
292
293 static int
Pcwd_core(struct ps_prochandle * P,prcwd_t ** cwdp,void * data)294 Pcwd_core(struct ps_prochandle *P, prcwd_t **cwdp, void *data)
295 {
296 prcwd_t *cwd;
297 core_info_t *core = data;
298
299 if (core->core_cwd == NULL) {
300 errno = ENODATA;
301 return (-1);
302 }
303
304 if ((cwd = calloc(1, sizeof (prcwd_t))) == NULL)
305 return (-1);
306
307 (void) memcpy(cwd, core->core_cwd, sizeof (prcwd_t));
308 cwd->prcwd_fsname[sizeof (cwd->prcwd_fsname) - 1] = '\0';
309 cwd->prcwd_mntpt[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
310 cwd->prcwd_mntspec[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
311 cwd->prcwd_cwd[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
312 *cwdp = cwd;
313
314 return (0);
315 }
316
317 #ifdef __x86
318 static int
Pldt_core(struct ps_prochandle * P,struct ssd * pldt,int nldt,void * data)319 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
320 {
321 core_info_t *core = data;
322
323 if (pldt == NULL || nldt == 0)
324 return (core->core_nldt);
325
326 if (core->core_ldt != NULL) {
327 nldt = MIN(nldt, core->core_nldt);
328
329 (void) memcpy(pldt, core->core_ldt,
330 nldt * sizeof (struct ssd));
331
332 return (nldt);
333 }
334
335 errno = ENODATA;
336 return (-1);
337 }
338 #endif
339
340 static const ps_ops_t P_core_ops = {
341 .pop_pread = Pread_core,
342 .pop_pwrite = Pwrite_core,
343 .pop_cred = Pcred_core,
344 .pop_priv = Ppriv_core,
345 .pop_psinfo = Ppsinfo_core,
346 .pop_fini = Pfini_core,
347 .pop_platform = Pplatform_core,
348 .pop_uname = Puname_core,
349 .pop_zonename = Pzonename_core,
350 .pop_secflags = Psecflags_core,
351 .pop_cwd = Pcwd_core,
352 #ifdef __x86
353 .pop_ldt = Pldt_core
354 #endif
355 };
356
357 /*
358 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
359 * encountered yet, allocate a new structure and return a pointer to it.
360 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
361 */
362 static lwp_info_t *
lwpid2info(struct ps_prochandle * P,lwpid_t id)363 lwpid2info(struct ps_prochandle *P, lwpid_t id)
364 {
365 core_info_t *core = P->data;
366 lwp_info_t *lwp, *prev;
367
368 for (lwp = list_head(&core->core_lwp_head); lwp != NULL;
369 lwp = list_next(&core->core_lwp_head, lwp)) {
370 if (lwp->lwp_id == id) {
371 core->core_lwp = lwp;
372 return (lwp);
373 }
374 if (lwp->lwp_id < id) {
375 break;
376 }
377 }
378
379 prev = lwp;
380 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
381 return (NULL);
382
383 list_insert_before(&core->core_lwp_head, prev, lwp);
384 lwp->lwp_id = id;
385
386 core->core_lwp = lwp;
387
388 return (lwp);
389 }
390
391 /*
392 * The core file itself contains a series of NOTE segments containing saved
393 * structures from /proc at the time the process died. For each note we
394 * comprehend, we define a function to read it in from the core file,
395 * convert it to our native data model if necessary, and store it inside
396 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
397 * seek pointer on P->asfd positioned appropriately. We populate a table
398 * of pointers to these note functions below.
399 */
400
401 static int
note_pstatus(struct ps_prochandle * P,size_t nbytes)402 note_pstatus(struct ps_prochandle *P, size_t nbytes)
403 {
404 #ifdef _LP64
405 core_info_t *core = P->data;
406
407 if (core->core_dmodel == PR_MODEL_ILP32) {
408 pstatus32_t ps32;
409
410 if (nbytes < sizeof (pstatus32_t) ||
411 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
412 goto err;
413
414 pstatus_32_to_n(&ps32, &P->status);
415
416 } else
417 #endif
418 if (nbytes < sizeof (pstatus_t) ||
419 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
420 goto err;
421
422 P->orig_status = P->status;
423 P->pid = P->status.pr_pid;
424
425 return (0);
426
427 err:
428 dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
429 return (-1);
430 }
431
432 static int
note_lwpstatus(struct ps_prochandle * P,size_t nbytes)433 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
434 {
435 lwp_info_t *lwp;
436 lwpstatus_t lps;
437
438 #ifdef _LP64
439 core_info_t *core = P->data;
440
441 if (core->core_dmodel == PR_MODEL_ILP32) {
442 lwpstatus32_t l32;
443
444 if (nbytes < sizeof (lwpstatus32_t) ||
445 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
446 goto err;
447
448 lwpstatus_32_to_n(&l32, &lps);
449 } else
450 #endif
451 if (nbytes < sizeof (lwpstatus_t) ||
452 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
453 goto err;
454
455 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
456 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
457 return (-1);
458 }
459
460 /*
461 * Erase a useless and confusing artifact of the kernel implementation:
462 * the lwps which did *not* create the core will show SIGKILL. We can
463 * be assured this is bogus because SIGKILL can't produce core files.
464 */
465 if (lps.pr_cursig == SIGKILL)
466 lps.pr_cursig = 0;
467
468 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
469 return (0);
470
471 err:
472 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
473 return (-1);
474 }
475
476 #ifdef __x86
477
478 static void
lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t * p32,psinfo_t * psinfo)479 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
480 {
481 psinfo->pr_flag = p32->pr_flag;
482 psinfo->pr_pid = p32->pr_pid;
483 psinfo->pr_ppid = p32->pr_ppid;
484 psinfo->pr_uid = p32->pr_uid;
485 psinfo->pr_gid = p32->pr_gid;
486 psinfo->pr_sid = p32->pr_sid;
487 psinfo->pr_pgid = p32->pr_pgrp;
488
489 (void) memcpy(psinfo->pr_fname, p32->pr_fname,
490 sizeof (psinfo->pr_fname));
491 (void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
492 sizeof (psinfo->pr_psargs));
493 }
494
495 static void
lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t * p64,psinfo_t * psinfo)496 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
497 {
498 psinfo->pr_flag = p64->pr_flag;
499 psinfo->pr_pid = p64->pr_pid;
500 psinfo->pr_ppid = p64->pr_ppid;
501 psinfo->pr_uid = p64->pr_uid;
502 psinfo->pr_gid = p64->pr_gid;
503 psinfo->pr_sid = p64->pr_sid;
504 psinfo->pr_pgid = p64->pr_pgrp;
505 psinfo->pr_pgid = p64->pr_pgrp;
506
507 (void) memcpy(psinfo->pr_fname, p64->pr_fname,
508 sizeof (psinfo->pr_fname));
509 (void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
510 sizeof (psinfo->pr_psargs));
511 }
512
513 static int
note_linux_psinfo(struct ps_prochandle * P,size_t nbytes)514 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
515 {
516 core_info_t *core = P->data;
517 lx_prpsinfo32_t p32;
518 lx_prpsinfo64_t p64;
519
520 if (core->core_dmodel == PR_MODEL_ILP32) {
521 if (nbytes < sizeof (p32) ||
522 read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
523 goto err;
524
525 lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
526 } else {
527 if (nbytes < sizeof (p64) ||
528 read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
529 goto err;
530
531 lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
532 }
533
534
535 P->status.pr_pid = P->psinfo.pr_pid;
536 P->status.pr_ppid = P->psinfo.pr_ppid;
537 P->status.pr_pgid = P->psinfo.pr_pgid;
538 P->status.pr_sid = P->psinfo.pr_sid;
539
540 P->psinfo.pr_nlwp = 0;
541 P->status.pr_nlwp = 0;
542
543 return (0);
544 err:
545 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
546 return (-1);
547 }
548
549 static void
lx_prstatus64_to_lwp(lx_prstatus64_t * prs64,lwp_info_t * lwp)550 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
551 {
552 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
553 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
554
555 lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
556 lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
557 lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
558 lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
559 lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
560 lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
561 lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
562 lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
563
564 lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
565 lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
566 lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
567 lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
568 lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
569 lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
570 lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
571
572 lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
573 lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
574 lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
575 lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
576 lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
577 lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
578 lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
579 lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
580
581 lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
582 lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
583 }
584
585 static void
lx_prstatus32_to_lwp(lx_prstatus32_t * prs32,lwp_info_t * lwp)586 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
587 {
588 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
589 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
590
591 #ifdef __amd64
592 lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
593 lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
594 lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
595 lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
596 lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
597 lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
598 lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
599 lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
600 lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
601 lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
602 lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
603 lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
604 lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
605 lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
606 lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
607 lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
608 #else /* __amd64 */
609 lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
610 lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
611 lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
612 lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
613 lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
614 lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
615 lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
616 lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
617 lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
618
619 lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
620 lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
621 lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
622 lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
623 lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
624 lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
625
626 lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
627 #endif /* !__amd64 */
628 }
629
630 static int
note_linux_prstatus(struct ps_prochandle * P,size_t nbytes)631 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
632 {
633 core_info_t *core = P->data;
634
635 lx_prstatus64_t prs64;
636 lx_prstatus32_t prs32;
637 lwp_info_t *lwp;
638 lwpid_t tid;
639
640 dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
641 (ulong_t)nbytes, (ulong_t)sizeof (prs32));
642 if (core->core_dmodel == PR_MODEL_ILP32) {
643 if (nbytes < sizeof (prs32) ||
644 read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
645 goto err;
646 tid = prs32.pr_pid;
647 } else {
648 if (nbytes < sizeof (prs64) ||
649 read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
650 goto err;
651 tid = prs64.pr_pid;
652 }
653
654 if ((lwp = lwpid2info(P, tid)) == NULL) {
655 dprintf("Pgrab_core: failed to add lwpid2info "
656 "linux_prstatus\n");
657 return (-1);
658 }
659
660 P->psinfo.pr_nlwp++;
661 P->status.pr_nlwp++;
662
663 lwp->lwp_status.pr_lwpid = tid;
664
665 if (core->core_dmodel == PR_MODEL_ILP32)
666 lx_prstatus32_to_lwp(&prs32, lwp);
667 else
668 lx_prstatus64_to_lwp(&prs64, lwp);
669
670 return (0);
671 err:
672 dprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
673 return (-1);
674 }
675
676 #endif /* __x86 */
677
678 static int
note_psinfo(struct ps_prochandle * P,size_t nbytes)679 note_psinfo(struct ps_prochandle *P, size_t nbytes)
680 {
681 #ifdef _LP64
682 core_info_t *core = P->data;
683
684 if (core->core_dmodel == PR_MODEL_ILP32) {
685 psinfo32_t ps32;
686
687 if (nbytes < sizeof (psinfo32_t) ||
688 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
689 goto err;
690
691 psinfo_32_to_n(&ps32, &P->psinfo);
692 } else
693 #endif
694 if (nbytes < sizeof (psinfo_t) ||
695 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
696 goto err;
697
698 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
699 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
700 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
701
702 return (0);
703
704 err:
705 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
706 return (-1);
707 }
708
709 static int
note_lwpsinfo(struct ps_prochandle * P,size_t nbytes)710 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
711 {
712 lwp_info_t *lwp;
713 lwpsinfo_t lps;
714
715 #ifdef _LP64
716 core_info_t *core = P->data;
717
718 if (core->core_dmodel == PR_MODEL_ILP32) {
719 lwpsinfo32_t l32;
720
721 if (nbytes < sizeof (lwpsinfo32_t) ||
722 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
723 goto err;
724
725 lwpsinfo_32_to_n(&l32, &lps);
726 } else
727 #endif
728 if (nbytes < sizeof (lwpsinfo_t) ||
729 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
730 goto err;
731
732 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
733 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
734 return (-1);
735 }
736
737 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
738 return (0);
739
740 err:
741 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
742 return (-1);
743 }
744
745 static int
note_lwpname(struct ps_prochandle * P,size_t nbytes)746 note_lwpname(struct ps_prochandle *P, size_t nbytes)
747 {
748 prlwpname_t name;
749 lwp_info_t *lwp;
750
751 if (nbytes != sizeof (name) ||
752 read(P->asfd, &name, sizeof (name)) != sizeof (name))
753 goto err;
754
755 if ((lwp = lwpid2info(P, name.pr_lwpid)) == NULL)
756 goto err;
757
758 if (strlcpy(lwp->lwp_name, name.pr_lwpname,
759 sizeof (lwp->lwp_name)) >= sizeof (lwp->lwp_name)) {
760 errno = ENAMETOOLONG;
761 goto err;
762 }
763
764 return (0);
765
766 err:
767 dprintf("Pgrab_core: failed to read NT_LWPNAME\n");
768 return (-1);
769 }
770
771 static int
note_fdinfo(struct ps_prochandle * P,size_t nbytes)772 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
773 {
774 prfdinfo_core_t prfd;
775 fd_info_t *fip;
776
777 if ((nbytes < sizeof (prfd)) ||
778 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
779 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
780 return (-1);
781 }
782
783 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
784 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
785 return (-1);
786 }
787 if (fip->fd_info == NULL) {
788 if (proc_fdinfo_from_core(&prfd, &fip->fd_info) != 0) {
789 dprintf("Pgrab_core: failed to convert NT_FDINFO\n");
790 return (-1);
791 }
792 }
793
794 return (0);
795 }
796
797 static int
note_platform(struct ps_prochandle * P,size_t nbytes)798 note_platform(struct ps_prochandle *P, size_t nbytes)
799 {
800 core_info_t *core = P->data;
801 char *plat;
802
803 if (core->core_platform != NULL)
804 return (0); /* Already seen */
805
806 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
807 if (read(P->asfd, plat, nbytes) != nbytes) {
808 dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
809 free(plat);
810 return (-1);
811 }
812 plat[nbytes - 1] = '\0';
813 core->core_platform = plat;
814 }
815
816 return (0);
817 }
818
819 static int
note_secflags(struct ps_prochandle * P,size_t nbytes)820 note_secflags(struct ps_prochandle *P, size_t nbytes)
821 {
822 core_info_t *core = P->data;
823 prsecflags_t *psf;
824
825 if (core->core_secflags != NULL)
826 return (0); /* Already seen */
827
828 if (sizeof (*psf) != nbytes) {
829 dprintf("Pgrab_core: NT_SECFLAGS changed size."
830 " Need to handle a version change?\n");
831 return (-1);
832 }
833
834 if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
835 if (read(P->asfd, psf, nbytes) != nbytes) {
836 dprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
837 free(psf);
838 return (-1);
839 }
840
841 core->core_secflags = psf;
842 }
843
844 return (0);
845 }
846
847 static int
note_utsname(struct ps_prochandle * P,size_t nbytes)848 note_utsname(struct ps_prochandle *P, size_t nbytes)
849 {
850 core_info_t *core = P->data;
851 size_t ubytes = sizeof (struct utsname);
852 struct utsname *utsp;
853
854 if (core->core_uts != NULL || nbytes < ubytes)
855 return (0); /* Already seen or bad size */
856
857 if ((utsp = malloc(ubytes)) == NULL)
858 return (-1);
859
860 if (read(P->asfd, utsp, ubytes) != ubytes) {
861 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
862 free(utsp);
863 return (-1);
864 }
865
866 if (_libproc_debug) {
867 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
868 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
869 dprintf("uts.release = \"%s\"\n", utsp->release);
870 dprintf("uts.version = \"%s\"\n", utsp->version);
871 dprintf("uts.machine = \"%s\"\n", utsp->machine);
872 }
873
874 core->core_uts = utsp;
875 return (0);
876 }
877
878 static int
note_content(struct ps_prochandle * P,size_t nbytes)879 note_content(struct ps_prochandle *P, size_t nbytes)
880 {
881 core_info_t *core = P->data;
882 core_content_t content;
883
884 if (sizeof (core->core_content) != nbytes)
885 return (-1);
886
887 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
888 return (-1);
889
890 core->core_content = content;
891
892 dprintf("core content = %llx\n", content);
893
894 return (0);
895 }
896
897 static int
note_cred(struct ps_prochandle * P,size_t nbytes)898 note_cred(struct ps_prochandle *P, size_t nbytes)
899 {
900 core_info_t *core = P->data;
901 prcred_t *pcrp;
902 int ngroups;
903 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
904
905 /*
906 * We allow for prcred_t notes that are actually smaller than a
907 * prcred_t since the last member isn't essential if there are
908 * no group memberships. This allows for more flexibility when it
909 * comes to slightly malformed -- but still valid -- notes.
910 */
911 if (core->core_cred != NULL || nbytes < min_size)
912 return (0); /* Already seen or bad size */
913
914 ngroups = (nbytes - min_size) / sizeof (gid_t);
915 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
916
917 if ((pcrp = malloc(nbytes)) == NULL)
918 return (-1);
919
920 if (read(P->asfd, pcrp, nbytes) != nbytes) {
921 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
922 free(pcrp);
923 return (-1);
924 }
925
926 if (pcrp->pr_ngroups > ngroups) {
927 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
928 pcrp->pr_ngroups, ngroups);
929 pcrp->pr_ngroups = ngroups;
930 }
931
932 core->core_cred = pcrp;
933 return (0);
934 }
935
936 #ifdef __x86
937 static int
note_ldt(struct ps_prochandle * P,size_t nbytes)938 note_ldt(struct ps_prochandle *P, size_t nbytes)
939 {
940 core_info_t *core = P->data;
941 struct ssd *pldt;
942 uint_t nldt;
943
944 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
945 return (0); /* Already seen or bad size */
946
947 nldt = nbytes / sizeof (struct ssd);
948 nbytes = nldt * sizeof (struct ssd);
949
950 if ((pldt = malloc(nbytes)) == NULL)
951 return (-1);
952
953 if (read(P->asfd, pldt, nbytes) != nbytes) {
954 dprintf("Pgrab_core: failed to read NT_LDT\n");
955 free(pldt);
956 return (-1);
957 }
958
959 core->core_ldt = pldt;
960 core->core_nldt = nldt;
961 return (0);
962 }
963 #endif /* __i386 */
964
965 static int
note_priv(struct ps_prochandle * P,size_t nbytes)966 note_priv(struct ps_prochandle *P, size_t nbytes)
967 {
968 core_info_t *core = P->data;
969 prpriv_t *pprvp;
970
971 if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
972 return (0); /* Already seen or bad size */
973
974 if ((pprvp = malloc(nbytes)) == NULL)
975 return (-1);
976
977 if (read(P->asfd, pprvp, nbytes) != nbytes) {
978 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
979 free(pprvp);
980 return (-1);
981 }
982
983 core->core_priv = pprvp;
984 core->core_priv_size = nbytes;
985 return (0);
986 }
987
988 static int
note_priv_info(struct ps_prochandle * P,size_t nbytes)989 note_priv_info(struct ps_prochandle *P, size_t nbytes)
990 {
991 core_info_t *core = P->data;
992 extern void *__priv_parse_info();
993 priv_impl_info_t *ppii;
994
995 if (core->core_privinfo != NULL ||
996 nbytes < sizeof (priv_impl_info_t))
997 return (0); /* Already seen or bad size */
998
999 if ((ppii = malloc(nbytes)) == NULL)
1000 return (-1);
1001
1002 if (read(P->asfd, ppii, nbytes) != nbytes ||
1003 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
1004 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
1005 free(ppii);
1006 return (-1);
1007 }
1008
1009 core->core_privinfo = __priv_parse_info(ppii);
1010 core->core_ppii = ppii;
1011 return (0);
1012 }
1013
1014 static int
note_zonename(struct ps_prochandle * P,size_t nbytes)1015 note_zonename(struct ps_prochandle *P, size_t nbytes)
1016 {
1017 core_info_t *core = P->data;
1018 char *zonename;
1019
1020 if (core->core_zonename != NULL)
1021 return (0); /* Already seen */
1022
1023 if (nbytes != 0) {
1024 if ((zonename = malloc(nbytes)) == NULL)
1025 return (-1);
1026 if (read(P->asfd, zonename, nbytes) != nbytes) {
1027 dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
1028 free(zonename);
1029 return (-1);
1030 }
1031 zonename[nbytes - 1] = '\0';
1032 core->core_zonename = zonename;
1033 }
1034
1035 return (0);
1036 }
1037
1038 static int
note_auxv(struct ps_prochandle * P,size_t nbytes)1039 note_auxv(struct ps_prochandle *P, size_t nbytes)
1040 {
1041 size_t n, i;
1042
1043 #ifdef _LP64
1044 core_info_t *core = P->data;
1045
1046 if (core->core_dmodel == PR_MODEL_ILP32) {
1047 auxv32_t *a32;
1048
1049 n = nbytes / sizeof (auxv32_t);
1050 nbytes = n * sizeof (auxv32_t);
1051 a32 = alloca(nbytes);
1052
1053 if (read(P->asfd, a32, nbytes) != nbytes) {
1054 dprintf("Pgrab_core: failed to read NT_AUXV\n");
1055 return (-1);
1056 }
1057
1058 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1059 return (-1);
1060
1061 for (i = 0; i < n; i++)
1062 auxv_32_to_n(&a32[i], &P->auxv[i]);
1063
1064 } else {
1065 #endif
1066 n = nbytes / sizeof (auxv_t);
1067 nbytes = n * sizeof (auxv_t);
1068
1069 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1070 return (-1);
1071
1072 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1073 free(P->auxv);
1074 P->auxv = NULL;
1075 return (-1);
1076 }
1077 #ifdef _LP64
1078 }
1079 #endif
1080
1081 if (_libproc_debug) {
1082 for (i = 0; i < n; i++) {
1083 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1084 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1085 }
1086 }
1087
1088 /*
1089 * Defensive coding for loops which depend upon the auxv array being
1090 * terminated by an AT_NULL element; in each case, we've allocated
1091 * P->auxv to have an additional element which we force to be AT_NULL.
1092 */
1093 P->auxv[n].a_type = AT_NULL;
1094 P->auxv[n].a_un.a_val = 0L;
1095 P->nauxv = (int)n;
1096
1097 return (0);
1098 }
1099
1100 /*
1101 * The xregs are not a fixed size on all architectures (notably x86) and in
1102 * general the prxregset_t has become opaque to deal with this. This means that
1103 * validating the note itself can be a little more challenging. Especially as
1104 * this can change across time. In this case we require that our consumers
1105 * perform this validation.
1106 */
1107 static int
note_xreg(struct ps_prochandle * P,size_t nbytes)1108 note_xreg(struct ps_prochandle *P, size_t nbytes)
1109 {
1110 core_info_t *core = P->data;
1111 lwp_info_t *lwp = core->core_lwp;
1112 prxregset_t *xregs;
1113 ssize_t sret;
1114
1115 if (lwp == NULL || lwp->lwp_xregs != NULL)
1116 return (0); /* No lwp yet, already seen, or bad size */
1117
1118 if ((xregs = malloc(nbytes)) == NULL)
1119 return (-1);
1120
1121 sret = read(P->asfd, xregs, nbytes);
1122 if (sret < 0 || (size_t)sret != nbytes) {
1123 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
1124 free(xregs);
1125 return (-1);
1126 }
1127
1128 lwp->lwp_xregs = xregs;
1129 lwp->lwp_xregsize = nbytes;
1130 return (0);
1131 }
1132
1133 #ifdef __sparc
1134 static int
note_gwindows(struct ps_prochandle * P,size_t nbytes)1135 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1136 {
1137 core_info_t *core = P->data;
1138 lwp_info_t *lwp = core->core_lwp;
1139
1140 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1141 return (0); /* No lwp yet or already seen or no data */
1142
1143 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1144 return (-1);
1145
1146 /*
1147 * Since the amount of gwindows data varies with how many windows were
1148 * actually saved, we just read up to the minimum of the note size
1149 * and the size of the gwindows_t type. It doesn't matter if the read
1150 * fails since we have to zero out gwindows first anyway.
1151 */
1152 #ifdef _LP64
1153 if (core->core_dmodel == PR_MODEL_ILP32) {
1154 gwindows32_t g32;
1155
1156 (void) memset(&g32, 0, sizeof (g32));
1157 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1158 gwindows_32_to_n(&g32, lwp->lwp_gwins);
1159
1160 } else {
1161 #endif
1162 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1163 (void) read(P->asfd, lwp->lwp_gwins,
1164 MIN(nbytes, sizeof (gwindows_t)));
1165 #ifdef _LP64
1166 }
1167 #endif
1168 return (0);
1169 }
1170
1171 #ifdef __sparcv9
1172 static int
note_asrs(struct ps_prochandle * P,size_t nbytes)1173 note_asrs(struct ps_prochandle *P, size_t nbytes)
1174 {
1175 core_info_t *core = P->data;
1176 lwp_info_t *lwp = core->core_lwp;
1177 int64_t *asrs;
1178
1179 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1180 return (0); /* No lwp yet, already seen, or bad size */
1181
1182 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1183 return (-1);
1184
1185 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1186 dprintf("Pgrab_core: failed to read NT_ASRS\n");
1187 free(asrs);
1188 return (-1);
1189 }
1190
1191 lwp->lwp_asrs = asrs;
1192 return (0);
1193 }
1194 #endif /* __sparcv9 */
1195 #endif /* __sparc */
1196
1197 static int
note_spymaster(struct ps_prochandle * P,size_t nbytes)1198 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1199 {
1200 #ifdef _LP64
1201 core_info_t *core = P->data;
1202
1203 if (core->core_dmodel == PR_MODEL_ILP32) {
1204 psinfo32_t ps32;
1205
1206 if (nbytes < sizeof (psinfo32_t) ||
1207 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1208 goto err;
1209
1210 psinfo_32_to_n(&ps32, &P->spymaster);
1211 } else
1212 #endif
1213 if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1214 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1215 goto err;
1216
1217 dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1218 dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1219 dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1220
1221 return (0);
1222
1223 err:
1224 dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1225 return (-1);
1226 }
1227
1228 static int
note_upanic(struct ps_prochandle * P,size_t nbytes)1229 note_upanic(struct ps_prochandle *P, size_t nbytes)
1230 {
1231 core_info_t *core = P->data;
1232 prupanic_t *pru;
1233
1234 if (core->core_upanic != NULL)
1235 return (0);
1236
1237 if (sizeof (*pru) != nbytes) {
1238 dprintf("Pgrab_core: NT_UPANIC changed size."
1239 " Need to handle a version change?\n");
1240 return (-1);
1241 }
1242
1243 if (nbytes != 0 && ((pru = malloc(nbytes)) != NULL)) {
1244 if (read(P->asfd, pru, nbytes) != nbytes) {
1245 dprintf("Pgrab_core: failed to read NT_UPANIC\n");
1246 free(pru);
1247 return (-1);
1248 }
1249
1250 core->core_upanic = pru;
1251 }
1252
1253 return (0);
1254 }
1255
1256 static int
note_cwd(struct ps_prochandle * P,size_t nbytes)1257 note_cwd(struct ps_prochandle *P, size_t nbytes)
1258 {
1259 core_info_t *core = P->data;
1260 prcwd_t *cwd;
1261
1262 if (core->core_cwd != NULL)
1263 return (0);
1264
1265 if (sizeof (*cwd) != nbytes) {
1266 dprintf("Pgrab_core: NT_CWD changed size."
1267 " Need to handle a version change?\n");
1268 return (-1);
1269 }
1270
1271 if (nbytes != 0 && ((cwd = malloc(nbytes)) != NULL)) {
1272 if (read(P->asfd, cwd, nbytes) != nbytes) {
1273 dprintf("Pgrab_core: failed to read NT_CWD\n");
1274 free(cwd);
1275 return (-1);
1276 }
1277
1278 core->core_cwd = cwd;
1279 }
1280
1281 return (0);
1282 }
1283
1284 static int
note_notsup(struct ps_prochandle * P,size_t nbytes)1285 note_notsup(struct ps_prochandle *P, size_t nbytes)
1286 {
1287 dprintf("skipping unsupported note type of size %ld bytes\n",
1288 (ulong_t)nbytes);
1289 return (0);
1290 }
1291
1292 #if NT_NUM != NT_CWD
1293 #error "NT_NUM has grown. Update nhdlrs array"
1294 #endif
1295
1296 /*
1297 * Populate a table of function pointers indexed by Note type with our
1298 * functions to process each type of core file note:
1299 */
1300 static int (*nhdlrs[NT_NUM + 1])(struct ps_prochandle *, size_t) = {
1301 #ifdef __x86
1302 [NT_PRSTATUS] = note_linux_prstatus,
1303 #endif
1304 [NT_PRFPREG] = note_notsup,
1305 #ifdef __x86
1306 [NT_PRPSINFO] = note_linux_psinfo,
1307 #endif
1308 [NT_PRXREG] = note_xreg,
1309 [NT_PLATFORM] = note_platform,
1310 [NT_AUXV] = note_auxv,
1311 #ifdef __sparc
1312 [NT_GWINDOWS] = note_gwindows,
1313 #ifdef __sparcv9
1314 [NT_ASRS] = note_asrs,
1315 #endif
1316 #endif
1317 #ifdef __x86
1318 [NT_LDT] = note_ldt,
1319 #endif
1320 [NT_PSTATUS] = note_pstatus,
1321 [NT_PSINFO] = note_psinfo,
1322 [NT_PRCRED] = note_cred,
1323 [NT_UTSNAME] = note_utsname,
1324 [NT_LWPSTATUS] = note_lwpstatus,
1325 [NT_LWPSINFO] = note_lwpsinfo,
1326 [NT_PRPRIV] = note_priv,
1327 [NT_PRPRIVINFO] = note_priv_info,
1328 [NT_CONTENT] = note_content,
1329 [NT_ZONENAME] = note_zonename,
1330 [NT_FDINFO] = note_fdinfo,
1331 [NT_SPYMASTER] = note_spymaster,
1332 [NT_SECFLAGS] = note_secflags,
1333 [NT_LWPNAME] = note_lwpname,
1334 [NT_UPANIC] = note_upanic,
1335 [NT_CWD] = note_cwd
1336 };
1337
1338 static void
core_report_mapping(struct ps_prochandle * P,GElf_Phdr * php)1339 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1340 {
1341 prkillinfo_t killinfo;
1342 siginfo_t *si = &killinfo.prk_info;
1343 char signame[SIG2STR_MAX], sig[64], info[64];
1344 void *addr = (void *)(uintptr_t)php->p_vaddr;
1345
1346 const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1347 const char *incfmt = "core file incomplete due to %s%s\n";
1348 const char *msgfmt = "mappings at and above %p are missing\n";
1349
1350 if (!(php->p_flags & PF_SUNW_KILLED)) {
1351 int err = 0;
1352
1353 (void) pread64(P->asfd, &err,
1354 sizeof (err), (off64_t)php->p_offset);
1355
1356 Perror_printf(P, errfmt, addr, strerror(err));
1357 dprintf(errfmt, addr, strerror(err));
1358 return;
1359 }
1360
1361 if (!(php->p_flags & PF_SUNW_SIGINFO))
1362 return;
1363
1364 (void) memset(&killinfo, 0, sizeof (killinfo));
1365
1366 (void) pread64(P->asfd, &killinfo,
1367 sizeof (killinfo), (off64_t)php->p_offset);
1368
1369 /*
1370 * While there is (or at least should be) only one segment that has
1371 * PF_SUNW_SIGINFO set, the signal information there is globally
1372 * useful (even if only to those debugging libproc consumers); we hang
1373 * the signal information gleaned here off of the ps_prochandle.
1374 */
1375 P->map_missing = php->p_vaddr;
1376 P->killinfo = killinfo.prk_info;
1377
1378 if (sig2str(si->si_signo, signame) == -1) {
1379 (void) snprintf(sig, sizeof (sig),
1380 "<Unknown signal: 0x%x>, ", si->si_signo);
1381 } else {
1382 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1383 }
1384
1385 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1386 (void) snprintf(info, sizeof (info),
1387 "pid=%d uid=%d zone=%d ctid=%d",
1388 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1389 } else {
1390 (void) snprintf(info, sizeof (info),
1391 "code=%d", si->si_code);
1392 }
1393
1394 Perror_printf(P, incfmt, sig, info);
1395 Perror_printf(P, msgfmt, addr);
1396
1397 dprintf(incfmt, sig, info);
1398 dprintf(msgfmt, addr);
1399 }
1400
1401 /*
1402 * Add information on the address space mapping described by the given
1403 * PT_LOAD program header. We fill in more information on the mapping later.
1404 */
1405 static int
core_add_mapping(struct ps_prochandle * P,GElf_Phdr * php)1406 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1407 {
1408 core_info_t *core = P->data;
1409 prmap_t pmap;
1410
1411 dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1412 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1413 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1414
1415 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1416 pmap.pr_size = php->p_memsz;
1417
1418 /*
1419 * If Pgcore() or elfcore() fail to write a mapping, they will set
1420 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1421 */
1422 if (php->p_flags & PF_SUNW_FAILURE) {
1423 core_report_mapping(P, php);
1424 } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1425 Perror_printf(P, "core file may be corrupt -- data for mapping "
1426 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1427 dprintf("core file may be corrupt -- data for mapping "
1428 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1429 }
1430
1431 /*
1432 * The mapping name and offset will hopefully be filled in
1433 * by the librtld_db agent. Unfortunately, if it isn't a
1434 * shared library mapping, this information is gone forever.
1435 */
1436 pmap.pr_mapname[0] = '\0';
1437 pmap.pr_offset = 0;
1438
1439 pmap.pr_mflags = 0;
1440 if (php->p_flags & PF_R)
1441 pmap.pr_mflags |= MA_READ;
1442 if (php->p_flags & PF_W)
1443 pmap.pr_mflags |= MA_WRITE;
1444 if (php->p_flags & PF_X)
1445 pmap.pr_mflags |= MA_EXEC;
1446
1447 if (php->p_filesz == 0)
1448 pmap.pr_mflags |= MA_RESERVED1;
1449
1450 /*
1451 * At the time of adding this mapping, we just zero the pagesize.
1452 * Once we've processed more of the core file, we'll have the
1453 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1454 */
1455 pmap.pr_pagesize = 0;
1456
1457 /*
1458 * Unfortunately whether or not the mapping was a System V
1459 * shared memory segment is lost. We use -1 to mark it as not shm.
1460 */
1461 pmap.pr_shmid = -1;
1462
1463 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1464 }
1465
1466 /*
1467 * Given a virtual address, name the mapping at that address using the
1468 * specified name, and return the map_info_t pointer.
1469 */
1470 static map_info_t *
core_name_mapping(struct ps_prochandle * P,uintptr_t addr,const char * name)1471 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1472 {
1473 map_info_t *mp = Paddr2mptr(P, addr);
1474
1475 if (mp != NULL) {
1476 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1477 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1478 }
1479
1480 return (mp);
1481 }
1482
1483 /*
1484 * libproc uses libelf for all of its symbol table manipulation. This function
1485 * takes a symbol table and string table from a core file and places them
1486 * in a memory backed elf file.
1487 */
1488 static void
fake_up_symtab(struct ps_prochandle * P,const elf_file_header_t * ehdr,GElf_Shdr * symtab,GElf_Shdr * strtab)1489 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1490 GElf_Shdr *symtab, GElf_Shdr *strtab)
1491 {
1492 size_t size;
1493 off64_t off, base;
1494 map_info_t *mp;
1495 file_info_t *fp;
1496 Elf_Scn *scn;
1497 Elf_Data *data;
1498
1499 if (symtab->sh_addr == 0 ||
1500 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1501 (fp = mp->map_file) == NULL) {
1502 dprintf("fake_up_symtab: invalid section\n");
1503 return;
1504 }
1505
1506 if (fp->file_symtab.sym_data_pri != NULL) {
1507 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1508 (long)symtab->sh_addr);
1509 return;
1510 }
1511
1512 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1513 struct {
1514 Elf32_Ehdr ehdr;
1515 Elf32_Shdr shdr[3];
1516 char data[1];
1517 } *b;
1518
1519 base = sizeof (b->ehdr) + sizeof (b->shdr);
1520 size = base + symtab->sh_size + strtab->sh_size;
1521
1522 if ((b = calloc(1, size)) == NULL)
1523 return;
1524
1525 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1526 sizeof (ehdr->e_ident));
1527 b->ehdr.e_type = ehdr->e_type;
1528 b->ehdr.e_machine = ehdr->e_machine;
1529 b->ehdr.e_version = ehdr->e_version;
1530 b->ehdr.e_flags = ehdr->e_flags;
1531 b->ehdr.e_ehsize = sizeof (b->ehdr);
1532 b->ehdr.e_shoff = sizeof (b->ehdr);
1533 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1534 b->ehdr.e_shnum = 3;
1535 off = 0;
1536
1537 b->shdr[1].sh_size = symtab->sh_size;
1538 b->shdr[1].sh_type = SHT_SYMTAB;
1539 b->shdr[1].sh_offset = off + base;
1540 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1541 b->shdr[1].sh_link = 2;
1542 b->shdr[1].sh_info = symtab->sh_info;
1543 b->shdr[1].sh_addralign = symtab->sh_addralign;
1544
1545 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1546 symtab->sh_offset) != b->shdr[1].sh_size) {
1547 dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1548 free(b);
1549 return;
1550 }
1551
1552 off += b->shdr[1].sh_size;
1553
1554 b->shdr[2].sh_flags = SHF_STRINGS;
1555 b->shdr[2].sh_size = strtab->sh_size;
1556 b->shdr[2].sh_type = SHT_STRTAB;
1557 b->shdr[2].sh_offset = off + base;
1558 b->shdr[2].sh_info = strtab->sh_info;
1559 b->shdr[2].sh_addralign = 1;
1560
1561 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1562 strtab->sh_offset) != b->shdr[2].sh_size) {
1563 dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1564 free(b);
1565 return;
1566 }
1567
1568 off += b->shdr[2].sh_size;
1569
1570 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1571 if (fp->file_symtab.sym_elf == NULL) {
1572 free(b);
1573 return;
1574 }
1575
1576 fp->file_symtab.sym_elfmem = b;
1577 #ifdef _LP64
1578 } else {
1579 struct {
1580 Elf64_Ehdr ehdr;
1581 Elf64_Shdr shdr[3];
1582 char data[1];
1583 } *b;
1584
1585 base = sizeof (b->ehdr) + sizeof (b->shdr);
1586 size = base + symtab->sh_size + strtab->sh_size;
1587
1588 if ((b = calloc(1, size)) == NULL)
1589 return;
1590
1591 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1592 sizeof (ehdr->e_ident));
1593 b->ehdr.e_type = ehdr->e_type;
1594 b->ehdr.e_machine = ehdr->e_machine;
1595 b->ehdr.e_version = ehdr->e_version;
1596 b->ehdr.e_flags = ehdr->e_flags;
1597 b->ehdr.e_ehsize = sizeof (b->ehdr);
1598 b->ehdr.e_shoff = sizeof (b->ehdr);
1599 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1600 b->ehdr.e_shnum = 3;
1601 off = 0;
1602
1603 b->shdr[1].sh_size = symtab->sh_size;
1604 b->shdr[1].sh_type = SHT_SYMTAB;
1605 b->shdr[1].sh_offset = off + base;
1606 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1607 b->shdr[1].sh_link = 2;
1608 b->shdr[1].sh_info = symtab->sh_info;
1609 b->shdr[1].sh_addralign = symtab->sh_addralign;
1610
1611 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1612 symtab->sh_offset) != b->shdr[1].sh_size) {
1613 free(b);
1614 return;
1615 }
1616
1617 off += b->shdr[1].sh_size;
1618
1619 b->shdr[2].sh_flags = SHF_STRINGS;
1620 b->shdr[2].sh_size = strtab->sh_size;
1621 b->shdr[2].sh_type = SHT_STRTAB;
1622 b->shdr[2].sh_offset = off + base;
1623 b->shdr[2].sh_info = strtab->sh_info;
1624 b->shdr[2].sh_addralign = 1;
1625
1626 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1627 strtab->sh_offset) != b->shdr[2].sh_size) {
1628 free(b);
1629 return;
1630 }
1631
1632 off += b->shdr[2].sh_size;
1633
1634 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1635 if (fp->file_symtab.sym_elf == NULL) {
1636 free(b);
1637 return;
1638 }
1639
1640 fp->file_symtab.sym_elfmem = b;
1641 #endif
1642 }
1643
1644 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1645 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1646 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1647 (data = elf_getdata(scn, NULL)) == NULL) {
1648 dprintf("fake_up_symtab: failed to get section data at %p\n",
1649 (void *)scn);
1650 goto err;
1651 }
1652
1653 fp->file_symtab.sym_strs = data->d_buf;
1654 fp->file_symtab.sym_strsz = data->d_size;
1655 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1656 fp->file_symtab.sym_hdr_pri = *symtab;
1657 fp->file_symtab.sym_strhdr = *strtab;
1658
1659 optimize_symtab(&fp->file_symtab);
1660
1661 return;
1662 err:
1663 (void) elf_end(fp->file_symtab.sym_elf);
1664 free(fp->file_symtab.sym_elfmem);
1665 fp->file_symtab.sym_elf = NULL;
1666 fp->file_symtab.sym_elfmem = NULL;
1667 }
1668
1669 static void
core_phdr_to_gelf(const Elf32_Phdr * src,GElf_Phdr * dst)1670 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1671 {
1672 dst->p_type = src->p_type;
1673 dst->p_flags = src->p_flags;
1674 dst->p_offset = (Elf64_Off)src->p_offset;
1675 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1676 dst->p_paddr = (Elf64_Addr)src->p_paddr;
1677 dst->p_filesz = (Elf64_Xword)src->p_filesz;
1678 dst->p_memsz = (Elf64_Xword)src->p_memsz;
1679 dst->p_align = (Elf64_Xword)src->p_align;
1680 }
1681
1682 static void
core_shdr_to_gelf(const Elf32_Shdr * src,GElf_Shdr * dst)1683 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1684 {
1685 dst->sh_name = src->sh_name;
1686 dst->sh_type = src->sh_type;
1687 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1688 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1689 dst->sh_offset = (Elf64_Off)src->sh_offset;
1690 dst->sh_size = (Elf64_Xword)src->sh_size;
1691 dst->sh_link = src->sh_link;
1692 dst->sh_info = src->sh_info;
1693 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1694 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1695 }
1696
1697 /*
1698 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1699 */
1700 static int
core_elf_fdopen(elf_file_t * efp,GElf_Half type,int * perr)1701 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1702 {
1703 #ifdef _BIG_ENDIAN
1704 uchar_t order = ELFDATA2MSB;
1705 #else
1706 uchar_t order = ELFDATA2LSB;
1707 #endif
1708 Elf32_Ehdr e32;
1709 int is_noelf = -1;
1710 int isa_err = 0;
1711
1712 /*
1713 * Because 32-bit libelf cannot deal with large files, we need to read,
1714 * check, and convert the file header manually in case type == ET_CORE.
1715 */
1716 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1717 if (perr != NULL)
1718 *perr = G_FORMAT;
1719 goto err;
1720 }
1721 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1722 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1723 e32.e_version != EV_CURRENT) {
1724 if (perr != NULL) {
1725 if (is_noelf == 0 && isa_err) {
1726 *perr = G_ISAINVAL;
1727 } else {
1728 *perr = G_FORMAT;
1729 }
1730 }
1731 goto err;
1732 }
1733
1734 /*
1735 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1736 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1737 * and convert it to a elf_file_header_t. Otherwise, the file is
1738 * 32-bit, so convert e32 to a elf_file_header_t.
1739 */
1740 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1741 #ifdef _LP64
1742 Elf64_Ehdr e64;
1743
1744 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1745 if (perr != NULL)
1746 *perr = G_FORMAT;
1747 goto err;
1748 }
1749
1750 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1751 efp->e_hdr.e_type = e64.e_type;
1752 efp->e_hdr.e_machine = e64.e_machine;
1753 efp->e_hdr.e_version = e64.e_version;
1754 efp->e_hdr.e_entry = e64.e_entry;
1755 efp->e_hdr.e_phoff = e64.e_phoff;
1756 efp->e_hdr.e_shoff = e64.e_shoff;
1757 efp->e_hdr.e_flags = e64.e_flags;
1758 efp->e_hdr.e_ehsize = e64.e_ehsize;
1759 efp->e_hdr.e_phentsize = e64.e_phentsize;
1760 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1761 efp->e_hdr.e_shentsize = e64.e_shentsize;
1762 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1763 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1764 #else /* _LP64 */
1765 if (perr != NULL)
1766 *perr = G_LP64;
1767 goto err;
1768 #endif /* _LP64 */
1769 } else {
1770 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1771 efp->e_hdr.e_type = e32.e_type;
1772 efp->e_hdr.e_machine = e32.e_machine;
1773 efp->e_hdr.e_version = e32.e_version;
1774 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1775 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1776 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1777 efp->e_hdr.e_flags = e32.e_flags;
1778 efp->e_hdr.e_ehsize = e32.e_ehsize;
1779 efp->e_hdr.e_phentsize = e32.e_phentsize;
1780 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1781 efp->e_hdr.e_shentsize = e32.e_shentsize;
1782 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1783 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1784 }
1785
1786 /*
1787 * If the number of section headers or program headers or the section
1788 * header string table index would overflow their respective fields
1789 * in the ELF header, they're stored in the section header at index
1790 * zero. To simplify use elsewhere, we look for those sentinel values
1791 * here.
1792 */
1793 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1794 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1795 efp->e_hdr.e_phnum == PN_XNUM) {
1796 GElf_Shdr shdr;
1797
1798 dprintf("extended ELF header\n");
1799
1800 if (efp->e_hdr.e_shoff == 0) {
1801 if (perr != NULL)
1802 *perr = G_FORMAT;
1803 goto err;
1804 }
1805
1806 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1807 Elf32_Shdr shdr32;
1808
1809 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1810 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1811 if (perr != NULL)
1812 *perr = G_FORMAT;
1813 goto err;
1814 }
1815
1816 core_shdr_to_gelf(&shdr32, &shdr);
1817 } else {
1818 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1819 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1820 if (perr != NULL)
1821 *perr = G_FORMAT;
1822 goto err;
1823 }
1824 }
1825
1826 if (efp->e_hdr.e_shnum == 0) {
1827 efp->e_hdr.e_shnum = shdr.sh_size;
1828 dprintf("section header count %lu\n",
1829 (ulong_t)shdr.sh_size);
1830 }
1831
1832 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1833 efp->e_hdr.e_shstrndx = shdr.sh_link;
1834 dprintf("section string index %u\n", shdr.sh_link);
1835 }
1836
1837 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1838 efp->e_hdr.e_phnum = shdr.sh_info;
1839 dprintf("program header count %u\n", shdr.sh_info);
1840 }
1841
1842 } else if (efp->e_hdr.e_phoff != 0) {
1843 GElf_Phdr phdr;
1844 uint64_t phnum;
1845
1846 /*
1847 * It's possible this core file came from a system that
1848 * accidentally truncated the e_phnum field without correctly
1849 * using the extended format in the section header at index
1850 * zero. We try to detect and correct that specific type of
1851 * corruption by using the knowledge that the core dump
1852 * routines usually place the data referenced by the first
1853 * program header immediately after the last header element.
1854 */
1855 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1856 Elf32_Phdr phdr32;
1857
1858 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1859 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1860 if (perr != NULL)
1861 *perr = G_FORMAT;
1862 goto err;
1863 }
1864
1865 core_phdr_to_gelf(&phdr32, &phdr);
1866 } else {
1867 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1868 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1869 if (perr != NULL)
1870 *perr = G_FORMAT;
1871 goto err;
1872 }
1873 }
1874
1875 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1876 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1877 phnum /= efp->e_hdr.e_phentsize;
1878
1879 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1880 dprintf("suspicious program header count %u %u\n",
1881 (uint_t)phnum, efp->e_hdr.e_phnum);
1882
1883 /*
1884 * If the new program header count we computed doesn't
1885 * jive with count in the ELF header, we'll use the
1886 * data that's there and hope for the best.
1887 *
1888 * If it does, it's also possible that the section
1889 * header offset is incorrect; we'll check that and
1890 * possibly try to fix it.
1891 */
1892 if (phnum <= INT_MAX &&
1893 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1894
1895 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1896 efp->e_hdr.e_phentsize *
1897 (uint_t)efp->e_hdr.e_phnum) {
1898 efp->e_hdr.e_shoff =
1899 efp->e_hdr.e_phoff +
1900 efp->e_hdr.e_phentsize * phnum;
1901 }
1902
1903 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1904 dprintf("using new program header count\n");
1905 } else {
1906 dprintf("inconsistent program header count\n");
1907 }
1908 }
1909 }
1910
1911 /*
1912 * The libelf implementation was never ported to be large-file aware.
1913 * This is typically not a problem for your average executable or
1914 * shared library, but a large 32-bit core file can exceed 2GB in size.
1915 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1916 * in Pfgrab_core() below will do its own i/o and struct conversion.
1917 */
1918
1919 if (type == ET_CORE) {
1920 efp->e_elf = NULL;
1921 return (0);
1922 }
1923
1924 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1925 if (perr != NULL)
1926 *perr = G_ELF;
1927 goto err;
1928 }
1929
1930 return (0);
1931
1932 err:
1933 efp->e_elf = NULL;
1934 return (-1);
1935 }
1936
1937 /*
1938 * Open the specified file and then do a core_elf_fdopen on it.
1939 */
1940 static int
core_elf_open(elf_file_t * efp,const char * path,GElf_Half type,int * perr)1941 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1942 {
1943 (void) memset(efp, 0, sizeof (elf_file_t));
1944
1945 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1946 if (core_elf_fdopen(efp, type, perr) == 0)
1947 return (0);
1948
1949 (void) close(efp->e_fd);
1950 efp->e_fd = -1;
1951 }
1952
1953 return (-1);
1954 }
1955
1956 /*
1957 * Close the ELF handle and file descriptor.
1958 */
1959 static void
core_elf_close(elf_file_t * efp)1960 core_elf_close(elf_file_t *efp)
1961 {
1962 if (efp->e_elf != NULL) {
1963 (void) elf_end(efp->e_elf);
1964 efp->e_elf = NULL;
1965 }
1966
1967 if (efp->e_fd != -1) {
1968 (void) close(efp->e_fd);
1969 efp->e_fd = -1;
1970 }
1971 }
1972
1973 /*
1974 * Given an ELF file for a statically linked executable, locate the likely
1975 * primary text section and fill in rl_base with its virtual address.
1976 */
1977 static map_info_t *
core_find_text(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1978 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1979 {
1980 GElf_Phdr phdr;
1981 uint_t i;
1982 size_t nphdrs;
1983
1984 if (elf_getphdrnum(elf, &nphdrs) == -1)
1985 return (NULL);
1986
1987 for (i = 0; i < nphdrs; i++) {
1988 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1989 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1990 rlp->rl_base = phdr.p_vaddr;
1991 return (Paddr2mptr(P, rlp->rl_base));
1992 }
1993 }
1994
1995 return (NULL);
1996 }
1997
1998 /*
1999 * Given an ELF file and the librtld_db structure corresponding to its primary
2000 * text mapping, deduce where its data segment was loaded and fill in
2001 * rl_data_base and prmap_t.pr_offset accordingly.
2002 */
2003 static map_info_t *
core_find_data(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)2004 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
2005 {
2006 GElf_Ehdr ehdr;
2007 GElf_Phdr phdr;
2008 map_info_t *mp;
2009 uint_t i, pagemask;
2010 size_t nphdrs;
2011
2012 rlp->rl_data_base = (uintptr_t)NULL;
2013
2014 /*
2015 * Find the first loadable, writeable Phdr and compute rl_data_base
2016 * as the virtual address at which is was loaded.
2017 */
2018 if (gelf_getehdr(elf, &ehdr) == NULL ||
2019 elf_getphdrnum(elf, &nphdrs) == -1)
2020 return (NULL);
2021
2022 for (i = 0; i < nphdrs; i++) {
2023 if (gelf_getphdr(elf, i, &phdr) != NULL &&
2024 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
2025 rlp->rl_data_base = phdr.p_vaddr;
2026 if (ehdr.e_type == ET_DYN)
2027 rlp->rl_data_base += rlp->rl_base;
2028 break;
2029 }
2030 }
2031
2032 /*
2033 * If we didn't find an appropriate phdr or if the address we
2034 * computed has no mapping, return NULL.
2035 */
2036 if (rlp->rl_data_base == (uintptr_t)NULL ||
2037 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
2038 return (NULL);
2039
2040 /*
2041 * It wouldn't be procfs-related code if we didn't make use of
2042 * unclean knowledge of segvn, even in userland ... the prmap_t's
2043 * pr_offset field will be the segvn offset from mmap(2)ing the
2044 * data section, which will be the file offset & PAGEMASK.
2045 */
2046 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
2047 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
2048
2049 return (mp);
2050 }
2051
2052 /*
2053 * Librtld_db agent callback for iterating over load object mappings.
2054 * For each load object, we allocate a new file_info_t, perform naming,
2055 * and attempt to construct a symbol table for the load object.
2056 */
2057 static int
core_iter_mapping(const rd_loadobj_t * rlp,struct ps_prochandle * P)2058 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
2059 {
2060 core_info_t *core = P->data;
2061 char lname[PATH_MAX], buf[PATH_MAX];
2062 file_info_t *fp;
2063 map_info_t *mp;
2064
2065 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
2066 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
2067 return (1); /* Keep going; forget this if we can't get a name */
2068 }
2069
2070 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
2071 lname, (void *)rlp->rl_base);
2072
2073 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
2074 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
2075 return (1); /* No mapping; advance to next mapping */
2076 }
2077
2078 /*
2079 * Create a new file_info_t for this mapping, and therefore for
2080 * this load object.
2081 *
2082 * If there's an ELF header at the beginning of this mapping,
2083 * file_info_new() will try to use its section headers to
2084 * identify any other mappings that belong to this load object.
2085 */
2086 if ((fp = mp->map_file) == NULL &&
2087 (fp = file_info_new(P, mp)) == NULL) {
2088 core->core_errno = errno;
2089 dprintf("failed to malloc mapping data\n");
2090 return (0); /* Abort */
2091 }
2092 fp->file_map = mp;
2093
2094 /* Create a local copy of the load object representation */
2095 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
2096 core->core_errno = errno;
2097 dprintf("failed to malloc mapping data\n");
2098 return (0); /* Abort */
2099 }
2100 *fp->file_lo = *rlp;
2101
2102 if (lname[0] != '\0') {
2103 /*
2104 * Naming dance part 1: if we got a name from librtld_db, then
2105 * copy this name to the prmap_t if it is unnamed. If the
2106 * file_info_t is unnamed, name it after the lname.
2107 */
2108 if (mp->map_pmap.pr_mapname[0] == '\0') {
2109 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2110 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2111 }
2112
2113 if (fp->file_lname == NULL)
2114 fp->file_lname = strdup(lname);
2115
2116 } else if (fp->file_lname == NULL &&
2117 mp->map_pmap.pr_mapname[0] != '\0') {
2118 /*
2119 * Naming dance part 2: if the mapping is named and the
2120 * file_info_t is not, name the file after the mapping.
2121 */
2122 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2123 }
2124
2125 if ((fp->file_rname == NULL) &&
2126 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2127 fp->file_rname = strdup(buf);
2128
2129 if (fp->file_lname != NULL)
2130 fp->file_lbase = basename(fp->file_lname);
2131 if (fp->file_rname != NULL)
2132 fp->file_rbase = basename(fp->file_rname);
2133
2134 /* Associate the file and the mapping. */
2135 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2136 fp->file_pname[PRMAPSZ - 1] = '\0';
2137
2138 /*
2139 * If no section headers were available then we'll have to
2140 * identify this load object's other mappings with what we've
2141 * got: the start and end of the object's corresponding
2142 * address space.
2143 */
2144 if (fp->file_saddrs == NULL) {
2145 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2146 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2147
2148 if (mp->map_file == NULL) {
2149 dprintf("core_iter_mapping %s: associating "
2150 "segment at %p\n",
2151 fp->file_pname,
2152 (void *)mp->map_pmap.pr_vaddr);
2153 mp->map_file = fp;
2154 fp->file_ref++;
2155 } else {
2156 dprintf("core_iter_mapping %s: segment at "
2157 "%p already associated with %s\n",
2158 fp->file_pname,
2159 (void *)mp->map_pmap.pr_vaddr,
2160 (mp == fp->file_map ? "this file" :
2161 mp->map_file->file_pname));
2162 }
2163 }
2164 }
2165
2166 /* Ensure that all this file's mappings are named. */
2167 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2168 mp->map_file == fp; mp++) {
2169 if (mp->map_pmap.pr_mapname[0] == '\0' &&
2170 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2171 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2172 PRMAPSZ);
2173 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2174 }
2175 }
2176
2177 /* Attempt to build a symbol table for this file. */
2178 Pbuild_file_symtab(P, fp);
2179 if (fp->file_elf == NULL)
2180 dprintf("core_iter_mapping: no symtab for %s\n",
2181 fp->file_pname);
2182
2183 /* Locate the start of a data segment associated with this file. */
2184 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2185 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2186 fp->file_pname, (void *)fp->file_lo->rl_data_base,
2187 mp->map_pmap.pr_offset);
2188 } else {
2189 dprintf("core_iter_mapping: no data found for %s\n",
2190 fp->file_pname);
2191 }
2192
2193 return (1); /* Advance to next mapping */
2194 }
2195
2196 /*
2197 * Callback function for Pfindexec(). In order to confirm a given pathname,
2198 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2199 */
2200 static int
core_exec_open(const char * path,void * efp)2201 core_exec_open(const char *path, void *efp)
2202 {
2203 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2204 return (1);
2205 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2206 return (1);
2207 return (0);
2208 }
2209
2210 /*
2211 * Attempt to load any section headers found in the core file. If present,
2212 * this will refer to non-loadable data added to the core file by the kernel
2213 * based on coreadm(8) settings, including CTF data and the symbol table.
2214 */
2215 static void
core_load_shdrs(struct ps_prochandle * P,elf_file_t * efp)2216 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2217 {
2218 GElf_Shdr *shp, *shdrs = NULL;
2219 char *shstrtab = NULL;
2220 ulong_t shstrtabsz;
2221 const char *name;
2222 map_info_t *mp;
2223
2224 size_t nbytes;
2225 void *buf;
2226 int i;
2227
2228 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2229 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2230 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2231 return;
2232 }
2233
2234 /*
2235 * Read the section header table from the core file and then iterate
2236 * over the section headers, converting each to a GElf_Shdr.
2237 */
2238 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2239 dprintf("failed to malloc %u section headers: %s\n",
2240 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2241 return;
2242 }
2243
2244 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2245 if ((buf = malloc(nbytes)) == NULL) {
2246 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2247 strerror(errno));
2248 free(shdrs);
2249 goto out;
2250 }
2251
2252 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2253 dprintf("failed to read section headers at off %lld: %s\n",
2254 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2255 free(buf);
2256 goto out;
2257 }
2258
2259 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2260 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2261
2262 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2263 core_shdr_to_gelf(p, &shdrs[i]);
2264 else
2265 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2266 }
2267
2268 free(buf);
2269 buf = NULL;
2270
2271 /*
2272 * Read the .shstrtab section from the core file, terminating it with
2273 * an extra \0 so that a corrupt section will not cause us to die.
2274 */
2275 shp = &shdrs[efp->e_hdr.e_shstrndx];
2276 shstrtabsz = shp->sh_size;
2277
2278 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2279 dprintf("failed to allocate %lu bytes for shstrtab\n",
2280 (ulong_t)shstrtabsz);
2281 goto out;
2282 }
2283
2284 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2285 shp->sh_offset) != shstrtabsz) {
2286 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2287 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2288 goto out;
2289 }
2290
2291 shstrtab[shstrtabsz] = '\0';
2292
2293 /*
2294 * Now iterate over each section in the section header table, locating
2295 * sections of interest and initializing more of the ps_prochandle.
2296 */
2297 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2298 shp = &shdrs[i];
2299 name = shstrtab + shp->sh_name;
2300
2301 if (shp->sh_name >= shstrtabsz) {
2302 dprintf("skipping section [%d]: corrupt sh_name\n", i);
2303 continue;
2304 }
2305
2306 if (shp->sh_link >= efp->e_hdr.e_shnum) {
2307 dprintf("skipping section [%d]: corrupt sh_link\n", i);
2308 continue;
2309 }
2310
2311 dprintf("found section header %s (sh_addr 0x%llx)\n",
2312 name, (u_longlong_t)shp->sh_addr);
2313
2314 if (strcmp(name, ".SUNW_ctf") == 0) {
2315 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2316 dprintf("no map at addr 0x%llx for %s [%d]\n",
2317 (u_longlong_t)shp->sh_addr, name, i);
2318 continue;
2319 }
2320
2321 if (mp->map_file == NULL ||
2322 mp->map_file->file_ctf_buf != NULL) {
2323 dprintf("no mapping file or duplicate buffer "
2324 "for %s [%d]\n", name, i);
2325 continue;
2326 }
2327
2328 if ((buf = malloc(shp->sh_size)) == NULL ||
2329 pread64(efp->e_fd, buf, shp->sh_size,
2330 shp->sh_offset) != shp->sh_size) {
2331 dprintf("skipping section %s [%d]: %s\n",
2332 name, i, strerror(errno));
2333 free(buf);
2334 continue;
2335 }
2336
2337 mp->map_file->file_ctf_size = shp->sh_size;
2338 mp->map_file->file_ctf_buf = buf;
2339
2340 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2341 mp->map_file->file_ctf_dyn = 1;
2342
2343 } else if (strcmp(name, ".symtab") == 0) {
2344 fake_up_symtab(P, &efp->e_hdr,
2345 shp, &shdrs[shp->sh_link]);
2346 }
2347 }
2348 out:
2349 free(shstrtab);
2350 free(shdrs);
2351 }
2352
2353 /*
2354 * Main engine for core file initialization: given an fd for the core file
2355 * and an optional pathname, construct the ps_prochandle. The aout_path can
2356 * either be a suggested executable pathname, or a suggested directory to
2357 * use as a possible current working directory.
2358 */
2359 struct ps_prochandle *
Pfgrab_core(int core_fd,const char * aout_path,int * perr)2360 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2361 {
2362 struct ps_prochandle *P;
2363 core_info_t *core_info;
2364 map_info_t *stk_mp, *brk_mp;
2365 const char *execname;
2366 char *interp;
2367 int i, notes, pagesize;
2368 uintptr_t addr, base_addr;
2369 struct stat64 stbuf;
2370 void *phbuf, *php;
2371 size_t nbytes;
2372 #ifdef __x86
2373 boolean_t from_linux = B_FALSE;
2374 #endif
2375
2376 elf_file_t aout;
2377 elf_file_t core;
2378
2379 Elf_Scn *scn, *intp_scn = NULL;
2380 Elf_Data *dp;
2381
2382 GElf_Phdr phdr, note_phdr;
2383 GElf_Shdr shdr;
2384 GElf_Xword nleft;
2385
2386 if (elf_version(EV_CURRENT) == EV_NONE) {
2387 dprintf("libproc ELF version is more recent than libelf\n");
2388 *perr = G_ELF;
2389 return (NULL);
2390 }
2391
2392 aout.e_elf = NULL;
2393 aout.e_fd = -1;
2394
2395 core.e_elf = NULL;
2396 core.e_fd = core_fd;
2397
2398 /*
2399 * Allocate and initialize a ps_prochandle structure for the core.
2400 * There are several key pieces of initialization here:
2401 *
2402 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2403 * PS_DEAD also thus prevents all operations which require state
2404 * to be PS_STOP from operating on this handle.
2405 *
2406 * 2. We keep the core file fd in P->asfd since the core file contains
2407 * the remnants of the process address space.
2408 *
2409 * 3. We set the P->info_valid bit because all information about the
2410 * core is determined by the end of this function; there is no need
2411 * for proc_update_maps() to reload mappings at any later point.
2412 *
2413 * 4. The read/write ops vector uses our core_rw() function defined
2414 * above to handle i/o requests.
2415 */
2416 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2417 *perr = G_STRANGE;
2418 return (NULL);
2419 }
2420
2421 (void) memset(P, 0, sizeof (struct ps_prochandle));
2422 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2423 P->state = PS_DEAD;
2424 P->pid = (pid_t)-1;
2425 P->asfd = core.e_fd;
2426 P->ctlfd = -1;
2427 P->statfd = -1;
2428 P->agentctlfd = -1;
2429 P->agentstatfd = -1;
2430 P->zoneroot = NULL;
2431 P->info_valid = 1;
2432 Pinit_ops(&P->ops, &P_core_ops);
2433
2434 Pinitsym(P);
2435 Pinitfd(P);
2436
2437 /*
2438 * Fstat and open the core file and make sure it is a valid ELF core.
2439 */
2440 if (fstat64(P->asfd, &stbuf) == -1) {
2441 *perr = G_STRANGE;
2442 goto err;
2443 }
2444
2445 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2446 goto err;
2447
2448 /*
2449 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2450 * structure. We keep all core-specific information in this structure.
2451 */
2452 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2453 *perr = G_STRANGE;
2454 goto err;
2455 }
2456
2457 P->data = core_info;
2458 list_create(&core_info->core_lwp_head, sizeof (lwp_info_t),
2459 offsetof(lwp_info_t, lwp_list));
2460 core_info->core_size = stbuf.st_size;
2461 /*
2462 * In the days before adjustable core file content, this was the
2463 * default core file content. For new core files, this value will
2464 * be overwritten by the NT_CONTENT note section.
2465 */
2466 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2467 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2468 CC_CONTENT_SHANON;
2469
2470 switch (core.e_hdr.e_ident[EI_CLASS]) {
2471 case ELFCLASS32:
2472 core_info->core_dmodel = PR_MODEL_ILP32;
2473 break;
2474 case ELFCLASS64:
2475 core_info->core_dmodel = PR_MODEL_LP64;
2476 break;
2477 default:
2478 *perr = G_FORMAT;
2479 goto err;
2480 }
2481 core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2482
2483 /*
2484 * Because the core file may be a large file, we can't use libelf to
2485 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
2486 */
2487 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2488
2489 if ((phbuf = malloc(nbytes)) == NULL) {
2490 *perr = G_STRANGE;
2491 goto err;
2492 }
2493
2494 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2495 *perr = G_STRANGE;
2496 free(phbuf);
2497 goto err;
2498 }
2499
2500 /*
2501 * Iterate through the program headers in the core file.
2502 * We're interested in two types of Phdrs: PT_NOTE (which
2503 * contains a set of saved /proc structures), and PT_LOAD (which
2504 * represents a memory mapping from the process's address space).
2505 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2506 * in the core file; currently the first PT_NOTE (if present)
2507 * contains /proc structs in the pre-2.6 unstructured /proc format.
2508 */
2509 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2510 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2511 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2512 else
2513 core_phdr_to_gelf(php, &phdr);
2514
2515 switch (phdr.p_type) {
2516 case PT_NOTE:
2517 note_phdr = phdr;
2518 notes++;
2519 break;
2520
2521 case PT_LOAD:
2522 if (core_add_mapping(P, &phdr) == -1) {
2523 *perr = G_STRANGE;
2524 free(phbuf);
2525 goto err;
2526 }
2527 break;
2528 default:
2529 dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2530 break;
2531 }
2532
2533 php = (char *)php + core.e_hdr.e_phentsize;
2534 }
2535
2536 free(phbuf);
2537
2538 Psort_mappings(P);
2539
2540 /*
2541 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2542 * was present, abort. The core file is either corrupt or too old.
2543 */
2544 if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2545 ELFOSABI_SOLARIS)) {
2546 *perr = G_NOTE;
2547 goto err;
2548 }
2549
2550 /*
2551 * Advance the seek pointer to the start of the PT_NOTE data
2552 */
2553 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2554 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2555 *perr = G_STRANGE;
2556 goto err;
2557 }
2558
2559 /*
2560 * Now process the PT_NOTE structures. Each one is preceded by
2561 * an Elf{32/64}_Nhdr structure describing its type and size.
2562 *
2563 * +--------+
2564 * | header |
2565 * +--------+
2566 * | name |
2567 * | ... |
2568 * +--------+
2569 * | desc |
2570 * | ... |
2571 * +--------+
2572 */
2573 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2574 Elf64_Nhdr nhdr;
2575 off64_t off, namesz, descsz;
2576
2577 /*
2578 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2579 * as different types, they are both of the same content and
2580 * size, so we don't need to worry about 32/64 conversion here.
2581 */
2582 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2583 dprintf("Pgrab_core: failed to read ELF note header\n");
2584 *perr = G_NOTE;
2585 goto err;
2586 }
2587
2588 /*
2589 * According to the System V ABI, the amount of padding
2590 * following the name field should align the description
2591 * field on a 4 byte boundary for 32-bit binaries or on an 8
2592 * byte boundary for 64-bit binaries. However, this change
2593 * was not made correctly during the 64-bit port so all
2594 * descriptions can assume only 4-byte alignment. We ignore
2595 * the name field and the padding to 4-byte alignment.
2596 */
2597 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2598
2599 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2600 dprintf("failed to seek past name and padding\n");
2601 *perr = G_STRANGE;
2602 goto err;
2603 }
2604
2605 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2606 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2607
2608 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2609
2610 /*
2611 * Invoke the note handler function from our table
2612 */
2613 if (nhdr.n_type < ARRAY_SIZE(nhdlrs) &&
2614 nhdlrs[nhdr.n_type] != NULL) {
2615 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2616 dprintf("handler for type %d returned < 0",
2617 nhdr.n_type);
2618 *perr = G_NOTE;
2619 goto err;
2620 }
2621 /*
2622 * The presence of either of these notes indicates that
2623 * the dump was generated on Linux.
2624 */
2625 #ifdef __x86
2626 if (nhdr.n_type == NT_PRSTATUS ||
2627 nhdr.n_type == NT_PRPSINFO)
2628 from_linux = B_TRUE;
2629 #endif
2630 } else {
2631 (void) note_notsup(P, nhdr.n_descsz);
2632 }
2633
2634 /*
2635 * Seek past the current note data to the next Elf_Nhdr
2636 */
2637 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2638 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2639 dprintf("Pgrab_core: failed to seek to next nhdr\n");
2640 *perr = G_STRANGE;
2641 goto err;
2642 }
2643
2644 /*
2645 * Subtract the size of the header and its data from what
2646 * we have left to process.
2647 */
2648 nleft -= sizeof (nhdr) + namesz + descsz;
2649 }
2650
2651 #ifdef __x86
2652 if (from_linux) {
2653 size_t pid;
2654 lwp_info_t *lwp;
2655
2656 P->status.pr_dmodel = core_info->core_dmodel;
2657
2658 pid = P->status.pr_pid;
2659
2660 for (lwp = list_head(&core_info->core_lwp_head); lwp != NULL;
2661 lwp = list_next(&core_info->core_lwp_head, lwp)) {
2662 dprintf("Linux thread with id %d\n", lwp->lwp_id);
2663
2664 /*
2665 * In the case we don't have a valid psinfo (i.e. pid is
2666 * 0, probably because of gdb creating the core) assume
2667 * lowest pid count is the first thread (what if the
2668 * next thread wraps the pid around?)
2669 */
2670 if (P->status.pr_pid == 0 &&
2671 ((pid == 0 && lwp->lwp_id > 0) ||
2672 (lwp->lwp_id < pid))) {
2673 pid = lwp->lwp_id;
2674 }
2675 }
2676
2677 if (P->status.pr_pid != pid) {
2678 dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2679 P->status.pr_pid = pid;
2680 P->psinfo.pr_pid = pid;
2681 }
2682
2683 /*
2684 * Consumers like mdb expect the first thread to actually have
2685 * an id of 1, on linux that is actually the pid. Find the the
2686 * thread with our process id, and set the id to 1
2687 */
2688 if ((lwp = lwpid2info(P, pid)) == NULL) {
2689 dprintf("Couldn't find first thread\n");
2690 *perr = G_STRANGE;
2691 goto err;
2692 }
2693
2694 dprintf("setting representative thread: %d\n", lwp->lwp_id);
2695
2696 lwp->lwp_id = 1;
2697 lwp->lwp_status.pr_lwpid = 1;
2698
2699 /* set representative thread */
2700 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2701 sizeof (P->status.pr_lwp));
2702 }
2703 #endif /* __x86 */
2704
2705 if (nleft != 0) {
2706 dprintf("Pgrab_core: note section malformed\n");
2707 *perr = G_STRANGE;
2708 goto err;
2709 }
2710
2711 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2712 pagesize = getpagesize();
2713 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2714 }
2715
2716 /*
2717 * Locate and label the mappings corresponding to the end of the
2718 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2719 */
2720 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2721 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2722 P->status.pr_brksize - 1)) != NULL)
2723 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2724 else
2725 brk_mp = NULL;
2726
2727 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2728 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2729
2730 /*
2731 * At this point, we have enough information to look for the
2732 * executable and open it: we have access to the auxv, a psinfo_t,
2733 * and the ability to read from mappings provided by the core file.
2734 */
2735 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2736 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2737 execname = P->execname ? P->execname : "a.out";
2738
2739 /*
2740 * Iterate through the sections, looking for the .dynamic and .interp
2741 * sections. If we encounter them, remember their section pointers.
2742 */
2743 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2744 char *sname;
2745
2746 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2747 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2748 (size_t)shdr.sh_name)) == NULL)
2749 continue;
2750
2751 if (strcmp(sname, ".interp") == 0)
2752 intp_scn = scn;
2753 }
2754
2755 /*
2756 * Get the AT_BASE auxv element. If this is missing (-1), then
2757 * we assume this is a statically-linked executable.
2758 */
2759 base_addr = Pgetauxval(P, AT_BASE);
2760
2761 /*
2762 * In order to get librtld_db initialized, we'll need to identify
2763 * and name the mapping corresponding to the run-time linker. The
2764 * AT_BASE auxv element tells us the address where it was mapped,
2765 * and the .interp section of the executable tells us its path.
2766 * If for some reason that doesn't pan out, just use ld.so.1.
2767 */
2768 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2769 dp->d_size != 0) {
2770 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2771 interp = dp->d_buf;
2772
2773 } else if (base_addr != (uintptr_t)-1L) {
2774 if (core_info->core_dmodel == PR_MODEL_LP64)
2775 interp = "/usr/lib/64/ld.so.1";
2776 else
2777 interp = "/usr/lib/ld.so.1";
2778
2779 dprintf(".interp section is missing or could not be read; "
2780 "defaulting to %s\n", interp);
2781 } else
2782 dprintf("detected statically linked executable\n");
2783
2784 /*
2785 * If we have an AT_BASE element, name the mapping at that address
2786 * using the interpreter pathname. Name the corresponding data
2787 * mapping after the interpreter as well.
2788 */
2789 if (base_addr != (uintptr_t)-1L) {
2790 elf_file_t intf;
2791
2792 P->map_ldso = core_name_mapping(P, base_addr, interp);
2793
2794 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2795 rd_loadobj_t rl;
2796 map_info_t *dmp;
2797
2798 rl.rl_base = base_addr;
2799 dmp = core_find_data(P, intf.e_elf, &rl);
2800
2801 if (dmp != NULL) {
2802 dprintf("renamed data at %p to %s\n",
2803 (void *)rl.rl_data_base, interp);
2804 (void) strncpy(dmp->map_pmap.pr_mapname,
2805 interp, PRMAPSZ);
2806 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2807 }
2808 }
2809
2810 core_elf_close(&intf);
2811 }
2812
2813 /*
2814 * If we have an AT_ENTRY element, name the mapping at that address
2815 * using the special name "a.out" just like /proc does.
2816 */
2817 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2818 P->map_exec = core_name_mapping(P, addr, "a.out");
2819
2820 /*
2821 * If we're a statically linked executable (or we're on x86 and looking
2822 * at a Linux core dump), then just locate the executable's text and
2823 * data and name them after the executable.
2824 */
2825 #ifndef __x86
2826 if (base_addr == (uintptr_t)-1L) {
2827 #else
2828 if (base_addr == (uintptr_t)-1L || from_linux) {
2829 #endif
2830 dprintf("looking for text and data: %s\n", execname);
2831 map_info_t *tmp, *dmp;
2832 file_info_t *fp;
2833 rd_loadobj_t rl;
2834
2835 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2836 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2837 (void) strncpy(tmp->map_pmap.pr_mapname,
2838 execname, PRMAPSZ);
2839 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2840 (void) strncpy(dmp->map_pmap.pr_mapname,
2841 execname, PRMAPSZ);
2842 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2843 }
2844
2845 if ((P->map_exec = tmp) != NULL &&
2846 (fp = malloc(sizeof (file_info_t))) != NULL) {
2847
2848 (void) memset(fp, 0, sizeof (file_info_t));
2849
2850 list_insert_head(&P->file_head, fp);
2851 tmp->map_file = fp;
2852 P->num_files++;
2853
2854 fp->file_ref = 1;
2855 fp->file_fd = -1;
2856 fp->file_dbgfile = -1;
2857
2858 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2859 fp->file_lname = strdup(execname);
2860
2861 if (fp->file_lo)
2862 *fp->file_lo = rl;
2863 if (fp->file_lname)
2864 fp->file_lbase = basename(fp->file_lname);
2865 if (fp->file_rname)
2866 fp->file_rbase = basename(fp->file_rname);
2867
2868 (void) strcpy(fp->file_pname,
2869 P->mappings[0].map_pmap.pr_mapname);
2870 fp->file_map = tmp;
2871
2872 Pbuild_file_symtab(P, fp);
2873
2874 if (dmp != NULL) {
2875 dmp->map_file = fp;
2876 fp->file_ref++;
2877 }
2878 }
2879 }
2880
2881 core_elf_close(&aout);
2882
2883 /*
2884 * We now have enough information to initialize librtld_db.
2885 * After it warms up, we can iterate through the load object chain
2886 * in the core, which will allow us to construct the file info
2887 * we need to provide symbol information for the other shared
2888 * libraries, and also to fill in the missing mapping names.
2889 */
2890 rd_log(_libproc_debug);
2891
2892 if ((P->rap = rd_new(P)) != NULL) {
2893 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2894 core_iter_mapping, P);
2895
2896 if (core_info->core_errno != 0) {
2897 errno = core_info->core_errno;
2898 *perr = G_STRANGE;
2899 goto err;
2900 }
2901 } else
2902 dprintf("failed to initialize rtld_db agent\n");
2903
2904 /*
2905 * If there are sections, load them and process the data from any
2906 * sections that we can use to annotate the file_info_t's.
2907 */
2908 core_load_shdrs(P, &core);
2909
2910 /*
2911 * If we previously located a stack or break mapping, and they are
2912 * still anonymous, we now assume that they were MAP_ANON mappings.
2913 * If brk_mp turns out to now have a name, then the heap is still
2914 * sitting at the end of the executable's data+bss mapping: remove
2915 * the previous MA_BREAK setting to be consistent with /proc.
2916 */
2917 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2918 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2919 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2920 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2921 else if (brk_mp != NULL)
2922 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2923
2924 *perr = 0;
2925 return (P);
2926
2927 err:
2928 Pfree(P);
2929 core_elf_close(&aout);
2930 return (NULL);
2931 }
2932
2933 /*
2934 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2935 */
2936 struct ps_prochandle *
2937 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2938 {
2939 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2940
2941 if ((fd = open64(core, oflag)) >= 0)
2942 return (Pfgrab_core(fd, aout, perr));
2943
2944 if (errno != ENOENT)
2945 *perr = G_STRANGE;
2946 else
2947 *perr = G_NOCORE;
2948
2949 return (NULL);
2950 }
2951
2952 int
2953 Pupanic(struct ps_prochandle *P, prupanic_t **pru)
2954 {
2955 core_info_t *core;
2956
2957 if (P->state != PS_DEAD) {
2958 errno = ENODATA;
2959 return (-1);
2960 }
2961
2962 core = P->data;
2963 if (core->core_upanic == NULL) {
2964 errno = ENOENT;
2965 return (-1);
2966 }
2967
2968 if (core->core_upanic->pru_version != PRUPANIC_VERSION_1) {
2969 errno = EINVAL;
2970 return (-1);
2971 }
2972
2973 if ((*pru = calloc(1, sizeof (prupanic_t))) == NULL)
2974 return (-1);
2975 (void) memcpy(*pru, core->core_upanic, sizeof (prupanic_t));
2976
2977 return (0);
2978 }
2979
2980 void
2981 Pupanic_free(prupanic_t *pru)
2982 {
2983 free(pru);
2984 }
2985