xref: /freebsd/sys/dev/bwi/if_bwi.c (revision 785edcc2af5ae32c24f5caf5b9552f62bdae33ee)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <machine/bus.h>
80 
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83 
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89 
90 struct bwi_clock_freq {
91 	u_int		clkfreq_min;
92 	u_int		clkfreq_max;
93 };
94 
95 struct bwi_myaddr_bssid {
96 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
97 	uint8_t		bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99 
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 		    const uint8_t [IEEE80211_ADDR_LEN],
103 		    const uint8_t [IEEE80211_ADDR_LEN]);
104 static void	bwi_vap_delete(struct ieee80211vap *);
105 static void	bwi_init(struct bwi_softc *);
106 static void	bwi_parent(struct ieee80211com *);
107 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
108 static void	bwi_start_locked(struct bwi_softc *);
109 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 			const struct ieee80211_bpf_params *);
111 static void	bwi_watchdog(void *);
112 static void	bwi_scan_start(struct ieee80211com *);
113 static void	bwi_getradiocaps(struct ieee80211com *, int, int *,
114 		    struct ieee80211_channel[]);
115 static void	bwi_set_channel(struct ieee80211com *);
116 static void	bwi_scan_end(struct ieee80211com *);
117 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
118 static void	bwi_updateslot(struct ieee80211com *);
119 
120 static void	bwi_calibrate(void *);
121 
122 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
123 static int	bwi_calc_noise(struct bwi_softc *);
124 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
125 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
126 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
127 
128 static void	bwi_restart(void *, int);
129 static void	bwi_init_statechg(struct bwi_softc *, int);
130 static void	bwi_stop(struct bwi_softc *, int);
131 static void	bwi_stop_locked(struct bwi_softc *, int);
132 static int	bwi_newbuf(struct bwi_softc *, int, int);
133 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
134 			  struct ieee80211_node *);
135 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
136 			  struct ieee80211_node *,
137 			  const struct ieee80211_bpf_params *);
138 
139 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
140 				       bus_addr_t, int, int);
141 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
142 
143 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
144 static int	bwi_init_rx_ring32(struct bwi_softc *);
145 static int	bwi_init_txstats32(struct bwi_softc *);
146 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
147 static void	bwi_free_rx_ring32(struct bwi_softc *);
148 static void	bwi_free_txstats32(struct bwi_softc *);
149 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
150 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
151 				    int, bus_addr_t, int);
152 static int	bwi_rxeof32(struct bwi_softc *);
153 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
154 static void	bwi_txeof_status32(struct bwi_softc *);
155 
156 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
157 static int	bwi_init_rx_ring64(struct bwi_softc *);
158 static int	bwi_init_txstats64(struct bwi_softc *);
159 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
160 static void	bwi_free_rx_ring64(struct bwi_softc *);
161 static void	bwi_free_txstats64(struct bwi_softc *);
162 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
163 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
164 				    int, bus_addr_t, int);
165 static int	bwi_rxeof64(struct bwi_softc *);
166 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
167 static void	bwi_txeof_status64(struct bwi_softc *);
168 
169 static int	bwi_rxeof(struct bwi_softc *, int);
170 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
171 static void	bwi_txeof(struct bwi_softc *);
172 static void	bwi_txeof_status(struct bwi_softc *, int);
173 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
174 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
175 
176 static int	bwi_dma_alloc(struct bwi_softc *);
177 static void	bwi_dma_free(struct bwi_softc *);
178 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
179 				   struct bwi_ring_data *, bus_size_t,
180 				   uint32_t);
181 static int	bwi_dma_mbuf_create(struct bwi_softc *);
182 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
183 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
184 static void	bwi_dma_txstats_free(struct bwi_softc *);
185 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
186 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
187 				 bus_size_t, int);
188 
189 static void	bwi_power_on(struct bwi_softc *, int);
190 static int	bwi_power_off(struct bwi_softc *, int);
191 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
192 static int	bwi_set_clock_delay(struct bwi_softc *);
193 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
194 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
195 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
196 				    const uint8_t *);
197 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
198 
199 static void	bwi_get_card_flags(struct bwi_softc *);
200 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
201 
202 static int	bwi_bus_attach(struct bwi_softc *);
203 static int	bwi_bbp_attach(struct bwi_softc *);
204 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
205 static void	bwi_bbp_power_off(struct bwi_softc *);
206 
207 static const char *bwi_regwin_name(const struct bwi_regwin *);
208 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
209 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
210 static int	bwi_regwin_select(struct bwi_softc *, int);
211 
212 static void	bwi_led_attach(struct bwi_softc *);
213 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
214 static void	bwi_led_event(struct bwi_softc *, int);
215 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
216 static void	bwi_led_blink_next(void *);
217 static void	bwi_led_blink_end(void *);
218 
219 static const struct {
220 	uint16_t	did_min;
221 	uint16_t	did_max;
222 	uint16_t	bbp_id;
223 } bwi_bbpid_map[] = {
224 	{ 0x4301, 0x4301, 0x4301 },
225 	{ 0x4305, 0x4307, 0x4307 },
226 	{ 0x4402, 0x4403, 0x4402 },
227 	{ 0x4610, 0x4615, 0x4610 },
228 	{ 0x4710, 0x4715, 0x4710 },
229 	{ 0x4720, 0x4725, 0x4309 }
230 };
231 
232 static const struct {
233 	uint16_t	bbp_id;
234 	int		nregwin;
235 } bwi_regwin_count[] = {
236 	{ 0x4301, 5 },
237 	{ 0x4306, 6 },
238 	{ 0x4307, 5 },
239 	{ 0x4310, 8 },
240 	{ 0x4401, 3 },
241 	{ 0x4402, 3 },
242 	{ 0x4610, 9 },
243 	{ 0x4704, 9 },
244 	{ 0x4710, 9 },
245 	{ 0x5365, 7 }
246 };
247 
248 #define CLKSRC(src) 				\
249 [BWI_CLKSRC_ ## src] = {			\
250 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
251 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
252 }
253 
254 static const struct {
255 	u_int	freq_min;
256 	u_int	freq_max;
257 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
258 	CLKSRC(LP_OSC),
259 	CLKSRC(CS_OSC),
260 	CLKSRC(PCI)
261 };
262 
263 #undef CLKSRC
264 
265 #define VENDOR_LED_ACT(vendor)				\
266 {							\
267 	.vid = PCI_VENDOR_##vendor,			\
268 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
269 }
270 
271 static const struct {
272 #define	PCI_VENDOR_COMPAQ	0x0e11
273 #define	PCI_VENDOR_LINKSYS	0x1737
274 	uint16_t	vid;
275 	uint8_t		led_act[BWI_LED_MAX];
276 } bwi_vendor_led_act[] = {
277 	VENDOR_LED_ACT(COMPAQ),
278 	VENDOR_LED_ACT(LINKSYS)
279 #undef PCI_VENDOR_LINKSYS
280 #undef PCI_VENDOR_COMPAQ
281 };
282 
283 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
284 	{ BWI_VENDOR_LED_ACT_DEFAULT };
285 
286 #undef VENDOR_LED_ACT
287 
288 static const struct {
289 	int	on_dur;
290 	int	off_dur;
291 } bwi_led_duration[109] = {
292 	[0]	= { 400, 100 },
293 	[2]	= { 150, 75 },
294 	[4]	= { 90, 45 },
295 	[11]	= { 66, 34 },
296 	[12]	= { 53, 26 },
297 	[18]	= { 42, 21 },
298 	[22]	= { 35, 17 },
299 	[24]	= { 32, 16 },
300 	[36]	= { 21, 10 },
301 	[48]	= { 16, 8 },
302 	[72]	= { 11, 5 },
303 	[96]	= { 9, 4 },
304 	[108]	= { 7, 3 }
305 };
306 
307 #ifdef BWI_DEBUG
308 #ifdef BWI_DEBUG_VERBOSE
309 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
310 #else
311 static uint32_t	bwi_debug;
312 #endif
313 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
314 #endif	/* BWI_DEBUG */
315 
316 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
317 
318 uint16_t
bwi_read_sprom(struct bwi_softc * sc,uint16_t ofs)319 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
320 {
321 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
322 }
323 
324 static __inline void
bwi_setup_desc32(struct bwi_softc * sc,struct bwi_desc32 * desc_array,int ndesc,int desc_idx,bus_addr_t paddr,int buf_len,int tx)325 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
326 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
327 		 int tx)
328 {
329 	struct bwi_desc32 *desc = &desc_array[desc_idx];
330 	uint32_t ctrl, addr, addr_hi, addr_lo;
331 
332 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
333 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
334 
335 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
336 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
337 
338 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
339 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
340 	if (desc_idx == ndesc - 1)
341 		ctrl |= BWI_DESC32_C_EOR;
342 	if (tx) {
343 		/* XXX */
344 		ctrl |= BWI_DESC32_C_FRAME_START |
345 			BWI_DESC32_C_FRAME_END |
346 			BWI_DESC32_C_INTR;
347 	}
348 
349 	desc->addr = htole32(addr);
350 	desc->ctrl = htole32(ctrl);
351 }
352 
353 int
bwi_attach(struct bwi_softc * sc)354 bwi_attach(struct bwi_softc *sc)
355 {
356 	struct ieee80211com *ic = &sc->sc_ic;
357 	device_t dev = sc->sc_dev;
358 	struct bwi_mac *mac;
359 	struct bwi_phy *phy;
360 	int i, error;
361 
362 	BWI_LOCK_INIT(sc);
363 
364 	/*
365 	 * Initialize taskq and various tasks
366 	 */
367 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
368 		taskqueue_thread_enqueue, &sc->sc_tq);
369 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
370 		device_get_nameunit(dev));
371 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
372 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
373 	mbufq_init(&sc->sc_snd, ifqmaxlen);
374 
375 	/*
376 	 * Initialize sysctl variables
377 	 */
378 	sc->sc_fw_version = BWI_FW_VERSION3;
379 	sc->sc_led_idle = (2350 * hz) / 1000;
380 	sc->sc_led_ticks = ticks - sc->sc_led_idle;
381 	sc->sc_led_blink = 1;
382 	sc->sc_txpwr_calib = 1;
383 #ifdef BWI_DEBUG
384 	sc->sc_debug = bwi_debug;
385 #endif
386 	bwi_power_on(sc, 1);
387 
388 	error = bwi_bbp_attach(sc);
389 	if (error)
390 		goto fail;
391 
392 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
393 	if (error)
394 		goto fail;
395 
396 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
397 		error = bwi_set_clock_delay(sc);
398 		if (error)
399 			goto fail;
400 
401 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
402 		if (error)
403 			goto fail;
404 
405 		error = bwi_get_pwron_delay(sc);
406 		if (error)
407 			goto fail;
408 	}
409 
410 	error = bwi_bus_attach(sc);
411 	if (error)
412 		goto fail;
413 
414 	bwi_get_card_flags(sc);
415 
416 	bwi_led_attach(sc);
417 
418 	for (i = 0; i < sc->sc_nmac; ++i) {
419 		struct bwi_regwin *old;
420 
421 		mac = &sc->sc_mac[i];
422 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
423 		if (error)
424 			goto fail;
425 
426 		error = bwi_mac_lateattach(mac);
427 		if (error)
428 			goto fail;
429 
430 		error = bwi_regwin_switch(sc, old, NULL);
431 		if (error)
432 			goto fail;
433 	}
434 
435 	/*
436 	 * XXX First MAC is known to exist
437 	 * TODO2
438 	 */
439 	mac = &sc->sc_mac[0];
440 	phy = &mac->mac_phy;
441 
442 	bwi_bbp_power_off(sc);
443 
444 	error = bwi_dma_alloc(sc);
445 	if (error)
446 		goto fail;
447 
448 	error = bwi_mac_fw_alloc(mac);
449 	if (error)
450 		goto fail;
451 
452 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
453 
454 	/*
455 	 * Setup ratesets, phytype, channels and get MAC address
456 	 */
457 	if (phy->phy_mode == IEEE80211_MODE_11B ||
458 	    phy->phy_mode == IEEE80211_MODE_11G) {
459 		if (phy->phy_mode == IEEE80211_MODE_11B) {
460 			ic->ic_phytype = IEEE80211_T_DS;
461 		} else {
462 			ic->ic_phytype = IEEE80211_T_OFDM;
463 		}
464 
465 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
466 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
467 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
468 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
469 				device_printf(dev,
470 				    "invalid MAC address: %6D\n",
471 				    ic->ic_macaddr, ":");
472 			}
473 		}
474 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
475 		/* TODO:11A */
476 		error = ENXIO;
477 		goto fail;
478 	} else {
479 		panic("unknown phymode %d\n", phy->phy_mode);
480 	}
481 
482 	/* Get locale */
483 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
484 				   BWI_SPROM_CARD_INFO_LOCALE);
485 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
486 	/* XXX use locale */
487 
488 	ic->ic_softc = sc;
489 
490 	bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
491 	    ic->ic_channels);
492 
493 	ic->ic_name = device_get_nameunit(dev);
494 	ic->ic_caps = IEEE80211_C_STA |
495 		      IEEE80211_C_SHSLOT |
496 		      IEEE80211_C_SHPREAMBLE |
497 		      IEEE80211_C_WPA |
498 		      IEEE80211_C_BGSCAN |
499 		      IEEE80211_C_MONITOR;
500 	ic->ic_opmode = IEEE80211_M_STA;
501 
502 	ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD;
503 
504 	ieee80211_ifattach(ic);
505 
506 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
507 
508 	/* override default methods */
509 	ic->ic_vap_create = bwi_vap_create;
510 	ic->ic_vap_delete = bwi_vap_delete;
511 	ic->ic_raw_xmit = bwi_raw_xmit;
512 	ic->ic_updateslot = bwi_updateslot;
513 	ic->ic_scan_start = bwi_scan_start;
514 	ic->ic_scan_end = bwi_scan_end;
515 	ic->ic_getradiocaps = bwi_getradiocaps;
516 	ic->ic_set_channel = bwi_set_channel;
517 	ic->ic_transmit = bwi_transmit;
518 	ic->ic_parent = bwi_parent;
519 
520 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
521 
522 	ieee80211_radiotap_attach(ic,
523 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
524 		BWI_TX_RADIOTAP_PRESENT,
525 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
526 		BWI_RX_RADIOTAP_PRESENT);
527 
528 	/*
529 	 * Add sysctl nodes
530 	 */
531 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
532 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
533 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
534 		        "Firmware version");
535 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
536 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
537 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
538 		        "# ticks before LED enters idle state");
539 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
540 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
541 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
542 		       "Allow LED to blink");
543 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
544 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
545 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
546 		       "Enable software TX power calibration");
547 #ifdef BWI_DEBUG
548 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
549 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
550 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
551 #endif
552 	if (bootverbose)
553 		ieee80211_announce(ic);
554 
555 	return (0);
556 fail:
557 	BWI_LOCK_DESTROY(sc);
558 	return (error);
559 }
560 
561 int
bwi_detach(struct bwi_softc * sc)562 bwi_detach(struct bwi_softc *sc)
563 {
564 	struct ieee80211com *ic = &sc->sc_ic;
565 	int i;
566 
567 	bwi_stop(sc, 1);
568 	callout_drain(&sc->sc_led_blink_ch);
569 	callout_drain(&sc->sc_calib_ch);
570 	callout_drain(&sc->sc_watchdog_timer);
571 	ieee80211_ifdetach(ic);
572 
573 	for (i = 0; i < sc->sc_nmac; ++i)
574 		bwi_mac_detach(&sc->sc_mac[i]);
575 	bwi_dma_free(sc);
576 	taskqueue_free(sc->sc_tq);
577 	mbufq_drain(&sc->sc_snd);
578 
579 	BWI_LOCK_DESTROY(sc);
580 
581 	return (0);
582 }
583 
584 static struct ieee80211vap *
bwi_vap_create(struct ieee80211com * ic,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t mac[IEEE80211_ADDR_LEN])585 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
586     enum ieee80211_opmode opmode, int flags,
587     const uint8_t bssid[IEEE80211_ADDR_LEN],
588     const uint8_t mac[IEEE80211_ADDR_LEN])
589 {
590 	struct bwi_vap *bvp;
591 	struct ieee80211vap *vap;
592 
593 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
594 		return NULL;
595 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
596 	vap = &bvp->bv_vap;
597 	/* enable s/w bmiss handling for sta mode */
598 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
599 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
600 
601 	/* override default methods */
602 	bvp->bv_newstate = vap->iv_newstate;
603 	vap->iv_newstate = bwi_newstate;
604 #if 0
605 	vap->iv_update_beacon = bwi_beacon_update;
606 #endif
607 	ieee80211_ratectl_init(vap);
608 
609 	/* complete setup */
610 	ieee80211_vap_attach(vap, ieee80211_media_change,
611 	    ieee80211_media_status, mac);
612 	ic->ic_opmode = opmode;
613 	return vap;
614 }
615 
616 static void
bwi_vap_delete(struct ieee80211vap * vap)617 bwi_vap_delete(struct ieee80211vap *vap)
618 {
619 	struct bwi_vap *bvp = BWI_VAP(vap);
620 
621 	ieee80211_ratectl_deinit(vap);
622 	ieee80211_vap_detach(vap);
623 	free(bvp, M_80211_VAP);
624 }
625 
626 void
bwi_suspend(struct bwi_softc * sc)627 bwi_suspend(struct bwi_softc *sc)
628 {
629 	bwi_stop(sc, 1);
630 }
631 
632 void
bwi_resume(struct bwi_softc * sc)633 bwi_resume(struct bwi_softc *sc)
634 {
635 
636 	if (sc->sc_ic.ic_nrunning > 0)
637 		bwi_init(sc);
638 }
639 
640 int
bwi_shutdown(struct bwi_softc * sc)641 bwi_shutdown(struct bwi_softc *sc)
642 {
643 	bwi_stop(sc, 1);
644 	return 0;
645 }
646 
647 static void
bwi_power_on(struct bwi_softc * sc,int with_pll)648 bwi_power_on(struct bwi_softc *sc, int with_pll)
649 {
650 	uint32_t gpio_in, gpio_out, gpio_en;
651 	uint16_t status;
652 
653 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
654 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
655 		goto back;
656 
657 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
658 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
659 
660 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
661 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
662 	if (with_pll) {
663 		/* Turn off PLL first */
664 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
665 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
666 	}
667 
668 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
669 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
670 	DELAY(1000);
671 
672 	if (with_pll) {
673 		/* Turn on PLL */
674 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
675 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
676 		DELAY(5000);
677 	}
678 
679 back:
680 	/* Clear "Signaled Target Abort" */
681 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
682 	status &= ~PCIM_STATUS_STABORT;
683 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
684 }
685 
686 static int
bwi_power_off(struct bwi_softc * sc,int with_pll)687 bwi_power_off(struct bwi_softc *sc, int with_pll)
688 {
689 	uint32_t gpio_out, gpio_en;
690 
691 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
692 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
693 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
694 
695 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
696 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
697 	if (with_pll) {
698 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
699 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
700 	}
701 
702 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
703 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
704 	return 0;
705 }
706 
707 int
bwi_regwin_switch(struct bwi_softc * sc,struct bwi_regwin * rw,struct bwi_regwin ** old_rw)708 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
709 		  struct bwi_regwin **old_rw)
710 {
711 	int error;
712 
713 	if (old_rw != NULL)
714 		*old_rw = NULL;
715 
716 	if (!BWI_REGWIN_EXIST(rw))
717 		return EINVAL;
718 
719 	if (sc->sc_cur_regwin != rw) {
720 		error = bwi_regwin_select(sc, rw->rw_id);
721 		if (error) {
722 			device_printf(sc->sc_dev, "can't select regwin %d\n",
723 				  rw->rw_id);
724 			return error;
725 		}
726 	}
727 
728 	if (old_rw != NULL)
729 		*old_rw = sc->sc_cur_regwin;
730 	sc->sc_cur_regwin = rw;
731 	return 0;
732 }
733 
734 static int
bwi_regwin_select(struct bwi_softc * sc,int id)735 bwi_regwin_select(struct bwi_softc *sc, int id)
736 {
737 	uint32_t win = BWI_PCIM_REGWIN(id);
738 	int i;
739 
740 #define RETRY_MAX	50
741 	for (i = 0; i < RETRY_MAX; ++i) {
742 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
743 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
744 			return 0;
745 		DELAY(10);
746 	}
747 #undef RETRY_MAX
748 
749 	return ENXIO;
750 }
751 
752 static void
bwi_regwin_info(struct bwi_softc * sc,uint16_t * type,uint8_t * rev)753 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
754 {
755 	uint32_t val;
756 
757 	val = CSR_READ_4(sc, BWI_ID_HI);
758 	*type = BWI_ID_HI_REGWIN_TYPE(val);
759 	*rev = BWI_ID_HI_REGWIN_REV(val);
760 
761 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
762 		"vendor 0x%04x\n", *type, *rev,
763 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
764 }
765 
766 static int
bwi_bbp_attach(struct bwi_softc * sc)767 bwi_bbp_attach(struct bwi_softc *sc)
768 {
769 	uint16_t bbp_id, rw_type;
770 	uint8_t rw_rev;
771 	uint32_t info;
772 	int error, nregwin, i;
773 
774 	/*
775 	 * Get 0th regwin information
776 	 * NOTE: 0th regwin should exist
777 	 */
778 	error = bwi_regwin_select(sc, 0);
779 	if (error) {
780 		device_printf(sc->sc_dev, "can't select regwin 0\n");
781 		return error;
782 	}
783 	bwi_regwin_info(sc, &rw_type, &rw_rev);
784 
785 	/*
786 	 * Find out BBP id
787 	 */
788 	bbp_id = 0;
789 	info = 0;
790 	if (rw_type == BWI_REGWIN_T_COM) {
791 		info = CSR_READ_4(sc, BWI_INFO);
792 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
793 
794 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
795 
796 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
797 	} else {
798 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
799 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
800 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
801 				bbp_id = bwi_bbpid_map[i].bbp_id;
802 				break;
803 			}
804 		}
805 		if (bbp_id == 0) {
806 			device_printf(sc->sc_dev, "no BBP id for device id "
807 				      "0x%04x\n", sc->sc_pci_did);
808 			return ENXIO;
809 		}
810 
811 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
812 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
813 	}
814 
815 	/*
816 	 * Find out number of regwins
817 	 */
818 	nregwin = 0;
819 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
820 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
821 	} else {
822 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
823 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
824 				nregwin = bwi_regwin_count[i].nregwin;
825 				break;
826 			}
827 		}
828 		if (nregwin == 0) {
829 			device_printf(sc->sc_dev, "no number of win for "
830 				      "BBP id 0x%04x\n", bbp_id);
831 			return ENXIO;
832 		}
833 	}
834 
835 	/* Record BBP id/rev for later using */
836 	sc->sc_bbp_id = bbp_id;
837 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
838 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
839 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
840 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
841 
842 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
843 		nregwin, sc->sc_cap);
844 
845 	/*
846 	 * Create rest of the regwins
847 	 */
848 
849 	/* Don't re-create common regwin, if it is already created */
850 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
851 
852 	for (; i < nregwin; ++i) {
853 		/*
854 		 * Get regwin information
855 		 */
856 		error = bwi_regwin_select(sc, i);
857 		if (error) {
858 			device_printf(sc->sc_dev,
859 				      "can't select regwin %d\n", i);
860 			return error;
861 		}
862 		bwi_regwin_info(sc, &rw_type, &rw_rev);
863 
864 		/*
865 		 * Try attach:
866 		 * 1) Bus (PCI/PCIE) regwin
867 		 * 2) MAC regwin
868 		 * Ignore rest types of regwin
869 		 */
870 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
871 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
872 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
873 				device_printf(sc->sc_dev,
874 					      "bus regwin already exists\n");
875 			} else {
876 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
877 						  rw_type, rw_rev);
878 			}
879 		} else if (rw_type == BWI_REGWIN_T_MAC) {
880 			/* XXX ignore return value */
881 			bwi_mac_attach(sc, i, rw_rev);
882 		}
883 	}
884 
885 	/* At least one MAC shold exist */
886 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
887 		device_printf(sc->sc_dev, "no MAC was found\n");
888 		return ENXIO;
889 	}
890 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
891 
892 	/* Bus regwin must exist */
893 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
894 		device_printf(sc->sc_dev, "no bus regwin was found\n");
895 		return ENXIO;
896 	}
897 
898 	/* Start with first MAC */
899 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
900 	if (error)
901 		return error;
902 
903 	return 0;
904 }
905 
906 int
bwi_bus_init(struct bwi_softc * sc,struct bwi_mac * mac)907 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
908 {
909 	struct bwi_regwin *old, *bus;
910 	uint32_t val;
911 	int error;
912 
913 	bus = &sc->sc_bus_regwin;
914 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
915 
916 	/*
917 	 * Tell bus to generate requested interrupts
918 	 */
919 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
920 		/*
921 		 * NOTE: Read BWI_FLAGS from MAC regwin
922 		 */
923 		val = CSR_READ_4(sc, BWI_FLAGS);
924 
925 		error = bwi_regwin_switch(sc, bus, &old);
926 		if (error)
927 			return error;
928 
929 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
930 	} else {
931 		uint32_t mac_mask;
932 
933 		mac_mask = 1 << mac->mac_id;
934 
935 		error = bwi_regwin_switch(sc, bus, &old);
936 		if (error)
937 			return error;
938 
939 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
940 		val |= mac_mask << 8;
941 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
942 	}
943 
944 	if (sc->sc_flags & BWI_F_BUS_INITED)
945 		goto back;
946 
947 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
948 		/*
949 		 * Enable prefetch and burst
950 		 */
951 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
952 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
953 
954 		if (bus->rw_rev < 5) {
955 			struct bwi_regwin *com = &sc->sc_com_regwin;
956 
957 			/*
958 			 * Configure timeouts for bus operation
959 			 */
960 
961 			/*
962 			 * Set service timeout and request timeout
963 			 */
964 			CSR_SETBITS_4(sc, BWI_CONF_LO,
965 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
966 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
967 
968 			/*
969 			 * If there is common regwin, we switch to that regwin
970 			 * and switch back to bus regwin once we have done.
971 			 */
972 			if (BWI_REGWIN_EXIST(com)) {
973 				error = bwi_regwin_switch(sc, com, NULL);
974 				if (error)
975 					return error;
976 			}
977 
978 			/* Let bus know what we have changed */
979 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
980 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
981 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
982 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
983 
984 			if (BWI_REGWIN_EXIST(com)) {
985 				error = bwi_regwin_switch(sc, bus, NULL);
986 				if (error)
987 					return error;
988 			}
989 		} else if (bus->rw_rev >= 11) {
990 			/*
991 			 * Enable memory read multiple
992 			 */
993 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
994 		}
995 	} else {
996 		/* TODO:PCIE */
997 	}
998 
999 	sc->sc_flags |= BWI_F_BUS_INITED;
1000 back:
1001 	return bwi_regwin_switch(sc, old, NULL);
1002 }
1003 
1004 static void
bwi_get_card_flags(struct bwi_softc * sc)1005 bwi_get_card_flags(struct bwi_softc *sc)
1006 {
1007 #define	PCI_VENDOR_APPLE 0x106b
1008 #define	PCI_VENDOR_DELL  0x1028
1009 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1010 	if (sc->sc_card_flags == 0xffff)
1011 		sc->sc_card_flags = 0;
1012 
1013 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1014 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1015 	    sc->sc_pci_revid == 0x74)
1016 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1017 
1018 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1019 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1020 	    sc->sc_pci_revid > 0x40)
1021 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1022 
1023 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1024 #undef PCI_VENDOR_DELL
1025 #undef PCI_VENDOR_APPLE
1026 }
1027 
1028 static void
bwi_get_eaddr(struct bwi_softc * sc,uint16_t eaddr_ofs,uint8_t * eaddr)1029 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1030 {
1031 	int i;
1032 
1033 	for (i = 0; i < 3; ++i) {
1034 		*((uint16_t *)eaddr + i) =
1035 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1036 	}
1037 }
1038 
1039 static void
bwi_get_clock_freq(struct bwi_softc * sc,struct bwi_clock_freq * freq)1040 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1041 {
1042 	struct bwi_regwin *com;
1043 	uint32_t val;
1044 	u_int div;
1045 	int src;
1046 
1047 	bzero(freq, sizeof(*freq));
1048 	com = &sc->sc_com_regwin;
1049 
1050 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1051 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1052 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1053 
1054 	/*
1055 	 * Calculate clock frequency
1056 	 */
1057 	src = -1;
1058 	div = 0;
1059 	if (com->rw_rev < 6) {
1060 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1061 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1062 			src = BWI_CLKSRC_PCI;
1063 			div = 64;
1064 		} else {
1065 			src = BWI_CLKSRC_CS_OSC;
1066 			div = 32;
1067 		}
1068 	} else if (com->rw_rev < 10) {
1069 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1070 
1071 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1072 		if (src == BWI_CLKSRC_LP_OSC) {
1073 			div = 1;
1074 		} else {
1075 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1076 
1077 			/* Unknown source */
1078 			if (src >= BWI_CLKSRC_MAX)
1079 				src = BWI_CLKSRC_CS_OSC;
1080 		}
1081 	} else {
1082 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1083 
1084 		src = BWI_CLKSRC_CS_OSC;
1085 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1086 	}
1087 
1088 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1089 	KASSERT(div != 0, ("div zero"));
1090 
1091 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1092 		src == BWI_CLKSRC_PCI ? "PCI" :
1093 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1094 
1095 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1096 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1097 
1098 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1099 		freq->clkfreq_min, freq->clkfreq_max);
1100 }
1101 
1102 static int
bwi_set_clock_mode(struct bwi_softc * sc,enum bwi_clock_mode clk_mode)1103 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1104 {
1105 	struct bwi_regwin *old, *com;
1106 	uint32_t clk_ctrl, clk_src;
1107 	int error, pwr_off = 0;
1108 
1109 	com = &sc->sc_com_regwin;
1110 	if (!BWI_REGWIN_EXIST(com))
1111 		return 0;
1112 
1113 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1114 		return 0;
1115 
1116 	/*
1117 	 * For common regwin whose rev is [6, 10), the chip
1118 	 * must be capable to change clock mode.
1119 	 */
1120 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1121 		return 0;
1122 
1123 	error = bwi_regwin_switch(sc, com, &old);
1124 	if (error)
1125 		return error;
1126 
1127 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1128 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1129 
1130 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1131 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1132 
1133 	switch (clk_mode) {
1134 	case BWI_CLOCK_MODE_FAST:
1135 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1136 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1137 		break;
1138 	case BWI_CLOCK_MODE_SLOW:
1139 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1140 		break;
1141 	case BWI_CLOCK_MODE_DYN:
1142 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1143 			      BWI_CLOCK_CTRL_IGNPLL |
1144 			      BWI_CLOCK_CTRL_NODYN);
1145 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1146 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1147 			pwr_off = 1;
1148 		}
1149 		break;
1150 	}
1151 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1152 
1153 	if (pwr_off)
1154 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1155 
1156 	return bwi_regwin_switch(sc, old, NULL);
1157 }
1158 
1159 static int
bwi_set_clock_delay(struct bwi_softc * sc)1160 bwi_set_clock_delay(struct bwi_softc *sc)
1161 {
1162 	struct bwi_regwin *old, *com;
1163 	int error;
1164 
1165 	com = &sc->sc_com_regwin;
1166 	if (!BWI_REGWIN_EXIST(com))
1167 		return 0;
1168 
1169 	error = bwi_regwin_switch(sc, com, &old);
1170 	if (error)
1171 		return error;
1172 
1173 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1174 		if (sc->sc_bbp_rev == 0)
1175 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1176 		else if (sc->sc_bbp_rev == 1)
1177 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1178 	}
1179 
1180 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1181 		if (com->rw_rev >= 10) {
1182 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1183 		} else {
1184 			struct bwi_clock_freq freq;
1185 
1186 			bwi_get_clock_freq(sc, &freq);
1187 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1188 				howmany(freq.clkfreq_max * 150, 1000000));
1189 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1190 				howmany(freq.clkfreq_max * 15, 1000000));
1191 		}
1192 	}
1193 
1194 	return bwi_regwin_switch(sc, old, NULL);
1195 }
1196 
1197 static void
bwi_init(struct bwi_softc * sc)1198 bwi_init(struct bwi_softc *sc)
1199 {
1200 	struct ieee80211com *ic = &sc->sc_ic;
1201 
1202 	BWI_LOCK(sc);
1203 	bwi_init_statechg(sc, 1);
1204 	BWI_UNLOCK(sc);
1205 
1206 	if (sc->sc_flags & BWI_F_RUNNING)
1207 		ieee80211_start_all(ic);		/* start all vap's */
1208 }
1209 
1210 static void
bwi_init_statechg(struct bwi_softc * sc,int statechg)1211 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1212 {
1213 	struct bwi_mac *mac;
1214 	int error;
1215 
1216 	BWI_ASSERT_LOCKED(sc);
1217 
1218 	bwi_stop_locked(sc, statechg);
1219 
1220 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1221 
1222 	/* TODO: 2 MAC */
1223 
1224 	mac = &sc->sc_mac[0];
1225 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1226 	if (error) {
1227 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1228 		    __func__, error);
1229 		goto bad;
1230 	}
1231 	error = bwi_mac_init(mac);
1232 	if (error) {
1233 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1234 		    __func__, error);
1235 		goto bad;
1236 	}
1237 
1238 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1239 
1240 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1241 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1242 
1243 	bwi_mac_reset_hwkeys(mac);
1244 
1245 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1246 		int i;
1247 
1248 #define NRETRY	1000
1249 		/*
1250 		 * Drain any possible pending TX status
1251 		 */
1252 		for (i = 0; i < NRETRY; ++i) {
1253 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1254 			     BWI_TXSTATUS0_VALID) == 0)
1255 				break;
1256 			CSR_READ_4(sc, BWI_TXSTATUS1);
1257 		}
1258 		if (i == NRETRY)
1259 			device_printf(sc->sc_dev,
1260 			    "%s: can't drain TX status\n", __func__);
1261 #undef NRETRY
1262 	}
1263 
1264 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1265 		bwi_mac_updateslot(mac, 1);
1266 
1267 	/* Start MAC */
1268 	error = bwi_mac_start(mac);
1269 	if (error) {
1270 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1271 		    __func__, error);
1272 		goto bad;
1273 	}
1274 
1275 	/* Clear stop flag before enabling interrupt */
1276 	sc->sc_flags &= ~BWI_F_STOP;
1277 	sc->sc_flags |= BWI_F_RUNNING;
1278 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1279 
1280 	/* Enable intrs */
1281 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1282 	return;
1283 bad:
1284 	bwi_stop_locked(sc, 1);
1285 }
1286 
1287 static void
bwi_parent(struct ieee80211com * ic)1288 bwi_parent(struct ieee80211com *ic)
1289 {
1290 	struct bwi_softc *sc = ic->ic_softc;
1291 	int startall = 0;
1292 
1293 	BWI_LOCK(sc);
1294 	if (ic->ic_nrunning > 0) {
1295 		struct bwi_mac *mac;
1296 		int promisc = -1;
1297 
1298 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1299 		    ("current regwin type %d",
1300 		    sc->sc_cur_regwin->rw_type));
1301 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1302 
1303 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1304 			promisc = 1;
1305 			sc->sc_flags |= BWI_F_PROMISC;
1306 		} else if (ic->ic_promisc == 0 &&
1307 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1308 			promisc = 0;
1309 			sc->sc_flags &= ~BWI_F_PROMISC;
1310 		}
1311 
1312 		if (promisc >= 0)
1313 			bwi_mac_set_promisc(mac, promisc);
1314 	}
1315 	if (ic->ic_nrunning > 0) {
1316 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1317 			bwi_init_statechg(sc, 1);
1318 			startall = 1;
1319 		}
1320 	} else if (sc->sc_flags & BWI_F_RUNNING)
1321 		bwi_stop_locked(sc, 1);
1322 	BWI_UNLOCK(sc);
1323 	if (startall)
1324 		ieee80211_start_all(ic);
1325 }
1326 
1327 static int
bwi_transmit(struct ieee80211com * ic,struct mbuf * m)1328 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1329 {
1330 	struct bwi_softc *sc = ic->ic_softc;
1331 	int error;
1332 
1333 	BWI_LOCK(sc);
1334 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1335 		BWI_UNLOCK(sc);
1336 		return (ENXIO);
1337 	}
1338 	error = mbufq_enqueue(&sc->sc_snd, m);
1339 	if (error) {
1340 		BWI_UNLOCK(sc);
1341 		return (error);
1342 	}
1343 	bwi_start_locked(sc);
1344 	BWI_UNLOCK(sc);
1345 	return (0);
1346 }
1347 
1348 static void
bwi_start_locked(struct bwi_softc * sc)1349 bwi_start_locked(struct bwi_softc *sc)
1350 {
1351 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1352 	struct ieee80211_frame *wh;
1353 	struct ieee80211_node *ni;
1354 	struct mbuf *m;
1355 	int trans, idx;
1356 
1357 	BWI_ASSERT_LOCKED(sc);
1358 
1359 	trans = 0;
1360 	idx = tbd->tbd_idx;
1361 
1362 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1363 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1364 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1365 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1366 		wh = mtod(m, struct ieee80211_frame *);
1367 		ieee80211_output_seqno_assign(ni, -1, m);
1368 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1369 		    ieee80211_crypto_encap(ni, m) == NULL) {
1370 			if_inc_counter(ni->ni_vap->iv_ifp,
1371 			    IFCOUNTER_OERRORS, 1);
1372 			ieee80211_free_node(ni);
1373 			m_freem(m);
1374 			continue;
1375 		}
1376 		if (bwi_encap(sc, idx, m, ni) != 0) {
1377 			/* 'm' is freed in bwi_encap() if we reach here */
1378 			if (ni != NULL) {
1379 				if_inc_counter(ni->ni_vap->iv_ifp,
1380 				    IFCOUNTER_OERRORS, 1);
1381 				ieee80211_free_node(ni);
1382 			} else
1383 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1384 			continue;
1385 		}
1386 		trans = 1;
1387 		tbd->tbd_used++;
1388 		idx = (idx + 1) % BWI_TX_NDESC;
1389 	}
1390 
1391 	tbd->tbd_idx = idx;
1392 	if (trans)
1393 		sc->sc_tx_timer = 5;
1394 }
1395 
1396 static int
bwi_raw_xmit(struct ieee80211_node * ni,struct mbuf * m,const struct ieee80211_bpf_params * params)1397 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1398 	const struct ieee80211_bpf_params *params)
1399 {
1400 	struct ieee80211com *ic = ni->ni_ic;
1401 	struct bwi_softc *sc = ic->ic_softc;
1402 	/* XXX wme? */
1403 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1404 	int idx, error;
1405 
1406 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1407 		m_freem(m);
1408 		return ENETDOWN;
1409 	}
1410 
1411 	BWI_LOCK(sc);
1412 	idx = tbd->tbd_idx;
1413 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1414 	if (params == NULL) {
1415 		/*
1416 		 * Legacy path; interpret frame contents to decide
1417 		 * precisely how to send the frame.
1418 		 */
1419 		error = bwi_encap(sc, idx, m, ni);
1420 	} else {
1421 		/*
1422 		 * Caller supplied explicit parameters to use in
1423 		 * sending the frame.
1424 		 */
1425 		error = bwi_encap_raw(sc, idx, m, ni, params);
1426 	}
1427 	if (error == 0) {
1428 		tbd->tbd_used++;
1429 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1430 		sc->sc_tx_timer = 5;
1431 	}
1432 	BWI_UNLOCK(sc);
1433 	return error;
1434 }
1435 
1436 static void
bwi_watchdog(void * arg)1437 bwi_watchdog(void *arg)
1438 {
1439 	struct bwi_softc *sc;
1440 
1441 	sc = arg;
1442 	BWI_ASSERT_LOCKED(sc);
1443 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1444 		device_printf(sc->sc_dev, "watchdog timeout\n");
1445 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1446 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1447 	}
1448 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1449 }
1450 
1451 static void
bwi_stop(struct bwi_softc * sc,int statechg)1452 bwi_stop(struct bwi_softc *sc, int statechg)
1453 {
1454 	BWI_LOCK(sc);
1455 	bwi_stop_locked(sc, statechg);
1456 	BWI_UNLOCK(sc);
1457 }
1458 
1459 static void
bwi_stop_locked(struct bwi_softc * sc,int statechg)1460 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1461 {
1462 	struct bwi_mac *mac;
1463 	int i, error, pwr_off = 0;
1464 
1465 	BWI_ASSERT_LOCKED(sc);
1466 
1467 	callout_stop(&sc->sc_calib_ch);
1468 	callout_stop(&sc->sc_led_blink_ch);
1469 	sc->sc_led_blinking = 0;
1470 	sc->sc_flags |= BWI_F_STOP;
1471 
1472 	if (sc->sc_flags & BWI_F_RUNNING) {
1473 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1474 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1475 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1476 
1477 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1478 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1479 		bwi_mac_stop(mac);
1480 	}
1481 
1482 	for (i = 0; i < sc->sc_nmac; ++i) {
1483 		struct bwi_regwin *old_rw;
1484 
1485 		mac = &sc->sc_mac[i];
1486 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1487 			continue;
1488 
1489 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1490 		if (error)
1491 			continue;
1492 
1493 		bwi_mac_shutdown(mac);
1494 		pwr_off = 1;
1495 
1496 		bwi_regwin_switch(sc, old_rw, NULL);
1497 	}
1498 
1499 	if (pwr_off)
1500 		bwi_bbp_power_off(sc);
1501 
1502 	sc->sc_tx_timer = 0;
1503 	callout_stop(&sc->sc_watchdog_timer);
1504 	sc->sc_flags &= ~BWI_F_RUNNING;
1505 }
1506 
1507 void
bwi_intr(void * xsc)1508 bwi_intr(void *xsc)
1509 {
1510 	struct bwi_softc *sc = xsc;
1511 	struct bwi_mac *mac;
1512 	uint32_t intr_status;
1513 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1514 	int i, txrx_error, tx = 0, rx_data = -1;
1515 
1516 	BWI_LOCK(sc);
1517 
1518 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1519 	    (sc->sc_flags & BWI_F_STOP)) {
1520 		BWI_UNLOCK(sc);
1521 		return;
1522 	}
1523 	/*
1524 	 * Get interrupt status
1525 	 */
1526 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1527 	if (intr_status == 0xffffffff) {	/* Not for us */
1528 		BWI_UNLOCK(sc);
1529 		return;
1530 	}
1531 
1532 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1533 
1534 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1535 	if (intr_status == 0) {		/* Nothing is interesting */
1536 		BWI_UNLOCK(sc);
1537 		return;
1538 	}
1539 
1540 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1541 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1542 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1543 
1544 	txrx_error = 0;
1545 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1546 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1547 		uint32_t mask;
1548 
1549 		if (BWI_TXRX_IS_RX(i))
1550 			mask = BWI_TXRX_RX_INTRS;
1551 		else
1552 			mask = BWI_TXRX_TX_INTRS;
1553 
1554 		txrx_intr_status[i] =
1555 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1556 
1557 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1558 			 i, txrx_intr_status[i]);
1559 
1560 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1561 			device_printf(sc->sc_dev,
1562 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1563 			    __func__, i, txrx_intr_status[i]);
1564 			txrx_error = 1;
1565 		}
1566 	}
1567 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1568 
1569 	/*
1570 	 * Acknowledge interrupt
1571 	 */
1572 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1573 
1574 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1575 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1576 
1577 	/* Disable all interrupts */
1578 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1579 
1580 	/*
1581 	 * http://bcm-specs.sipsolutions.net/Interrupts
1582 	 * Says for this bit (0x800):
1583 	 * "Fatal Error
1584 	 *
1585 	 * We got this one while testing things when by accident the
1586 	 * template ram wasn't set to big endian when it should have
1587 	 * been after writing the initial values. It keeps on being
1588 	 * triggered, the only way to stop it seems to shut down the
1589 	 * chip."
1590 	 *
1591 	 * Suggesting that we should never get it and if we do we're not
1592 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1593 	 * it is valid only on mac version 5 and higher, but I couldn't
1594 	 * find a reference for that...  Since I see them from time to time
1595 	 * on my card, this suggests an error in the tx path still...
1596 	 */
1597 	if (intr_status & BWI_INTR_PHY_TXERR) {
1598 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1599 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1600 			    __func__);
1601 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1602 			BWI_UNLOCK(sc);
1603 			return;
1604 		}
1605 	}
1606 
1607 	if (txrx_error) {
1608 		/* TODO: reset device */
1609 	}
1610 
1611 	if (intr_status & BWI_INTR_TBTT)
1612 		bwi_mac_config_ps(mac);
1613 
1614 	if (intr_status & BWI_INTR_EO_ATIM)
1615 		device_printf(sc->sc_dev, "EO_ATIM\n");
1616 
1617 	if (intr_status & BWI_INTR_PMQ) {
1618 		for (;;) {
1619 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1620 				break;
1621 		}
1622 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1623 	}
1624 
1625 	if (intr_status & BWI_INTR_NOISE)
1626 		device_printf(sc->sc_dev, "intr noise\n");
1627 
1628 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1629 		rx_data = sc->sc_rxeof(sc);
1630 		if (sc->sc_flags & BWI_F_STOP) {
1631 			BWI_UNLOCK(sc);
1632 			return;
1633 		}
1634 	}
1635 
1636 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1637 		sc->sc_txeof_status(sc);
1638 		tx = 1;
1639 	}
1640 
1641 	if (intr_status & BWI_INTR_TX_DONE) {
1642 		bwi_txeof(sc);
1643 		tx = 1;
1644 	}
1645 
1646 	/* Re-enable interrupts */
1647 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1648 
1649 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1650 		int evt = BWI_LED_EVENT_NONE;
1651 
1652 		if (tx && rx_data > 0) {
1653 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1654 				evt = BWI_LED_EVENT_RX;
1655 			else
1656 				evt = BWI_LED_EVENT_TX;
1657 		} else if (tx) {
1658 			evt = BWI_LED_EVENT_TX;
1659 		} else if (rx_data > 0) {
1660 			evt = BWI_LED_EVENT_RX;
1661 		} else if (rx_data == 0) {
1662 			evt = BWI_LED_EVENT_POLL;
1663 		}
1664 
1665 		if (evt != BWI_LED_EVENT_NONE)
1666 			bwi_led_event(sc, evt);
1667 	}
1668 
1669 	BWI_UNLOCK(sc);
1670 }
1671 
1672 static void
bwi_scan_start(struct ieee80211com * ic)1673 bwi_scan_start(struct ieee80211com *ic)
1674 {
1675 	struct bwi_softc *sc = ic->ic_softc;
1676 
1677 	BWI_LOCK(sc);
1678 	/* Enable MAC beacon promiscuity */
1679 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1680 	BWI_UNLOCK(sc);
1681 }
1682 
1683 static void
bwi_getradiocaps(struct ieee80211com * ic,int maxchans,int * nchans,struct ieee80211_channel chans[])1684 bwi_getradiocaps(struct ieee80211com *ic,
1685     int maxchans, int *nchans, struct ieee80211_channel chans[])
1686 {
1687 	struct bwi_softc *sc = ic->ic_softc;
1688 	struct bwi_mac *mac;
1689 	struct bwi_phy *phy;
1690 	uint8_t bands[IEEE80211_MODE_BYTES];
1691 
1692 	/*
1693 	 * XXX First MAC is known to exist
1694 	 * TODO2
1695 	 */
1696 	mac = &sc->sc_mac[0];
1697 	phy = &mac->mac_phy;
1698 
1699 	memset(bands, 0, sizeof(bands));
1700 	switch (phy->phy_mode) {
1701 	case IEEE80211_MODE_11G:
1702 		setbit(bands, IEEE80211_MODE_11G);
1703 		/* FALLTHROUGH */
1704 	case IEEE80211_MODE_11B:
1705 		setbit(bands, IEEE80211_MODE_11B);
1706 		break;
1707 	case IEEE80211_MODE_11A:
1708 		/* TODO:11A */
1709 		setbit(bands, IEEE80211_MODE_11A);
1710 		device_printf(sc->sc_dev, "no 11a support\n");
1711 		return;
1712 	default:
1713 		panic("unknown phymode %d\n", phy->phy_mode);
1714 	}
1715 
1716 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1717 }
1718 
1719 static void
bwi_set_channel(struct ieee80211com * ic)1720 bwi_set_channel(struct ieee80211com *ic)
1721 {
1722 	struct bwi_softc *sc = ic->ic_softc;
1723 	struct ieee80211_channel *c = ic->ic_curchan;
1724 	struct bwi_mac *mac;
1725 
1726 	BWI_LOCK(sc);
1727 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1728 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1729 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1730 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1731 
1732 	sc->sc_rates = ieee80211_get_ratetable(c);
1733 	BWI_UNLOCK(sc);
1734 }
1735 
1736 static void
bwi_scan_end(struct ieee80211com * ic)1737 bwi_scan_end(struct ieee80211com *ic)
1738 {
1739 	struct bwi_softc *sc = ic->ic_softc;
1740 
1741 	BWI_LOCK(sc);
1742 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1743 	BWI_UNLOCK(sc);
1744 }
1745 
1746 static int
bwi_newstate(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)1747 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1748 {
1749 	struct bwi_vap *bvp = BWI_VAP(vap);
1750 	struct ieee80211com *ic= vap->iv_ic;
1751 	struct bwi_softc *sc = ic->ic_softc;
1752 	enum ieee80211_state ostate = vap->iv_state;
1753 	struct bwi_mac *mac;
1754 	int error;
1755 
1756 	BWI_LOCK(sc);
1757 
1758 	callout_stop(&sc->sc_calib_ch);
1759 
1760 	if (nstate == IEEE80211_S_INIT)
1761 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1762 
1763 	bwi_led_newstate(sc, nstate);
1764 
1765 	error = bvp->bv_newstate(vap, nstate, arg);
1766 	if (error != 0)
1767 		goto back;
1768 
1769 	/*
1770 	 * Clear the BSSID when we stop a STA
1771 	 */
1772 	if (vap->iv_opmode == IEEE80211_M_STA) {
1773 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1774 			/*
1775 			 * Clear out the BSSID.  If we reassociate to
1776 			 * the same AP, this will reinialize things
1777 			 * correctly...
1778 			 */
1779 			if (ic->ic_opmode == IEEE80211_M_STA &&
1780 			    !(sc->sc_flags & BWI_F_STOP))
1781 				bwi_set_bssid(sc, bwi_zero_addr);
1782 		}
1783 	}
1784 
1785 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1786 		/* Nothing to do */
1787 	} else if (nstate == IEEE80211_S_RUN) {
1788 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1789 
1790 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1791 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1792 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1793 
1794 		/* Initial TX power calibration */
1795 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1796 #ifdef notyet
1797 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1798 #else
1799 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1800 #endif
1801 
1802 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1803 	}
1804 back:
1805 	BWI_UNLOCK(sc);
1806 
1807 	return error;
1808 }
1809 
1810 static int
bwi_dma_alloc(struct bwi_softc * sc)1811 bwi_dma_alloc(struct bwi_softc *sc)
1812 {
1813 	int error, i, has_txstats;
1814 	bus_addr_t lowaddr = 0;
1815 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1816 	uint32_t txrx_ctrl_step = 0;
1817 
1818 	has_txstats = 0;
1819 	for (i = 0; i < sc->sc_nmac; ++i) {
1820 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1821 			has_txstats = 1;
1822 			break;
1823 		}
1824 	}
1825 
1826 	switch (sc->sc_bus_space) {
1827 	case BWI_BUS_SPACE_30BIT:
1828 	case BWI_BUS_SPACE_32BIT:
1829 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1830 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1831 		else
1832 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1833 		desc_sz = sizeof(struct bwi_desc32);
1834 		txrx_ctrl_step = 0x20;
1835 
1836 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1837 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1838 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1839 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1840 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1841 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1842 		sc->sc_rxeof = bwi_rxeof32;
1843 		sc->sc_start_tx = bwi_start_tx32;
1844 		if (has_txstats) {
1845 			sc->sc_init_txstats = bwi_init_txstats32;
1846 			sc->sc_free_txstats = bwi_free_txstats32;
1847 			sc->sc_txeof_status = bwi_txeof_status32;
1848 		}
1849 		break;
1850 
1851 	case BWI_BUS_SPACE_64BIT:
1852 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1853 		desc_sz = sizeof(struct bwi_desc64);
1854 		txrx_ctrl_step = 0x40;
1855 
1856 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1857 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1858 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1859 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1860 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1861 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1862 		sc->sc_rxeof = bwi_rxeof64;
1863 		sc->sc_start_tx = bwi_start_tx64;
1864 		if (has_txstats) {
1865 			sc->sc_init_txstats = bwi_init_txstats64;
1866 			sc->sc_free_txstats = bwi_free_txstats64;
1867 			sc->sc_txeof_status = bwi_txeof_status64;
1868 		}
1869 		break;
1870 	}
1871 
1872 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1873 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1874 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1875 
1876 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1877 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1878 
1879 	/*
1880 	 * Create top level DMA tag
1881 	 */
1882 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1883 			       BWI_ALIGN, 0,		/* alignment, bounds */
1884 			       lowaddr,			/* lowaddr */
1885 			       BUS_SPACE_MAXADDR,	/* highaddr */
1886 			       NULL, NULL,		/* filter, filterarg */
1887 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1888 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1889 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1890 			       0,			/* flags */
1891 			       NULL, NULL,		/* lockfunc, lockarg */
1892 			       &sc->sc_parent_dtag);
1893 	if (error) {
1894 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1895 		return error;
1896 	}
1897 
1898 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1899 
1900 	/*
1901 	 * Create TX ring DMA stuffs
1902 	 */
1903 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1904 				BWI_RING_ALIGN, 0,
1905 				BUS_SPACE_MAXADDR,
1906 				BUS_SPACE_MAXADDR,
1907 				NULL, NULL,
1908 				tx_ring_sz,
1909 				1,
1910 				tx_ring_sz,
1911 				0,
1912 				NULL, NULL,
1913 				&sc->sc_txring_dtag);
1914 	if (error) {
1915 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1916 		return error;
1917 	}
1918 
1919 	for (i = 0; i < BWI_TX_NRING; ++i) {
1920 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1921 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1922 					   TXRX_CTRL(i));
1923 		if (error) {
1924 			device_printf(sc->sc_dev, "%dth TX ring "
1925 				      "DMA alloc failed\n", i);
1926 			return error;
1927 		}
1928 	}
1929 
1930 	/*
1931 	 * Create RX ring DMA stuffs
1932 	 */
1933 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1934 				BWI_RING_ALIGN, 0,
1935 				BUS_SPACE_MAXADDR,
1936 				BUS_SPACE_MAXADDR,
1937 				NULL, NULL,
1938 				rx_ring_sz,
1939 				1,
1940 				rx_ring_sz,
1941 				0,
1942 				NULL, NULL,
1943 				&sc->sc_rxring_dtag);
1944 	if (error) {
1945 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1946 		return error;
1947 	}
1948 
1949 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1950 				   rx_ring_sz, TXRX_CTRL(0));
1951 	if (error) {
1952 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1953 		return error;
1954 	}
1955 
1956 	if (has_txstats) {
1957 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1958 		if (error) {
1959 			device_printf(sc->sc_dev,
1960 				      "TX stats DMA alloc failed\n");
1961 			return error;
1962 		}
1963 	}
1964 
1965 #undef TXRX_CTRL
1966 
1967 	return bwi_dma_mbuf_create(sc);
1968 }
1969 
1970 static void
bwi_dma_free(struct bwi_softc * sc)1971 bwi_dma_free(struct bwi_softc *sc)
1972 {
1973 	if (sc->sc_txring_dtag != NULL) {
1974 		int i;
1975 
1976 		for (i = 0; i < BWI_TX_NRING; ++i) {
1977 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1978 
1979 			if (rd->rdata_desc != NULL) {
1980 				bus_dmamap_unload(sc->sc_txring_dtag,
1981 						  rd->rdata_dmap);
1982 				bus_dmamem_free(sc->sc_txring_dtag,
1983 						rd->rdata_desc,
1984 						rd->rdata_dmap);
1985 			}
1986 		}
1987 		bus_dma_tag_destroy(sc->sc_txring_dtag);
1988 	}
1989 
1990 	if (sc->sc_rxring_dtag != NULL) {
1991 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
1992 
1993 		if (rd->rdata_desc != NULL) {
1994 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
1995 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
1996 					rd->rdata_dmap);
1997 		}
1998 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
1999 	}
2000 
2001 	bwi_dma_txstats_free(sc);
2002 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
2003 
2004 	if (sc->sc_parent_dtag != NULL)
2005 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2006 }
2007 
2008 static int
bwi_dma_ring_alloc(struct bwi_softc * sc,bus_dma_tag_t dtag,struct bwi_ring_data * rd,bus_size_t size,uint32_t txrx_ctrl)2009 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2010 		   struct bwi_ring_data *rd, bus_size_t size,
2011 		   uint32_t txrx_ctrl)
2012 {
2013 	int error;
2014 
2015 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2016 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2017 				 &rd->rdata_dmap);
2018 	if (error) {
2019 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2020 		return error;
2021 	}
2022 
2023 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2024 				bwi_dma_ring_addr, &rd->rdata_paddr,
2025 				BUS_DMA_NOWAIT);
2026 	if (error) {
2027 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2028 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2029 		rd->rdata_desc = NULL;
2030 		return error;
2031 	}
2032 
2033 	rd->rdata_txrx_ctrl = txrx_ctrl;
2034 	return 0;
2035 }
2036 
2037 static int
bwi_dma_txstats_alloc(struct bwi_softc * sc,uint32_t ctrl_base,bus_size_t desc_sz)2038 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2039 		      bus_size_t desc_sz)
2040 {
2041 	struct bwi_txstats_data *st;
2042 	bus_size_t dma_size;
2043 	int error;
2044 
2045 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2046 	if (st == NULL) {
2047 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2048 		return ENOMEM;
2049 	}
2050 	sc->sc_txstats = st;
2051 
2052 	/*
2053 	 * Create TX stats descriptor DMA stuffs
2054 	 */
2055 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2056 
2057 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2058 				BWI_RING_ALIGN,
2059 				0,
2060 				BUS_SPACE_MAXADDR,
2061 				BUS_SPACE_MAXADDR,
2062 				NULL, NULL,
2063 				dma_size,
2064 				1,
2065 				dma_size,
2066 				0,
2067 				NULL, NULL,
2068 				&st->stats_ring_dtag);
2069 	if (error) {
2070 		device_printf(sc->sc_dev, "can't create txstats ring "
2071 			      "DMA tag\n");
2072 		return error;
2073 	}
2074 
2075 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2076 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2077 				 &st->stats_ring_dmap);
2078 	if (error) {
2079 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2080 			      "DMA mem\n");
2081 		bus_dma_tag_destroy(st->stats_ring_dtag);
2082 		st->stats_ring_dtag = NULL;
2083 		return error;
2084 	}
2085 
2086 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2087 				st->stats_ring, dma_size,
2088 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2089 				BUS_DMA_NOWAIT);
2090 	if (error) {
2091 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2092 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2093 				st->stats_ring_dmap);
2094 		bus_dma_tag_destroy(st->stats_ring_dtag);
2095 		st->stats_ring_dtag = NULL;
2096 		return error;
2097 	}
2098 
2099 	/*
2100 	 * Create TX stats DMA stuffs
2101 	 */
2102 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2103 			   BWI_ALIGN);
2104 
2105 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2106 				BWI_ALIGN,
2107 				0,
2108 				BUS_SPACE_MAXADDR,
2109 				BUS_SPACE_MAXADDR,
2110 				NULL, NULL,
2111 				dma_size,
2112 				1,
2113 				dma_size,
2114 				0,
2115 				NULL, NULL,
2116 				&st->stats_dtag);
2117 	if (error) {
2118 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2119 		return error;
2120 	}
2121 
2122 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2123 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2124 				 &st->stats_dmap);
2125 	if (error) {
2126 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2127 		bus_dma_tag_destroy(st->stats_dtag);
2128 		st->stats_dtag = NULL;
2129 		return error;
2130 	}
2131 
2132 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2133 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2134 				BUS_DMA_NOWAIT);
2135 	if (error) {
2136 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2137 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2138 		bus_dma_tag_destroy(st->stats_dtag);
2139 		st->stats_dtag = NULL;
2140 		return error;
2141 	}
2142 
2143 	st->stats_ctrl_base = ctrl_base;
2144 	return 0;
2145 }
2146 
2147 static void
bwi_dma_txstats_free(struct bwi_softc * sc)2148 bwi_dma_txstats_free(struct bwi_softc *sc)
2149 {
2150 	struct bwi_txstats_data *st;
2151 
2152 	if (sc->sc_txstats == NULL)
2153 		return;
2154 	st = sc->sc_txstats;
2155 
2156 	if (st->stats_ring_dtag != NULL) {
2157 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2158 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2159 				st->stats_ring_dmap);
2160 		bus_dma_tag_destroy(st->stats_ring_dtag);
2161 	}
2162 
2163 	if (st->stats_dtag != NULL) {
2164 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2165 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2166 		bus_dma_tag_destroy(st->stats_dtag);
2167 	}
2168 
2169 	free(st, M_DEVBUF);
2170 }
2171 
2172 static void
bwi_dma_ring_addr(void * arg,bus_dma_segment_t * seg,int nseg,int error)2173 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2174 {
2175 	KASSERT(nseg == 1, ("too many segments\n"));
2176 	*((bus_addr_t *)arg) = seg->ds_addr;
2177 }
2178 
2179 static int
bwi_dma_mbuf_create(struct bwi_softc * sc)2180 bwi_dma_mbuf_create(struct bwi_softc *sc)
2181 {
2182 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2183 	int i, j, k, ntx, error;
2184 
2185 	/*
2186 	 * Create TX/RX mbuf DMA tag
2187 	 */
2188 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2189 				1,
2190 				0,
2191 				BUS_SPACE_MAXADDR,
2192 				BUS_SPACE_MAXADDR,
2193 				NULL, NULL,
2194 				MCLBYTES,
2195 				1,
2196 				MCLBYTES,
2197 				BUS_DMA_ALLOCNOW,
2198 				NULL, NULL,
2199 				&sc->sc_buf_dtag);
2200 	if (error) {
2201 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2202 		return error;
2203 	}
2204 
2205 	ntx = 0;
2206 
2207 	/*
2208 	 * Create TX mbuf DMA map
2209 	 */
2210 	for (i = 0; i < BWI_TX_NRING; ++i) {
2211 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2212 
2213 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2214 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2215 						  &tbd->tbd_buf[j].tb_dmap);
2216 			if (error) {
2217 				device_printf(sc->sc_dev, "can't create "
2218 					      "%dth tbd, %dth DMA map\n", i, j);
2219 
2220 				ntx = i;
2221 				for (k = 0; k < j; ++k) {
2222 					bus_dmamap_destroy(sc->sc_buf_dtag,
2223 						tbd->tbd_buf[k].tb_dmap);
2224 				}
2225 				goto fail;
2226 			}
2227 		}
2228 	}
2229 	ntx = BWI_TX_NRING;
2230 
2231 	/*
2232 	 * Create RX mbuf DMA map and a spare DMA map
2233 	 */
2234 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2235 				  &rbd->rbd_tmp_dmap);
2236 	if (error) {
2237 		device_printf(sc->sc_dev,
2238 			      "can't create spare RX buf DMA map\n");
2239 		goto fail;
2240 	}
2241 
2242 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2243 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2244 					  &rbd->rbd_buf[j].rb_dmap);
2245 		if (error) {
2246 			device_printf(sc->sc_dev, "can't create %dth "
2247 				      "RX buf DMA map\n", j);
2248 
2249 			for (k = 0; k < j; ++k) {
2250 				bus_dmamap_destroy(sc->sc_buf_dtag,
2251 					rbd->rbd_buf[j].rb_dmap);
2252 			}
2253 			bus_dmamap_destroy(sc->sc_buf_dtag,
2254 					   rbd->rbd_tmp_dmap);
2255 			goto fail;
2256 		}
2257 	}
2258 
2259 	return 0;
2260 fail:
2261 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2262 	return error;
2263 }
2264 
2265 static void
bwi_dma_mbuf_destroy(struct bwi_softc * sc,int ntx,int nrx)2266 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2267 {
2268 	int i, j;
2269 
2270 	if (sc->sc_buf_dtag == NULL)
2271 		return;
2272 
2273 	for (i = 0; i < ntx; ++i) {
2274 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2275 
2276 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2277 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2278 
2279 			if (tb->tb_mbuf != NULL) {
2280 				bus_dmamap_unload(sc->sc_buf_dtag,
2281 						  tb->tb_dmap);
2282 				m_freem(tb->tb_mbuf);
2283 			}
2284 			if (tb->tb_ni != NULL)
2285 				ieee80211_free_node(tb->tb_ni);
2286 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2287 		}
2288 	}
2289 
2290 	if (nrx) {
2291 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2292 
2293 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2294 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2295 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2296 
2297 			if (rb->rb_mbuf != NULL) {
2298 				bus_dmamap_unload(sc->sc_buf_dtag,
2299 						  rb->rb_dmap);
2300 				m_freem(rb->rb_mbuf);
2301 			}
2302 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2303 		}
2304 	}
2305 
2306 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2307 	sc->sc_buf_dtag = NULL;
2308 }
2309 
2310 static void
bwi_enable_intrs(struct bwi_softc * sc,uint32_t enable_intrs)2311 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2312 {
2313 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2314 }
2315 
2316 static void
bwi_disable_intrs(struct bwi_softc * sc,uint32_t disable_intrs)2317 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2318 {
2319 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2320 }
2321 
2322 static int
bwi_init_tx_ring32(struct bwi_softc * sc,int ring_idx)2323 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2324 {
2325 	struct bwi_ring_data *rd;
2326 	struct bwi_txbuf_data *tbd;
2327 	uint32_t val, addr_hi, addr_lo;
2328 
2329 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2330 	rd = &sc->sc_tx_rdata[ring_idx];
2331 	tbd = &sc->sc_tx_bdata[ring_idx];
2332 
2333 	tbd->tbd_idx = 0;
2334 	tbd->tbd_used = 0;
2335 
2336 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2337 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2338 			BUS_DMASYNC_PREWRITE);
2339 
2340 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2341 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2342 
2343 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2344 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2345 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2346 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2347 
2348 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2349 	      BWI_TXRX32_CTRL_ENABLE;
2350 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2351 
2352 	return 0;
2353 }
2354 
2355 static void
bwi_init_rxdesc_ring32(struct bwi_softc * sc,uint32_t ctrl_base,bus_addr_t paddr,int hdr_size,int ndesc)2356 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2357 		       bus_addr_t paddr, int hdr_size, int ndesc)
2358 {
2359 	uint32_t val, addr_hi, addr_lo;
2360 
2361 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2362 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2363 
2364 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2365 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2366 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2367 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2368 
2369 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2370 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2371 	      BWI_TXRX32_CTRL_ENABLE;
2372 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2373 
2374 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2375 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2376 }
2377 
2378 static int
bwi_init_rx_ring32(struct bwi_softc * sc)2379 bwi_init_rx_ring32(struct bwi_softc *sc)
2380 {
2381 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2382 	int i, error;
2383 
2384 	sc->sc_rx_bdata.rbd_idx = 0;
2385 
2386 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2387 		error = bwi_newbuf(sc, i, 1);
2388 		if (error) {
2389 			device_printf(sc->sc_dev,
2390 				  "can't allocate %dth RX buffer\n", i);
2391 			return error;
2392 		}
2393 	}
2394 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2395 			BUS_DMASYNC_PREWRITE);
2396 
2397 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2398 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2399 	return 0;
2400 }
2401 
2402 static int
bwi_init_txstats32(struct bwi_softc * sc)2403 bwi_init_txstats32(struct bwi_softc *sc)
2404 {
2405 	struct bwi_txstats_data *st = sc->sc_txstats;
2406 	bus_addr_t stats_paddr;
2407 	int i;
2408 
2409 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2410 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2411 
2412 	st->stats_idx = 0;
2413 
2414 	stats_paddr = st->stats_paddr;
2415 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2416 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2417 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2418 		stats_paddr += sizeof(struct bwi_txstats);
2419 	}
2420 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2421 			BUS_DMASYNC_PREWRITE);
2422 
2423 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2424 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2425 	return 0;
2426 }
2427 
2428 static void
bwi_setup_rx_desc32(struct bwi_softc * sc,int buf_idx,bus_addr_t paddr,int buf_len)2429 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2430 		    int buf_len)
2431 {
2432 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2433 
2434 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2435 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2436 			 paddr, buf_len, 0);
2437 }
2438 
2439 static void
bwi_setup_tx_desc32(struct bwi_softc * sc,struct bwi_ring_data * rd,int buf_idx,bus_addr_t paddr,int buf_len)2440 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2441 		    int buf_idx, bus_addr_t paddr, int buf_len)
2442 {
2443 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2444 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2445 			 paddr, buf_len, 1);
2446 }
2447 
2448 static int
bwi_init_tx_ring64(struct bwi_softc * sc,int ring_idx)2449 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2450 {
2451 	/* TODO:64 */
2452 	return EOPNOTSUPP;
2453 }
2454 
2455 static int
bwi_init_rx_ring64(struct bwi_softc * sc)2456 bwi_init_rx_ring64(struct bwi_softc *sc)
2457 {
2458 	/* TODO:64 */
2459 	return EOPNOTSUPP;
2460 }
2461 
2462 static int
bwi_init_txstats64(struct bwi_softc * sc)2463 bwi_init_txstats64(struct bwi_softc *sc)
2464 {
2465 	/* TODO:64 */
2466 	return EOPNOTSUPP;
2467 }
2468 
2469 static void
bwi_setup_rx_desc64(struct bwi_softc * sc,int buf_idx,bus_addr_t paddr,int buf_len)2470 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2471 		    int buf_len)
2472 {
2473 	/* TODO:64 */
2474 }
2475 
2476 static void
bwi_setup_tx_desc64(struct bwi_softc * sc,struct bwi_ring_data * rd,int buf_idx,bus_addr_t paddr,int buf_len)2477 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2478 		    int buf_idx, bus_addr_t paddr, int buf_len)
2479 {
2480 	/* TODO:64 */
2481 }
2482 
2483 static void
bwi_dma_buf_addr(void * arg,bus_dma_segment_t * seg,int nseg,bus_size_t mapsz __unused,int error)2484 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2485 		 bus_size_t mapsz __unused, int error)
2486 {
2487         if (!error) {
2488 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2489 		*((bus_addr_t *)arg) = seg->ds_addr;
2490 	}
2491 }
2492 
2493 static int
bwi_newbuf(struct bwi_softc * sc,int buf_idx,int init)2494 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2495 {
2496 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2497 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2498 	struct bwi_rxbuf_hdr *hdr;
2499 	bus_dmamap_t map;
2500 	bus_addr_t paddr;
2501 	struct mbuf *m;
2502 	int error;
2503 
2504 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2505 
2506 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2507 	if (m == NULL) {
2508 		error = ENOBUFS;
2509 
2510 		/*
2511 		 * If the NIC is up and running, we need to:
2512 		 * - Clear RX buffer's header.
2513 		 * - Restore RX descriptor settings.
2514 		 */
2515 		if (init)
2516 			return error;
2517 		else
2518 			goto back;
2519 	}
2520 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2521 
2522 	/*
2523 	 * Try to load RX buf into temporary DMA map
2524 	 */
2525 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2526 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2527 	if (error) {
2528 		m_freem(m);
2529 
2530 		/*
2531 		 * See the comment above
2532 		 */
2533 		if (init)
2534 			return error;
2535 		else
2536 			goto back;
2537 	}
2538 
2539 	if (!init)
2540 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2541 	rxbuf->rb_mbuf = m;
2542 	rxbuf->rb_paddr = paddr;
2543 
2544 	/*
2545 	 * Swap RX buf's DMA map with the loaded temporary one
2546 	 */
2547 	map = rxbuf->rb_dmap;
2548 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2549 	rbd->rbd_tmp_dmap = map;
2550 
2551 back:
2552 	/*
2553 	 * Clear RX buf header
2554 	 */
2555 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2556 	bzero(hdr, sizeof(*hdr));
2557 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2558 
2559 	/*
2560 	 * Setup RX buf descriptor
2561 	 */
2562 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2563 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2564 	return error;
2565 }
2566 
2567 static void
bwi_set_addr_filter(struct bwi_softc * sc,uint16_t addr_ofs,const uint8_t * addr)2568 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2569 		    const uint8_t *addr)
2570 {
2571 	int i;
2572 
2573 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2574 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2575 
2576 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2577 		uint16_t addr_val;
2578 
2579 		addr_val = (uint16_t)addr[i * 2] |
2580 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2581 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2582 	}
2583 }
2584 
2585 static int
bwi_rxeof(struct bwi_softc * sc,int end_idx)2586 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2587 {
2588 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2589 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2590 	struct ieee80211com *ic = &sc->sc_ic;
2591 	int idx, rx_data = 0;
2592 
2593 	idx = rbd->rbd_idx;
2594 	while (idx != end_idx) {
2595 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2596 		struct bwi_rxbuf_hdr *hdr;
2597 		struct ieee80211_frame_min *wh;
2598 		struct ieee80211_node *ni;
2599 		struct mbuf *m;
2600 		uint32_t plcp;
2601 		uint16_t flags2;
2602 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2603 
2604 		m = rb->rb_mbuf;
2605 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2606 				BUS_DMASYNC_POSTREAD);
2607 
2608 		if (bwi_newbuf(sc, idx, 0)) {
2609 			counter_u64_add(ic->ic_ierrors, 1);
2610 			goto next;
2611 		}
2612 
2613 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2614 		flags2 = le16toh(hdr->rxh_flags2);
2615 
2616 		hdr_extra = 0;
2617 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2618 			hdr_extra = 2;
2619 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2620 
2621 		buflen = le16toh(hdr->rxh_buflen);
2622 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2623 			device_printf(sc->sc_dev,
2624 			    "%s: zero length data, hdr_extra %d\n",
2625 			    __func__, hdr_extra);
2626 			counter_u64_add(ic->ic_ierrors, 1);
2627 			m_freem(m);
2628 			goto next;
2629 		}
2630 
2631 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2632 		rssi = bwi_calc_rssi(sc, hdr);
2633 		noise = bwi_calc_noise(sc);
2634 
2635 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2636 		m_adj(m, sizeof(*hdr) + wh_ofs);
2637 
2638 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2639 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2640 		else
2641 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2642 
2643 		/* RX radio tap */
2644 		if (ieee80211_radiotap_active(ic))
2645 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2646 
2647 		m_adj(m, -IEEE80211_CRC_LEN);
2648 
2649 		BWI_UNLOCK(sc);
2650 
2651 		wh = mtod(m, struct ieee80211_frame_min *);
2652 		ni = ieee80211_find_rxnode(ic, wh);
2653 		if (ni != NULL) {
2654 			type = ieee80211_input(ni, m, rssi - noise, noise);
2655 			ieee80211_free_node(ni);
2656 		} else
2657 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2658 		if (type == IEEE80211_FC0_TYPE_DATA) {
2659 			rx_data = 1;
2660 			sc->sc_rx_rate = rate;
2661 		}
2662 
2663 		BWI_LOCK(sc);
2664 next:
2665 		idx = (idx + 1) % BWI_RX_NDESC;
2666 
2667 		if (sc->sc_flags & BWI_F_STOP) {
2668 			/*
2669 			 * Take the fast lane, don't do
2670 			 * any damage to softc
2671 			 */
2672 			return -1;
2673 		}
2674 	}
2675 
2676 	rbd->rbd_idx = idx;
2677 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2678 			BUS_DMASYNC_PREWRITE);
2679 
2680 	return rx_data;
2681 }
2682 
2683 static int
bwi_rxeof32(struct bwi_softc * sc)2684 bwi_rxeof32(struct bwi_softc *sc)
2685 {
2686 	uint32_t val, rx_ctrl;
2687 	int end_idx, rx_data;
2688 
2689 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2690 
2691 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2692 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2693 		  sizeof(struct bwi_desc32);
2694 
2695 	rx_data = bwi_rxeof(sc, end_idx);
2696 	if (rx_data >= 0) {
2697 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2698 			    end_idx * sizeof(struct bwi_desc32));
2699 	}
2700 	return rx_data;
2701 }
2702 
2703 static int
bwi_rxeof64(struct bwi_softc * sc)2704 bwi_rxeof64(struct bwi_softc *sc)
2705 {
2706 	/* TODO:64 */
2707 	return 0;
2708 }
2709 
2710 static void
bwi_reset_rx_ring32(struct bwi_softc * sc,uint32_t rx_ctrl)2711 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2712 {
2713 	int i;
2714 
2715 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2716 
2717 #define NRETRY 10
2718 
2719 	for (i = 0; i < NRETRY; ++i) {
2720 		uint32_t status;
2721 
2722 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2723 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2724 		    BWI_RX32_STATUS_STATE_DISABLED)
2725 			break;
2726 
2727 		DELAY(1000);
2728 	}
2729 	if (i == NRETRY)
2730 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2731 
2732 #undef NRETRY
2733 
2734 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2735 }
2736 
2737 static void
bwi_free_txstats32(struct bwi_softc * sc)2738 bwi_free_txstats32(struct bwi_softc *sc)
2739 {
2740 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2741 }
2742 
2743 static void
bwi_free_rx_ring32(struct bwi_softc * sc)2744 bwi_free_rx_ring32(struct bwi_softc *sc)
2745 {
2746 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2747 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2748 	int i;
2749 
2750 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2751 
2752 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2753 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2754 
2755 		if (rb->rb_mbuf != NULL) {
2756 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2757 			m_freem(rb->rb_mbuf);
2758 			rb->rb_mbuf = NULL;
2759 		}
2760 	}
2761 }
2762 
2763 static void
bwi_free_tx_ring32(struct bwi_softc * sc,int ring_idx)2764 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2765 {
2766 	struct bwi_ring_data *rd;
2767 	struct bwi_txbuf_data *tbd;
2768 	uint32_t state, val;
2769 	int i;
2770 
2771 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2772 	rd = &sc->sc_tx_rdata[ring_idx];
2773 	tbd = &sc->sc_tx_bdata[ring_idx];
2774 
2775 #define NRETRY 10
2776 
2777 	for (i = 0; i < NRETRY; ++i) {
2778 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2779 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2780 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2781 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2782 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2783 			break;
2784 
2785 		DELAY(1000);
2786 	}
2787 	if (i == NRETRY) {
2788 		device_printf(sc->sc_dev,
2789 		    "%s: wait for TX ring(%d) stable timed out\n",
2790 		    __func__, ring_idx);
2791 	}
2792 
2793 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2794 	for (i = 0; i < NRETRY; ++i) {
2795 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2796 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2797 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2798 			break;
2799 
2800 		DELAY(1000);
2801 	}
2802 	if (i == NRETRY)
2803 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2804 		     __func__, ring_idx);
2805 
2806 #undef NRETRY
2807 
2808 	DELAY(1000);
2809 
2810 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2811 
2812 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2813 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2814 
2815 		if (tb->tb_mbuf != NULL) {
2816 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2817 			m_freem(tb->tb_mbuf);
2818 			tb->tb_mbuf = NULL;
2819 		}
2820 		if (tb->tb_ni != NULL) {
2821 			ieee80211_free_node(tb->tb_ni);
2822 			tb->tb_ni = NULL;
2823 		}
2824 	}
2825 }
2826 
2827 static void
bwi_free_txstats64(struct bwi_softc * sc)2828 bwi_free_txstats64(struct bwi_softc *sc)
2829 {
2830 	/* TODO:64 */
2831 }
2832 
2833 static void
bwi_free_rx_ring64(struct bwi_softc * sc)2834 bwi_free_rx_ring64(struct bwi_softc *sc)
2835 {
2836 	/* TODO:64 */
2837 }
2838 
2839 static void
bwi_free_tx_ring64(struct bwi_softc * sc,int ring_idx)2840 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2841 {
2842 	/* TODO:64 */
2843 }
2844 
2845 /* XXX does not belong here */
2846 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2847 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2848 
2849 static __inline void
bwi_ofdm_plcp_header(uint32_t * plcp0,int pkt_len,uint8_t rate)2850 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2851 {
2852 	uint32_t plcp;
2853 
2854 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2855 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2856 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2857 	*plcp0 = htole32(plcp);
2858 }
2859 
2860 static __inline void
bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr * plcp,int pkt_len,uint8_t rate)2861 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2862 		   uint8_t rate)
2863 {
2864 	int len, service, pkt_bitlen;
2865 
2866 	pkt_bitlen = pkt_len * NBBY;
2867 	len = howmany(pkt_bitlen * 2, rate);
2868 
2869 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2870 	if (rate == (11 * 2)) {
2871 		int pkt_bitlen1;
2872 
2873 		/*
2874 		 * PLCP service field needs to be adjusted,
2875 		 * if TX rate is 11Mbytes/s
2876 		 */
2877 		pkt_bitlen1 = len * 11;
2878 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2879 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2880 	}
2881 
2882 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2883 	plcp->i_service = service;
2884 	plcp->i_length = htole16(len);
2885 	/* NOTE: do NOT touch i_crc */
2886 }
2887 
2888 static __inline void
bwi_plcp_header(const struct ieee80211_rate_table * rt,void * plcp,int pkt_len,uint8_t rate)2889 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2890 	void *plcp, int pkt_len, uint8_t rate)
2891 {
2892 	enum ieee80211_phytype modtype;
2893 
2894 	/*
2895 	 * Assume caller has zeroed 'plcp'
2896 	 */
2897 	modtype = ieee80211_rate2phytype(rt, rate);
2898 	if (modtype == IEEE80211_T_OFDM)
2899 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2900 	else if (modtype == IEEE80211_T_DS)
2901 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2902 	else
2903 		panic("unsupport modulation type %u\n", modtype);
2904 }
2905 
2906 static int
bwi_encap(struct bwi_softc * sc,int idx,struct mbuf * m,struct ieee80211_node * ni)2907 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2908 	  struct ieee80211_node *ni)
2909 {
2910 	struct ieee80211vap *vap = ni->ni_vap;
2911 	struct ieee80211com *ic = &sc->sc_ic;
2912 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2913 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2914 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2915 	struct bwi_mac *mac;
2916 	struct bwi_txbuf_hdr *hdr;
2917 	struct ieee80211_frame *wh;
2918 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2919 	uint8_t rate, rate_fb;
2920 	uint32_t mac_ctrl;
2921 	uint16_t phy_ctrl;
2922 	bus_addr_t paddr;
2923 	int type, ismcast, pkt_len, error;
2924 #if 0
2925 	const uint8_t *p;
2926 	int i;
2927 #endif
2928 
2929 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2930 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2931 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2932 
2933 	wh = mtod(m, struct ieee80211_frame *);
2934 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2935 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2936 
2937 	/* Get 802.11 frame len before prepending TX header */
2938 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2939 
2940 	/*
2941 	 * Find TX rate
2942 	 */
2943 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2944 		rate = rate_fb = tp->mgmtrate;
2945 	} else if (ismcast) {
2946 		rate = rate_fb = tp->mcastrate;
2947 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2948 		rate = rate_fb = tp->ucastrate;
2949 	} else {
2950 		ieee80211_ratectl_rate(ni, NULL, pkt_len);
2951 		rate = ieee80211_node_get_txrate_dot11rate(ni);
2952 		/* TODO: assign rate_fb the previous rate, if available */
2953 		rate_fb = rate;
2954 	}
2955 	tb->tb_rate[0] = rate;
2956 	tb->tb_rate[1] = rate_fb;
2957 	sc->sc_tx_rate = rate;
2958 
2959 	/*
2960 	 * TX radio tap
2961 	 */
2962 	if (ieee80211_radiotap_active_vap(vap)) {
2963 		sc->sc_tx_th.wt_flags = 0;
2964 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2965 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2966 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2967 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2968 		    rate != (1 * 2)) {
2969 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2970 		}
2971 		sc->sc_tx_th.wt_rate = rate;
2972 
2973 		ieee80211_radiotap_tx(vap, m);
2974 	}
2975 
2976 	/*
2977 	 * Setup the embedded TX header
2978 	 */
2979 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
2980 	if (m == NULL) {
2981 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
2982 		    __func__);
2983 		return ENOBUFS;
2984 	}
2985 	hdr = mtod(m, struct bwi_txbuf_hdr *);
2986 
2987 	bzero(hdr, sizeof(*hdr));
2988 
2989 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
2990 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
2991 
2992 	if (!ismcast) {
2993 		uint16_t dur;
2994 
2995 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
2996 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
2997 
2998 		hdr->txh_fb_duration = htole16(dur);
2999 	}
3000 
3001 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3002 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3003 
3004 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3005 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3006 
3007 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3008 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3009 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3010 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3011 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3012 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3013 
3014 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3015 	if (!ismcast)
3016 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3017 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3018 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3019 
3020 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3021 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3022 
3023 	/* Catch any further usage */
3024 	hdr = NULL;
3025 	wh = NULL;
3026 
3027 	/* DMA load */
3028 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3029 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3030 	if (error && error != EFBIG) {
3031 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3032 		    __func__, error);
3033 		goto back;
3034 	}
3035 
3036 	if (error) {	/* error == EFBIG */
3037 		struct mbuf *m_new;
3038 
3039 		m_new = m_defrag(m, M_NOWAIT);
3040 		if (m_new == NULL) {
3041 			device_printf(sc->sc_dev,
3042 			    "%s: can't defrag TX buffer\n", __func__);
3043 			error = ENOBUFS;
3044 			goto back;
3045 		} else {
3046 			m = m_new;
3047 		}
3048 
3049 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3050 					     bwi_dma_buf_addr, &paddr,
3051 					     BUS_DMA_NOWAIT);
3052 		if (error) {
3053 			device_printf(sc->sc_dev,
3054 			    "%s: can't load TX buffer (2) %d\n",
3055 			    __func__, error);
3056 			goto back;
3057 		}
3058 	}
3059 	error = 0;
3060 
3061 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3062 
3063 	tb->tb_mbuf = m;
3064 	tb->tb_ni = ni;
3065 
3066 #if 0
3067 	p = mtod(m, const uint8_t *);
3068 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3069 		if (i != 0 && i % 8 == 0)
3070 			printf("\n");
3071 		printf("%02x ", p[i]);
3072 	}
3073 	printf("\n");
3074 #endif
3075 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3076 		idx, pkt_len, m->m_pkthdr.len);
3077 
3078 	/* Setup TX descriptor */
3079 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3080 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3081 			BUS_DMASYNC_PREWRITE);
3082 
3083 	/* Kick start */
3084 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3085 
3086 back:
3087 	if (error)
3088 		m_freem(m);
3089 	return error;
3090 }
3091 
3092 static int
bwi_encap_raw(struct bwi_softc * sc,int idx,struct mbuf * m,struct ieee80211_node * ni,const struct ieee80211_bpf_params * params)3093 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3094 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3095 {
3096 	struct ieee80211vap *vap = ni->ni_vap;
3097 	struct ieee80211com *ic = ni->ni_ic;
3098 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3099 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3100 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3101 	struct bwi_mac *mac;
3102 	struct bwi_txbuf_hdr *hdr;
3103 	struct ieee80211_frame *wh;
3104 	uint8_t rate, rate_fb;
3105 	uint32_t mac_ctrl;
3106 	uint16_t phy_ctrl;
3107 	bus_addr_t paddr;
3108 	int ismcast, pkt_len, error;
3109 
3110 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3111 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3112 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3113 
3114 	wh = mtod(m, struct ieee80211_frame *);
3115 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3116 
3117 	/* Get 802.11 frame len before prepending TX header */
3118 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3119 
3120 	/*
3121 	 * Find TX rate
3122 	 */
3123 	rate = params->ibp_rate0;
3124 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3125 		/* XXX fall back to mcast/mgmt rate? */
3126 		m_freem(m);
3127 		return EINVAL;
3128 	}
3129 	if (params->ibp_try1 != 0) {
3130 		rate_fb = params->ibp_rate1;
3131 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3132 			/* XXX fall back to rate0? */
3133 			m_freem(m);
3134 			return EINVAL;
3135 		}
3136 	} else
3137 		rate_fb = rate;
3138 	tb->tb_rate[0] = rate;
3139 	tb->tb_rate[1] = rate_fb;
3140 	sc->sc_tx_rate = rate;
3141 
3142 	/*
3143 	 * TX radio tap
3144 	 */
3145 	if (ieee80211_radiotap_active_vap(vap)) {
3146 		sc->sc_tx_th.wt_flags = 0;
3147 		/* XXX IEEE80211_BPF_CRYPTO */
3148 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3149 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3150 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3151 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3152 		sc->sc_tx_th.wt_rate = rate;
3153 
3154 		ieee80211_radiotap_tx(vap, m);
3155 	}
3156 
3157 	/*
3158 	 * Setup the embedded TX header
3159 	 */
3160 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3161 	if (m == NULL) {
3162 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3163 		    __func__);
3164 		return ENOBUFS;
3165 	}
3166 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3167 
3168 	bzero(hdr, sizeof(*hdr));
3169 
3170 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3171 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3172 
3173 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3174 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3175 		uint16_t dur;
3176 
3177 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3178 
3179 		hdr->txh_fb_duration = htole16(dur);
3180 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3181 	}
3182 
3183 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3184 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3185 
3186 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3187 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3188 
3189 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3190 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3191 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3192 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3193 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3194 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3195 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3196 
3197 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3198 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3199 
3200 	/* Catch any further usage */
3201 	hdr = NULL;
3202 	wh = NULL;
3203 
3204 	/* DMA load */
3205 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3206 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3207 	if (error != 0) {
3208 		struct mbuf *m_new;
3209 
3210 		if (error != EFBIG) {
3211 			device_printf(sc->sc_dev,
3212 			    "%s: can't load TX buffer (1) %d\n",
3213 			    __func__, error);
3214 			goto back;
3215 		}
3216 		m_new = m_defrag(m, M_NOWAIT);
3217 		if (m_new == NULL) {
3218 			device_printf(sc->sc_dev,
3219 			    "%s: can't defrag TX buffer\n", __func__);
3220 			error = ENOBUFS;
3221 			goto back;
3222 		}
3223 		m = m_new;
3224 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3225 					     bwi_dma_buf_addr, &paddr,
3226 					     BUS_DMA_NOWAIT);
3227 		if (error) {
3228 			device_printf(sc->sc_dev,
3229 			    "%s: can't load TX buffer (2) %d\n",
3230 			    __func__, error);
3231 			goto back;
3232 		}
3233 	}
3234 
3235 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3236 
3237 	tb->tb_mbuf = m;
3238 	tb->tb_ni = ni;
3239 
3240 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3241 		idx, pkt_len, m->m_pkthdr.len);
3242 
3243 	/* Setup TX descriptor */
3244 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3245 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3246 			BUS_DMASYNC_PREWRITE);
3247 
3248 	/* Kick start */
3249 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3250 back:
3251 	if (error)
3252 		m_freem(m);
3253 	return error;
3254 }
3255 
3256 static void
bwi_start_tx32(struct bwi_softc * sc,uint32_t tx_ctrl,int idx)3257 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3258 {
3259 	idx = (idx + 1) % BWI_TX_NDESC;
3260 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3261 		    idx * sizeof(struct bwi_desc32));
3262 }
3263 
3264 static void
bwi_start_tx64(struct bwi_softc * sc,uint32_t tx_ctrl,int idx)3265 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3266 {
3267 	/* TODO:64 */
3268 }
3269 
3270 static void
bwi_txeof_status32(struct bwi_softc * sc)3271 bwi_txeof_status32(struct bwi_softc *sc)
3272 {
3273 	uint32_t val, ctrl_base;
3274 	int end_idx;
3275 
3276 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3277 
3278 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3279 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3280 		  sizeof(struct bwi_desc32);
3281 
3282 	bwi_txeof_status(sc, end_idx);
3283 
3284 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3285 		    end_idx * sizeof(struct bwi_desc32));
3286 
3287 	bwi_start_locked(sc);
3288 }
3289 
3290 static void
bwi_txeof_status64(struct bwi_softc * sc)3291 bwi_txeof_status64(struct bwi_softc *sc)
3292 {
3293 	/* TODO:64 */
3294 }
3295 
3296 static void
_bwi_txeof(struct bwi_softc * sc,uint16_t tx_id,int acked,int data_txcnt)3297 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3298 {
3299 	struct bwi_txbuf_data *tbd;
3300 	struct bwi_txbuf *tb;
3301 	int ring_idx, buf_idx;
3302 	struct ieee80211_node *ni;
3303 
3304 	if (tx_id == 0) {
3305 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3306 		return;
3307 	}
3308 
3309 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3310 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3311 
3312 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3313 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3314 
3315 	tbd = &sc->sc_tx_bdata[ring_idx];
3316 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3317 	tbd->tbd_used--;
3318 
3319 	tb = &tbd->tbd_buf[buf_idx];
3320 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3321 		"acked %d, data_txcnt %d, ni %p\n",
3322 		buf_idx, acked, data_txcnt, tb->tb_ni);
3323 
3324 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3325 
3326 	if ((ni = tb->tb_ni) != NULL) {
3327 		const struct bwi_txbuf_hdr *hdr =
3328 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3329 		struct ieee80211_ratectl_tx_status txs;
3330 
3331 		/* NB: update rate control only for unicast frames */
3332 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3333 			/*
3334 			 * Feed back 'acked and data_txcnt'.  Note that the
3335 			 * generic AMRR code only understands one tx rate
3336 			 * and the estimator doesn't handle real retry counts
3337 			 * well so to avoid over-aggressive downshifting we
3338 			 * treat any number of retries as "1".
3339 			 */
3340 			txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY;
3341 			txs.long_retries = acked;
3342 			if (data_txcnt > 1)
3343 				txs.status = IEEE80211_RATECTL_TX_SUCCESS;
3344 			else {
3345 				txs.status =
3346 				    IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3347 			}
3348 			ieee80211_ratectl_tx_complete(ni, &txs);
3349 		}
3350 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3351 		tb->tb_ni = NULL;
3352 	} else
3353 		m_freem(tb->tb_mbuf);
3354 	tb->tb_mbuf = NULL;
3355 
3356 	if (tbd->tbd_used == 0)
3357 		sc->sc_tx_timer = 0;
3358 }
3359 
3360 static void
bwi_txeof_status(struct bwi_softc * sc,int end_idx)3361 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3362 {
3363 	struct bwi_txstats_data *st = sc->sc_txstats;
3364 	int idx;
3365 
3366 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3367 
3368 	idx = st->stats_idx;
3369 	while (idx != end_idx) {
3370 		const struct bwi_txstats *stats = &st->stats[idx];
3371 
3372 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3373 			int data_txcnt;
3374 
3375 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3376 						BWI_TXS_TXCNT_DATA);
3377 			_bwi_txeof(sc, le16toh(stats->txs_id),
3378 				   stats->txs_flags & BWI_TXS_F_ACKED,
3379 				   data_txcnt);
3380 		}
3381 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3382 	}
3383 	st->stats_idx = idx;
3384 }
3385 
3386 static void
bwi_txeof(struct bwi_softc * sc)3387 bwi_txeof(struct bwi_softc *sc)
3388 {
3389 
3390 	for (;;) {
3391 		uint32_t tx_status0, tx_status1 __unused;
3392 		uint16_t tx_id;
3393 		int data_txcnt;
3394 
3395 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3396 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3397 			break;
3398 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3399 
3400 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3401 		data_txcnt = __SHIFTOUT(tx_status0,
3402 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3403 
3404 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3405 			continue;
3406 
3407 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3408 		    data_txcnt);
3409 	}
3410 
3411 	bwi_start_locked(sc);
3412 }
3413 
3414 static int
bwi_bbp_power_on(struct bwi_softc * sc,enum bwi_clock_mode clk_mode)3415 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3416 {
3417 	bwi_power_on(sc, 1);
3418 	return bwi_set_clock_mode(sc, clk_mode);
3419 }
3420 
3421 static void
bwi_bbp_power_off(struct bwi_softc * sc)3422 bwi_bbp_power_off(struct bwi_softc *sc)
3423 {
3424 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3425 	bwi_power_off(sc, 1);
3426 }
3427 
3428 static int
bwi_get_pwron_delay(struct bwi_softc * sc)3429 bwi_get_pwron_delay(struct bwi_softc *sc)
3430 {
3431 	struct bwi_regwin *com, *old;
3432 	struct bwi_clock_freq freq;
3433 	uint32_t val;
3434 	int error;
3435 
3436 	com = &sc->sc_com_regwin;
3437 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3438 
3439 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3440 		return 0;
3441 
3442 	error = bwi_regwin_switch(sc, com, &old);
3443 	if (error)
3444 		return error;
3445 
3446 	bwi_get_clock_freq(sc, &freq);
3447 
3448 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3449 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3450 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3451 
3452 	return bwi_regwin_switch(sc, old, NULL);
3453 }
3454 
3455 static int
bwi_bus_attach(struct bwi_softc * sc)3456 bwi_bus_attach(struct bwi_softc *sc)
3457 {
3458 	struct bwi_regwin *bus, *old;
3459 	int error;
3460 
3461 	bus = &sc->sc_bus_regwin;
3462 
3463 	error = bwi_regwin_switch(sc, bus, &old);
3464 	if (error)
3465 		return error;
3466 
3467 	if (!bwi_regwin_is_enabled(sc, bus))
3468 		bwi_regwin_enable(sc, bus, 0);
3469 
3470 	/* Disable interripts */
3471 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3472 
3473 	return bwi_regwin_switch(sc, old, NULL);
3474 }
3475 
3476 static const char *
bwi_regwin_name(const struct bwi_regwin * rw)3477 bwi_regwin_name(const struct bwi_regwin *rw)
3478 {
3479 	switch (rw->rw_type) {
3480 	case BWI_REGWIN_T_COM:
3481 		return "COM";
3482 	case BWI_REGWIN_T_BUSPCI:
3483 		return "PCI";
3484 	case BWI_REGWIN_T_MAC:
3485 		return "MAC";
3486 	case BWI_REGWIN_T_BUSPCIE:
3487 		return "PCIE";
3488 	}
3489 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3490 	return NULL;
3491 }
3492 
3493 static uint32_t
bwi_regwin_disable_bits(struct bwi_softc * sc)3494 bwi_regwin_disable_bits(struct bwi_softc *sc)
3495 {
3496 	uint32_t busrev;
3497 
3498 	/* XXX cache this */
3499 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3500 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3501 		"bus rev %u\n", busrev);
3502 
3503 	if (busrev == BWI_BUSREV_0)
3504 		return BWI_STATE_LO_DISABLE1;
3505 	else if (busrev == BWI_BUSREV_1)
3506 		return BWI_STATE_LO_DISABLE2;
3507 	else
3508 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3509 }
3510 
3511 int
bwi_regwin_is_enabled(struct bwi_softc * sc,struct bwi_regwin * rw)3512 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3513 {
3514 	uint32_t val, disable_bits;
3515 
3516 	disable_bits = bwi_regwin_disable_bits(sc);
3517 	val = CSR_READ_4(sc, BWI_STATE_LO);
3518 
3519 	if ((val & (BWI_STATE_LO_CLOCK |
3520 		    BWI_STATE_LO_RESET |
3521 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3522 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3523 			bwi_regwin_name(rw));
3524 		return 1;
3525 	} else {
3526 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3527 			bwi_regwin_name(rw));
3528 		return 0;
3529 	}
3530 }
3531 
3532 void
bwi_regwin_disable(struct bwi_softc * sc,struct bwi_regwin * rw,uint32_t flags)3533 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3534 {
3535 	uint32_t state_lo, disable_bits;
3536 	int i;
3537 
3538 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3539 
3540 	/*
3541 	 * If current regwin is in 'reset' state, it was already disabled.
3542 	 */
3543 	if (state_lo & BWI_STATE_LO_RESET) {
3544 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3545 			"%s was already disabled\n", bwi_regwin_name(rw));
3546 		return;
3547 	}
3548 
3549 	disable_bits = bwi_regwin_disable_bits(sc);
3550 
3551 	/*
3552 	 * Disable normal clock
3553 	 */
3554 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3555 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3556 
3557 	/*
3558 	 * Wait until normal clock is disabled
3559 	 */
3560 #define NRETRY	1000
3561 	for (i = 0; i < NRETRY; ++i) {
3562 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3563 		if (state_lo & disable_bits)
3564 			break;
3565 		DELAY(10);
3566 	}
3567 	if (i == NRETRY) {
3568 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3569 			      bwi_regwin_name(rw));
3570 	}
3571 
3572 	for (i = 0; i < NRETRY; ++i) {
3573 		uint32_t state_hi;
3574 
3575 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3576 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3577 			break;
3578 		DELAY(10);
3579 	}
3580 	if (i == NRETRY) {
3581 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3582 			      bwi_regwin_name(rw));
3583 	}
3584 #undef NRETRY
3585 
3586 	/*
3587 	 * Reset and disable regwin with gated clock
3588 	 */
3589 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3590 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3591 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3592 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3593 
3594 	/* Flush pending bus write */
3595 	CSR_READ_4(sc, BWI_STATE_LO);
3596 	DELAY(1);
3597 
3598 	/* Reset and disable regwin */
3599 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3600 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3601 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3602 
3603 	/* Flush pending bus write */
3604 	CSR_READ_4(sc, BWI_STATE_LO);
3605 	DELAY(1);
3606 }
3607 
3608 void
bwi_regwin_enable(struct bwi_softc * sc,struct bwi_regwin * rw,uint32_t flags)3609 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3610 {
3611 	uint32_t state_lo, state_hi, imstate;
3612 
3613 	bwi_regwin_disable(sc, rw, flags);
3614 
3615 	/* Reset regwin with gated clock */
3616 	state_lo = BWI_STATE_LO_RESET |
3617 		   BWI_STATE_LO_CLOCK |
3618 		   BWI_STATE_LO_GATED_CLOCK |
3619 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3620 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3621 
3622 	/* Flush pending bus write */
3623 	CSR_READ_4(sc, BWI_STATE_LO);
3624 	DELAY(1);
3625 
3626 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3627 	if (state_hi & BWI_STATE_HI_SERROR)
3628 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3629 
3630 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3631 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3632 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3633 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3634 	}
3635 
3636 	/* Enable regwin with gated clock */
3637 	state_lo = BWI_STATE_LO_CLOCK |
3638 		   BWI_STATE_LO_GATED_CLOCK |
3639 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3640 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3641 
3642 	/* Flush pending bus write */
3643 	CSR_READ_4(sc, BWI_STATE_LO);
3644 	DELAY(1);
3645 
3646 	/* Enable regwin with normal clock */
3647 	state_lo = BWI_STATE_LO_CLOCK |
3648 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3649 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3650 
3651 	/* Flush pending bus write */
3652 	CSR_READ_4(sc, BWI_STATE_LO);
3653 	DELAY(1);
3654 }
3655 
3656 static void
bwi_set_bssid(struct bwi_softc * sc,const uint8_t * bssid)3657 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3658 {
3659 	struct bwi_mac *mac;
3660 	struct bwi_myaddr_bssid buf;
3661 	const uint8_t *p;
3662 	uint32_t val;
3663 	int n, i;
3664 
3665 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3666 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3667 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3668 
3669 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3670 
3671 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3672 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3673 
3674 	n = sizeof(buf) / sizeof(val);
3675 	p = (const uint8_t *)&buf;
3676 	for (i = 0; i < n; ++i) {
3677 		int j;
3678 
3679 		val = 0;
3680 		for (j = 0; j < sizeof(val); ++j)
3681 			val |= ((uint32_t)(*p++)) << (j * 8);
3682 
3683 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3684 	}
3685 }
3686 
3687 static void
bwi_updateslot(struct ieee80211com * ic)3688 bwi_updateslot(struct ieee80211com *ic)
3689 {
3690 	struct bwi_softc *sc = ic->ic_softc;
3691 	struct bwi_mac *mac;
3692 
3693 	BWI_LOCK(sc);
3694 	if (sc->sc_flags & BWI_F_RUNNING) {
3695 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3696 
3697 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3698 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3699 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3700 
3701 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3702 	}
3703 	BWI_UNLOCK(sc);
3704 }
3705 
3706 static void
bwi_calibrate(void * xsc)3707 bwi_calibrate(void *xsc)
3708 {
3709 	struct bwi_softc *sc = xsc;
3710 	struct bwi_mac *mac;
3711 
3712 	BWI_ASSERT_LOCKED(sc);
3713 
3714 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3715 	    ("opmode %d", sc->sc_ic.ic_opmode));
3716 
3717 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3718 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3719 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3720 
3721 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3722 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3723 
3724 	/* XXX 15 seconds */
3725 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3726 }
3727 
3728 static int
bwi_calc_rssi(struct bwi_softc * sc,const struct bwi_rxbuf_hdr * hdr)3729 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3730 {
3731 	struct bwi_mac *mac;
3732 
3733 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3734 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3735 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3736 
3737 	return bwi_rf_calc_rssi(mac, hdr);
3738 }
3739 
3740 static int
bwi_calc_noise(struct bwi_softc * sc)3741 bwi_calc_noise(struct bwi_softc *sc)
3742 {
3743 	struct bwi_mac *mac;
3744 
3745 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3746 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3747 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3748 
3749 	return bwi_rf_calc_noise(mac);
3750 }
3751 
3752 static __inline uint8_t
bwi_plcp2rate(const uint32_t plcp0,enum ieee80211_phytype type)3753 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3754 {
3755 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3756 	return (ieee80211_plcp2rate(plcp, type));
3757 }
3758 
3759 static void
bwi_rx_radiotap(struct bwi_softc * sc,struct mbuf * m,struct bwi_rxbuf_hdr * hdr,const void * plcp,int rate,int rssi,int noise)3760 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3761     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3762 {
3763 	const struct ieee80211_frame_min *wh;
3764 
3765 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3766 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3767 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3768 
3769 	wh = mtod(m, const struct ieee80211_frame_min *);
3770 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3771 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3772 
3773 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */
3774 	sc->sc_rx_th.wr_rate = rate;
3775 	sc->sc_rx_th.wr_antsignal = rssi;
3776 	sc->sc_rx_th.wr_antnoise = noise;
3777 }
3778 
3779 static void
bwi_led_attach(struct bwi_softc * sc)3780 bwi_led_attach(struct bwi_softc *sc)
3781 {
3782 	const uint8_t *led_act = NULL;
3783 	uint16_t gpio, val[BWI_LED_MAX];
3784 	int i;
3785 
3786 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3787 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3788 			led_act = bwi_vendor_led_act[i].led_act;
3789 			break;
3790 		}
3791 	}
3792 	if (led_act == NULL)
3793 		led_act = bwi_default_led_act;
3794 
3795 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3796 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3797 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3798 
3799 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3800 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3801 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3802 
3803 	for (i = 0; i < BWI_LED_MAX; ++i) {
3804 		struct bwi_led *led = &sc->sc_leds[i];
3805 
3806 		if (val[i] == 0xff) {
3807 			led->l_act = led_act[i];
3808 		} else {
3809 			if (val[i] & BWI_LED_ACT_LOW)
3810 				led->l_flags |= BWI_LED_F_ACTLOW;
3811 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3812 		}
3813 		led->l_mask = (1 << i);
3814 
3815 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3816 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3817 		    led->l_act == BWI_LED_ACT_BLINK) {
3818 			led->l_flags |= BWI_LED_F_BLINK;
3819 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3820 				led->l_flags |= BWI_LED_F_POLLABLE;
3821 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3822 				led->l_flags |= BWI_LED_F_SLOW;
3823 
3824 			if (sc->sc_blink_led == NULL) {
3825 				sc->sc_blink_led = led;
3826 				if (led->l_flags & BWI_LED_F_SLOW)
3827 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3828 			}
3829 		}
3830 
3831 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3832 			"%dth led, act %d, lowact %d\n", i,
3833 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3834 	}
3835 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3836 }
3837 
3838 static __inline uint16_t
bwi_led_onoff(const struct bwi_led * led,uint16_t val,int on)3839 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3840 {
3841 	if (led->l_flags & BWI_LED_F_ACTLOW)
3842 		on = !on;
3843 	if (on)
3844 		val |= led->l_mask;
3845 	else
3846 		val &= ~led->l_mask;
3847 	return val;
3848 }
3849 
3850 static void
bwi_led_newstate(struct bwi_softc * sc,enum ieee80211_state nstate)3851 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3852 {
3853 	struct ieee80211com *ic = &sc->sc_ic;
3854 	uint16_t val;
3855 	int i;
3856 
3857 	if (nstate == IEEE80211_S_INIT) {
3858 		callout_stop(&sc->sc_led_blink_ch);
3859 		sc->sc_led_blinking = 0;
3860 	}
3861 
3862 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3863 		return;
3864 
3865 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3866 	for (i = 0; i < BWI_LED_MAX; ++i) {
3867 		struct bwi_led *led = &sc->sc_leds[i];
3868 		int on;
3869 
3870 		if (led->l_act == BWI_LED_ACT_UNKN ||
3871 		    led->l_act == BWI_LED_ACT_NULL)
3872 			continue;
3873 
3874 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3875 		    nstate != IEEE80211_S_INIT)
3876 		    	continue;
3877 
3878 		switch (led->l_act) {
3879 		case BWI_LED_ACT_ON:	/* Always on */
3880 			on = 1;
3881 			break;
3882 		case BWI_LED_ACT_OFF:	/* Always off */
3883 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3884 			on = 0;
3885 			break;
3886 		default:
3887 			on = 1;
3888 			switch (nstate) {
3889 			case IEEE80211_S_INIT:
3890 				on = 0;
3891 				break;
3892 			case IEEE80211_S_RUN:
3893 				if (led->l_act == BWI_LED_ACT_11G &&
3894 				    ic->ic_curmode != IEEE80211_MODE_11G)
3895 					on = 0;
3896 				break;
3897 			default:
3898 				if (led->l_act == BWI_LED_ACT_ASSOC)
3899 					on = 0;
3900 				break;
3901 			}
3902 			break;
3903 		}
3904 
3905 		val = bwi_led_onoff(led, val, on);
3906 	}
3907 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3908 }
3909 static void
bwi_led_event(struct bwi_softc * sc,int event)3910 bwi_led_event(struct bwi_softc *sc, int event)
3911 {
3912 	struct bwi_led *led = sc->sc_blink_led;
3913 	int rate;
3914 
3915 	if (event == BWI_LED_EVENT_POLL) {
3916 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3917 			return;
3918 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3919 			return;
3920 	}
3921 
3922 	sc->sc_led_ticks = ticks;
3923 	if (sc->sc_led_blinking)
3924 		return;
3925 
3926 	switch (event) {
3927 	case BWI_LED_EVENT_RX:
3928 		rate = sc->sc_rx_rate;
3929 		break;
3930 	case BWI_LED_EVENT_TX:
3931 		rate = sc->sc_tx_rate;
3932 		break;
3933 	case BWI_LED_EVENT_POLL:
3934 		rate = 0;
3935 		break;
3936 	default:
3937 		panic("unknown LED event %d\n", event);
3938 		break;
3939 	}
3940 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3941 	    bwi_led_duration[rate].off_dur);
3942 }
3943 
3944 static void
bwi_led_blink_start(struct bwi_softc * sc,int on_dur,int off_dur)3945 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3946 {
3947 	struct bwi_led *led = sc->sc_blink_led;
3948 	uint16_t val;
3949 
3950 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3951 	val = bwi_led_onoff(led, val, 1);
3952 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3953 
3954 	if (led->l_flags & BWI_LED_F_SLOW) {
3955 		BWI_LED_SLOWDOWN(on_dur);
3956 		BWI_LED_SLOWDOWN(off_dur);
3957 	}
3958 
3959 	sc->sc_led_blinking = 1;
3960 	sc->sc_led_blink_offdur = off_dur;
3961 
3962 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3963 }
3964 
3965 static void
bwi_led_blink_next(void * xsc)3966 bwi_led_blink_next(void *xsc)
3967 {
3968 	struct bwi_softc *sc = xsc;
3969 	uint16_t val;
3970 
3971 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3972 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3973 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3974 
3975 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3976 	    bwi_led_blink_end, sc);
3977 }
3978 
3979 static void
bwi_led_blink_end(void * xsc)3980 bwi_led_blink_end(void *xsc)
3981 {
3982 	struct bwi_softc *sc = xsc;
3983 	sc->sc_led_blinking = 0;
3984 }
3985 
3986 static void
bwi_restart(void * xsc,int pending)3987 bwi_restart(void *xsc, int pending)
3988 {
3989 	struct bwi_softc *sc = xsc;
3990 
3991 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
3992 	BWI_LOCK(sc);
3993 	bwi_init_statechg(sc, 0);
3994 #if 0
3995 	bwi_start_locked(sc);
3996 #endif
3997 	BWI_UNLOCK(sc);
3998 }
3999