1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 */ 27 28 #include <sys/sysmacros.h> 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/txg.h> 33 #include <sys/spa_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/zio_impl.h> 36 #include <sys/zio_compress.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/ddt.h> 41 #include <sys/blkptr.h> 42 #include <sys/zfeature.h> 43 44 /* 45 * ========================================================================== 46 * I/O type descriptions 47 * ========================================================================== 48 */ 49 const char *zio_type_name[ZIO_TYPES] = { 50 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim", 51 "zio_ioctl" 52 }; 53 54 /* 55 * ========================================================================== 56 * I/O kmem caches 57 * ========================================================================== 58 */ 59 kmem_cache_t *zio_cache; 60 kmem_cache_t *zio_link_cache; 61 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 62 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 63 64 #ifdef _KERNEL 65 extern vmem_t *zio_alloc_arena; 66 #endif 67 68 #define ZIO_PIPELINE_CONTINUE 0x100 69 #define ZIO_PIPELINE_STOP 0x101 70 71 #define BP_SPANB(indblkshift, level) \ 72 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 73 #define COMPARE_META_LEVEL 0x80000000ul 74 /* 75 * The following actions directly effect the spa's sync-to-convergence logic. 76 * The values below define the sync pass when we start performing the action. 77 * Care should be taken when changing these values as they directly impact 78 * spa_sync() performance. Tuning these values may introduce subtle performance 79 * pathologies and should only be done in the context of performance analysis. 80 * These tunables will eventually be removed and replaced with #defines once 81 * enough analysis has been done to determine optimal values. 82 * 83 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 84 * regular blocks are not deferred. 85 */ 86 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ 87 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */ 88 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ 89 90 /* 91 * An allocating zio is one that either currently has the DVA allocate 92 * stage set or will have it later in its lifetime. 93 */ 94 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 95 96 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE; 97 98 #ifdef ZFS_DEBUG 99 int zio_buf_debug_limit = 16384; 100 #else 101 int zio_buf_debug_limit = 0; 102 #endif 103 104 void 105 zio_init(void) 106 { 107 size_t c; 108 vmem_t *data_alloc_arena = NULL; 109 110 #ifdef _KERNEL 111 data_alloc_arena = zio_alloc_arena; 112 #endif 113 zio_cache = kmem_cache_create("zio_cache", 114 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 115 zio_link_cache = kmem_cache_create("zio_link_cache", 116 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 117 118 /* 119 * For small buffers, we want a cache for each multiple of 120 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 121 * for each quarter-power of 2. 122 */ 123 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 124 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 125 size_t p2 = size; 126 size_t align = 0; 127 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; 128 129 while (!ISP2(p2)) 130 p2 &= p2 - 1; 131 132 #ifndef _KERNEL 133 /* 134 * If we are using watchpoints, put each buffer on its own page, 135 * to eliminate the performance overhead of trapping to the 136 * kernel when modifying a non-watched buffer that shares the 137 * page with a watched buffer. 138 */ 139 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 140 continue; 141 #endif 142 if (size <= 4 * SPA_MINBLOCKSIZE) { 143 align = SPA_MINBLOCKSIZE; 144 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 145 align = MIN(p2 >> 2, PAGESIZE); 146 } 147 148 if (align != 0) { 149 char name[36]; 150 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 151 zio_buf_cache[c] = kmem_cache_create(name, size, 152 align, NULL, NULL, NULL, NULL, NULL, cflags); 153 154 /* 155 * Since zio_data bufs do not appear in crash dumps, we 156 * pass KMC_NOTOUCH so that no allocator metadata is 157 * stored with the buffers. 158 */ 159 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 160 zio_data_buf_cache[c] = kmem_cache_create(name, size, 161 align, NULL, NULL, NULL, NULL, data_alloc_arena, 162 cflags | KMC_NOTOUCH); 163 } 164 } 165 166 while (--c != 0) { 167 ASSERT(zio_buf_cache[c] != NULL); 168 if (zio_buf_cache[c - 1] == NULL) 169 zio_buf_cache[c - 1] = zio_buf_cache[c]; 170 171 ASSERT(zio_data_buf_cache[c] != NULL); 172 if (zio_data_buf_cache[c - 1] == NULL) 173 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 174 } 175 176 zio_inject_init(); 177 } 178 179 void 180 zio_fini(void) 181 { 182 size_t c; 183 kmem_cache_t *last_cache = NULL; 184 kmem_cache_t *last_data_cache = NULL; 185 186 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 187 if (zio_buf_cache[c] != last_cache) { 188 last_cache = zio_buf_cache[c]; 189 kmem_cache_destroy(zio_buf_cache[c]); 190 } 191 zio_buf_cache[c] = NULL; 192 193 if (zio_data_buf_cache[c] != last_data_cache) { 194 last_data_cache = zio_data_buf_cache[c]; 195 kmem_cache_destroy(zio_data_buf_cache[c]); 196 } 197 zio_data_buf_cache[c] = NULL; 198 } 199 200 kmem_cache_destroy(zio_link_cache); 201 kmem_cache_destroy(zio_cache); 202 203 zio_inject_fini(); 204 } 205 206 /* 207 * ========================================================================== 208 * Allocate and free I/O buffers 209 * ========================================================================== 210 */ 211 212 /* 213 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 214 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 215 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 216 * excess / transient data in-core during a crashdump. 217 */ 218 void * 219 zio_buf_alloc(size_t size) 220 { 221 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 222 223 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 224 225 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 226 } 227 228 /* 229 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 230 * crashdump if the kernel panics. This exists so that we will limit the amount 231 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 232 * of kernel heap dumped to disk when the kernel panics) 233 */ 234 void * 235 zio_data_buf_alloc(size_t size) 236 { 237 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 238 239 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 240 241 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 242 } 243 244 void 245 zio_buf_free(void *buf, size_t size) 246 { 247 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 248 249 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 250 251 kmem_cache_free(zio_buf_cache[c], buf); 252 } 253 254 void 255 zio_data_buf_free(void *buf, size_t size) 256 { 257 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 258 259 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 260 261 kmem_cache_free(zio_data_buf_cache[c], buf); 262 } 263 264 /* 265 * ========================================================================== 266 * Push and pop I/O transform buffers 267 * ========================================================================== 268 */ 269 static void 270 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize, 271 zio_transform_func_t *transform) 272 { 273 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 274 275 zt->zt_orig_data = zio->io_data; 276 zt->zt_orig_size = zio->io_size; 277 zt->zt_bufsize = bufsize; 278 zt->zt_transform = transform; 279 280 zt->zt_next = zio->io_transform_stack; 281 zio->io_transform_stack = zt; 282 283 zio->io_data = data; 284 zio->io_size = size; 285 } 286 287 static void 288 zio_pop_transforms(zio_t *zio) 289 { 290 zio_transform_t *zt; 291 292 while ((zt = zio->io_transform_stack) != NULL) { 293 if (zt->zt_transform != NULL) 294 zt->zt_transform(zio, 295 zt->zt_orig_data, zt->zt_orig_size); 296 297 if (zt->zt_bufsize != 0) 298 zio_buf_free(zio->io_data, zt->zt_bufsize); 299 300 zio->io_data = zt->zt_orig_data; 301 zio->io_size = zt->zt_orig_size; 302 zio->io_transform_stack = zt->zt_next; 303 304 kmem_free(zt, sizeof (zio_transform_t)); 305 } 306 } 307 308 /* 309 * ========================================================================== 310 * I/O transform callbacks for subblocks and decompression 311 * ========================================================================== 312 */ 313 static void 314 zio_subblock(zio_t *zio, void *data, uint64_t size) 315 { 316 ASSERT(zio->io_size > size); 317 318 if (zio->io_type == ZIO_TYPE_READ) 319 bcopy(zio->io_data, data, size); 320 } 321 322 static void 323 zio_decompress(zio_t *zio, void *data, uint64_t size) 324 { 325 if (zio->io_error == 0 && 326 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 327 zio->io_data, data, zio->io_size, size) != 0) 328 zio->io_error = SET_ERROR(EIO); 329 } 330 331 /* 332 * ========================================================================== 333 * I/O parent/child relationships and pipeline interlocks 334 * ========================================================================== 335 */ 336 /* 337 * NOTE - Callers to zio_walk_parents() and zio_walk_children must 338 * continue calling these functions until they return NULL. 339 * Otherwise, the next caller will pick up the list walk in 340 * some indeterminate state. (Otherwise every caller would 341 * have to pass in a cookie to keep the state represented by 342 * io_walk_link, which gets annoying.) 343 */ 344 zio_t * 345 zio_walk_parents(zio_t *cio) 346 { 347 zio_link_t *zl = cio->io_walk_link; 348 list_t *pl = &cio->io_parent_list; 349 350 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl); 351 cio->io_walk_link = zl; 352 353 if (zl == NULL) 354 return (NULL); 355 356 ASSERT(zl->zl_child == cio); 357 return (zl->zl_parent); 358 } 359 360 zio_t * 361 zio_walk_children(zio_t *pio) 362 { 363 zio_link_t *zl = pio->io_walk_link; 364 list_t *cl = &pio->io_child_list; 365 366 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl); 367 pio->io_walk_link = zl; 368 369 if (zl == NULL) 370 return (NULL); 371 372 ASSERT(zl->zl_parent == pio); 373 return (zl->zl_child); 374 } 375 376 zio_t * 377 zio_unique_parent(zio_t *cio) 378 { 379 zio_t *pio = zio_walk_parents(cio); 380 381 VERIFY(zio_walk_parents(cio) == NULL); 382 return (pio); 383 } 384 385 void 386 zio_add_child(zio_t *pio, zio_t *cio) 387 { 388 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 389 390 /* 391 * Logical I/Os can have logical, gang, or vdev children. 392 * Gang I/Os can have gang or vdev children. 393 * Vdev I/Os can only have vdev children. 394 * The following ASSERT captures all of these constraints. 395 */ 396 ASSERT(cio->io_child_type <= pio->io_child_type); 397 398 zl->zl_parent = pio; 399 zl->zl_child = cio; 400 401 mutex_enter(&cio->io_lock); 402 mutex_enter(&pio->io_lock); 403 404 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 405 406 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 407 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 408 409 list_insert_head(&pio->io_child_list, zl); 410 list_insert_head(&cio->io_parent_list, zl); 411 412 pio->io_child_count++; 413 cio->io_parent_count++; 414 415 mutex_exit(&pio->io_lock); 416 mutex_exit(&cio->io_lock); 417 } 418 419 static void 420 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 421 { 422 ASSERT(zl->zl_parent == pio); 423 ASSERT(zl->zl_child == cio); 424 425 mutex_enter(&cio->io_lock); 426 mutex_enter(&pio->io_lock); 427 428 list_remove(&pio->io_child_list, zl); 429 list_remove(&cio->io_parent_list, zl); 430 431 pio->io_child_count--; 432 cio->io_parent_count--; 433 434 mutex_exit(&pio->io_lock); 435 mutex_exit(&cio->io_lock); 436 437 kmem_cache_free(zio_link_cache, zl); 438 } 439 440 static boolean_t 441 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 442 { 443 boolean_t waiting = B_FALSE; 444 445 mutex_enter(&zio->io_lock); 446 ASSERT(zio->io_stall == NULL); 447 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 448 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 449 continue; 450 451 uint64_t *countp = &zio->io_children[c][wait]; 452 if (*countp != 0) { 453 zio->io_stage >>= 1; 454 zio->io_stall = countp; 455 waiting = B_TRUE; 456 break; 457 } 458 } 459 mutex_exit(&zio->io_lock); 460 return (waiting); 461 } 462 463 static void 464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait) 465 { 466 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 467 int *errorp = &pio->io_child_error[zio->io_child_type]; 468 469 mutex_enter(&pio->io_lock); 470 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 471 *errorp = zio_worst_error(*errorp, zio->io_error); 472 pio->io_reexecute |= zio->io_reexecute; 473 ASSERT3U(*countp, >, 0); 474 475 (*countp)--; 476 477 if (*countp == 0 && pio->io_stall == countp) { 478 pio->io_stall = NULL; 479 mutex_exit(&pio->io_lock); 480 zio_execute(pio); 481 } else { 482 mutex_exit(&pio->io_lock); 483 } 484 } 485 486 static void 487 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 488 { 489 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 490 zio->io_error = zio->io_child_error[c]; 491 } 492 493 /* 494 * ========================================================================== 495 * Create the various types of I/O (read, write, free, etc) 496 * ========================================================================== 497 */ 498 static zio_t * 499 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 500 void *data, uint64_t size, zio_done_func_t *done, void *private, 501 zio_type_t type, zio_priority_t priority, enum zio_flag flags, 502 vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb, 503 enum zio_stage stage, enum zio_stage pipeline) 504 { 505 zio_t *zio; 506 507 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 508 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 509 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 510 511 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 512 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 513 ASSERT(vd || stage == ZIO_STAGE_OPEN); 514 515 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 516 bzero(zio, sizeof (zio_t)); 517 518 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 519 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 520 521 list_create(&zio->io_parent_list, sizeof (zio_link_t), 522 offsetof(zio_link_t, zl_parent_node)); 523 list_create(&zio->io_child_list, sizeof (zio_link_t), 524 offsetof(zio_link_t, zl_child_node)); 525 526 if (vd != NULL) 527 zio->io_child_type = ZIO_CHILD_VDEV; 528 else if (flags & ZIO_FLAG_GANG_CHILD) 529 zio->io_child_type = ZIO_CHILD_GANG; 530 else if (flags & ZIO_FLAG_DDT_CHILD) 531 zio->io_child_type = ZIO_CHILD_DDT; 532 else 533 zio->io_child_type = ZIO_CHILD_LOGICAL; 534 535 if (bp != NULL) { 536 zio->io_bp = (blkptr_t *)bp; 537 zio->io_bp_copy = *bp; 538 zio->io_bp_orig = *bp; 539 if (type != ZIO_TYPE_WRITE || 540 zio->io_child_type == ZIO_CHILD_DDT) 541 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 542 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 543 zio->io_logical = zio; 544 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 545 pipeline |= ZIO_GANG_STAGES; 546 } 547 548 zio->io_spa = spa; 549 zio->io_txg = txg; 550 zio->io_done = done; 551 zio->io_private = private; 552 zio->io_type = type; 553 zio->io_priority = priority; 554 zio->io_vd = vd; 555 zio->io_offset = offset; 556 zio->io_orig_data = zio->io_data = data; 557 zio->io_orig_size = zio->io_size = size; 558 zio->io_orig_flags = zio->io_flags = flags; 559 zio->io_orig_stage = zio->io_stage = stage; 560 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 561 562 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 563 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 564 565 if (zb != NULL) 566 zio->io_bookmark = *zb; 567 568 if (pio != NULL) { 569 if (zio->io_logical == NULL) 570 zio->io_logical = pio->io_logical; 571 if (zio->io_child_type == ZIO_CHILD_GANG) 572 zio->io_gang_leader = pio->io_gang_leader; 573 zio_add_child(pio, zio); 574 } 575 576 return (zio); 577 } 578 579 static void 580 zio_destroy(zio_t *zio) 581 { 582 list_destroy(&zio->io_parent_list); 583 list_destroy(&zio->io_child_list); 584 mutex_destroy(&zio->io_lock); 585 cv_destroy(&zio->io_cv); 586 kmem_cache_free(zio_cache, zio); 587 } 588 589 zio_t * 590 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 591 void *private, enum zio_flag flags) 592 { 593 zio_t *zio; 594 595 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 596 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 597 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 598 599 return (zio); 600 } 601 602 zio_t * 603 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) 604 { 605 return (zio_null(NULL, spa, NULL, done, private, flags)); 606 } 607 608 void 609 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp) 610 { 611 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 612 zfs_panic_recover("blkptr at %p has invalid TYPE %llu", 613 bp, (longlong_t)BP_GET_TYPE(bp)); 614 } 615 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || 616 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { 617 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", 618 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 619 } 620 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || 621 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { 622 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", 623 bp, (longlong_t)BP_GET_COMPRESS(bp)); 624 } 625 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 626 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", 627 bp, (longlong_t)BP_GET_LSIZE(bp)); 628 } 629 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 630 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", 631 bp, (longlong_t)BP_GET_PSIZE(bp)); 632 } 633 634 if (BP_IS_EMBEDDED(bp)) { 635 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) { 636 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", 637 bp, (longlong_t)BPE_GET_ETYPE(bp)); 638 } 639 } 640 641 /* 642 * Pool-specific checks. 643 * 644 * Note: it would be nice to verify that the blk_birth and 645 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 646 * allows the birth time of log blocks (and dmu_sync()-ed blocks 647 * that are in the log) to be arbitrarily large. 648 */ 649 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 650 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); 651 if (vdevid >= spa->spa_root_vdev->vdev_children) { 652 zfs_panic_recover("blkptr at %p DVA %u has invalid " 653 "VDEV %llu", 654 bp, i, (longlong_t)vdevid); 655 continue; 656 } 657 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 658 if (vd == NULL) { 659 zfs_panic_recover("blkptr at %p DVA %u has invalid " 660 "VDEV %llu", 661 bp, i, (longlong_t)vdevid); 662 continue; 663 } 664 if (vd->vdev_ops == &vdev_hole_ops) { 665 zfs_panic_recover("blkptr at %p DVA %u has hole " 666 "VDEV %llu", 667 bp, i, (longlong_t)vdevid); 668 continue; 669 } 670 if (vd->vdev_ops == &vdev_missing_ops) { 671 /* 672 * "missing" vdevs are valid during import, but we 673 * don't have their detailed info (e.g. asize), so 674 * we can't perform any more checks on them. 675 */ 676 continue; 677 } 678 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 679 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); 680 if (BP_IS_GANG(bp)) 681 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 682 if (offset + asize > vd->vdev_asize) { 683 zfs_panic_recover("blkptr at %p DVA %u has invalid " 684 "OFFSET %llu", 685 bp, i, (longlong_t)offset); 686 } 687 } 688 } 689 690 zio_t * 691 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 692 void *data, uint64_t size, zio_done_func_t *done, void *private, 693 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 694 { 695 zio_t *zio; 696 697 zfs_blkptr_verify(spa, bp); 698 699 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 700 data, size, done, private, 701 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 702 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 703 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 704 705 return (zio); 706 } 707 708 zio_t * 709 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 710 void *data, uint64_t size, const zio_prop_t *zp, 711 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done, 712 void *private, 713 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) 714 { 715 zio_t *zio; 716 717 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 718 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 719 zp->zp_compress >= ZIO_COMPRESS_OFF && 720 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 721 DMU_OT_IS_VALID(zp->zp_type) && 722 zp->zp_level < 32 && 723 zp->zp_copies > 0 && 724 zp->zp_copies <= spa_max_replication(spa)); 725 726 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 727 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 728 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 729 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 730 731 zio->io_ready = ready; 732 zio->io_physdone = physdone; 733 zio->io_prop = *zp; 734 735 /* 736 * Data can be NULL if we are going to call zio_write_override() to 737 * provide the already-allocated BP. But we may need the data to 738 * verify a dedup hit (if requested). In this case, don't try to 739 * dedup (just take the already-allocated BP verbatim). 740 */ 741 if (data == NULL && zio->io_prop.zp_dedup_verify) { 742 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 743 } 744 745 return (zio); 746 } 747 748 zio_t * 749 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data, 750 uint64_t size, zio_done_func_t *done, void *private, 751 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) 752 { 753 zio_t *zio; 754 755 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 756 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 757 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 758 759 return (zio); 760 } 761 762 void 763 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) 764 { 765 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 766 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 767 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 768 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 769 770 /* 771 * We must reset the io_prop to match the values that existed 772 * when the bp was first written by dmu_sync() keeping in mind 773 * that nopwrite and dedup are mutually exclusive. 774 */ 775 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 776 zio->io_prop.zp_nopwrite = nopwrite; 777 zio->io_prop.zp_copies = copies; 778 zio->io_bp_override = bp; 779 } 780 781 void 782 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 783 { 784 785 /* 786 * The check for EMBEDDED is a performance optimization. We 787 * process the free here (by ignoring it) rather than 788 * putting it on the list and then processing it in zio_free_sync(). 789 */ 790 if (BP_IS_EMBEDDED(bp)) 791 return; 792 metaslab_check_free(spa, bp); 793 794 /* 795 * Frees that are for the currently-syncing txg, are not going to be 796 * deferred, and which will not need to do a read (i.e. not GANG or 797 * DEDUP), can be processed immediately. Otherwise, put them on the 798 * in-memory list for later processing. 799 */ 800 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || 801 txg != spa->spa_syncing_txg || 802 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) { 803 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 804 } else { 805 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); 806 } 807 } 808 809 zio_t * 810 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 811 enum zio_flag flags) 812 { 813 zio_t *zio; 814 enum zio_stage stage = ZIO_FREE_PIPELINE; 815 816 ASSERT(!BP_IS_HOLE(bp)); 817 ASSERT(spa_syncing_txg(spa) == txg); 818 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free); 819 820 if (BP_IS_EMBEDDED(bp)) 821 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 822 823 metaslab_check_free(spa, bp); 824 arc_freed(spa, bp); 825 826 /* 827 * GANG and DEDUP blocks can induce a read (for the gang block header, 828 * or the DDT), so issue them asynchronously so that this thread is 829 * not tied up. 830 */ 831 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) 832 stage |= ZIO_STAGE_ISSUE_ASYNC; 833 834 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 835 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags, 836 NULL, 0, NULL, ZIO_STAGE_OPEN, stage); 837 838 return (zio); 839 } 840 841 zio_t * 842 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 843 zio_done_func_t *done, void *private, enum zio_flag flags) 844 { 845 zio_t *zio; 846 847 dprintf_bp(bp, "claiming in txg %llu", txg); 848 849 if (BP_IS_EMBEDDED(bp)) 850 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 851 852 /* 853 * A claim is an allocation of a specific block. Claims are needed 854 * to support immediate writes in the intent log. The issue is that 855 * immediate writes contain committed data, but in a txg that was 856 * *not* committed. Upon opening the pool after an unclean shutdown, 857 * the intent log claims all blocks that contain immediate write data 858 * so that the SPA knows they're in use. 859 * 860 * All claims *must* be resolved in the first txg -- before the SPA 861 * starts allocating blocks -- so that nothing is allocated twice. 862 * If txg == 0 we just verify that the block is claimable. 863 */ 864 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 865 ASSERT(txg == spa_first_txg(spa) || txg == 0); 866 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ 867 868 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 869 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, 870 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 871 872 return (zio); 873 } 874 875 zio_t * 876 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 877 zio_done_func_t *done, void *private, enum zio_flag flags) 878 { 879 zio_t *zio; 880 int c; 881 882 if (vd->vdev_children == 0) { 883 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 884 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 885 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 886 887 zio->io_cmd = cmd; 888 } else { 889 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 890 891 for (c = 0; c < vd->vdev_children; c++) 892 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 893 done, private, flags)); 894 } 895 896 return (zio); 897 } 898 899 zio_t * 900 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 901 void *data, int checksum, zio_done_func_t *done, void *private, 902 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 903 { 904 zio_t *zio; 905 906 ASSERT(vd->vdev_children == 0); 907 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 908 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 909 ASSERT3U(offset + size, <=, vd->vdev_psize); 910 911 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 912 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 913 NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 914 915 zio->io_prop.zp_checksum = checksum; 916 917 return (zio); 918 } 919 920 zio_t * 921 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 922 void *data, int checksum, zio_done_func_t *done, void *private, 923 zio_priority_t priority, enum zio_flag flags, boolean_t labels) 924 { 925 zio_t *zio; 926 927 ASSERT(vd->vdev_children == 0); 928 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 929 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 930 ASSERT3U(offset + size, <=, vd->vdev_psize); 931 932 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private, 933 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, 934 NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 935 936 zio->io_prop.zp_checksum = checksum; 937 938 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 939 /* 940 * zec checksums are necessarily destructive -- they modify 941 * the end of the write buffer to hold the verifier/checksum. 942 * Therefore, we must make a local copy in case the data is 943 * being written to multiple places in parallel. 944 */ 945 void *wbuf = zio_buf_alloc(size); 946 bcopy(data, wbuf, size); 947 zio_push_transform(zio, wbuf, size, size, NULL); 948 } 949 950 return (zio); 951 } 952 953 /* 954 * Create a child I/O to do some work for us. 955 */ 956 zio_t * 957 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 958 void *data, uint64_t size, int type, zio_priority_t priority, 959 enum zio_flag flags, zio_done_func_t *done, void *private) 960 { 961 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 962 zio_t *zio; 963 964 ASSERT(vd->vdev_parent == 965 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev)); 966 967 if (type == ZIO_TYPE_READ && bp != NULL) { 968 /* 969 * If we have the bp, then the child should perform the 970 * checksum and the parent need not. This pushes error 971 * detection as close to the leaves as possible and 972 * eliminates redundant checksums in the interior nodes. 973 */ 974 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 975 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 976 } 977 978 if (vd->vdev_children == 0) 979 offset += VDEV_LABEL_START_SIZE; 980 981 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE; 982 983 /* 984 * If we've decided to do a repair, the write is not speculative -- 985 * even if the original read was. 986 */ 987 if (flags & ZIO_FLAG_IO_REPAIR) 988 flags &= ~ZIO_FLAG_SPECULATIVE; 989 990 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, 991 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 992 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 993 994 zio->io_physdone = pio->io_physdone; 995 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 996 zio->io_logical->io_phys_children++; 997 998 return (zio); 999 } 1000 1001 zio_t * 1002 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size, 1003 int type, zio_priority_t priority, enum zio_flag flags, 1004 zio_done_func_t *done, void *private) 1005 { 1006 zio_t *zio; 1007 1008 ASSERT(vd->vdev_ops->vdev_op_leaf); 1009 1010 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1011 data, size, done, private, type, priority, 1012 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1013 vd, offset, NULL, 1014 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1015 1016 return (zio); 1017 } 1018 1019 void 1020 zio_flush(zio_t *zio, vdev_t *vd) 1021 { 1022 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1023 NULL, NULL, 1024 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1025 } 1026 1027 void 1028 zio_shrink(zio_t *zio, uint64_t size) 1029 { 1030 ASSERT(zio->io_executor == NULL); 1031 ASSERT(zio->io_orig_size == zio->io_size); 1032 ASSERT(size <= zio->io_size); 1033 1034 /* 1035 * We don't shrink for raidz because of problems with the 1036 * reconstruction when reading back less than the block size. 1037 * Note, BP_IS_RAIDZ() assumes no compression. 1038 */ 1039 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1040 if (!BP_IS_RAIDZ(zio->io_bp)) 1041 zio->io_orig_size = zio->io_size = size; 1042 } 1043 1044 /* 1045 * ========================================================================== 1046 * Prepare to read and write logical blocks 1047 * ========================================================================== 1048 */ 1049 1050 static int 1051 zio_read_bp_init(zio_t *zio) 1052 { 1053 blkptr_t *bp = zio->io_bp; 1054 1055 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1056 zio->io_child_type == ZIO_CHILD_LOGICAL && 1057 !(zio->io_flags & ZIO_FLAG_RAW)) { 1058 uint64_t psize = 1059 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1060 void *cbuf = zio_buf_alloc(psize); 1061 1062 zio_push_transform(zio, cbuf, psize, psize, zio_decompress); 1063 } 1064 1065 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1066 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1067 decode_embedded_bp_compressed(bp, zio->io_data); 1068 } else { 1069 ASSERT(!BP_IS_EMBEDDED(bp)); 1070 } 1071 1072 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1073 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1074 1075 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1076 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1077 1078 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1079 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1080 1081 return (ZIO_PIPELINE_CONTINUE); 1082 } 1083 1084 static int 1085 zio_write_bp_init(zio_t *zio) 1086 { 1087 spa_t *spa = zio->io_spa; 1088 zio_prop_t *zp = &zio->io_prop; 1089 enum zio_compress compress = zp->zp_compress; 1090 blkptr_t *bp = zio->io_bp; 1091 uint64_t lsize = zio->io_size; 1092 uint64_t psize = lsize; 1093 int pass = 1; 1094 1095 /* 1096 * If our children haven't all reached the ready stage, 1097 * wait for them and then repeat this pipeline stage. 1098 */ 1099 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1100 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1101 return (ZIO_PIPELINE_STOP); 1102 } 1103 1104 if (!IO_IS_ALLOCATING(zio)) 1105 return (ZIO_PIPELINE_CONTINUE); 1106 1107 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1108 1109 if (zio->io_bp_override) { 1110 ASSERT(bp->blk_birth != zio->io_txg); 1111 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); 1112 1113 *bp = *zio->io_bp_override; 1114 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1115 1116 if (BP_IS_EMBEDDED(bp)) 1117 return (ZIO_PIPELINE_CONTINUE); 1118 1119 /* 1120 * If we've been overridden and nopwrite is set then 1121 * set the flag accordingly to indicate that a nopwrite 1122 * has already occurred. 1123 */ 1124 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1125 ASSERT(!zp->zp_dedup); 1126 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1127 return (ZIO_PIPELINE_CONTINUE); 1128 } 1129 1130 ASSERT(!zp->zp_nopwrite); 1131 1132 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1133 return (ZIO_PIPELINE_CONTINUE); 1134 1135 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1136 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1137 1138 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) { 1139 BP_SET_DEDUP(bp, 1); 1140 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1141 return (ZIO_PIPELINE_CONTINUE); 1142 } 1143 zio->io_bp_override = NULL; 1144 BP_ZERO(bp); 1145 } 1146 1147 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1148 /* 1149 * We're rewriting an existing block, which means we're 1150 * working on behalf of spa_sync(). For spa_sync() to 1151 * converge, it must eventually be the case that we don't 1152 * have to allocate new blocks. But compression changes 1153 * the blocksize, which forces a reallocate, and makes 1154 * convergence take longer. Therefore, after the first 1155 * few passes, stop compressing to ensure convergence. 1156 */ 1157 pass = spa_sync_pass(spa); 1158 1159 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1160 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1161 ASSERT(!BP_GET_DEDUP(bp)); 1162 1163 if (pass >= zfs_sync_pass_dont_compress) 1164 compress = ZIO_COMPRESS_OFF; 1165 1166 /* Make sure someone doesn't change their mind on overwrites */ 1167 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1168 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1169 } 1170 1171 if (compress != ZIO_COMPRESS_OFF) { 1172 void *cbuf = zio_buf_alloc(lsize); 1173 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1174 if (psize == 0 || psize == lsize) { 1175 compress = ZIO_COMPRESS_OFF; 1176 zio_buf_free(cbuf, lsize); 1177 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE && 1178 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1179 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1180 encode_embedded_bp_compressed(bp, 1181 cbuf, compress, lsize, psize); 1182 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1183 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1184 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1185 zio_buf_free(cbuf, lsize); 1186 bp->blk_birth = zio->io_txg; 1187 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1188 ASSERT(spa_feature_is_active(spa, 1189 SPA_FEATURE_EMBEDDED_DATA)); 1190 return (ZIO_PIPELINE_CONTINUE); 1191 } else { 1192 /* 1193 * Round up compressed size up to the ashift 1194 * of the smallest-ashift device, and zero the tail. 1195 * This ensures that the compressed size of the BP 1196 * (and thus compressratio property) are correct, 1197 * in that we charge for the padding used to fill out 1198 * the last sector. 1199 */ 1200 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 1201 size_t rounded = (size_t)P2ROUNDUP(psize, 1202 1ULL << spa->spa_min_ashift); 1203 if (rounded >= lsize) { 1204 compress = ZIO_COMPRESS_OFF; 1205 zio_buf_free(cbuf, lsize); 1206 psize = lsize; 1207 } else { 1208 bzero((char *)cbuf + psize, rounded - psize); 1209 psize = rounded; 1210 zio_push_transform(zio, cbuf, 1211 psize, lsize, NULL); 1212 } 1213 } 1214 } 1215 1216 /* 1217 * The final pass of spa_sync() must be all rewrites, but the first 1218 * few passes offer a trade-off: allocating blocks defers convergence, 1219 * but newly allocated blocks are sequential, so they can be written 1220 * to disk faster. Therefore, we allow the first few passes of 1221 * spa_sync() to allocate new blocks, but force rewrites after that. 1222 * There should only be a handful of blocks after pass 1 in any case. 1223 */ 1224 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1225 BP_GET_PSIZE(bp) == psize && 1226 pass >= zfs_sync_pass_rewrite) { 1227 ASSERT(psize != 0); 1228 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1229 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1230 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1231 } else { 1232 BP_ZERO(bp); 1233 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1234 } 1235 1236 if (psize == 0) { 1237 if (zio->io_bp_orig.blk_birth != 0 && 1238 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1239 BP_SET_LSIZE(bp, lsize); 1240 BP_SET_TYPE(bp, zp->zp_type); 1241 BP_SET_LEVEL(bp, zp->zp_level); 1242 BP_SET_BIRTH(bp, zio->io_txg, 0); 1243 } 1244 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1245 } else { 1246 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1247 BP_SET_LSIZE(bp, lsize); 1248 BP_SET_TYPE(bp, zp->zp_type); 1249 BP_SET_LEVEL(bp, zp->zp_level); 1250 BP_SET_PSIZE(bp, psize); 1251 BP_SET_COMPRESS(bp, compress); 1252 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1253 BP_SET_DEDUP(bp, zp->zp_dedup); 1254 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1255 if (zp->zp_dedup) { 1256 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1257 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1258 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1259 } 1260 if (zp->zp_nopwrite) { 1261 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1262 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1263 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1264 } 1265 } 1266 1267 return (ZIO_PIPELINE_CONTINUE); 1268 } 1269 1270 static int 1271 zio_free_bp_init(zio_t *zio) 1272 { 1273 blkptr_t *bp = zio->io_bp; 1274 1275 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1276 if (BP_GET_DEDUP(bp)) 1277 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1278 } 1279 1280 return (ZIO_PIPELINE_CONTINUE); 1281 } 1282 1283 /* 1284 * ========================================================================== 1285 * Execute the I/O pipeline 1286 * ========================================================================== 1287 */ 1288 1289 static void 1290 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1291 { 1292 spa_t *spa = zio->io_spa; 1293 zio_type_t t = zio->io_type; 1294 int flags = (cutinline ? TQ_FRONT : 0); 1295 1296 /* 1297 * If we're a config writer or a probe, the normal issue and 1298 * interrupt threads may all be blocked waiting for the config lock. 1299 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1300 */ 1301 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1302 t = ZIO_TYPE_NULL; 1303 1304 /* 1305 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1306 */ 1307 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1308 t = ZIO_TYPE_NULL; 1309 1310 /* 1311 * If this is a high priority I/O, then use the high priority taskq if 1312 * available. 1313 */ 1314 if (zio->io_priority == ZIO_PRIORITY_NOW && 1315 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1316 q++; 1317 1318 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1319 1320 /* 1321 * NB: We are assuming that the zio can only be dispatched 1322 * to a single taskq at a time. It would be a grievous error 1323 * to dispatch the zio to another taskq at the same time. 1324 */ 1325 ASSERT(zio->io_tqent.tqent_next == NULL); 1326 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, 1327 flags, &zio->io_tqent); 1328 } 1329 1330 static boolean_t 1331 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1332 { 1333 kthread_t *executor = zio->io_executor; 1334 spa_t *spa = zio->io_spa; 1335 1336 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1337 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1338 uint_t i; 1339 for (i = 0; i < tqs->stqs_count; i++) { 1340 if (taskq_member(tqs->stqs_taskq[i], executor)) 1341 return (B_TRUE); 1342 } 1343 } 1344 1345 return (B_FALSE); 1346 } 1347 1348 static int 1349 zio_issue_async(zio_t *zio) 1350 { 1351 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1352 1353 return (ZIO_PIPELINE_STOP); 1354 } 1355 1356 void 1357 zio_interrupt(zio_t *zio) 1358 { 1359 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1360 } 1361 1362 void 1363 zio_delay_interrupt(zio_t *zio) 1364 { 1365 /* 1366 * The timeout_generic() function isn't defined in userspace, so 1367 * rather than trying to implement the function, the zio delay 1368 * functionality has been disabled for userspace builds. 1369 */ 1370 1371 #ifdef _KERNEL 1372 /* 1373 * If io_target_timestamp is zero, then no delay has been registered 1374 * for this IO, thus jump to the end of this function and "skip" the 1375 * delay; issuing it directly to the zio layer. 1376 */ 1377 if (zio->io_target_timestamp != 0) { 1378 hrtime_t now = gethrtime(); 1379 1380 if (now >= zio->io_target_timestamp) { 1381 /* 1382 * This IO has already taken longer than the target 1383 * delay to complete, so we don't want to delay it 1384 * any longer; we "miss" the delay and issue it 1385 * directly to the zio layer. This is likely due to 1386 * the target latency being set to a value less than 1387 * the underlying hardware can satisfy (e.g. delay 1388 * set to 1ms, but the disks take 10ms to complete an 1389 * IO request). 1390 */ 1391 1392 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1393 hrtime_t, now); 1394 1395 zio_interrupt(zio); 1396 } else { 1397 hrtime_t diff = zio->io_target_timestamp - now; 1398 1399 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 1400 hrtime_t, now, hrtime_t, diff); 1401 1402 (void) timeout_generic(CALLOUT_NORMAL, 1403 (void (*)(void *))zio_interrupt, zio, diff, 1, 0); 1404 } 1405 1406 return; 1407 } 1408 #endif 1409 1410 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 1411 zio_interrupt(zio); 1412 } 1413 1414 /* 1415 * Execute the I/O pipeline until one of the following occurs: 1416 * 1417 * (1) the I/O completes 1418 * (2) the pipeline stalls waiting for dependent child I/Os 1419 * (3) the I/O issues, so we're waiting for an I/O completion interrupt 1420 * (4) the I/O is delegated by vdev-level caching or aggregation 1421 * (5) the I/O is deferred due to vdev-level queueing 1422 * (6) the I/O is handed off to another thread. 1423 * 1424 * In all cases, the pipeline stops whenever there's no CPU work; it never 1425 * burns a thread in cv_wait(). 1426 * 1427 * There's no locking on io_stage because there's no legitimate way 1428 * for multiple threads to be attempting to process the same I/O. 1429 */ 1430 static zio_pipe_stage_t *zio_pipeline[]; 1431 1432 void 1433 zio_execute(zio_t *zio) 1434 { 1435 zio->io_executor = curthread; 1436 1437 while (zio->io_stage < ZIO_STAGE_DONE) { 1438 enum zio_stage pipeline = zio->io_pipeline; 1439 enum zio_stage stage = zio->io_stage; 1440 int rv; 1441 1442 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1443 ASSERT(ISP2(stage)); 1444 ASSERT(zio->io_stall == NULL); 1445 1446 do { 1447 stage <<= 1; 1448 } while ((stage & pipeline) == 0); 1449 1450 ASSERT(stage <= ZIO_STAGE_DONE); 1451 1452 /* 1453 * If we are in interrupt context and this pipeline stage 1454 * will grab a config lock that is held across I/O, 1455 * or may wait for an I/O that needs an interrupt thread 1456 * to complete, issue async to avoid deadlock. 1457 * 1458 * For VDEV_IO_START, we cut in line so that the io will 1459 * be sent to disk promptly. 1460 */ 1461 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 1462 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 1463 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 1464 zio_requeue_io_start_cut_in_line : B_FALSE; 1465 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 1466 return; 1467 } 1468 1469 zio->io_stage = stage; 1470 rv = zio_pipeline[highbit64(stage) - 1](zio); 1471 1472 if (rv == ZIO_PIPELINE_STOP) 1473 return; 1474 1475 ASSERT(rv == ZIO_PIPELINE_CONTINUE); 1476 } 1477 } 1478 1479 /* 1480 * ========================================================================== 1481 * Initiate I/O, either sync or async 1482 * ========================================================================== 1483 */ 1484 int 1485 zio_wait(zio_t *zio) 1486 { 1487 int error; 1488 1489 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1490 ASSERT(zio->io_executor == NULL); 1491 1492 zio->io_waiter = curthread; 1493 1494 zio_execute(zio); 1495 1496 mutex_enter(&zio->io_lock); 1497 while (zio->io_executor != NULL) 1498 cv_wait(&zio->io_cv, &zio->io_lock); 1499 mutex_exit(&zio->io_lock); 1500 1501 error = zio->io_error; 1502 zio_destroy(zio); 1503 1504 return (error); 1505 } 1506 1507 void 1508 zio_nowait(zio_t *zio) 1509 { 1510 ASSERT(zio->io_executor == NULL); 1511 1512 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 1513 zio_unique_parent(zio) == NULL) { 1514 /* 1515 * This is a logical async I/O with no parent to wait for it. 1516 * We add it to the spa_async_root_zio "Godfather" I/O which 1517 * will ensure they complete prior to unloading the pool. 1518 */ 1519 spa_t *spa = zio->io_spa; 1520 1521 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio); 1522 } 1523 1524 zio_execute(zio); 1525 } 1526 1527 /* 1528 * ========================================================================== 1529 * Reexecute or suspend/resume failed I/O 1530 * ========================================================================== 1531 */ 1532 1533 static void 1534 zio_reexecute(zio_t *pio) 1535 { 1536 zio_t *cio, *cio_next; 1537 1538 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 1539 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 1540 ASSERT(pio->io_gang_leader == NULL); 1541 ASSERT(pio->io_gang_tree == NULL); 1542 1543 pio->io_flags = pio->io_orig_flags; 1544 pio->io_stage = pio->io_orig_stage; 1545 pio->io_pipeline = pio->io_orig_pipeline; 1546 pio->io_reexecute = 0; 1547 pio->io_flags |= ZIO_FLAG_REEXECUTED; 1548 pio->io_error = 0; 1549 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1550 pio->io_state[w] = 0; 1551 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 1552 pio->io_child_error[c] = 0; 1553 1554 if (IO_IS_ALLOCATING(pio)) 1555 BP_ZERO(pio->io_bp); 1556 1557 /* 1558 * As we reexecute pio's children, new children could be created. 1559 * New children go to the head of pio's io_child_list, however, 1560 * so we will (correctly) not reexecute them. The key is that 1561 * the remainder of pio's io_child_list, from 'cio_next' onward, 1562 * cannot be affected by any side effects of reexecuting 'cio'. 1563 */ 1564 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) { 1565 cio_next = zio_walk_children(pio); 1566 mutex_enter(&pio->io_lock); 1567 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 1568 pio->io_children[cio->io_child_type][w]++; 1569 mutex_exit(&pio->io_lock); 1570 zio_reexecute(cio); 1571 } 1572 1573 /* 1574 * Now that all children have been reexecuted, execute the parent. 1575 * We don't reexecute "The Godfather" I/O here as it's the 1576 * responsibility of the caller to wait on him. 1577 */ 1578 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) 1579 zio_execute(pio); 1580 } 1581 1582 void 1583 zio_suspend(spa_t *spa, zio_t *zio) 1584 { 1585 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 1586 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 1587 "failure and the failure mode property for this pool " 1588 "is set to panic.", spa_name(spa)); 1589 1590 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0); 1591 1592 mutex_enter(&spa->spa_suspend_lock); 1593 1594 if (spa->spa_suspend_zio_root == NULL) 1595 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 1596 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 1597 ZIO_FLAG_GODFATHER); 1598 1599 spa->spa_suspended = B_TRUE; 1600 1601 if (zio != NULL) { 1602 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 1603 ASSERT(zio != spa->spa_suspend_zio_root); 1604 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1605 ASSERT(zio_unique_parent(zio) == NULL); 1606 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 1607 zio_add_child(spa->spa_suspend_zio_root, zio); 1608 } 1609 1610 mutex_exit(&spa->spa_suspend_lock); 1611 } 1612 1613 int 1614 zio_resume(spa_t *spa) 1615 { 1616 zio_t *pio; 1617 1618 /* 1619 * Reexecute all previously suspended i/o. 1620 */ 1621 mutex_enter(&spa->spa_suspend_lock); 1622 spa->spa_suspended = B_FALSE; 1623 cv_broadcast(&spa->spa_suspend_cv); 1624 pio = spa->spa_suspend_zio_root; 1625 spa->spa_suspend_zio_root = NULL; 1626 mutex_exit(&spa->spa_suspend_lock); 1627 1628 if (pio == NULL) 1629 return (0); 1630 1631 zio_reexecute(pio); 1632 return (zio_wait(pio)); 1633 } 1634 1635 void 1636 zio_resume_wait(spa_t *spa) 1637 { 1638 mutex_enter(&spa->spa_suspend_lock); 1639 while (spa_suspended(spa)) 1640 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 1641 mutex_exit(&spa->spa_suspend_lock); 1642 } 1643 1644 /* 1645 * ========================================================================== 1646 * Gang blocks. 1647 * 1648 * A gang block is a collection of small blocks that looks to the DMU 1649 * like one large block. When zio_dva_allocate() cannot find a block 1650 * of the requested size, due to either severe fragmentation or the pool 1651 * being nearly full, it calls zio_write_gang_block() to construct the 1652 * block from smaller fragments. 1653 * 1654 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 1655 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 1656 * an indirect block: it's an array of block pointers. It consumes 1657 * only one sector and hence is allocatable regardless of fragmentation. 1658 * The gang header's bps point to its gang members, which hold the data. 1659 * 1660 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 1661 * as the verifier to ensure uniqueness of the SHA256 checksum. 1662 * Critically, the gang block bp's blk_cksum is the checksum of the data, 1663 * not the gang header. This ensures that data block signatures (needed for 1664 * deduplication) are independent of how the block is physically stored. 1665 * 1666 * Gang blocks can be nested: a gang member may itself be a gang block. 1667 * Thus every gang block is a tree in which root and all interior nodes are 1668 * gang headers, and the leaves are normal blocks that contain user data. 1669 * The root of the gang tree is called the gang leader. 1670 * 1671 * To perform any operation (read, rewrite, free, claim) on a gang block, 1672 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 1673 * in the io_gang_tree field of the original logical i/o by recursively 1674 * reading the gang leader and all gang headers below it. This yields 1675 * an in-core tree containing the contents of every gang header and the 1676 * bps for every constituent of the gang block. 1677 * 1678 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 1679 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 1680 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 1681 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 1682 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 1683 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 1684 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 1685 * of the gang header plus zio_checksum_compute() of the data to update the 1686 * gang header's blk_cksum as described above. 1687 * 1688 * The two-phase assemble/issue model solves the problem of partial failure -- 1689 * what if you'd freed part of a gang block but then couldn't read the 1690 * gang header for another part? Assembling the entire gang tree first 1691 * ensures that all the necessary gang header I/O has succeeded before 1692 * starting the actual work of free, claim, or write. Once the gang tree 1693 * is assembled, free and claim are in-memory operations that cannot fail. 1694 * 1695 * In the event that a gang write fails, zio_dva_unallocate() walks the 1696 * gang tree to immediately free (i.e. insert back into the space map) 1697 * everything we've allocated. This ensures that we don't get ENOSPC 1698 * errors during repeated suspend/resume cycles due to a flaky device. 1699 * 1700 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 1701 * the gang tree, we won't modify the block, so we can safely defer the free 1702 * (knowing that the block is still intact). If we *can* assemble the gang 1703 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 1704 * each constituent bp and we can allocate a new block on the next sync pass. 1705 * 1706 * In all cases, the gang tree allows complete recovery from partial failure. 1707 * ========================================================================== 1708 */ 1709 1710 static zio_t * 1711 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1712 { 1713 if (gn != NULL) 1714 return (pio); 1715 1716 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp), 1717 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 1718 &pio->io_bookmark)); 1719 } 1720 1721 zio_t * 1722 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1723 { 1724 zio_t *zio; 1725 1726 if (gn != NULL) { 1727 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1728 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority, 1729 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1730 /* 1731 * As we rewrite each gang header, the pipeline will compute 1732 * a new gang block header checksum for it; but no one will 1733 * compute a new data checksum, so we do that here. The one 1734 * exception is the gang leader: the pipeline already computed 1735 * its data checksum because that stage precedes gang assembly. 1736 * (Presently, nothing actually uses interior data checksums; 1737 * this is just good hygiene.) 1738 */ 1739 if (gn != pio->io_gang_leader->io_gang_tree) { 1740 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 1741 data, BP_GET_PSIZE(bp)); 1742 } 1743 /* 1744 * If we are here to damage data for testing purposes, 1745 * leave the GBH alone so that we can detect the damage. 1746 */ 1747 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 1748 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 1749 } else { 1750 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 1751 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority, 1752 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 1753 } 1754 1755 return (zio); 1756 } 1757 1758 /* ARGSUSED */ 1759 zio_t * 1760 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1761 { 1762 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 1763 ZIO_GANG_CHILD_FLAGS(pio))); 1764 } 1765 1766 /* ARGSUSED */ 1767 zio_t * 1768 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data) 1769 { 1770 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 1771 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 1772 } 1773 1774 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 1775 NULL, 1776 zio_read_gang, 1777 zio_rewrite_gang, 1778 zio_free_gang, 1779 zio_claim_gang, 1780 NULL 1781 }; 1782 1783 static void zio_gang_tree_assemble_done(zio_t *zio); 1784 1785 static zio_gang_node_t * 1786 zio_gang_node_alloc(zio_gang_node_t **gnpp) 1787 { 1788 zio_gang_node_t *gn; 1789 1790 ASSERT(*gnpp == NULL); 1791 1792 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 1793 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 1794 *gnpp = gn; 1795 1796 return (gn); 1797 } 1798 1799 static void 1800 zio_gang_node_free(zio_gang_node_t **gnpp) 1801 { 1802 zio_gang_node_t *gn = *gnpp; 1803 1804 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1805 ASSERT(gn->gn_child[g] == NULL); 1806 1807 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 1808 kmem_free(gn, sizeof (*gn)); 1809 *gnpp = NULL; 1810 } 1811 1812 static void 1813 zio_gang_tree_free(zio_gang_node_t **gnpp) 1814 { 1815 zio_gang_node_t *gn = *gnpp; 1816 1817 if (gn == NULL) 1818 return; 1819 1820 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 1821 zio_gang_tree_free(&gn->gn_child[g]); 1822 1823 zio_gang_node_free(gnpp); 1824 } 1825 1826 static void 1827 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 1828 { 1829 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 1830 1831 ASSERT(gio->io_gang_leader == gio); 1832 ASSERT(BP_IS_GANG(bp)); 1833 1834 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh, 1835 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, 1836 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 1837 } 1838 1839 static void 1840 zio_gang_tree_assemble_done(zio_t *zio) 1841 { 1842 zio_t *gio = zio->io_gang_leader; 1843 zio_gang_node_t *gn = zio->io_private; 1844 blkptr_t *bp = zio->io_bp; 1845 1846 ASSERT(gio == zio_unique_parent(zio)); 1847 ASSERT(zio->io_child_count == 0); 1848 1849 if (zio->io_error) 1850 return; 1851 1852 if (BP_SHOULD_BYTESWAP(bp)) 1853 byteswap_uint64_array(zio->io_data, zio->io_size); 1854 1855 ASSERT(zio->io_data == gn->gn_gbh); 1856 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1857 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1858 1859 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1860 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1861 if (!BP_IS_GANG(gbp)) 1862 continue; 1863 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 1864 } 1865 } 1866 1867 static void 1868 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data) 1869 { 1870 zio_t *gio = pio->io_gang_leader; 1871 zio_t *zio; 1872 1873 ASSERT(BP_IS_GANG(bp) == !!gn); 1874 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 1875 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 1876 1877 /* 1878 * If you're a gang header, your data is in gn->gn_gbh. 1879 * If you're a gang member, your data is in 'data' and gn == NULL. 1880 */ 1881 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data); 1882 1883 if (gn != NULL) { 1884 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 1885 1886 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 1887 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 1888 if (BP_IS_HOLE(gbp)) 1889 continue; 1890 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data); 1891 data = (char *)data + BP_GET_PSIZE(gbp); 1892 } 1893 } 1894 1895 if (gn == gio->io_gang_tree) 1896 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data); 1897 1898 if (zio != pio) 1899 zio_nowait(zio); 1900 } 1901 1902 static int 1903 zio_gang_assemble(zio_t *zio) 1904 { 1905 blkptr_t *bp = zio->io_bp; 1906 1907 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 1908 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1909 1910 zio->io_gang_leader = zio; 1911 1912 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 1913 1914 return (ZIO_PIPELINE_CONTINUE); 1915 } 1916 1917 static int 1918 zio_gang_issue(zio_t *zio) 1919 { 1920 blkptr_t *bp = zio->io_bp; 1921 1922 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 1923 return (ZIO_PIPELINE_STOP); 1924 } 1925 1926 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 1927 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 1928 1929 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 1930 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data); 1931 else 1932 zio_gang_tree_free(&zio->io_gang_tree); 1933 1934 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1935 1936 return (ZIO_PIPELINE_CONTINUE); 1937 } 1938 1939 static void 1940 zio_write_gang_member_ready(zio_t *zio) 1941 { 1942 zio_t *pio = zio_unique_parent(zio); 1943 zio_t *gio = zio->io_gang_leader; 1944 dva_t *cdva = zio->io_bp->blk_dva; 1945 dva_t *pdva = pio->io_bp->blk_dva; 1946 uint64_t asize; 1947 1948 if (BP_IS_HOLE(zio->io_bp)) 1949 return; 1950 1951 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 1952 1953 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 1954 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 1955 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 1956 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 1957 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1958 1959 mutex_enter(&pio->io_lock); 1960 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 1961 ASSERT(DVA_GET_GANG(&pdva[d])); 1962 asize = DVA_GET_ASIZE(&pdva[d]); 1963 asize += DVA_GET_ASIZE(&cdva[d]); 1964 DVA_SET_ASIZE(&pdva[d], asize); 1965 } 1966 mutex_exit(&pio->io_lock); 1967 } 1968 1969 static int 1970 zio_write_gang_block(zio_t *pio) 1971 { 1972 spa_t *spa = pio->io_spa; 1973 blkptr_t *bp = pio->io_bp; 1974 zio_t *gio = pio->io_gang_leader; 1975 zio_t *zio; 1976 zio_gang_node_t *gn, **gnpp; 1977 zio_gbh_phys_t *gbh; 1978 uint64_t txg = pio->io_txg; 1979 uint64_t resid = pio->io_size; 1980 uint64_t lsize; 1981 int copies = gio->io_prop.zp_copies; 1982 int gbh_copies = MIN(copies + 1, spa_max_replication(spa)); 1983 zio_prop_t zp; 1984 int error; 1985 1986 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE, 1987 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, 1988 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER); 1989 if (error) { 1990 pio->io_error = error; 1991 return (ZIO_PIPELINE_CONTINUE); 1992 } 1993 1994 if (pio == gio) { 1995 gnpp = &gio->io_gang_tree; 1996 } else { 1997 gnpp = pio->io_private; 1998 ASSERT(pio->io_ready == zio_write_gang_member_ready); 1999 } 2000 2001 gn = zio_gang_node_alloc(gnpp); 2002 gbh = gn->gn_gbh; 2003 bzero(gbh, SPA_GANGBLOCKSIZE); 2004 2005 /* 2006 * Create the gang header. 2007 */ 2008 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL, 2009 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2010 2011 /* 2012 * Create and nowait the gang children. 2013 */ 2014 for (int g = 0; resid != 0; resid -= lsize, g++) { 2015 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2016 SPA_MINBLOCKSIZE); 2017 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2018 2019 zp.zp_checksum = gio->io_prop.zp_checksum; 2020 zp.zp_compress = ZIO_COMPRESS_OFF; 2021 zp.zp_type = DMU_OT_NONE; 2022 zp.zp_level = 0; 2023 zp.zp_copies = gio->io_prop.zp_copies; 2024 zp.zp_dedup = B_FALSE; 2025 zp.zp_dedup_verify = B_FALSE; 2026 zp.zp_nopwrite = B_FALSE; 2027 2028 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2029 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp, 2030 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g], 2031 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2032 &pio->io_bookmark)); 2033 } 2034 2035 /* 2036 * Set pio's pipeline to just wait for zio to finish. 2037 */ 2038 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2039 2040 zio_nowait(zio); 2041 2042 return (ZIO_PIPELINE_CONTINUE); 2043 } 2044 2045 /* 2046 * The zio_nop_write stage in the pipeline determines if allocating a 2047 * new bp is necessary. The nopwrite feature can handle writes in 2048 * either syncing or open context (i.e. zil writes) and as a result is 2049 * mutually exclusive with dedup. 2050 * 2051 * By leveraging a cryptographically secure checksum, such as SHA256, we 2052 * can compare the checksums of the new data and the old to determine if 2053 * allocating a new block is required. Note that our requirements for 2054 * cryptographic strength are fairly weak: there can't be any accidental 2055 * hash collisions, but we don't need to be secure against intentional 2056 * (malicious) collisions. To trigger a nopwrite, you have to be able 2057 * to write the file to begin with, and triggering an incorrect (hash 2058 * collision) nopwrite is no worse than simply writing to the file. 2059 * That said, there are no known attacks against the checksum algorithms 2060 * used for nopwrite, assuming that the salt and the checksums 2061 * themselves remain secret. 2062 */ 2063 static int 2064 zio_nop_write(zio_t *zio) 2065 { 2066 blkptr_t *bp = zio->io_bp; 2067 blkptr_t *bp_orig = &zio->io_bp_orig; 2068 zio_prop_t *zp = &zio->io_prop; 2069 2070 ASSERT(BP_GET_LEVEL(bp) == 0); 2071 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 2072 ASSERT(zp->zp_nopwrite); 2073 ASSERT(!zp->zp_dedup); 2074 ASSERT(zio->io_bp_override == NULL); 2075 ASSERT(IO_IS_ALLOCATING(zio)); 2076 2077 /* 2078 * Check to see if the original bp and the new bp have matching 2079 * characteristics (i.e. same checksum, compression algorithms, etc). 2080 * If they don't then just continue with the pipeline which will 2081 * allocate a new bp. 2082 */ 2083 if (BP_IS_HOLE(bp_orig) || 2084 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 2085 ZCHECKSUM_FLAG_NOPWRITE) || 2086 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 2087 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 2088 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 2089 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 2090 return (ZIO_PIPELINE_CONTINUE); 2091 2092 /* 2093 * If the checksums match then reset the pipeline so that we 2094 * avoid allocating a new bp and issuing any I/O. 2095 */ 2096 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 2097 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 2098 ZCHECKSUM_FLAG_NOPWRITE); 2099 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 2100 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 2101 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 2102 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, 2103 sizeof (uint64_t)) == 0); 2104 2105 *bp = *bp_orig; 2106 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2107 zio->io_flags |= ZIO_FLAG_NOPWRITE; 2108 } 2109 2110 return (ZIO_PIPELINE_CONTINUE); 2111 } 2112 2113 /* 2114 * ========================================================================== 2115 * Dedup 2116 * ========================================================================== 2117 */ 2118 static void 2119 zio_ddt_child_read_done(zio_t *zio) 2120 { 2121 blkptr_t *bp = zio->io_bp; 2122 ddt_entry_t *dde = zio->io_private; 2123 ddt_phys_t *ddp; 2124 zio_t *pio = zio_unique_parent(zio); 2125 2126 mutex_enter(&pio->io_lock); 2127 ddp = ddt_phys_select(dde, bp); 2128 if (zio->io_error == 0) 2129 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 2130 if (zio->io_error == 0 && dde->dde_repair_data == NULL) 2131 dde->dde_repair_data = zio->io_data; 2132 else 2133 zio_buf_free(zio->io_data, zio->io_size); 2134 mutex_exit(&pio->io_lock); 2135 } 2136 2137 static int 2138 zio_ddt_read_start(zio_t *zio) 2139 { 2140 blkptr_t *bp = zio->io_bp; 2141 2142 ASSERT(BP_GET_DEDUP(bp)); 2143 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2144 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2145 2146 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2147 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2148 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 2149 ddt_phys_t *ddp = dde->dde_phys; 2150 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 2151 blkptr_t blk; 2152 2153 ASSERT(zio->io_vsd == NULL); 2154 zio->io_vsd = dde; 2155 2156 if (ddp_self == NULL) 2157 return (ZIO_PIPELINE_CONTINUE); 2158 2159 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2160 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 2161 continue; 2162 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 2163 &blk); 2164 zio_nowait(zio_read(zio, zio->io_spa, &blk, 2165 zio_buf_alloc(zio->io_size), zio->io_size, 2166 zio_ddt_child_read_done, dde, zio->io_priority, 2167 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, 2168 &zio->io_bookmark)); 2169 } 2170 return (ZIO_PIPELINE_CONTINUE); 2171 } 2172 2173 zio_nowait(zio_read(zio, zio->io_spa, bp, 2174 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority, 2175 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 2176 2177 return (ZIO_PIPELINE_CONTINUE); 2178 } 2179 2180 static int 2181 zio_ddt_read_done(zio_t *zio) 2182 { 2183 blkptr_t *bp = zio->io_bp; 2184 2185 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 2186 return (ZIO_PIPELINE_STOP); 2187 } 2188 2189 ASSERT(BP_GET_DEDUP(bp)); 2190 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 2191 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2192 2193 if (zio->io_child_error[ZIO_CHILD_DDT]) { 2194 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2195 ddt_entry_t *dde = zio->io_vsd; 2196 if (ddt == NULL) { 2197 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 2198 return (ZIO_PIPELINE_CONTINUE); 2199 } 2200 if (dde == NULL) { 2201 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 2202 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2203 return (ZIO_PIPELINE_STOP); 2204 } 2205 if (dde->dde_repair_data != NULL) { 2206 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size); 2207 zio->io_child_error[ZIO_CHILD_DDT] = 0; 2208 } 2209 ddt_repair_done(ddt, dde); 2210 zio->io_vsd = NULL; 2211 } 2212 2213 ASSERT(zio->io_vsd == NULL); 2214 2215 return (ZIO_PIPELINE_CONTINUE); 2216 } 2217 2218 static boolean_t 2219 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 2220 { 2221 spa_t *spa = zio->io_spa; 2222 2223 /* 2224 * Note: we compare the original data, not the transformed data, 2225 * because when zio->io_bp is an override bp, we will not have 2226 * pushed the I/O transforms. That's an important optimization 2227 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 2228 */ 2229 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2230 zio_t *lio = dde->dde_lead_zio[p]; 2231 2232 if (lio != NULL) { 2233 return (lio->io_orig_size != zio->io_orig_size || 2234 bcmp(zio->io_orig_data, lio->io_orig_data, 2235 zio->io_orig_size) != 0); 2236 } 2237 } 2238 2239 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 2240 ddt_phys_t *ddp = &dde->dde_phys[p]; 2241 2242 if (ddp->ddp_phys_birth != 0) { 2243 arc_buf_t *abuf = NULL; 2244 arc_flags_t aflags = ARC_FLAG_WAIT; 2245 blkptr_t blk = *zio->io_bp; 2246 int error; 2247 2248 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 2249 2250 ddt_exit(ddt); 2251 2252 error = arc_read(NULL, spa, &blk, 2253 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 2254 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 2255 &aflags, &zio->io_bookmark); 2256 2257 if (error == 0) { 2258 if (arc_buf_size(abuf) != zio->io_orig_size || 2259 bcmp(abuf->b_data, zio->io_orig_data, 2260 zio->io_orig_size) != 0) 2261 error = SET_ERROR(EEXIST); 2262 VERIFY(arc_buf_remove_ref(abuf, &abuf)); 2263 } 2264 2265 ddt_enter(ddt); 2266 return (error != 0); 2267 } 2268 } 2269 2270 return (B_FALSE); 2271 } 2272 2273 static void 2274 zio_ddt_child_write_ready(zio_t *zio) 2275 { 2276 int p = zio->io_prop.zp_copies; 2277 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2278 ddt_entry_t *dde = zio->io_private; 2279 ddt_phys_t *ddp = &dde->dde_phys[p]; 2280 zio_t *pio; 2281 2282 if (zio->io_error) 2283 return; 2284 2285 ddt_enter(ddt); 2286 2287 ASSERT(dde->dde_lead_zio[p] == zio); 2288 2289 ddt_phys_fill(ddp, zio->io_bp); 2290 2291 while ((pio = zio_walk_parents(zio)) != NULL) 2292 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 2293 2294 ddt_exit(ddt); 2295 } 2296 2297 static void 2298 zio_ddt_child_write_done(zio_t *zio) 2299 { 2300 int p = zio->io_prop.zp_copies; 2301 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 2302 ddt_entry_t *dde = zio->io_private; 2303 ddt_phys_t *ddp = &dde->dde_phys[p]; 2304 2305 ddt_enter(ddt); 2306 2307 ASSERT(ddp->ddp_refcnt == 0); 2308 ASSERT(dde->dde_lead_zio[p] == zio); 2309 dde->dde_lead_zio[p] = NULL; 2310 2311 if (zio->io_error == 0) { 2312 while (zio_walk_parents(zio) != NULL) 2313 ddt_phys_addref(ddp); 2314 } else { 2315 ddt_phys_clear(ddp); 2316 } 2317 2318 ddt_exit(ddt); 2319 } 2320 2321 static void 2322 zio_ddt_ditto_write_done(zio_t *zio) 2323 { 2324 int p = DDT_PHYS_DITTO; 2325 zio_prop_t *zp = &zio->io_prop; 2326 blkptr_t *bp = zio->io_bp; 2327 ddt_t *ddt = ddt_select(zio->io_spa, bp); 2328 ddt_entry_t *dde = zio->io_private; 2329 ddt_phys_t *ddp = &dde->dde_phys[p]; 2330 ddt_key_t *ddk = &dde->dde_key; 2331 2332 ddt_enter(ddt); 2333 2334 ASSERT(ddp->ddp_refcnt == 0); 2335 ASSERT(dde->dde_lead_zio[p] == zio); 2336 dde->dde_lead_zio[p] = NULL; 2337 2338 if (zio->io_error == 0) { 2339 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum)); 2340 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP); 2341 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp)); 2342 if (ddp->ddp_phys_birth != 0) 2343 ddt_phys_free(ddt, ddk, ddp, zio->io_txg); 2344 ddt_phys_fill(ddp, bp); 2345 } 2346 2347 ddt_exit(ddt); 2348 } 2349 2350 static int 2351 zio_ddt_write(zio_t *zio) 2352 { 2353 spa_t *spa = zio->io_spa; 2354 blkptr_t *bp = zio->io_bp; 2355 uint64_t txg = zio->io_txg; 2356 zio_prop_t *zp = &zio->io_prop; 2357 int p = zp->zp_copies; 2358 int ditto_copies; 2359 zio_t *cio = NULL; 2360 zio_t *dio = NULL; 2361 ddt_t *ddt = ddt_select(spa, bp); 2362 ddt_entry_t *dde; 2363 ddt_phys_t *ddp; 2364 2365 ASSERT(BP_GET_DEDUP(bp)); 2366 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 2367 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 2368 2369 ddt_enter(ddt); 2370 dde = ddt_lookup(ddt, bp, B_TRUE); 2371 ddp = &dde->dde_phys[p]; 2372 2373 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 2374 /* 2375 * If we're using a weak checksum, upgrade to a strong checksum 2376 * and try again. If we're already using a strong checksum, 2377 * we can't resolve it, so just convert to an ordinary write. 2378 * (And automatically e-mail a paper to Nature?) 2379 */ 2380 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 2381 ZCHECKSUM_FLAG_DEDUP)) { 2382 zp->zp_checksum = spa_dedup_checksum(spa); 2383 zio_pop_transforms(zio); 2384 zio->io_stage = ZIO_STAGE_OPEN; 2385 BP_ZERO(bp); 2386 } else { 2387 zp->zp_dedup = B_FALSE; 2388 } 2389 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2390 ddt_exit(ddt); 2391 return (ZIO_PIPELINE_CONTINUE); 2392 } 2393 2394 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp); 2395 ASSERT(ditto_copies < SPA_DVAS_PER_BP); 2396 2397 if (ditto_copies > ddt_ditto_copies_present(dde) && 2398 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) { 2399 zio_prop_t czp = *zp; 2400 2401 czp.zp_copies = ditto_copies; 2402 2403 /* 2404 * If we arrived here with an override bp, we won't have run 2405 * the transform stack, so we won't have the data we need to 2406 * generate a child i/o. So, toss the override bp and restart. 2407 * This is safe, because using the override bp is just an 2408 * optimization; and it's rare, so the cost doesn't matter. 2409 */ 2410 if (zio->io_bp_override) { 2411 zio_pop_transforms(zio); 2412 zio->io_stage = ZIO_STAGE_OPEN; 2413 zio->io_pipeline = ZIO_WRITE_PIPELINE; 2414 zio->io_bp_override = NULL; 2415 BP_ZERO(bp); 2416 ddt_exit(ddt); 2417 return (ZIO_PIPELINE_CONTINUE); 2418 } 2419 2420 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2421 zio->io_orig_size, &czp, NULL, NULL, 2422 zio_ddt_ditto_write_done, dde, zio->io_priority, 2423 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2424 2425 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL); 2426 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio; 2427 } 2428 2429 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 2430 if (ddp->ddp_phys_birth != 0) 2431 ddt_bp_fill(ddp, bp, txg); 2432 if (dde->dde_lead_zio[p] != NULL) 2433 zio_add_child(zio, dde->dde_lead_zio[p]); 2434 else 2435 ddt_phys_addref(ddp); 2436 } else if (zio->io_bp_override) { 2437 ASSERT(bp->blk_birth == txg); 2438 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 2439 ddt_phys_fill(ddp, bp); 2440 ddt_phys_addref(ddp); 2441 } else { 2442 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data, 2443 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL, 2444 zio_ddt_child_write_done, dde, zio->io_priority, 2445 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 2446 2447 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL); 2448 dde->dde_lead_zio[p] = cio; 2449 } 2450 2451 ddt_exit(ddt); 2452 2453 if (cio) 2454 zio_nowait(cio); 2455 if (dio) 2456 zio_nowait(dio); 2457 2458 return (ZIO_PIPELINE_CONTINUE); 2459 } 2460 2461 ddt_entry_t *freedde; /* for debugging */ 2462 2463 static int 2464 zio_ddt_free(zio_t *zio) 2465 { 2466 spa_t *spa = zio->io_spa; 2467 blkptr_t *bp = zio->io_bp; 2468 ddt_t *ddt = ddt_select(spa, bp); 2469 ddt_entry_t *dde; 2470 ddt_phys_t *ddp; 2471 2472 ASSERT(BP_GET_DEDUP(bp)); 2473 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2474 2475 ddt_enter(ddt); 2476 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 2477 ddp = ddt_phys_select(dde, bp); 2478 ddt_phys_decref(ddp); 2479 ddt_exit(ddt); 2480 2481 return (ZIO_PIPELINE_CONTINUE); 2482 } 2483 2484 /* 2485 * ========================================================================== 2486 * Allocate and free blocks 2487 * ========================================================================== 2488 */ 2489 static int 2490 zio_dva_allocate(zio_t *zio) 2491 { 2492 spa_t *spa = zio->io_spa; 2493 metaslab_class_t *mc = spa_normal_class(spa); 2494 blkptr_t *bp = zio->io_bp; 2495 int error; 2496 int flags = 0; 2497 2498 if (zio->io_gang_leader == NULL) { 2499 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2500 zio->io_gang_leader = zio; 2501 } 2502 2503 ASSERT(BP_IS_HOLE(bp)); 2504 ASSERT0(BP_GET_NDVAS(bp)); 2505 ASSERT3U(zio->io_prop.zp_copies, >, 0); 2506 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 2507 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 2508 2509 /* 2510 * The dump device does not support gang blocks so allocation on 2511 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid 2512 * the "fast" gang feature. 2513 */ 2514 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0; 2515 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ? 2516 METASLAB_GANG_CHILD : 0; 2517 error = metaslab_alloc(spa, mc, zio->io_size, bp, 2518 zio->io_prop.zp_copies, zio->io_txg, NULL, flags); 2519 2520 if (error) { 2521 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, " 2522 "size %llu, error %d", spa_name(spa), zio, zio->io_size, 2523 error); 2524 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) 2525 return (zio_write_gang_block(zio)); 2526 zio->io_error = error; 2527 } 2528 2529 return (ZIO_PIPELINE_CONTINUE); 2530 } 2531 2532 static int 2533 zio_dva_free(zio_t *zio) 2534 { 2535 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 2536 2537 return (ZIO_PIPELINE_CONTINUE); 2538 } 2539 2540 static int 2541 zio_dva_claim(zio_t *zio) 2542 { 2543 int error; 2544 2545 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 2546 if (error) 2547 zio->io_error = error; 2548 2549 return (ZIO_PIPELINE_CONTINUE); 2550 } 2551 2552 /* 2553 * Undo an allocation. This is used by zio_done() when an I/O fails 2554 * and we want to give back the block we just allocated. 2555 * This handles both normal blocks and gang blocks. 2556 */ 2557 static void 2558 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 2559 { 2560 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 2561 ASSERT(zio->io_bp_override == NULL); 2562 2563 if (!BP_IS_HOLE(bp)) 2564 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 2565 2566 if (gn != NULL) { 2567 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2568 zio_dva_unallocate(zio, gn->gn_child[g], 2569 &gn->gn_gbh->zg_blkptr[g]); 2570 } 2571 } 2572 } 2573 2574 /* 2575 * Try to allocate an intent log block. Return 0 on success, errno on failure. 2576 */ 2577 int 2578 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp, 2579 uint64_t size, boolean_t use_slog) 2580 { 2581 int error = 1; 2582 2583 ASSERT(txg > spa_syncing_txg(spa)); 2584 2585 /* 2586 * ZIL blocks are always contiguous (i.e. not gang blocks) so we 2587 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang" 2588 * when allocating them. 2589 */ 2590 if (use_slog) { 2591 error = metaslab_alloc(spa, spa_log_class(spa), size, 2592 new_bp, 1, txg, old_bp, 2593 METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID); 2594 } 2595 2596 if (error) { 2597 error = metaslab_alloc(spa, spa_normal_class(spa), size, 2598 new_bp, 1, txg, old_bp, 2599 METASLAB_HINTBP_AVOID); 2600 } 2601 2602 if (error == 0) { 2603 BP_SET_LSIZE(new_bp, size); 2604 BP_SET_PSIZE(new_bp, size); 2605 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 2606 BP_SET_CHECKSUM(new_bp, 2607 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 2608 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 2609 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 2610 BP_SET_LEVEL(new_bp, 0); 2611 BP_SET_DEDUP(new_bp, 0); 2612 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 2613 } 2614 2615 return (error); 2616 } 2617 2618 /* 2619 * Free an intent log block. 2620 */ 2621 void 2622 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp) 2623 { 2624 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG); 2625 ASSERT(!BP_IS_GANG(bp)); 2626 2627 zio_free(spa, txg, bp); 2628 } 2629 2630 /* 2631 * ========================================================================== 2632 * Read and write to physical devices 2633 * ========================================================================== 2634 */ 2635 2636 2637 /* 2638 * Issue an I/O to the underlying vdev. Typically the issue pipeline 2639 * stops after this stage and will resume upon I/O completion. 2640 * However, there are instances where the vdev layer may need to 2641 * continue the pipeline when an I/O was not issued. Since the I/O 2642 * that was sent to the vdev layer might be different than the one 2643 * currently active in the pipeline (see vdev_queue_io()), we explicitly 2644 * force the underlying vdev layers to call either zio_execute() or 2645 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 2646 */ 2647 static int 2648 zio_vdev_io_start(zio_t *zio) 2649 { 2650 vdev_t *vd = zio->io_vd; 2651 uint64_t align; 2652 spa_t *spa = zio->io_spa; 2653 2654 ASSERT(zio->io_error == 0); 2655 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 2656 2657 if (vd == NULL) { 2658 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2659 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 2660 2661 /* 2662 * The mirror_ops handle multiple DVAs in a single BP. 2663 */ 2664 vdev_mirror_ops.vdev_op_io_start(zio); 2665 return (ZIO_PIPELINE_STOP); 2666 } 2667 2668 /* 2669 * We keep track of time-sensitive I/Os so that the scan thread 2670 * can quickly react to certain workloads. In particular, we care 2671 * about non-scrubbing, top-level reads and writes with the following 2672 * characteristics: 2673 * - synchronous writes of user data to non-slog devices 2674 * - any reads of user data 2675 * When these conditions are met, adjust the timestamp of spa_last_io 2676 * which allows the scan thread to adjust its workload accordingly. 2677 */ 2678 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL && 2679 vd == vd->vdev_top && !vd->vdev_islog && 2680 zio->io_bookmark.zb_objset != DMU_META_OBJSET && 2681 zio->io_txg != spa_syncing_txg(spa)) { 2682 uint64_t old = spa->spa_last_io; 2683 uint64_t new = ddi_get_lbolt64(); 2684 if (old != new) 2685 (void) atomic_cas_64(&spa->spa_last_io, old, new); 2686 } 2687 2688 align = 1ULL << vd->vdev_top->vdev_ashift; 2689 2690 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 2691 P2PHASE(zio->io_size, align) != 0) { 2692 /* Transform logical writes to be a full physical block size. */ 2693 uint64_t asize = P2ROUNDUP(zio->io_size, align); 2694 char *abuf = zio_buf_alloc(asize); 2695 ASSERT(vd == vd->vdev_top); 2696 if (zio->io_type == ZIO_TYPE_WRITE) { 2697 bcopy(zio->io_data, abuf, zio->io_size); 2698 bzero(abuf + zio->io_size, asize - zio->io_size); 2699 } 2700 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 2701 } 2702 2703 /* 2704 * If this is not a physical io, make sure that it is properly aligned 2705 * before proceeding. 2706 */ 2707 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 2708 ASSERT0(P2PHASE(zio->io_offset, align)); 2709 ASSERT0(P2PHASE(zio->io_size, align)); 2710 } else { 2711 /* 2712 * For physical writes, we allow 512b aligned writes and assume 2713 * the device will perform a read-modify-write as necessary. 2714 */ 2715 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 2716 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 2717 } 2718 2719 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 2720 2721 /* 2722 * If this is a repair I/O, and there's no self-healing involved -- 2723 * that is, we're just resilvering what we expect to resilver -- 2724 * then don't do the I/O unless zio's txg is actually in vd's DTL. 2725 * This prevents spurious resilvering with nested replication. 2726 * For example, given a mirror of mirrors, (A+B)+(C+D), if only 2727 * A is out of date, we'll read from C+D, then use the data to 2728 * resilver A+B -- but we don't actually want to resilver B, just A. 2729 * The top-level mirror has no way to know this, so instead we just 2730 * discard unnecessary repairs as we work our way down the vdev tree. 2731 * The same logic applies to any form of nested replication: 2732 * ditto + mirror, RAID-Z + replacing, etc. This covers them all. 2733 */ 2734 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 2735 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 2736 zio->io_txg != 0 && /* not a delegated i/o */ 2737 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 2738 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 2739 zio_vdev_io_bypass(zio); 2740 return (ZIO_PIPELINE_CONTINUE); 2741 } 2742 2743 if (vd->vdev_ops->vdev_op_leaf && 2744 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) { 2745 2746 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 2747 return (ZIO_PIPELINE_CONTINUE); 2748 2749 if ((zio = vdev_queue_io(zio)) == NULL) 2750 return (ZIO_PIPELINE_STOP); 2751 2752 if (!vdev_accessible(vd, zio)) { 2753 zio->io_error = SET_ERROR(ENXIO); 2754 zio_interrupt(zio); 2755 return (ZIO_PIPELINE_STOP); 2756 } 2757 } 2758 2759 vd->vdev_ops->vdev_op_io_start(zio); 2760 return (ZIO_PIPELINE_STOP); 2761 } 2762 2763 static int 2764 zio_vdev_io_done(zio_t *zio) 2765 { 2766 vdev_t *vd = zio->io_vd; 2767 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 2768 boolean_t unexpected_error = B_FALSE; 2769 2770 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 2771 return (ZIO_PIPELINE_STOP); 2772 } 2773 2774 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 2775 2776 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { 2777 2778 vdev_queue_io_done(zio); 2779 2780 if (zio->io_type == ZIO_TYPE_WRITE) 2781 vdev_cache_write(zio); 2782 2783 if (zio_injection_enabled && zio->io_error == 0) 2784 zio->io_error = zio_handle_device_injection(vd, 2785 zio, EIO); 2786 2787 if (zio_injection_enabled && zio->io_error == 0) 2788 zio->io_error = zio_handle_label_injection(zio, EIO); 2789 2790 if (zio->io_error) { 2791 if (!vdev_accessible(vd, zio)) { 2792 zio->io_error = SET_ERROR(ENXIO); 2793 } else { 2794 unexpected_error = B_TRUE; 2795 } 2796 } 2797 } 2798 2799 ops->vdev_op_io_done(zio); 2800 2801 if (unexpected_error) 2802 VERIFY(vdev_probe(vd, zio) == NULL); 2803 2804 return (ZIO_PIPELINE_CONTINUE); 2805 } 2806 2807 /* 2808 * For non-raidz ZIOs, we can just copy aside the bad data read from the 2809 * disk, and use that to finish the checksum ereport later. 2810 */ 2811 static void 2812 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 2813 const void *good_buf) 2814 { 2815 /* no processing needed */ 2816 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 2817 } 2818 2819 /*ARGSUSED*/ 2820 void 2821 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) 2822 { 2823 void *buf = zio_buf_alloc(zio->io_size); 2824 2825 bcopy(zio->io_data, buf, zio->io_size); 2826 2827 zcr->zcr_cbinfo = zio->io_size; 2828 zcr->zcr_cbdata = buf; 2829 zcr->zcr_finish = zio_vsd_default_cksum_finish; 2830 zcr->zcr_free = zio_buf_free; 2831 } 2832 2833 static int 2834 zio_vdev_io_assess(zio_t *zio) 2835 { 2836 vdev_t *vd = zio->io_vd; 2837 2838 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 2839 return (ZIO_PIPELINE_STOP); 2840 } 2841 2842 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 2843 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 2844 2845 if (zio->io_vsd != NULL) { 2846 zio->io_vsd_ops->vsd_free(zio); 2847 zio->io_vsd = NULL; 2848 } 2849 2850 if (zio_injection_enabled && zio->io_error == 0) 2851 zio->io_error = zio_handle_fault_injection(zio, EIO); 2852 2853 /* 2854 * If the I/O failed, determine whether we should attempt to retry it. 2855 * 2856 * On retry, we cut in line in the issue queue, since we don't want 2857 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 2858 */ 2859 if (zio->io_error && vd == NULL && 2860 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 2861 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 2862 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 2863 zio->io_error = 0; 2864 zio->io_flags |= ZIO_FLAG_IO_RETRY | 2865 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 2866 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 2867 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 2868 zio_requeue_io_start_cut_in_line); 2869 return (ZIO_PIPELINE_STOP); 2870 } 2871 2872 /* 2873 * If we got an error on a leaf device, convert it to ENXIO 2874 * if the device is not accessible at all. 2875 */ 2876 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 2877 !vdev_accessible(vd, zio)) 2878 zio->io_error = SET_ERROR(ENXIO); 2879 2880 /* 2881 * If we can't write to an interior vdev (mirror or RAID-Z), 2882 * set vdev_cant_write so that we stop trying to allocate from it. 2883 */ 2884 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 2885 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 2886 vd->vdev_cant_write = B_TRUE; 2887 } 2888 2889 if (zio->io_error) 2890 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2891 2892 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 2893 zio->io_physdone != NULL) { 2894 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 2895 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 2896 zio->io_physdone(zio->io_logical); 2897 } 2898 2899 return (ZIO_PIPELINE_CONTINUE); 2900 } 2901 2902 void 2903 zio_vdev_io_reissue(zio_t *zio) 2904 { 2905 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2906 ASSERT(zio->io_error == 0); 2907 2908 zio->io_stage >>= 1; 2909 } 2910 2911 void 2912 zio_vdev_io_redone(zio_t *zio) 2913 { 2914 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 2915 2916 zio->io_stage >>= 1; 2917 } 2918 2919 void 2920 zio_vdev_io_bypass(zio_t *zio) 2921 { 2922 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 2923 ASSERT(zio->io_error == 0); 2924 2925 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 2926 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 2927 } 2928 2929 /* 2930 * ========================================================================== 2931 * Generate and verify checksums 2932 * ========================================================================== 2933 */ 2934 static int 2935 zio_checksum_generate(zio_t *zio) 2936 { 2937 blkptr_t *bp = zio->io_bp; 2938 enum zio_checksum checksum; 2939 2940 if (bp == NULL) { 2941 /* 2942 * This is zio_write_phys(). 2943 * We're either generating a label checksum, or none at all. 2944 */ 2945 checksum = zio->io_prop.zp_checksum; 2946 2947 if (checksum == ZIO_CHECKSUM_OFF) 2948 return (ZIO_PIPELINE_CONTINUE); 2949 2950 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 2951 } else { 2952 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 2953 ASSERT(!IO_IS_ALLOCATING(zio)); 2954 checksum = ZIO_CHECKSUM_GANG_HEADER; 2955 } else { 2956 checksum = BP_GET_CHECKSUM(bp); 2957 } 2958 } 2959 2960 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size); 2961 2962 return (ZIO_PIPELINE_CONTINUE); 2963 } 2964 2965 static int 2966 zio_checksum_verify(zio_t *zio) 2967 { 2968 zio_bad_cksum_t info; 2969 blkptr_t *bp = zio->io_bp; 2970 int error; 2971 2972 ASSERT(zio->io_vd != NULL); 2973 2974 if (bp == NULL) { 2975 /* 2976 * This is zio_read_phys(). 2977 * We're either verifying a label checksum, or nothing at all. 2978 */ 2979 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 2980 return (ZIO_PIPELINE_CONTINUE); 2981 2982 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); 2983 } 2984 2985 if ((error = zio_checksum_error(zio, &info)) != 0) { 2986 zio->io_error = error; 2987 if (error == ECKSUM && 2988 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2989 zfs_ereport_start_checksum(zio->io_spa, 2990 zio->io_vd, zio, zio->io_offset, 2991 zio->io_size, NULL, &info); 2992 } 2993 } 2994 2995 return (ZIO_PIPELINE_CONTINUE); 2996 } 2997 2998 /* 2999 * Called by RAID-Z to ensure we don't compute the checksum twice. 3000 */ 3001 void 3002 zio_checksum_verified(zio_t *zio) 3003 { 3004 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 3005 } 3006 3007 /* 3008 * ========================================================================== 3009 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 3010 * An error of 0 indicates success. ENXIO indicates whole-device failure, 3011 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO 3012 * indicate errors that are specific to one I/O, and most likely permanent. 3013 * Any other error is presumed to be worse because we weren't expecting it. 3014 * ========================================================================== 3015 */ 3016 int 3017 zio_worst_error(int e1, int e2) 3018 { 3019 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 3020 int r1, r2; 3021 3022 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 3023 if (e1 == zio_error_rank[r1]) 3024 break; 3025 3026 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 3027 if (e2 == zio_error_rank[r2]) 3028 break; 3029 3030 return (r1 > r2 ? e1 : e2); 3031 } 3032 3033 /* 3034 * ========================================================================== 3035 * I/O completion 3036 * ========================================================================== 3037 */ 3038 static int 3039 zio_ready(zio_t *zio) 3040 { 3041 blkptr_t *bp = zio->io_bp; 3042 zio_t *pio, *pio_next; 3043 3044 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 3045 ZIO_WAIT_READY)) { 3046 return (ZIO_PIPELINE_STOP); 3047 } 3048 3049 if (zio->io_ready) { 3050 ASSERT(IO_IS_ALLOCATING(zio)); 3051 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 3052 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 3053 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 3054 3055 zio->io_ready(zio); 3056 } 3057 3058 if (bp != NULL && bp != &zio->io_bp_copy) 3059 zio->io_bp_copy = *bp; 3060 3061 if (zio->io_error) 3062 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3063 3064 mutex_enter(&zio->io_lock); 3065 zio->io_state[ZIO_WAIT_READY] = 1; 3066 pio = zio_walk_parents(zio); 3067 mutex_exit(&zio->io_lock); 3068 3069 /* 3070 * As we notify zio's parents, new parents could be added. 3071 * New parents go to the head of zio's io_parent_list, however, 3072 * so we will (correctly) not notify them. The remainder of zio's 3073 * io_parent_list, from 'pio_next' onward, cannot change because 3074 * all parents must wait for us to be done before they can be done. 3075 */ 3076 for (; pio != NULL; pio = pio_next) { 3077 pio_next = zio_walk_parents(zio); 3078 zio_notify_parent(pio, zio, ZIO_WAIT_READY); 3079 } 3080 3081 if (zio->io_flags & ZIO_FLAG_NODATA) { 3082 if (BP_IS_GANG(bp)) { 3083 zio->io_flags &= ~ZIO_FLAG_NODATA; 3084 } else { 3085 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE); 3086 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 3087 } 3088 } 3089 3090 if (zio_injection_enabled && 3091 zio->io_spa->spa_syncing_txg == zio->io_txg) 3092 zio_handle_ignored_writes(zio); 3093 3094 return (ZIO_PIPELINE_CONTINUE); 3095 } 3096 3097 static int 3098 zio_done(zio_t *zio) 3099 { 3100 spa_t *spa = zio->io_spa; 3101 zio_t *lio = zio->io_logical; 3102 blkptr_t *bp = zio->io_bp; 3103 vdev_t *vd = zio->io_vd; 3104 uint64_t psize = zio->io_size; 3105 zio_t *pio, *pio_next; 3106 3107 /* 3108 * If our children haven't all completed, 3109 * wait for them and then repeat this pipeline stage. 3110 */ 3111 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 3112 return (ZIO_PIPELINE_STOP); 3113 } 3114 3115 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 3116 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 3117 ASSERT(zio->io_children[c][w] == 0); 3118 3119 if (bp != NULL && !BP_IS_EMBEDDED(bp)) { 3120 ASSERT(bp->blk_pad[0] == 0); 3121 ASSERT(bp->blk_pad[1] == 0); 3122 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || 3123 (bp == zio_unique_parent(zio)->io_bp)); 3124 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 3125 zio->io_bp_override == NULL && 3126 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 3127 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 3128 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp)); 3129 ASSERT(BP_COUNT_GANG(bp) == 0 || 3130 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 3131 } 3132 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 3133 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig)); 3134 } 3135 3136 /* 3137 * If there were child vdev/gang/ddt errors, they apply to us now. 3138 */ 3139 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 3140 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 3141 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 3142 3143 /* 3144 * If the I/O on the transformed data was successful, generate any 3145 * checksum reports now while we still have the transformed data. 3146 */ 3147 if (zio->io_error == 0) { 3148 while (zio->io_cksum_report != NULL) { 3149 zio_cksum_report_t *zcr = zio->io_cksum_report; 3150 uint64_t align = zcr->zcr_align; 3151 uint64_t asize = P2ROUNDUP(psize, align); 3152 char *abuf = zio->io_data; 3153 3154 if (asize != psize) { 3155 abuf = zio_buf_alloc(asize); 3156 bcopy(zio->io_data, abuf, psize); 3157 bzero(abuf + psize, asize - psize); 3158 } 3159 3160 zio->io_cksum_report = zcr->zcr_next; 3161 zcr->zcr_next = NULL; 3162 zcr->zcr_finish(zcr, abuf); 3163 zfs_ereport_free_checksum(zcr); 3164 3165 if (asize != psize) 3166 zio_buf_free(abuf, asize); 3167 } 3168 } 3169 3170 zio_pop_transforms(zio); /* note: may set zio->io_error */ 3171 3172 vdev_stat_update(zio, psize); 3173 3174 if (zio->io_error) { 3175 /* 3176 * If this I/O is attached to a particular vdev, 3177 * generate an error message describing the I/O failure 3178 * at the block level. We ignore these errors if the 3179 * device is currently unavailable. 3180 */ 3181 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 3182 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0); 3183 3184 if ((zio->io_error == EIO || !(zio->io_flags & 3185 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 3186 zio == lio) { 3187 /* 3188 * For logical I/O requests, tell the SPA to log the 3189 * error and generate a logical data ereport. 3190 */ 3191 spa_log_error(spa, zio); 3192 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio, 3193 0, 0); 3194 } 3195 } 3196 3197 if (zio->io_error && zio == lio) { 3198 /* 3199 * Determine whether zio should be reexecuted. This will 3200 * propagate all the way to the root via zio_notify_parent(). 3201 */ 3202 ASSERT(vd == NULL && bp != NULL); 3203 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3204 3205 if (IO_IS_ALLOCATING(zio) && 3206 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 3207 if (zio->io_error != ENOSPC) 3208 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 3209 else 3210 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3211 } 3212 3213 if ((zio->io_type == ZIO_TYPE_READ || 3214 zio->io_type == ZIO_TYPE_FREE) && 3215 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 3216 zio->io_error == ENXIO && 3217 spa_load_state(spa) == SPA_LOAD_NONE && 3218 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE) 3219 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3220 3221 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 3222 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 3223 3224 /* 3225 * Here is a possibly good place to attempt to do 3226 * either combinatorial reconstruction or error correction 3227 * based on checksums. It also might be a good place 3228 * to send out preliminary ereports before we suspend 3229 * processing. 3230 */ 3231 } 3232 3233 /* 3234 * If there were logical child errors, they apply to us now. 3235 * We defer this until now to avoid conflating logical child 3236 * errors with errors that happened to the zio itself when 3237 * updating vdev stats and reporting FMA events above. 3238 */ 3239 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 3240 3241 if ((zio->io_error || zio->io_reexecute) && 3242 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 3243 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 3244 zio_dva_unallocate(zio, zio->io_gang_tree, bp); 3245 3246 zio_gang_tree_free(&zio->io_gang_tree); 3247 3248 /* 3249 * Godfather I/Os should never suspend. 3250 */ 3251 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 3252 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 3253 zio->io_reexecute = 0; 3254 3255 if (zio->io_reexecute) { 3256 /* 3257 * This is a logical I/O that wants to reexecute. 3258 * 3259 * Reexecute is top-down. When an i/o fails, if it's not 3260 * the root, it simply notifies its parent and sticks around. 3261 * The parent, seeing that it still has children in zio_done(), 3262 * does the same. This percolates all the way up to the root. 3263 * The root i/o will reexecute or suspend the entire tree. 3264 * 3265 * This approach ensures that zio_reexecute() honors 3266 * all the original i/o dependency relationships, e.g. 3267 * parents not executing until children are ready. 3268 */ 3269 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3270 3271 zio->io_gang_leader = NULL; 3272 3273 mutex_enter(&zio->io_lock); 3274 zio->io_state[ZIO_WAIT_DONE] = 1; 3275 mutex_exit(&zio->io_lock); 3276 3277 /* 3278 * "The Godfather" I/O monitors its children but is 3279 * not a true parent to them. It will track them through 3280 * the pipeline but severs its ties whenever they get into 3281 * trouble (e.g. suspended). This allows "The Godfather" 3282 * I/O to return status without blocking. 3283 */ 3284 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3285 zio_link_t *zl = zio->io_walk_link; 3286 pio_next = zio_walk_parents(zio); 3287 3288 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 3289 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 3290 zio_remove_child(pio, zio, zl); 3291 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3292 } 3293 } 3294 3295 if ((pio = zio_unique_parent(zio)) != NULL) { 3296 /* 3297 * We're not a root i/o, so there's nothing to do 3298 * but notify our parent. Don't propagate errors 3299 * upward since we haven't permanently failed yet. 3300 */ 3301 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 3302 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 3303 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3304 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 3305 /* 3306 * We'd fail again if we reexecuted now, so suspend 3307 * until conditions improve (e.g. device comes online). 3308 */ 3309 zio_suspend(spa, zio); 3310 } else { 3311 /* 3312 * Reexecution is potentially a huge amount of work. 3313 * Hand it off to the otherwise-unused claim taskq. 3314 */ 3315 ASSERT(zio->io_tqent.tqent_next == NULL); 3316 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM, 3317 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 3318 0, &zio->io_tqent); 3319 } 3320 return (ZIO_PIPELINE_STOP); 3321 } 3322 3323 ASSERT(zio->io_child_count == 0); 3324 ASSERT(zio->io_reexecute == 0); 3325 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 3326 3327 /* 3328 * Report any checksum errors, since the I/O is complete. 3329 */ 3330 while (zio->io_cksum_report != NULL) { 3331 zio_cksum_report_t *zcr = zio->io_cksum_report; 3332 zio->io_cksum_report = zcr->zcr_next; 3333 zcr->zcr_next = NULL; 3334 zcr->zcr_finish(zcr, NULL); 3335 zfs_ereport_free_checksum(zcr); 3336 } 3337 3338 /* 3339 * It is the responsibility of the done callback to ensure that this 3340 * particular zio is no longer discoverable for adoption, and as 3341 * such, cannot acquire any new parents. 3342 */ 3343 if (zio->io_done) 3344 zio->io_done(zio); 3345 3346 mutex_enter(&zio->io_lock); 3347 zio->io_state[ZIO_WAIT_DONE] = 1; 3348 mutex_exit(&zio->io_lock); 3349 3350 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) { 3351 zio_link_t *zl = zio->io_walk_link; 3352 pio_next = zio_walk_parents(zio); 3353 zio_remove_child(pio, zio, zl); 3354 zio_notify_parent(pio, zio, ZIO_WAIT_DONE); 3355 } 3356 3357 if (zio->io_waiter != NULL) { 3358 mutex_enter(&zio->io_lock); 3359 zio->io_executor = NULL; 3360 cv_broadcast(&zio->io_cv); 3361 mutex_exit(&zio->io_lock); 3362 } else { 3363 zio_destroy(zio); 3364 } 3365 3366 return (ZIO_PIPELINE_STOP); 3367 } 3368 3369 /* 3370 * ========================================================================== 3371 * I/O pipeline definition 3372 * ========================================================================== 3373 */ 3374 static zio_pipe_stage_t *zio_pipeline[] = { 3375 NULL, 3376 zio_read_bp_init, 3377 zio_free_bp_init, 3378 zio_issue_async, 3379 zio_write_bp_init, 3380 zio_checksum_generate, 3381 zio_nop_write, 3382 zio_ddt_read_start, 3383 zio_ddt_read_done, 3384 zio_ddt_write, 3385 zio_ddt_free, 3386 zio_gang_assemble, 3387 zio_gang_issue, 3388 zio_dva_allocate, 3389 zio_dva_free, 3390 zio_dva_claim, 3391 zio_ready, 3392 zio_vdev_io_start, 3393 zio_vdev_io_done, 3394 zio_vdev_io_assess, 3395 zio_checksum_verify, 3396 zio_done 3397 }; 3398 3399 3400 3401 3402 /* 3403 * Compare two zbookmark_phys_t's to see which we would reach first in a 3404 * pre-order traversal of the object tree. 3405 * 3406 * This is simple in every case aside from the meta-dnode object. For all other 3407 * objects, we traverse them in order (object 1 before object 2, and so on). 3408 * However, all of these objects are traversed while traversing object 0, since 3409 * the data it points to is the list of objects. Thus, we need to convert to a 3410 * canonical representation so we can compare meta-dnode bookmarks to 3411 * non-meta-dnode bookmarks. 3412 * 3413 * We do this by calculating "equivalents" for each field of the zbookmark. 3414 * zbookmarks outside of the meta-dnode use their own object and level, and 3415 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 3416 * blocks this bookmark refers to) by multiplying their blkid by their span 3417 * (the number of L0 blocks contained within one block at their level). 3418 * zbookmarks inside the meta-dnode calculate their object equivalent 3419 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 3420 * level + 1<<31 (any value larger than a level could ever be) for their level. 3421 * This causes them to always compare before a bookmark in their object 3422 * equivalent, compare appropriately to bookmarks in other objects, and to 3423 * compare appropriately to other bookmarks in the meta-dnode. 3424 */ 3425 int 3426 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 3427 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 3428 { 3429 /* 3430 * These variables represent the "equivalent" values for the zbookmark, 3431 * after converting zbookmarks inside the meta dnode to their 3432 * normal-object equivalents. 3433 */ 3434 uint64_t zb1obj, zb2obj; 3435 uint64_t zb1L0, zb2L0; 3436 uint64_t zb1level, zb2level; 3437 3438 if (zb1->zb_object == zb2->zb_object && 3439 zb1->zb_level == zb2->zb_level && 3440 zb1->zb_blkid == zb2->zb_blkid) 3441 return (0); 3442 3443 /* 3444 * BP_SPANB calculates the span in blocks. 3445 */ 3446 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 3447 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 3448 3449 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 3450 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3451 zb1L0 = 0; 3452 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 3453 } else { 3454 zb1obj = zb1->zb_object; 3455 zb1level = zb1->zb_level; 3456 } 3457 3458 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 3459 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 3460 zb2L0 = 0; 3461 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 3462 } else { 3463 zb2obj = zb2->zb_object; 3464 zb2level = zb2->zb_level; 3465 } 3466 3467 /* Now that we have a canonical representation, do the comparison. */ 3468 if (zb1obj != zb2obj) 3469 return (zb1obj < zb2obj ? -1 : 1); 3470 else if (zb1L0 != zb2L0) 3471 return (zb1L0 < zb2L0 ? -1 : 1); 3472 else if (zb1level != zb2level) 3473 return (zb1level > zb2level ? -1 : 1); 3474 /* 3475 * This can (theoretically) happen if the bookmarks have the same object 3476 * and level, but different blkids, if the block sizes are not the same. 3477 * There is presently no way to change the indirect block sizes 3478 */ 3479 return (0); 3480 } 3481 3482 /* 3483 * This function checks the following: given that last_block is the place that 3484 * our traversal stopped last time, does that guarantee that we've visited 3485 * every node under subtree_root? Therefore, we can't just use the raw output 3486 * of zbookmark_compare. We have to pass in a modified version of 3487 * subtree_root; by incrementing the block id, and then checking whether 3488 * last_block is before or equal to that, we can tell whether or not having 3489 * visited last_block implies that all of subtree_root's children have been 3490 * visited. 3491 */ 3492 boolean_t 3493 zbookmark_subtree_completed(const dnode_phys_t *dnp, 3494 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 3495 { 3496 zbookmark_phys_t mod_zb = *subtree_root; 3497 mod_zb.zb_blkid++; 3498 ASSERT(last_block->zb_level == 0); 3499 3500 /* The objset_phys_t isn't before anything. */ 3501 if (dnp == NULL) 3502 return (B_FALSE); 3503 3504 /* 3505 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 3506 * data block size in sectors, because that variable is only used if 3507 * the bookmark refers to a block in the meta-dnode. Since we don't 3508 * know without examining it what object it refers to, and there's no 3509 * harm in passing in this value in other cases, we always pass it in. 3510 * 3511 * We pass in 0 for the indirect block size shift because zb2 must be 3512 * level 0. The indirect block size is only used to calculate the span 3513 * of the bookmark, but since the bookmark must be level 0, the span is 3514 * always 1, so the math works out. 3515 * 3516 * If you make changes to how the zbookmark_compare code works, be sure 3517 * to make sure that this code still works afterwards. 3518 */ 3519 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 3520 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 3521 last_block) <= 0); 3522 } 3523