1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 2017 Dell EMC
5 * Copyright (c) 2000-2001, 2003 David O'Brien
6 * Copyright (c) 1995-1996 Søren Schmidt
7 * Copyright (c) 1996 Peter Wemm
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer
15 * in this position and unchanged.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include "opt_capsicum.h"
35
36 #include <sys/param.h>
37 #include <sys/capsicum.h>
38 #include <sys/compressor.h>
39 #include <sys/exec.h>
40 #include <sys/fcntl.h>
41 #include <sys/imgact.h>
42 #include <sys/imgact_elf.h>
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mman.h>
49 #include <sys/namei.h>
50 #include <sys/proc.h>
51 #include <sys/procfs.h>
52 #include <sys/ptrace.h>
53 #include <sys/racct.h>
54 #include <sys/reg.h>
55 #include <sys/resourcevar.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sf_buf.h>
59 #include <sys/smp.h>
60 #include <sys/systm.h>
61 #include <sys/signalvar.h>
62 #include <sys/stat.h>
63 #include <sys/sx.h>
64 #include <sys/syscall.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysent.h>
67 #include <sys/vnode.h>
68 #include <sys/syslog.h>
69 #include <sys/eventhandler.h>
70 #include <sys/user.h>
71
72 #include <vm/vm.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_param.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_object.h>
78 #include <vm/vm_extern.h>
79
80 #include <machine/elf.h>
81 #include <machine/md_var.h>
82
83 #define ELF_NOTE_ROUNDSIZE 4
84 #define OLD_EI_BRAND 8
85
86 static int __elfN(check_header)(const Elf_Ehdr *hdr);
87 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
88 const char *interp, int32_t *osrel, uint32_t *fctl0);
89 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
90 u_long *entry);
91 static int __elfN(load_section)(const struct image_params *imgp,
92 vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
93 vm_prot_t prot);
94 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
95 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
96 int32_t *osrel);
97 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
98 static bool __elfN(check_note)(struct image_params *imgp,
99 Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
100 uint32_t *fctl0);
101 static vm_prot_t __elfN(trans_prot)(Elf_Word);
102 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
103 static size_t __elfN(prepare_register_notes)(struct thread *td,
104 struct note_info_list *list, struct thread *target_td);
105
106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
107 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
108 "");
109
110 int __elfN(fallback_brand) = -1;
111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
112 fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
113 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
114
115 static int elf_legacy_coredump = 0;
116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
117 &elf_legacy_coredump, 0,
118 "include all and only RW pages in core dumps");
119
120 int __elfN(nxstack) =
121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
122 defined(__arm__) || defined(__aarch64__) || \
123 defined(__riscv)
124 1;
125 #else
126 0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129 nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": support PT_GNU_STACK for non-executable stack control");
131
132 #if defined(__amd64__)
133 static int __elfN(vdso) = 1;
134 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
135 vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
136 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
137 #else
138 static int __elfN(vdso) = 0;
139 #endif
140
141 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
142 int i386_read_exec = 0;
143 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
144 "enable execution from readable segments");
145 #endif
146
147 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
148 static int
sysctl_pie_base(SYSCTL_HANDLER_ARGS)149 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
150 {
151 u_long val;
152 int error;
153
154 val = __elfN(pie_base);
155 error = sysctl_handle_long(oidp, &val, 0, req);
156 if (error != 0 || req->newptr == NULL)
157 return (error);
158 if ((val & PAGE_MASK) != 0)
159 return (EINVAL);
160 __elfN(pie_base) = val;
161 return (0);
162 }
163 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
164 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
165 sysctl_pie_base, "LU",
166 "PIE load base without randomization");
167
168 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
169 CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
170 "");
171 #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
172
173 /*
174 * Enable ASLR by default for 64-bit non-PIE binaries. 32-bit architectures
175 * have limited address space (which can cause issues for applications with
176 * high memory use) so we leave it off there.
177 */
178 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
179 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
180 &__elfN(aslr_enabled), 0,
181 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
182 ": enable address map randomization");
183
184 /*
185 * Enable ASLR by default for 64-bit PIE binaries.
186 */
187 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
188 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
189 &__elfN(pie_aslr_enabled), 0,
190 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
191 ": enable address map randomization for PIE binaries");
192
193 /*
194 * Sbrk is deprecated and it can be assumed that in most cases it will not be
195 * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
196 * to use the bss grow region.
197 */
198 static int __elfN(aslr_honor_sbrk) = 0;
199 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
200 &__elfN(aslr_honor_sbrk), 0,
201 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
202
203 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64;
204 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
205 &__elfN(aslr_stack), 0,
206 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
207 ": enable stack address randomization");
208
209 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
210 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
211 &__elfN(aslr_shared_page), 0,
212 __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
213 ": enable shared page address randomization");
214
215 static int __elfN(sigfastblock) = 1;
216 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
217 CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
218 "enable sigfastblock for new processes");
219
220 static bool __elfN(allow_wx) = true;
221 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
222 CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
223 "Allow pages to be mapped simultaneously writable and executable");
224
225 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
226
227 #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
228
229 Elf_Brandnote __elfN(freebsd_brandnote) = {
230 .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
231 .hdr.n_descsz = sizeof(int32_t),
232 .hdr.n_type = NT_FREEBSD_ABI_TAG,
233 .vendor = FREEBSD_ABI_VENDOR,
234 .flags = BN_TRANSLATE_OSREL,
235 .trans_osrel = __elfN(freebsd_trans_osrel)
236 };
237
238 static bool
__elfN(freebsd_trans_osrel)239 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
240 {
241 uintptr_t p;
242
243 p = (uintptr_t)(note + 1);
244 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
245 *osrel = *(const int32_t *)(p);
246
247 return (true);
248 }
249
250 static int GNU_KFREEBSD_ABI_DESC = 3;
251
252 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
253 .hdr.n_namesz = sizeof(GNU_ABI_VENDOR),
254 .hdr.n_descsz = 16, /* XXX at least 16 */
255 .hdr.n_type = 1,
256 .vendor = GNU_ABI_VENDOR,
257 .flags = BN_TRANSLATE_OSREL,
258 .trans_osrel = kfreebsd_trans_osrel
259 };
260
261 static bool
kfreebsd_trans_osrel(const Elf_Note * note,int32_t * osrel)262 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
263 {
264 const Elf32_Word *desc;
265 uintptr_t p;
266
267 p = (uintptr_t)(note + 1);
268 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
269
270 desc = (const Elf32_Word *)p;
271 if (desc[0] != GNU_KFREEBSD_ABI_DESC)
272 return (false);
273
274 /*
275 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
276 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
277 */
278 *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
279
280 return (true);
281 }
282
283 int
__elfN(insert_brand_entry)284 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
285 {
286 int i;
287
288 for (i = 0; i < MAX_BRANDS; i++) {
289 if (elf_brand_list[i] == NULL) {
290 elf_brand_list[i] = entry;
291 break;
292 }
293 }
294 if (i == MAX_BRANDS) {
295 printf("WARNING: %s: could not insert brandinfo entry: %p\n",
296 __func__, entry);
297 return (-1);
298 }
299 return (0);
300 }
301
302 int
__elfN(remove_brand_entry)303 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
304 {
305 int i;
306
307 for (i = 0; i < MAX_BRANDS; i++) {
308 if (elf_brand_list[i] == entry) {
309 elf_brand_list[i] = NULL;
310 break;
311 }
312 }
313 if (i == MAX_BRANDS)
314 return (-1);
315 return (0);
316 }
317
318 bool
__elfN(brand_inuse)319 __elfN(brand_inuse)(Elf_Brandinfo *entry)
320 {
321 struct proc *p;
322 bool rval = false;
323
324 sx_slock(&allproc_lock);
325 FOREACH_PROC_IN_SYSTEM(p) {
326 if (p->p_sysent == entry->sysvec) {
327 rval = true;
328 break;
329 }
330 }
331 sx_sunlock(&allproc_lock);
332
333 return (rval);
334 }
335
336 static Elf_Brandinfo *
__elfN(get_brandinfo)337 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
338 int32_t *osrel, uint32_t *fctl0)
339 {
340 const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
341 Elf_Brandinfo *bi, *bi_m;
342 bool ret, has_fctl0;
343 int i, interp_name_len;
344
345 interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
346
347 /*
348 * We support four types of branding -- (1) the ELF EI_OSABI field
349 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
350 * branding w/in the ELF header, (3) path of the `interp_path'
351 * field, and (4) the ".note.ABI-tag" ELF section.
352 */
353
354 /* Look for an ".note.ABI-tag" ELF section */
355 bi_m = NULL;
356 for (i = 0; i < MAX_BRANDS; i++) {
357 bi = elf_brand_list[i];
358 if (bi == NULL)
359 continue;
360 if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
361 continue;
362 if (hdr->e_machine == bi->machine && (bi->flags &
363 (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
364 has_fctl0 = false;
365 *fctl0 = 0;
366 *osrel = 0;
367 ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
368 &has_fctl0, fctl0);
369 /* Give brand a chance to veto check_note's guess */
370 if (ret && bi->header_supported) {
371 ret = bi->header_supported(imgp, osrel,
372 has_fctl0 ? fctl0 : NULL);
373 }
374 /*
375 * If note checker claimed the binary, but the
376 * interpreter path in the image does not
377 * match default one for the brand, try to
378 * search for other brands with the same
379 * interpreter. Either there is better brand
380 * with the right interpreter, or, failing
381 * this, we return first brand which accepted
382 * our note and, optionally, header.
383 */
384 if (ret && bi_m == NULL && interp != NULL &&
385 (bi->interp_path == NULL ||
386 (strlen(bi->interp_path) + 1 != interp_name_len ||
387 strncmp(interp, bi->interp_path, interp_name_len)
388 != 0))) {
389 bi_m = bi;
390 ret = 0;
391 }
392 if (ret)
393 return (bi);
394 }
395 }
396 if (bi_m != NULL)
397 return (bi_m);
398
399 /* If the executable has a brand, search for it in the brand list. */
400 for (i = 0; i < MAX_BRANDS; i++) {
401 bi = elf_brand_list[i];
402 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
403 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
404 continue;
405 if (hdr->e_machine == bi->machine &&
406 (hdr->e_ident[EI_OSABI] == bi->brand ||
407 (bi->compat_3_brand != NULL &&
408 strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
409 bi->compat_3_brand) == 0))) {
410 /* Looks good, but give brand a chance to veto */
411 if (bi->header_supported == NULL ||
412 bi->header_supported(imgp, NULL, NULL)) {
413 /*
414 * Again, prefer strictly matching
415 * interpreter path.
416 */
417 if (interp_name_len == 0 &&
418 bi->interp_path == NULL)
419 return (bi);
420 if (bi->interp_path != NULL &&
421 strlen(bi->interp_path) + 1 ==
422 interp_name_len && strncmp(interp,
423 bi->interp_path, interp_name_len) == 0)
424 return (bi);
425 if (bi_m == NULL)
426 bi_m = bi;
427 }
428 }
429 }
430 if (bi_m != NULL)
431 return (bi_m);
432
433 /* No known brand, see if the header is recognized by any brand */
434 for (i = 0; i < MAX_BRANDS; i++) {
435 bi = elf_brand_list[i];
436 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
437 bi->header_supported == NULL)
438 continue;
439 if (hdr->e_machine == bi->machine) {
440 ret = bi->header_supported(imgp, NULL, NULL);
441 if (ret)
442 return (bi);
443 }
444 }
445
446 /* Lacking a known brand, search for a recognized interpreter. */
447 if (interp != NULL) {
448 for (i = 0; i < MAX_BRANDS; i++) {
449 bi = elf_brand_list[i];
450 if (bi == NULL || (bi->flags &
451 (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
452 != 0)
453 continue;
454 if (hdr->e_machine == bi->machine &&
455 bi->interp_path != NULL &&
456 /* ELF image p_filesz includes terminating zero */
457 strlen(bi->interp_path) + 1 == interp_name_len &&
458 strncmp(interp, bi->interp_path, interp_name_len)
459 == 0 && (bi->header_supported == NULL ||
460 bi->header_supported(imgp, NULL, NULL)))
461 return (bi);
462 }
463 }
464
465 /* Lacking a recognized interpreter, try the default brand */
466 for (i = 0; i < MAX_BRANDS; i++) {
467 bi = elf_brand_list[i];
468 if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
469 (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
470 continue;
471 if (hdr->e_machine == bi->machine &&
472 __elfN(fallback_brand) == bi->brand &&
473 (bi->header_supported == NULL ||
474 bi->header_supported(imgp, NULL, NULL)))
475 return (bi);
476 }
477 return (NULL);
478 }
479
480 static bool
__elfN(phdr_in_zero_page)481 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
482 {
483 return (hdr->e_phoff <= PAGE_SIZE &&
484 (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
485 }
486
487 static int
__elfN(check_header)488 __elfN(check_header)(const Elf_Ehdr *hdr)
489 {
490 Elf_Brandinfo *bi;
491 int i;
492
493 if (!IS_ELF(*hdr) ||
494 hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
495 hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
496 hdr->e_ident[EI_VERSION] != EV_CURRENT ||
497 hdr->e_phentsize != sizeof(Elf_Phdr) ||
498 hdr->e_version != ELF_TARG_VER)
499 return (ENOEXEC);
500
501 /*
502 * Make sure we have at least one brand for this machine.
503 */
504
505 for (i = 0; i < MAX_BRANDS; i++) {
506 bi = elf_brand_list[i];
507 if (bi != NULL && bi->machine == hdr->e_machine)
508 break;
509 }
510 if (i == MAX_BRANDS)
511 return (ENOEXEC);
512
513 return (0);
514 }
515
516 static int
__elfN(map_partial)517 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
518 vm_offset_t start, vm_offset_t end, vm_prot_t prot)
519 {
520 struct sf_buf *sf;
521 int error;
522 vm_offset_t off;
523
524 /*
525 * Create the page if it doesn't exist yet. Ignore errors.
526 */
527 vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
528 trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
529
530 /*
531 * Find the page from the underlying object.
532 */
533 if (object != NULL) {
534 sf = vm_imgact_map_page(object, offset);
535 if (sf == NULL)
536 return (KERN_FAILURE);
537 off = offset - trunc_page(offset);
538 error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
539 end - start);
540 vm_imgact_unmap_page(sf);
541 if (error != 0)
542 return (KERN_FAILURE);
543 }
544
545 return (KERN_SUCCESS);
546 }
547
548 static int
__elfN(map_insert)549 __elfN(map_insert)(const struct image_params *imgp, vm_map_t map,
550 vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
551 vm_prot_t prot, int cow)
552 {
553 struct sf_buf *sf;
554 vm_offset_t off;
555 vm_size_t sz;
556 int error, locked, rv;
557
558 if (start != trunc_page(start)) {
559 rv = __elfN(map_partial)(map, object, offset, start,
560 round_page(start), prot);
561 if (rv != KERN_SUCCESS)
562 return (rv);
563 offset += round_page(start) - start;
564 start = round_page(start);
565 }
566 if (end != round_page(end)) {
567 rv = __elfN(map_partial)(map, object, offset +
568 trunc_page(end) - start, trunc_page(end), end, prot);
569 if (rv != KERN_SUCCESS)
570 return (rv);
571 end = trunc_page(end);
572 }
573 if (start >= end)
574 return (KERN_SUCCESS);
575 if ((offset & PAGE_MASK) != 0) {
576 /*
577 * The mapping is not page aligned. This means that we have
578 * to copy the data.
579 */
580 rv = vm_map_fixed(map, NULL, 0, start, end - start,
581 prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
582 if (rv != KERN_SUCCESS)
583 return (rv);
584 if (object == NULL)
585 return (KERN_SUCCESS);
586 for (; start < end; start += sz) {
587 sf = vm_imgact_map_page(object, offset);
588 if (sf == NULL)
589 return (KERN_FAILURE);
590 off = offset - trunc_page(offset);
591 sz = end - start;
592 if (sz > PAGE_SIZE - off)
593 sz = PAGE_SIZE - off;
594 error = copyout((caddr_t)sf_buf_kva(sf) + off,
595 (caddr_t)start, sz);
596 vm_imgact_unmap_page(sf);
597 if (error != 0)
598 return (KERN_FAILURE);
599 offset += sz;
600 }
601 } else {
602 vm_object_reference(object);
603 rv = vm_map_fixed(map, object, offset, start, end - start,
604 prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
605 (object != NULL ? MAP_VN_EXEC : 0));
606 if (rv != KERN_SUCCESS) {
607 locked = VOP_ISLOCKED(imgp->vp);
608 VOP_UNLOCK(imgp->vp);
609 vm_object_deallocate(object);
610 vn_lock(imgp->vp, locked | LK_RETRY);
611 return (rv);
612 } else if (object != NULL) {
613 MPASS(imgp->vp->v_object == object);
614 VOP_SET_TEXT_CHECKED(imgp->vp);
615 }
616 }
617 return (KERN_SUCCESS);
618 }
619
620 static int
__elfN(load_section)621 __elfN(load_section)(const struct image_params *imgp, vm_ooffset_t offset,
622 caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
623 {
624 struct sf_buf *sf;
625 size_t map_len;
626 vm_map_t map;
627 vm_object_t object;
628 vm_offset_t map_addr;
629 int error, rv, cow;
630 size_t copy_len;
631 vm_ooffset_t file_addr;
632
633 /*
634 * It's necessary to fail if the filsz + offset taken from the
635 * header is greater than the actual file pager object's size.
636 * If we were to allow this, then the vm_map_find() below would
637 * walk right off the end of the file object and into the ether.
638 *
639 * While I'm here, might as well check for something else that
640 * is invalid: filsz cannot be greater than memsz.
641 */
642 if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
643 filsz > memsz) {
644 uprintf("elf_load_section: truncated ELF file\n");
645 return (ENOEXEC);
646 }
647
648 object = imgp->object;
649 map = &imgp->proc->p_vmspace->vm_map;
650 map_addr = trunc_page((vm_offset_t)vmaddr);
651 file_addr = trunc_page(offset);
652
653 /*
654 * We have two choices. We can either clear the data in the last page
655 * of an oversized mapping, or we can start the anon mapping a page
656 * early and copy the initialized data into that first page. We
657 * choose the second.
658 */
659 if (filsz == 0)
660 map_len = 0;
661 else if (memsz > filsz)
662 map_len = trunc_page(offset + filsz) - file_addr;
663 else
664 map_len = round_page(offset + filsz) - file_addr;
665
666 if (map_len != 0) {
667 /* cow flags: don't dump readonly sections in core */
668 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
669 (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
670
671 rv = __elfN(map_insert)(imgp, map, object, file_addr,
672 map_addr, map_addr + map_len, prot, cow);
673 if (rv != KERN_SUCCESS)
674 return (EINVAL);
675
676 /* we can stop now if we've covered it all */
677 if (memsz == filsz)
678 return (0);
679 }
680
681 /*
682 * We have to get the remaining bit of the file into the first part
683 * of the oversized map segment. This is normally because the .data
684 * segment in the file is extended to provide bss. It's a neat idea
685 * to try and save a page, but it's a pain in the behind to implement.
686 */
687 copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
688 filsz);
689 map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
690 map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
691
692 /* This had damn well better be true! */
693 if (map_len != 0) {
694 rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
695 map_addr + map_len, prot, 0);
696 if (rv != KERN_SUCCESS)
697 return (EINVAL);
698 }
699
700 if (copy_len != 0) {
701 sf = vm_imgact_map_page(object, offset + filsz);
702 if (sf == NULL)
703 return (EIO);
704
705 /* send the page fragment to user space */
706 error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
707 copy_len);
708 vm_imgact_unmap_page(sf);
709 if (error != 0)
710 return (error);
711 }
712
713 /*
714 * Remove write access to the page if it was only granted by map_insert
715 * to allow copyout.
716 */
717 if ((prot & VM_PROT_WRITE) == 0)
718 vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
719 map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
720
721 return (0);
722 }
723
724 static int
__elfN(load_sections)725 __elfN(load_sections)(const struct image_params *imgp, const Elf_Ehdr *hdr,
726 const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
727 {
728 vm_prot_t prot;
729 u_long base_addr;
730 bool first;
731 int error, i;
732
733 ASSERT_VOP_LOCKED(imgp->vp, __func__);
734
735 base_addr = 0;
736 first = true;
737
738 for (i = 0; i < hdr->e_phnum; i++) {
739 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
740 continue;
741
742 /* Loadable segment */
743 prot = __elfN(trans_prot)(phdr[i].p_flags);
744 error = __elfN(load_section)(imgp, phdr[i].p_offset,
745 (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
746 phdr[i].p_memsz, phdr[i].p_filesz, prot);
747 if (error != 0)
748 return (error);
749
750 /*
751 * Establish the base address if this is the first segment.
752 */
753 if (first) {
754 base_addr = trunc_page(phdr[i].p_vaddr + rbase);
755 first = false;
756 }
757 }
758
759 if (base_addrp != NULL)
760 *base_addrp = base_addr;
761
762 return (0);
763 }
764
765 /*
766 * Load the file "file" into memory. It may be either a shared object
767 * or an executable.
768 *
769 * The "addr" reference parameter is in/out. On entry, it specifies
770 * the address where a shared object should be loaded. If the file is
771 * an executable, this value is ignored. On exit, "addr" specifies
772 * where the file was actually loaded.
773 *
774 * The "entry" reference parameter is out only. On exit, it specifies
775 * the entry point for the loaded file.
776 */
777 static int
__elfN(load_file)778 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
779 u_long *entry)
780 {
781 struct {
782 struct nameidata nd;
783 struct vattr attr;
784 struct image_params image_params;
785 } *tempdata;
786 const Elf_Ehdr *hdr = NULL;
787 const Elf_Phdr *phdr = NULL;
788 struct nameidata *nd;
789 struct vattr *attr;
790 struct image_params *imgp;
791 u_long rbase;
792 u_long base_addr = 0;
793 int error;
794
795 #ifdef CAPABILITY_MODE
796 /*
797 * XXXJA: This check can go away once we are sufficiently confident
798 * that the checks in namei() are correct.
799 */
800 if (IN_CAPABILITY_MODE(curthread))
801 return (ECAPMODE);
802 #endif
803
804 tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
805 nd = &tempdata->nd;
806 attr = &tempdata->attr;
807 imgp = &tempdata->image_params;
808
809 /*
810 * Initialize part of the common data
811 */
812 imgp->proc = p;
813 imgp->attr = attr;
814
815 NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
816 UIO_SYSSPACE, file);
817 if ((error = namei(nd)) != 0) {
818 nd->ni_vp = NULL;
819 goto fail;
820 }
821 NDFREE_PNBUF(nd);
822 imgp->vp = nd->ni_vp;
823
824 /*
825 * Check permissions, modes, uid, etc on the file, and "open" it.
826 */
827 error = exec_check_permissions(imgp);
828 if (error)
829 goto fail;
830
831 error = exec_map_first_page(imgp);
832 if (error)
833 goto fail;
834
835 imgp->object = nd->ni_vp->v_object;
836
837 hdr = (const Elf_Ehdr *)imgp->image_header;
838 if ((error = __elfN(check_header)(hdr)) != 0)
839 goto fail;
840 if (hdr->e_type == ET_DYN)
841 rbase = *addr;
842 else if (hdr->e_type == ET_EXEC)
843 rbase = 0;
844 else {
845 error = ENOEXEC;
846 goto fail;
847 }
848
849 /* Only support headers that fit within first page for now */
850 if (!__elfN(phdr_in_zero_page)(hdr)) {
851 error = ENOEXEC;
852 goto fail;
853 }
854
855 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
856 if (!aligned(phdr, Elf_Addr)) {
857 error = ENOEXEC;
858 goto fail;
859 }
860
861 error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
862 if (error != 0)
863 goto fail;
864
865 if (p->p_sysent->sv_protect != NULL)
866 p->p_sysent->sv_protect(imgp, SVP_INTERP);
867
868 *addr = base_addr;
869 *entry = (unsigned long)hdr->e_entry + rbase;
870
871 fail:
872 if (imgp->firstpage)
873 exec_unmap_first_page(imgp);
874
875 if (nd->ni_vp) {
876 if (imgp->textset)
877 VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
878 vput(nd->ni_vp);
879 }
880 free(tempdata, M_TEMP);
881
882 return (error);
883 }
884
885 /*
886 * Select randomized valid address in the map map, between minv and
887 * maxv, with specified alignment. The [minv, maxv) range must belong
888 * to the map. Note that function only allocates the address, it is
889 * up to caller to clamp maxv in a way that the final allocation
890 * length fit into the map.
891 *
892 * Result is returned in *resp, error code indicates that arguments
893 * did not pass sanity checks for overflow and range correctness.
894 */
895 static int
__CONCAT(rnd_,__elfN (base))896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
897 u_int align, u_long *resp)
898 {
899 u_long rbase, res;
900
901 MPASS(vm_map_min(map) <= minv);
902
903 if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
904 uprintf("Invalid ELF segments layout\n");
905 return (ENOEXEC);
906 }
907
908 arc4rand(&rbase, sizeof(rbase), 0);
909 res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
910 res &= ~((u_long)align - 1);
911 if (res >= maxv)
912 res -= align;
913
914 KASSERT(res >= minv,
915 ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
916 res, minv, maxv, rbase));
917 KASSERT(res < maxv,
918 ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
919 res, maxv, minv, rbase));
920
921 *resp = res;
922 return (0);
923 }
924
925 static int
__elfN(enforce_limits)926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
927 const Elf_Phdr *phdr)
928 {
929 struct vmspace *vmspace;
930 const char *err_str;
931 u_long text_size, data_size, total_size, text_addr, data_addr;
932 u_long seg_size, seg_addr;
933 int i;
934
935 err_str = NULL;
936 text_size = data_size = total_size = text_addr = data_addr = 0;
937
938 for (i = 0; i < hdr->e_phnum; i++) {
939 if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
940 continue;
941
942 seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr);
943 seg_size = round_page(phdr[i].p_memsz +
944 phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr);
945
946 /*
947 * Make the largest executable segment the official
948 * text segment and all others data.
949 *
950 * Note that obreak() assumes that data_addr + data_size == end
951 * of data load area, and the ELF file format expects segments
952 * to be sorted by address. If multiple data segments exist,
953 * the last one will be used.
954 */
955
956 if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
957 text_size = seg_size;
958 text_addr = seg_addr;
959 } else {
960 data_size = seg_size;
961 data_addr = seg_addr;
962 }
963 total_size += seg_size;
964 }
965
966 if (data_addr == 0 && data_size == 0) {
967 data_addr = text_addr;
968 data_size = text_size;
969 }
970
971 /*
972 * Check limits. It should be safe to check the
973 * limits after loading the segments since we do
974 * not actually fault in all the segments pages.
975 */
976 PROC_LOCK(imgp->proc);
977 if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
978 err_str = "Data segment size exceeds process limit";
979 else if (text_size > maxtsiz)
980 err_str = "Text segment size exceeds system limit";
981 else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
982 err_str = "Total segment size exceeds process limit";
983 else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
984 err_str = "Data segment size exceeds resource limit";
985 else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
986 err_str = "Total segment size exceeds resource limit";
987 PROC_UNLOCK(imgp->proc);
988 if (err_str != NULL) {
989 uprintf("%s\n", err_str);
990 return (ENOMEM);
991 }
992
993 vmspace = imgp->proc->p_vmspace;
994 vmspace->vm_tsize = text_size >> PAGE_SHIFT;
995 vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
996 vmspace->vm_dsize = data_size >> PAGE_SHIFT;
997 vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
998
999 return (0);
1000 }
1001
1002 static int
__elfN(get_interp)1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1004 char **interpp, bool *free_interpp)
1005 {
1006 struct thread *td;
1007 char *interp;
1008 int error, interp_name_len;
1009
1010 KASSERT(phdr->p_type == PT_INTERP,
1011 ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1012 ASSERT_VOP_LOCKED(imgp->vp, __func__);
1013
1014 td = curthread;
1015
1016 /* Path to interpreter */
1017 if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1018 uprintf("Invalid PT_INTERP\n");
1019 return (ENOEXEC);
1020 }
1021
1022 interp_name_len = phdr->p_filesz;
1023 if (phdr->p_offset > PAGE_SIZE ||
1024 interp_name_len > PAGE_SIZE - phdr->p_offset) {
1025 /*
1026 * The vnode lock might be needed by the pagedaemon to
1027 * clean pages owned by the vnode. Do not allow sleep
1028 * waiting for memory with the vnode locked, instead
1029 * try non-sleepable allocation first, and if it
1030 * fails, go to the slow path were we drop the lock
1031 * and do M_WAITOK. A text reference prevents
1032 * modifications to the vnode content.
1033 */
1034 interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1035 if (interp == NULL) {
1036 VOP_UNLOCK(imgp->vp);
1037 interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1038 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1039 }
1040
1041 error = vn_rdwr(UIO_READ, imgp->vp, interp,
1042 interp_name_len, phdr->p_offset,
1043 UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1044 NOCRED, NULL, td);
1045 if (error != 0) {
1046 free(interp, M_TEMP);
1047 uprintf("i/o error PT_INTERP %d\n", error);
1048 return (error);
1049 }
1050 interp[interp_name_len] = '\0';
1051
1052 *interpp = interp;
1053 *free_interpp = true;
1054 return (0);
1055 }
1056
1057 interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1058 if (interp[interp_name_len - 1] != '\0') {
1059 uprintf("Invalid PT_INTERP\n");
1060 return (ENOEXEC);
1061 }
1062
1063 *interpp = interp;
1064 *free_interpp = false;
1065 return (0);
1066 }
1067
1068 static int
__elfN(load_interp)1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1070 const char *interp, u_long *addr, u_long *entry)
1071 {
1072 int error;
1073
1074 if (brand_info->interp_newpath != NULL &&
1075 (brand_info->interp_path == NULL ||
1076 strcmp(interp, brand_info->interp_path) == 0)) {
1077 error = __elfN(load_file)(imgp->proc,
1078 brand_info->interp_newpath, addr, entry);
1079 if (error == 0)
1080 return (0);
1081 }
1082
1083 error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1084 if (error == 0)
1085 return (0);
1086
1087 uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1088 return (error);
1089 }
1090
1091 /*
1092 * Impossible et_dyn_addr initial value indicating that the real base
1093 * must be calculated later with some randomization applied.
1094 */
1095 #define ET_DYN_ADDR_RAND 1
1096
1097 static int
__CONCAT(exec_,__elfN (imgact))1098 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1099 {
1100 struct thread *td;
1101 const Elf_Ehdr *hdr;
1102 const Elf_Phdr *phdr;
1103 Elf_Auxargs *elf_auxargs;
1104 struct vmspace *vmspace;
1105 vm_map_t map;
1106 char *interp;
1107 Elf_Brandinfo *brand_info;
1108 struct sysentvec *sv;
1109 u_long addr, baddr, entry, proghdr;
1110 u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1111 uint32_t fctl0;
1112 int32_t osrel;
1113 bool free_interp;
1114 int error, i, n;
1115
1116 hdr = (const Elf_Ehdr *)imgp->image_header;
1117
1118 /*
1119 * Do we have a valid ELF header ?
1120 *
1121 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1122 * if particular brand doesn't support it.
1123 */
1124 if (__elfN(check_header)(hdr) != 0 ||
1125 (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1126 return (-1);
1127
1128 /*
1129 * From here on down, we return an errno, not -1, as we've
1130 * detected an ELF file.
1131 */
1132
1133 if (!__elfN(phdr_in_zero_page)(hdr)) {
1134 uprintf("Program headers not in the first page\n");
1135 return (ENOEXEC);
1136 }
1137 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1138 if (!aligned(phdr, Elf_Addr)) {
1139 uprintf("Unaligned program headers\n");
1140 return (ENOEXEC);
1141 }
1142
1143 n = error = 0;
1144 baddr = 0;
1145 osrel = 0;
1146 fctl0 = 0;
1147 entry = proghdr = 0;
1148 interp = NULL;
1149 free_interp = false;
1150 td = curthread;
1151
1152 /*
1153 * Somewhat arbitrary, limit accepted max alignment for the
1154 * loadable segment to the max supported superpage size. Too
1155 * large alignment requests are not useful and are indicators
1156 * of corrupted or outright malicious binary.
1157 */
1158 maxalign = PAGE_SIZE;
1159 maxsalign = PAGE_SIZE * 1024;
1160 for (i = MAXPAGESIZES - 1; i > 0; i--) {
1161 if (pagesizes[i] > maxsalign) {
1162 maxsalign = pagesizes[i];
1163 break;
1164 }
1165 }
1166
1167 mapsz = 0;
1168
1169 for (i = 0; i < hdr->e_phnum; i++) {
1170 switch (phdr[i].p_type) {
1171 case PT_LOAD:
1172 if (n == 0)
1173 baddr = phdr[i].p_vaddr;
1174 if (!powerof2(phdr[i].p_align) ||
1175 phdr[i].p_align > maxsalign) {
1176 uprintf("Invalid segment alignment\n");
1177 error = ENOEXEC;
1178 goto ret;
1179 }
1180 if (phdr[i].p_align > maxalign)
1181 maxalign = phdr[i].p_align;
1182 if (mapsz + phdr[i].p_memsz < mapsz) {
1183 uprintf("Mapsize overflow\n");
1184 error = ENOEXEC;
1185 goto ret;
1186 }
1187 mapsz += phdr[i].p_memsz;
1188 n++;
1189
1190 /*
1191 * If this segment contains the program headers,
1192 * remember their virtual address for the AT_PHDR
1193 * aux entry. Static binaries don't usually include
1194 * a PT_PHDR entry.
1195 */
1196 if (phdr[i].p_offset == 0 &&
1197 hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1198 phdr[i].p_filesz)
1199 proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1200 break;
1201 case PT_INTERP:
1202 /* Path to interpreter */
1203 if (interp != NULL) {
1204 uprintf("Multiple PT_INTERP headers\n");
1205 error = ENOEXEC;
1206 goto ret;
1207 }
1208 error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1209 &free_interp);
1210 if (error != 0)
1211 goto ret;
1212 break;
1213 case PT_GNU_STACK:
1214 if (__elfN(nxstack)) {
1215 imgp->stack_prot =
1216 __elfN(trans_prot)(phdr[i].p_flags);
1217 if ((imgp->stack_prot & VM_PROT_RW) !=
1218 VM_PROT_RW) {
1219 uprintf("Invalid PT_GNU_STACK\n");
1220 error = ENOEXEC;
1221 goto ret;
1222 }
1223 }
1224 imgp->stack_sz = phdr[i].p_memsz;
1225 break;
1226 case PT_PHDR: /* Program header table info */
1227 proghdr = phdr[i].p_vaddr;
1228 break;
1229 }
1230 }
1231
1232 brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1233 if (brand_info == NULL) {
1234 uprintf("ELF binary type \"%u\" not known.\n",
1235 hdr->e_ident[EI_OSABI]);
1236 error = ENOEXEC;
1237 goto ret;
1238 }
1239 sv = brand_info->sysvec;
1240 if (hdr->e_type == ET_DYN) {
1241 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1242 uprintf("Cannot execute shared object\n");
1243 error = ENOEXEC;
1244 goto ret;
1245 }
1246 /*
1247 * Honour the base load address from the dso if it is
1248 * non-zero for some reason.
1249 */
1250 if (baddr == 0) {
1251 if ((sv->sv_flags & SV_ASLR) == 0 ||
1252 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1253 imgp->et_dyn_addr = __elfN(pie_base);
1254 else if ((__elfN(pie_aslr_enabled) &&
1255 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1256 (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1257 imgp->et_dyn_addr = ET_DYN_ADDR_RAND;
1258 else
1259 imgp->et_dyn_addr = __elfN(pie_base);
1260 }
1261 }
1262
1263 /*
1264 * Avoid a possible deadlock if the current address space is destroyed
1265 * and that address space maps the locked vnode. In the common case,
1266 * the locked vnode's v_usecount is decremented but remains greater
1267 * than zero. Consequently, the vnode lock is not needed by vrele().
1268 * However, in cases where the vnode lock is external, such as nullfs,
1269 * v_usecount may become zero.
1270 *
1271 * The VV_TEXT flag prevents modifications to the executable while
1272 * the vnode is unlocked.
1273 */
1274 VOP_UNLOCK(imgp->vp);
1275
1276 /*
1277 * Decide whether to enable randomization of user mappings.
1278 * First, reset user preferences for the setid binaries.
1279 * Then, account for the support of the randomization by the
1280 * ABI, by user preferences, and make special treatment for
1281 * PIE binaries.
1282 */
1283 if (imgp->credential_setid) {
1284 PROC_LOCK(imgp->proc);
1285 imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1286 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1287 PROC_UNLOCK(imgp->proc);
1288 }
1289 if ((sv->sv_flags & SV_ASLR) == 0 ||
1290 (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1291 (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1292 KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND,
1293 ("imgp->et_dyn_addr == RAND and !ASLR"));
1294 } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1295 (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1296 imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1297 imgp->map_flags |= MAP_ASLR;
1298 /*
1299 * If user does not care about sbrk, utilize the bss
1300 * grow region for mappings as well. We can select
1301 * the base for the image anywere and still not suffer
1302 * from the fragmentation.
1303 */
1304 if (!__elfN(aslr_honor_sbrk) ||
1305 (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1306 imgp->map_flags |= MAP_ASLR_IGNSTART;
1307 if (__elfN(aslr_stack))
1308 imgp->map_flags |= MAP_ASLR_STACK;
1309 if (__elfN(aslr_shared_page))
1310 imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1311 }
1312
1313 if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1314 (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1315 (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1316 imgp->map_flags |= MAP_WXORX;
1317
1318 error = exec_new_vmspace(imgp, sv);
1319
1320 imgp->proc->p_sysent = sv;
1321 imgp->proc->p_elf_brandinfo = brand_info;
1322
1323 vmspace = imgp->proc->p_vmspace;
1324 map = &vmspace->vm_map;
1325 maxv = sv->sv_usrstack;
1326 if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1327 maxv -= lim_max(td, RLIMIT_STACK);
1328 if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1329 uprintf("Excessive mapping size\n");
1330 error = ENOEXEC;
1331 }
1332
1333 if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1334 KASSERT((map->flags & MAP_ASLR) != 0,
1335 ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1336 error = __CONCAT(rnd_, __elfN(base))(map,
1337 vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1338 /* reserve half of the address space to interpreter */
1339 maxv / 2, maxalign, &imgp->et_dyn_addr);
1340 }
1341
1342 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1343 if (error != 0)
1344 goto ret;
1345
1346 error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL);
1347 if (error != 0)
1348 goto ret;
1349
1350 error = __elfN(enforce_limits)(imgp, hdr, phdr);
1351 if (error != 0)
1352 goto ret;
1353
1354 /*
1355 * We load the dynamic linker where a userland call
1356 * to mmap(0, ...) would put it. The rationale behind this
1357 * calculation is that it leaves room for the heap to grow to
1358 * its maximum allowed size.
1359 */
1360 addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1361 RLIMIT_DATA));
1362 if ((map->flags & MAP_ASLR) != 0) {
1363 maxv1 = maxv / 2 + addr / 2;
1364 error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1365 #if VM_NRESERVLEVEL > 0
1366 pagesizes[VM_NRESERVLEVEL] != 0 ?
1367 /* Align anon_loc to the largest superpage size. */
1368 pagesizes[VM_NRESERVLEVEL] :
1369 #endif
1370 pagesizes[0], &anon_loc);
1371 if (error != 0)
1372 goto ret;
1373 map->anon_loc = anon_loc;
1374 } else {
1375 map->anon_loc = addr;
1376 }
1377
1378 entry = (u_long)hdr->e_entry + imgp->et_dyn_addr;
1379 imgp->entry_addr = entry;
1380
1381 if (sv->sv_protect != NULL)
1382 sv->sv_protect(imgp, SVP_IMAGE);
1383
1384 if (interp != NULL) {
1385 VOP_UNLOCK(imgp->vp);
1386 if ((map->flags & MAP_ASLR) != 0) {
1387 /* Assume that interpreter fits into 1/4 of AS */
1388 maxv1 = maxv / 2 + addr / 2;
1389 error = __CONCAT(rnd_, __elfN(base))(map, addr,
1390 maxv1, PAGE_SIZE, &addr);
1391 }
1392 if (error == 0) {
1393 error = __elfN(load_interp)(imgp, brand_info, interp,
1394 &addr, &imgp->entry_addr);
1395 }
1396 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1397 if (error != 0)
1398 goto ret;
1399 } else
1400 addr = imgp->et_dyn_addr;
1401
1402 error = exec_map_stack(imgp);
1403 if (error != 0)
1404 goto ret;
1405
1406 /*
1407 * Construct auxargs table (used by the copyout_auxargs routine)
1408 */
1409 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1410 if (elf_auxargs == NULL) {
1411 VOP_UNLOCK(imgp->vp);
1412 elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1413 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1414 }
1415 elf_auxargs->execfd = -1;
1416 elf_auxargs->phdr = proghdr + imgp->et_dyn_addr;
1417 elf_auxargs->phent = hdr->e_phentsize;
1418 elf_auxargs->phnum = hdr->e_phnum;
1419 elf_auxargs->pagesz = PAGE_SIZE;
1420 elf_auxargs->base = addr;
1421 elf_auxargs->flags = 0;
1422 elf_auxargs->entry = entry;
1423 elf_auxargs->hdr_eflags = hdr->e_flags;
1424
1425 imgp->auxargs = elf_auxargs;
1426 imgp->interpreted = 0;
1427 imgp->reloc_base = addr;
1428 imgp->proc->p_osrel = osrel;
1429 imgp->proc->p_fctl0 = fctl0;
1430 imgp->proc->p_elf_flags = hdr->e_flags;
1431
1432 ret:
1433 ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1434 if (free_interp)
1435 free(interp, M_TEMP);
1436 return (error);
1437 }
1438
1439 #define elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1440
1441 int
__elfN(freebsd_copyout_auxargs)1442 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1443 {
1444 Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1445 Elf_Auxinfo *argarray, *pos;
1446 struct vmspace *vmspace;
1447 rlim_t stacksz;
1448 int error, oc;
1449 uint32_t bsdflags;
1450
1451 argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1452 M_WAITOK | M_ZERO);
1453
1454 vmspace = imgp->proc->p_vmspace;
1455
1456 if (args->execfd != -1)
1457 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1458 AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1459 AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1460 AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1461 AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1462 AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1463 AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1464 AUXARGS_ENTRY(pos, AT_BASE, args->base);
1465 AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1466 if (imgp->execpathp != 0)
1467 AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1468 AUXARGS_ENTRY(pos, AT_OSRELDATE,
1469 imgp->proc->p_ucred->cr_prison->pr_osreldate);
1470 if (imgp->canary != 0) {
1471 AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1472 AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1473 }
1474 AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1475 if (imgp->pagesizes != 0) {
1476 AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1477 AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1478 }
1479 if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1480 AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1481 vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1482 }
1483 AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1484 != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1485 imgp->sysent->sv_stackprot);
1486 if (imgp->sysent->sv_hwcap != NULL)
1487 AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1488 if (imgp->sysent->sv_hwcap2 != NULL)
1489 AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1490 if (imgp->sysent->sv_hwcap3 != NULL)
1491 AUXARGS_ENTRY(pos, AT_HWCAP3, *imgp->sysent->sv_hwcap3);
1492 if (imgp->sysent->sv_hwcap4 != NULL)
1493 AUXARGS_ENTRY(pos, AT_HWCAP4, *imgp->sysent->sv_hwcap4);
1494 bsdflags = 0;
1495 bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1496 oc = atomic_load_int(&vm_overcommit);
1497 bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1498 0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1499 AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1500 AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1501 AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1502 AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1503 AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1504 AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1505 #ifdef RANDOM_FENESTRASX
1506 if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1507 AUXARGS_ENTRY(pos, AT_FXRNG,
1508 vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1509 }
1510 #endif
1511 if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1512 AUXARGS_ENTRY(pos, AT_KPRELOAD,
1513 vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1514 }
1515 AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1516 stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1517 AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1518 AUXARGS_ENTRY(pos, AT_NULL, 0);
1519
1520 free(imgp->auxargs, M_TEMP);
1521 imgp->auxargs = NULL;
1522 KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1523
1524 error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1525 free(argarray, M_TEMP);
1526 return (error);
1527 }
1528
1529 int
__elfN(freebsd_fixup)1530 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1531 {
1532 Elf_Addr *base;
1533
1534 base = (Elf_Addr *)*stack_base;
1535 base--;
1536 if (elf_suword(base, imgp->args->argc) == -1)
1537 return (EFAULT);
1538 *stack_base = (uintptr_t)base;
1539 return (0);
1540 }
1541
1542 /*
1543 * Code for generating ELF core dumps.
1544 */
1545
1546 typedef void (*segment_callback)(vm_map_entry_t, void *);
1547
1548 /* Closure for cb_put_phdr(). */
1549 struct phdr_closure {
1550 Elf_Phdr *phdr; /* Program header to fill in */
1551 Elf_Off offset; /* Offset of segment in core file */
1552 };
1553
1554 struct note_info {
1555 int type; /* Note type. */
1556 struct regset *regset; /* Register set. */
1557 outfunc_t outfunc; /* Output function. */
1558 void *outarg; /* Argument for the output function. */
1559 size_t outsize; /* Output size. */
1560 TAILQ_ENTRY(note_info) link; /* Link to the next note info. */
1561 };
1562
1563 TAILQ_HEAD(note_info_list, note_info);
1564
1565 extern int compress_user_cores;
1566 extern int compress_user_cores_level;
1567
1568 static void cb_put_phdr(vm_map_entry_t, void *);
1569 static void cb_size_segment(vm_map_entry_t, void *);
1570 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1571 int);
1572 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1573 struct note_info_list *, size_t, int);
1574 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1575
1576 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1577 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1578 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1579 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1580 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1581 static void __elfN(note_procstat_kqueues)(void *, struct sbuf *, size_t *);
1582 static void note_procstat_files(void *, struct sbuf *, size_t *);
1583 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1584 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1585 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1586 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1587 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1588
1589 static int
core_compressed_write(void * base,size_t len,off_t offset,void * arg)1590 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1591 {
1592
1593 return (core_write((struct coredump_params *)arg, base, len, offset,
1594 UIO_SYSSPACE, NULL));
1595 }
1596
1597 int
__elfN(coredump)1598 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1599 {
1600 struct ucred *cred = td->td_ucred;
1601 int compm, error = 0;
1602 struct sseg_closure seginfo;
1603 struct note_info_list notelst;
1604 struct coredump_params params;
1605 struct note_info *ninfo;
1606 void *hdr, *tmpbuf;
1607 size_t hdrsize, notesz, coresize;
1608
1609 hdr = NULL;
1610 tmpbuf = NULL;
1611 TAILQ_INIT(¬elst);
1612
1613 /* Size the program segments. */
1614 __elfN(size_segments)(td, &seginfo, flags);
1615
1616 /*
1617 * Collect info about the core file header area.
1618 */
1619 hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1620 if (seginfo.count + 1 >= PN_XNUM)
1621 hdrsize += sizeof(Elf_Shdr);
1622 td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, ¬elst, ¬esz);
1623 coresize = round_page(hdrsize + notesz) + seginfo.size;
1624
1625 /* Set up core dump parameters. */
1626 params.offset = 0;
1627 params.active_cred = cred;
1628 params.file_cred = NOCRED;
1629 params.td = td;
1630 params.vp = vp;
1631 params.comp = NULL;
1632
1633 #ifdef RACCT
1634 if (racct_enable) {
1635 PROC_LOCK(td->td_proc);
1636 error = racct_add(td->td_proc, RACCT_CORE, coresize);
1637 PROC_UNLOCK(td->td_proc);
1638 if (error != 0) {
1639 error = EFAULT;
1640 goto done;
1641 }
1642 }
1643 #endif
1644 if (coresize >= limit) {
1645 error = EFAULT;
1646 goto done;
1647 }
1648
1649 /* Create a compression stream if necessary. */
1650 compm = compress_user_cores;
1651 if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1652 compm == 0)
1653 compm = COMPRESS_GZIP;
1654 if (compm != 0) {
1655 params.comp = compressor_init(core_compressed_write,
1656 compm, CORE_BUF_SIZE,
1657 compress_user_cores_level, ¶ms);
1658 if (params.comp == NULL) {
1659 error = EFAULT;
1660 goto done;
1661 }
1662 tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1663 }
1664
1665 /*
1666 * Allocate memory for building the header, fill it up,
1667 * and write it out following the notes.
1668 */
1669 hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1670 error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst,
1671 notesz, flags);
1672
1673 /* Write the contents of all of the writable segments. */
1674 if (error == 0) {
1675 Elf_Phdr *php;
1676 off_t offset;
1677 int i;
1678
1679 php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1680 offset = round_page(hdrsize + notesz);
1681 for (i = 0; i < seginfo.count; i++) {
1682 error = core_output((char *)(uintptr_t)php->p_vaddr,
1683 php->p_filesz, offset, ¶ms, tmpbuf);
1684 if (error != 0)
1685 break;
1686 offset += php->p_filesz;
1687 php++;
1688 }
1689 if (error == 0 && params.comp != NULL)
1690 error = compressor_flush(params.comp);
1691 }
1692 if (error) {
1693 log(LOG_WARNING,
1694 "Failed to write core file for process %s (error %d)\n",
1695 curproc->p_comm, error);
1696 }
1697
1698 done:
1699 free(tmpbuf, M_TEMP);
1700 if (params.comp != NULL)
1701 compressor_fini(params.comp);
1702 while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) {
1703 TAILQ_REMOVE(¬elst, ninfo, link);
1704 free(ninfo, M_TEMP);
1705 }
1706 if (hdr != NULL)
1707 free(hdr, M_TEMP);
1708
1709 return (error);
1710 }
1711
1712 /*
1713 * A callback for each_dumpable_segment() to write out the segment's
1714 * program header entry.
1715 */
1716 static void
cb_put_phdr(vm_map_entry_t entry,void * closure)1717 cb_put_phdr(vm_map_entry_t entry, void *closure)
1718 {
1719 struct phdr_closure *phc = (struct phdr_closure *)closure;
1720 Elf_Phdr *phdr = phc->phdr;
1721
1722 phc->offset = round_page(phc->offset);
1723
1724 phdr->p_type = PT_LOAD;
1725 phdr->p_offset = phc->offset;
1726 phdr->p_vaddr = entry->start;
1727 phdr->p_paddr = 0;
1728 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1729 phdr->p_align = PAGE_SIZE;
1730 phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1731
1732 phc->offset += phdr->p_filesz;
1733 phc->phdr++;
1734 }
1735
1736 /*
1737 * A callback for each_dumpable_segment() to gather information about
1738 * the number of segments and their total size.
1739 */
1740 static void
cb_size_segment(vm_map_entry_t entry,void * closure)1741 cb_size_segment(vm_map_entry_t entry, void *closure)
1742 {
1743 struct sseg_closure *ssc = (struct sseg_closure *)closure;
1744
1745 ssc->count++;
1746 ssc->size += entry->end - entry->start;
1747 }
1748
1749 void
__elfN(size_segments)1750 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1751 int flags)
1752 {
1753 seginfo->count = 0;
1754 seginfo->size = 0;
1755
1756 each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1757 }
1758
1759 /*
1760 * For each writable segment in the process's memory map, call the given
1761 * function with a pointer to the map entry and some arbitrary
1762 * caller-supplied data.
1763 */
1764 static void
each_dumpable_segment(struct thread * td,segment_callback func,void * closure,int flags)1765 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1766 int flags)
1767 {
1768 struct proc *p = td->td_proc;
1769 vm_map_t map = &p->p_vmspace->vm_map;
1770 vm_map_entry_t entry;
1771 vm_object_t backing_object, object;
1772 bool ignore_entry;
1773
1774 vm_map_lock_read(map);
1775 VM_MAP_ENTRY_FOREACH(entry, map) {
1776 /*
1777 * Don't dump inaccessible mappings, deal with legacy
1778 * coredump mode.
1779 *
1780 * Note that read-only segments related to the elf binary
1781 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1782 * need to arbitrarily ignore such segments.
1783 */
1784 if ((flags & SVC_ALL) == 0) {
1785 if (elf_legacy_coredump) {
1786 if ((entry->protection & VM_PROT_RW) !=
1787 VM_PROT_RW)
1788 continue;
1789 } else {
1790 if ((entry->protection & VM_PROT_ALL) == 0)
1791 continue;
1792 }
1793 }
1794
1795 /*
1796 * Dont include memory segment in the coredump if
1797 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1798 * madvise(2). Do not dump submaps (i.e. parts of the
1799 * kernel map).
1800 */
1801 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1802 continue;
1803 if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1804 (flags & SVC_ALL) == 0)
1805 continue;
1806 if ((object = entry->object.vm_object) == NULL)
1807 continue;
1808
1809 /* Ignore memory-mapped devices and such things. */
1810 VM_OBJECT_RLOCK(object);
1811 while ((backing_object = object->backing_object) != NULL) {
1812 VM_OBJECT_RLOCK(backing_object);
1813 VM_OBJECT_RUNLOCK(object);
1814 object = backing_object;
1815 }
1816 ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1817 VM_OBJECT_RUNLOCK(object);
1818 if (ignore_entry)
1819 continue;
1820
1821 (*func)(entry, closure);
1822 }
1823 vm_map_unlock_read(map);
1824 }
1825
1826 /*
1827 * Write the core file header to the file, including padding up to
1828 * the page boundary.
1829 */
1830 static int
__elfN(corehdr)1831 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1832 size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1833 int flags)
1834 {
1835 struct note_info *ninfo;
1836 struct sbuf *sb;
1837 int error;
1838
1839 /* Fill in the header. */
1840 bzero(hdr, hdrsize);
1841 __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1842
1843 sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1844 sbuf_set_drain(sb, sbuf_drain_core_output, p);
1845 sbuf_start_section(sb, NULL);
1846 sbuf_bcat(sb, hdr, hdrsize);
1847 TAILQ_FOREACH(ninfo, notelst, link)
1848 __elfN(putnote)(p->td, ninfo, sb);
1849 /* Align up to a page boundary for the program segments. */
1850 sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1851 error = sbuf_finish(sb);
1852 sbuf_delete(sb);
1853
1854 return (error);
1855 }
1856
1857 void
__elfN(prepare_notes)1858 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1859 size_t *sizep)
1860 {
1861 struct proc *p;
1862 struct thread *thr;
1863 size_t size;
1864
1865 p = td->td_proc;
1866 size = 0;
1867
1868 size += __elfN(register_note)(td, list, NT_PRPSINFO,
1869 __elfN(note_prpsinfo), p);
1870
1871 /*
1872 * To have the debugger select the right thread (LWP) as the initial
1873 * thread, we dump the state of the thread passed to us in td first.
1874 * This is the thread that causes the core dump and thus likely to
1875 * be the right thread one wants to have selected in the debugger.
1876 */
1877 thr = td;
1878 while (thr != NULL) {
1879 size += __elfN(prepare_register_notes)(td, list, thr);
1880 size += __elfN(register_note)(td, list, -1,
1881 __elfN(note_threadmd), thr);
1882
1883 thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1884 TAILQ_NEXT(thr, td_plist);
1885 if (thr == td)
1886 thr = TAILQ_NEXT(thr, td_plist);
1887 }
1888
1889 size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1890 __elfN(note_procstat_proc), p);
1891 size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1892 note_procstat_files, p);
1893 size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1894 note_procstat_vmmap, p);
1895 size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1896 note_procstat_groups, p);
1897 size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1898 note_procstat_umask, p);
1899 size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1900 note_procstat_rlimit, p);
1901 size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1902 note_procstat_osrel, p);
1903 size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1904 __elfN(note_procstat_psstrings), p);
1905 size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1906 __elfN(note_procstat_auxv), p);
1907 size += __elfN(register_note)(td, list, NT_PROCSTAT_KQUEUES,
1908 __elfN(note_procstat_kqueues), p);
1909
1910 *sizep = size;
1911 }
1912
1913 void
__elfN(puthdr)1914 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1915 size_t notesz, int flags)
1916 {
1917 Elf_Ehdr *ehdr;
1918 Elf_Phdr *phdr;
1919 Elf_Shdr *shdr;
1920 struct phdr_closure phc;
1921 Elf_Brandinfo *bi;
1922
1923 ehdr = (Elf_Ehdr *)hdr;
1924 bi = td->td_proc->p_elf_brandinfo;
1925
1926 ehdr->e_ident[EI_MAG0] = ELFMAG0;
1927 ehdr->e_ident[EI_MAG1] = ELFMAG1;
1928 ehdr->e_ident[EI_MAG2] = ELFMAG2;
1929 ehdr->e_ident[EI_MAG3] = ELFMAG3;
1930 ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1931 ehdr->e_ident[EI_DATA] = ELF_DATA;
1932 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1933 ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1934 ehdr->e_ident[EI_ABIVERSION] = 0;
1935 ehdr->e_ident[EI_PAD] = 0;
1936 ehdr->e_type = ET_CORE;
1937 ehdr->e_machine = bi->machine;
1938 ehdr->e_version = EV_CURRENT;
1939 ehdr->e_entry = 0;
1940 ehdr->e_phoff = sizeof(Elf_Ehdr);
1941 ehdr->e_flags = td->td_proc->p_elf_flags;
1942 ehdr->e_ehsize = sizeof(Elf_Ehdr);
1943 ehdr->e_phentsize = sizeof(Elf_Phdr);
1944 ehdr->e_shentsize = sizeof(Elf_Shdr);
1945 ehdr->e_shstrndx = SHN_UNDEF;
1946 if (numsegs + 1 < PN_XNUM) {
1947 ehdr->e_phnum = numsegs + 1;
1948 ehdr->e_shnum = 0;
1949 } else {
1950 ehdr->e_phnum = PN_XNUM;
1951 ehdr->e_shnum = 1;
1952
1953 ehdr->e_shoff = ehdr->e_phoff +
1954 (numsegs + 1) * ehdr->e_phentsize;
1955 KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1956 ("e_shoff: %zu, hdrsize - shdr: %zu",
1957 (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1958
1959 shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1960 memset(shdr, 0, sizeof(*shdr));
1961 /*
1962 * A special first section is used to hold large segment and
1963 * section counts. This was proposed by Sun Microsystems in
1964 * Solaris and has been adopted by Linux; the standard ELF
1965 * tools are already familiar with the technique.
1966 *
1967 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1968 * (or 12-7 depending on the version of the document) for more
1969 * details.
1970 */
1971 shdr->sh_type = SHT_NULL;
1972 shdr->sh_size = ehdr->e_shnum;
1973 shdr->sh_link = ehdr->e_shstrndx;
1974 shdr->sh_info = numsegs + 1;
1975 }
1976
1977 /*
1978 * Fill in the program header entries.
1979 */
1980 phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1981
1982 /* The note segement. */
1983 phdr->p_type = PT_NOTE;
1984 phdr->p_offset = hdrsize;
1985 phdr->p_vaddr = 0;
1986 phdr->p_paddr = 0;
1987 phdr->p_filesz = notesz;
1988 phdr->p_memsz = 0;
1989 phdr->p_flags = PF_R;
1990 phdr->p_align = ELF_NOTE_ROUNDSIZE;
1991 phdr++;
1992
1993 /* All the writable segments from the program. */
1994 phc.phdr = phdr;
1995 phc.offset = round_page(hdrsize + notesz);
1996 each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1997 }
1998
1999 static size_t
__elfN(register_regset_note)2000 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
2001 struct regset *regset, struct thread *target_td)
2002 {
2003 const struct sysentvec *sv;
2004 struct note_info *ninfo;
2005 size_t size, notesize;
2006
2007 size = 0;
2008 if (!regset->get(regset, target_td, NULL, &size) || size == 0)
2009 return (0);
2010
2011 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2012 ninfo->type = regset->note;
2013 ninfo->regset = regset;
2014 ninfo->outarg = target_td;
2015 ninfo->outsize = size;
2016 TAILQ_INSERT_TAIL(list, ninfo, link);
2017
2018 sv = td->td_proc->p_sysent;
2019 notesize = sizeof(Elf_Note) + /* note header */
2020 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2021 /* note name */
2022 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2023
2024 return (notesize);
2025 }
2026
2027 size_t
__elfN(register_note)2028 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2029 int type, outfunc_t out, void *arg)
2030 {
2031 const struct sysentvec *sv;
2032 struct note_info *ninfo;
2033 size_t size, notesize;
2034
2035 sv = td->td_proc->p_sysent;
2036 size = 0;
2037 out(arg, NULL, &size);
2038 ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2039 ninfo->type = type;
2040 ninfo->outfunc = out;
2041 ninfo->outarg = arg;
2042 ninfo->outsize = size;
2043 TAILQ_INSERT_TAIL(list, ninfo, link);
2044
2045 if (type == -1)
2046 return (size);
2047
2048 notesize = sizeof(Elf_Note) + /* note header */
2049 roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2050 /* note name */
2051 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2052
2053 return (notesize);
2054 }
2055
2056 static size_t
append_note_data(const void * src,void * dst,size_t len)2057 append_note_data(const void *src, void *dst, size_t len)
2058 {
2059 size_t padded_len;
2060
2061 padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2062 if (dst != NULL) {
2063 bcopy(src, dst, len);
2064 bzero((char *)dst + len, padded_len - len);
2065 }
2066 return (padded_len);
2067 }
2068
2069 size_t
__elfN(populate_note)2070 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2071 {
2072 Elf_Note *note;
2073 char *buf;
2074 size_t notesize;
2075
2076 buf = dst;
2077 if (buf != NULL) {
2078 note = (Elf_Note *)buf;
2079 note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2080 note->n_descsz = size;
2081 note->n_type = type;
2082 buf += sizeof(*note);
2083 buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2084 sizeof(FREEBSD_ABI_VENDOR));
2085 append_note_data(src, buf, size);
2086 if (descp != NULL)
2087 *descp = buf;
2088 }
2089
2090 notesize = sizeof(Elf_Note) + /* note header */
2091 roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2092 /* note name */
2093 roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2094
2095 return (notesize);
2096 }
2097
2098 static void
__elfN(putnote)2099 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2100 {
2101 Elf_Note note;
2102 const struct sysentvec *sv;
2103 ssize_t old_len, sect_len;
2104 size_t new_len, descsz, i;
2105
2106 if (ninfo->type == -1) {
2107 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2108 return;
2109 }
2110
2111 sv = td->td_proc->p_sysent;
2112
2113 note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2114 note.n_descsz = ninfo->outsize;
2115 note.n_type = ninfo->type;
2116
2117 sbuf_bcat(sb, ¬e, sizeof(note));
2118 sbuf_start_section(sb, &old_len);
2119 sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2120 strlen(sv->sv_elf_core_abi_vendor) + 1);
2121 sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2122 if (note.n_descsz == 0)
2123 return;
2124 sbuf_start_section(sb, &old_len);
2125 if (ninfo->regset != NULL) {
2126 struct regset *regset = ninfo->regset;
2127 void *buf;
2128
2129 buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2130 (void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2131 sbuf_bcat(sb, buf, ninfo->outsize);
2132 free(buf, M_TEMP);
2133 } else
2134 ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2135 sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2136 if (sect_len < 0)
2137 return;
2138
2139 new_len = (size_t)sect_len;
2140 descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2141 if (new_len < descsz) {
2142 /*
2143 * It is expected that individual note emitters will correctly
2144 * predict their expected output size and fill up to that size
2145 * themselves, padding in a format-specific way if needed.
2146 * However, in case they don't, just do it here with zeros.
2147 */
2148 for (i = 0; i < descsz - new_len; i++)
2149 sbuf_putc(sb, 0);
2150 } else if (new_len > descsz) {
2151 /*
2152 * We can't always truncate sb -- we may have drained some
2153 * of it already.
2154 */
2155 KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2156 "read it (%zu > %zu). Since it is longer than "
2157 "expected, this coredump's notes are corrupt. THIS "
2158 "IS A BUG in the note_procstat routine for type %u.\n",
2159 __func__, (unsigned)note.n_type, new_len, descsz,
2160 (unsigned)note.n_type));
2161 }
2162 }
2163
2164 /*
2165 * Miscellaneous note out functions.
2166 */
2167
2168 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2169 #include <compat/freebsd32/freebsd32.h>
2170 #include <compat/freebsd32/freebsd32_signal.h>
2171
2172 typedef struct prstatus32 elf_prstatus_t;
2173 typedef struct prpsinfo32 elf_prpsinfo_t;
2174 typedef struct fpreg32 elf_prfpregset_t;
2175 typedef struct fpreg32 elf_fpregset_t;
2176 typedef struct reg32 elf_gregset_t;
2177 typedef struct thrmisc32 elf_thrmisc_t;
2178 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2179 #define ELF_KERN_PROC_MASK KERN_PROC_MASK32
2180 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2181 typedef uint32_t elf_ps_strings_t;
2182 #else
2183 typedef prstatus_t elf_prstatus_t;
2184 typedef prpsinfo_t elf_prpsinfo_t;
2185 typedef prfpregset_t elf_prfpregset_t;
2186 typedef prfpregset_t elf_fpregset_t;
2187 typedef gregset_t elf_gregset_t;
2188 typedef thrmisc_t elf_thrmisc_t;
2189 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2190 #define ELF_KERN_PROC_MASK 0
2191 typedef struct kinfo_proc elf_kinfo_proc_t;
2192 typedef vm_offset_t elf_ps_strings_t;
2193 #endif
2194
2195 static void
__elfN(note_prpsinfo)2196 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2197 {
2198 struct sbuf sbarg;
2199 size_t len;
2200 char *cp, *end;
2201 struct proc *p;
2202 elf_prpsinfo_t *psinfo;
2203 int error;
2204
2205 p = arg;
2206 if (sb != NULL) {
2207 KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2208 psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2209 psinfo->pr_version = PRPSINFO_VERSION;
2210 psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2211 strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2212 PROC_LOCK(p);
2213 if (p->p_args != NULL) {
2214 len = sizeof(psinfo->pr_psargs) - 1;
2215 if (len > p->p_args->ar_length)
2216 len = p->p_args->ar_length;
2217 memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2218 PROC_UNLOCK(p);
2219 error = 0;
2220 } else {
2221 _PHOLD(p);
2222 PROC_UNLOCK(p);
2223 sbuf_new(&sbarg, psinfo->pr_psargs,
2224 sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2225 error = proc_getargv(curthread, p, &sbarg);
2226 PRELE(p);
2227 if (sbuf_finish(&sbarg) == 0) {
2228 len = sbuf_len(&sbarg);
2229 if (len > 0)
2230 len--;
2231 } else {
2232 len = sizeof(psinfo->pr_psargs) - 1;
2233 }
2234 sbuf_delete(&sbarg);
2235 }
2236 if (error != 0 || len == 0 || (ssize_t)len == -1)
2237 strlcpy(psinfo->pr_psargs, p->p_comm,
2238 sizeof(psinfo->pr_psargs));
2239 else {
2240 KASSERT(len < sizeof(psinfo->pr_psargs),
2241 ("len is too long: %zu vs %zu", len,
2242 sizeof(psinfo->pr_psargs)));
2243 cp = psinfo->pr_psargs;
2244 end = cp + len - 1;
2245 for (;;) {
2246 cp = memchr(cp, '\0', end - cp);
2247 if (cp == NULL)
2248 break;
2249 *cp = ' ';
2250 }
2251 }
2252 psinfo->pr_pid = p->p_pid;
2253 sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2254 free(psinfo, M_TEMP);
2255 }
2256 *sizep = sizeof(*psinfo);
2257 }
2258
2259 static bool
__elfN(get_prstatus)2260 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2261 size_t *sizep)
2262 {
2263 elf_prstatus_t *status;
2264
2265 if (buf != NULL) {
2266 KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2267 __func__));
2268 status = buf;
2269 memset(status, 0, *sizep);
2270 status->pr_version = PRSTATUS_VERSION;
2271 status->pr_statussz = sizeof(elf_prstatus_t);
2272 status->pr_gregsetsz = sizeof(elf_gregset_t);
2273 status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2274 status->pr_osreldate = osreldate;
2275 status->pr_cursig = td->td_proc->p_sig;
2276 status->pr_pid = td->td_tid;
2277 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2278 fill_regs32(td, &status->pr_reg);
2279 #else
2280 fill_regs(td, &status->pr_reg);
2281 #endif
2282 }
2283 *sizep = sizeof(*status);
2284 return (true);
2285 }
2286
2287 static bool
__elfN(set_prstatus)2288 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2289 size_t size)
2290 {
2291 elf_prstatus_t *status;
2292
2293 KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2294 status = buf;
2295 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2296 set_regs32(td, &status->pr_reg);
2297 #else
2298 set_regs(td, &status->pr_reg);
2299 #endif
2300 return (true);
2301 }
2302
2303 static struct regset __elfN(regset_prstatus) = {
2304 .note = NT_PRSTATUS,
2305 .size = sizeof(elf_prstatus_t),
2306 .get = __elfN(get_prstatus),
2307 .set = __elfN(set_prstatus),
2308 };
2309 ELF_REGSET(__elfN(regset_prstatus));
2310
2311 static bool
__elfN(get_fpregset)2312 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2313 size_t *sizep)
2314 {
2315 elf_prfpregset_t *fpregset;
2316
2317 if (buf != NULL) {
2318 KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2319 __func__));
2320 fpregset = buf;
2321 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2322 fill_fpregs32(td, fpregset);
2323 #else
2324 fill_fpregs(td, fpregset);
2325 #endif
2326 }
2327 *sizep = sizeof(*fpregset);
2328 return (true);
2329 }
2330
2331 static bool
__elfN(set_fpregset)2332 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2333 size_t size)
2334 {
2335 elf_prfpregset_t *fpregset;
2336
2337 fpregset = buf;
2338 KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2339 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2340 set_fpregs32(td, fpregset);
2341 #else
2342 set_fpregs(td, fpregset);
2343 #endif
2344 return (true);
2345 }
2346
2347 static struct regset __elfN(regset_fpregset) = {
2348 .note = NT_FPREGSET,
2349 .size = sizeof(elf_prfpregset_t),
2350 .get = __elfN(get_fpregset),
2351 .set = __elfN(set_fpregset),
2352 };
2353 ELF_REGSET(__elfN(regset_fpregset));
2354
2355 static bool
__elfN(get_thrmisc)2356 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2357 size_t *sizep)
2358 {
2359 elf_thrmisc_t *thrmisc;
2360
2361 if (buf != NULL) {
2362 KASSERT(*sizep == sizeof(*thrmisc),
2363 ("%s: invalid size", __func__));
2364 thrmisc = buf;
2365 bzero(thrmisc, sizeof(*thrmisc));
2366 strcpy(thrmisc->pr_tname, td->td_name);
2367 }
2368 *sizep = sizeof(*thrmisc);
2369 return (true);
2370 }
2371
2372 static struct regset __elfN(regset_thrmisc) = {
2373 .note = NT_THRMISC,
2374 .size = sizeof(elf_thrmisc_t),
2375 .get = __elfN(get_thrmisc),
2376 };
2377 ELF_REGSET(__elfN(regset_thrmisc));
2378
2379 static bool
__elfN(get_lwpinfo)2380 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2381 size_t *sizep)
2382 {
2383 elf_lwpinfo_t pl;
2384 size_t size;
2385 int structsize;
2386
2387 size = sizeof(structsize) + sizeof(pl);
2388 if (buf != NULL) {
2389 KASSERT(*sizep == size, ("%s: invalid size", __func__));
2390 structsize = sizeof(pl);
2391 memcpy(buf, &structsize, sizeof(structsize));
2392 bzero(&pl, sizeof(pl));
2393 pl.pl_lwpid = td->td_tid;
2394 pl.pl_event = PL_EVENT_NONE;
2395 pl.pl_sigmask = td->td_sigmask;
2396 pl.pl_siglist = td->td_siglist;
2397 if (td->td_si.si_signo != 0) {
2398 pl.pl_event = PL_EVENT_SIGNAL;
2399 pl.pl_flags |= PL_FLAG_SI;
2400 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2401 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2402 #else
2403 pl.pl_siginfo = td->td_si;
2404 #endif
2405 }
2406 strcpy(pl.pl_tdname, td->td_name);
2407 /* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2408 memcpy((int *)buf + 1, &pl, sizeof(pl));
2409 }
2410 *sizep = size;
2411 return (true);
2412 }
2413
2414 static struct regset __elfN(regset_lwpinfo) = {
2415 .note = NT_PTLWPINFO,
2416 .size = sizeof(int) + sizeof(elf_lwpinfo_t),
2417 .get = __elfN(get_lwpinfo),
2418 };
2419 ELF_REGSET(__elfN(regset_lwpinfo));
2420
2421 static size_t
__elfN(prepare_register_notes)2422 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2423 struct thread *target_td)
2424 {
2425 struct sysentvec *sv = td->td_proc->p_sysent;
2426 struct regset **regsetp, **regset_end, *regset;
2427 size_t size;
2428
2429 size = 0;
2430
2431 if (target_td == td)
2432 cpu_update_pcb(target_td);
2433
2434 /* NT_PRSTATUS must be the first register set note. */
2435 size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2436 target_td);
2437
2438 regsetp = sv->sv_regset_begin;
2439 if (regsetp == NULL) {
2440 /* XXX: This shouldn't be true for any FreeBSD ABIs. */
2441 size += __elfN(register_regset_note)(td, list,
2442 &__elfN(regset_fpregset), target_td);
2443 return (size);
2444 }
2445 regset_end = sv->sv_regset_end;
2446 MPASS(regset_end != NULL);
2447 for (; regsetp < regset_end; regsetp++) {
2448 regset = *regsetp;
2449 if (regset->note == NT_PRSTATUS)
2450 continue;
2451 size += __elfN(register_regset_note)(td, list, regset,
2452 target_td);
2453 }
2454 return (size);
2455 }
2456
2457 /*
2458 * Allow for MD specific notes, as well as any MD
2459 * specific preparations for writing MI notes.
2460 */
2461 static void
__elfN(note_threadmd)2462 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2463 {
2464 struct thread *td;
2465 void *buf;
2466 size_t size;
2467
2468 td = (struct thread *)arg;
2469 size = *sizep;
2470 if (size != 0 && sb != NULL)
2471 buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2472 else
2473 buf = NULL;
2474 size = 0;
2475 __elfN(dump_thread)(td, buf, &size);
2476 KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2477 if (size != 0 && sb != NULL)
2478 sbuf_bcat(sb, buf, size);
2479 free(buf, M_TEMP);
2480 *sizep = size;
2481 }
2482
2483 #ifdef KINFO_PROC_SIZE
2484 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2485 #endif
2486
2487 static void
__elfN(note_procstat_proc)2488 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2489 {
2490 struct proc *p;
2491 size_t size;
2492 int structsize;
2493
2494 p = arg;
2495 size = sizeof(structsize) + p->p_numthreads *
2496 sizeof(elf_kinfo_proc_t);
2497
2498 if (sb != NULL) {
2499 KASSERT(*sizep == size, ("invalid size"));
2500 structsize = sizeof(elf_kinfo_proc_t);
2501 sbuf_bcat(sb, &structsize, sizeof(structsize));
2502 sx_slock(&proctree_lock);
2503 PROC_LOCK(p);
2504 kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2505 sx_sunlock(&proctree_lock);
2506 }
2507 *sizep = size;
2508 }
2509
2510 #ifdef KINFO_FILE_SIZE
2511 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2512 #endif
2513
2514 static void
note_procstat_files(void * arg,struct sbuf * sb,size_t * sizep)2515 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2516 {
2517 struct proc *p;
2518 size_t size, sect_sz, i;
2519 ssize_t start_len, sect_len;
2520 int structsize, filedesc_flags;
2521
2522 if (coredump_pack_fileinfo)
2523 filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2524 else
2525 filedesc_flags = 0;
2526
2527 p = arg;
2528 structsize = sizeof(struct kinfo_file);
2529 if (sb == NULL) {
2530 size = 0;
2531 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2532 sbuf_set_drain(sb, sbuf_count_drain, &size);
2533 sbuf_bcat(sb, &structsize, sizeof(structsize));
2534 PROC_LOCK(p);
2535 kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2536 sbuf_finish(sb);
2537 sbuf_delete(sb);
2538 *sizep = size;
2539 } else {
2540 sbuf_start_section(sb, &start_len);
2541
2542 sbuf_bcat(sb, &structsize, sizeof(structsize));
2543 PROC_LOCK(p);
2544 kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2545 filedesc_flags);
2546
2547 sect_len = sbuf_end_section(sb, start_len, 0, 0);
2548 if (sect_len < 0)
2549 return;
2550 sect_sz = sect_len;
2551
2552 KASSERT(sect_sz <= *sizep,
2553 ("kern_proc_filedesc_out did not respect maxlen; "
2554 "requested %zu, got %zu", *sizep - sizeof(structsize),
2555 sect_sz - sizeof(structsize)));
2556
2557 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2558 sbuf_putc(sb, 0);
2559 }
2560 }
2561
2562 #ifdef KINFO_VMENTRY_SIZE
2563 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2564 #endif
2565
2566 static void
note_procstat_vmmap(void * arg,struct sbuf * sb,size_t * sizep)2567 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2568 {
2569 struct proc *p;
2570 size_t size;
2571 int structsize, vmmap_flags;
2572
2573 if (coredump_pack_vmmapinfo)
2574 vmmap_flags = KERN_VMMAP_PACK_KINFO;
2575 else
2576 vmmap_flags = 0;
2577
2578 p = arg;
2579 structsize = sizeof(struct kinfo_vmentry);
2580 if (sb == NULL) {
2581 size = 0;
2582 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2583 sbuf_set_drain(sb, sbuf_count_drain, &size);
2584 sbuf_bcat(sb, &structsize, sizeof(structsize));
2585 PROC_LOCK(p);
2586 kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2587 sbuf_finish(sb);
2588 sbuf_delete(sb);
2589 *sizep = size;
2590 } else {
2591 sbuf_bcat(sb, &structsize, sizeof(structsize));
2592 PROC_LOCK(p);
2593 kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2594 vmmap_flags);
2595 }
2596 }
2597
2598 static void
note_procstat_groups(void * arg,struct sbuf * sb,size_t * sizep)2599 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2600 {
2601 struct proc *p;
2602 size_t size;
2603 int structsize;
2604
2605 p = arg;
2606 size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2607 if (sb != NULL) {
2608 KASSERT(*sizep == size, ("invalid size"));
2609 structsize = sizeof(gid_t);
2610 sbuf_bcat(sb, &structsize, sizeof(structsize));
2611 sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2612 sizeof(gid_t));
2613 }
2614 *sizep = size;
2615 }
2616
2617 static void
note_procstat_umask(void * arg,struct sbuf * sb,size_t * sizep)2618 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2619 {
2620 struct proc *p;
2621 size_t size;
2622 int structsize;
2623
2624 p = arg;
2625 size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2626 if (sb != NULL) {
2627 KASSERT(*sizep == size, ("invalid size"));
2628 structsize = sizeof(p->p_pd->pd_cmask);
2629 sbuf_bcat(sb, &structsize, sizeof(structsize));
2630 sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2631 }
2632 *sizep = size;
2633 }
2634
2635 static void
note_procstat_rlimit(void * arg,struct sbuf * sb,size_t * sizep)2636 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2637 {
2638 struct proc *p;
2639 struct rlimit rlim[RLIM_NLIMITS];
2640 size_t size;
2641 int structsize, i;
2642
2643 p = arg;
2644 size = sizeof(structsize) + sizeof(rlim);
2645 if (sb != NULL) {
2646 KASSERT(*sizep == size, ("invalid size"));
2647 structsize = sizeof(rlim);
2648 sbuf_bcat(sb, &structsize, sizeof(structsize));
2649 PROC_LOCK(p);
2650 for (i = 0; i < RLIM_NLIMITS; i++)
2651 lim_rlimit_proc(p, i, &rlim[i]);
2652 PROC_UNLOCK(p);
2653 sbuf_bcat(sb, rlim, sizeof(rlim));
2654 }
2655 *sizep = size;
2656 }
2657
2658 static void
note_procstat_osrel(void * arg,struct sbuf * sb,size_t * sizep)2659 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2660 {
2661 struct proc *p;
2662 size_t size;
2663 int structsize;
2664
2665 p = arg;
2666 size = sizeof(structsize) + sizeof(p->p_osrel);
2667 if (sb != NULL) {
2668 KASSERT(*sizep == size, ("invalid size"));
2669 structsize = sizeof(p->p_osrel);
2670 sbuf_bcat(sb, &structsize, sizeof(structsize));
2671 sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2672 }
2673 *sizep = size;
2674 }
2675
2676 static void
__elfN(note_procstat_psstrings)2677 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2678 {
2679 struct proc *p;
2680 elf_ps_strings_t ps_strings;
2681 size_t size;
2682 int structsize;
2683
2684 p = arg;
2685 size = sizeof(structsize) + sizeof(ps_strings);
2686 if (sb != NULL) {
2687 KASSERT(*sizep == size, ("invalid size"));
2688 structsize = sizeof(ps_strings);
2689 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2690 ps_strings = PTROUT(PROC_PS_STRINGS(p));
2691 #else
2692 ps_strings = PROC_PS_STRINGS(p);
2693 #endif
2694 sbuf_bcat(sb, &structsize, sizeof(structsize));
2695 sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2696 }
2697 *sizep = size;
2698 }
2699
2700 static void
__elfN(note_procstat_auxv)2701 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2702 {
2703 struct proc *p;
2704 size_t size;
2705 int structsize;
2706
2707 p = arg;
2708 if (sb == NULL) {
2709 size = 0;
2710 sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2711 SBUF_FIXEDLEN);
2712 sbuf_set_drain(sb, sbuf_count_drain, &size);
2713 sbuf_bcat(sb, &structsize, sizeof(structsize));
2714 PHOLD(p);
2715 proc_getauxv(curthread, p, sb);
2716 PRELE(p);
2717 sbuf_finish(sb);
2718 sbuf_delete(sb);
2719 *sizep = size;
2720 } else {
2721 structsize = sizeof(Elf_Auxinfo);
2722 sbuf_bcat(sb, &structsize, sizeof(structsize));
2723 PHOLD(p);
2724 proc_getauxv(curthread, p, sb);
2725 PRELE(p);
2726 }
2727 }
2728
2729 static void
__elfN(note_procstat_kqueues)2730 __elfN(note_procstat_kqueues)(void *arg, struct sbuf *sb, size_t *sizep)
2731 {
2732 struct proc *p;
2733 size_t size, sect_sz, i;
2734 ssize_t start_len, sect_len;
2735 int structsize;
2736 bool compat32;
2737
2738 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2739 compat32 = true;
2740 structsize = sizeof(struct kinfo_knote32);
2741 #else
2742 compat32 = false;
2743 structsize = sizeof(struct kinfo_knote);
2744 #endif
2745 p = arg;
2746 if (sb == NULL) {
2747 size = 0;
2748 sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2749 sbuf_set_drain(sb, sbuf_count_drain, &size);
2750 sbuf_bcat(sb, &structsize, sizeof(structsize));
2751 kern_proc_kqueues_out(p, sb, -1, compat32);
2752 sbuf_finish(sb);
2753 sbuf_delete(sb);
2754 *sizep = size;
2755 } else {
2756 sbuf_start_section(sb, &start_len);
2757
2758 sbuf_bcat(sb, &structsize, sizeof(structsize));
2759 kern_proc_kqueues_out(p, sb, *sizep - sizeof(structsize),
2760 compat32);
2761
2762 sect_len = sbuf_end_section(sb, start_len, 0, 0);
2763 if (sect_len < 0)
2764 return;
2765 sect_sz = sect_len;
2766
2767 KASSERT(sect_sz <= *sizep,
2768 ("kern_proc_kqueue_out did not respect maxlen; "
2769 "requested %zu, got %zu", *sizep - sizeof(structsize),
2770 sect_sz - sizeof(structsize)));
2771
2772 for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2773 sbuf_putc(sb, 0);
2774 }
2775 }
2776
2777 #define MAX_NOTES_LOOP 4096
2778 bool
__elfN(parse_notes)2779 __elfN(parse_notes)(const struct image_params *imgp, const Elf_Note *checknote,
2780 const char *note_vendor, const Elf_Phdr *pnote,
2781 bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2782 {
2783 const Elf_Note *note, *note0, *note_end;
2784 const char *note_name;
2785 char *buf;
2786 int i, error;
2787 bool res;
2788
2789 /* We need some limit, might as well use PAGE_SIZE. */
2790 if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2791 return (false);
2792 ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2793 if (pnote->p_offset > PAGE_SIZE ||
2794 pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2795 buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2796 if (buf == NULL) {
2797 VOP_UNLOCK(imgp->vp);
2798 buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2799 vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2800 }
2801 error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2802 pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2803 curthread->td_ucred, NOCRED, NULL, curthread);
2804 if (error != 0) {
2805 uprintf("i/o error PT_NOTE\n");
2806 goto retf;
2807 }
2808 note = note0 = (const Elf_Note *)buf;
2809 note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2810 } else {
2811 note = note0 = (const Elf_Note *)(imgp->image_header +
2812 pnote->p_offset);
2813 note_end = (const Elf_Note *)(imgp->image_header +
2814 pnote->p_offset + pnote->p_filesz);
2815 buf = NULL;
2816 }
2817 for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end;
2818 i++) {
2819 if (!aligned(note, Elf32_Addr)) {
2820 uprintf("Unaligned ELF note\n");
2821 goto retf;
2822 }
2823 if ((const char *)note_end - (const char *)note <
2824 sizeof(Elf_Note)) {
2825 uprintf("ELF note to short\n");
2826 goto retf;
2827 }
2828 if (note->n_namesz != checknote->n_namesz ||
2829 note->n_descsz != checknote->n_descsz ||
2830 note->n_type != checknote->n_type)
2831 goto nextnote;
2832 note_name = (const char *)(note + 1);
2833 if (note_name + checknote->n_namesz >=
2834 (const char *)note_end || strncmp(note_vendor,
2835 note_name, checknote->n_namesz) != 0)
2836 goto nextnote;
2837
2838 if (cb(note, cb_arg, &res))
2839 goto ret;
2840 nextnote:
2841 note = (const Elf_Note *)((const char *)(note + 1) +
2842 roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2843 roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2844 }
2845 if (i >= MAX_NOTES_LOOP)
2846 uprintf("ELF note parser reached %d notes\n", i);
2847 retf:
2848 res = false;
2849 ret:
2850 free(buf, M_TEMP);
2851 return (res);
2852 }
2853
2854 struct brandnote_cb_arg {
2855 Elf_Brandnote *brandnote;
2856 int32_t *osrel;
2857 };
2858
2859 static bool
brandnote_cb(const Elf_Note * note,void * arg0,bool * res)2860 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2861 {
2862 struct brandnote_cb_arg *arg;
2863
2864 arg = arg0;
2865
2866 /*
2867 * Fetch the osreldate for binary from the ELF OSABI-note if
2868 * necessary.
2869 */
2870 *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2871 arg->brandnote->trans_osrel != NULL ?
2872 arg->brandnote->trans_osrel(note, arg->osrel) : true;
2873
2874 return (true);
2875 }
2876
2877 static Elf_Note fctl_note = {
2878 .n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2879 .n_descsz = sizeof(uint32_t),
2880 .n_type = NT_FREEBSD_FEATURE_CTL,
2881 };
2882
2883 struct fctl_cb_arg {
2884 bool *has_fctl0;
2885 uint32_t *fctl0;
2886 };
2887
2888 static bool
note_fctl_cb(const Elf_Note * note,void * arg0,bool * res)2889 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2890 {
2891 struct fctl_cb_arg *arg;
2892 const Elf32_Word *desc;
2893 uintptr_t p;
2894
2895 arg = arg0;
2896 p = (uintptr_t)(note + 1);
2897 p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2898 desc = (const Elf32_Word *)p;
2899 *arg->has_fctl0 = true;
2900 *arg->fctl0 = desc[0];
2901 *res = true;
2902 return (true);
2903 }
2904
2905 /*
2906 * Try to find the appropriate ABI-note section for checknote, fetch
2907 * the osreldate and feature control flags for binary from the ELF
2908 * OSABI-note. Only the first page of the image is searched, the same
2909 * as for headers.
2910 */
2911 static bool
__elfN(check_note)2912 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2913 int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2914 {
2915 const Elf_Phdr *phdr;
2916 const Elf_Ehdr *hdr;
2917 struct brandnote_cb_arg b_arg;
2918 struct fctl_cb_arg f_arg;
2919 int i, j;
2920
2921 hdr = (const Elf_Ehdr *)imgp->image_header;
2922 phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2923 b_arg.brandnote = brandnote;
2924 b_arg.osrel = osrel;
2925 f_arg.has_fctl0 = has_fctl0;
2926 f_arg.fctl0 = fctl0;
2927
2928 for (i = 0; i < hdr->e_phnum; i++) {
2929 if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2930 &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2931 &b_arg)) {
2932 for (j = 0; j < hdr->e_phnum; j++) {
2933 if (phdr[j].p_type == PT_NOTE &&
2934 __elfN(parse_notes)(imgp, &fctl_note,
2935 FREEBSD_ABI_VENDOR, &phdr[j],
2936 note_fctl_cb, &f_arg))
2937 break;
2938 }
2939 return (true);
2940 }
2941 }
2942 return (false);
2943
2944 }
2945
2946 /*
2947 * Tell kern_execve.c about it, with a little help from the linker.
2948 */
2949 static struct execsw __elfN(execsw) = {
2950 .ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2951 .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2952 };
2953 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2954
2955 static vm_prot_t
__elfN(trans_prot)2956 __elfN(trans_prot)(Elf_Word flags)
2957 {
2958 vm_prot_t prot;
2959
2960 prot = 0;
2961 if (flags & PF_X)
2962 prot |= VM_PROT_EXECUTE;
2963 if (flags & PF_W)
2964 prot |= VM_PROT_WRITE;
2965 if (flags & PF_R)
2966 prot |= VM_PROT_READ;
2967 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2968 if (i386_read_exec && (flags & PF_R))
2969 prot |= VM_PROT_EXECUTE;
2970 #endif
2971 return (prot);
2972 }
2973
2974 static Elf_Word
__elfN(untrans_prot)2975 __elfN(untrans_prot)(vm_prot_t prot)
2976 {
2977 Elf_Word flags;
2978
2979 flags = 0;
2980 if (prot & VM_PROT_EXECUTE)
2981 flags |= PF_X;
2982 if (prot & VM_PROT_READ)
2983 flags |= PF_R;
2984 if (prot & VM_PROT_WRITE)
2985 flags |= PF_W;
2986 return (flags);
2987 }
2988