xref: /freebsd/sys/kern/imgact_elf.c (revision 85007872d1227006adf2ce119fe30de856cbe12d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2000-2001, 2003 David O'Brien
6  * Copyright (c) 1995-1996 Søren Schmidt
7  * Copyright (c) 1996 Peter Wemm
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer
15  *    in this position and unchanged.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "opt_capsicum.h"
35 
36 #include <sys/param.h>
37 #include <sys/capsicum.h>
38 #include <sys/compressor.h>
39 #include <sys/exec.h>
40 #include <sys/fcntl.h>
41 #include <sys/imgact.h>
42 #include <sys/imgact_elf.h>
43 #include <sys/jail.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mman.h>
49 #include <sys/namei.h>
50 #include <sys/proc.h>
51 #include <sys/procfs.h>
52 #include <sys/ptrace.h>
53 #include <sys/racct.h>
54 #include <sys/reg.h>
55 #include <sys/resourcevar.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sf_buf.h>
59 #include <sys/smp.h>
60 #include <sys/systm.h>
61 #include <sys/signalvar.h>
62 #include <sys/stat.h>
63 #include <sys/sx.h>
64 #include <sys/syscall.h>
65 #include <sys/sysctl.h>
66 #include <sys/sysent.h>
67 #include <sys/vnode.h>
68 #include <sys/syslog.h>
69 #include <sys/eventhandler.h>
70 #include <sys/user.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_param.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_object.h>
78 #include <vm/vm_extern.h>
79 
80 #include <machine/elf.h>
81 #include <machine/md_var.h>
82 
83 #define ELF_NOTE_ROUNDSIZE	4
84 #define OLD_EI_BRAND	8
85 
86 static int __elfN(check_header)(const Elf_Ehdr *hdr);
87 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
88     const char *interp, int32_t *osrel, uint32_t *fctl0);
89 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
90     u_long *entry);
91 static int __elfN(load_section)(const struct image_params *imgp,
92     vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
93     vm_prot_t prot);
94 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
95 static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
96     int32_t *osrel);
97 static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
98 static bool __elfN(check_note)(struct image_params *imgp,
99     Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
100     uint32_t *fctl0);
101 static vm_prot_t __elfN(trans_prot)(Elf_Word);
102 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
103 static size_t __elfN(prepare_register_notes)(struct thread *td,
104     struct note_info_list *list, struct thread *target_td);
105 
106 SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE),
107     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
108     "");
109 
110 int __elfN(fallback_brand) = -1;
111 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
112     fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
113     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort");
114 
115 static int elf_legacy_coredump = 0;
116 SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
117     &elf_legacy_coredump, 0,
118     "include all and only RW pages in core dumps");
119 
120 int __elfN(nxstack) =
121 #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
122     defined(__arm__) || defined(__aarch64__) || \
123     defined(__riscv)
124 	1;
125 #else
126 	0;
127 #endif
128 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
129     nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
130     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": support PT_GNU_STACK for non-executable stack control");
131 
132 #if defined(__amd64__)
133 static int __elfN(vdso) = 1;
134 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO,
135     vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
136     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable vdso preloading");
137 #else
138 static int __elfN(vdso) = 0;
139 #endif
140 
141 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
142 int i386_read_exec = 0;
143 SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
144     "enable execution from readable segments");
145 #endif
146 
147 static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
148 static int
sysctl_pie_base(SYSCTL_HANDLER_ARGS)149 sysctl_pie_base(SYSCTL_HANDLER_ARGS)
150 {
151 	u_long val;
152 	int error;
153 
154 	val = __elfN(pie_base);
155 	error = sysctl_handle_long(oidp, &val, 0, req);
156 	if (error != 0 || req->newptr == NULL)
157 		return (error);
158 	if ((val & PAGE_MASK) != 0)
159 		return (EINVAL);
160 	__elfN(pie_base) = val;
161 	return (0);
162 }
163 SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base,
164     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
165     sysctl_pie_base, "LU",
166     "PIE load base without randomization");
167 
168 SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr,
169     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
170     "");
171 #define	ASLR_NODE_OID	__CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr)
172 
173 /*
174  * Enable ASLR by default for 64-bit non-PIE binaries.  32-bit architectures
175  * have limited address space (which can cause issues for applications with
176  * high memory use) so we leave it off there.
177  */
178 static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
179 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
180     &__elfN(aslr_enabled), 0,
181     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
182     ": enable address map randomization");
183 
184 /*
185  * Enable ASLR by default for 64-bit PIE binaries.
186  */
187 static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
188 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
189     &__elfN(pie_aslr_enabled), 0,
190     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
191     ": enable address map randomization for PIE binaries");
192 
193 /*
194  * Sbrk is deprecated and it can be assumed that in most cases it will not be
195  * used anyway. This setting is valid only with ASLR enabled, and allows ASLR
196  * to use the bss grow region.
197  */
198 static int __elfN(aslr_honor_sbrk) = 0;
199 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
200     &__elfN(aslr_honor_sbrk), 0,
201     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used");
202 
203 static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64;
204 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
205     &__elfN(aslr_stack), 0,
206     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
207     ": enable stack address randomization");
208 
209 static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
210 SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
211     &__elfN(aslr_shared_page), 0,
212     __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
213     ": enable shared page address randomization");
214 
215 static int __elfN(sigfastblock) = 1;
216 SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock,
217     CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
218     "enable sigfastblock for new processes");
219 
220 static bool __elfN(allow_wx) = true;
221 SYSCTL_BOOL(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, allow_wx,
222     CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
223     "Allow pages to be mapped simultaneously writable and executable");
224 
225 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
226 
227 #define	aligned(a, t)	(rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
228 
229 Elf_Brandnote __elfN(freebsd_brandnote) = {
230 	.hdr.n_namesz	= sizeof(FREEBSD_ABI_VENDOR),
231 	.hdr.n_descsz	= sizeof(int32_t),
232 	.hdr.n_type	= NT_FREEBSD_ABI_TAG,
233 	.vendor		= FREEBSD_ABI_VENDOR,
234 	.flags		= BN_TRANSLATE_OSREL,
235 	.trans_osrel	= __elfN(freebsd_trans_osrel)
236 };
237 
238 static bool
__elfN(freebsd_trans_osrel)239 __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
240 {
241 	uintptr_t p;
242 
243 	p = (uintptr_t)(note + 1);
244 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
245 	*osrel = *(const int32_t *)(p);
246 
247 	return (true);
248 }
249 
250 static int GNU_KFREEBSD_ABI_DESC = 3;
251 
252 Elf_Brandnote __elfN(kfreebsd_brandnote) = {
253 	.hdr.n_namesz	= sizeof(GNU_ABI_VENDOR),
254 	.hdr.n_descsz	= 16,	/* XXX at least 16 */
255 	.hdr.n_type	= 1,
256 	.vendor		= GNU_ABI_VENDOR,
257 	.flags		= BN_TRANSLATE_OSREL,
258 	.trans_osrel	= kfreebsd_trans_osrel
259 };
260 
261 static bool
kfreebsd_trans_osrel(const Elf_Note * note,int32_t * osrel)262 kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
263 {
264 	const Elf32_Word *desc;
265 	uintptr_t p;
266 
267 	p = (uintptr_t)(note + 1);
268 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
269 
270 	desc = (const Elf32_Word *)p;
271 	if (desc[0] != GNU_KFREEBSD_ABI_DESC)
272 		return (false);
273 
274 	/*
275 	 * Debian GNU/kFreeBSD embed the earliest compatible kernel version
276 	 * (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
277 	 */
278 	*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
279 
280 	return (true);
281 }
282 
283 int
__elfN(insert_brand_entry)284 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
285 {
286 	int i;
287 
288 	for (i = 0; i < MAX_BRANDS; i++) {
289 		if (elf_brand_list[i] == NULL) {
290 			elf_brand_list[i] = entry;
291 			break;
292 		}
293 	}
294 	if (i == MAX_BRANDS) {
295 		printf("WARNING: %s: could not insert brandinfo entry: %p\n",
296 			__func__, entry);
297 		return (-1);
298 	}
299 	return (0);
300 }
301 
302 int
__elfN(remove_brand_entry)303 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
304 {
305 	int i;
306 
307 	for (i = 0; i < MAX_BRANDS; i++) {
308 		if (elf_brand_list[i] == entry) {
309 			elf_brand_list[i] = NULL;
310 			break;
311 		}
312 	}
313 	if (i == MAX_BRANDS)
314 		return (-1);
315 	return (0);
316 }
317 
318 bool
__elfN(brand_inuse)319 __elfN(brand_inuse)(Elf_Brandinfo *entry)
320 {
321 	struct proc *p;
322 	bool rval = false;
323 
324 	sx_slock(&allproc_lock);
325 	FOREACH_PROC_IN_SYSTEM(p) {
326 		if (p->p_sysent == entry->sysvec) {
327 			rval = true;
328 			break;
329 		}
330 	}
331 	sx_sunlock(&allproc_lock);
332 
333 	return (rval);
334 }
335 
336 static Elf_Brandinfo *
__elfN(get_brandinfo)337 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
338     int32_t *osrel, uint32_t *fctl0)
339 {
340 	const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
341 	Elf_Brandinfo *bi, *bi_m;
342 	bool ret, has_fctl0;
343 	int i, interp_name_len;
344 
345 	interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
346 
347 	/*
348 	 * We support four types of branding -- (1) the ELF EI_OSABI field
349 	 * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
350 	 * branding w/in the ELF header, (3) path of the `interp_path'
351 	 * field, and (4) the ".note.ABI-tag" ELF section.
352 	 */
353 
354 	/* Look for an ".note.ABI-tag" ELF section */
355 	bi_m = NULL;
356 	for (i = 0; i < MAX_BRANDS; i++) {
357 		bi = elf_brand_list[i];
358 		if (bi == NULL)
359 			continue;
360 		if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
361 			continue;
362 		if (hdr->e_machine == bi->machine && (bi->flags &
363 		    (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
364 			has_fctl0 = false;
365 			*fctl0 = 0;
366 			*osrel = 0;
367 			ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
368 			    &has_fctl0, fctl0);
369 			/* Give brand a chance to veto check_note's guess */
370 			if (ret && bi->header_supported) {
371 				ret = bi->header_supported(imgp, osrel,
372 				    has_fctl0 ? fctl0 : NULL);
373 			}
374 			/*
375 			 * If note checker claimed the binary, but the
376 			 * interpreter path in the image does not
377 			 * match default one for the brand, try to
378 			 * search for other brands with the same
379 			 * interpreter.  Either there is better brand
380 			 * with the right interpreter, or, failing
381 			 * this, we return first brand which accepted
382 			 * our note and, optionally, header.
383 			 */
384 			if (ret && bi_m == NULL && interp != NULL &&
385 			    (bi->interp_path == NULL ||
386 			    (strlen(bi->interp_path) + 1 != interp_name_len ||
387 			    strncmp(interp, bi->interp_path, interp_name_len)
388 			    != 0))) {
389 				bi_m = bi;
390 				ret = 0;
391 			}
392 			if (ret)
393 				return (bi);
394 		}
395 	}
396 	if (bi_m != NULL)
397 		return (bi_m);
398 
399 	/* If the executable has a brand, search for it in the brand list. */
400 	for (i = 0; i < MAX_BRANDS; i++) {
401 		bi = elf_brand_list[i];
402 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
403 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
404 			continue;
405 		if (hdr->e_machine == bi->machine &&
406 		    (hdr->e_ident[EI_OSABI] == bi->brand ||
407 		    (bi->compat_3_brand != NULL &&
408 		    strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
409 		    bi->compat_3_brand) == 0))) {
410 			/* Looks good, but give brand a chance to veto */
411 			if (bi->header_supported == NULL ||
412 			    bi->header_supported(imgp, NULL, NULL)) {
413 				/*
414 				 * Again, prefer strictly matching
415 				 * interpreter path.
416 				 */
417 				if (interp_name_len == 0 &&
418 				    bi->interp_path == NULL)
419 					return (bi);
420 				if (bi->interp_path != NULL &&
421 				    strlen(bi->interp_path) + 1 ==
422 				    interp_name_len && strncmp(interp,
423 				    bi->interp_path, interp_name_len) == 0)
424 					return (bi);
425 				if (bi_m == NULL)
426 					bi_m = bi;
427 			}
428 		}
429 	}
430 	if (bi_m != NULL)
431 		return (bi_m);
432 
433 	/* No known brand, see if the header is recognized by any brand */
434 	for (i = 0; i < MAX_BRANDS; i++) {
435 		bi = elf_brand_list[i];
436 		if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
437 		    bi->header_supported == NULL)
438 			continue;
439 		if (hdr->e_machine == bi->machine) {
440 			ret = bi->header_supported(imgp, NULL, NULL);
441 			if (ret)
442 				return (bi);
443 		}
444 	}
445 
446 	/* Lacking a known brand, search for a recognized interpreter. */
447 	if (interp != NULL) {
448 		for (i = 0; i < MAX_BRANDS; i++) {
449 			bi = elf_brand_list[i];
450 			if (bi == NULL || (bi->flags &
451 			    (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
452 			    != 0)
453 				continue;
454 			if (hdr->e_machine == bi->machine &&
455 			    bi->interp_path != NULL &&
456 			    /* ELF image p_filesz includes terminating zero */
457 			    strlen(bi->interp_path) + 1 == interp_name_len &&
458 			    strncmp(interp, bi->interp_path, interp_name_len)
459 			    == 0 && (bi->header_supported == NULL ||
460 			    bi->header_supported(imgp, NULL, NULL)))
461 				return (bi);
462 		}
463 	}
464 
465 	/* Lacking a recognized interpreter, try the default brand */
466 	for (i = 0; i < MAX_BRANDS; i++) {
467 		bi = elf_brand_list[i];
468 		if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
469 		    (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
470 			continue;
471 		if (hdr->e_machine == bi->machine &&
472 		    __elfN(fallback_brand) == bi->brand &&
473 		    (bi->header_supported == NULL ||
474 		    bi->header_supported(imgp, NULL, NULL)))
475 			return (bi);
476 	}
477 	return (NULL);
478 }
479 
480 static bool
__elfN(phdr_in_zero_page)481 __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
482 {
483 	return (hdr->e_phoff <= PAGE_SIZE &&
484 	    (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
485 }
486 
487 static int
__elfN(check_header)488 __elfN(check_header)(const Elf_Ehdr *hdr)
489 {
490 	Elf_Brandinfo *bi;
491 	int i;
492 
493 	if (!IS_ELF(*hdr) ||
494 	    hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
495 	    hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
496 	    hdr->e_ident[EI_VERSION] != EV_CURRENT ||
497 	    hdr->e_phentsize != sizeof(Elf_Phdr) ||
498 	    hdr->e_version != ELF_TARG_VER)
499 		return (ENOEXEC);
500 
501 	/*
502 	 * Make sure we have at least one brand for this machine.
503 	 */
504 
505 	for (i = 0; i < MAX_BRANDS; i++) {
506 		bi = elf_brand_list[i];
507 		if (bi != NULL && bi->machine == hdr->e_machine)
508 			break;
509 	}
510 	if (i == MAX_BRANDS)
511 		return (ENOEXEC);
512 
513 	return (0);
514 }
515 
516 static int
__elfN(map_partial)517 __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
518     vm_offset_t start, vm_offset_t end, vm_prot_t prot)
519 {
520 	struct sf_buf *sf;
521 	int error;
522 	vm_offset_t off;
523 
524 	/*
525 	 * Create the page if it doesn't exist yet. Ignore errors.
526 	 */
527 	vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
528 	    trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
529 
530 	/*
531 	 * Find the page from the underlying object.
532 	 */
533 	if (object != NULL) {
534 		sf = vm_imgact_map_page(object, offset);
535 		if (sf == NULL)
536 			return (KERN_FAILURE);
537 		off = offset - trunc_page(offset);
538 		error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
539 		    end - start);
540 		vm_imgact_unmap_page(sf);
541 		if (error != 0)
542 			return (KERN_FAILURE);
543 	}
544 
545 	return (KERN_SUCCESS);
546 }
547 
548 static int
__elfN(map_insert)549 __elfN(map_insert)(const struct image_params *imgp, vm_map_t map,
550     vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
551     vm_prot_t prot, int cow)
552 {
553 	struct sf_buf *sf;
554 	vm_offset_t off;
555 	vm_size_t sz;
556 	int error, locked, rv;
557 
558 	if (start != trunc_page(start)) {
559 		rv = __elfN(map_partial)(map, object, offset, start,
560 		    round_page(start), prot);
561 		if (rv != KERN_SUCCESS)
562 			return (rv);
563 		offset += round_page(start) - start;
564 		start = round_page(start);
565 	}
566 	if (end != round_page(end)) {
567 		rv = __elfN(map_partial)(map, object, offset +
568 		    trunc_page(end) - start, trunc_page(end), end, prot);
569 		if (rv != KERN_SUCCESS)
570 			return (rv);
571 		end = trunc_page(end);
572 	}
573 	if (start >= end)
574 		return (KERN_SUCCESS);
575 	if ((offset & PAGE_MASK) != 0) {
576 		/*
577 		 * The mapping is not page aligned.  This means that we have
578 		 * to copy the data.
579 		 */
580 		rv = vm_map_fixed(map, NULL, 0, start, end - start,
581 		    prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
582 		if (rv != KERN_SUCCESS)
583 			return (rv);
584 		if (object == NULL)
585 			return (KERN_SUCCESS);
586 		for (; start < end; start += sz) {
587 			sf = vm_imgact_map_page(object, offset);
588 			if (sf == NULL)
589 				return (KERN_FAILURE);
590 			off = offset - trunc_page(offset);
591 			sz = end - start;
592 			if (sz > PAGE_SIZE - off)
593 				sz = PAGE_SIZE - off;
594 			error = copyout((caddr_t)sf_buf_kva(sf) + off,
595 			    (caddr_t)start, sz);
596 			vm_imgact_unmap_page(sf);
597 			if (error != 0)
598 				return (KERN_FAILURE);
599 			offset += sz;
600 		}
601 	} else {
602 		vm_object_reference(object);
603 		rv = vm_map_fixed(map, object, offset, start, end - start,
604 		    prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
605 		    (object != NULL ? MAP_VN_EXEC : 0));
606 		if (rv != KERN_SUCCESS) {
607 			locked = VOP_ISLOCKED(imgp->vp);
608 			VOP_UNLOCK(imgp->vp);
609 			vm_object_deallocate(object);
610 			vn_lock(imgp->vp, locked | LK_RETRY);
611 			return (rv);
612 		} else if (object != NULL) {
613 			MPASS(imgp->vp->v_object == object);
614 			VOP_SET_TEXT_CHECKED(imgp->vp);
615 		}
616 	}
617 	return (KERN_SUCCESS);
618 }
619 
620 static int
__elfN(load_section)621 __elfN(load_section)(const struct image_params *imgp, vm_ooffset_t offset,
622     caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
623 {
624 	struct sf_buf *sf;
625 	size_t map_len;
626 	vm_map_t map;
627 	vm_object_t object;
628 	vm_offset_t map_addr;
629 	int error, rv, cow;
630 	size_t copy_len;
631 	vm_ooffset_t file_addr;
632 
633 	/*
634 	 * It's necessary to fail if the filsz + offset taken from the
635 	 * header is greater than the actual file pager object's size.
636 	 * If we were to allow this, then the vm_map_find() below would
637 	 * walk right off the end of the file object and into the ether.
638 	 *
639 	 * While I'm here, might as well check for something else that
640 	 * is invalid: filsz cannot be greater than memsz.
641 	 */
642 	if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
643 	    filsz > memsz) {
644 		uprintf("elf_load_section: truncated ELF file\n");
645 		return (ENOEXEC);
646 	}
647 
648 	object = imgp->object;
649 	map = &imgp->proc->p_vmspace->vm_map;
650 	map_addr = trunc_page((vm_offset_t)vmaddr);
651 	file_addr = trunc_page(offset);
652 
653 	/*
654 	 * We have two choices.  We can either clear the data in the last page
655 	 * of an oversized mapping, or we can start the anon mapping a page
656 	 * early and copy the initialized data into that first page.  We
657 	 * choose the second.
658 	 */
659 	if (filsz == 0)
660 		map_len = 0;
661 	else if (memsz > filsz)
662 		map_len = trunc_page(offset + filsz) - file_addr;
663 	else
664 		map_len = round_page(offset + filsz) - file_addr;
665 
666 	if (map_len != 0) {
667 		/* cow flags: don't dump readonly sections in core */
668 		cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
669 		    (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
670 
671 		rv = __elfN(map_insert)(imgp, map, object, file_addr,
672 		    map_addr, map_addr + map_len, prot, cow);
673 		if (rv != KERN_SUCCESS)
674 			return (EINVAL);
675 
676 		/* we can stop now if we've covered it all */
677 		if (memsz == filsz)
678 			return (0);
679 	}
680 
681 	/*
682 	 * We have to get the remaining bit of the file into the first part
683 	 * of the oversized map segment.  This is normally because the .data
684 	 * segment in the file is extended to provide bss.  It's a neat idea
685 	 * to try and save a page, but it's a pain in the behind to implement.
686 	 */
687 	copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
688 	    filsz);
689 	map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
690 	map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
691 
692 	/* This had damn well better be true! */
693 	if (map_len != 0) {
694 		rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
695 		    map_addr + map_len, prot, 0);
696 		if (rv != KERN_SUCCESS)
697 			return (EINVAL);
698 	}
699 
700 	if (copy_len != 0) {
701 		sf = vm_imgact_map_page(object, offset + filsz);
702 		if (sf == NULL)
703 			return (EIO);
704 
705 		/* send the page fragment to user space */
706 		error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
707 		    copy_len);
708 		vm_imgact_unmap_page(sf);
709 		if (error != 0)
710 			return (error);
711 	}
712 
713 	/*
714 	 * Remove write access to the page if it was only granted by map_insert
715 	 * to allow copyout.
716 	 */
717 	if ((prot & VM_PROT_WRITE) == 0)
718 		vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
719 		    map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
720 
721 	return (0);
722 }
723 
724 static int
__elfN(load_sections)725 __elfN(load_sections)(const struct image_params *imgp, const Elf_Ehdr *hdr,
726     const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
727 {
728 	vm_prot_t prot;
729 	u_long base_addr;
730 	bool first;
731 	int error, i;
732 
733 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
734 
735 	base_addr = 0;
736 	first = true;
737 
738 	for (i = 0; i < hdr->e_phnum; i++) {
739 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
740 			continue;
741 
742 		/* Loadable segment */
743 		prot = __elfN(trans_prot)(phdr[i].p_flags);
744 		error = __elfN(load_section)(imgp, phdr[i].p_offset,
745 		    (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
746 		    phdr[i].p_memsz, phdr[i].p_filesz, prot);
747 		if (error != 0)
748 			return (error);
749 
750 		/*
751 		 * Establish the base address if this is the first segment.
752 		 */
753 		if (first) {
754   			base_addr = trunc_page(phdr[i].p_vaddr + rbase);
755 			first = false;
756 		}
757 	}
758 
759 	if (base_addrp != NULL)
760 		*base_addrp = base_addr;
761 
762 	return (0);
763 }
764 
765 /*
766  * Load the file "file" into memory.  It may be either a shared object
767  * or an executable.
768  *
769  * The "addr" reference parameter is in/out.  On entry, it specifies
770  * the address where a shared object should be loaded.  If the file is
771  * an executable, this value is ignored.  On exit, "addr" specifies
772  * where the file was actually loaded.
773  *
774  * The "entry" reference parameter is out only.  On exit, it specifies
775  * the entry point for the loaded file.
776  */
777 static int
__elfN(load_file)778 __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
779 	u_long *entry)
780 {
781 	struct {
782 		struct nameidata nd;
783 		struct vattr attr;
784 		struct image_params image_params;
785 	} *tempdata;
786 	const Elf_Ehdr *hdr = NULL;
787 	const Elf_Phdr *phdr = NULL;
788 	struct nameidata *nd;
789 	struct vattr *attr;
790 	struct image_params *imgp;
791 	u_long rbase;
792 	u_long base_addr = 0;
793 	int error;
794 
795 #ifdef CAPABILITY_MODE
796 	/*
797 	 * XXXJA: This check can go away once we are sufficiently confident
798 	 * that the checks in namei() are correct.
799 	 */
800 	if (IN_CAPABILITY_MODE(curthread))
801 		return (ECAPMODE);
802 #endif
803 
804 	tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
805 	nd = &tempdata->nd;
806 	attr = &tempdata->attr;
807 	imgp = &tempdata->image_params;
808 
809 	/*
810 	 * Initialize part of the common data
811 	 */
812 	imgp->proc = p;
813 	imgp->attr = attr;
814 
815 	NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
816 	    UIO_SYSSPACE, file);
817 	if ((error = namei(nd)) != 0) {
818 		nd->ni_vp = NULL;
819 		goto fail;
820 	}
821 	NDFREE_PNBUF(nd);
822 	imgp->vp = nd->ni_vp;
823 
824 	/*
825 	 * Check permissions, modes, uid, etc on the file, and "open" it.
826 	 */
827 	error = exec_check_permissions(imgp);
828 	if (error)
829 		goto fail;
830 
831 	error = exec_map_first_page(imgp);
832 	if (error)
833 		goto fail;
834 
835 	imgp->object = nd->ni_vp->v_object;
836 
837 	hdr = (const Elf_Ehdr *)imgp->image_header;
838 	if ((error = __elfN(check_header)(hdr)) != 0)
839 		goto fail;
840 	if (hdr->e_type == ET_DYN)
841 		rbase = *addr;
842 	else if (hdr->e_type == ET_EXEC)
843 		rbase = 0;
844 	else {
845 		error = ENOEXEC;
846 		goto fail;
847 	}
848 
849 	/* Only support headers that fit within first page for now      */
850 	if (!__elfN(phdr_in_zero_page)(hdr)) {
851 		error = ENOEXEC;
852 		goto fail;
853 	}
854 
855 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
856 	if (!aligned(phdr, Elf_Addr)) {
857 		error = ENOEXEC;
858 		goto fail;
859 	}
860 
861 	error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
862 	if (error != 0)
863 		goto fail;
864 
865 	if (p->p_sysent->sv_protect != NULL)
866 		p->p_sysent->sv_protect(imgp, SVP_INTERP);
867 
868 	*addr = base_addr;
869 	*entry = (unsigned long)hdr->e_entry + rbase;
870 
871 fail:
872 	if (imgp->firstpage)
873 		exec_unmap_first_page(imgp);
874 
875 	if (nd->ni_vp) {
876 		if (imgp->textset)
877 			VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
878 		vput(nd->ni_vp);
879 	}
880 	free(tempdata, M_TEMP);
881 
882 	return (error);
883 }
884 
885 /*
886  * Select randomized valid address in the map map, between minv and
887  * maxv, with specified alignment.  The [minv, maxv) range must belong
888  * to the map.  Note that function only allocates the address, it is
889  * up to caller to clamp maxv in a way that the final allocation
890  * length fit into the map.
891  *
892  * Result is returned in *resp, error code indicates that arguments
893  * did not pass sanity checks for overflow and range correctness.
894  */
895 static int
__CONCAT(rnd_,__elfN (base))896 __CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
897     u_int align, u_long *resp)
898 {
899 	u_long rbase, res;
900 
901 	MPASS(vm_map_min(map) <= minv);
902 
903 	if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
904 		uprintf("Invalid ELF segments layout\n");
905 		return (ENOEXEC);
906 	}
907 
908 	arc4rand(&rbase, sizeof(rbase), 0);
909 	res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
910 	res &= ~((u_long)align - 1);
911 	if (res >= maxv)
912 		res -= align;
913 
914 	KASSERT(res >= minv,
915 	    ("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
916 	    res, minv, maxv, rbase));
917 	KASSERT(res < maxv,
918 	    ("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
919 	    res, maxv, minv, rbase));
920 
921 	*resp = res;
922 	return (0);
923 }
924 
925 static int
__elfN(enforce_limits)926 __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
927     const Elf_Phdr *phdr)
928 {
929 	struct vmspace *vmspace;
930 	const char *err_str;
931 	u_long text_size, data_size, total_size, text_addr, data_addr;
932 	u_long seg_size, seg_addr;
933 	int i;
934 
935 	err_str = NULL;
936 	text_size = data_size = total_size = text_addr = data_addr = 0;
937 
938 	for (i = 0; i < hdr->e_phnum; i++) {
939 		if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
940 			continue;
941 
942 		seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr);
943 		seg_size = round_page(phdr[i].p_memsz +
944 		    phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr);
945 
946 		/*
947 		 * Make the largest executable segment the official
948 		 * text segment and all others data.
949 		 *
950 		 * Note that obreak() assumes that data_addr + data_size == end
951 		 * of data load area, and the ELF file format expects segments
952 		 * to be sorted by address.  If multiple data segments exist,
953 		 * the last one will be used.
954 		 */
955 
956 		if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
957 			text_size = seg_size;
958 			text_addr = seg_addr;
959 		} else {
960 			data_size = seg_size;
961 			data_addr = seg_addr;
962 		}
963 		total_size += seg_size;
964 	}
965 
966 	if (data_addr == 0 && data_size == 0) {
967 		data_addr = text_addr;
968 		data_size = text_size;
969 	}
970 
971 	/*
972 	 * Check limits.  It should be safe to check the
973 	 * limits after loading the segments since we do
974 	 * not actually fault in all the segments pages.
975 	 */
976 	PROC_LOCK(imgp->proc);
977 	if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
978 		err_str = "Data segment size exceeds process limit";
979 	else if (text_size > maxtsiz)
980 		err_str = "Text segment size exceeds system limit";
981 	else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
982 		err_str = "Total segment size exceeds process limit";
983 	else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
984 		err_str = "Data segment size exceeds resource limit";
985 	else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
986 		err_str = "Total segment size exceeds resource limit";
987 	PROC_UNLOCK(imgp->proc);
988 	if (err_str != NULL) {
989 		uprintf("%s\n", err_str);
990 		return (ENOMEM);
991 	}
992 
993 	vmspace = imgp->proc->p_vmspace;
994 	vmspace->vm_tsize = text_size >> PAGE_SHIFT;
995 	vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
996 	vmspace->vm_dsize = data_size >> PAGE_SHIFT;
997 	vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
998 
999 	return (0);
1000 }
1001 
1002 static int
__elfN(get_interp)1003 __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1004     char **interpp, bool *free_interpp)
1005 {
1006 	struct thread *td;
1007 	char *interp;
1008 	int error, interp_name_len;
1009 
1010 	KASSERT(phdr->p_type == PT_INTERP,
1011 	    ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1012 	ASSERT_VOP_LOCKED(imgp->vp, __func__);
1013 
1014 	td = curthread;
1015 
1016 	/* Path to interpreter */
1017 	if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1018 		uprintf("Invalid PT_INTERP\n");
1019 		return (ENOEXEC);
1020 	}
1021 
1022 	interp_name_len = phdr->p_filesz;
1023 	if (phdr->p_offset > PAGE_SIZE ||
1024 	    interp_name_len > PAGE_SIZE - phdr->p_offset) {
1025 		/*
1026 		 * The vnode lock might be needed by the pagedaemon to
1027 		 * clean pages owned by the vnode.  Do not allow sleep
1028 		 * waiting for memory with the vnode locked, instead
1029 		 * try non-sleepable allocation first, and if it
1030 		 * fails, go to the slow path were we drop the lock
1031 		 * and do M_WAITOK.  A text reference prevents
1032 		 * modifications to the vnode content.
1033 		 */
1034 		interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1035 		if (interp == NULL) {
1036 			VOP_UNLOCK(imgp->vp);
1037 			interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1038 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1039 		}
1040 
1041 		error = vn_rdwr(UIO_READ, imgp->vp, interp,
1042 		    interp_name_len, phdr->p_offset,
1043 		    UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1044 		    NOCRED, NULL, td);
1045 		if (error != 0) {
1046 			free(interp, M_TEMP);
1047 			uprintf("i/o error PT_INTERP %d\n", error);
1048 			return (error);
1049 		}
1050 		interp[interp_name_len] = '\0';
1051 
1052 		*interpp = interp;
1053 		*free_interpp = true;
1054 		return (0);
1055 	}
1056 
1057 	interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1058 	if (interp[interp_name_len - 1] != '\0') {
1059 		uprintf("Invalid PT_INTERP\n");
1060 		return (ENOEXEC);
1061 	}
1062 
1063 	*interpp = interp;
1064 	*free_interpp = false;
1065 	return (0);
1066 }
1067 
1068 static int
__elfN(load_interp)1069 __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1070     const char *interp, u_long *addr, u_long *entry)
1071 {
1072 	int error;
1073 
1074 	if (brand_info->interp_newpath != NULL &&
1075 	    (brand_info->interp_path == NULL ||
1076 	    strcmp(interp, brand_info->interp_path) == 0)) {
1077 		error = __elfN(load_file)(imgp->proc,
1078 		    brand_info->interp_newpath, addr, entry);
1079 		if (error == 0)
1080 			return (0);
1081 	}
1082 
1083 	error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1084 	if (error == 0)
1085 		return (0);
1086 
1087 	uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1088 	return (error);
1089 }
1090 
1091 /*
1092  * Impossible et_dyn_addr initial value indicating that the real base
1093  * must be calculated later with some randomization applied.
1094  */
1095 #define	ET_DYN_ADDR_RAND	1
1096 
1097 static int
__CONCAT(exec_,__elfN (imgact))1098 __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1099 {
1100 	struct thread *td;
1101 	const Elf_Ehdr *hdr;
1102 	const Elf_Phdr *phdr;
1103 	Elf_Auxargs *elf_auxargs;
1104 	struct vmspace *vmspace;
1105 	vm_map_t map;
1106 	char *interp;
1107 	Elf_Brandinfo *brand_info;
1108 	struct sysentvec *sv;
1109 	u_long addr, baddr, entry, proghdr;
1110 	u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1111 	uint32_t fctl0;
1112 	int32_t osrel;
1113 	bool free_interp;
1114 	int error, i, n;
1115 
1116 	hdr = (const Elf_Ehdr *)imgp->image_header;
1117 
1118 	/*
1119 	 * Do we have a valid ELF header ?
1120 	 *
1121 	 * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1122 	 * if particular brand doesn't support it.
1123 	 */
1124 	if (__elfN(check_header)(hdr) != 0 ||
1125 	    (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1126 		return (-1);
1127 
1128 	/*
1129 	 * From here on down, we return an errno, not -1, as we've
1130 	 * detected an ELF file.
1131 	 */
1132 
1133 	if (!__elfN(phdr_in_zero_page)(hdr)) {
1134 		uprintf("Program headers not in the first page\n");
1135 		return (ENOEXEC);
1136 	}
1137 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1138 	if (!aligned(phdr, Elf_Addr)) {
1139 		uprintf("Unaligned program headers\n");
1140 		return (ENOEXEC);
1141 	}
1142 
1143 	n = error = 0;
1144 	baddr = 0;
1145 	osrel = 0;
1146 	fctl0 = 0;
1147 	entry = proghdr = 0;
1148 	interp = NULL;
1149 	free_interp = false;
1150 	td = curthread;
1151 
1152 	/*
1153 	 * Somewhat arbitrary, limit accepted max alignment for the
1154 	 * loadable segment to the max supported superpage size. Too
1155 	 * large alignment requests are not useful and are indicators
1156 	 * of corrupted or outright malicious binary.
1157 	 */
1158 	maxalign = PAGE_SIZE;
1159 	maxsalign = PAGE_SIZE * 1024;
1160 	for (i = MAXPAGESIZES - 1; i > 0; i--) {
1161 		if (pagesizes[i] > maxsalign) {
1162 			maxsalign = pagesizes[i];
1163 			break;
1164 		}
1165 	}
1166 
1167 	mapsz = 0;
1168 
1169 	for (i = 0; i < hdr->e_phnum; i++) {
1170 		switch (phdr[i].p_type) {
1171 		case PT_LOAD:
1172 			if (n == 0)
1173 				baddr = phdr[i].p_vaddr;
1174 			if (!powerof2(phdr[i].p_align) ||
1175 			    phdr[i].p_align > maxsalign) {
1176 				uprintf("Invalid segment alignment\n");
1177 				error = ENOEXEC;
1178 				goto ret;
1179 			}
1180 			if (phdr[i].p_align > maxalign)
1181 				maxalign = phdr[i].p_align;
1182 			if (mapsz + phdr[i].p_memsz < mapsz) {
1183 				uprintf("Mapsize overflow\n");
1184 				error = ENOEXEC;
1185 				goto ret;
1186 			}
1187 			mapsz += phdr[i].p_memsz;
1188 			n++;
1189 
1190 			/*
1191 			 * If this segment contains the program headers,
1192 			 * remember their virtual address for the AT_PHDR
1193 			 * aux entry. Static binaries don't usually include
1194 			 * a PT_PHDR entry.
1195 			 */
1196 			if (phdr[i].p_offset == 0 &&
1197 			    hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1198 			    phdr[i].p_filesz)
1199 				proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1200 			break;
1201 		case PT_INTERP:
1202 			/* Path to interpreter */
1203 			if (interp != NULL) {
1204 				uprintf("Multiple PT_INTERP headers\n");
1205 				error = ENOEXEC;
1206 				goto ret;
1207 			}
1208 			error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1209 			    &free_interp);
1210 			if (error != 0)
1211 				goto ret;
1212 			break;
1213 		case PT_GNU_STACK:
1214 			if (__elfN(nxstack)) {
1215 				imgp->stack_prot =
1216 				    __elfN(trans_prot)(phdr[i].p_flags);
1217 				if ((imgp->stack_prot & VM_PROT_RW) !=
1218 				    VM_PROT_RW) {
1219 					uprintf("Invalid PT_GNU_STACK\n");
1220 					error = ENOEXEC;
1221 					goto ret;
1222 				}
1223 			}
1224 			imgp->stack_sz = phdr[i].p_memsz;
1225 			break;
1226 		case PT_PHDR: 	/* Program header table info */
1227 			proghdr = phdr[i].p_vaddr;
1228 			break;
1229 		}
1230 	}
1231 
1232 	brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1233 	if (brand_info == NULL) {
1234 		uprintf("ELF binary type \"%u\" not known.\n",
1235 		    hdr->e_ident[EI_OSABI]);
1236 		error = ENOEXEC;
1237 		goto ret;
1238 	}
1239 	sv = brand_info->sysvec;
1240 	if (hdr->e_type == ET_DYN) {
1241 		if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1242 			uprintf("Cannot execute shared object\n");
1243 			error = ENOEXEC;
1244 			goto ret;
1245 		}
1246 		/*
1247 		 * Honour the base load address from the dso if it is
1248 		 * non-zero for some reason.
1249 		 */
1250 		if (baddr == 0) {
1251 			if ((sv->sv_flags & SV_ASLR) == 0 ||
1252 			    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1253 				imgp->et_dyn_addr = __elfN(pie_base);
1254 			else if ((__elfN(pie_aslr_enabled) &&
1255 			    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1256 			    (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1257 				imgp->et_dyn_addr = ET_DYN_ADDR_RAND;
1258 			else
1259 				imgp->et_dyn_addr = __elfN(pie_base);
1260 		}
1261 	}
1262 
1263 	/*
1264 	 * Avoid a possible deadlock if the current address space is destroyed
1265 	 * and that address space maps the locked vnode.  In the common case,
1266 	 * the locked vnode's v_usecount is decremented but remains greater
1267 	 * than zero.  Consequently, the vnode lock is not needed by vrele().
1268 	 * However, in cases where the vnode lock is external, such as nullfs,
1269 	 * v_usecount may become zero.
1270 	 *
1271 	 * The VV_TEXT flag prevents modifications to the executable while
1272 	 * the vnode is unlocked.
1273 	 */
1274 	VOP_UNLOCK(imgp->vp);
1275 
1276 	/*
1277 	 * Decide whether to enable randomization of user mappings.
1278 	 * First, reset user preferences for the setid binaries.
1279 	 * Then, account for the support of the randomization by the
1280 	 * ABI, by user preferences, and make special treatment for
1281 	 * PIE binaries.
1282 	 */
1283 	if (imgp->credential_setid) {
1284 		PROC_LOCK(imgp->proc);
1285 		imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1286 		    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1287 		PROC_UNLOCK(imgp->proc);
1288 	}
1289 	if ((sv->sv_flags & SV_ASLR) == 0 ||
1290 	    (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1291 	    (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1292 		KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND,
1293 		    ("imgp->et_dyn_addr == RAND and !ASLR"));
1294 	} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1295 	    (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1296 	    imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1297 		imgp->map_flags |= MAP_ASLR;
1298 		/*
1299 		 * If user does not care about sbrk, utilize the bss
1300 		 * grow region for mappings as well.  We can select
1301 		 * the base for the image anywere and still not suffer
1302 		 * from the fragmentation.
1303 		 */
1304 		if (!__elfN(aslr_honor_sbrk) ||
1305 		    (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1306 			imgp->map_flags |= MAP_ASLR_IGNSTART;
1307 		if (__elfN(aslr_stack))
1308 			imgp->map_flags |= MAP_ASLR_STACK;
1309 		if (__elfN(aslr_shared_page))
1310 			imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1311 	}
1312 
1313 	if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1314 	    (imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1315 	    (imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1316 		imgp->map_flags |= MAP_WXORX;
1317 
1318 	error = exec_new_vmspace(imgp, sv);
1319 
1320 	imgp->proc->p_sysent = sv;
1321 	imgp->proc->p_elf_brandinfo = brand_info;
1322 
1323 	vmspace = imgp->proc->p_vmspace;
1324 	map = &vmspace->vm_map;
1325 	maxv = sv->sv_usrstack;
1326 	if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1327 		maxv -= lim_max(td, RLIMIT_STACK);
1328 	if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1329 		uprintf("Excessive mapping size\n");
1330 		error = ENOEXEC;
1331 	}
1332 
1333 	if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1334 		KASSERT((map->flags & MAP_ASLR) != 0,
1335 		    ("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1336 		error = __CONCAT(rnd_, __elfN(base))(map,
1337 		    vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1338 		    /* reserve half of the address space to interpreter */
1339 		    maxv / 2, maxalign, &imgp->et_dyn_addr);
1340 	}
1341 
1342 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1343 	if (error != 0)
1344 		goto ret;
1345 
1346 	error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL);
1347 	if (error != 0)
1348 		goto ret;
1349 
1350 	error = __elfN(enforce_limits)(imgp, hdr, phdr);
1351 	if (error != 0)
1352 		goto ret;
1353 
1354 	/*
1355 	 * We load the dynamic linker where a userland call
1356 	 * to mmap(0, ...) would put it.  The rationale behind this
1357 	 * calculation is that it leaves room for the heap to grow to
1358 	 * its maximum allowed size.
1359 	 */
1360 	addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1361 	    RLIMIT_DATA));
1362 	if ((map->flags & MAP_ASLR) != 0) {
1363 		maxv1 = maxv / 2 + addr / 2;
1364 		error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1365 #if VM_NRESERVLEVEL > 0
1366 		    pagesizes[VM_NRESERVLEVEL] != 0 ?
1367 		    /* Align anon_loc to the largest superpage size. */
1368 		    pagesizes[VM_NRESERVLEVEL] :
1369 #endif
1370 		    pagesizes[0], &anon_loc);
1371 		if (error != 0)
1372 			goto ret;
1373 		map->anon_loc = anon_loc;
1374 	} else {
1375 		map->anon_loc = addr;
1376 	}
1377 
1378 	entry = (u_long)hdr->e_entry + imgp->et_dyn_addr;
1379 	imgp->entry_addr = entry;
1380 
1381 	if (sv->sv_protect != NULL)
1382 		sv->sv_protect(imgp, SVP_IMAGE);
1383 
1384 	if (interp != NULL) {
1385 		VOP_UNLOCK(imgp->vp);
1386 		if ((map->flags & MAP_ASLR) != 0) {
1387 			/* Assume that interpreter fits into 1/4 of AS */
1388 			maxv1 = maxv / 2 + addr / 2;
1389 			error = __CONCAT(rnd_, __elfN(base))(map, addr,
1390 			    maxv1, PAGE_SIZE, &addr);
1391 		}
1392 		if (error == 0) {
1393 			error = __elfN(load_interp)(imgp, brand_info, interp,
1394 			    &addr, &imgp->entry_addr);
1395 		}
1396 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1397 		if (error != 0)
1398 			goto ret;
1399 	} else
1400 		addr = imgp->et_dyn_addr;
1401 
1402 	error = exec_map_stack(imgp);
1403 	if (error != 0)
1404 		goto ret;
1405 
1406 	/*
1407 	 * Construct auxargs table (used by the copyout_auxargs routine)
1408 	 */
1409 	elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1410 	if (elf_auxargs == NULL) {
1411 		VOP_UNLOCK(imgp->vp);
1412 		elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1413 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1414 	}
1415 	elf_auxargs->execfd = -1;
1416 	elf_auxargs->phdr = proghdr + imgp->et_dyn_addr;
1417 	elf_auxargs->phent = hdr->e_phentsize;
1418 	elf_auxargs->phnum = hdr->e_phnum;
1419 	elf_auxargs->pagesz = PAGE_SIZE;
1420 	elf_auxargs->base = addr;
1421 	elf_auxargs->flags = 0;
1422 	elf_auxargs->entry = entry;
1423 	elf_auxargs->hdr_eflags = hdr->e_flags;
1424 
1425 	imgp->auxargs = elf_auxargs;
1426 	imgp->interpreted = 0;
1427 	imgp->reloc_base = addr;
1428 	imgp->proc->p_osrel = osrel;
1429 	imgp->proc->p_fctl0 = fctl0;
1430 	imgp->proc->p_elf_flags = hdr->e_flags;
1431 
1432 ret:
1433 	ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1434 	if (free_interp)
1435 		free(interp, M_TEMP);
1436 	return (error);
1437 }
1438 
1439 #define	elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1440 
1441 int
__elfN(freebsd_copyout_auxargs)1442 __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1443 {
1444 	Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1445 	Elf_Auxinfo *argarray, *pos;
1446 	struct vmspace *vmspace;
1447 	rlim_t stacksz;
1448 	int error, oc;
1449 	uint32_t bsdflags;
1450 
1451 	argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1452 	    M_WAITOK | M_ZERO);
1453 
1454 	vmspace = imgp->proc->p_vmspace;
1455 
1456 	if (args->execfd != -1)
1457 		AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1458 	AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1459 	AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1460 	AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1461 	AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1462 	AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1463 	AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1464 	AUXARGS_ENTRY(pos, AT_BASE, args->base);
1465 	AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1466 	if (imgp->execpathp != 0)
1467 		AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1468 	AUXARGS_ENTRY(pos, AT_OSRELDATE,
1469 	    imgp->proc->p_ucred->cr_prison->pr_osreldate);
1470 	if (imgp->canary != 0) {
1471 		AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1472 		AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1473 	}
1474 	AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1475 	if (imgp->pagesizes != 0) {
1476 		AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1477 		AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1478 	}
1479 	if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1480 		AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1481 		    vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1482 	}
1483 	AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1484 	    != NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1485 	    imgp->sysent->sv_stackprot);
1486 	if (imgp->sysent->sv_hwcap != NULL)
1487 		AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1488 	if (imgp->sysent->sv_hwcap2 != NULL)
1489 		AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1490 	if (imgp->sysent->sv_hwcap3 != NULL)
1491 		AUXARGS_ENTRY(pos, AT_HWCAP3, *imgp->sysent->sv_hwcap3);
1492 	if (imgp->sysent->sv_hwcap4 != NULL)
1493 		AUXARGS_ENTRY(pos, AT_HWCAP4, *imgp->sysent->sv_hwcap4);
1494 	bsdflags = 0;
1495 	bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1496 	oc = atomic_load_int(&vm_overcommit);
1497 	bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1498 	    0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1499 	AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1500 	AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1501 	AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1502 	AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1503 	AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1504 	AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1505 #ifdef RANDOM_FENESTRASX
1506 	if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1507 		AUXARGS_ENTRY(pos, AT_FXRNG,
1508 		    vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1509 	}
1510 #endif
1511 	if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1512 		AUXARGS_ENTRY(pos, AT_KPRELOAD,
1513 		    vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1514 	}
1515 	AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1516 	stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1517 	AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1518 	AUXARGS_ENTRY(pos, AT_NULL, 0);
1519 
1520 	free(imgp->auxargs, M_TEMP);
1521 	imgp->auxargs = NULL;
1522 	KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1523 
1524 	error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1525 	free(argarray, M_TEMP);
1526 	return (error);
1527 }
1528 
1529 int
__elfN(freebsd_fixup)1530 __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1531 {
1532 	Elf_Addr *base;
1533 
1534 	base = (Elf_Addr *)*stack_base;
1535 	base--;
1536 	if (elf_suword(base, imgp->args->argc) == -1)
1537 		return (EFAULT);
1538 	*stack_base = (uintptr_t)base;
1539 	return (0);
1540 }
1541 
1542 /*
1543  * Code for generating ELF core dumps.
1544  */
1545 
1546 typedef void (*segment_callback)(vm_map_entry_t, void *);
1547 
1548 /* Closure for cb_put_phdr(). */
1549 struct phdr_closure {
1550 	Elf_Phdr *phdr;		/* Program header to fill in */
1551 	Elf_Off offset;		/* Offset of segment in core file */
1552 };
1553 
1554 struct note_info {
1555 	int		type;		/* Note type. */
1556 	struct regset	*regset;	/* Register set. */
1557 	outfunc_t 	outfunc; 	/* Output function. */
1558 	void		*outarg;	/* Argument for the output function. */
1559 	size_t		outsize;	/* Output size. */
1560 	TAILQ_ENTRY(note_info) link;	/* Link to the next note info. */
1561 };
1562 
1563 TAILQ_HEAD(note_info_list, note_info);
1564 
1565 extern int compress_user_cores;
1566 extern int compress_user_cores_level;
1567 
1568 static void cb_put_phdr(vm_map_entry_t, void *);
1569 static void cb_size_segment(vm_map_entry_t, void *);
1570 static void each_dumpable_segment(struct thread *, segment_callback, void *,
1571     int);
1572 static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1573     struct note_info_list *, size_t, int);
1574 static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1575 
1576 static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1577 static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1578 static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1579 static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1580 static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1581 static void __elfN(note_procstat_kqueues)(void *, struct sbuf *, size_t *);
1582 static void note_procstat_files(void *, struct sbuf *, size_t *);
1583 static void note_procstat_groups(void *, struct sbuf *, size_t *);
1584 static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1585 static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1586 static void note_procstat_umask(void *, struct sbuf *, size_t *);
1587 static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1588 
1589 static int
core_compressed_write(void * base,size_t len,off_t offset,void * arg)1590 core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1591 {
1592 
1593 	return (core_write((struct coredump_params *)arg, base, len, offset,
1594 	    UIO_SYSSPACE, NULL));
1595 }
1596 
1597 int
__elfN(coredump)1598 __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags)
1599 {
1600 	struct ucred *cred = td->td_ucred;
1601 	int compm, error = 0;
1602 	struct sseg_closure seginfo;
1603 	struct note_info_list notelst;
1604 	struct coredump_params params;
1605 	struct note_info *ninfo;
1606 	void *hdr, *tmpbuf;
1607 	size_t hdrsize, notesz, coresize;
1608 
1609 	hdr = NULL;
1610 	tmpbuf = NULL;
1611 	TAILQ_INIT(&notelst);
1612 
1613 	/* Size the program segments. */
1614 	__elfN(size_segments)(td, &seginfo, flags);
1615 
1616 	/*
1617 	 * Collect info about the core file header area.
1618 	 */
1619 	hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1620 	if (seginfo.count + 1 >= PN_XNUM)
1621 		hdrsize += sizeof(Elf_Shdr);
1622 	td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1623 	coresize = round_page(hdrsize + notesz) + seginfo.size;
1624 
1625 	/* Set up core dump parameters. */
1626 	params.offset = 0;
1627 	params.active_cred = cred;
1628 	params.file_cred = NOCRED;
1629 	params.td = td;
1630 	params.vp = vp;
1631 	params.comp = NULL;
1632 
1633 #ifdef RACCT
1634 	if (racct_enable) {
1635 		PROC_LOCK(td->td_proc);
1636 		error = racct_add(td->td_proc, RACCT_CORE, coresize);
1637 		PROC_UNLOCK(td->td_proc);
1638 		if (error != 0) {
1639 			error = EFAULT;
1640 			goto done;
1641 		}
1642 	}
1643 #endif
1644 	if (coresize >= limit) {
1645 		error = EFAULT;
1646 		goto done;
1647 	}
1648 
1649 	/* Create a compression stream if necessary. */
1650 	compm = compress_user_cores;
1651 	if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1652 	    compm == 0)
1653 		compm = COMPRESS_GZIP;
1654 	if (compm != 0) {
1655 		params.comp = compressor_init(core_compressed_write,
1656 		    compm, CORE_BUF_SIZE,
1657 		    compress_user_cores_level, &params);
1658 		if (params.comp == NULL) {
1659 			error = EFAULT;
1660 			goto done;
1661 		}
1662 		tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1663         }
1664 
1665 	/*
1666 	 * Allocate memory for building the header, fill it up,
1667 	 * and write it out following the notes.
1668 	 */
1669 	hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1670 	error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1671 	    notesz, flags);
1672 
1673 	/* Write the contents of all of the writable segments. */
1674 	if (error == 0) {
1675 		Elf_Phdr *php;
1676 		off_t offset;
1677 		int i;
1678 
1679 		php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1680 		offset = round_page(hdrsize + notesz);
1681 		for (i = 0; i < seginfo.count; i++) {
1682 			error = core_output((char *)(uintptr_t)php->p_vaddr,
1683 			    php->p_filesz, offset, &params, tmpbuf);
1684 			if (error != 0)
1685 				break;
1686 			offset += php->p_filesz;
1687 			php++;
1688 		}
1689 		if (error == 0 && params.comp != NULL)
1690 			error = compressor_flush(params.comp);
1691 	}
1692 	if (error) {
1693 		log(LOG_WARNING,
1694 		    "Failed to write core file for process %s (error %d)\n",
1695 		    curproc->p_comm, error);
1696 	}
1697 
1698 done:
1699 	free(tmpbuf, M_TEMP);
1700 	if (params.comp != NULL)
1701 		compressor_fini(params.comp);
1702 	while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1703 		TAILQ_REMOVE(&notelst, ninfo, link);
1704 		free(ninfo, M_TEMP);
1705 	}
1706 	if (hdr != NULL)
1707 		free(hdr, M_TEMP);
1708 
1709 	return (error);
1710 }
1711 
1712 /*
1713  * A callback for each_dumpable_segment() to write out the segment's
1714  * program header entry.
1715  */
1716 static void
cb_put_phdr(vm_map_entry_t entry,void * closure)1717 cb_put_phdr(vm_map_entry_t entry, void *closure)
1718 {
1719 	struct phdr_closure *phc = (struct phdr_closure *)closure;
1720 	Elf_Phdr *phdr = phc->phdr;
1721 
1722 	phc->offset = round_page(phc->offset);
1723 
1724 	phdr->p_type = PT_LOAD;
1725 	phdr->p_offset = phc->offset;
1726 	phdr->p_vaddr = entry->start;
1727 	phdr->p_paddr = 0;
1728 	phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1729 	phdr->p_align = PAGE_SIZE;
1730 	phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1731 
1732 	phc->offset += phdr->p_filesz;
1733 	phc->phdr++;
1734 }
1735 
1736 /*
1737  * A callback for each_dumpable_segment() to gather information about
1738  * the number of segments and their total size.
1739  */
1740 static void
cb_size_segment(vm_map_entry_t entry,void * closure)1741 cb_size_segment(vm_map_entry_t entry, void *closure)
1742 {
1743 	struct sseg_closure *ssc = (struct sseg_closure *)closure;
1744 
1745 	ssc->count++;
1746 	ssc->size += entry->end - entry->start;
1747 }
1748 
1749 void
__elfN(size_segments)1750 __elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1751     int flags)
1752 {
1753 	seginfo->count = 0;
1754 	seginfo->size = 0;
1755 
1756 	each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1757 }
1758 
1759 /*
1760  * For each writable segment in the process's memory map, call the given
1761  * function with a pointer to the map entry and some arbitrary
1762  * caller-supplied data.
1763  */
1764 static void
each_dumpable_segment(struct thread * td,segment_callback func,void * closure,int flags)1765 each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1766     int flags)
1767 {
1768 	struct proc *p = td->td_proc;
1769 	vm_map_t map = &p->p_vmspace->vm_map;
1770 	vm_map_entry_t entry;
1771 	vm_object_t backing_object, object;
1772 	bool ignore_entry;
1773 
1774 	vm_map_lock_read(map);
1775 	VM_MAP_ENTRY_FOREACH(entry, map) {
1776 		/*
1777 		 * Don't dump inaccessible mappings, deal with legacy
1778 		 * coredump mode.
1779 		 *
1780 		 * Note that read-only segments related to the elf binary
1781 		 * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1782 		 * need to arbitrarily ignore such segments.
1783 		 */
1784 		if ((flags & SVC_ALL) == 0) {
1785 			if (elf_legacy_coredump) {
1786 				if ((entry->protection & VM_PROT_RW) !=
1787 				    VM_PROT_RW)
1788 					continue;
1789 			} else {
1790 				if ((entry->protection & VM_PROT_ALL) == 0)
1791 					continue;
1792 			}
1793 		}
1794 
1795 		/*
1796 		 * Dont include memory segment in the coredump if
1797 		 * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1798 		 * madvise(2).  Do not dump submaps (i.e. parts of the
1799 		 * kernel map).
1800 		 */
1801 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1802 			continue;
1803 		if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1804 		    (flags & SVC_ALL) == 0)
1805 			continue;
1806 		if ((object = entry->object.vm_object) == NULL)
1807 			continue;
1808 
1809 		/* Ignore memory-mapped devices and such things. */
1810 		VM_OBJECT_RLOCK(object);
1811 		while ((backing_object = object->backing_object) != NULL) {
1812 			VM_OBJECT_RLOCK(backing_object);
1813 			VM_OBJECT_RUNLOCK(object);
1814 			object = backing_object;
1815 		}
1816 		ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1817 		VM_OBJECT_RUNLOCK(object);
1818 		if (ignore_entry)
1819 			continue;
1820 
1821 		(*func)(entry, closure);
1822 	}
1823 	vm_map_unlock_read(map);
1824 }
1825 
1826 /*
1827  * Write the core file header to the file, including padding up to
1828  * the page boundary.
1829  */
1830 static int
__elfN(corehdr)1831 __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1832     size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1833     int flags)
1834 {
1835 	struct note_info *ninfo;
1836 	struct sbuf *sb;
1837 	int error;
1838 
1839 	/* Fill in the header. */
1840 	bzero(hdr, hdrsize);
1841 	__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1842 
1843 	sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1844 	sbuf_set_drain(sb, sbuf_drain_core_output, p);
1845 	sbuf_start_section(sb, NULL);
1846 	sbuf_bcat(sb, hdr, hdrsize);
1847 	TAILQ_FOREACH(ninfo, notelst, link)
1848 	    __elfN(putnote)(p->td, ninfo, sb);
1849 	/* Align up to a page boundary for the program segments. */
1850 	sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1851 	error = sbuf_finish(sb);
1852 	sbuf_delete(sb);
1853 
1854 	return (error);
1855 }
1856 
1857 void
__elfN(prepare_notes)1858 __elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1859     size_t *sizep)
1860 {
1861 	struct proc *p;
1862 	struct thread *thr;
1863 	size_t size;
1864 
1865 	p = td->td_proc;
1866 	size = 0;
1867 
1868 	size += __elfN(register_note)(td, list, NT_PRPSINFO,
1869 	    __elfN(note_prpsinfo), p);
1870 
1871 	/*
1872 	 * To have the debugger select the right thread (LWP) as the initial
1873 	 * thread, we dump the state of the thread passed to us in td first.
1874 	 * This is the thread that causes the core dump and thus likely to
1875 	 * be the right thread one wants to have selected in the debugger.
1876 	 */
1877 	thr = td;
1878 	while (thr != NULL) {
1879 		size += __elfN(prepare_register_notes)(td, list, thr);
1880 		size += __elfN(register_note)(td, list, -1,
1881 		    __elfN(note_threadmd), thr);
1882 
1883 		thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1884 		    TAILQ_NEXT(thr, td_plist);
1885 		if (thr == td)
1886 			thr = TAILQ_NEXT(thr, td_plist);
1887 	}
1888 
1889 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1890 	    __elfN(note_procstat_proc), p);
1891 	size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1892 	    note_procstat_files, p);
1893 	size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1894 	    note_procstat_vmmap, p);
1895 	size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1896 	    note_procstat_groups, p);
1897 	size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1898 	    note_procstat_umask, p);
1899 	size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1900 	    note_procstat_rlimit, p);
1901 	size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1902 	    note_procstat_osrel, p);
1903 	size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1904 	    __elfN(note_procstat_psstrings), p);
1905 	size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1906 	    __elfN(note_procstat_auxv), p);
1907 	size += __elfN(register_note)(td, list, NT_PROCSTAT_KQUEUES,
1908 	    __elfN(note_procstat_kqueues), p);
1909 
1910 	*sizep = size;
1911 }
1912 
1913 void
__elfN(puthdr)1914 __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1915     size_t notesz, int flags)
1916 {
1917 	Elf_Ehdr *ehdr;
1918 	Elf_Phdr *phdr;
1919 	Elf_Shdr *shdr;
1920 	struct phdr_closure phc;
1921 	Elf_Brandinfo *bi;
1922 
1923 	ehdr = (Elf_Ehdr *)hdr;
1924 	bi = td->td_proc->p_elf_brandinfo;
1925 
1926 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1927 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1928 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1929 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1930 	ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1931 	ehdr->e_ident[EI_DATA] = ELF_DATA;
1932 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1933 	ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1934 	ehdr->e_ident[EI_ABIVERSION] = 0;
1935 	ehdr->e_ident[EI_PAD] = 0;
1936 	ehdr->e_type = ET_CORE;
1937 	ehdr->e_machine = bi->machine;
1938 	ehdr->e_version = EV_CURRENT;
1939 	ehdr->e_entry = 0;
1940 	ehdr->e_phoff = sizeof(Elf_Ehdr);
1941 	ehdr->e_flags = td->td_proc->p_elf_flags;
1942 	ehdr->e_ehsize = sizeof(Elf_Ehdr);
1943 	ehdr->e_phentsize = sizeof(Elf_Phdr);
1944 	ehdr->e_shentsize = sizeof(Elf_Shdr);
1945 	ehdr->e_shstrndx = SHN_UNDEF;
1946 	if (numsegs + 1 < PN_XNUM) {
1947 		ehdr->e_phnum = numsegs + 1;
1948 		ehdr->e_shnum = 0;
1949 	} else {
1950 		ehdr->e_phnum = PN_XNUM;
1951 		ehdr->e_shnum = 1;
1952 
1953 		ehdr->e_shoff = ehdr->e_phoff +
1954 		    (numsegs + 1) * ehdr->e_phentsize;
1955 		KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1956 		    ("e_shoff: %zu, hdrsize - shdr: %zu",
1957 		     (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1958 
1959 		shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1960 		memset(shdr, 0, sizeof(*shdr));
1961 		/*
1962 		 * A special first section is used to hold large segment and
1963 		 * section counts.  This was proposed by Sun Microsystems in
1964 		 * Solaris and has been adopted by Linux; the standard ELF
1965 		 * tools are already familiar with the technique.
1966 		 *
1967 		 * See table 7-7 of the Solaris "Linker and Libraries Guide"
1968 		 * (or 12-7 depending on the version of the document) for more
1969 		 * details.
1970 		 */
1971 		shdr->sh_type = SHT_NULL;
1972 		shdr->sh_size = ehdr->e_shnum;
1973 		shdr->sh_link = ehdr->e_shstrndx;
1974 		shdr->sh_info = numsegs + 1;
1975 	}
1976 
1977 	/*
1978 	 * Fill in the program header entries.
1979 	 */
1980 	phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1981 
1982 	/* The note segement. */
1983 	phdr->p_type = PT_NOTE;
1984 	phdr->p_offset = hdrsize;
1985 	phdr->p_vaddr = 0;
1986 	phdr->p_paddr = 0;
1987 	phdr->p_filesz = notesz;
1988 	phdr->p_memsz = 0;
1989 	phdr->p_flags = PF_R;
1990 	phdr->p_align = ELF_NOTE_ROUNDSIZE;
1991 	phdr++;
1992 
1993 	/* All the writable segments from the program. */
1994 	phc.phdr = phdr;
1995 	phc.offset = round_page(hdrsize + notesz);
1996 	each_dumpable_segment(td, cb_put_phdr, &phc, flags);
1997 }
1998 
1999 static size_t
__elfN(register_regset_note)2000 __elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
2001     struct regset *regset, struct thread *target_td)
2002 {
2003 	const struct sysentvec *sv;
2004 	struct note_info *ninfo;
2005 	size_t size, notesize;
2006 
2007 	size = 0;
2008 	if (!regset->get(regset, target_td, NULL, &size) || size == 0)
2009 		return (0);
2010 
2011 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2012 	ninfo->type = regset->note;
2013 	ninfo->regset = regset;
2014 	ninfo->outarg = target_td;
2015 	ninfo->outsize = size;
2016 	TAILQ_INSERT_TAIL(list, ninfo, link);
2017 
2018 	sv = td->td_proc->p_sysent;
2019 	notesize = sizeof(Elf_Note) +		/* note header */
2020 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2021 						/* note name */
2022 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2023 
2024 	return (notesize);
2025 }
2026 
2027 size_t
__elfN(register_note)2028 __elfN(register_note)(struct thread *td, struct note_info_list *list,
2029     int type, outfunc_t out, void *arg)
2030 {
2031 	const struct sysentvec *sv;
2032 	struct note_info *ninfo;
2033 	size_t size, notesize;
2034 
2035 	sv = td->td_proc->p_sysent;
2036 	size = 0;
2037 	out(arg, NULL, &size);
2038 	ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2039 	ninfo->type = type;
2040 	ninfo->outfunc = out;
2041 	ninfo->outarg = arg;
2042 	ninfo->outsize = size;
2043 	TAILQ_INSERT_TAIL(list, ninfo, link);
2044 
2045 	if (type == -1)
2046 		return (size);
2047 
2048 	notesize = sizeof(Elf_Note) +		/* note header */
2049 	    roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2050 						/* note name */
2051 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2052 
2053 	return (notesize);
2054 }
2055 
2056 static size_t
append_note_data(const void * src,void * dst,size_t len)2057 append_note_data(const void *src, void *dst, size_t len)
2058 {
2059 	size_t padded_len;
2060 
2061 	padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2062 	if (dst != NULL) {
2063 		bcopy(src, dst, len);
2064 		bzero((char *)dst + len, padded_len - len);
2065 	}
2066 	return (padded_len);
2067 }
2068 
2069 size_t
__elfN(populate_note)2070 __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2071 {
2072 	Elf_Note *note;
2073 	char *buf;
2074 	size_t notesize;
2075 
2076 	buf = dst;
2077 	if (buf != NULL) {
2078 		note = (Elf_Note *)buf;
2079 		note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2080 		note->n_descsz = size;
2081 		note->n_type = type;
2082 		buf += sizeof(*note);
2083 		buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2084 		    sizeof(FREEBSD_ABI_VENDOR));
2085 		append_note_data(src, buf, size);
2086 		if (descp != NULL)
2087 			*descp = buf;
2088 	}
2089 
2090 	notesize = sizeof(Elf_Note) +		/* note header */
2091 	    roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2092 						/* note name */
2093 	    roundup2(size, ELF_NOTE_ROUNDSIZE);	/* note description */
2094 
2095 	return (notesize);
2096 }
2097 
2098 static void
__elfN(putnote)2099 __elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2100 {
2101 	Elf_Note note;
2102 	const struct sysentvec *sv;
2103 	ssize_t old_len, sect_len;
2104 	size_t new_len, descsz, i;
2105 
2106 	if (ninfo->type == -1) {
2107 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2108 		return;
2109 	}
2110 
2111 	sv = td->td_proc->p_sysent;
2112 
2113 	note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2114 	note.n_descsz = ninfo->outsize;
2115 	note.n_type = ninfo->type;
2116 
2117 	sbuf_bcat(sb, &note, sizeof(note));
2118 	sbuf_start_section(sb, &old_len);
2119 	sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2120 	    strlen(sv->sv_elf_core_abi_vendor) + 1);
2121 	sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2122 	if (note.n_descsz == 0)
2123 		return;
2124 	sbuf_start_section(sb, &old_len);
2125 	if (ninfo->regset != NULL) {
2126 		struct regset *regset = ninfo->regset;
2127 		void *buf;
2128 
2129 		buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2130 		(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2131 		sbuf_bcat(sb, buf, ninfo->outsize);
2132 		free(buf, M_TEMP);
2133 	} else
2134 		ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2135 	sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2136 	if (sect_len < 0)
2137 		return;
2138 
2139 	new_len = (size_t)sect_len;
2140 	descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2141 	if (new_len < descsz) {
2142 		/*
2143 		 * It is expected that individual note emitters will correctly
2144 		 * predict their expected output size and fill up to that size
2145 		 * themselves, padding in a format-specific way if needed.
2146 		 * However, in case they don't, just do it here with zeros.
2147 		 */
2148 		for (i = 0; i < descsz - new_len; i++)
2149 			sbuf_putc(sb, 0);
2150 	} else if (new_len > descsz) {
2151 		/*
2152 		 * We can't always truncate sb -- we may have drained some
2153 		 * of it already.
2154 		 */
2155 		KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2156 		    "read it (%zu > %zu).  Since it is longer than "
2157 		    "expected, this coredump's notes are corrupt.  THIS "
2158 		    "IS A BUG in the note_procstat routine for type %u.\n",
2159 		    __func__, (unsigned)note.n_type, new_len, descsz,
2160 		    (unsigned)note.n_type));
2161 	}
2162 }
2163 
2164 /*
2165  * Miscellaneous note out functions.
2166  */
2167 
2168 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2169 #include <compat/freebsd32/freebsd32.h>
2170 #include <compat/freebsd32/freebsd32_signal.h>
2171 
2172 typedef struct prstatus32 elf_prstatus_t;
2173 typedef struct prpsinfo32 elf_prpsinfo_t;
2174 typedef struct fpreg32 elf_prfpregset_t;
2175 typedef struct fpreg32 elf_fpregset_t;
2176 typedef struct reg32 elf_gregset_t;
2177 typedef struct thrmisc32 elf_thrmisc_t;
2178 typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2179 #define ELF_KERN_PROC_MASK	KERN_PROC_MASK32
2180 typedef struct kinfo_proc32 elf_kinfo_proc_t;
2181 typedef uint32_t elf_ps_strings_t;
2182 #else
2183 typedef prstatus_t elf_prstatus_t;
2184 typedef prpsinfo_t elf_prpsinfo_t;
2185 typedef prfpregset_t elf_prfpregset_t;
2186 typedef prfpregset_t elf_fpregset_t;
2187 typedef gregset_t elf_gregset_t;
2188 typedef thrmisc_t elf_thrmisc_t;
2189 typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2190 #define ELF_KERN_PROC_MASK	0
2191 typedef struct kinfo_proc elf_kinfo_proc_t;
2192 typedef vm_offset_t elf_ps_strings_t;
2193 #endif
2194 
2195 static void
__elfN(note_prpsinfo)2196 __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2197 {
2198 	struct sbuf sbarg;
2199 	size_t len;
2200 	char *cp, *end;
2201 	struct proc *p;
2202 	elf_prpsinfo_t *psinfo;
2203 	int error;
2204 
2205 	p = arg;
2206 	if (sb != NULL) {
2207 		KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2208 		psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2209 		psinfo->pr_version = PRPSINFO_VERSION;
2210 		psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2211 		strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2212 		PROC_LOCK(p);
2213 		if (p->p_args != NULL) {
2214 			len = sizeof(psinfo->pr_psargs) - 1;
2215 			if (len > p->p_args->ar_length)
2216 				len = p->p_args->ar_length;
2217 			memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2218 			PROC_UNLOCK(p);
2219 			error = 0;
2220 		} else {
2221 			_PHOLD(p);
2222 			PROC_UNLOCK(p);
2223 			sbuf_new(&sbarg, psinfo->pr_psargs,
2224 			    sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2225 			error = proc_getargv(curthread, p, &sbarg);
2226 			PRELE(p);
2227 			if (sbuf_finish(&sbarg) == 0) {
2228 				len = sbuf_len(&sbarg);
2229 				if (len > 0)
2230 					len--;
2231 			} else {
2232 				len = sizeof(psinfo->pr_psargs) - 1;
2233 			}
2234 			sbuf_delete(&sbarg);
2235 		}
2236 		if (error != 0 || len == 0 || (ssize_t)len == -1)
2237 			strlcpy(psinfo->pr_psargs, p->p_comm,
2238 			    sizeof(psinfo->pr_psargs));
2239 		else {
2240 			KASSERT(len < sizeof(psinfo->pr_psargs),
2241 			    ("len is too long: %zu vs %zu", len,
2242 			    sizeof(psinfo->pr_psargs)));
2243 			cp = psinfo->pr_psargs;
2244 			end = cp + len - 1;
2245 			for (;;) {
2246 				cp = memchr(cp, '\0', end - cp);
2247 				if (cp == NULL)
2248 					break;
2249 				*cp = ' ';
2250 			}
2251 		}
2252 		psinfo->pr_pid = p->p_pid;
2253 		sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2254 		free(psinfo, M_TEMP);
2255 	}
2256 	*sizep = sizeof(*psinfo);
2257 }
2258 
2259 static bool
__elfN(get_prstatus)2260 __elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2261     size_t *sizep)
2262 {
2263 	elf_prstatus_t *status;
2264 
2265 	if (buf != NULL) {
2266 		KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2267 		    __func__));
2268 		status = buf;
2269 		memset(status, 0, *sizep);
2270 		status->pr_version = PRSTATUS_VERSION;
2271 		status->pr_statussz = sizeof(elf_prstatus_t);
2272 		status->pr_gregsetsz = sizeof(elf_gregset_t);
2273 		status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2274 		status->pr_osreldate = osreldate;
2275 		status->pr_cursig = td->td_proc->p_sig;
2276 		status->pr_pid = td->td_tid;
2277 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2278 		fill_regs32(td, &status->pr_reg);
2279 #else
2280 		fill_regs(td, &status->pr_reg);
2281 #endif
2282 	}
2283 	*sizep = sizeof(*status);
2284 	return (true);
2285 }
2286 
2287 static bool
__elfN(set_prstatus)2288 __elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2289     size_t size)
2290 {
2291 	elf_prstatus_t *status;
2292 
2293 	KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2294 	status = buf;
2295 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2296 	set_regs32(td, &status->pr_reg);
2297 #else
2298 	set_regs(td, &status->pr_reg);
2299 #endif
2300 	return (true);
2301 }
2302 
2303 static struct regset __elfN(regset_prstatus) = {
2304 	.note = NT_PRSTATUS,
2305 	.size = sizeof(elf_prstatus_t),
2306 	.get = __elfN(get_prstatus),
2307 	.set = __elfN(set_prstatus),
2308 };
2309 ELF_REGSET(__elfN(regset_prstatus));
2310 
2311 static bool
__elfN(get_fpregset)2312 __elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2313     size_t *sizep)
2314 {
2315 	elf_prfpregset_t *fpregset;
2316 
2317 	if (buf != NULL) {
2318 		KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2319 		    __func__));
2320 		fpregset = buf;
2321 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2322 		fill_fpregs32(td, fpregset);
2323 #else
2324 		fill_fpregs(td, fpregset);
2325 #endif
2326 	}
2327 	*sizep = sizeof(*fpregset);
2328 	return (true);
2329 }
2330 
2331 static bool
__elfN(set_fpregset)2332 __elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2333     size_t size)
2334 {
2335 	elf_prfpregset_t *fpregset;
2336 
2337 	fpregset = buf;
2338 	KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2339 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2340 	set_fpregs32(td, fpregset);
2341 #else
2342 	set_fpregs(td, fpregset);
2343 #endif
2344 	return (true);
2345 }
2346 
2347 static struct regset __elfN(regset_fpregset) = {
2348 	.note = NT_FPREGSET,
2349 	.size = sizeof(elf_prfpregset_t),
2350 	.get = __elfN(get_fpregset),
2351 	.set = __elfN(set_fpregset),
2352 };
2353 ELF_REGSET(__elfN(regset_fpregset));
2354 
2355 static bool
__elfN(get_thrmisc)2356 __elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2357     size_t *sizep)
2358 {
2359 	elf_thrmisc_t *thrmisc;
2360 
2361 	if (buf != NULL) {
2362 		KASSERT(*sizep == sizeof(*thrmisc),
2363 		    ("%s: invalid size", __func__));
2364 		thrmisc = buf;
2365 		bzero(thrmisc, sizeof(*thrmisc));
2366 		strcpy(thrmisc->pr_tname, td->td_name);
2367 	}
2368 	*sizep = sizeof(*thrmisc);
2369 	return (true);
2370 }
2371 
2372 static struct regset __elfN(regset_thrmisc) = {
2373 	.note = NT_THRMISC,
2374 	.size = sizeof(elf_thrmisc_t),
2375 	.get = __elfN(get_thrmisc),
2376 };
2377 ELF_REGSET(__elfN(regset_thrmisc));
2378 
2379 static bool
__elfN(get_lwpinfo)2380 __elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2381     size_t *sizep)
2382 {
2383 	elf_lwpinfo_t pl;
2384 	size_t size;
2385 	int structsize;
2386 
2387 	size = sizeof(structsize) + sizeof(pl);
2388 	if (buf != NULL) {
2389 		KASSERT(*sizep == size, ("%s: invalid size", __func__));
2390 		structsize = sizeof(pl);
2391 		memcpy(buf, &structsize, sizeof(structsize));
2392 		bzero(&pl, sizeof(pl));
2393 		pl.pl_lwpid = td->td_tid;
2394 		pl.pl_event = PL_EVENT_NONE;
2395 		pl.pl_sigmask = td->td_sigmask;
2396 		pl.pl_siglist = td->td_siglist;
2397 		if (td->td_si.si_signo != 0) {
2398 			pl.pl_event = PL_EVENT_SIGNAL;
2399 			pl.pl_flags |= PL_FLAG_SI;
2400 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2401 			siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2402 #else
2403 			pl.pl_siginfo = td->td_si;
2404 #endif
2405 		}
2406 		strcpy(pl.pl_tdname, td->td_name);
2407 		/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2408 		memcpy((int *)buf + 1, &pl, sizeof(pl));
2409 	}
2410 	*sizep = size;
2411 	return (true);
2412 }
2413 
2414 static struct regset __elfN(regset_lwpinfo) = {
2415 	.note = NT_PTLWPINFO,
2416 	.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2417 	.get = __elfN(get_lwpinfo),
2418 };
2419 ELF_REGSET(__elfN(regset_lwpinfo));
2420 
2421 static size_t
__elfN(prepare_register_notes)2422 __elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2423     struct thread *target_td)
2424 {
2425 	struct sysentvec *sv = td->td_proc->p_sysent;
2426 	struct regset **regsetp, **regset_end, *regset;
2427 	size_t size;
2428 
2429 	size = 0;
2430 
2431 	if (target_td == td)
2432 		cpu_update_pcb(target_td);
2433 
2434 	/* NT_PRSTATUS must be the first register set note. */
2435 	size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2436 	    target_td);
2437 
2438 	regsetp = sv->sv_regset_begin;
2439 	if (regsetp == NULL) {
2440 		/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2441 		size += __elfN(register_regset_note)(td, list,
2442 		    &__elfN(regset_fpregset), target_td);
2443 		return (size);
2444 	}
2445 	regset_end = sv->sv_regset_end;
2446 	MPASS(regset_end != NULL);
2447 	for (; regsetp < regset_end; regsetp++) {
2448 		regset = *regsetp;
2449 		if (regset->note == NT_PRSTATUS)
2450 			continue;
2451 		size += __elfN(register_regset_note)(td, list, regset,
2452 		    target_td);
2453 	}
2454 	return (size);
2455 }
2456 
2457 /*
2458  * Allow for MD specific notes, as well as any MD
2459  * specific preparations for writing MI notes.
2460  */
2461 static void
__elfN(note_threadmd)2462 __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2463 {
2464 	struct thread *td;
2465 	void *buf;
2466 	size_t size;
2467 
2468 	td = (struct thread *)arg;
2469 	size = *sizep;
2470 	if (size != 0 && sb != NULL)
2471 		buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2472 	else
2473 		buf = NULL;
2474 	size = 0;
2475 	__elfN(dump_thread)(td, buf, &size);
2476 	KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2477 	if (size != 0 && sb != NULL)
2478 		sbuf_bcat(sb, buf, size);
2479 	free(buf, M_TEMP);
2480 	*sizep = size;
2481 }
2482 
2483 #ifdef KINFO_PROC_SIZE
2484 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2485 #endif
2486 
2487 static void
__elfN(note_procstat_proc)2488 __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2489 {
2490 	struct proc *p;
2491 	size_t size;
2492 	int structsize;
2493 
2494 	p = arg;
2495 	size = sizeof(structsize) + p->p_numthreads *
2496 	    sizeof(elf_kinfo_proc_t);
2497 
2498 	if (sb != NULL) {
2499 		KASSERT(*sizep == size, ("invalid size"));
2500 		structsize = sizeof(elf_kinfo_proc_t);
2501 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2502 		sx_slock(&proctree_lock);
2503 		PROC_LOCK(p);
2504 		kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2505 		sx_sunlock(&proctree_lock);
2506 	}
2507 	*sizep = size;
2508 }
2509 
2510 #ifdef KINFO_FILE_SIZE
2511 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2512 #endif
2513 
2514 static void
note_procstat_files(void * arg,struct sbuf * sb,size_t * sizep)2515 note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2516 {
2517 	struct proc *p;
2518 	size_t size, sect_sz, i;
2519 	ssize_t start_len, sect_len;
2520 	int structsize, filedesc_flags;
2521 
2522 	if (coredump_pack_fileinfo)
2523 		filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2524 	else
2525 		filedesc_flags = 0;
2526 
2527 	p = arg;
2528 	structsize = sizeof(struct kinfo_file);
2529 	if (sb == NULL) {
2530 		size = 0;
2531 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2532 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2533 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2534 		PROC_LOCK(p);
2535 		kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2536 		sbuf_finish(sb);
2537 		sbuf_delete(sb);
2538 		*sizep = size;
2539 	} else {
2540 		sbuf_start_section(sb, &start_len);
2541 
2542 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2543 		PROC_LOCK(p);
2544 		kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2545 		    filedesc_flags);
2546 
2547 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2548 		if (sect_len < 0)
2549 			return;
2550 		sect_sz = sect_len;
2551 
2552 		KASSERT(sect_sz <= *sizep,
2553 		    ("kern_proc_filedesc_out did not respect maxlen; "
2554 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2555 		     sect_sz - sizeof(structsize)));
2556 
2557 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2558 			sbuf_putc(sb, 0);
2559 	}
2560 }
2561 
2562 #ifdef KINFO_VMENTRY_SIZE
2563 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2564 #endif
2565 
2566 static void
note_procstat_vmmap(void * arg,struct sbuf * sb,size_t * sizep)2567 note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2568 {
2569 	struct proc *p;
2570 	size_t size;
2571 	int structsize, vmmap_flags;
2572 
2573 	if (coredump_pack_vmmapinfo)
2574 		vmmap_flags = KERN_VMMAP_PACK_KINFO;
2575 	else
2576 		vmmap_flags = 0;
2577 
2578 	p = arg;
2579 	structsize = sizeof(struct kinfo_vmentry);
2580 	if (sb == NULL) {
2581 		size = 0;
2582 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2583 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2584 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2585 		PROC_LOCK(p);
2586 		kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2587 		sbuf_finish(sb);
2588 		sbuf_delete(sb);
2589 		*sizep = size;
2590 	} else {
2591 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2592 		PROC_LOCK(p);
2593 		kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2594 		    vmmap_flags);
2595 	}
2596 }
2597 
2598 static void
note_procstat_groups(void * arg,struct sbuf * sb,size_t * sizep)2599 note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2600 {
2601 	struct proc *p;
2602 	size_t size;
2603 	int structsize;
2604 
2605 	p = arg;
2606 	size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t);
2607 	if (sb != NULL) {
2608 		KASSERT(*sizep == size, ("invalid size"));
2609 		structsize = sizeof(gid_t);
2610 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2611 		sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2612 		    sizeof(gid_t));
2613 	}
2614 	*sizep = size;
2615 }
2616 
2617 static void
note_procstat_umask(void * arg,struct sbuf * sb,size_t * sizep)2618 note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2619 {
2620 	struct proc *p;
2621 	size_t size;
2622 	int structsize;
2623 
2624 	p = arg;
2625 	size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2626 	if (sb != NULL) {
2627 		KASSERT(*sizep == size, ("invalid size"));
2628 		structsize = sizeof(p->p_pd->pd_cmask);
2629 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2630 		sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2631 	}
2632 	*sizep = size;
2633 }
2634 
2635 static void
note_procstat_rlimit(void * arg,struct sbuf * sb,size_t * sizep)2636 note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2637 {
2638 	struct proc *p;
2639 	struct rlimit rlim[RLIM_NLIMITS];
2640 	size_t size;
2641 	int structsize, i;
2642 
2643 	p = arg;
2644 	size = sizeof(structsize) + sizeof(rlim);
2645 	if (sb != NULL) {
2646 		KASSERT(*sizep == size, ("invalid size"));
2647 		structsize = sizeof(rlim);
2648 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2649 		PROC_LOCK(p);
2650 		for (i = 0; i < RLIM_NLIMITS; i++)
2651 			lim_rlimit_proc(p, i, &rlim[i]);
2652 		PROC_UNLOCK(p);
2653 		sbuf_bcat(sb, rlim, sizeof(rlim));
2654 	}
2655 	*sizep = size;
2656 }
2657 
2658 static void
note_procstat_osrel(void * arg,struct sbuf * sb,size_t * sizep)2659 note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2660 {
2661 	struct proc *p;
2662 	size_t size;
2663 	int structsize;
2664 
2665 	p = arg;
2666 	size = sizeof(structsize) + sizeof(p->p_osrel);
2667 	if (sb != NULL) {
2668 		KASSERT(*sizep == size, ("invalid size"));
2669 		structsize = sizeof(p->p_osrel);
2670 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2671 		sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2672 	}
2673 	*sizep = size;
2674 }
2675 
2676 static void
__elfN(note_procstat_psstrings)2677 __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2678 {
2679 	struct proc *p;
2680 	elf_ps_strings_t ps_strings;
2681 	size_t size;
2682 	int structsize;
2683 
2684 	p = arg;
2685 	size = sizeof(structsize) + sizeof(ps_strings);
2686 	if (sb != NULL) {
2687 		KASSERT(*sizep == size, ("invalid size"));
2688 		structsize = sizeof(ps_strings);
2689 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2690 		ps_strings = PTROUT(PROC_PS_STRINGS(p));
2691 #else
2692 		ps_strings = PROC_PS_STRINGS(p);
2693 #endif
2694 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2695 		sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2696 	}
2697 	*sizep = size;
2698 }
2699 
2700 static void
__elfN(note_procstat_auxv)2701 __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2702 {
2703 	struct proc *p;
2704 	size_t size;
2705 	int structsize;
2706 
2707 	p = arg;
2708 	if (sb == NULL) {
2709 		size = 0;
2710 		sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2711 		    SBUF_FIXEDLEN);
2712 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2713 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2714 		PHOLD(p);
2715 		proc_getauxv(curthread, p, sb);
2716 		PRELE(p);
2717 		sbuf_finish(sb);
2718 		sbuf_delete(sb);
2719 		*sizep = size;
2720 	} else {
2721 		structsize = sizeof(Elf_Auxinfo);
2722 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2723 		PHOLD(p);
2724 		proc_getauxv(curthread, p, sb);
2725 		PRELE(p);
2726 	}
2727 }
2728 
2729 static void
__elfN(note_procstat_kqueues)2730 __elfN(note_procstat_kqueues)(void *arg, struct sbuf *sb, size_t *sizep)
2731 {
2732 	struct proc *p;
2733 	size_t size, sect_sz, i;
2734 	ssize_t start_len, sect_len;
2735 	int structsize;
2736 	bool compat32;
2737 
2738 #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2739 	compat32 = true;
2740 	structsize = sizeof(struct kinfo_knote32);
2741 #else
2742 	compat32 = false;
2743 	structsize = sizeof(struct kinfo_knote);
2744 #endif
2745 	p = arg;
2746 	if (sb == NULL) {
2747 		size = 0;
2748 		sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2749 		sbuf_set_drain(sb, sbuf_count_drain, &size);
2750 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2751 		kern_proc_kqueues_out(p, sb, -1, compat32);
2752 		sbuf_finish(sb);
2753 		sbuf_delete(sb);
2754 		*sizep = size;
2755 	} else {
2756 		sbuf_start_section(sb, &start_len);
2757 
2758 		sbuf_bcat(sb, &structsize, sizeof(structsize));
2759 		kern_proc_kqueues_out(p, sb, *sizep - sizeof(structsize),
2760 		    compat32);
2761 
2762 		sect_len = sbuf_end_section(sb, start_len, 0, 0);
2763 		if (sect_len < 0)
2764 			return;
2765 		sect_sz = sect_len;
2766 
2767 		KASSERT(sect_sz <= *sizep,
2768 		    ("kern_proc_kqueue_out did not respect maxlen; "
2769 		     "requested %zu, got %zu", *sizep - sizeof(structsize),
2770 		     sect_sz - sizeof(structsize)));
2771 
2772 		for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2773 			sbuf_putc(sb, 0);
2774 	}
2775 }
2776 
2777 #define	MAX_NOTES_LOOP	4096
2778 bool
__elfN(parse_notes)2779 __elfN(parse_notes)(const struct image_params *imgp, const Elf_Note *checknote,
2780     const char *note_vendor, const Elf_Phdr *pnote,
2781     bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2782 {
2783 	const Elf_Note *note, *note0, *note_end;
2784 	const char *note_name;
2785 	char *buf;
2786 	int i, error;
2787 	bool res;
2788 
2789 	/* We need some limit, might as well use PAGE_SIZE. */
2790 	if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2791 		return (false);
2792 	ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2793 	if (pnote->p_offset > PAGE_SIZE ||
2794 	    pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2795 		buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2796 		if (buf == NULL) {
2797 			VOP_UNLOCK(imgp->vp);
2798 			buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2799 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2800 		}
2801 		error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2802 		    pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2803 		    curthread->td_ucred, NOCRED, NULL, curthread);
2804 		if (error != 0) {
2805 			uprintf("i/o error PT_NOTE\n");
2806 			goto retf;
2807 		}
2808 		note = note0 = (const Elf_Note *)buf;
2809 		note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2810 	} else {
2811 		note = note0 = (const Elf_Note *)(imgp->image_header +
2812 		    pnote->p_offset);
2813 		note_end = (const Elf_Note *)(imgp->image_header +
2814 		    pnote->p_offset + pnote->p_filesz);
2815 		buf = NULL;
2816 	}
2817 	for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end;
2818 	    i++) {
2819 		if (!aligned(note, Elf32_Addr)) {
2820 			uprintf("Unaligned ELF note\n");
2821 			goto retf;
2822 		}
2823 		if ((const char *)note_end - (const char *)note <
2824 		    sizeof(Elf_Note)) {
2825 			uprintf("ELF note to short\n");
2826 			goto retf;
2827 		}
2828 		if (note->n_namesz != checknote->n_namesz ||
2829 		    note->n_descsz != checknote->n_descsz ||
2830 		    note->n_type != checknote->n_type)
2831 			goto nextnote;
2832 		note_name = (const char *)(note + 1);
2833 		if (note_name + checknote->n_namesz >=
2834 		    (const char *)note_end || strncmp(note_vendor,
2835 		    note_name, checknote->n_namesz) != 0)
2836 			goto nextnote;
2837 
2838 		if (cb(note, cb_arg, &res))
2839 			goto ret;
2840 nextnote:
2841 		note = (const Elf_Note *)((const char *)(note + 1) +
2842 		    roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2843 		    roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2844 	}
2845 	if (i >= MAX_NOTES_LOOP)
2846 		uprintf("ELF note parser reached %d notes\n", i);
2847 retf:
2848 	res = false;
2849 ret:
2850 	free(buf, M_TEMP);
2851 	return (res);
2852 }
2853 
2854 struct brandnote_cb_arg {
2855 	Elf_Brandnote *brandnote;
2856 	int32_t *osrel;
2857 };
2858 
2859 static bool
brandnote_cb(const Elf_Note * note,void * arg0,bool * res)2860 brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2861 {
2862 	struct brandnote_cb_arg *arg;
2863 
2864 	arg = arg0;
2865 
2866 	/*
2867 	 * Fetch the osreldate for binary from the ELF OSABI-note if
2868 	 * necessary.
2869 	 */
2870 	*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2871 	    arg->brandnote->trans_osrel != NULL ?
2872 	    arg->brandnote->trans_osrel(note, arg->osrel) : true;
2873 
2874 	return (true);
2875 }
2876 
2877 static Elf_Note fctl_note = {
2878 	.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2879 	.n_descsz = sizeof(uint32_t),
2880 	.n_type = NT_FREEBSD_FEATURE_CTL,
2881 };
2882 
2883 struct fctl_cb_arg {
2884 	bool *has_fctl0;
2885 	uint32_t *fctl0;
2886 };
2887 
2888 static bool
note_fctl_cb(const Elf_Note * note,void * arg0,bool * res)2889 note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2890 {
2891 	struct fctl_cb_arg *arg;
2892 	const Elf32_Word *desc;
2893 	uintptr_t p;
2894 
2895 	arg = arg0;
2896 	p = (uintptr_t)(note + 1);
2897 	p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2898 	desc = (const Elf32_Word *)p;
2899 	*arg->has_fctl0 = true;
2900 	*arg->fctl0 = desc[0];
2901 	*res = true;
2902 	return (true);
2903 }
2904 
2905 /*
2906  * Try to find the appropriate ABI-note section for checknote, fetch
2907  * the osreldate and feature control flags for binary from the ELF
2908  * OSABI-note.  Only the first page of the image is searched, the same
2909  * as for headers.
2910  */
2911 static bool
__elfN(check_note)2912 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2913     int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2914 {
2915 	const Elf_Phdr *phdr;
2916 	const Elf_Ehdr *hdr;
2917 	struct brandnote_cb_arg b_arg;
2918 	struct fctl_cb_arg f_arg;
2919 	int i, j;
2920 
2921 	hdr = (const Elf_Ehdr *)imgp->image_header;
2922 	phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2923 	b_arg.brandnote = brandnote;
2924 	b_arg.osrel = osrel;
2925 	f_arg.has_fctl0 = has_fctl0;
2926 	f_arg.fctl0 = fctl0;
2927 
2928 	for (i = 0; i < hdr->e_phnum; i++) {
2929 		if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2930 		    &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2931 		    &b_arg)) {
2932 			for (j = 0; j < hdr->e_phnum; j++) {
2933 				if (phdr[j].p_type == PT_NOTE &&
2934 				    __elfN(parse_notes)(imgp, &fctl_note,
2935 				    FREEBSD_ABI_VENDOR, &phdr[j],
2936 				    note_fctl_cb, &f_arg))
2937 					break;
2938 			}
2939 			return (true);
2940 		}
2941 	}
2942 	return (false);
2943 
2944 }
2945 
2946 /*
2947  * Tell kern_execve.c about it, with a little help from the linker.
2948  */
2949 static struct execsw __elfN(execsw) = {
2950 	.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2951 	.ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
2952 };
2953 EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw));
2954 
2955 static vm_prot_t
__elfN(trans_prot)2956 __elfN(trans_prot)(Elf_Word flags)
2957 {
2958 	vm_prot_t prot;
2959 
2960 	prot = 0;
2961 	if (flags & PF_X)
2962 		prot |= VM_PROT_EXECUTE;
2963 	if (flags & PF_W)
2964 		prot |= VM_PROT_WRITE;
2965 	if (flags & PF_R)
2966 		prot |= VM_PROT_READ;
2967 #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2968 	if (i386_read_exec && (flags & PF_R))
2969 		prot |= VM_PROT_EXECUTE;
2970 #endif
2971 	return (prot);
2972 }
2973 
2974 static Elf_Word
__elfN(untrans_prot)2975 __elfN(untrans_prot)(vm_prot_t prot)
2976 {
2977 	Elf_Word flags;
2978 
2979 	flags = 0;
2980 	if (prot & VM_PROT_EXECUTE)
2981 		flags |= PF_X;
2982 	if (prot & VM_PROT_READ)
2983 		flags |= PF_R;
2984 	if (prot & VM_PROT_WRITE)
2985 		flags |= PF_W;
2986 	return (flags);
2987 }
2988