1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997 John S. Dyson. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. John S. Dyson's name may not be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything
15 * bad that happens because of using this software isn't the responsibility
16 * of the author. This software is distributed AS-IS.
17 */
18
19 /*
20 * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21 */
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/malloc.h>
26 #include <sys/bio.h>
27 #include <sys/buf.h>
28 #include <sys/capsicum.h>
29 #include <sys/eventhandler.h>
30 #include <sys/sysproto.h>
31 #include <sys/filedesc.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/kthread.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/unistd.h>
41 #include <sys/posix4.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/sema.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/syscall.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/sx.h>
55 #include <sys/taskqueue.h>
56 #include <sys/vnode.h>
57 #include <sys/conf.h>
58 #include <sys/event.h>
59 #include <sys/mount.h>
60 #include <geom/geom.h>
61
62 #include <machine/atomic.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vnode_pager.h>
71 #include <vm/uma.h>
72 #include <sys/aio.h>
73
74 /*
75 * Counter for aio_fsync.
76 */
77 static uint64_t jobseqno;
78
79 #ifndef MAX_AIO_PER_PROC
80 #define MAX_AIO_PER_PROC 32
81 #endif
82
83 #ifndef MAX_AIO_QUEUE_PER_PROC
84 #define MAX_AIO_QUEUE_PER_PROC 256
85 #endif
86
87 #ifndef MAX_AIO_QUEUE
88 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
89 #endif
90
91 #ifndef MAX_BUF_AIO
92 #define MAX_BUF_AIO 16
93 #endif
94
95 FEATURE(aio, "Asynchronous I/O");
96 SYSCTL_DECL(_p1003_1b);
97
98 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
99 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
100
101 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102 "Async IO management");
103
104 static int enable_aio_unsafe = 0;
105 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
106 "Permit asynchronous IO on all file types, not just known-safe types");
107
108 static unsigned int unsafe_warningcnt = 1;
109 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
110 &unsafe_warningcnt, 0,
111 "Warnings that will be triggered upon failed IO requests on unsafe files");
112
113 static int max_aio_procs = MAX_AIO_PROCS;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
115 "Maximum number of kernel processes to use for handling async IO ");
116
117 static int num_aio_procs = 0;
118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
119 "Number of presently active kernel processes for async IO");
120
121 /*
122 * The code will adjust the actual number of AIO processes towards this
123 * number when it gets a chance.
124 */
125 static int target_aio_procs = TARGET_AIO_PROCS;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
127 0,
128 "Preferred number of ready kernel processes for async IO");
129
130 static int max_queue_count = MAX_AIO_QUEUE;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
132 "Maximum number of aio requests to queue, globally");
133
134 static int num_queue_count = 0;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
136 "Number of queued aio requests");
137
138 static int num_buf_aio = 0;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
140 "Number of aio requests presently handled by the buf subsystem");
141
142 static int num_unmapped_aio = 0;
143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
144 0,
145 "Number of aio requests presently handled by unmapped I/O buffers");
146
147 /* Number of async I/O processes in the process of being started */
148 /* XXX This should be local to aio_aqueue() */
149 static int num_aio_resv_start = 0;
150
151 static int aiod_lifetime;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
153 "Maximum lifetime for idle aiod");
154
155 static int max_aio_per_proc = MAX_AIO_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
157 0,
158 "Maximum active aio requests per process");
159
160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
162 &max_aio_queue_per_proc, 0,
163 "Maximum queued aio requests per process");
164
165 static int max_buf_aio = MAX_BUF_AIO;
166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
167 "Maximum buf aio requests per process");
168
169 /*
170 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
171 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
172 * vfs.aio.aio_listio_max.
173 */
174 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
175 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
176 0, "Maximum aio requests for a single lio_listio call");
177
178 #ifdef COMPAT_FREEBSD6
179 typedef struct oaiocb {
180 int aio_fildes; /* File descriptor */
181 off_t aio_offset; /* File offset for I/O */
182 volatile void *aio_buf; /* I/O buffer in process space */
183 size_t aio_nbytes; /* Number of bytes for I/O */
184 struct osigevent aio_sigevent; /* Signal to deliver */
185 int aio_lio_opcode; /* LIO opcode */
186 int aio_reqprio; /* Request priority -- ignored */
187 struct __aiocb_private _aiocb_private;
188 } oaiocb_t;
189 #endif
190
191 /*
192 * Below is a key of locks used to protect each member of struct kaiocb
193 * aioliojob and kaioinfo and any backends.
194 *
195 * * - need not protected
196 * a - locked by kaioinfo lock
197 * b - locked by backend lock, the backend lock can be null in some cases,
198 * for example, BIO belongs to this type, in this case, proc lock is
199 * reused.
200 * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
201 */
202
203 /*
204 * If the routine that services an AIO request blocks while running in an
205 * AIO kernel process it can starve other I/O requests. BIO requests
206 * queued via aio_qbio() complete asynchronously and do not use AIO kernel
207 * processes at all. Socket I/O requests use a separate pool of
208 * kprocs and also force non-blocking I/O. Other file I/O requests
209 * use the generic fo_read/fo_write operations which can block. The
210 * fsync and mlock operations can also block while executing. Ideally
211 * none of these requests would block while executing.
212 *
213 * Note that the service routines cannot toggle O_NONBLOCK in the file
214 * structure directly while handling a request due to races with
215 * userland threads.
216 */
217
218 /* jobflags */
219 #define KAIOCB_QUEUEING 0x01
220 #define KAIOCB_CANCELLED 0x02
221 #define KAIOCB_CANCELLING 0x04
222 #define KAIOCB_CHECKSYNC 0x08
223 #define KAIOCB_CLEARED 0x10
224 #define KAIOCB_FINISHED 0x20
225
226 /* ioflags */
227 #define KAIOCB_IO_FOFFSET 0x01
228
229 /*
230 * AIO process info
231 */
232 #define AIOP_FREE 0x1 /* proc on free queue */
233
234 struct aioproc {
235 int aioprocflags; /* (c) AIO proc flags */
236 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */
237 struct proc *aioproc; /* (*) the AIO proc */
238 };
239
240 /*
241 * data-structure for lio signal management
242 */
243 struct aioliojob {
244 int lioj_flags; /* (a) listio flags */
245 int lioj_count; /* (a) count of jobs */
246 int lioj_finished_count; /* (a) count of finished jobs */
247 struct sigevent lioj_signal; /* (a) signal on all I/O done */
248 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */
249 struct knlist klist; /* (a) list of knotes */
250 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */
251 };
252
253 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */
254 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */
255 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */
256
257 /*
258 * per process aio data structure
259 */
260 struct kaioinfo {
261 struct mtx kaio_mtx; /* the lock to protect this struct */
262 int kaio_flags; /* (a) per process kaio flags */
263 int kaio_active_count; /* (c) number of currently used AIOs */
264 int kaio_count; /* (a) size of AIO queue */
265 int kaio_buffer_count; /* (a) number of bio buffers */
266 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */
267 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */
268 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
269 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */
270 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */
271 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */
272 struct task kaio_task; /* (*) task to kick aio processes */
273 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */
274 };
275
276 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx)
277 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx)
278 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f))
279 #define AIO_MTX(ki) (&(ki)->kaio_mtx)
280
281 #define KAIO_RUNDOWN 0x1 /* process is being run down */
282 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */
283
284 /*
285 * Operations used to interact with userland aio control blocks.
286 * Different ABIs provide their own operations.
287 */
288 struct aiocb_ops {
289 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
290 long (*fetch_status)(struct aiocb *ujob);
291 long (*fetch_error)(struct aiocb *ujob);
292 int (*store_status)(struct aiocb *ujob, long status);
293 int (*store_error)(struct aiocb *ujob, long error);
294 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
295 };
296
297 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */
298 static struct sema aio_newproc_sem;
299 static struct mtx aio_job_mtx;
300 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */
301 static struct unrhdr *aiod_unr;
302
303 static void aio_biocleanup(struct bio *bp);
304 void aio_init_aioinfo(struct proc *p);
305 static int aio_onceonly(void);
306 static int aio_free_entry(struct kaiocb *job);
307 static void aio_process_rw(struct kaiocb *job);
308 static void aio_process_sync(struct kaiocb *job);
309 static void aio_process_mlock(struct kaiocb *job);
310 static void aio_schedule_fsync(void *context, int pending);
311 static int aio_newproc(int *);
312 int aio_aqueue(struct thread *td, struct aiocb *ujob,
313 struct aioliojob *lio, int type, struct aiocb_ops *ops);
314 static int aio_queue_file(struct file *fp, struct kaiocb *job);
315 static void aio_biowakeup(struct bio *bp);
316 static void aio_proc_rundown(void *arg, struct proc *p);
317 static void aio_proc_rundown_exec(void *arg, struct proc *p,
318 struct image_params *imgp);
319 static int aio_qbio(struct proc *p, struct kaiocb *job);
320 static void aio_daemon(void *param);
321 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
322 static bool aio_clear_cancel_function_locked(struct kaiocb *job);
323 static int aio_kick(struct proc *userp);
324 static void aio_kick_nowait(struct proc *userp);
325 static void aio_kick_helper(void *context, int pending);
326 static int filt_aioattach(struct knote *kn);
327 static void filt_aiodetach(struct knote *kn);
328 static int filt_aio(struct knote *kn, long hint);
329 static int filt_lioattach(struct knote *kn);
330 static void filt_liodetach(struct knote *kn);
331 static int filt_lio(struct knote *kn, long hint);
332
333 /*
334 * Zones for:
335 * kaio Per process async io info
336 * aiocb async io jobs
337 * aiolio list io jobs
338 */
339 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
340
341 /* kqueue filters for aio */
342 static struct filterops aio_filtops = {
343 .f_isfd = 0,
344 .f_attach = filt_aioattach,
345 .f_detach = filt_aiodetach,
346 .f_event = filt_aio,
347 };
348 static struct filterops lio_filtops = {
349 .f_isfd = 0,
350 .f_attach = filt_lioattach,
351 .f_detach = filt_liodetach,
352 .f_event = filt_lio
353 };
354
355 static eventhandler_tag exit_tag, exec_tag;
356
357 TASKQUEUE_DEFINE_THREAD(aiod_kick);
358
359 /*
360 * Main operations function for use as a kernel module.
361 */
362 static int
aio_modload(struct module * module,int cmd,void * arg)363 aio_modload(struct module *module, int cmd, void *arg)
364 {
365 int error = 0;
366
367 switch (cmd) {
368 case MOD_LOAD:
369 aio_onceonly();
370 break;
371 case MOD_SHUTDOWN:
372 break;
373 default:
374 error = EOPNOTSUPP;
375 break;
376 }
377 return (error);
378 }
379
380 static moduledata_t aio_mod = {
381 "aio",
382 &aio_modload,
383 NULL
384 };
385
386 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
387 MODULE_VERSION(aio, 1);
388
389 /*
390 * Startup initialization
391 */
392 static int
aio_onceonly(void)393 aio_onceonly(void)
394 {
395
396 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
397 EVENTHANDLER_PRI_ANY);
398 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
399 NULL, EVENTHANDLER_PRI_ANY);
400 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
401 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
402 TAILQ_INIT(&aio_freeproc);
403 sema_init(&aio_newproc_sem, 0, "aio_new_proc");
404 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
405 TAILQ_INIT(&aio_jobs);
406 aiod_unr = new_unrhdr(1, INT_MAX, NULL);
407 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
408 NULL, NULL, UMA_ALIGN_PTR, 0);
409 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
410 NULL, NULL, UMA_ALIGN_PTR, 0);
411 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
412 NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
413 aiod_lifetime = AIOD_LIFETIME_DEFAULT;
414 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
415 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
416 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
417
418 return (0);
419 }
420
421 /*
422 * Init the per-process aioinfo structure. The aioinfo limits are set
423 * per-process for user limit (resource) management.
424 */
425 void
aio_init_aioinfo(struct proc * p)426 aio_init_aioinfo(struct proc *p)
427 {
428 struct kaioinfo *ki;
429
430 ki = uma_zalloc(kaio_zone, M_WAITOK);
431 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
432 ki->kaio_flags = 0;
433 ki->kaio_active_count = 0;
434 ki->kaio_count = 0;
435 ki->kaio_buffer_count = 0;
436 TAILQ_INIT(&ki->kaio_all);
437 TAILQ_INIT(&ki->kaio_done);
438 TAILQ_INIT(&ki->kaio_jobqueue);
439 TAILQ_INIT(&ki->kaio_liojoblist);
440 TAILQ_INIT(&ki->kaio_syncqueue);
441 TAILQ_INIT(&ki->kaio_syncready);
442 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
443 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
444 PROC_LOCK(p);
445 if (p->p_aioinfo == NULL) {
446 p->p_aioinfo = ki;
447 PROC_UNLOCK(p);
448 } else {
449 PROC_UNLOCK(p);
450 mtx_destroy(&ki->kaio_mtx);
451 uma_zfree(kaio_zone, ki);
452 }
453
454 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
455 aio_newproc(NULL);
456 }
457
458 static int
aio_sendsig(struct proc * p,struct sigevent * sigev,ksiginfo_t * ksi,bool ext)459 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
460 {
461 struct thread *td;
462 int error;
463
464 error = sigev_findtd(p, sigev, &td);
465 if (error)
466 return (error);
467 if (!KSI_ONQ(ksi)) {
468 ksiginfo_set_sigev(ksi, sigev);
469 ksi->ksi_code = SI_ASYNCIO;
470 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
471 tdsendsignal(p, td, ksi->ksi_signo, ksi);
472 }
473 PROC_UNLOCK(p);
474 return (error);
475 }
476
477 /*
478 * Free a job entry. Wait for completion if it is currently active, but don't
479 * delay forever. If we delay, we return a flag that says that we have to
480 * restart the queue scan.
481 */
482 static int
aio_free_entry(struct kaiocb * job)483 aio_free_entry(struct kaiocb *job)
484 {
485 struct kaioinfo *ki;
486 struct aioliojob *lj;
487 struct proc *p;
488
489 p = job->userproc;
490 MPASS(curproc == p);
491 ki = p->p_aioinfo;
492 MPASS(ki != NULL);
493
494 AIO_LOCK_ASSERT(ki, MA_OWNED);
495 MPASS(job->jobflags & KAIOCB_FINISHED);
496
497 atomic_subtract_int(&num_queue_count, 1);
498
499 ki->kaio_count--;
500 MPASS(ki->kaio_count >= 0);
501
502 TAILQ_REMOVE(&ki->kaio_done, job, plist);
503 TAILQ_REMOVE(&ki->kaio_all, job, allist);
504
505 lj = job->lio;
506 if (lj) {
507 lj->lioj_count--;
508 lj->lioj_finished_count--;
509
510 if (lj->lioj_count == 0) {
511 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
512 /* lio is going away, we need to destroy any knotes */
513 knlist_delete(&lj->klist, curthread, 1);
514 PROC_LOCK(p);
515 sigqueue_take(&lj->lioj_ksi);
516 PROC_UNLOCK(p);
517 uma_zfree(aiolio_zone, lj);
518 }
519 }
520
521 /* job is going away, we need to destroy any knotes */
522 knlist_delete(&job->klist, curthread, 1);
523 PROC_LOCK(p);
524 sigqueue_take(&job->ksi);
525 PROC_UNLOCK(p);
526
527 AIO_UNLOCK(ki);
528
529 /*
530 * The thread argument here is used to find the owning process
531 * and is also passed to fo_close() which may pass it to various
532 * places such as devsw close() routines. Because of that, we
533 * need a thread pointer from the process owning the job that is
534 * persistent and won't disappear out from under us or move to
535 * another process.
536 *
537 * Currently, all the callers of this function call it to remove
538 * a kaiocb from the current process' job list either via a
539 * syscall or due to the current process calling exit() or
540 * execve(). Thus, we know that p == curproc. We also know that
541 * curthread can't exit since we are curthread.
542 *
543 * Therefore, we use curthread as the thread to pass to
544 * knlist_delete(). This does mean that it is possible for the
545 * thread pointer at close time to differ from the thread pointer
546 * at open time, but this is already true of file descriptors in
547 * a multithreaded process.
548 */
549 if (job->fd_file)
550 fdrop(job->fd_file, curthread);
551 crfree(job->cred);
552 if (job->uiop != &job->uio)
553 freeuio(job->uiop);
554 uma_zfree(aiocb_zone, job);
555 AIO_LOCK(ki);
556
557 return (0);
558 }
559
560 static void
aio_proc_rundown_exec(void * arg,struct proc * p,struct image_params * imgp __unused)561 aio_proc_rundown_exec(void *arg, struct proc *p,
562 struct image_params *imgp __unused)
563 {
564 aio_proc_rundown(arg, p);
565 }
566
567 static int
aio_cancel_job(struct proc * p,struct kaioinfo * ki,struct kaiocb * job)568 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
569 {
570 aio_cancel_fn_t *func;
571 int cancelled;
572
573 AIO_LOCK_ASSERT(ki, MA_OWNED);
574 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
575 return (0);
576 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
577 job->jobflags |= KAIOCB_CANCELLED;
578
579 func = job->cancel_fn;
580
581 /*
582 * If there is no cancel routine, just leave the job marked as
583 * cancelled. The job should be in active use by a caller who
584 * should complete it normally or when it fails to install a
585 * cancel routine.
586 */
587 if (func == NULL)
588 return (0);
589
590 /*
591 * Set the CANCELLING flag so that aio_complete() will defer
592 * completions of this job. This prevents the job from being
593 * freed out from under the cancel callback. After the
594 * callback any deferred completion (whether from the callback
595 * or any other source) will be completed.
596 */
597 job->jobflags |= KAIOCB_CANCELLING;
598 AIO_UNLOCK(ki);
599 func(job);
600 AIO_LOCK(ki);
601 job->jobflags &= ~KAIOCB_CANCELLING;
602 if (job->jobflags & KAIOCB_FINISHED) {
603 cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
604 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
605 aio_bio_done_notify(p, job);
606 } else {
607 /*
608 * The cancel callback might have scheduled an
609 * operation to cancel this request, but it is
610 * only counted as cancelled if the request is
611 * cancelled when the callback returns.
612 */
613 cancelled = 0;
614 }
615 return (cancelled);
616 }
617
618 /*
619 * Rundown the jobs for a given process.
620 */
621 static void
aio_proc_rundown(void * arg,struct proc * p)622 aio_proc_rundown(void *arg, struct proc *p)
623 {
624 struct kaioinfo *ki;
625 struct aioliojob *lj;
626 struct kaiocb *job, *jobn;
627
628 KASSERT(curthread->td_proc == p,
629 ("%s: called on non-curproc", __func__));
630 ki = p->p_aioinfo;
631 if (ki == NULL)
632 return;
633
634 AIO_LOCK(ki);
635 ki->kaio_flags |= KAIO_RUNDOWN;
636
637 restart:
638
639 /*
640 * Try to cancel all pending requests. This code simulates
641 * aio_cancel on all pending I/O requests.
642 */
643 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
644 aio_cancel_job(p, ki, job);
645 }
646
647 /* Wait for all running I/O to be finished */
648 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
649 ki->kaio_flags |= KAIO_WAKEUP;
650 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
651 goto restart;
652 }
653
654 /* Free all completed I/O requests. */
655 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
656 aio_free_entry(job);
657
658 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
659 if (lj->lioj_count == 0) {
660 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
661 knlist_delete(&lj->klist, curthread, 1);
662 PROC_LOCK(p);
663 sigqueue_take(&lj->lioj_ksi);
664 PROC_UNLOCK(p);
665 uma_zfree(aiolio_zone, lj);
666 } else {
667 panic("LIO job not cleaned up: C:%d, FC:%d\n",
668 lj->lioj_count, lj->lioj_finished_count);
669 }
670 }
671 AIO_UNLOCK(ki);
672 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
673 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
674 mtx_destroy(&ki->kaio_mtx);
675 uma_zfree(kaio_zone, ki);
676 p->p_aioinfo = NULL;
677 }
678
679 /*
680 * Select a job to run (called by an AIO daemon).
681 */
682 static struct kaiocb *
aio_selectjob(struct aioproc * aiop)683 aio_selectjob(struct aioproc *aiop)
684 {
685 struct kaiocb *job;
686 struct kaioinfo *ki;
687 struct proc *userp;
688
689 mtx_assert(&aio_job_mtx, MA_OWNED);
690 restart:
691 TAILQ_FOREACH(job, &aio_jobs, list) {
692 userp = job->userproc;
693 ki = userp->p_aioinfo;
694
695 if (ki->kaio_active_count < max_aio_per_proc) {
696 TAILQ_REMOVE(&aio_jobs, job, list);
697 if (!aio_clear_cancel_function(job))
698 goto restart;
699
700 /* Account for currently active jobs. */
701 ki->kaio_active_count++;
702 break;
703 }
704 }
705 return (job);
706 }
707
708 /*
709 * Move all data to a permanent storage device. This code
710 * simulates the fsync and fdatasync syscalls.
711 */
712 static int
aio_fsync_vnode(struct thread * td,struct vnode * vp,int op)713 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
714 {
715 struct mount *mp;
716 int error;
717
718 for (;;) {
719 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
720 if (error != 0)
721 break;
722 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
723 vnode_pager_clean_async(vp);
724 if (op == LIO_DSYNC)
725 error = VOP_FDATASYNC(vp, td);
726 else
727 error = VOP_FSYNC(vp, MNT_WAIT, td);
728
729 VOP_UNLOCK(vp);
730 vn_finished_write(mp);
731 if (error != ERELOOKUP)
732 break;
733 }
734 return (error);
735 }
736
737 /*
738 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that
739 * does the I/O request for the non-bio version of the operations. The normal
740 * vn operations are used, and this code should work in all instances for every
741 * type of file, including pipes, sockets, fifos, and regular files.
742 *
743 * XXX I don't think it works well for socket, pipe, and fifo.
744 */
745 static void
aio_process_rw(struct kaiocb * job)746 aio_process_rw(struct kaiocb *job)
747 {
748 struct ucred *td_savedcred;
749 struct thread *td;
750 struct file *fp;
751 ssize_t cnt;
752 long msgsnd_st, msgsnd_end;
753 long msgrcv_st, msgrcv_end;
754 long oublock_st, oublock_end;
755 long inblock_st, inblock_end;
756 int error, opcode;
757
758 KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
759 job->uaiocb.aio_lio_opcode == LIO_READV ||
760 job->uaiocb.aio_lio_opcode == LIO_WRITE ||
761 job->uaiocb.aio_lio_opcode == LIO_WRITEV,
762 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
763
764 aio_switch_vmspace(job);
765 td = curthread;
766 td_savedcred = td->td_ucred;
767 td->td_ucred = job->cred;
768 job->uiop->uio_td = td;
769 fp = job->fd_file;
770
771 opcode = job->uaiocb.aio_lio_opcode;
772 cnt = job->uiop->uio_resid;
773
774 msgrcv_st = td->td_ru.ru_msgrcv;
775 msgsnd_st = td->td_ru.ru_msgsnd;
776 inblock_st = td->td_ru.ru_inblock;
777 oublock_st = td->td_ru.ru_oublock;
778
779 /*
780 * aio_aqueue() acquires a reference to the file that is
781 * released in aio_free_entry().
782 */
783 if (opcode == LIO_READ || opcode == LIO_READV) {
784 if (job->uiop->uio_resid == 0)
785 error = 0;
786 else
787 error = fo_read(fp, job->uiop, fp->f_cred,
788 (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 :
789 FOF_OFFSET, td);
790 } else {
791 if (fp->f_type == DTYPE_VNODE)
792 bwillwrite();
793 error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags &
794 KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td);
795 }
796 msgrcv_end = td->td_ru.ru_msgrcv;
797 msgsnd_end = td->td_ru.ru_msgsnd;
798 inblock_end = td->td_ru.ru_inblock;
799 oublock_end = td->td_ru.ru_oublock;
800
801 job->msgrcv = msgrcv_end - msgrcv_st;
802 job->msgsnd = msgsnd_end - msgsnd_st;
803 job->inblock = inblock_end - inblock_st;
804 job->outblock = oublock_end - oublock_st;
805
806 if (error != 0 && job->uiop->uio_resid != cnt) {
807 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
808 error = 0;
809 if (error == EPIPE && (opcode & LIO_WRITE)) {
810 PROC_LOCK(job->userproc);
811 kern_psignal(job->userproc, SIGPIPE);
812 PROC_UNLOCK(job->userproc);
813 }
814 }
815
816 cnt -= job->uiop->uio_resid;
817 td->td_ucred = td_savedcred;
818 if (error)
819 aio_complete(job, -1, error);
820 else
821 aio_complete(job, cnt, 0);
822 }
823
824 static void
aio_process_sync(struct kaiocb * job)825 aio_process_sync(struct kaiocb *job)
826 {
827 struct thread *td = curthread;
828 struct ucred *td_savedcred = td->td_ucred;
829 struct file *fp = job->fd_file;
830 int error = 0;
831
832 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
833 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
834
835 td->td_ucred = job->cred;
836 if (fp->f_vnode != NULL) {
837 error = aio_fsync_vnode(td, fp->f_vnode,
838 job->uaiocb.aio_lio_opcode);
839 }
840 td->td_ucred = td_savedcred;
841 if (error)
842 aio_complete(job, -1, error);
843 else
844 aio_complete(job, 0, 0);
845 }
846
847 static void
aio_process_mlock(struct kaiocb * job)848 aio_process_mlock(struct kaiocb *job)
849 {
850 struct aiocb *cb = &job->uaiocb;
851 int error;
852
853 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
854 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
855
856 aio_switch_vmspace(job);
857 error = kern_mlock(job->userproc, job->cred,
858 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
859 aio_complete(job, error != 0 ? -1 : 0, error);
860 }
861
862 static void
aio_bio_done_notify(struct proc * userp,struct kaiocb * job)863 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
864 {
865 struct aioliojob *lj;
866 struct kaioinfo *ki;
867 struct kaiocb *sjob, *sjobn;
868 int lj_done;
869 bool schedule_fsync;
870
871 ki = userp->p_aioinfo;
872 AIO_LOCK_ASSERT(ki, MA_OWNED);
873 lj = job->lio;
874 lj_done = 0;
875 if (lj) {
876 lj->lioj_finished_count++;
877 if (lj->lioj_count == lj->lioj_finished_count)
878 lj_done = 1;
879 }
880 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
881 MPASS(job->jobflags & KAIOCB_FINISHED);
882
883 if (ki->kaio_flags & KAIO_RUNDOWN)
884 goto notification_done;
885
886 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
887 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
888 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
889
890 KNOTE_LOCKED(&job->klist, 1);
891
892 if (lj_done) {
893 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
894 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
895 KNOTE_LOCKED(&lj->klist, 1);
896 }
897 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
898 == LIOJ_SIGNAL &&
899 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
900 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
901 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
902 true);
903 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
904 }
905 }
906
907 notification_done:
908 if (job->jobflags & KAIOCB_CHECKSYNC) {
909 schedule_fsync = false;
910 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
911 if (job->fd_file != sjob->fd_file ||
912 job->seqno >= sjob->seqno)
913 continue;
914 if (--sjob->pending > 0)
915 continue;
916 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
917 if (!aio_clear_cancel_function_locked(sjob))
918 continue;
919 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
920 schedule_fsync = true;
921 }
922 if (schedule_fsync)
923 taskqueue_enqueue(taskqueue_aiod_kick,
924 &ki->kaio_sync_task);
925 }
926 if (ki->kaio_flags & KAIO_WAKEUP) {
927 ki->kaio_flags &= ~KAIO_WAKEUP;
928 wakeup(&userp->p_aioinfo);
929 }
930 }
931
932 static void
aio_schedule_fsync(void * context,int pending)933 aio_schedule_fsync(void *context, int pending)
934 {
935 struct kaioinfo *ki;
936 struct kaiocb *job;
937
938 ki = context;
939 AIO_LOCK(ki);
940 while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
941 job = TAILQ_FIRST(&ki->kaio_syncready);
942 TAILQ_REMOVE(&ki->kaio_syncready, job, list);
943 AIO_UNLOCK(ki);
944 aio_schedule(job, aio_process_sync);
945 AIO_LOCK(ki);
946 }
947 AIO_UNLOCK(ki);
948 }
949
950 bool
aio_cancel_cleared(struct kaiocb * job)951 aio_cancel_cleared(struct kaiocb *job)
952 {
953
954 /*
955 * The caller should hold the same queue lock held when
956 * aio_clear_cancel_function() was called and set this flag
957 * ensuring this check sees an up-to-date value. However,
958 * there is no way to assert that.
959 */
960 return ((job->jobflags & KAIOCB_CLEARED) != 0);
961 }
962
963 static bool
aio_clear_cancel_function_locked(struct kaiocb * job)964 aio_clear_cancel_function_locked(struct kaiocb *job)
965 {
966
967 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
968 MPASS(job->cancel_fn != NULL);
969 if (job->jobflags & KAIOCB_CANCELLING) {
970 job->jobflags |= KAIOCB_CLEARED;
971 return (false);
972 }
973 job->cancel_fn = NULL;
974 return (true);
975 }
976
977 bool
aio_clear_cancel_function(struct kaiocb * job)978 aio_clear_cancel_function(struct kaiocb *job)
979 {
980 struct kaioinfo *ki;
981 bool ret;
982
983 ki = job->userproc->p_aioinfo;
984 AIO_LOCK(ki);
985 ret = aio_clear_cancel_function_locked(job);
986 AIO_UNLOCK(ki);
987 return (ret);
988 }
989
990 static bool
aio_set_cancel_function_locked(struct kaiocb * job,aio_cancel_fn_t * func)991 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
992 {
993
994 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
995 if (job->jobflags & KAIOCB_CANCELLED)
996 return (false);
997 job->cancel_fn = func;
998 return (true);
999 }
1000
1001 bool
aio_set_cancel_function(struct kaiocb * job,aio_cancel_fn_t * func)1002 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1003 {
1004 struct kaioinfo *ki;
1005 bool ret;
1006
1007 ki = job->userproc->p_aioinfo;
1008 AIO_LOCK(ki);
1009 ret = aio_set_cancel_function_locked(job, func);
1010 AIO_UNLOCK(ki);
1011 return (ret);
1012 }
1013
1014 void
aio_complete(struct kaiocb * job,long status,int error)1015 aio_complete(struct kaiocb *job, long status, int error)
1016 {
1017 struct kaioinfo *ki;
1018 struct proc *userp;
1019
1020 job->uaiocb._aiocb_private.error = error;
1021 job->uaiocb._aiocb_private.status = status;
1022
1023 userp = job->userproc;
1024 ki = userp->p_aioinfo;
1025
1026 AIO_LOCK(ki);
1027 KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1028 ("duplicate aio_complete"));
1029 job->jobflags |= KAIOCB_FINISHED;
1030 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1031 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1032 aio_bio_done_notify(userp, job);
1033 }
1034 AIO_UNLOCK(ki);
1035 }
1036
1037 void
aio_cancel(struct kaiocb * job)1038 aio_cancel(struct kaiocb *job)
1039 {
1040
1041 aio_complete(job, -1, ECANCELED);
1042 }
1043
1044 void
aio_switch_vmspace(struct kaiocb * job)1045 aio_switch_vmspace(struct kaiocb *job)
1046 {
1047
1048 vmspace_switch_aio(job->userproc->p_vmspace);
1049 }
1050
1051 /*
1052 * The AIO daemon, most of the actual work is done in aio_process_*,
1053 * but the setup (and address space mgmt) is done in this routine.
1054 */
1055 static void
aio_daemon(void * _id)1056 aio_daemon(void *_id)
1057 {
1058 struct kaiocb *job;
1059 struct aioproc *aiop;
1060 struct kaioinfo *ki;
1061 struct proc *p;
1062 struct vmspace *myvm;
1063 struct thread *td = curthread;
1064 int id = (intptr_t)_id;
1065
1066 /*
1067 * Grab an extra reference on the daemon's vmspace so that it
1068 * doesn't get freed by jobs that switch to a different
1069 * vmspace.
1070 */
1071 p = td->td_proc;
1072 myvm = vmspace_acquire_ref(p);
1073
1074 KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1075
1076 /*
1077 * Allocate and ready the aio control info. There is one aiop structure
1078 * per daemon.
1079 */
1080 aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
1081 aiop->aioproc = p;
1082 aiop->aioprocflags = 0;
1083
1084 /*
1085 * Wakeup parent process. (Parent sleeps to keep from blasting away
1086 * and creating too many daemons.)
1087 */
1088 sema_post(&aio_newproc_sem);
1089
1090 mtx_lock(&aio_job_mtx);
1091 for (;;) {
1092 /*
1093 * Take daemon off of free queue
1094 */
1095 if (aiop->aioprocflags & AIOP_FREE) {
1096 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1097 aiop->aioprocflags &= ~AIOP_FREE;
1098 }
1099
1100 /*
1101 * Check for jobs.
1102 */
1103 while ((job = aio_selectjob(aiop)) != NULL) {
1104 mtx_unlock(&aio_job_mtx);
1105
1106 ki = job->userproc->p_aioinfo;
1107 job->handle_fn(job);
1108
1109 mtx_lock(&aio_job_mtx);
1110 /* Decrement the active job count. */
1111 ki->kaio_active_count--;
1112 }
1113
1114 /*
1115 * Disconnect from user address space.
1116 */
1117 if (p->p_vmspace != myvm) {
1118 mtx_unlock(&aio_job_mtx);
1119 vmspace_switch_aio(myvm);
1120 mtx_lock(&aio_job_mtx);
1121 /*
1122 * We have to restart to avoid race, we only sleep if
1123 * no job can be selected.
1124 */
1125 continue;
1126 }
1127
1128 mtx_assert(&aio_job_mtx, MA_OWNED);
1129
1130 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1131 aiop->aioprocflags |= AIOP_FREE;
1132
1133 /*
1134 * If daemon is inactive for a long time, allow it to exit,
1135 * thereby freeing resources.
1136 */
1137 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1138 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1139 (aiop->aioprocflags & AIOP_FREE) &&
1140 num_aio_procs > target_aio_procs)
1141 break;
1142 }
1143 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1144 num_aio_procs--;
1145 mtx_unlock(&aio_job_mtx);
1146 free(aiop, M_AIO);
1147 free_unr(aiod_unr, id);
1148 vmspace_free(myvm);
1149
1150 KASSERT(p->p_vmspace == myvm,
1151 ("AIOD: bad vmspace for exiting daemon"));
1152 KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1153 ("AIOD: bad vm refcnt for exiting daemon: %d",
1154 refcount_load(&myvm->vm_refcnt)));
1155 kproc_exit(0);
1156 }
1157
1158 /*
1159 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1160 * AIO daemon modifies its environment itself.
1161 */
1162 static int
aio_newproc(int * start)1163 aio_newproc(int *start)
1164 {
1165 int error;
1166 struct proc *p;
1167 int id;
1168
1169 id = alloc_unr(aiod_unr);
1170 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1171 RFNOWAIT, 0, "aiod%d", id);
1172 if (error == 0) {
1173 /*
1174 * Wait until daemon is started.
1175 */
1176 sema_wait(&aio_newproc_sem);
1177 mtx_lock(&aio_job_mtx);
1178 num_aio_procs++;
1179 if (start != NULL)
1180 (*start)--;
1181 mtx_unlock(&aio_job_mtx);
1182 } else {
1183 free_unr(aiod_unr, id);
1184 }
1185 return (error);
1186 }
1187
1188 /*
1189 * Try the high-performance, low-overhead bio method for eligible
1190 * VCHR devices. This method doesn't use an aio helper thread, and
1191 * thus has very low overhead.
1192 *
1193 * Assumes that the caller, aio_aqueue(), has incremented the file
1194 * structure's reference count, preventing its deallocation for the
1195 * duration of this call.
1196 */
1197 static int
aio_qbio(struct proc * p,struct kaiocb * job)1198 aio_qbio(struct proc *p, struct kaiocb *job)
1199 {
1200 struct aiocb *cb;
1201 struct file *fp;
1202 struct buf *pbuf;
1203 struct vnode *vp;
1204 struct cdevsw *csw;
1205 struct cdev *dev;
1206 struct kaioinfo *ki;
1207 struct bio **bios = NULL;
1208 off_t offset;
1209 int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1210 vm_prot_t prot;
1211 bool use_unmapped;
1212
1213 cb = &job->uaiocb;
1214 fp = job->fd_file;
1215 opcode = cb->aio_lio_opcode;
1216
1217 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1218 opcode == LIO_READ || opcode == LIO_READV))
1219 return (-1);
1220 if (fp == NULL || fp->f_type != DTYPE_VNODE)
1221 return (-1);
1222
1223 vp = fp->f_vnode;
1224 if (vp->v_type != VCHR)
1225 return (-1);
1226 if (vp->v_bufobj.bo_bsize == 0)
1227 return (-1);
1228
1229 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1230 iovcnt = job->uiop->uio_iovcnt;
1231 if (iovcnt > max_buf_aio)
1232 return (-1);
1233 for (i = 0; i < iovcnt; i++) {
1234 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1235 return (-1);
1236 if (job->uiop->uio_iov[i].iov_len > maxphys) {
1237 error = -1;
1238 return (-1);
1239 }
1240 }
1241 offset = cb->aio_offset;
1242
1243 ref = 0;
1244 csw = devvn_refthread(vp, &dev, &ref);
1245 if (csw == NULL)
1246 return (ENXIO);
1247
1248 if ((csw->d_flags & D_DISK) == 0) {
1249 error = -1;
1250 goto unref;
1251 }
1252 if (job->uiop->uio_resid > dev->si_iosize_max) {
1253 error = -1;
1254 goto unref;
1255 }
1256
1257 ki = p->p_aioinfo;
1258 job->error = 0;
1259
1260 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1261 if (!use_unmapped) {
1262 AIO_LOCK(ki);
1263 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1264 AIO_UNLOCK(ki);
1265 error = EAGAIN;
1266 goto unref;
1267 }
1268 ki->kaio_buffer_count += iovcnt;
1269 AIO_UNLOCK(ki);
1270 }
1271
1272 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1273 refcount_init(&job->nbio, iovcnt);
1274 for (i = 0; i < iovcnt; i++) {
1275 struct vm_page** pages;
1276 struct bio *bp;
1277 void *buf;
1278 size_t nbytes;
1279 int npages;
1280
1281 buf = job->uiop->uio_iov[i].iov_base;
1282 nbytes = job->uiop->uio_iov[i].iov_len;
1283
1284 bios[i] = g_alloc_bio();
1285 bp = bios[i];
1286
1287 poff = (vm_offset_t)buf & PAGE_MASK;
1288 if (use_unmapped) {
1289 pbuf = NULL;
1290 pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1291 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1292 } else {
1293 pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1294 BUF_KERNPROC(pbuf);
1295 pages = pbuf->b_pages;
1296 }
1297
1298 bp->bio_length = nbytes;
1299 bp->bio_bcount = nbytes;
1300 bp->bio_done = aio_biowakeup;
1301 bp->bio_offset = offset;
1302 bp->bio_cmd = bio_cmd;
1303 bp->bio_dev = dev;
1304 bp->bio_caller1 = job;
1305 bp->bio_caller2 = pbuf;
1306
1307 prot = VM_PROT_READ;
1308 if (opcode == LIO_READ || opcode == LIO_READV)
1309 prot |= VM_PROT_WRITE; /* Less backwards than it looks */
1310 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1311 (vm_offset_t)buf, bp->bio_length, prot, pages,
1312 atop(maxphys) + 1);
1313 if (npages < 0) {
1314 if (pbuf != NULL)
1315 uma_zfree(pbuf_zone, pbuf);
1316 else
1317 free(pages, M_TEMP);
1318 error = EFAULT;
1319 g_destroy_bio(bp);
1320 i--;
1321 goto destroy_bios;
1322 }
1323 if (pbuf != NULL) {
1324 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1325 bp->bio_data = pbuf->b_data + poff;
1326 pbuf->b_npages = npages;
1327 atomic_add_int(&num_buf_aio, 1);
1328 } else {
1329 bp->bio_ma = pages;
1330 bp->bio_ma_n = npages;
1331 bp->bio_ma_offset = poff;
1332 bp->bio_data = unmapped_buf;
1333 bp->bio_flags |= BIO_UNMAPPED;
1334 atomic_add_int(&num_unmapped_aio, 1);
1335 }
1336
1337 offset += nbytes;
1338 }
1339
1340 /* Perform transfer. */
1341 for (i = 0; i < iovcnt; i++)
1342 csw->d_strategy(bios[i]);
1343 free(bios, M_TEMP);
1344
1345 dev_relthread(dev, ref);
1346 return (0);
1347
1348 destroy_bios:
1349 for (; i >= 0; i--)
1350 aio_biocleanup(bios[i]);
1351 free(bios, M_TEMP);
1352 unref:
1353 dev_relthread(dev, ref);
1354 return (error);
1355 }
1356
1357 #ifdef COMPAT_FREEBSD6
1358 static int
convert_old_sigevent(struct osigevent * osig,struct sigevent * nsig)1359 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1360 {
1361
1362 /*
1363 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1364 * supported by AIO with the old sigevent structure.
1365 */
1366 nsig->sigev_notify = osig->sigev_notify;
1367 switch (nsig->sigev_notify) {
1368 case SIGEV_NONE:
1369 break;
1370 case SIGEV_SIGNAL:
1371 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1372 break;
1373 case SIGEV_KEVENT:
1374 nsig->sigev_notify_kqueue =
1375 osig->__sigev_u.__sigev_notify_kqueue;
1376 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1377 break;
1378 default:
1379 return (EINVAL);
1380 }
1381 return (0);
1382 }
1383
1384 static int
aiocb_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)1385 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1386 int type __unused)
1387 {
1388 struct oaiocb *ojob;
1389 struct aiocb *kcb = &kjob->uaiocb;
1390 int error;
1391
1392 bzero(kcb, sizeof(struct aiocb));
1393 error = copyin(ujob, kcb, sizeof(struct oaiocb));
1394 if (error)
1395 return (error);
1396 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1397 ojob = (struct oaiocb *)kcb;
1398 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1399 }
1400 #endif
1401
1402 static int
aiocb_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)1403 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1404 {
1405 struct aiocb *kcb = &kjob->uaiocb;
1406 int error;
1407
1408 error = copyin(ujob, kcb, sizeof(struct aiocb));
1409 if (error)
1410 return (error);
1411 if (type == LIO_NOP)
1412 type = kcb->aio_lio_opcode;
1413 if (type & LIO_VECTORED) {
1414 /* malloc a uio and copy in the iovec */
1415 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1416 kcb->aio_iovcnt, &kjob->uiop);
1417 }
1418
1419 return (error);
1420 }
1421
1422 static long
aiocb_fetch_status(struct aiocb * ujob)1423 aiocb_fetch_status(struct aiocb *ujob)
1424 {
1425
1426 return (fuword(&ujob->_aiocb_private.status));
1427 }
1428
1429 static long
aiocb_fetch_error(struct aiocb * ujob)1430 aiocb_fetch_error(struct aiocb *ujob)
1431 {
1432
1433 return (fuword(&ujob->_aiocb_private.error));
1434 }
1435
1436 static int
aiocb_store_status(struct aiocb * ujob,long status)1437 aiocb_store_status(struct aiocb *ujob, long status)
1438 {
1439
1440 return (suword(&ujob->_aiocb_private.status, status));
1441 }
1442
1443 static int
aiocb_store_error(struct aiocb * ujob,long error)1444 aiocb_store_error(struct aiocb *ujob, long error)
1445 {
1446
1447 return (suword(&ujob->_aiocb_private.error, error));
1448 }
1449
1450 static int
aiocb_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)1451 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1452 {
1453
1454 return (suword(ujobp, (long)ujob));
1455 }
1456
1457 static struct aiocb_ops aiocb_ops = {
1458 .aio_copyin = aiocb_copyin,
1459 .fetch_status = aiocb_fetch_status,
1460 .fetch_error = aiocb_fetch_error,
1461 .store_status = aiocb_store_status,
1462 .store_error = aiocb_store_error,
1463 .store_aiocb = aiocb_store_aiocb,
1464 };
1465
1466 #ifdef COMPAT_FREEBSD6
1467 static struct aiocb_ops aiocb_ops_osigevent = {
1468 .aio_copyin = aiocb_copyin_old_sigevent,
1469 .fetch_status = aiocb_fetch_status,
1470 .fetch_error = aiocb_fetch_error,
1471 .store_status = aiocb_store_status,
1472 .store_error = aiocb_store_error,
1473 .store_aiocb = aiocb_store_aiocb,
1474 };
1475 #endif
1476
1477 /*
1478 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR
1479 * technique is done in this code.
1480 */
1481 int
aio_aqueue(struct thread * td,struct aiocb * ujob,struct aioliojob * lj,int type,struct aiocb_ops * ops)1482 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1483 int type, struct aiocb_ops *ops)
1484 {
1485 struct proc *p = td->td_proc;
1486 struct file *fp = NULL;
1487 struct kaiocb *job;
1488 struct kaioinfo *ki;
1489 struct kevent kev;
1490 int opcode;
1491 int error;
1492 int fd, kqfd;
1493 u_short evflags;
1494
1495 if (p->p_aioinfo == NULL)
1496 aio_init_aioinfo(p);
1497
1498 ki = p->p_aioinfo;
1499
1500 ops->store_status(ujob, -1);
1501 ops->store_error(ujob, 0);
1502
1503 if (num_queue_count >= max_queue_count ||
1504 ki->kaio_count >= max_aio_queue_per_proc) {
1505 error = EAGAIN;
1506 goto err1;
1507 }
1508
1509 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1510 knlist_init_mtx(&job->klist, AIO_MTX(ki));
1511
1512 error = ops->aio_copyin(ujob, job, type);
1513 if (error)
1514 goto err2;
1515
1516 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1517 error = EINVAL;
1518 goto err2;
1519 }
1520
1521 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1522 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1523 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1524 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1525 error = EINVAL;
1526 goto err2;
1527 }
1528
1529 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1530 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1531 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1532 error = EINVAL;
1533 goto err2;
1534 }
1535
1536 /* Get the opcode. */
1537 if (type == LIO_NOP) {
1538 switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) {
1539 case LIO_WRITE:
1540 case LIO_WRITEV:
1541 case LIO_NOP:
1542 case LIO_READ:
1543 case LIO_READV:
1544 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
1545 if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0)
1546 job->ioflags |= KAIOCB_IO_FOFFSET;
1547 break;
1548 default:
1549 error = EINVAL;
1550 goto err2;
1551 }
1552 } else
1553 opcode = job->uaiocb.aio_lio_opcode = type;
1554
1555 ksiginfo_init(&job->ksi);
1556
1557 /* Save userspace address of the job info. */
1558 job->ujob = ujob;
1559
1560 /*
1561 * Validate the opcode and fetch the file object for the specified
1562 * file descriptor.
1563 *
1564 * XXXRW: Moved the opcode validation up here so that we don't
1565 * retrieve a file descriptor without knowing what the capabiltity
1566 * should be.
1567 */
1568 fd = job->uaiocb.aio_fildes;
1569 switch (opcode) {
1570 case LIO_WRITE:
1571 case LIO_WRITEV:
1572 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1573 break;
1574 case LIO_READ:
1575 case LIO_READV:
1576 error = fget_read(td, fd, &cap_pread_rights, &fp);
1577 break;
1578 case LIO_SYNC:
1579 case LIO_DSYNC:
1580 error = fget(td, fd, &cap_fsync_rights, &fp);
1581 break;
1582 case LIO_MLOCK:
1583 break;
1584 case LIO_NOP:
1585 error = fget(td, fd, &cap_no_rights, &fp);
1586 break;
1587 default:
1588 error = EINVAL;
1589 }
1590 if (error)
1591 goto err3;
1592
1593 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1594 error = EINVAL;
1595 goto err3;
1596 }
1597
1598 if ((opcode == LIO_READ || opcode == LIO_READV ||
1599 opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1600 job->uaiocb.aio_offset < 0 &&
1601 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1602 error = EINVAL;
1603 goto err3;
1604 }
1605
1606 if (fp != NULL && fp->f_ops == &path_fileops) {
1607 error = EBADF;
1608 goto err3;
1609 }
1610
1611 job->fd_file = fp;
1612
1613 mtx_lock(&aio_job_mtx);
1614 job->seqno = jobseqno++;
1615 mtx_unlock(&aio_job_mtx);
1616 if (opcode == LIO_NOP) {
1617 fdrop(fp, td);
1618 MPASS(job->uiop == &job->uio || job->uiop == NULL);
1619 uma_zfree(aiocb_zone, job);
1620 return (0);
1621 }
1622
1623 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1624 goto no_kqueue;
1625 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1626 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1627 error = EINVAL;
1628 goto err3;
1629 }
1630 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1631 memset(&kev, 0, sizeof(kev));
1632 kev.ident = (uintptr_t)job->ujob;
1633 kev.filter = EVFILT_AIO;
1634 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1635 kev.data = (intptr_t)job;
1636 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1637 error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1638 if (error)
1639 goto err3;
1640
1641 no_kqueue:
1642
1643 ops->store_error(ujob, EINPROGRESS);
1644 job->uaiocb._aiocb_private.error = EINPROGRESS;
1645 job->userproc = p;
1646 job->cred = crhold(td->td_ucred);
1647 job->jobflags = KAIOCB_QUEUEING;
1648 job->lio = lj;
1649
1650 if (opcode & LIO_VECTORED) {
1651 /* Use the uio copied in by aio_copyin */
1652 MPASS(job->uiop != &job->uio && job->uiop != NULL);
1653 } else {
1654 /* Setup the inline uio */
1655 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1656 job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1657 job->uio.uio_iov = job->iov;
1658 job->uio.uio_iovcnt = 1;
1659 job->uio.uio_resid = job->uaiocb.aio_nbytes;
1660 job->uio.uio_segflg = UIO_USERSPACE;
1661 job->uiop = &job->uio;
1662 }
1663 switch (opcode & (LIO_READ | LIO_WRITE)) {
1664 case LIO_READ:
1665 job->uiop->uio_rw = UIO_READ;
1666 break;
1667 case LIO_WRITE:
1668 job->uiop->uio_rw = UIO_WRITE;
1669 break;
1670 }
1671 job->uiop->uio_offset = job->uaiocb.aio_offset;
1672 job->uiop->uio_td = td;
1673
1674 if (opcode == LIO_MLOCK) {
1675 aio_schedule(job, aio_process_mlock);
1676 error = 0;
1677 } else if (fp->f_ops->fo_aio_queue == NULL)
1678 error = aio_queue_file(fp, job);
1679 else
1680 error = fo_aio_queue(fp, job);
1681 if (error)
1682 goto err4;
1683
1684 AIO_LOCK(ki);
1685 job->jobflags &= ~KAIOCB_QUEUEING;
1686 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1687 ki->kaio_count++;
1688 if (lj)
1689 lj->lioj_count++;
1690 atomic_add_int(&num_queue_count, 1);
1691 if (job->jobflags & KAIOCB_FINISHED) {
1692 /*
1693 * The queue callback completed the request synchronously.
1694 * The bulk of the completion is deferred in that case
1695 * until this point.
1696 */
1697 aio_bio_done_notify(p, job);
1698 } else
1699 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1700 AIO_UNLOCK(ki);
1701 return (0);
1702
1703 err4:
1704 crfree(job->cred);
1705 err3:
1706 if (fp)
1707 fdrop(fp, td);
1708 knlist_delete(&job->klist, curthread, 0);
1709 err2:
1710 if (job->uiop != &job->uio)
1711 freeuio(job->uiop);
1712 uma_zfree(aiocb_zone, job);
1713 err1:
1714 ops->store_error(ujob, error);
1715 return (error);
1716 }
1717
1718 static void
aio_cancel_daemon_job(struct kaiocb * job)1719 aio_cancel_daemon_job(struct kaiocb *job)
1720 {
1721
1722 mtx_lock(&aio_job_mtx);
1723 if (!aio_cancel_cleared(job))
1724 TAILQ_REMOVE(&aio_jobs, job, list);
1725 mtx_unlock(&aio_job_mtx);
1726 aio_cancel(job);
1727 }
1728
1729 void
aio_schedule(struct kaiocb * job,aio_handle_fn_t * func)1730 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1731 {
1732
1733 mtx_lock(&aio_job_mtx);
1734 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1735 mtx_unlock(&aio_job_mtx);
1736 aio_cancel(job);
1737 return;
1738 }
1739 job->handle_fn = func;
1740 TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1741 aio_kick_nowait(job->userproc);
1742 mtx_unlock(&aio_job_mtx);
1743 }
1744
1745 static void
aio_cancel_sync(struct kaiocb * job)1746 aio_cancel_sync(struct kaiocb *job)
1747 {
1748 struct kaioinfo *ki;
1749
1750 ki = job->userproc->p_aioinfo;
1751 AIO_LOCK(ki);
1752 if (!aio_cancel_cleared(job))
1753 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1754 AIO_UNLOCK(ki);
1755 aio_cancel(job);
1756 }
1757
1758 int
aio_queue_file(struct file * fp,struct kaiocb * job)1759 aio_queue_file(struct file *fp, struct kaiocb *job)
1760 {
1761 struct kaioinfo *ki;
1762 struct kaiocb *job2;
1763 struct vnode *vp;
1764 struct mount *mp;
1765 int error;
1766 bool safe;
1767
1768 ki = job->userproc->p_aioinfo;
1769 error = aio_qbio(job->userproc, job);
1770 if (error >= 0)
1771 return (error);
1772 safe = false;
1773 if (fp->f_type == DTYPE_VNODE) {
1774 vp = fp->f_vnode;
1775 if (vp->v_type == VREG || vp->v_type == VDIR) {
1776 mp = fp->f_vnode->v_mount;
1777 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1778 safe = true;
1779 }
1780 }
1781 if (!(safe || enable_aio_unsafe)) {
1782 counted_warning(&unsafe_warningcnt,
1783 "is attempting to use unsafe AIO requests");
1784 return (EOPNOTSUPP);
1785 }
1786
1787 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1788 aio_schedule(job, aio_process_rw);
1789 error = 0;
1790 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1791 AIO_LOCK(ki);
1792 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1793 if (job2->fd_file == job->fd_file &&
1794 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1795 job2->seqno < job->seqno) {
1796 job2->jobflags |= KAIOCB_CHECKSYNC;
1797 job->pending++;
1798 }
1799 }
1800 if (job->pending != 0) {
1801 if (!aio_set_cancel_function_locked(job,
1802 aio_cancel_sync)) {
1803 AIO_UNLOCK(ki);
1804 aio_cancel(job);
1805 return (0);
1806 }
1807 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1808 AIO_UNLOCK(ki);
1809 return (0);
1810 }
1811 AIO_UNLOCK(ki);
1812 aio_schedule(job, aio_process_sync);
1813 error = 0;
1814 } else {
1815 error = EINVAL;
1816 }
1817 return (error);
1818 }
1819
1820 static void
aio_kick_nowait(struct proc * userp)1821 aio_kick_nowait(struct proc *userp)
1822 {
1823 struct kaioinfo *ki = userp->p_aioinfo;
1824 struct aioproc *aiop;
1825
1826 mtx_assert(&aio_job_mtx, MA_OWNED);
1827 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1828 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1829 aiop->aioprocflags &= ~AIOP_FREE;
1830 wakeup(aiop->aioproc);
1831 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1832 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1833 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1834 }
1835 }
1836
1837 static int
aio_kick(struct proc * userp)1838 aio_kick(struct proc *userp)
1839 {
1840 struct kaioinfo *ki = userp->p_aioinfo;
1841 struct aioproc *aiop;
1842 int error, ret = 0;
1843
1844 mtx_assert(&aio_job_mtx, MA_OWNED);
1845 retryproc:
1846 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1847 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1848 aiop->aioprocflags &= ~AIOP_FREE;
1849 wakeup(aiop->aioproc);
1850 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1851 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1852 num_aio_resv_start++;
1853 mtx_unlock(&aio_job_mtx);
1854 error = aio_newproc(&num_aio_resv_start);
1855 mtx_lock(&aio_job_mtx);
1856 if (error) {
1857 num_aio_resv_start--;
1858 goto retryproc;
1859 }
1860 } else {
1861 ret = -1;
1862 }
1863 return (ret);
1864 }
1865
1866 static void
aio_kick_helper(void * context,int pending)1867 aio_kick_helper(void *context, int pending)
1868 {
1869 struct proc *userp = context;
1870
1871 mtx_lock(&aio_job_mtx);
1872 while (--pending >= 0) {
1873 if (aio_kick(userp))
1874 break;
1875 }
1876 mtx_unlock(&aio_job_mtx);
1877 }
1878
1879 /*
1880 * Support the aio_return system call, as a side-effect, kernel resources are
1881 * released.
1882 */
1883 static int
kern_aio_return(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)1884 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1885 {
1886 struct proc *p = td->td_proc;
1887 struct kaiocb *job;
1888 struct kaioinfo *ki;
1889 long status, error;
1890
1891 ki = p->p_aioinfo;
1892 if (ki == NULL)
1893 return (EINVAL);
1894 AIO_LOCK(ki);
1895 TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1896 if (job->ujob == ujob)
1897 break;
1898 }
1899 if (job != NULL) {
1900 MPASS(job->jobflags & KAIOCB_FINISHED);
1901 status = job->uaiocb._aiocb_private.status;
1902 error = job->uaiocb._aiocb_private.error;
1903 td->td_retval[0] = status;
1904 td->td_ru.ru_oublock += job->outblock;
1905 td->td_ru.ru_inblock += job->inblock;
1906 td->td_ru.ru_msgsnd += job->msgsnd;
1907 td->td_ru.ru_msgrcv += job->msgrcv;
1908 aio_free_entry(job);
1909 AIO_UNLOCK(ki);
1910 ops->store_error(ujob, error);
1911 ops->store_status(ujob, status);
1912 } else {
1913 error = EINVAL;
1914 AIO_UNLOCK(ki);
1915 }
1916 return (error);
1917 }
1918
1919 int
sys_aio_return(struct thread * td,struct aio_return_args * uap)1920 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1921 {
1922
1923 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1924 }
1925
1926 /*
1927 * Allow a process to wakeup when any of the I/O requests are completed.
1928 */
1929 static int
kern_aio_suspend(struct thread * td,int njoblist,struct aiocb ** ujoblist,struct timespec * ts)1930 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1931 struct timespec *ts)
1932 {
1933 struct proc *p = td->td_proc;
1934 struct timeval atv;
1935 struct kaioinfo *ki;
1936 struct kaiocb *firstjob, *job;
1937 int error, i, timo;
1938
1939 timo = 0;
1940 if (ts) {
1941 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1942 return (EINVAL);
1943
1944 TIMESPEC_TO_TIMEVAL(&atv, ts);
1945 if (itimerfix(&atv))
1946 return (EINVAL);
1947 timo = tvtohz(&atv);
1948 }
1949
1950 ki = p->p_aioinfo;
1951 if (ki == NULL)
1952 return (EAGAIN);
1953
1954 if (njoblist == 0)
1955 return (0);
1956
1957 AIO_LOCK(ki);
1958 for (;;) {
1959 firstjob = NULL;
1960 error = 0;
1961 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1962 for (i = 0; i < njoblist; i++) {
1963 if (job->ujob == ujoblist[i]) {
1964 if (firstjob == NULL)
1965 firstjob = job;
1966 if (job->jobflags & KAIOCB_FINISHED)
1967 goto RETURN;
1968 }
1969 }
1970 }
1971 /* All tasks were finished. */
1972 if (firstjob == NULL)
1973 break;
1974
1975 ki->kaio_flags |= KAIO_WAKEUP;
1976 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1977 "aiospn", timo);
1978 if (error == ERESTART)
1979 error = EINTR;
1980 if (error)
1981 break;
1982 }
1983 RETURN:
1984 AIO_UNLOCK(ki);
1985 return (error);
1986 }
1987
1988 int
sys_aio_suspend(struct thread * td,struct aio_suspend_args * uap)1989 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
1990 {
1991 struct timespec ts, *tsp;
1992 struct aiocb **ujoblist;
1993 int error;
1994
1995 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
1996 return (EINVAL);
1997
1998 if (uap->timeout) {
1999 /* Get timespec struct. */
2000 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2001 return (error);
2002 tsp = &ts;
2003 } else
2004 tsp = NULL;
2005
2006 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2007 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2008 if (error == 0)
2009 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2010 free(ujoblist, M_AIO);
2011 return (error);
2012 }
2013
2014 /*
2015 * aio_cancel cancels any non-bio aio operations not currently in progress.
2016 */
2017 int
sys_aio_cancel(struct thread * td,struct aio_cancel_args * uap)2018 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2019 {
2020 struct proc *p = td->td_proc;
2021 struct kaioinfo *ki;
2022 struct kaiocb *job, *jobn;
2023 struct file *fp;
2024 int error;
2025 int cancelled = 0;
2026 int notcancelled = 0;
2027 struct vnode *vp;
2028
2029 /* Lookup file object. */
2030 error = fget(td, uap->fd, &cap_no_rights, &fp);
2031 if (error)
2032 return (error);
2033
2034 ki = p->p_aioinfo;
2035 if (ki == NULL)
2036 goto done;
2037
2038 if (fp->f_type == DTYPE_VNODE) {
2039 vp = fp->f_vnode;
2040 if (vn_isdisk(vp)) {
2041 fdrop(fp, td);
2042 td->td_retval[0] = AIO_NOTCANCELED;
2043 return (0);
2044 }
2045 }
2046
2047 AIO_LOCK(ki);
2048 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2049 if ((uap->fd == job->uaiocb.aio_fildes) &&
2050 ((uap->aiocbp == NULL) ||
2051 (uap->aiocbp == job->ujob))) {
2052 if (aio_cancel_job(p, ki, job)) {
2053 cancelled++;
2054 } else {
2055 notcancelled++;
2056 }
2057 if (uap->aiocbp != NULL)
2058 break;
2059 }
2060 }
2061 AIO_UNLOCK(ki);
2062
2063 done:
2064 fdrop(fp, td);
2065
2066 if (uap->aiocbp != NULL) {
2067 if (cancelled) {
2068 td->td_retval[0] = AIO_CANCELED;
2069 return (0);
2070 }
2071 }
2072
2073 if (notcancelled) {
2074 td->td_retval[0] = AIO_NOTCANCELED;
2075 return (0);
2076 }
2077
2078 if (cancelled) {
2079 td->td_retval[0] = AIO_CANCELED;
2080 return (0);
2081 }
2082
2083 td->td_retval[0] = AIO_ALLDONE;
2084
2085 return (0);
2086 }
2087
2088 /*
2089 * aio_error is implemented in the kernel level for compatibility purposes
2090 * only. For a user mode async implementation, it would be best to do it in
2091 * a userland subroutine.
2092 */
2093 static int
kern_aio_error(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)2094 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2095 {
2096 struct proc *p = td->td_proc;
2097 struct kaiocb *job;
2098 struct kaioinfo *ki;
2099 int status;
2100
2101 ki = p->p_aioinfo;
2102 if (ki == NULL) {
2103 td->td_retval[0] = EINVAL;
2104 return (0);
2105 }
2106
2107 AIO_LOCK(ki);
2108 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2109 if (job->ujob == ujob) {
2110 if (job->jobflags & KAIOCB_FINISHED)
2111 td->td_retval[0] =
2112 job->uaiocb._aiocb_private.error;
2113 else
2114 td->td_retval[0] = EINPROGRESS;
2115 AIO_UNLOCK(ki);
2116 return (0);
2117 }
2118 }
2119 AIO_UNLOCK(ki);
2120
2121 /*
2122 * Hack for failure of aio_aqueue.
2123 */
2124 status = ops->fetch_status(ujob);
2125 if (status == -1) {
2126 td->td_retval[0] = ops->fetch_error(ujob);
2127 return (0);
2128 }
2129
2130 td->td_retval[0] = EINVAL;
2131 return (0);
2132 }
2133
2134 int
sys_aio_error(struct thread * td,struct aio_error_args * uap)2135 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2136 {
2137
2138 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2139 }
2140
2141 /* syscall - asynchronous read from a file (REALTIME) */
2142 #ifdef COMPAT_FREEBSD6
2143 int
freebsd6_aio_read(struct thread * td,struct freebsd6_aio_read_args * uap)2144 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2145 {
2146
2147 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2148 &aiocb_ops_osigevent));
2149 }
2150 #endif
2151
2152 int
sys_aio_read(struct thread * td,struct aio_read_args * uap)2153 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2154 {
2155
2156 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2157 }
2158
2159 int
sys_aio_readv(struct thread * td,struct aio_readv_args * uap)2160 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2161 {
2162
2163 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2164 }
2165
2166 /* syscall - asynchronous write to a file (REALTIME) */
2167 #ifdef COMPAT_FREEBSD6
2168 int
freebsd6_aio_write(struct thread * td,struct freebsd6_aio_write_args * uap)2169 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2170 {
2171
2172 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2173 &aiocb_ops_osigevent));
2174 }
2175 #endif
2176
2177 int
sys_aio_write(struct thread * td,struct aio_write_args * uap)2178 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2179 {
2180
2181 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2182 }
2183
2184 int
sys_aio_writev(struct thread * td,struct aio_writev_args * uap)2185 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2186 {
2187
2188 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2189 }
2190
2191 int
sys_aio_mlock(struct thread * td,struct aio_mlock_args * uap)2192 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2193 {
2194
2195 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2196 }
2197
2198 static int
kern_lio_listio(struct thread * td,int mode,struct aiocb * const * uacb_list,struct aiocb ** acb_list,int nent,struct sigevent * sig,struct aiocb_ops * ops)2199 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2200 struct aiocb **acb_list, int nent, struct sigevent *sig,
2201 struct aiocb_ops *ops)
2202 {
2203 struct proc *p = td->td_proc;
2204 struct aiocb *job;
2205 struct kaioinfo *ki;
2206 struct aioliojob *lj;
2207 struct kevent kev;
2208 int error;
2209 int nagain, nerror;
2210 int i;
2211
2212 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2213 return (EINVAL);
2214
2215 if (nent < 0 || nent > max_aio_queue_per_proc)
2216 return (EINVAL);
2217
2218 if (p->p_aioinfo == NULL)
2219 aio_init_aioinfo(p);
2220
2221 ki = p->p_aioinfo;
2222
2223 lj = uma_zalloc(aiolio_zone, M_WAITOK);
2224 lj->lioj_flags = 0;
2225 lj->lioj_count = 0;
2226 lj->lioj_finished_count = 0;
2227 lj->lioj_signal.sigev_notify = SIGEV_NONE;
2228 knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2229 ksiginfo_init(&lj->lioj_ksi);
2230
2231 /*
2232 * Setup signal.
2233 */
2234 if (sig && (mode == LIO_NOWAIT)) {
2235 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2236 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2237 /* Assume only new style KEVENT */
2238 memset(&kev, 0, sizeof(kev));
2239 kev.filter = EVFILT_LIO;
2240 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2241 kev.ident = (uintptr_t)uacb_list; /* something unique */
2242 kev.data = (intptr_t)lj;
2243 /* pass user defined sigval data */
2244 kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2245 error = kqfd_register(
2246 lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2247 M_WAITOK);
2248 if (error) {
2249 uma_zfree(aiolio_zone, lj);
2250 return (error);
2251 }
2252 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2253 ;
2254 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2255 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2256 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2257 uma_zfree(aiolio_zone, lj);
2258 return EINVAL;
2259 }
2260 lj->lioj_flags |= LIOJ_SIGNAL;
2261 } else {
2262 uma_zfree(aiolio_zone, lj);
2263 return EINVAL;
2264 }
2265 }
2266
2267 AIO_LOCK(ki);
2268 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2269 /*
2270 * Add extra aiocb count to avoid the lio to be freed
2271 * by other threads doing aio_waitcomplete or aio_return,
2272 * and prevent event from being sent until we have queued
2273 * all tasks.
2274 */
2275 lj->lioj_count = 1;
2276 AIO_UNLOCK(ki);
2277
2278 /*
2279 * Get pointers to the list of I/O requests.
2280 */
2281 nagain = 0;
2282 nerror = 0;
2283 for (i = 0; i < nent; i++) {
2284 job = acb_list[i];
2285 if (job != NULL) {
2286 error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2287 if (error == EAGAIN)
2288 nagain++;
2289 else if (error != 0)
2290 nerror++;
2291 }
2292 }
2293
2294 error = 0;
2295 AIO_LOCK(ki);
2296 if (mode == LIO_WAIT) {
2297 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2298 ki->kaio_flags |= KAIO_WAKEUP;
2299 error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2300 PRIBIO | PCATCH, "aiospn", 0);
2301 if (error == ERESTART)
2302 error = EINTR;
2303 if (error)
2304 break;
2305 }
2306 } else {
2307 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2308 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2309 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2310 KNOTE_LOCKED(&lj->klist, 1);
2311 }
2312 if ((lj->lioj_flags & (LIOJ_SIGNAL |
2313 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2314 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2315 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2316 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2317 lj->lioj_count != 1);
2318 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2319 }
2320 }
2321 }
2322 lj->lioj_count--;
2323 if (lj->lioj_count == 0) {
2324 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2325 knlist_delete(&lj->klist, curthread, 1);
2326 PROC_LOCK(p);
2327 sigqueue_take(&lj->lioj_ksi);
2328 PROC_UNLOCK(p);
2329 AIO_UNLOCK(ki);
2330 uma_zfree(aiolio_zone, lj);
2331 } else
2332 AIO_UNLOCK(ki);
2333
2334 if (nerror)
2335 return (EIO);
2336 else if (nagain)
2337 return (EAGAIN);
2338 else
2339 return (error);
2340 }
2341
2342 /* syscall - list directed I/O (REALTIME) */
2343 #ifdef COMPAT_FREEBSD6
2344 int
freebsd6_lio_listio(struct thread * td,struct freebsd6_lio_listio_args * uap)2345 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2346 {
2347 struct aiocb **acb_list;
2348 struct sigevent *sigp, sig;
2349 struct osigevent osig;
2350 int error, nent;
2351
2352 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2353 return (EINVAL);
2354
2355 nent = uap->nent;
2356 if (nent < 0 || nent > max_aio_queue_per_proc)
2357 return (EINVAL);
2358
2359 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2360 error = copyin(uap->sig, &osig, sizeof(osig));
2361 if (error)
2362 return (error);
2363 error = convert_old_sigevent(&osig, &sig);
2364 if (error)
2365 return (error);
2366 sigp = &sig;
2367 } else
2368 sigp = NULL;
2369
2370 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2371 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2372 if (error == 0)
2373 error = kern_lio_listio(td, uap->mode,
2374 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2375 &aiocb_ops_osigevent);
2376 free(acb_list, M_LIO);
2377 return (error);
2378 }
2379 #endif
2380
2381 /* syscall - list directed I/O (REALTIME) */
2382 int
sys_lio_listio(struct thread * td,struct lio_listio_args * uap)2383 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2384 {
2385 struct aiocb **acb_list;
2386 struct sigevent *sigp, sig;
2387 int error, nent;
2388
2389 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2390 return (EINVAL);
2391
2392 nent = uap->nent;
2393 if (nent < 0 || nent > max_aio_queue_per_proc)
2394 return (EINVAL);
2395
2396 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2397 error = copyin(uap->sig, &sig, sizeof(sig));
2398 if (error)
2399 return (error);
2400 sigp = &sig;
2401 } else
2402 sigp = NULL;
2403
2404 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2405 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2406 if (error == 0)
2407 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2408 nent, sigp, &aiocb_ops);
2409 free(acb_list, M_LIO);
2410 return (error);
2411 }
2412
2413 static void
aio_biocleanup(struct bio * bp)2414 aio_biocleanup(struct bio *bp)
2415 {
2416 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2417 struct kaioinfo *ki;
2418 struct buf *pbuf = (struct buf *)bp->bio_caller2;
2419
2420 /* Release mapping into kernel space. */
2421 if (pbuf != NULL) {
2422 MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2423 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2424 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2425 uma_zfree(pbuf_zone, pbuf);
2426 atomic_subtract_int(&num_buf_aio, 1);
2427 ki = job->userproc->p_aioinfo;
2428 AIO_LOCK(ki);
2429 ki->kaio_buffer_count--;
2430 AIO_UNLOCK(ki);
2431 } else {
2432 MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2433 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2434 free(bp->bio_ma, M_TEMP);
2435 atomic_subtract_int(&num_unmapped_aio, 1);
2436 }
2437 g_destroy_bio(bp);
2438 }
2439
2440 static void
aio_biowakeup(struct bio * bp)2441 aio_biowakeup(struct bio *bp)
2442 {
2443 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2444 size_t nbytes;
2445 long bcount = bp->bio_bcount;
2446 long resid = bp->bio_resid;
2447 int opcode, nblks;
2448 int bio_error = bp->bio_error;
2449 uint16_t flags = bp->bio_flags;
2450
2451 opcode = job->uaiocb.aio_lio_opcode;
2452
2453 aio_biocleanup(bp);
2454
2455 nbytes = bcount - resid;
2456 atomic_add_acq_long(&job->nbytes, nbytes);
2457 nblks = btodb(nbytes);
2458
2459 /*
2460 * If multiple bios experienced an error, the job will reflect the
2461 * error of whichever failed bio completed last.
2462 */
2463 if (flags & BIO_ERROR)
2464 atomic_store_int(&job->error, bio_error);
2465 if (opcode & LIO_WRITE)
2466 atomic_add_int(&job->outblock, nblks);
2467 else
2468 atomic_add_int(&job->inblock, nblks);
2469
2470 if (refcount_release(&job->nbio)) {
2471 bio_error = atomic_load_int(&job->error);
2472 if (bio_error != 0)
2473 aio_complete(job, -1, bio_error);
2474 else
2475 aio_complete(job, atomic_load_long(&job->nbytes), 0);
2476 }
2477 }
2478
2479 /* syscall - wait for the next completion of an aio request */
2480 static int
kern_aio_waitcomplete(struct thread * td,struct aiocb ** ujobp,struct timespec * ts,struct aiocb_ops * ops)2481 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2482 struct timespec *ts, struct aiocb_ops *ops)
2483 {
2484 struct proc *p = td->td_proc;
2485 struct timeval atv;
2486 struct kaioinfo *ki;
2487 struct kaiocb *job;
2488 struct aiocb *ujob;
2489 long error, status;
2490 int timo;
2491
2492 ops->store_aiocb(ujobp, NULL);
2493
2494 if (ts == NULL) {
2495 timo = 0;
2496 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2497 timo = -1;
2498 } else {
2499 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2500 return (EINVAL);
2501
2502 TIMESPEC_TO_TIMEVAL(&atv, ts);
2503 if (itimerfix(&atv))
2504 return (EINVAL);
2505 timo = tvtohz(&atv);
2506 }
2507
2508 if (p->p_aioinfo == NULL)
2509 aio_init_aioinfo(p);
2510 ki = p->p_aioinfo;
2511
2512 error = 0;
2513 job = NULL;
2514 AIO_LOCK(ki);
2515 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2516 if (timo == -1) {
2517 error = EWOULDBLOCK;
2518 break;
2519 }
2520 ki->kaio_flags |= KAIO_WAKEUP;
2521 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2522 "aiowc", timo);
2523 if (timo && error == ERESTART)
2524 error = EINTR;
2525 if (error)
2526 break;
2527 }
2528
2529 if (job != NULL) {
2530 MPASS(job->jobflags & KAIOCB_FINISHED);
2531 ujob = job->ujob;
2532 status = job->uaiocb._aiocb_private.status;
2533 error = job->uaiocb._aiocb_private.error;
2534 td->td_retval[0] = status;
2535 td->td_ru.ru_oublock += job->outblock;
2536 td->td_ru.ru_inblock += job->inblock;
2537 td->td_ru.ru_msgsnd += job->msgsnd;
2538 td->td_ru.ru_msgrcv += job->msgrcv;
2539 aio_free_entry(job);
2540 AIO_UNLOCK(ki);
2541 ops->store_aiocb(ujobp, ujob);
2542 ops->store_error(ujob, error);
2543 ops->store_status(ujob, status);
2544 } else
2545 AIO_UNLOCK(ki);
2546
2547 return (error);
2548 }
2549
2550 int
sys_aio_waitcomplete(struct thread * td,struct aio_waitcomplete_args * uap)2551 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2552 {
2553 struct timespec ts, *tsp;
2554 int error;
2555
2556 if (uap->timeout) {
2557 /* Get timespec struct. */
2558 error = copyin(uap->timeout, &ts, sizeof(ts));
2559 if (error)
2560 return (error);
2561 tsp = &ts;
2562 } else
2563 tsp = NULL;
2564
2565 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2566 }
2567
2568 static int
kern_aio_fsync(struct thread * td,int op,struct aiocb * ujob,struct aiocb_ops * ops)2569 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2570 struct aiocb_ops *ops)
2571 {
2572 int listop;
2573
2574 switch (op) {
2575 case O_SYNC:
2576 listop = LIO_SYNC;
2577 break;
2578 case O_DSYNC:
2579 listop = LIO_DSYNC;
2580 break;
2581 default:
2582 return (EINVAL);
2583 }
2584
2585 return (aio_aqueue(td, ujob, NULL, listop, ops));
2586 }
2587
2588 int
sys_aio_fsync(struct thread * td,struct aio_fsync_args * uap)2589 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2590 {
2591
2592 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2593 }
2594
2595 /* kqueue attach function */
2596 static int
filt_aioattach(struct knote * kn)2597 filt_aioattach(struct knote *kn)
2598 {
2599 struct kaiocb *job;
2600
2601 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2602
2603 /*
2604 * The job pointer must be validated before using it, so
2605 * registration is restricted to the kernel; the user cannot
2606 * set EV_FLAG1.
2607 */
2608 if ((kn->kn_flags & EV_FLAG1) == 0)
2609 return (EPERM);
2610 kn->kn_ptr.p_aio = job;
2611 kn->kn_flags &= ~EV_FLAG1;
2612
2613 knlist_add(&job->klist, kn, 0);
2614
2615 return (0);
2616 }
2617
2618 /* kqueue detach function */
2619 static void
filt_aiodetach(struct knote * kn)2620 filt_aiodetach(struct knote *kn)
2621 {
2622 struct knlist *knl;
2623
2624 knl = &kn->kn_ptr.p_aio->klist;
2625 knl->kl_lock(knl->kl_lockarg);
2626 if (!knlist_empty(knl))
2627 knlist_remove(knl, kn, 1);
2628 knl->kl_unlock(knl->kl_lockarg);
2629 }
2630
2631 /* kqueue filter function */
2632 /*ARGSUSED*/
2633 static int
filt_aio(struct knote * kn,long hint)2634 filt_aio(struct knote *kn, long hint)
2635 {
2636 struct kaiocb *job = kn->kn_ptr.p_aio;
2637
2638 kn->kn_data = job->uaiocb._aiocb_private.error;
2639 if (!(job->jobflags & KAIOCB_FINISHED))
2640 return (0);
2641 kn->kn_flags |= EV_EOF;
2642 return (1);
2643 }
2644
2645 /* kqueue attach function */
2646 static int
filt_lioattach(struct knote * kn)2647 filt_lioattach(struct knote *kn)
2648 {
2649 struct aioliojob *lj;
2650
2651 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2652
2653 /*
2654 * The aioliojob pointer must be validated before using it, so
2655 * registration is restricted to the kernel; the user cannot
2656 * set EV_FLAG1.
2657 */
2658 if ((kn->kn_flags & EV_FLAG1) == 0)
2659 return (EPERM);
2660 kn->kn_ptr.p_lio = lj;
2661 kn->kn_flags &= ~EV_FLAG1;
2662
2663 knlist_add(&lj->klist, kn, 0);
2664
2665 return (0);
2666 }
2667
2668 /* kqueue detach function */
2669 static void
filt_liodetach(struct knote * kn)2670 filt_liodetach(struct knote *kn)
2671 {
2672 struct knlist *knl;
2673
2674 knl = &kn->kn_ptr.p_lio->klist;
2675 knl->kl_lock(knl->kl_lockarg);
2676 if (!knlist_empty(knl))
2677 knlist_remove(knl, kn, 1);
2678 knl->kl_unlock(knl->kl_lockarg);
2679 }
2680
2681 /* kqueue filter function */
2682 /*ARGSUSED*/
2683 static int
filt_lio(struct knote * kn,long hint)2684 filt_lio(struct knote *kn, long hint)
2685 {
2686 struct aioliojob * lj = kn->kn_ptr.p_lio;
2687
2688 return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2689 }
2690
2691 #ifdef COMPAT_FREEBSD32
2692 #include <sys/mount.h>
2693 #include <sys/socket.h>
2694 #include <sys/sysent.h>
2695 #include <compat/freebsd32/freebsd32.h>
2696 #include <compat/freebsd32/freebsd32_proto.h>
2697 #include <compat/freebsd32/freebsd32_signal.h>
2698 #include <compat/freebsd32/freebsd32_syscall.h>
2699 #include <compat/freebsd32/freebsd32_util.h>
2700
2701 struct __aiocb_private32 {
2702 int32_t status;
2703 int32_t error;
2704 uint32_t spare;
2705 };
2706
2707 #ifdef COMPAT_FREEBSD6
2708 typedef struct oaiocb32 {
2709 int aio_fildes; /* File descriptor */
2710 uint64_t aio_offset __packed; /* File offset for I/O */
2711 uint32_t aio_buf; /* I/O buffer in process space */
2712 uint32_t aio_nbytes; /* Number of bytes for I/O */
2713 struct osigevent32 aio_sigevent; /* Signal to deliver */
2714 int aio_lio_opcode; /* LIO opcode */
2715 int aio_reqprio; /* Request priority -- ignored */
2716 struct __aiocb_private32 _aiocb_private;
2717 } oaiocb32_t;
2718 #endif
2719
2720 typedef struct aiocb32 {
2721 int32_t aio_fildes; /* File descriptor */
2722 uint64_t aio_offset __packed; /* File offset for I/O */
2723 uint32_t aio_buf; /* I/O buffer in process space */
2724 uint32_t aio_nbytes; /* Number of bytes for I/O */
2725 int __spare__[2];
2726 uint32_t __spare2__;
2727 int aio_lio_opcode; /* LIO opcode */
2728 int aio_reqprio; /* Request priority -- ignored */
2729 struct __aiocb_private32 _aiocb_private;
2730 struct sigevent32 aio_sigevent; /* Signal to deliver */
2731 } aiocb32_t;
2732
2733 #ifdef COMPAT_FREEBSD6
2734 static int
convert_old_sigevent32(struct osigevent32 * osig,struct sigevent * nsig)2735 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2736 {
2737
2738 /*
2739 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2740 * supported by AIO with the old sigevent structure.
2741 */
2742 CP(*osig, *nsig, sigev_notify);
2743 switch (nsig->sigev_notify) {
2744 case SIGEV_NONE:
2745 break;
2746 case SIGEV_SIGNAL:
2747 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2748 break;
2749 case SIGEV_KEVENT:
2750 nsig->sigev_notify_kqueue =
2751 osig->__sigev_u.__sigev_notify_kqueue;
2752 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2753 break;
2754 default:
2755 return (EINVAL);
2756 }
2757 return (0);
2758 }
2759
2760 static int
aiocb32_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)2761 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2762 int type __unused)
2763 {
2764 struct oaiocb32 job32;
2765 struct aiocb *kcb = &kjob->uaiocb;
2766 int error;
2767
2768 bzero(kcb, sizeof(struct aiocb));
2769 error = copyin(ujob, &job32, sizeof(job32));
2770 if (error)
2771 return (error);
2772
2773 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2774
2775 CP(job32, *kcb, aio_fildes);
2776 CP(job32, *kcb, aio_offset);
2777 PTRIN_CP(job32, *kcb, aio_buf);
2778 CP(job32, *kcb, aio_nbytes);
2779 CP(job32, *kcb, aio_lio_opcode);
2780 CP(job32, *kcb, aio_reqprio);
2781 CP(job32, *kcb, _aiocb_private.status);
2782 CP(job32, *kcb, _aiocb_private.error);
2783 return (convert_old_sigevent32(&job32.aio_sigevent,
2784 &kcb->aio_sigevent));
2785 }
2786 #endif
2787
2788 static int
aiocb32_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)2789 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2790 {
2791 struct aiocb32 job32;
2792 struct aiocb *kcb = &kjob->uaiocb;
2793 struct iovec32 *iov32;
2794 int error;
2795
2796 error = copyin(ujob, &job32, sizeof(job32));
2797 if (error)
2798 return (error);
2799 CP(job32, *kcb, aio_fildes);
2800 CP(job32, *kcb, aio_offset);
2801 CP(job32, *kcb, aio_lio_opcode);
2802 if (type == LIO_NOP)
2803 type = kcb->aio_lio_opcode;
2804 if (type & LIO_VECTORED) {
2805 iov32 = PTRIN(job32.aio_iov);
2806 CP(job32, *kcb, aio_iovcnt);
2807 /* malloc a uio and copy in the iovec */
2808 error = freebsd32_copyinuio(iov32,
2809 kcb->aio_iovcnt, &kjob->uiop);
2810 if (error)
2811 return (error);
2812 } else {
2813 PTRIN_CP(job32, *kcb, aio_buf);
2814 CP(job32, *kcb, aio_nbytes);
2815 }
2816 CP(job32, *kcb, aio_reqprio);
2817 CP(job32, *kcb, _aiocb_private.status);
2818 CP(job32, *kcb, _aiocb_private.error);
2819 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2820
2821 return (error);
2822 }
2823
2824 static long
aiocb32_fetch_status(struct aiocb * ujob)2825 aiocb32_fetch_status(struct aiocb *ujob)
2826 {
2827 struct aiocb32 *ujob32;
2828
2829 ujob32 = (struct aiocb32 *)ujob;
2830 return (fuword32(&ujob32->_aiocb_private.status));
2831 }
2832
2833 static long
aiocb32_fetch_error(struct aiocb * ujob)2834 aiocb32_fetch_error(struct aiocb *ujob)
2835 {
2836 struct aiocb32 *ujob32;
2837
2838 ujob32 = (struct aiocb32 *)ujob;
2839 return (fuword32(&ujob32->_aiocb_private.error));
2840 }
2841
2842 static int
aiocb32_store_status(struct aiocb * ujob,long status)2843 aiocb32_store_status(struct aiocb *ujob, long status)
2844 {
2845 struct aiocb32 *ujob32;
2846
2847 ujob32 = (struct aiocb32 *)ujob;
2848 return (suword32(&ujob32->_aiocb_private.status, status));
2849 }
2850
2851 static int
aiocb32_store_error(struct aiocb * ujob,long error)2852 aiocb32_store_error(struct aiocb *ujob, long error)
2853 {
2854 struct aiocb32 *ujob32;
2855
2856 ujob32 = (struct aiocb32 *)ujob;
2857 return (suword32(&ujob32->_aiocb_private.error, error));
2858 }
2859
2860 static int
aiocb32_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)2861 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2862 {
2863
2864 return (suword32(ujobp, (long)ujob));
2865 }
2866
2867 static struct aiocb_ops aiocb32_ops = {
2868 .aio_copyin = aiocb32_copyin,
2869 .fetch_status = aiocb32_fetch_status,
2870 .fetch_error = aiocb32_fetch_error,
2871 .store_status = aiocb32_store_status,
2872 .store_error = aiocb32_store_error,
2873 .store_aiocb = aiocb32_store_aiocb,
2874 };
2875
2876 #ifdef COMPAT_FREEBSD6
2877 static struct aiocb_ops aiocb32_ops_osigevent = {
2878 .aio_copyin = aiocb32_copyin_old_sigevent,
2879 .fetch_status = aiocb32_fetch_status,
2880 .fetch_error = aiocb32_fetch_error,
2881 .store_status = aiocb32_store_status,
2882 .store_error = aiocb32_store_error,
2883 .store_aiocb = aiocb32_store_aiocb,
2884 };
2885 #endif
2886
2887 int
freebsd32_aio_return(struct thread * td,struct freebsd32_aio_return_args * uap)2888 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2889 {
2890
2891 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2892 }
2893
2894 int
freebsd32_aio_suspend(struct thread * td,struct freebsd32_aio_suspend_args * uap)2895 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2896 {
2897 struct timespec32 ts32;
2898 struct timespec ts, *tsp;
2899 struct aiocb **ujoblist;
2900 uint32_t *ujoblist32;
2901 int error, i;
2902
2903 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2904 return (EINVAL);
2905
2906 if (uap->timeout) {
2907 /* Get timespec struct. */
2908 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2909 return (error);
2910 CP(ts32, ts, tv_sec);
2911 CP(ts32, ts, tv_nsec);
2912 tsp = &ts;
2913 } else
2914 tsp = NULL;
2915
2916 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2917 ujoblist32 = (uint32_t *)ujoblist;
2918 error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2919 sizeof(ujoblist32[0]));
2920 if (error == 0) {
2921 for (i = uap->nent - 1; i >= 0; i--)
2922 ujoblist[i] = PTRIN(ujoblist32[i]);
2923
2924 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2925 }
2926 free(ujoblist, M_AIO);
2927 return (error);
2928 }
2929
2930 int
freebsd32_aio_error(struct thread * td,struct freebsd32_aio_error_args * uap)2931 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2932 {
2933
2934 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2935 }
2936
2937 #ifdef COMPAT_FREEBSD6
2938 int
freebsd6_freebsd32_aio_read(struct thread * td,struct freebsd6_freebsd32_aio_read_args * uap)2939 freebsd6_freebsd32_aio_read(struct thread *td,
2940 struct freebsd6_freebsd32_aio_read_args *uap)
2941 {
2942
2943 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2944 &aiocb32_ops_osigevent));
2945 }
2946 #endif
2947
2948 int
freebsd32_aio_read(struct thread * td,struct freebsd32_aio_read_args * uap)2949 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2950 {
2951
2952 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2953 &aiocb32_ops));
2954 }
2955
2956 int
freebsd32_aio_readv(struct thread * td,struct freebsd32_aio_readv_args * uap)2957 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
2958 {
2959
2960 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
2961 &aiocb32_ops));
2962 }
2963
2964 #ifdef COMPAT_FREEBSD6
2965 int
freebsd6_freebsd32_aio_write(struct thread * td,struct freebsd6_freebsd32_aio_write_args * uap)2966 freebsd6_freebsd32_aio_write(struct thread *td,
2967 struct freebsd6_freebsd32_aio_write_args *uap)
2968 {
2969
2970 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2971 &aiocb32_ops_osigevent));
2972 }
2973 #endif
2974
2975 int
freebsd32_aio_write(struct thread * td,struct freebsd32_aio_write_args * uap)2976 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2977 {
2978
2979 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2980 &aiocb32_ops));
2981 }
2982
2983 int
freebsd32_aio_writev(struct thread * td,struct freebsd32_aio_writev_args * uap)2984 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
2985 {
2986
2987 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
2988 &aiocb32_ops));
2989 }
2990
2991 int
freebsd32_aio_mlock(struct thread * td,struct freebsd32_aio_mlock_args * uap)2992 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
2993 {
2994
2995 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
2996 &aiocb32_ops));
2997 }
2998
2999 int
freebsd32_aio_waitcomplete(struct thread * td,struct freebsd32_aio_waitcomplete_args * uap)3000 freebsd32_aio_waitcomplete(struct thread *td,
3001 struct freebsd32_aio_waitcomplete_args *uap)
3002 {
3003 struct timespec32 ts32;
3004 struct timespec ts, *tsp;
3005 int error;
3006
3007 if (uap->timeout) {
3008 /* Get timespec struct. */
3009 error = copyin(uap->timeout, &ts32, sizeof(ts32));
3010 if (error)
3011 return (error);
3012 CP(ts32, ts, tv_sec);
3013 CP(ts32, ts, tv_nsec);
3014 tsp = &ts;
3015 } else
3016 tsp = NULL;
3017
3018 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3019 &aiocb32_ops));
3020 }
3021
3022 int
freebsd32_aio_fsync(struct thread * td,struct freebsd32_aio_fsync_args * uap)3023 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3024 {
3025
3026 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3027 &aiocb32_ops));
3028 }
3029
3030 #ifdef COMPAT_FREEBSD6
3031 int
freebsd6_freebsd32_lio_listio(struct thread * td,struct freebsd6_freebsd32_lio_listio_args * uap)3032 freebsd6_freebsd32_lio_listio(struct thread *td,
3033 struct freebsd6_freebsd32_lio_listio_args *uap)
3034 {
3035 struct aiocb **acb_list;
3036 struct sigevent *sigp, sig;
3037 struct osigevent32 osig;
3038 uint32_t *acb_list32;
3039 int error, i, nent;
3040
3041 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3042 return (EINVAL);
3043
3044 nent = uap->nent;
3045 if (nent < 0 || nent > max_aio_queue_per_proc)
3046 return (EINVAL);
3047
3048 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3049 error = copyin(uap->sig, &osig, sizeof(osig));
3050 if (error)
3051 return (error);
3052 error = convert_old_sigevent32(&osig, &sig);
3053 if (error)
3054 return (error);
3055 sigp = &sig;
3056 } else
3057 sigp = NULL;
3058
3059 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3060 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3061 if (error) {
3062 free(acb_list32, M_LIO);
3063 return (error);
3064 }
3065 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3066 for (i = 0; i < nent; i++)
3067 acb_list[i] = PTRIN(acb_list32[i]);
3068 free(acb_list32, M_LIO);
3069
3070 error = kern_lio_listio(td, uap->mode,
3071 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3072 &aiocb32_ops_osigevent);
3073 free(acb_list, M_LIO);
3074 return (error);
3075 }
3076 #endif
3077
3078 int
freebsd32_lio_listio(struct thread * td,struct freebsd32_lio_listio_args * uap)3079 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3080 {
3081 struct aiocb **acb_list;
3082 struct sigevent *sigp, sig;
3083 struct sigevent32 sig32;
3084 uint32_t *acb_list32;
3085 int error, i, nent;
3086
3087 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3088 return (EINVAL);
3089
3090 nent = uap->nent;
3091 if (nent < 0 || nent > max_aio_queue_per_proc)
3092 return (EINVAL);
3093
3094 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3095 error = copyin(uap->sig, &sig32, sizeof(sig32));
3096 if (error)
3097 return (error);
3098 error = convert_sigevent32(&sig32, &sig);
3099 if (error)
3100 return (error);
3101 sigp = &sig;
3102 } else
3103 sigp = NULL;
3104
3105 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3106 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3107 if (error) {
3108 free(acb_list32, M_LIO);
3109 return (error);
3110 }
3111 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3112 for (i = 0; i < nent; i++)
3113 acb_list[i] = PTRIN(acb_list32[i]);
3114 free(acb_list32, M_LIO);
3115
3116 error = kern_lio_listio(td, uap->mode,
3117 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3118 &aiocb32_ops);
3119 free(acb_list, M_LIO);
3120 return (error);
3121 }
3122
3123 #endif
3124