xref: /freebsd/sys/kern/vfs_aio.c (revision 0c38e3dbbf6eaa2755d34189149c9140cacd4bb1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. John S. Dyson's name may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
15  * bad that happens because of using this software isn't the responsibility
16  * of the author.  This software is distributed AS-IS.
17  */
18 
19 /*
20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21  */
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/malloc.h>
26 #include <sys/bio.h>
27 #include <sys/buf.h>
28 #include <sys/capsicum.h>
29 #include <sys/eventhandler.h>
30 #include <sys/sysproto.h>
31 #include <sys/filedesc.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/kthread.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/unistd.h>
41 #include <sys/posix4.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/sema.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/syscall.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/sx.h>
55 #include <sys/taskqueue.h>
56 #include <sys/vnode.h>
57 #include <sys/conf.h>
58 #include <sys/event.h>
59 #include <sys/mount.h>
60 #include <geom/geom.h>
61 
62 #include <machine/atomic.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vnode_pager.h>
71 #include <vm/uma.h>
72 #include <sys/aio.h>
73 
74 /*
75  * Counter for aio_fsync.
76  */
77 static uint64_t jobseqno;
78 
79 #ifndef MAX_AIO_PER_PROC
80 #define MAX_AIO_PER_PROC	32
81 #endif
82 
83 #ifndef MAX_AIO_QUEUE_PER_PROC
84 #define MAX_AIO_QUEUE_PER_PROC	256
85 #endif
86 
87 #ifndef MAX_AIO_QUEUE
88 #define MAX_AIO_QUEUE		1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
89 #endif
90 
91 #ifndef MAX_BUF_AIO
92 #define MAX_BUF_AIO		16
93 #endif
94 
95 FEATURE(aio, "Asynchronous I/O");
96 SYSCTL_DECL(_p1003_1b);
97 
98 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
99 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
100 
101 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102     "Async IO management");
103 
104 static int enable_aio_unsafe = 0;
105 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
106     "Permit asynchronous IO on all file types, not just known-safe types");
107 
108 static unsigned int unsafe_warningcnt = 1;
109 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
110     &unsafe_warningcnt, 0,
111     "Warnings that will be triggered upon failed IO requests on unsafe files");
112 
113 static int max_aio_procs = MAX_AIO_PROCS;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
115     "Maximum number of kernel processes to use for handling async IO ");
116 
117 static int num_aio_procs = 0;
118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
119     "Number of presently active kernel processes for async IO");
120 
121 /*
122  * The code will adjust the actual number of AIO processes towards this
123  * number when it gets a chance.
124  */
125 static int target_aio_procs = TARGET_AIO_PROCS;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
127     0,
128     "Preferred number of ready kernel processes for async IO");
129 
130 static int max_queue_count = MAX_AIO_QUEUE;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
132     "Maximum number of aio requests to queue, globally");
133 
134 static int num_queue_count = 0;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
136     "Number of queued aio requests");
137 
138 static int num_buf_aio = 0;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
140     "Number of aio requests presently handled by the buf subsystem");
141 
142 static int num_unmapped_aio = 0;
143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
144     0,
145     "Number of aio requests presently handled by unmapped I/O buffers");
146 
147 /* Number of async I/O processes in the process of being started */
148 /* XXX This should be local to aio_aqueue() */
149 static int num_aio_resv_start = 0;
150 
151 static int aiod_lifetime;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
153     "Maximum lifetime for idle aiod");
154 
155 static int max_aio_per_proc = MAX_AIO_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
157     0,
158     "Maximum active aio requests per process");
159 
160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
162     &max_aio_queue_per_proc, 0,
163     "Maximum queued aio requests per process");
164 
165 static int max_buf_aio = MAX_BUF_AIO;
166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
167     "Maximum buf aio requests per process");
168 
169 /*
170  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
171  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
172  * vfs.aio.aio_listio_max.
173  */
174 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
175     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
176     0, "Maximum aio requests for a single lio_listio call");
177 
178 #ifdef COMPAT_FREEBSD6
179 typedef struct oaiocb {
180 	int	aio_fildes;		/* File descriptor */
181 	off_t	aio_offset;		/* File offset for I/O */
182 	volatile void *aio_buf;         /* I/O buffer in process space */
183 	size_t	aio_nbytes;		/* Number of bytes for I/O */
184 	struct	osigevent aio_sigevent;	/* Signal to deliver */
185 	int	aio_lio_opcode;		/* LIO opcode */
186 	int	aio_reqprio;		/* Request priority -- ignored */
187 	struct	__aiocb_private	_aiocb_private;
188 } oaiocb_t;
189 #endif
190 
191 /*
192  * Below is a key of locks used to protect each member of struct kaiocb
193  * aioliojob and kaioinfo and any backends.
194  *
195  * * - need not protected
196  * a - locked by kaioinfo lock
197  * b - locked by backend lock, the backend lock can be null in some cases,
198  *     for example, BIO belongs to this type, in this case, proc lock is
199  *     reused.
200  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
201  */
202 
203 /*
204  * If the routine that services an AIO request blocks while running in an
205  * AIO kernel process it can starve other I/O requests.  BIO requests
206  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
207  * processes at all.  Socket I/O requests use a separate pool of
208  * kprocs and also force non-blocking I/O.  Other file I/O requests
209  * use the generic fo_read/fo_write operations which can block.  The
210  * fsync and mlock operations can also block while executing.  Ideally
211  * none of these requests would block while executing.
212  *
213  * Note that the service routines cannot toggle O_NONBLOCK in the file
214  * structure directly while handling a request due to races with
215  * userland threads.
216  */
217 
218 /* jobflags */
219 #define	KAIOCB_QUEUEING		0x01
220 #define	KAIOCB_CANCELLED	0x02
221 #define	KAIOCB_CANCELLING	0x04
222 #define	KAIOCB_CHECKSYNC	0x08
223 #define	KAIOCB_CLEARED		0x10
224 #define	KAIOCB_FINISHED		0x20
225 
226 /* ioflags */
227 #define	KAIOCB_IO_FOFFSET	0x01
228 
229 /*
230  * AIO process info
231  */
232 #define AIOP_FREE	0x1			/* proc on free queue */
233 
234 struct aioproc {
235 	int	aioprocflags;			/* (c) AIO proc flags */
236 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
237 	struct	proc *aioproc;			/* (*) the AIO proc */
238 };
239 
240 /*
241  * data-structure for lio signal management
242  */
243 struct aioliojob {
244 	int	lioj_flags;			/* (a) listio flags */
245 	int	lioj_count;			/* (a) count of jobs */
246 	int	lioj_finished_count;		/* (a) count of finished jobs */
247 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
248 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
249 	struct	knlist klist;			/* (a) list of knotes */
250 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
251 };
252 
253 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
254 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
255 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
256 
257 /*
258  * per process aio data structure
259  */
260 struct kaioinfo {
261 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
262 	int	kaio_flags;		/* (a) per process kaio flags */
263 	int	kaio_active_count;	/* (c) number of currently used AIOs */
264 	int	kaio_count;		/* (a) size of AIO queue */
265 	int	kaio_buffer_count;	/* (a) number of bio buffers */
266 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
267 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
268 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
269 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
270 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
271 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
272 	struct	task kaio_task;		/* (*) task to kick aio processes */
273 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
274 };
275 
276 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
277 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
278 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
279 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
280 
281 #define KAIO_RUNDOWN	0x1	/* process is being run down */
282 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
283 
284 /*
285  * Operations used to interact with userland aio control blocks.
286  * Different ABIs provide their own operations.
287  */
288 struct aiocb_ops {
289 	int	(*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
290 	long	(*fetch_status)(struct aiocb *ujob);
291 	long	(*fetch_error)(struct aiocb *ujob);
292 	int	(*store_status)(struct aiocb *ujob, long status);
293 	int	(*store_error)(struct aiocb *ujob, long error);
294 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
295 };
296 
297 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
298 static struct sema aio_newproc_sem;
299 static struct mtx aio_job_mtx;
300 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
301 static struct unrhdr *aiod_unr;
302 
303 static void	aio_biocleanup(struct bio *bp);
304 static int	aio_init_aioinfo(struct proc *p);
305 static int	aio_onceonly(void);
306 static int	aio_free_entry(struct kaiocb *job);
307 static void	aio_process_rw(struct kaiocb *job);
308 static void	aio_process_sync(struct kaiocb *job);
309 static void	aio_process_mlock(struct kaiocb *job);
310 static void	aio_schedule_fsync(void *context, int pending);
311 static int	aio_newproc(int *);
312 static int	aio_aqueue(struct thread *td, struct aiocb *ujob,
313 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
314 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
315 static void	aio_biowakeup(struct bio *bp);
316 static void	aio_proc_rundown(void *arg, struct proc *p);
317 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
318 		    struct image_params *imgp);
319 static int	aio_qbio(struct proc *p, struct kaiocb *job);
320 static void	aio_daemon(void *param);
321 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
322 static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
323 static int	aio_kick(struct proc *userp);
324 static void	aio_kick_nowait(struct proc *userp);
325 static void	aio_kick_helper(void *context, int pending);
326 static int	filt_aioattach(struct knote *kn);
327 static void	filt_aiodetach(struct knote *kn);
328 static int	filt_aio(struct knote *kn, long hint);
329 static int	filt_lioattach(struct knote *kn);
330 static void	filt_liodetach(struct knote *kn);
331 static int	filt_lio(struct knote *kn, long hint);
332 
333 /*
334  * Zones for:
335  * 	kaio	Per process async io info
336  *	aiocb	async io jobs
337  *	aiolio	list io jobs
338  */
339 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
340 
341 /* kqueue filters for aio */
342 static const struct filterops aio_filtops = {
343 	.f_isfd = 0,
344 	.f_attach = filt_aioattach,
345 	.f_detach = filt_aiodetach,
346 	.f_event = filt_aio,
347 };
348 static const struct filterops lio_filtops = {
349 	.f_isfd = 0,
350 	.f_attach = filt_lioattach,
351 	.f_detach = filt_liodetach,
352 	.f_event = filt_lio
353 };
354 
355 static eventhandler_tag exit_tag, exec_tag;
356 
357 TASKQUEUE_DEFINE_THREAD(aiod_kick);
358 
359 /*
360  * Main operations function for use as a kernel module.
361  */
362 static int
aio_modload(struct module * module,int cmd,void * arg)363 aio_modload(struct module *module, int cmd, void *arg)
364 {
365 	int error = 0;
366 
367 	switch (cmd) {
368 	case MOD_LOAD:
369 		aio_onceonly();
370 		break;
371 	case MOD_SHUTDOWN:
372 		break;
373 	default:
374 		error = EOPNOTSUPP;
375 		break;
376 	}
377 	return (error);
378 }
379 
380 static moduledata_t aio_mod = {
381 	"aio",
382 	&aio_modload,
383 	NULL
384 };
385 
386 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
387 MODULE_VERSION(aio, 1);
388 
389 /*
390  * Startup initialization
391  */
392 static int
aio_onceonly(void)393 aio_onceonly(void)
394 {
395 
396 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
397 	    EVENTHANDLER_PRI_ANY);
398 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
399 	    NULL, EVENTHANDLER_PRI_ANY);
400 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
401 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
402 	TAILQ_INIT(&aio_freeproc);
403 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
404 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
405 	TAILQ_INIT(&aio_jobs);
406 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
407 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
408 	    NULL, NULL, UMA_ALIGN_PTR, 0);
409 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
410 	    NULL, NULL, UMA_ALIGN_PTR, 0);
411 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
412 	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
413 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
414 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
415 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
416 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
417 
418 	return (0);
419 }
420 
421 /*
422  * Init the per-process aioinfo structure.  The aioinfo limits are set
423  * per-process for user limit (resource) management.
424  */
425 static int
aio_init_aioinfo(struct proc * p)426 aio_init_aioinfo(struct proc *p)
427 {
428 	struct kaioinfo *ki;
429 	int error;
430 
431 	ki = uma_zalloc(kaio_zone, M_WAITOK);
432 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
433 	ki->kaio_flags = 0;
434 	ki->kaio_active_count = 0;
435 	ki->kaio_count = 0;
436 	ki->kaio_buffer_count = 0;
437 	TAILQ_INIT(&ki->kaio_all);
438 	TAILQ_INIT(&ki->kaio_done);
439 	TAILQ_INIT(&ki->kaio_jobqueue);
440 	TAILQ_INIT(&ki->kaio_liojoblist);
441 	TAILQ_INIT(&ki->kaio_syncqueue);
442 	TAILQ_INIT(&ki->kaio_syncready);
443 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
444 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
445 	PROC_LOCK(p);
446 	if (p->p_aioinfo == NULL) {
447 		p->p_aioinfo = ki;
448 		PROC_UNLOCK(p);
449 	} else {
450 		PROC_UNLOCK(p);
451 		mtx_destroy(&ki->kaio_mtx);
452 		uma_zfree(kaio_zone, ki);
453 	}
454 
455 	error = 0;
456 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) {
457 		error = aio_newproc(NULL);
458 		if (error != 0) {
459 			/*
460 			 * At least one worker is enough to have AIO
461 			 * functional.  Clear error in that case.
462 			 */
463 			if (num_aio_procs > 0)
464 				error = 0;
465 			break;
466 		}
467 	}
468 	return (error);
469 }
470 
471 static int
aio_sendsig(struct proc * p,struct sigevent * sigev,ksiginfo_t * ksi,bool ext)472 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
473 {
474 	struct thread *td;
475 	int error;
476 
477 	error = sigev_findtd(p, sigev, &td);
478 	if (error)
479 		return (error);
480 	if (!KSI_ONQ(ksi)) {
481 		ksiginfo_set_sigev(ksi, sigev);
482 		ksi->ksi_code = SI_ASYNCIO;
483 		ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
484 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
485 	}
486 	PROC_UNLOCK(p);
487 	return (error);
488 }
489 
490 /*
491  * Free a job entry.  Wait for completion if it is currently active, but don't
492  * delay forever.  If we delay, we return a flag that says that we have to
493  * restart the queue scan.
494  */
495 static int
aio_free_entry(struct kaiocb * job)496 aio_free_entry(struct kaiocb *job)
497 {
498 	struct kaioinfo *ki;
499 	struct aioliojob *lj;
500 	struct proc *p;
501 
502 	p = job->userproc;
503 	MPASS(curproc == p);
504 	ki = p->p_aioinfo;
505 	MPASS(ki != NULL);
506 
507 	AIO_LOCK_ASSERT(ki, MA_OWNED);
508 	MPASS(job->jobflags & KAIOCB_FINISHED);
509 
510 	atomic_subtract_int(&num_queue_count, 1);
511 
512 	ki->kaio_count--;
513 	MPASS(ki->kaio_count >= 0);
514 
515 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
516 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
517 
518 	lj = job->lio;
519 	if (lj) {
520 		lj->lioj_count--;
521 		lj->lioj_finished_count--;
522 
523 		if (lj->lioj_count == 0) {
524 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
525 			/* lio is going away, we need to destroy any knotes */
526 			knlist_delete(&lj->klist, curthread, 1);
527 			PROC_LOCK(p);
528 			sigqueue_take(&lj->lioj_ksi);
529 			PROC_UNLOCK(p);
530 			uma_zfree(aiolio_zone, lj);
531 		}
532 	}
533 
534 	/* job is going away, we need to destroy any knotes */
535 	knlist_delete(&job->klist, curthread, 1);
536 	PROC_LOCK(p);
537 	sigqueue_take(&job->ksi);
538 	PROC_UNLOCK(p);
539 
540 	AIO_UNLOCK(ki);
541 
542 	/*
543 	 * The thread argument here is used to find the owning process
544 	 * and is also passed to fo_close() which may pass it to various
545 	 * places such as devsw close() routines.  Because of that, we
546 	 * need a thread pointer from the process owning the job that is
547 	 * persistent and won't disappear out from under us or move to
548 	 * another process.
549 	 *
550 	 * Currently, all the callers of this function call it to remove
551 	 * a kaiocb from the current process' job list either via a
552 	 * syscall or due to the current process calling exit() or
553 	 * execve().  Thus, we know that p == curproc.  We also know that
554 	 * curthread can't exit since we are curthread.
555 	 *
556 	 * Therefore, we use curthread as the thread to pass to
557 	 * knlist_delete().  This does mean that it is possible for the
558 	 * thread pointer at close time to differ from the thread pointer
559 	 * at open time, but this is already true of file descriptors in
560 	 * a multithreaded process.
561 	 */
562 	if (job->fd_file)
563 		fdrop(job->fd_file, curthread);
564 	crfree(job->cred);
565 	if (job->uiop != &job->uio)
566 		freeuio(job->uiop);
567 	uma_zfree(aiocb_zone, job);
568 	AIO_LOCK(ki);
569 
570 	return (0);
571 }
572 
573 static void
aio_proc_rundown_exec(void * arg,struct proc * p,struct image_params * imgp __unused)574 aio_proc_rundown_exec(void *arg, struct proc *p,
575     struct image_params *imgp __unused)
576 {
577    	aio_proc_rundown(arg, p);
578 }
579 
580 static int
aio_cancel_job(struct proc * p,struct kaioinfo * ki,struct kaiocb * job)581 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
582 {
583 	aio_cancel_fn_t *func;
584 	int cancelled;
585 
586 	AIO_LOCK_ASSERT(ki, MA_OWNED);
587 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
588 		return (0);
589 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
590 	job->jobflags |= KAIOCB_CANCELLED;
591 
592 	func = job->cancel_fn;
593 
594 	/*
595 	 * If there is no cancel routine, just leave the job marked as
596 	 * cancelled.  The job should be in active use by a caller who
597 	 * should complete it normally or when it fails to install a
598 	 * cancel routine.
599 	 */
600 	if (func == NULL)
601 		return (0);
602 
603 	/*
604 	 * Set the CANCELLING flag so that aio_complete() will defer
605 	 * completions of this job.  This prevents the job from being
606 	 * freed out from under the cancel callback.  After the
607 	 * callback any deferred completion (whether from the callback
608 	 * or any other source) will be completed.
609 	 */
610 	job->jobflags |= KAIOCB_CANCELLING;
611 	AIO_UNLOCK(ki);
612 	func(job);
613 	AIO_LOCK(ki);
614 	job->jobflags &= ~KAIOCB_CANCELLING;
615 	if (job->jobflags & KAIOCB_FINISHED) {
616 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
617 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
618 		aio_bio_done_notify(p, job);
619 	} else {
620 		/*
621 		 * The cancel callback might have scheduled an
622 		 * operation to cancel this request, but it is
623 		 * only counted as cancelled if the request is
624 		 * cancelled when the callback returns.
625 		 */
626 		cancelled = 0;
627 	}
628 	return (cancelled);
629 }
630 
631 /*
632  * Rundown the jobs for a given process.
633  */
634 static void
aio_proc_rundown(void * arg,struct proc * p)635 aio_proc_rundown(void *arg, struct proc *p)
636 {
637 	struct kaioinfo *ki;
638 	struct aioliojob *lj;
639 	struct kaiocb *job, *jobn;
640 
641 	KASSERT(curthread->td_proc == p,
642 	    ("%s: called on non-curproc", __func__));
643 	ki = p->p_aioinfo;
644 	if (ki == NULL)
645 		return;
646 
647 	AIO_LOCK(ki);
648 	ki->kaio_flags |= KAIO_RUNDOWN;
649 
650 restart:
651 
652 	/*
653 	 * Try to cancel all pending requests. This code simulates
654 	 * aio_cancel on all pending I/O requests.
655 	 */
656 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
657 		aio_cancel_job(p, ki, job);
658 	}
659 
660 	/* Wait for all running I/O to be finished */
661 	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
662 		ki->kaio_flags |= KAIO_WAKEUP;
663 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
664 		goto restart;
665 	}
666 
667 	/* Free all completed I/O requests. */
668 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
669 		aio_free_entry(job);
670 
671 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
672 		if (lj->lioj_count == 0) {
673 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
674 			knlist_delete(&lj->klist, curthread, 1);
675 			PROC_LOCK(p);
676 			sigqueue_take(&lj->lioj_ksi);
677 			PROC_UNLOCK(p);
678 			uma_zfree(aiolio_zone, lj);
679 		} else {
680 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
681 			    lj->lioj_count, lj->lioj_finished_count);
682 		}
683 	}
684 	AIO_UNLOCK(ki);
685 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
686 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
687 	mtx_destroy(&ki->kaio_mtx);
688 	uma_zfree(kaio_zone, ki);
689 	p->p_aioinfo = NULL;
690 }
691 
692 /*
693  * Select a job to run (called by an AIO daemon).
694  */
695 static struct kaiocb *
aio_selectjob(struct aioproc * aiop)696 aio_selectjob(struct aioproc *aiop)
697 {
698 	struct kaiocb *job;
699 	struct kaioinfo *ki;
700 	struct proc *userp;
701 
702 	mtx_assert(&aio_job_mtx, MA_OWNED);
703 restart:
704 	TAILQ_FOREACH(job, &aio_jobs, list) {
705 		userp = job->userproc;
706 		ki = userp->p_aioinfo;
707 
708 		if (ki->kaio_active_count < max_aio_per_proc) {
709 			TAILQ_REMOVE(&aio_jobs, job, list);
710 			if (!aio_clear_cancel_function(job))
711 				goto restart;
712 
713 			/* Account for currently active jobs. */
714 			ki->kaio_active_count++;
715 			break;
716 		}
717 	}
718 	return (job);
719 }
720 
721 /*
722  * Move all data to a permanent storage device.  This code
723  * simulates the fsync and fdatasync syscalls.
724  */
725 static int
aio_fsync_vnode(struct thread * td,struct vnode * vp,int op)726 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
727 {
728 	struct mount *mp;
729 	int error;
730 
731 	for (;;) {
732 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
733 		if (error != 0)
734 			break;
735 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
736 		vnode_pager_clean_async(vp);
737 		if (op == LIO_DSYNC)
738 			error = VOP_FDATASYNC(vp, td);
739 		else
740 			error = VOP_FSYNC(vp, MNT_WAIT, td);
741 
742 		VOP_UNLOCK(vp);
743 		vn_finished_write(mp);
744 		if (error != ERELOOKUP)
745 			break;
746 	}
747 	return (error);
748 }
749 
750 /*
751  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
752  * does the I/O request for the non-bio version of the operations.  The normal
753  * vn operations are used, and this code should work in all instances for every
754  * type of file, including pipes, sockets, fifos, and regular files.
755  *
756  * XXX I don't think it works well for socket, pipe, and fifo.
757  */
758 static void
aio_process_rw(struct kaiocb * job)759 aio_process_rw(struct kaiocb *job)
760 {
761 	struct ucred *td_savedcred;
762 	struct thread *td;
763 	struct file *fp;
764 	ssize_t cnt;
765 	long msgsnd_st, msgsnd_end;
766 	long msgrcv_st, msgrcv_end;
767 	long oublock_st, oublock_end;
768 	long inblock_st, inblock_end;
769 	int error, opcode;
770 
771 	opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
772 	KASSERT(opcode == LIO_READ || opcode == LIO_READV ||
773 	    opcode == LIO_WRITE || opcode == LIO_WRITEV,
774 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
775 
776 	aio_switch_vmspace(job);
777 	td = curthread;
778 	td_savedcred = td->td_ucred;
779 	td->td_ucred = job->cred;
780 	job->uiop->uio_td = td;
781 	fp = job->fd_file;
782 
783 	cnt = job->uiop->uio_resid;
784 
785 	msgrcv_st = td->td_ru.ru_msgrcv;
786 	msgsnd_st = td->td_ru.ru_msgsnd;
787 	inblock_st = td->td_ru.ru_inblock;
788 	oublock_st = td->td_ru.ru_oublock;
789 
790 	/*
791 	 * aio_aqueue() acquires a reference to the file that is
792 	 * released in aio_free_entry().
793 	 */
794 	if (opcode == LIO_READ || opcode == LIO_READV) {
795 		if (job->uiop->uio_resid == 0)
796 			error = 0;
797 		else
798 			error = fo_read(fp, job->uiop, fp->f_cred,
799 			    (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 :
800 			    FOF_OFFSET, td);
801 	} else {
802 		if (fp->f_type == DTYPE_VNODE)
803 			bwillwrite();
804 		error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags &
805 		    KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td);
806 	}
807 	msgrcv_end = td->td_ru.ru_msgrcv;
808 	msgsnd_end = td->td_ru.ru_msgsnd;
809 	inblock_end = td->td_ru.ru_inblock;
810 	oublock_end = td->td_ru.ru_oublock;
811 
812 	job->msgrcv = msgrcv_end - msgrcv_st;
813 	job->msgsnd = msgsnd_end - msgsnd_st;
814 	job->inblock = inblock_end - inblock_st;
815 	job->outblock = oublock_end - oublock_st;
816 
817 	if (error != 0 && job->uiop->uio_resid != cnt) {
818 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
819 			error = 0;
820 		if (error == EPIPE && (opcode & LIO_WRITE)) {
821 			PROC_LOCK(job->userproc);
822 			kern_psignal(job->userproc, SIGPIPE);
823 			PROC_UNLOCK(job->userproc);
824 		}
825 	}
826 
827 	cnt -= job->uiop->uio_resid;
828 	td->td_ucred = td_savedcred;
829 	if (error)
830 		aio_complete(job, -1, error);
831 	else
832 		aio_complete(job, cnt, 0);
833 }
834 
835 static void
aio_process_sync(struct kaiocb * job)836 aio_process_sync(struct kaiocb *job)
837 {
838 	struct thread *td = curthread;
839 	struct ucred *td_savedcred = td->td_ucred;
840 	struct file *fp = job->fd_file;
841 	int error = 0;
842 
843 	KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
844 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
845 
846 	td->td_ucred = job->cred;
847 	if (fp->f_vnode != NULL) {
848 		error = aio_fsync_vnode(td, fp->f_vnode,
849 		    job->uaiocb.aio_lio_opcode);
850 	}
851 	td->td_ucred = td_savedcred;
852 	if (error)
853 		aio_complete(job, -1, error);
854 	else
855 		aio_complete(job, 0, 0);
856 }
857 
858 static void
aio_process_mlock(struct kaiocb * job)859 aio_process_mlock(struct kaiocb *job)
860 {
861 	struct aiocb *cb = &job->uaiocb;
862 	int error;
863 
864 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
865 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
866 
867 	aio_switch_vmspace(job);
868 	error = kern_mlock(job->userproc, job->cred,
869 	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
870 	aio_complete(job, error != 0 ? -1 : 0, error);
871 }
872 
873 static void
aio_bio_done_notify(struct proc * userp,struct kaiocb * job)874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
875 {
876 	struct aioliojob *lj;
877 	struct kaioinfo *ki;
878 	struct kaiocb *sjob, *sjobn;
879 	int lj_done;
880 	bool schedule_fsync;
881 
882 	ki = userp->p_aioinfo;
883 	AIO_LOCK_ASSERT(ki, MA_OWNED);
884 	lj = job->lio;
885 	lj_done = 0;
886 	if (lj) {
887 		lj->lioj_finished_count++;
888 		if (lj->lioj_count == lj->lioj_finished_count)
889 			lj_done = 1;
890 	}
891 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
892 	MPASS(job->jobflags & KAIOCB_FINISHED);
893 
894 	if (ki->kaio_flags & KAIO_RUNDOWN)
895 		goto notification_done;
896 
897 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
898 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
899 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
900 
901 	KNOTE_LOCKED(&job->klist, 1);
902 
903 	if (lj_done) {
904 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
905 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
906 			KNOTE_LOCKED(&lj->klist, 1);
907 		}
908 		if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
909 		    == LIOJ_SIGNAL &&
910 		    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
911 		    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
912 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
913 			    true);
914 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
915 		}
916 	}
917 
918 notification_done:
919 	if (job->jobflags & KAIOCB_CHECKSYNC) {
920 		schedule_fsync = false;
921 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
922 			if (job->fd_file != sjob->fd_file ||
923 			    job->seqno >= sjob->seqno)
924 				continue;
925 			if (--sjob->pending > 0)
926 				continue;
927 			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
928 			if (!aio_clear_cancel_function_locked(sjob))
929 				continue;
930 			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
931 			schedule_fsync = true;
932 		}
933 		if (schedule_fsync)
934 			taskqueue_enqueue(taskqueue_aiod_kick,
935 			    &ki->kaio_sync_task);
936 	}
937 	if (ki->kaio_flags & KAIO_WAKEUP) {
938 		ki->kaio_flags &= ~KAIO_WAKEUP;
939 		wakeup(&userp->p_aioinfo);
940 	}
941 }
942 
943 static void
aio_schedule_fsync(void * context,int pending)944 aio_schedule_fsync(void *context, int pending)
945 {
946 	struct kaioinfo *ki;
947 	struct kaiocb *job;
948 
949 	ki = context;
950 	AIO_LOCK(ki);
951 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
952 		job = TAILQ_FIRST(&ki->kaio_syncready);
953 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
954 		AIO_UNLOCK(ki);
955 		aio_schedule(job, aio_process_sync);
956 		AIO_LOCK(ki);
957 	}
958 	AIO_UNLOCK(ki);
959 }
960 
961 bool
aio_cancel_cleared(struct kaiocb * job)962 aio_cancel_cleared(struct kaiocb *job)
963 {
964 
965 	/*
966 	 * The caller should hold the same queue lock held when
967 	 * aio_clear_cancel_function() was called and set this flag
968 	 * ensuring this check sees an up-to-date value.  However,
969 	 * there is no way to assert that.
970 	 */
971 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
972 }
973 
974 static bool
aio_clear_cancel_function_locked(struct kaiocb * job)975 aio_clear_cancel_function_locked(struct kaiocb *job)
976 {
977 
978 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
979 	MPASS(job->cancel_fn != NULL);
980 	if (job->jobflags & KAIOCB_CANCELLING) {
981 		job->jobflags |= KAIOCB_CLEARED;
982 		return (false);
983 	}
984 	job->cancel_fn = NULL;
985 	return (true);
986 }
987 
988 bool
aio_clear_cancel_function(struct kaiocb * job)989 aio_clear_cancel_function(struct kaiocb *job)
990 {
991 	struct kaioinfo *ki;
992 	bool ret;
993 
994 	ki = job->userproc->p_aioinfo;
995 	AIO_LOCK(ki);
996 	ret = aio_clear_cancel_function_locked(job);
997 	AIO_UNLOCK(ki);
998 	return (ret);
999 }
1000 
1001 static bool
aio_set_cancel_function_locked(struct kaiocb * job,aio_cancel_fn_t * func)1002 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
1003 {
1004 
1005 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
1006 	if (job->jobflags & KAIOCB_CANCELLED)
1007 		return (false);
1008 	job->cancel_fn = func;
1009 	return (true);
1010 }
1011 
1012 bool
aio_set_cancel_function(struct kaiocb * job,aio_cancel_fn_t * func)1013 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1014 {
1015 	struct kaioinfo *ki;
1016 	bool ret;
1017 
1018 	ki = job->userproc->p_aioinfo;
1019 	AIO_LOCK(ki);
1020 	ret = aio_set_cancel_function_locked(job, func);
1021 	AIO_UNLOCK(ki);
1022 	return (ret);
1023 }
1024 
1025 void
aio_complete(struct kaiocb * job,long status,int error)1026 aio_complete(struct kaiocb *job, long status, int error)
1027 {
1028 	struct kaioinfo *ki;
1029 	struct proc *userp;
1030 
1031 	job->uaiocb._aiocb_private.error = error;
1032 	job->uaiocb._aiocb_private.status = status;
1033 
1034 	userp = job->userproc;
1035 	ki = userp->p_aioinfo;
1036 
1037 	AIO_LOCK(ki);
1038 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1039 	    ("duplicate aio_complete"));
1040 	job->jobflags |= KAIOCB_FINISHED;
1041 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1042 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1043 		aio_bio_done_notify(userp, job);
1044 	}
1045 	AIO_UNLOCK(ki);
1046 }
1047 
1048 void
aio_cancel(struct kaiocb * job)1049 aio_cancel(struct kaiocb *job)
1050 {
1051 
1052 	aio_complete(job, -1, ECANCELED);
1053 }
1054 
1055 void
aio_switch_vmspace(struct kaiocb * job)1056 aio_switch_vmspace(struct kaiocb *job)
1057 {
1058 
1059 	vmspace_switch_aio(job->userproc->p_vmspace);
1060 }
1061 
1062 /*
1063  * The AIO daemon, most of the actual work is done in aio_process_*,
1064  * but the setup (and address space mgmt) is done in this routine.
1065  */
1066 static void
aio_daemon(void * _id)1067 aio_daemon(void *_id)
1068 {
1069 	struct kaiocb *job;
1070 	struct aioproc *aiop;
1071 	struct kaioinfo *ki;
1072 	struct proc *p;
1073 	struct vmspace *myvm;
1074 	struct thread *td = curthread;
1075 	int id = (intptr_t)_id;
1076 
1077 	/*
1078 	 * Grab an extra reference on the daemon's vmspace so that it
1079 	 * doesn't get freed by jobs that switch to a different
1080 	 * vmspace.
1081 	 */
1082 	p = td->td_proc;
1083 	myvm = vmspace_acquire_ref(p);
1084 
1085 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1086 
1087 	/*
1088 	 * Allocate and ready the aio control info.  There is one aiop structure
1089 	 * per daemon.
1090 	 */
1091 	aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
1092 	aiop->aioproc = p;
1093 	aiop->aioprocflags = 0;
1094 
1095 	/*
1096 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1097 	 * and creating too many daemons.)
1098 	 */
1099 	sema_post(&aio_newproc_sem);
1100 
1101 	mtx_lock(&aio_job_mtx);
1102 	for (;;) {
1103 		/*
1104 		 * Take daemon off of free queue
1105 		 */
1106 		if (aiop->aioprocflags & AIOP_FREE) {
1107 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1108 			aiop->aioprocflags &= ~AIOP_FREE;
1109 		}
1110 
1111 		/*
1112 		 * Check for jobs.
1113 		 */
1114 		while ((job = aio_selectjob(aiop)) != NULL) {
1115 			mtx_unlock(&aio_job_mtx);
1116 
1117 			ki = job->userproc->p_aioinfo;
1118 			job->handle_fn(job);
1119 
1120 			mtx_lock(&aio_job_mtx);
1121 			/* Decrement the active job count. */
1122 			ki->kaio_active_count--;
1123 		}
1124 
1125 		/*
1126 		 * Disconnect from user address space.
1127 		 */
1128 		if (p->p_vmspace != myvm) {
1129 			mtx_unlock(&aio_job_mtx);
1130 			vmspace_switch_aio(myvm);
1131 			mtx_lock(&aio_job_mtx);
1132 			/*
1133 			 * We have to restart to avoid race, we only sleep if
1134 			 * no job can be selected.
1135 			 */
1136 			continue;
1137 		}
1138 
1139 		mtx_assert(&aio_job_mtx, MA_OWNED);
1140 
1141 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1142 		aiop->aioprocflags |= AIOP_FREE;
1143 
1144 		/*
1145 		 * If daemon is inactive for a long time, allow it to exit,
1146 		 * thereby freeing resources.
1147 		 */
1148 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1149 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1150 		    (aiop->aioprocflags & AIOP_FREE) &&
1151 		    num_aio_procs > target_aio_procs)
1152 			break;
1153 	}
1154 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1155 	num_aio_procs--;
1156 	mtx_unlock(&aio_job_mtx);
1157 	free(aiop, M_AIO);
1158 	free_unr(aiod_unr, id);
1159 	vmspace_free(myvm);
1160 
1161 	KASSERT(p->p_vmspace == myvm,
1162 	    ("AIOD: bad vmspace for exiting daemon"));
1163 	KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1164 	    ("AIOD: bad vm refcnt for exiting daemon: %d",
1165 	    refcount_load(&myvm->vm_refcnt)));
1166 	kproc_exit(0);
1167 }
1168 
1169 /*
1170  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1171  * AIO daemon modifies its environment itself.
1172  */
1173 static int
aio_newproc(int * start)1174 aio_newproc(int *start)
1175 {
1176 	int error;
1177 	struct proc *p;
1178 	int id;
1179 
1180 	id = alloc_unr(aiod_unr);
1181 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1182 		RFNOWAIT, 0, "aiod%d", id);
1183 	if (error == 0) {
1184 		/*
1185 		 * Wait until daemon is started.
1186 		 */
1187 		sema_wait(&aio_newproc_sem);
1188 		mtx_lock(&aio_job_mtx);
1189 		num_aio_procs++;
1190 		if (start != NULL)
1191 			(*start)--;
1192 		mtx_unlock(&aio_job_mtx);
1193 	} else {
1194 		free_unr(aiod_unr, id);
1195 	}
1196 	return (error);
1197 }
1198 
1199 /*
1200  * Try the high-performance, low-overhead bio method for eligible
1201  * VCHR devices.  This method doesn't use an aio helper thread, and
1202  * thus has very low overhead.
1203  *
1204  * Assumes that the caller, aio_aqueue(), has incremented the file
1205  * structure's reference count, preventing its deallocation for the
1206  * duration of this call.
1207  */
1208 static int
aio_qbio(struct proc * p,struct kaiocb * job)1209 aio_qbio(struct proc *p, struct kaiocb *job)
1210 {
1211 	struct aiocb *cb;
1212 	struct file *fp;
1213 	struct buf *pbuf;
1214 	struct vnode *vp;
1215 	struct cdevsw *csw;
1216 	struct cdev *dev;
1217 	struct kaioinfo *ki;
1218 	struct bio **bios = NULL;
1219 	off_t offset;
1220 	int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1221 	vm_prot_t prot;
1222 	bool use_unmapped;
1223 
1224 	cb = &job->uaiocb;
1225 	fp = job->fd_file;
1226 	opcode = cb->aio_lio_opcode;
1227 
1228 	if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1229 	    opcode == LIO_READ || opcode == LIO_READV))
1230 		return (-1);
1231 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1232 		return (-1);
1233 
1234 	vp = fp->f_vnode;
1235 	if (vp->v_type != VCHR)
1236 		return (-1);
1237 	if (vp->v_bufobj.bo_bsize == 0)
1238 		return (-1);
1239 
1240 	bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1241 	iovcnt = job->uiop->uio_iovcnt;
1242 	if (iovcnt > max_buf_aio)
1243 		return (-1);
1244 	for (i = 0; i < iovcnt; i++) {
1245 		if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1246 			return (-1);
1247 		if (job->uiop->uio_iov[i].iov_len > maxphys) {
1248 			error = -1;
1249 			return (-1);
1250 		}
1251 	}
1252 	offset = cb->aio_offset;
1253 
1254 	ref = 0;
1255 	csw = devvn_refthread(vp, &dev, &ref);
1256 	if (csw == NULL)
1257 		return (ENXIO);
1258 
1259 	if ((csw->d_flags & D_DISK) == 0) {
1260 		error = -1;
1261 		goto unref;
1262 	}
1263 	if (job->uiop->uio_resid > dev->si_iosize_max) {
1264 		error = -1;
1265 		goto unref;
1266 	}
1267 
1268 	ki = p->p_aioinfo;
1269 	job->error = 0;
1270 
1271 	use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1272 	if (!use_unmapped) {
1273 		AIO_LOCK(ki);
1274 		if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1275 			AIO_UNLOCK(ki);
1276 			error = EAGAIN;
1277 			goto unref;
1278 		}
1279 		ki->kaio_buffer_count += iovcnt;
1280 		AIO_UNLOCK(ki);
1281 	}
1282 
1283 	bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1284 	refcount_init(&job->nbio, iovcnt);
1285 	for (i = 0; i < iovcnt; i++) {
1286 		struct vm_page** pages;
1287 		struct bio *bp;
1288 		void *buf;
1289 		size_t nbytes;
1290 		int npages;
1291 
1292 		buf = job->uiop->uio_iov[i].iov_base;
1293 		nbytes = job->uiop->uio_iov[i].iov_len;
1294 
1295 		bios[i] = g_alloc_bio();
1296 		bp = bios[i];
1297 
1298 		poff = (vm_offset_t)buf & PAGE_MASK;
1299 		if (use_unmapped) {
1300 			pbuf = NULL;
1301 			pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1302 			    nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1303 		} else {
1304 			pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1305 			BUF_KERNPROC(pbuf);
1306 			pages = pbuf->b_pages;
1307 		}
1308 
1309 		bp->bio_length = nbytes;
1310 		bp->bio_bcount = nbytes;
1311 		bp->bio_done = aio_biowakeup;
1312 		bp->bio_offset = offset;
1313 		bp->bio_cmd = bio_cmd;
1314 		bp->bio_dev = dev;
1315 		bp->bio_caller1 = job;
1316 		bp->bio_caller2 = pbuf;
1317 
1318 		prot = VM_PROT_READ;
1319 		if (opcode == LIO_READ || opcode == LIO_READV)
1320 			prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1321 		npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1322 		    (vm_offset_t)buf, bp->bio_length, prot, pages,
1323 		    atop(maxphys) + 1);
1324 		if (npages < 0) {
1325 			if (pbuf != NULL)
1326 				uma_zfree(pbuf_zone, pbuf);
1327 			else
1328 				free(pages, M_TEMP);
1329 			error = EFAULT;
1330 			g_destroy_bio(bp);
1331 			i--;
1332 			goto destroy_bios;
1333 		}
1334 		if (pbuf != NULL) {
1335 			pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1336 			bp->bio_data = pbuf->b_data + poff;
1337 			pbuf->b_npages = npages;
1338 			atomic_add_int(&num_buf_aio, 1);
1339 		} else {
1340 			bp->bio_ma = pages;
1341 			bp->bio_ma_n = npages;
1342 			bp->bio_ma_offset = poff;
1343 			bp->bio_data = unmapped_buf;
1344 			bp->bio_flags |= BIO_UNMAPPED;
1345 			atomic_add_int(&num_unmapped_aio, 1);
1346 		}
1347 
1348 		offset += nbytes;
1349 	}
1350 
1351 	/* Perform transfer. */
1352 	for (i = 0; i < iovcnt; i++)
1353 		csw->d_strategy(bios[i]);
1354 	free(bios, M_TEMP);
1355 
1356 	dev_relthread(dev, ref);
1357 	return (0);
1358 
1359 destroy_bios:
1360 	for (; i >= 0; i--)
1361 		aio_biocleanup(bios[i]);
1362 	free(bios, M_TEMP);
1363 unref:
1364 	dev_relthread(dev, ref);
1365 	return (error);
1366 }
1367 
1368 #ifdef COMPAT_FREEBSD6
1369 static int
convert_old_sigevent(struct osigevent * osig,struct sigevent * nsig)1370 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1371 {
1372 
1373 	/*
1374 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1375 	 * supported by AIO with the old sigevent structure.
1376 	 */
1377 	nsig->sigev_notify = osig->sigev_notify;
1378 	switch (nsig->sigev_notify) {
1379 	case SIGEV_NONE:
1380 		break;
1381 	case SIGEV_SIGNAL:
1382 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1383 		break;
1384 	case SIGEV_KEVENT:
1385 		nsig->sigev_notify_kqueue =
1386 		    osig->__sigev_u.__sigev_notify_kqueue;
1387 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1388 		break;
1389 	default:
1390 		return (EINVAL);
1391 	}
1392 	return (0);
1393 }
1394 
1395 static int
aiocb_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)1396 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1397     int type __unused)
1398 {
1399 	struct oaiocb *ojob;
1400 	struct aiocb *kcb = &kjob->uaiocb;
1401 	int error;
1402 
1403 	bzero(kcb, sizeof(struct aiocb));
1404 	error = copyin(ujob, kcb, sizeof(struct oaiocb));
1405 	if (error)
1406 		return (error);
1407 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1408 	ojob = (struct oaiocb *)kcb;
1409 	return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1410 }
1411 #endif
1412 
1413 static int
aiocb_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)1414 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1415 {
1416 	struct aiocb *kcb = &kjob->uaiocb;
1417 	int error;
1418 
1419 	error = copyin(ujob, kcb, sizeof(struct aiocb));
1420 	if (error)
1421 		return (error);
1422 	if (type == LIO_NOP)
1423 		type = kcb->aio_lio_opcode;
1424 	if (type & LIO_VECTORED) {
1425 		/* malloc a uio and copy in the iovec */
1426 		error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1427 		    kcb->aio_iovcnt, &kjob->uiop);
1428 	}
1429 
1430 	return (error);
1431 }
1432 
1433 static long
aiocb_fetch_status(struct aiocb * ujob)1434 aiocb_fetch_status(struct aiocb *ujob)
1435 {
1436 
1437 	return (fuword(&ujob->_aiocb_private.status));
1438 }
1439 
1440 static long
aiocb_fetch_error(struct aiocb * ujob)1441 aiocb_fetch_error(struct aiocb *ujob)
1442 {
1443 
1444 	return (fuword(&ujob->_aiocb_private.error));
1445 }
1446 
1447 static int
aiocb_store_status(struct aiocb * ujob,long status)1448 aiocb_store_status(struct aiocb *ujob, long status)
1449 {
1450 
1451 	return (suword(&ujob->_aiocb_private.status, status));
1452 }
1453 
1454 static int
aiocb_store_error(struct aiocb * ujob,long error)1455 aiocb_store_error(struct aiocb *ujob, long error)
1456 {
1457 
1458 	return (suword(&ujob->_aiocb_private.error, error));
1459 }
1460 
1461 static int
aiocb_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)1462 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1463 {
1464 
1465 	return (suword(ujobp, (long)ujob));
1466 }
1467 
1468 static struct aiocb_ops aiocb_ops = {
1469 	.aio_copyin = aiocb_copyin,
1470 	.fetch_status = aiocb_fetch_status,
1471 	.fetch_error = aiocb_fetch_error,
1472 	.store_status = aiocb_store_status,
1473 	.store_error = aiocb_store_error,
1474 	.store_aiocb = aiocb_store_aiocb,
1475 };
1476 
1477 #ifdef COMPAT_FREEBSD6
1478 static struct aiocb_ops aiocb_ops_osigevent = {
1479 	.aio_copyin = aiocb_copyin_old_sigevent,
1480 	.fetch_status = aiocb_fetch_status,
1481 	.fetch_error = aiocb_fetch_error,
1482 	.store_status = aiocb_store_status,
1483 	.store_error = aiocb_store_error,
1484 	.store_aiocb = aiocb_store_aiocb,
1485 };
1486 #endif
1487 
1488 /*
1489  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
1490  * technique is done in this code.
1491  */
1492 static int
aio_aqueue(struct thread * td,struct aiocb * ujob,struct aioliojob * lj,int type,struct aiocb_ops * ops)1493 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1494     int type, struct aiocb_ops *ops)
1495 {
1496 	struct proc *p = td->td_proc;
1497 	struct file *fp = NULL;
1498 	struct kaiocb *job;
1499 	struct kaioinfo *ki;
1500 	struct kevent kev;
1501 	int opcode;
1502 	int error;
1503 	int fd, kqfd;
1504 	u_short evflags;
1505 
1506 	if (p->p_aioinfo == NULL) {
1507 		error = aio_init_aioinfo(p);
1508 		if (error != 0)
1509 			goto err1;
1510 	}
1511 
1512 	ki = p->p_aioinfo;
1513 
1514 	ops->store_status(ujob, -1);
1515 	ops->store_error(ujob, 0);
1516 
1517 	if (num_queue_count >= max_queue_count ||
1518 	    ki->kaio_count >= max_aio_queue_per_proc) {
1519 		error = EAGAIN;
1520 		goto err1;
1521 	}
1522 
1523 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1524 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1525 
1526 	error = ops->aio_copyin(ujob, job, type);
1527 	if (error)
1528 		goto err2;
1529 
1530 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1531 		error = EINVAL;
1532 		goto err2;
1533 	}
1534 
1535 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1536 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1537 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1538 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1539 		error = EINVAL;
1540 		goto err2;
1541 	}
1542 
1543 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1544 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1545 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1546 		error = EINVAL;
1547 		goto err2;
1548 	}
1549 
1550 	/* Get the opcode. */
1551 	if (type == LIO_NOP) {
1552 		switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) {
1553 		case LIO_WRITE:
1554 		case LIO_WRITEV:
1555 		case LIO_NOP:
1556 		case LIO_READ:
1557 		case LIO_READV:
1558 			opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
1559 			if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0)
1560 				job->ioflags |= KAIOCB_IO_FOFFSET;
1561 			break;
1562 		default:
1563 			error = EINVAL;
1564 			goto err2;
1565 		}
1566 	} else
1567 		opcode = job->uaiocb.aio_lio_opcode = type;
1568 
1569 	ksiginfo_init(&job->ksi);
1570 
1571 	/* Save userspace address of the job info. */
1572 	job->ujob = ujob;
1573 
1574 	/*
1575 	 * Validate the opcode and fetch the file object for the specified
1576 	 * file descriptor.
1577 	 *
1578 	 * XXXRW: Moved the opcode validation up here so that we don't
1579 	 * retrieve a file descriptor without knowing what the capabiltity
1580 	 * should be.
1581 	 */
1582 	fd = job->uaiocb.aio_fildes;
1583 	switch (opcode) {
1584 	case LIO_WRITE:
1585 	case LIO_WRITEV:
1586 		error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1587 		break;
1588 	case LIO_READ:
1589 	case LIO_READV:
1590 		error = fget_read(td, fd, &cap_pread_rights, &fp);
1591 		break;
1592 	case LIO_SYNC:
1593 	case LIO_DSYNC:
1594 		error = fget(td, fd, &cap_fsync_rights, &fp);
1595 		break;
1596 	case LIO_MLOCK:
1597 		break;
1598 	case LIO_NOP:
1599 		error = fget(td, fd, &cap_no_rights, &fp);
1600 		break;
1601 	default:
1602 		error = EINVAL;
1603 	}
1604 	if (error)
1605 		goto err3;
1606 
1607 	if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1608 		error = EINVAL;
1609 		goto err3;
1610 	}
1611 
1612 	if ((opcode == LIO_READ || opcode == LIO_READV ||
1613 	    opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1614 	    job->uaiocb.aio_offset < 0 &&
1615 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1616 		error = EINVAL;
1617 		goto err3;
1618 	}
1619 
1620 	if (fp != NULL && fp->f_ops == &path_fileops) {
1621 		error = EBADF;
1622 		goto err3;
1623 	}
1624 
1625 	job->fd_file = fp;
1626 
1627 	mtx_lock(&aio_job_mtx);
1628 	job->seqno = jobseqno++;
1629 	mtx_unlock(&aio_job_mtx);
1630 	if (opcode == LIO_NOP) {
1631 		fdrop(fp, td);
1632 		MPASS(job->uiop == &job->uio || job->uiop == NULL);
1633 		uma_zfree(aiocb_zone, job);
1634 		return (0);
1635 	}
1636 
1637 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1638 		goto no_kqueue;
1639 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1640 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1641 		error = EINVAL;
1642 		goto err3;
1643 	}
1644 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1645 	memset(&kev, 0, sizeof(kev));
1646 	kev.ident = (uintptr_t)job->ujob;
1647 	kev.filter = EVFILT_AIO;
1648 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1649 	kev.data = (intptr_t)job;
1650 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1651 	error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1652 	if (error)
1653 		goto err3;
1654 
1655 no_kqueue:
1656 
1657 	ops->store_error(ujob, EINPROGRESS);
1658 	job->uaiocb._aiocb_private.error = EINPROGRESS;
1659 	job->userproc = p;
1660 	job->cred = crhold(td->td_ucred);
1661 	job->jobflags = KAIOCB_QUEUEING;
1662 	job->lio = lj;
1663 
1664 	if (opcode & LIO_VECTORED) {
1665 		/* Use the uio copied in by aio_copyin */
1666 		MPASS(job->uiop != &job->uio && job->uiop != NULL);
1667 	} else {
1668 		/* Setup the inline uio */
1669 		job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1670 		job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1671 		job->uio.uio_iov = job->iov;
1672 		job->uio.uio_iovcnt = 1;
1673 		job->uio.uio_resid = job->uaiocb.aio_nbytes;
1674 		job->uio.uio_segflg = UIO_USERSPACE;
1675 		job->uiop = &job->uio;
1676 	}
1677 	switch (opcode & (LIO_READ | LIO_WRITE)) {
1678 	case LIO_READ:
1679 		job->uiop->uio_rw = UIO_READ;
1680 		break;
1681 	case LIO_WRITE:
1682 		job->uiop->uio_rw = UIO_WRITE;
1683 		break;
1684 	}
1685 	job->uiop->uio_offset = job->uaiocb.aio_offset;
1686 	job->uiop->uio_td = td;
1687 
1688 	if (opcode == LIO_MLOCK) {
1689 		aio_schedule(job, aio_process_mlock);
1690 		error = 0;
1691 	} else if (fp->f_ops->fo_aio_queue == NULL)
1692 		error = aio_queue_file(fp, job);
1693 	else
1694 		error = fo_aio_queue(fp, job);
1695 	if (error)
1696 		goto err4;
1697 
1698 	AIO_LOCK(ki);
1699 	job->jobflags &= ~KAIOCB_QUEUEING;
1700 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1701 	ki->kaio_count++;
1702 	if (lj)
1703 		lj->lioj_count++;
1704 	atomic_add_int(&num_queue_count, 1);
1705 	if (job->jobflags & KAIOCB_FINISHED) {
1706 		/*
1707 		 * The queue callback completed the request synchronously.
1708 		 * The bulk of the completion is deferred in that case
1709 		 * until this point.
1710 		 */
1711 		aio_bio_done_notify(p, job);
1712 	} else
1713 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1714 	AIO_UNLOCK(ki);
1715 	return (0);
1716 
1717 err4:
1718 	crfree(job->cred);
1719 err3:
1720 	if (fp)
1721 		fdrop(fp, td);
1722 	knlist_delete(&job->klist, curthread, 0);
1723 err2:
1724 	if (job->uiop != &job->uio)
1725 		freeuio(job->uiop);
1726 	uma_zfree(aiocb_zone, job);
1727 err1:
1728 	ops->store_error(ujob, error);
1729 	return (error);
1730 }
1731 
1732 static void
aio_cancel_daemon_job(struct kaiocb * job)1733 aio_cancel_daemon_job(struct kaiocb *job)
1734 {
1735 
1736 	mtx_lock(&aio_job_mtx);
1737 	if (!aio_cancel_cleared(job))
1738 		TAILQ_REMOVE(&aio_jobs, job, list);
1739 	mtx_unlock(&aio_job_mtx);
1740 	aio_cancel(job);
1741 }
1742 
1743 void
aio_schedule(struct kaiocb * job,aio_handle_fn_t * func)1744 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1745 {
1746 
1747 	mtx_lock(&aio_job_mtx);
1748 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1749 		mtx_unlock(&aio_job_mtx);
1750 		aio_cancel(job);
1751 		return;
1752 	}
1753 	job->handle_fn = func;
1754 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1755 	aio_kick_nowait(job->userproc);
1756 	mtx_unlock(&aio_job_mtx);
1757 }
1758 
1759 static void
aio_cancel_sync(struct kaiocb * job)1760 aio_cancel_sync(struct kaiocb *job)
1761 {
1762 	struct kaioinfo *ki;
1763 
1764 	ki = job->userproc->p_aioinfo;
1765 	AIO_LOCK(ki);
1766 	if (!aio_cancel_cleared(job))
1767 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1768 	AIO_UNLOCK(ki);
1769 	aio_cancel(job);
1770 }
1771 
1772 int
aio_queue_file(struct file * fp,struct kaiocb * job)1773 aio_queue_file(struct file *fp, struct kaiocb *job)
1774 {
1775 	struct kaioinfo *ki;
1776 	struct kaiocb *job2;
1777 	struct vnode *vp;
1778 	struct mount *mp;
1779 	int error;
1780 	bool safe;
1781 
1782 	ki = job->userproc->p_aioinfo;
1783 	error = aio_qbio(job->userproc, job);
1784 	if (error >= 0)
1785 		return (error);
1786 	safe = false;
1787 	if (fp->f_type == DTYPE_VNODE) {
1788 		vp = fp->f_vnode;
1789 		if (vp->v_type == VREG || vp->v_type == VDIR) {
1790 			mp = fp->f_vnode->v_mount;
1791 			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1792 				safe = true;
1793 		}
1794 	}
1795 	if (!(safe || enable_aio_unsafe)) {
1796 		counted_warning(&unsafe_warningcnt,
1797 		    "is attempting to use unsafe AIO requests");
1798 		return (EOPNOTSUPP);
1799 	}
1800 
1801 	if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1802 		aio_schedule(job, aio_process_rw);
1803 		error = 0;
1804 	} else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1805 		AIO_LOCK(ki);
1806 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1807 			if (job2->fd_file == job->fd_file &&
1808 			    ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1809 			    job2->seqno < job->seqno) {
1810 				job2->jobflags |= KAIOCB_CHECKSYNC;
1811 				job->pending++;
1812 			}
1813 		}
1814 		if (job->pending != 0) {
1815 			if (!aio_set_cancel_function_locked(job,
1816 				aio_cancel_sync)) {
1817 				AIO_UNLOCK(ki);
1818 				aio_cancel(job);
1819 				return (0);
1820 			}
1821 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1822 			AIO_UNLOCK(ki);
1823 			return (0);
1824 		}
1825 		AIO_UNLOCK(ki);
1826 		aio_schedule(job, aio_process_sync);
1827 		error = 0;
1828 	} else {
1829 		error = EINVAL;
1830 	}
1831 	return (error);
1832 }
1833 
1834 static void
aio_kick_nowait(struct proc * userp)1835 aio_kick_nowait(struct proc *userp)
1836 {
1837 	struct kaioinfo *ki = userp->p_aioinfo;
1838 	struct aioproc *aiop;
1839 
1840 	mtx_assert(&aio_job_mtx, MA_OWNED);
1841 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1842 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1843 		aiop->aioprocflags &= ~AIOP_FREE;
1844 		wakeup(aiop->aioproc);
1845 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1846 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1847 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1848 	}
1849 }
1850 
1851 static int
aio_kick(struct proc * userp)1852 aio_kick(struct proc *userp)
1853 {
1854 	struct kaioinfo *ki = userp->p_aioinfo;
1855 	struct aioproc *aiop;
1856 	int error, ret = 0;
1857 
1858 	mtx_assert(&aio_job_mtx, MA_OWNED);
1859 retryproc:
1860 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1861 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1862 		aiop->aioprocflags &= ~AIOP_FREE;
1863 		wakeup(aiop->aioproc);
1864 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1865 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1866 		num_aio_resv_start++;
1867 		mtx_unlock(&aio_job_mtx);
1868 		error = aio_newproc(&num_aio_resv_start);
1869 		mtx_lock(&aio_job_mtx);
1870 		if (error) {
1871 			num_aio_resv_start--;
1872 			goto retryproc;
1873 		}
1874 	} else {
1875 		ret = -1;
1876 	}
1877 	return (ret);
1878 }
1879 
1880 static void
aio_kick_helper(void * context,int pending)1881 aio_kick_helper(void *context, int pending)
1882 {
1883 	struct proc *userp = context;
1884 
1885 	mtx_lock(&aio_job_mtx);
1886 	while (--pending >= 0) {
1887 		if (aio_kick(userp))
1888 			break;
1889 	}
1890 	mtx_unlock(&aio_job_mtx);
1891 }
1892 
1893 /*
1894  * Support the aio_return system call, as a side-effect, kernel resources are
1895  * released.
1896  */
1897 static int
kern_aio_return(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)1898 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1899 {
1900 	struct proc *p = td->td_proc;
1901 	struct kaiocb *job;
1902 	struct kaioinfo *ki;
1903 	long status, error;
1904 
1905 	ki = p->p_aioinfo;
1906 	if (ki == NULL)
1907 		return (EINVAL);
1908 	AIO_LOCK(ki);
1909 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1910 		if (job->ujob == ujob)
1911 			break;
1912 	}
1913 	if (job != NULL) {
1914 		MPASS(job->jobflags & KAIOCB_FINISHED);
1915 		status = job->uaiocb._aiocb_private.status;
1916 		error = job->uaiocb._aiocb_private.error;
1917 		td->td_retval[0] = status;
1918 		td->td_ru.ru_oublock += job->outblock;
1919 		td->td_ru.ru_inblock += job->inblock;
1920 		td->td_ru.ru_msgsnd += job->msgsnd;
1921 		td->td_ru.ru_msgrcv += job->msgrcv;
1922 		aio_free_entry(job);
1923 		AIO_UNLOCK(ki);
1924 		ops->store_error(ujob, error);
1925 		ops->store_status(ujob, status);
1926 	} else {
1927 		error = EINVAL;
1928 		AIO_UNLOCK(ki);
1929 	}
1930 	return (error);
1931 }
1932 
1933 int
sys_aio_return(struct thread * td,struct aio_return_args * uap)1934 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1935 {
1936 
1937 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1938 }
1939 
1940 /*
1941  * Allow a process to wakeup when any of the I/O requests are completed.
1942  */
1943 static int
kern_aio_suspend(struct thread * td,int njoblist,struct aiocb ** ujoblist,struct timespec * ts)1944 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1945     struct timespec *ts)
1946 {
1947 	struct proc *p = td->td_proc;
1948 	struct timeval atv;
1949 	struct kaioinfo *ki;
1950 	struct kaiocb *firstjob, *job;
1951 	int error, i, timo;
1952 
1953 	timo = 0;
1954 	if (ts) {
1955 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1956 			return (EINVAL);
1957 
1958 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1959 		if (itimerfix(&atv))
1960 			return (EINVAL);
1961 		timo = tvtohz(&atv);
1962 	}
1963 
1964 	ki = p->p_aioinfo;
1965 	if (ki == NULL)
1966 		return (EAGAIN);
1967 
1968 	if (njoblist == 0)
1969 		return (0);
1970 
1971 	AIO_LOCK(ki);
1972 	for (;;) {
1973 		firstjob = NULL;
1974 		error = 0;
1975 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1976 			for (i = 0; i < njoblist; i++) {
1977 				if (job->ujob == ujoblist[i]) {
1978 					if (firstjob == NULL)
1979 						firstjob = job;
1980 					if (job->jobflags & KAIOCB_FINISHED)
1981 						goto RETURN;
1982 				}
1983 			}
1984 		}
1985 		/* All tasks were finished. */
1986 		if (firstjob == NULL)
1987 			break;
1988 
1989 		ki->kaio_flags |= KAIO_WAKEUP;
1990 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1991 		    "aiospn", timo);
1992 		if (error == ERESTART)
1993 			error = EINTR;
1994 		if (error)
1995 			break;
1996 	}
1997 RETURN:
1998 	AIO_UNLOCK(ki);
1999 	return (error);
2000 }
2001 
2002 int
sys_aio_suspend(struct thread * td,struct aio_suspend_args * uap)2003 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
2004 {
2005 	struct timespec ts, *tsp;
2006 	struct aiocb **ujoblist;
2007 	int error;
2008 
2009 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2010 		return (EINVAL);
2011 
2012 	if (uap->timeout) {
2013 		/* Get timespec struct. */
2014 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2015 			return (error);
2016 		tsp = &ts;
2017 	} else
2018 		tsp = NULL;
2019 
2020 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2021 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2022 	if (error == 0)
2023 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2024 	free(ujoblist, M_AIO);
2025 	return (error);
2026 }
2027 
2028 /*
2029  * aio_cancel cancels any non-bio aio operations not currently in progress.
2030  */
2031 int
sys_aio_cancel(struct thread * td,struct aio_cancel_args * uap)2032 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2033 {
2034 	struct proc *p = td->td_proc;
2035 	struct kaioinfo *ki;
2036 	struct kaiocb *job, *jobn;
2037 	struct file *fp;
2038 	int error;
2039 	int cancelled = 0;
2040 	int notcancelled = 0;
2041 	struct vnode *vp;
2042 
2043 	/* Lookup file object. */
2044 	error = fget(td, uap->fd, &cap_no_rights, &fp);
2045 	if (error)
2046 		return (error);
2047 
2048 	ki = p->p_aioinfo;
2049 	if (ki == NULL)
2050 		goto done;
2051 
2052 	if (fp->f_type == DTYPE_VNODE) {
2053 		vp = fp->f_vnode;
2054 		if (vn_isdisk(vp)) {
2055 			fdrop(fp, td);
2056 			td->td_retval[0] = AIO_NOTCANCELED;
2057 			return (0);
2058 		}
2059 	}
2060 
2061 	AIO_LOCK(ki);
2062 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2063 		if ((uap->fd == job->uaiocb.aio_fildes) &&
2064 		    ((uap->aiocbp == NULL) ||
2065 		     (uap->aiocbp == job->ujob))) {
2066 			if (aio_cancel_job(p, ki, job)) {
2067 				cancelled++;
2068 			} else {
2069 				notcancelled++;
2070 			}
2071 			if (uap->aiocbp != NULL)
2072 				break;
2073 		}
2074 	}
2075 	AIO_UNLOCK(ki);
2076 
2077 done:
2078 	fdrop(fp, td);
2079 
2080 	if (uap->aiocbp != NULL) {
2081 		if (cancelled) {
2082 			td->td_retval[0] = AIO_CANCELED;
2083 			return (0);
2084 		}
2085 	}
2086 
2087 	if (notcancelled) {
2088 		td->td_retval[0] = AIO_NOTCANCELED;
2089 		return (0);
2090 	}
2091 
2092 	if (cancelled) {
2093 		td->td_retval[0] = AIO_CANCELED;
2094 		return (0);
2095 	}
2096 
2097 	td->td_retval[0] = AIO_ALLDONE;
2098 
2099 	return (0);
2100 }
2101 
2102 /*
2103  * aio_error is implemented in the kernel level for compatibility purposes
2104  * only.  For a user mode async implementation, it would be best to do it in
2105  * a userland subroutine.
2106  */
2107 static int
kern_aio_error(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)2108 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2109 {
2110 	struct proc *p = td->td_proc;
2111 	struct kaiocb *job;
2112 	struct kaioinfo *ki;
2113 	int status;
2114 
2115 	ki = p->p_aioinfo;
2116 	if (ki == NULL) {
2117 		td->td_retval[0] = EINVAL;
2118 		return (0);
2119 	}
2120 
2121 	AIO_LOCK(ki);
2122 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2123 		if (job->ujob == ujob) {
2124 			if (job->jobflags & KAIOCB_FINISHED)
2125 				td->td_retval[0] =
2126 					job->uaiocb._aiocb_private.error;
2127 			else
2128 				td->td_retval[0] = EINPROGRESS;
2129 			AIO_UNLOCK(ki);
2130 			return (0);
2131 		}
2132 	}
2133 	AIO_UNLOCK(ki);
2134 
2135 	/*
2136 	 * Hack for failure of aio_aqueue.
2137 	 */
2138 	status = ops->fetch_status(ujob);
2139 	if (status == -1) {
2140 		td->td_retval[0] = ops->fetch_error(ujob);
2141 		return (0);
2142 	}
2143 
2144 	td->td_retval[0] = EINVAL;
2145 	return (0);
2146 }
2147 
2148 int
sys_aio_error(struct thread * td,struct aio_error_args * uap)2149 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2150 {
2151 
2152 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2153 }
2154 
2155 /* syscall - asynchronous read from a file (REALTIME) */
2156 #ifdef COMPAT_FREEBSD6
2157 int
freebsd6_aio_read(struct thread * td,struct freebsd6_aio_read_args * uap)2158 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2159 {
2160 
2161 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2162 	    &aiocb_ops_osigevent));
2163 }
2164 #endif
2165 
2166 int
sys_aio_read(struct thread * td,struct aio_read_args * uap)2167 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2168 {
2169 
2170 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2171 }
2172 
2173 int
sys_aio_readv(struct thread * td,struct aio_readv_args * uap)2174 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2175 {
2176 
2177 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2178 }
2179 
2180 /* syscall - asynchronous write to a file (REALTIME) */
2181 #ifdef COMPAT_FREEBSD6
2182 int
freebsd6_aio_write(struct thread * td,struct freebsd6_aio_write_args * uap)2183 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2184 {
2185 
2186 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2187 	    &aiocb_ops_osigevent));
2188 }
2189 #endif
2190 
2191 int
sys_aio_write(struct thread * td,struct aio_write_args * uap)2192 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2193 {
2194 
2195 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2196 }
2197 
2198 int
sys_aio_writev(struct thread * td,struct aio_writev_args * uap)2199 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2200 {
2201 
2202 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2203 }
2204 
2205 int
sys_aio_mlock(struct thread * td,struct aio_mlock_args * uap)2206 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2207 {
2208 
2209 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2210 }
2211 
2212 static int
kern_lio_listio(struct thread * td,int mode,struct aiocb * const * uacb_list,struct aiocb ** acb_list,int nent,struct sigevent * sig,struct aiocb_ops * ops)2213 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2214     struct aiocb **acb_list, int nent, struct sigevent *sig,
2215     struct aiocb_ops *ops)
2216 {
2217 	struct proc *p = td->td_proc;
2218 	struct aiocb *job;
2219 	struct kaioinfo *ki;
2220 	struct aioliojob *lj;
2221 	struct kevent kev;
2222 	int error;
2223 	int nagain, nerror;
2224 	int i;
2225 
2226 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2227 		return (EINVAL);
2228 
2229 	if (nent < 0 || nent > max_aio_queue_per_proc)
2230 		return (EINVAL);
2231 
2232 	if (p->p_aioinfo == NULL) {
2233 		error = aio_init_aioinfo(p);
2234 		if (error != 0)
2235 			return (error);
2236 	}
2237 
2238 	ki = p->p_aioinfo;
2239 
2240 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2241 	lj->lioj_flags = 0;
2242 	lj->lioj_count = 0;
2243 	lj->lioj_finished_count = 0;
2244 	lj->lioj_signal.sigev_notify = SIGEV_NONE;
2245 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2246 	ksiginfo_init(&lj->lioj_ksi);
2247 
2248 	/*
2249 	 * Setup signal.
2250 	 */
2251 	if (sig && (mode == LIO_NOWAIT)) {
2252 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2253 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2254 			/* Assume only new style KEVENT */
2255 			memset(&kev, 0, sizeof(kev));
2256 			kev.filter = EVFILT_LIO;
2257 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2258 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2259 			kev.data = (intptr_t)lj;
2260 			/* pass user defined sigval data */
2261 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2262 			error = kqfd_register(
2263 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2264 			    M_WAITOK);
2265 			if (error) {
2266 				uma_zfree(aiolio_zone, lj);
2267 				return (error);
2268 			}
2269 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2270 			;
2271 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2272 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2273 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2274 					uma_zfree(aiolio_zone, lj);
2275 					return EINVAL;
2276 				}
2277 				lj->lioj_flags |= LIOJ_SIGNAL;
2278 		} else {
2279 			uma_zfree(aiolio_zone, lj);
2280 			return EINVAL;
2281 		}
2282 	}
2283 
2284 	AIO_LOCK(ki);
2285 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2286 	/*
2287 	 * Add extra aiocb count to avoid the lio to be freed
2288 	 * by other threads doing aio_waitcomplete or aio_return,
2289 	 * and prevent event from being sent until we have queued
2290 	 * all tasks.
2291 	 */
2292 	lj->lioj_count = 1;
2293 	AIO_UNLOCK(ki);
2294 
2295 	/*
2296 	 * Get pointers to the list of I/O requests.
2297 	 */
2298 	nagain = 0;
2299 	nerror = 0;
2300 	for (i = 0; i < nent; i++) {
2301 		job = acb_list[i];
2302 		if (job != NULL) {
2303 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2304 			if (error == EAGAIN)
2305 				nagain++;
2306 			else if (error != 0)
2307 				nerror++;
2308 		}
2309 	}
2310 
2311 	error = 0;
2312 	AIO_LOCK(ki);
2313 	if (mode == LIO_WAIT) {
2314 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2315 			ki->kaio_flags |= KAIO_WAKEUP;
2316 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2317 			    PRIBIO | PCATCH, "aiospn", 0);
2318 			if (error == ERESTART)
2319 				error = EINTR;
2320 			if (error)
2321 				break;
2322 		}
2323 	} else {
2324 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2325 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2326 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2327 				KNOTE_LOCKED(&lj->klist, 1);
2328 			}
2329 			if ((lj->lioj_flags & (LIOJ_SIGNAL |
2330 			    LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2331 			    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2332 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2333 				aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2334 				    lj->lioj_count != 1);
2335 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2336 			}
2337 		}
2338 	}
2339 	lj->lioj_count--;
2340 	if (lj->lioj_count == 0) {
2341 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2342 		knlist_delete(&lj->klist, curthread, 1);
2343 		PROC_LOCK(p);
2344 		sigqueue_take(&lj->lioj_ksi);
2345 		PROC_UNLOCK(p);
2346 		AIO_UNLOCK(ki);
2347 		uma_zfree(aiolio_zone, lj);
2348 	} else
2349 		AIO_UNLOCK(ki);
2350 
2351 	if (nerror)
2352 		return (EIO);
2353 	else if (nagain)
2354 		return (EAGAIN);
2355 	else
2356 		return (error);
2357 }
2358 
2359 /* syscall - list directed I/O (REALTIME) */
2360 #ifdef COMPAT_FREEBSD6
2361 int
freebsd6_lio_listio(struct thread * td,struct freebsd6_lio_listio_args * uap)2362 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2363 {
2364 	struct aiocb **acb_list;
2365 	struct sigevent *sigp, sig;
2366 	struct osigevent osig;
2367 	int error, nent;
2368 
2369 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2370 		return (EINVAL);
2371 
2372 	nent = uap->nent;
2373 	if (nent < 0 || nent > max_aio_queue_per_proc)
2374 		return (EINVAL);
2375 
2376 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2377 		error = copyin(uap->sig, &osig, sizeof(osig));
2378 		if (error)
2379 			return (error);
2380 		error = convert_old_sigevent(&osig, &sig);
2381 		if (error)
2382 			return (error);
2383 		sigp = &sig;
2384 	} else
2385 		sigp = NULL;
2386 
2387 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2388 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2389 	if (error == 0)
2390 		error = kern_lio_listio(td, uap->mode,
2391 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2392 		    &aiocb_ops_osigevent);
2393 	free(acb_list, M_LIO);
2394 	return (error);
2395 }
2396 #endif
2397 
2398 /* syscall - list directed I/O (REALTIME) */
2399 int
sys_lio_listio(struct thread * td,struct lio_listio_args * uap)2400 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2401 {
2402 	struct aiocb **acb_list;
2403 	struct sigevent *sigp, sig;
2404 	int error, nent;
2405 
2406 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2407 		return (EINVAL);
2408 
2409 	nent = uap->nent;
2410 	if (nent < 0 || nent > max_aio_queue_per_proc)
2411 		return (EINVAL);
2412 
2413 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2414 		error = copyin(uap->sig, &sig, sizeof(sig));
2415 		if (error)
2416 			return (error);
2417 		sigp = &sig;
2418 	} else
2419 		sigp = NULL;
2420 
2421 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2422 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2423 	if (error == 0)
2424 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2425 		    nent, sigp, &aiocb_ops);
2426 	free(acb_list, M_LIO);
2427 	return (error);
2428 }
2429 
2430 static void
aio_biocleanup(struct bio * bp)2431 aio_biocleanup(struct bio *bp)
2432 {
2433 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2434 	struct kaioinfo *ki;
2435 	struct buf *pbuf = (struct buf *)bp->bio_caller2;
2436 
2437 	/* Release mapping into kernel space. */
2438 	if (pbuf != NULL) {
2439 		MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2440 		pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2441 		vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2442 		uma_zfree(pbuf_zone, pbuf);
2443 		atomic_subtract_int(&num_buf_aio, 1);
2444 		ki = job->userproc->p_aioinfo;
2445 		AIO_LOCK(ki);
2446 		ki->kaio_buffer_count--;
2447 		AIO_UNLOCK(ki);
2448 	} else {
2449 		MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2450 		vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2451 		free(bp->bio_ma, M_TEMP);
2452 		atomic_subtract_int(&num_unmapped_aio, 1);
2453 	}
2454 	g_destroy_bio(bp);
2455 }
2456 
2457 static void
aio_biowakeup(struct bio * bp)2458 aio_biowakeup(struct bio *bp)
2459 {
2460 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2461 	size_t nbytes;
2462 	long bcount = bp->bio_bcount;
2463 	long resid = bp->bio_resid;
2464 	int opcode, nblks;
2465 	int bio_error = bp->bio_error;
2466 	uint16_t flags = bp->bio_flags;
2467 
2468 	opcode = job->uaiocb.aio_lio_opcode;
2469 
2470 	aio_biocleanup(bp);
2471 
2472 	nbytes = bcount - resid;
2473 	atomic_add_acq_long(&job->nbytes, nbytes);
2474 	nblks = btodb(nbytes);
2475 
2476 	/*
2477 	 * If multiple bios experienced an error, the job will reflect the
2478 	 * error of whichever failed bio completed last.
2479 	 */
2480 	if (flags & BIO_ERROR)
2481 		atomic_store_int(&job->error, bio_error);
2482 	if (opcode & LIO_WRITE)
2483 		atomic_add_int(&job->outblock, nblks);
2484 	else
2485 		atomic_add_int(&job->inblock, nblks);
2486 
2487 	if (refcount_release(&job->nbio)) {
2488 		bio_error = atomic_load_int(&job->error);
2489 		if (bio_error != 0)
2490 			aio_complete(job, -1, bio_error);
2491 		else
2492 			aio_complete(job, atomic_load_long(&job->nbytes), 0);
2493 	}
2494 }
2495 
2496 /* syscall - wait for the next completion of an aio request */
2497 static int
kern_aio_waitcomplete(struct thread * td,struct aiocb ** ujobp,struct timespec * ts,struct aiocb_ops * ops)2498 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2499     struct timespec *ts, struct aiocb_ops *ops)
2500 {
2501 	struct proc *p = td->td_proc;
2502 	struct timeval atv;
2503 	struct kaioinfo *ki;
2504 	struct kaiocb *job;
2505 	struct aiocb *ujob;
2506 	long error, status;
2507 	int timo;
2508 
2509 	ops->store_aiocb(ujobp, NULL);
2510 
2511 	if (ts == NULL) {
2512 		timo = 0;
2513 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2514 		timo = -1;
2515 	} else {
2516 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2517 			return (EINVAL);
2518 
2519 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2520 		if (itimerfix(&atv))
2521 			return (EINVAL);
2522 		timo = tvtohz(&atv);
2523 	}
2524 
2525 	if (p->p_aioinfo == NULL) {
2526 		error = aio_init_aioinfo(p);
2527 		if (error != 0)
2528 			return (error);
2529 	}
2530 	ki = p->p_aioinfo;
2531 
2532 	error = 0;
2533 	job = NULL;
2534 	AIO_LOCK(ki);
2535 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2536 		if (timo == -1) {
2537 			error = EWOULDBLOCK;
2538 			break;
2539 		}
2540 		ki->kaio_flags |= KAIO_WAKEUP;
2541 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2542 		    "aiowc", timo);
2543 		if (timo && error == ERESTART)
2544 			error = EINTR;
2545 		if (error)
2546 			break;
2547 	}
2548 
2549 	if (job != NULL) {
2550 		MPASS(job->jobflags & KAIOCB_FINISHED);
2551 		ujob = job->ujob;
2552 		status = job->uaiocb._aiocb_private.status;
2553 		error = job->uaiocb._aiocb_private.error;
2554 		td->td_retval[0] = status;
2555 		td->td_ru.ru_oublock += job->outblock;
2556 		td->td_ru.ru_inblock += job->inblock;
2557 		td->td_ru.ru_msgsnd += job->msgsnd;
2558 		td->td_ru.ru_msgrcv += job->msgrcv;
2559 		aio_free_entry(job);
2560 		AIO_UNLOCK(ki);
2561 		ops->store_aiocb(ujobp, ujob);
2562 		ops->store_error(ujob, error);
2563 		ops->store_status(ujob, status);
2564 	} else
2565 		AIO_UNLOCK(ki);
2566 
2567 	return (error);
2568 }
2569 
2570 int
sys_aio_waitcomplete(struct thread * td,struct aio_waitcomplete_args * uap)2571 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2572 {
2573 	struct timespec ts, *tsp;
2574 	int error;
2575 
2576 	if (uap->timeout) {
2577 		/* Get timespec struct. */
2578 		error = copyin(uap->timeout, &ts, sizeof(ts));
2579 		if (error)
2580 			return (error);
2581 		tsp = &ts;
2582 	} else
2583 		tsp = NULL;
2584 
2585 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2586 }
2587 
2588 static int
kern_aio_fsync(struct thread * td,int op,struct aiocb * ujob,struct aiocb_ops * ops)2589 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2590     struct aiocb_ops *ops)
2591 {
2592 	int listop;
2593 
2594 	switch (op) {
2595 	case O_SYNC:
2596 		listop = LIO_SYNC;
2597 		break;
2598 	case O_DSYNC:
2599 		listop = LIO_DSYNC;
2600 		break;
2601 	default:
2602 		return (EINVAL);
2603 	}
2604 
2605 	return (aio_aqueue(td, ujob, NULL, listop, ops));
2606 }
2607 
2608 int
sys_aio_fsync(struct thread * td,struct aio_fsync_args * uap)2609 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2610 {
2611 
2612 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2613 }
2614 
2615 /* kqueue attach function */
2616 static int
filt_aioattach(struct knote * kn)2617 filt_aioattach(struct knote *kn)
2618 {
2619 	struct kaiocb *job;
2620 
2621 	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2622 
2623 	/*
2624 	 * The job pointer must be validated before using it, so
2625 	 * registration is restricted to the kernel; the user cannot
2626 	 * set EV_FLAG1.
2627 	 */
2628 	if ((kn->kn_flags & EV_FLAG1) == 0)
2629 		return (EPERM);
2630 	kn->kn_ptr.p_aio = job;
2631 	kn->kn_flags &= ~EV_FLAG1;
2632 
2633 	knlist_add(&job->klist, kn, 0);
2634 
2635 	return (0);
2636 }
2637 
2638 /* kqueue detach function */
2639 static void
filt_aiodetach(struct knote * kn)2640 filt_aiodetach(struct knote *kn)
2641 {
2642 	struct knlist *knl;
2643 
2644 	knl = &kn->kn_ptr.p_aio->klist;
2645 	knl->kl_lock(knl->kl_lockarg);
2646 	if (!knlist_empty(knl))
2647 		knlist_remove(knl, kn, 1);
2648 	knl->kl_unlock(knl->kl_lockarg);
2649 }
2650 
2651 /* kqueue filter function */
2652 /*ARGSUSED*/
2653 static int
filt_aio(struct knote * kn,long hint)2654 filt_aio(struct knote *kn, long hint)
2655 {
2656 	struct kaiocb *job = kn->kn_ptr.p_aio;
2657 
2658 	kn->kn_data = job->uaiocb._aiocb_private.error;
2659 	if (!(job->jobflags & KAIOCB_FINISHED))
2660 		return (0);
2661 	kn->kn_flags |= EV_EOF;
2662 	return (1);
2663 }
2664 
2665 /* kqueue attach function */
2666 static int
filt_lioattach(struct knote * kn)2667 filt_lioattach(struct knote *kn)
2668 {
2669 	struct aioliojob *lj;
2670 
2671 	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2672 
2673 	/*
2674 	 * The aioliojob pointer must be validated before using it, so
2675 	 * registration is restricted to the kernel; the user cannot
2676 	 * set EV_FLAG1.
2677 	 */
2678 	if ((kn->kn_flags & EV_FLAG1) == 0)
2679 		return (EPERM);
2680 	kn->kn_ptr.p_lio = lj;
2681 	kn->kn_flags &= ~EV_FLAG1;
2682 
2683 	knlist_add(&lj->klist, kn, 0);
2684 
2685 	return (0);
2686 }
2687 
2688 /* kqueue detach function */
2689 static void
filt_liodetach(struct knote * kn)2690 filt_liodetach(struct knote *kn)
2691 {
2692 	struct knlist *knl;
2693 
2694 	knl = &kn->kn_ptr.p_lio->klist;
2695 	knl->kl_lock(knl->kl_lockarg);
2696 	if (!knlist_empty(knl))
2697 		knlist_remove(knl, kn, 1);
2698 	knl->kl_unlock(knl->kl_lockarg);
2699 }
2700 
2701 /* kqueue filter function */
2702 /*ARGSUSED*/
2703 static int
filt_lio(struct knote * kn,long hint)2704 filt_lio(struct knote *kn, long hint)
2705 {
2706 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2707 
2708 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2709 }
2710 
2711 #ifdef COMPAT_FREEBSD32
2712 #include <sys/mount.h>
2713 #include <sys/socket.h>
2714 #include <sys/sysent.h>
2715 #include <compat/freebsd32/freebsd32.h>
2716 #include <compat/freebsd32/freebsd32_proto.h>
2717 #include <compat/freebsd32/freebsd32_signal.h>
2718 #include <compat/freebsd32/freebsd32_syscall.h>
2719 #include <compat/freebsd32/freebsd32_util.h>
2720 
2721 struct __aiocb_private32 {
2722 	int32_t	status;
2723 	int32_t	error;
2724 	uint32_t spare;
2725 };
2726 
2727 #ifdef COMPAT_FREEBSD6
2728 typedef struct oaiocb32 {
2729 	int	aio_fildes;		/* File descriptor */
2730 	uint64_t aio_offset __packed;	/* File offset for I/O */
2731 	uint32_t aio_buf;		/* I/O buffer in process space */
2732 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2733 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2734 	int	aio_lio_opcode;		/* LIO opcode */
2735 	int	aio_reqprio;		/* Request priority -- ignored */
2736 	struct	__aiocb_private32 _aiocb_private;
2737 } oaiocb32_t;
2738 #endif
2739 
2740 typedef struct aiocb32 {
2741 	int32_t	aio_fildes;		/* File descriptor */
2742 	uint64_t aio_offset __packed;	/* File offset for I/O */
2743 	uint32_t aio_buf;	/* I/O buffer in process space */
2744 	uint32_t aio_nbytes;	/* Number of bytes for I/O */
2745 	int	__spare__[2];
2746 	uint32_t __spare2__;
2747 	int	aio_lio_opcode;		/* LIO opcode */
2748 	int	aio_reqprio;		/* Request priority -- ignored */
2749 	struct	__aiocb_private32 _aiocb_private;
2750 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2751 } aiocb32_t;
2752 
2753 #ifdef COMPAT_FREEBSD6
2754 static int
convert_old_sigevent32(struct osigevent32 * osig,struct sigevent * nsig)2755 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2756 {
2757 
2758 	/*
2759 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2760 	 * supported by AIO with the old sigevent structure.
2761 	 */
2762 	CP(*osig, *nsig, sigev_notify);
2763 	switch (nsig->sigev_notify) {
2764 	case SIGEV_NONE:
2765 		break;
2766 	case SIGEV_SIGNAL:
2767 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2768 		break;
2769 	case SIGEV_KEVENT:
2770 		nsig->sigev_notify_kqueue =
2771 		    osig->__sigev_u.__sigev_notify_kqueue;
2772 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2773 		break;
2774 	default:
2775 		return (EINVAL);
2776 	}
2777 	return (0);
2778 }
2779 
2780 static int
aiocb32_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)2781 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2782     int type __unused)
2783 {
2784 	struct oaiocb32 job32;
2785 	struct aiocb *kcb = &kjob->uaiocb;
2786 	int error;
2787 
2788 	bzero(kcb, sizeof(struct aiocb));
2789 	error = copyin(ujob, &job32, sizeof(job32));
2790 	if (error)
2791 		return (error);
2792 
2793 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2794 
2795 	CP(job32, *kcb, aio_fildes);
2796 	CP(job32, *kcb, aio_offset);
2797 	PTRIN_CP(job32, *kcb, aio_buf);
2798 	CP(job32, *kcb, aio_nbytes);
2799 	CP(job32, *kcb, aio_lio_opcode);
2800 	CP(job32, *kcb, aio_reqprio);
2801 	CP(job32, *kcb, _aiocb_private.status);
2802 	CP(job32, *kcb, _aiocb_private.error);
2803 	return (convert_old_sigevent32(&job32.aio_sigevent,
2804 	    &kcb->aio_sigevent));
2805 }
2806 #endif
2807 
2808 static int
aiocb32_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)2809 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2810 {
2811 	struct aiocb32 job32;
2812 	struct aiocb *kcb = &kjob->uaiocb;
2813 	struct iovec32 *iov32;
2814 	int error;
2815 
2816 	error = copyin(ujob, &job32, sizeof(job32));
2817 	if (error)
2818 		return (error);
2819 	CP(job32, *kcb, aio_fildes);
2820 	CP(job32, *kcb, aio_offset);
2821 	CP(job32, *kcb, aio_lio_opcode);
2822 	if (type == LIO_NOP)
2823 		type = kcb->aio_lio_opcode;
2824 	if (type & LIO_VECTORED) {
2825 		iov32 = PTRIN(job32.aio_iov);
2826 		CP(job32, *kcb, aio_iovcnt);
2827 		/* malloc a uio and copy in the iovec */
2828 		error = freebsd32_copyinuio(iov32,
2829 		    kcb->aio_iovcnt, &kjob->uiop);
2830 		if (error)
2831 			return (error);
2832 	} else {
2833 		PTRIN_CP(job32, *kcb, aio_buf);
2834 		CP(job32, *kcb, aio_nbytes);
2835 	}
2836 	CP(job32, *kcb, aio_reqprio);
2837 	CP(job32, *kcb, _aiocb_private.status);
2838 	CP(job32, *kcb, _aiocb_private.error);
2839 	error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2840 
2841 	return (error);
2842 }
2843 
2844 static long
aiocb32_fetch_status(struct aiocb * ujob)2845 aiocb32_fetch_status(struct aiocb *ujob)
2846 {
2847 	struct aiocb32 *ujob32;
2848 
2849 	ujob32 = (struct aiocb32 *)ujob;
2850 	return (fuword32(&ujob32->_aiocb_private.status));
2851 }
2852 
2853 static long
aiocb32_fetch_error(struct aiocb * ujob)2854 aiocb32_fetch_error(struct aiocb *ujob)
2855 {
2856 	struct aiocb32 *ujob32;
2857 
2858 	ujob32 = (struct aiocb32 *)ujob;
2859 	return (fuword32(&ujob32->_aiocb_private.error));
2860 }
2861 
2862 static int
aiocb32_store_status(struct aiocb * ujob,long status)2863 aiocb32_store_status(struct aiocb *ujob, long status)
2864 {
2865 	struct aiocb32 *ujob32;
2866 
2867 	ujob32 = (struct aiocb32 *)ujob;
2868 	return (suword32(&ujob32->_aiocb_private.status, status));
2869 }
2870 
2871 static int
aiocb32_store_error(struct aiocb * ujob,long error)2872 aiocb32_store_error(struct aiocb *ujob, long error)
2873 {
2874 	struct aiocb32 *ujob32;
2875 
2876 	ujob32 = (struct aiocb32 *)ujob;
2877 	return (suword32(&ujob32->_aiocb_private.error, error));
2878 }
2879 
2880 static int
aiocb32_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)2881 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2882 {
2883 
2884 	return (suword32(ujobp, (long)ujob));
2885 }
2886 
2887 static struct aiocb_ops aiocb32_ops = {
2888 	.aio_copyin = aiocb32_copyin,
2889 	.fetch_status = aiocb32_fetch_status,
2890 	.fetch_error = aiocb32_fetch_error,
2891 	.store_status = aiocb32_store_status,
2892 	.store_error = aiocb32_store_error,
2893 	.store_aiocb = aiocb32_store_aiocb,
2894 };
2895 
2896 #ifdef COMPAT_FREEBSD6
2897 static struct aiocb_ops aiocb32_ops_osigevent = {
2898 	.aio_copyin = aiocb32_copyin_old_sigevent,
2899 	.fetch_status = aiocb32_fetch_status,
2900 	.fetch_error = aiocb32_fetch_error,
2901 	.store_status = aiocb32_store_status,
2902 	.store_error = aiocb32_store_error,
2903 	.store_aiocb = aiocb32_store_aiocb,
2904 };
2905 #endif
2906 
2907 int
freebsd32_aio_return(struct thread * td,struct freebsd32_aio_return_args * uap)2908 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2909 {
2910 
2911 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2912 }
2913 
2914 int
freebsd32_aio_suspend(struct thread * td,struct freebsd32_aio_suspend_args * uap)2915 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2916 {
2917 	struct timespec32 ts32;
2918 	struct timespec ts, *tsp;
2919 	struct aiocb **ujoblist;
2920 	uint32_t *ujoblist32;
2921 	int error, i;
2922 
2923 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2924 		return (EINVAL);
2925 
2926 	if (uap->timeout) {
2927 		/* Get timespec struct. */
2928 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2929 			return (error);
2930 		CP(ts32, ts, tv_sec);
2931 		CP(ts32, ts, tv_nsec);
2932 		tsp = &ts;
2933 	} else
2934 		tsp = NULL;
2935 
2936 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2937 	ujoblist32 = (uint32_t *)ujoblist;
2938 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2939 	    sizeof(ujoblist32[0]));
2940 	if (error == 0) {
2941 		for (i = uap->nent - 1; i >= 0; i--)
2942 			ujoblist[i] = PTRIN(ujoblist32[i]);
2943 
2944 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2945 	}
2946 	free(ujoblist, M_AIO);
2947 	return (error);
2948 }
2949 
2950 int
freebsd32_aio_error(struct thread * td,struct freebsd32_aio_error_args * uap)2951 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2952 {
2953 
2954 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2955 }
2956 
2957 #ifdef COMPAT_FREEBSD6
2958 int
freebsd6_freebsd32_aio_read(struct thread * td,struct freebsd6_freebsd32_aio_read_args * uap)2959 freebsd6_freebsd32_aio_read(struct thread *td,
2960     struct freebsd6_freebsd32_aio_read_args *uap)
2961 {
2962 
2963 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2964 	    &aiocb32_ops_osigevent));
2965 }
2966 #endif
2967 
2968 int
freebsd32_aio_read(struct thread * td,struct freebsd32_aio_read_args * uap)2969 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2970 {
2971 
2972 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2973 	    &aiocb32_ops));
2974 }
2975 
2976 int
freebsd32_aio_readv(struct thread * td,struct freebsd32_aio_readv_args * uap)2977 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
2978 {
2979 
2980 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
2981 	    &aiocb32_ops));
2982 }
2983 
2984 #ifdef COMPAT_FREEBSD6
2985 int
freebsd6_freebsd32_aio_write(struct thread * td,struct freebsd6_freebsd32_aio_write_args * uap)2986 freebsd6_freebsd32_aio_write(struct thread *td,
2987     struct freebsd6_freebsd32_aio_write_args *uap)
2988 {
2989 
2990 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2991 	    &aiocb32_ops_osigevent));
2992 }
2993 #endif
2994 
2995 int
freebsd32_aio_write(struct thread * td,struct freebsd32_aio_write_args * uap)2996 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2997 {
2998 
2999 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3000 	    &aiocb32_ops));
3001 }
3002 
3003 int
freebsd32_aio_writev(struct thread * td,struct freebsd32_aio_writev_args * uap)3004 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
3005 {
3006 
3007 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
3008 	    &aiocb32_ops));
3009 }
3010 
3011 int
freebsd32_aio_mlock(struct thread * td,struct freebsd32_aio_mlock_args * uap)3012 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
3013 {
3014 
3015 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
3016 	    &aiocb32_ops));
3017 }
3018 
3019 int
freebsd32_aio_waitcomplete(struct thread * td,struct freebsd32_aio_waitcomplete_args * uap)3020 freebsd32_aio_waitcomplete(struct thread *td,
3021     struct freebsd32_aio_waitcomplete_args *uap)
3022 {
3023 	struct timespec32 ts32;
3024 	struct timespec ts, *tsp;
3025 	int error;
3026 
3027 	if (uap->timeout) {
3028 		/* Get timespec struct. */
3029 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3030 		if (error)
3031 			return (error);
3032 		CP(ts32, ts, tv_sec);
3033 		CP(ts32, ts, tv_nsec);
3034 		tsp = &ts;
3035 	} else
3036 		tsp = NULL;
3037 
3038 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3039 	    &aiocb32_ops));
3040 }
3041 
3042 int
freebsd32_aio_fsync(struct thread * td,struct freebsd32_aio_fsync_args * uap)3043 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3044 {
3045 
3046 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3047 	    &aiocb32_ops));
3048 }
3049 
3050 #ifdef COMPAT_FREEBSD6
3051 int
freebsd6_freebsd32_lio_listio(struct thread * td,struct freebsd6_freebsd32_lio_listio_args * uap)3052 freebsd6_freebsd32_lio_listio(struct thread *td,
3053     struct freebsd6_freebsd32_lio_listio_args *uap)
3054 {
3055 	struct aiocb **acb_list;
3056 	struct sigevent *sigp, sig;
3057 	struct osigevent32 osig;
3058 	uint32_t *acb_list32;
3059 	int error, i, nent;
3060 
3061 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3062 		return (EINVAL);
3063 
3064 	nent = uap->nent;
3065 	if (nent < 0 || nent > max_aio_queue_per_proc)
3066 		return (EINVAL);
3067 
3068 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3069 		error = copyin(uap->sig, &osig, sizeof(osig));
3070 		if (error)
3071 			return (error);
3072 		error = convert_old_sigevent32(&osig, &sig);
3073 		if (error)
3074 			return (error);
3075 		sigp = &sig;
3076 	} else
3077 		sigp = NULL;
3078 
3079 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3080 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3081 	if (error) {
3082 		free(acb_list32, M_LIO);
3083 		return (error);
3084 	}
3085 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3086 	for (i = 0; i < nent; i++)
3087 		acb_list[i] = PTRIN(acb_list32[i]);
3088 	free(acb_list32, M_LIO);
3089 
3090 	error = kern_lio_listio(td, uap->mode,
3091 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3092 	    &aiocb32_ops_osigevent);
3093 	free(acb_list, M_LIO);
3094 	return (error);
3095 }
3096 #endif
3097 
3098 int
freebsd32_lio_listio(struct thread * td,struct freebsd32_lio_listio_args * uap)3099 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3100 {
3101 	struct aiocb **acb_list;
3102 	struct sigevent *sigp, sig;
3103 	struct sigevent32 sig32;
3104 	uint32_t *acb_list32;
3105 	int error, i, nent;
3106 
3107 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3108 		return (EINVAL);
3109 
3110 	nent = uap->nent;
3111 	if (nent < 0 || nent > max_aio_queue_per_proc)
3112 		return (EINVAL);
3113 
3114 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3115 		error = copyin(uap->sig, &sig32, sizeof(sig32));
3116 		if (error)
3117 			return (error);
3118 		error = convert_sigevent32(&sig32, &sig);
3119 		if (error)
3120 			return (error);
3121 		sigp = &sig;
3122 	} else
3123 		sigp = NULL;
3124 
3125 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3126 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3127 	if (error) {
3128 		free(acb_list32, M_LIO);
3129 		return (error);
3130 	}
3131 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3132 	for (i = 0; i < nent; i++)
3133 		acb_list[i] = PTRIN(acb_list32[i]);
3134 	free(acb_list32, M_LIO);
3135 
3136 	error = kern_lio_listio(td, uap->mode,
3137 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3138 	    &aiocb32_ops);
3139 	free(acb_list, M_LIO);
3140 	return (error);
3141 }
3142 
3143 #endif
3144