1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_ffclock.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ktrace.h"
34
35 #define __ELF_WORD_SIZE 32
36
37 #ifdef COMPAT_FREEBSD11
38 #define _WANT_FREEBSD11_KEVENT
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/bus.h>
43 #include <sys/capsicum.h>
44 #include <sys/clock.h>
45 #include <sys/exec.h>
46 #include <sys/fcntl.h>
47 #include <sys/filedesc.h>
48 #include <sys/imgact.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/limits.h>
52 #include <sys/linker.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/file.h> /* Must come after sys/malloc.h */
56 #include <sys/imgact.h>
57 #include <sys/mbuf.h>
58 #include <sys/mman.h>
59 #include <sys/module.h>
60 #include <sys/mount.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/priv.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */
72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/timerfd.h>
86 #include <sys/timex.h>
87 #include <sys/unistd.h>
88 #include <sys/ucontext.h>
89 #include <sys/ucred.h>
90 #include <sys/vnode.h>
91 #include <sys/wait.h>
92 #include <sys/ipc.h>
93 #include <sys/msg.h>
94 #include <sys/sem.h>
95 #include <sys/shm.h>
96 #include <sys/timeffc.h>
97 #ifdef KTRACE
98 #include <sys/ktrace.h>
99 #endif
100
101 #ifdef INET
102 #include <netinet/in.h>
103 #endif
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_extern.h>
111
112 #include <machine/cpu.h>
113 #include <machine/elf.h>
114 #ifdef __amd64__
115 #include <machine/md_var.h>
116 #endif
117
118 #include <security/audit/audit.h>
119 #include <security/mac/mac_syscalls.h>
120
121 #include <compat/freebsd32/freebsd32_util.h>
122 #include <compat/freebsd32/freebsd32.h>
123 #include <compat/freebsd32/freebsd32_ipc.h>
124 #include <compat/freebsd32/freebsd32_misc.h>
125 #include <compat/freebsd32/freebsd32_signal.h>
126 #include <compat/freebsd32/freebsd32_proto.h>
127
128 int compat_freebsd_32bit = 1;
129
130 static void
register_compat32_feature(void * arg)131 register_compat32_feature(void *arg)
132 {
133 if (!compat_freebsd_32bit)
134 return;
135
136 FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD");
137 FEATURE_ADD("compat_freebsd_32bit",
138 "Compatible with 32-bit FreeBSD (legacy feature name)");
139 }
140 SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature,
141 NULL);
142
143 struct ptrace_io_desc32 {
144 int piod_op;
145 uint32_t piod_offs;
146 uint32_t piod_addr;
147 uint32_t piod_len;
148 };
149
150 struct ptrace_vm_entry32 {
151 int pve_entry;
152 int pve_timestamp;
153 uint32_t pve_start;
154 uint32_t pve_end;
155 uint32_t pve_offset;
156 u_int pve_prot;
157 u_int pve_pathlen;
158 int32_t pve_fileid;
159 u_int pve_fsid;
160 uint32_t pve_path;
161 };
162
163 #ifdef __amd64__
164 CTASSERT(sizeof(struct timeval32) == 8);
165 CTASSERT(sizeof(struct timespec32) == 8);
166 CTASSERT(sizeof(struct itimerval32) == 16);
167 CTASSERT(sizeof(struct bintime32) == 12);
168 #else
169 CTASSERT(sizeof(struct timeval32) == 16);
170 CTASSERT(sizeof(struct timespec32) == 16);
171 CTASSERT(sizeof(struct itimerval32) == 32);
172 CTASSERT(sizeof(struct bintime32) == 16);
173 #endif
174 CTASSERT(sizeof(struct ostatfs32) == 256);
175 #ifdef __amd64__
176 CTASSERT(sizeof(struct rusage32) == 72);
177 #else
178 CTASSERT(sizeof(struct rusage32) == 88);
179 #endif
180 CTASSERT(sizeof(struct sigaltstack32) == 12);
181 #ifdef __amd64__
182 CTASSERT(sizeof(struct kevent32) == 56);
183 #else
184 CTASSERT(sizeof(struct kevent32) == 64);
185 #endif
186 CTASSERT(sizeof(struct iovec32) == 8);
187 CTASSERT(sizeof(struct msghdr32) == 28);
188 #ifdef __amd64__
189 CTASSERT(sizeof(struct stat32) == 208);
190 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
191 #else
192 CTASSERT(sizeof(struct stat32) == 224);
193 CTASSERT(sizeof(struct freebsd11_stat32) == 120);
194 #endif
195 CTASSERT(sizeof(struct sigaction32) == 24);
196
197 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
198 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
199 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
200 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
201
202 void
freebsd32_rusage_out(const struct rusage * s,struct rusage32 * s32)203 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
204 {
205
206 TV_CP(*s, *s32, ru_utime);
207 TV_CP(*s, *s32, ru_stime);
208 CP(*s, *s32, ru_maxrss);
209 CP(*s, *s32, ru_ixrss);
210 CP(*s, *s32, ru_idrss);
211 CP(*s, *s32, ru_isrss);
212 CP(*s, *s32, ru_minflt);
213 CP(*s, *s32, ru_majflt);
214 CP(*s, *s32, ru_nswap);
215 CP(*s, *s32, ru_inblock);
216 CP(*s, *s32, ru_oublock);
217 CP(*s, *s32, ru_msgsnd);
218 CP(*s, *s32, ru_msgrcv);
219 CP(*s, *s32, ru_nsignals);
220 CP(*s, *s32, ru_nvcsw);
221 CP(*s, *s32, ru_nivcsw);
222 }
223
224 int
freebsd32_wait4(struct thread * td,struct freebsd32_wait4_args * uap)225 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
226 {
227 int error, status;
228 struct rusage32 ru32;
229 struct rusage ru, *rup;
230
231 if (uap->rusage != NULL)
232 rup = &ru;
233 else
234 rup = NULL;
235 error = kern_wait(td, uap->pid, &status, uap->options, rup);
236 if (error)
237 return (error);
238 if (uap->status != NULL)
239 error = copyout(&status, uap->status, sizeof(status));
240 if (uap->rusage != NULL && error == 0) {
241 freebsd32_rusage_out(&ru, &ru32);
242 error = copyout(&ru32, uap->rusage, sizeof(ru32));
243 }
244 return (error);
245 }
246
247 int
freebsd32_wait6(struct thread * td,struct freebsd32_wait6_args * uap)248 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
249 {
250 struct __wrusage32 wru32;
251 struct __wrusage wru, *wrup;
252 struct __siginfo32 si32;
253 struct __siginfo si, *sip;
254 int error, status;
255
256 if (uap->wrusage != NULL)
257 wrup = &wru;
258 else
259 wrup = NULL;
260 if (uap->info != NULL) {
261 sip = &si;
262 bzero(sip, sizeof(*sip));
263 } else
264 sip = NULL;
265 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
266 &status, uap->options, wrup, sip);
267 if (error != 0)
268 return (error);
269 if (uap->status != NULL)
270 error = copyout(&status, uap->status, sizeof(status));
271 if (uap->wrusage != NULL && error == 0) {
272 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
273 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
274 error = copyout(&wru32, uap->wrusage, sizeof(wru32));
275 }
276 if (uap->info != NULL && error == 0) {
277 siginfo_to_siginfo32 (&si, &si32);
278 error = copyout(&si32, uap->info, sizeof(si32));
279 }
280 return (error);
281 }
282
283 #ifdef COMPAT_FREEBSD4
284 static void
copy_statfs(struct statfs * in,struct ostatfs32 * out)285 copy_statfs(struct statfs *in, struct ostatfs32 *out)
286 {
287
288 statfs_scale_blocks(in, INT32_MAX);
289 bzero(out, sizeof(*out));
290 CP(*in, *out, f_bsize);
291 out->f_iosize = MIN(in->f_iosize, INT32_MAX);
292 CP(*in, *out, f_blocks);
293 CP(*in, *out, f_bfree);
294 CP(*in, *out, f_bavail);
295 out->f_files = MIN(in->f_files, INT32_MAX);
296 out->f_ffree = MIN(in->f_ffree, INT32_MAX);
297 CP(*in, *out, f_fsid);
298 CP(*in, *out, f_owner);
299 CP(*in, *out, f_type);
300 CP(*in, *out, f_flags);
301 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
302 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
303 strlcpy(out->f_fstypename,
304 in->f_fstypename, MFSNAMELEN);
305 strlcpy(out->f_mntonname,
306 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
307 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
308 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
309 strlcpy(out->f_mntfromname,
310 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
311 }
312 #endif
313
314 int
freebsd32_getfsstat(struct thread * td,struct freebsd32_getfsstat_args * uap)315 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap)
316 {
317 size_t count;
318 int error;
319
320 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX)
321 return (EINVAL);
322 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count,
323 UIO_USERSPACE, uap->mode);
324 if (error == 0)
325 td->td_retval[0] = count;
326 return (error);
327 }
328
329 #ifdef COMPAT_FREEBSD4
330 int
freebsd4_freebsd32_getfsstat(struct thread * td,struct freebsd4_freebsd32_getfsstat_args * uap)331 freebsd4_freebsd32_getfsstat(struct thread *td,
332 struct freebsd4_freebsd32_getfsstat_args *uap)
333 {
334 struct statfs *buf, *sp;
335 struct ostatfs32 stat32;
336 size_t count, size, copycount;
337 int error;
338
339 count = uap->bufsize / sizeof(struct ostatfs32);
340 size = count * sizeof(struct statfs);
341 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
342 if (size > 0) {
343 sp = buf;
344 copycount = count;
345 while (copycount > 0 && error == 0) {
346 copy_statfs(sp, &stat32);
347 error = copyout(&stat32, uap->buf, sizeof(stat32));
348 sp++;
349 uap->buf++;
350 copycount--;
351 }
352 free(buf, M_STATFS);
353 }
354 if (error == 0)
355 td->td_retval[0] = count;
356 return (error);
357 }
358 #endif
359
360 #ifdef COMPAT_FREEBSD11
361 int
freebsd11_freebsd32_getfsstat(struct thread * td,struct freebsd11_freebsd32_getfsstat_args * uap)362 freebsd11_freebsd32_getfsstat(struct thread *td,
363 struct freebsd11_freebsd32_getfsstat_args *uap)
364 {
365 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize,
366 uap->mode));
367 }
368 #endif
369
370 int
freebsd32_sigaltstack(struct thread * td,struct freebsd32_sigaltstack_args * uap)371 freebsd32_sigaltstack(struct thread *td,
372 struct freebsd32_sigaltstack_args *uap)
373 {
374 struct sigaltstack32 s32;
375 struct sigaltstack ss, oss, *ssp;
376 int error;
377
378 if (uap->ss != NULL) {
379 error = copyin(uap->ss, &s32, sizeof(s32));
380 if (error)
381 return (error);
382 PTRIN_CP(s32, ss, ss_sp);
383 CP(s32, ss, ss_size);
384 CP(s32, ss, ss_flags);
385 ssp = &ss;
386 } else
387 ssp = NULL;
388 error = kern_sigaltstack(td, ssp, &oss);
389 if (error == 0 && uap->oss != NULL) {
390 PTROUT_CP(oss, s32, ss_sp);
391 CP(oss, s32, ss_size);
392 CP(oss, s32, ss_flags);
393 error = copyout(&s32, uap->oss, sizeof(s32));
394 }
395 return (error);
396 }
397
398 /*
399 * Custom version of exec_copyin_args() so that we can translate
400 * the pointers.
401 */
402 int
freebsd32_exec_copyin_args(struct image_args * args,const char * fname,enum uio_seg segflg,uint32_t * argv,uint32_t * envv)403 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
404 enum uio_seg segflg, uint32_t *argv, uint32_t *envv)
405 {
406 char *argp, *envp;
407 uint32_t *p32, arg;
408 int error;
409
410 bzero(args, sizeof(*args));
411 if (argv == NULL)
412 return (EFAULT);
413
414 /*
415 * Allocate demand-paged memory for the file name, argument, and
416 * environment strings.
417 */
418 error = exec_alloc_args(args);
419 if (error != 0)
420 return (error);
421
422 /*
423 * Copy the file name.
424 */
425 error = exec_args_add_fname(args, fname, segflg);
426 if (error != 0)
427 goto err_exit;
428
429 /*
430 * extract arguments first
431 */
432 p32 = argv;
433 for (;;) {
434 error = copyin(p32++, &arg, sizeof(arg));
435 if (error)
436 goto err_exit;
437 if (arg == 0)
438 break;
439 argp = PTRIN(arg);
440 error = exec_args_add_arg(args, argp, UIO_USERSPACE);
441 if (error != 0)
442 goto err_exit;
443 }
444
445 /*
446 * extract environment strings
447 */
448 if (envv) {
449 p32 = envv;
450 for (;;) {
451 error = copyin(p32++, &arg, sizeof(arg));
452 if (error)
453 goto err_exit;
454 if (arg == 0)
455 break;
456 envp = PTRIN(arg);
457 error = exec_args_add_env(args, envp, UIO_USERSPACE);
458 if (error != 0)
459 goto err_exit;
460 }
461 }
462
463 return (0);
464
465 err_exit:
466 exec_free_args(args);
467 return (error);
468 }
469
470 int
freebsd32_execve(struct thread * td,struct freebsd32_execve_args * uap)471 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
472 {
473 struct image_args eargs;
474 struct vmspace *oldvmspace;
475 int error;
476
477 error = pre_execve(td, &oldvmspace);
478 if (error != 0)
479 return (error);
480 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
481 uap->argv, uap->envv);
482 if (error == 0)
483 error = kern_execve(td, &eargs, NULL, oldvmspace);
484 post_execve(td, error, oldvmspace);
485 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
486 return (error);
487 }
488
489 int
freebsd32_fexecve(struct thread * td,struct freebsd32_fexecve_args * uap)490 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
491 {
492 struct image_args eargs;
493 struct vmspace *oldvmspace;
494 int error;
495
496 error = pre_execve(td, &oldvmspace);
497 if (error != 0)
498 return (error);
499 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
500 uap->argv, uap->envv);
501 if (error == 0) {
502 eargs.fd = uap->fd;
503 error = kern_execve(td, &eargs, NULL, oldvmspace);
504 }
505 post_execve(td, error, oldvmspace);
506 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
507 return (error);
508 }
509
510 int
freebsd32_mknodat(struct thread * td,struct freebsd32_mknodat_args * uap)511 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
512 {
513
514 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
515 uap->mode, PAIR32TO64(dev_t, uap->dev)));
516 }
517
518 int
freebsd32_mprotect(struct thread * td,struct freebsd32_mprotect_args * uap)519 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
520 {
521 int prot;
522
523 prot = uap->prot;
524 #if defined(__amd64__)
525 if (i386_read_exec && (prot & PROT_READ) != 0)
526 prot |= PROT_EXEC;
527 #endif
528 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
529 prot, 0));
530 }
531
532 int
freebsd32_mmap(struct thread * td,struct freebsd32_mmap_args * uap)533 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
534 {
535 int prot;
536
537 prot = uap->prot;
538 #if defined(__amd64__)
539 if (i386_read_exec && (prot & PROT_READ))
540 prot |= PROT_EXEC;
541 #endif
542
543 return (kern_mmap(td, &(struct mmap_req){
544 .mr_hint = (uintptr_t)uap->addr,
545 .mr_len = uap->len,
546 .mr_prot = prot,
547 .mr_flags = uap->flags,
548 .mr_fd = uap->fd,
549 .mr_pos = PAIR32TO64(off_t, uap->pos),
550 }));
551 }
552
553 #ifdef COMPAT_FREEBSD6
554 int
freebsd6_freebsd32_mmap(struct thread * td,struct freebsd6_freebsd32_mmap_args * uap)555 freebsd6_freebsd32_mmap(struct thread *td,
556 struct freebsd6_freebsd32_mmap_args *uap)
557 {
558 int prot;
559
560 prot = uap->prot;
561 #if defined(__amd64__)
562 if (i386_read_exec && (prot & PROT_READ))
563 prot |= PROT_EXEC;
564 #endif
565
566 return (kern_mmap(td, &(struct mmap_req){
567 .mr_hint = (uintptr_t)uap->addr,
568 .mr_len = uap->len,
569 .mr_prot = prot,
570 .mr_flags = uap->flags,
571 .mr_fd = uap->fd,
572 .mr_pos = PAIR32TO64(off_t, uap->pos),
573 }));
574 }
575 #endif
576
577 #ifdef COMPAT_43
578 int
ofreebsd32_mmap(struct thread * td,struct ofreebsd32_mmap_args * uap)579 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap)
580 {
581 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot,
582 uap->flags, uap->fd, uap->pos));
583 }
584 #endif
585
586 int
freebsd32_setitimer(struct thread * td,struct freebsd32_setitimer_args * uap)587 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
588 {
589 struct itimerval itv, oitv, *itvp;
590 struct itimerval32 i32;
591 int error;
592
593 if (uap->itv != NULL) {
594 error = copyin(uap->itv, &i32, sizeof(i32));
595 if (error)
596 return (error);
597 TV_CP(i32, itv, it_interval);
598 TV_CP(i32, itv, it_value);
599 itvp = &itv;
600 } else
601 itvp = NULL;
602 error = kern_setitimer(td, uap->which, itvp, &oitv);
603 if (error || uap->oitv == NULL)
604 return (error);
605 TV_CP(oitv, i32, it_interval);
606 TV_CP(oitv, i32, it_value);
607 return (copyout(&i32, uap->oitv, sizeof(i32)));
608 }
609
610 int
freebsd32_getitimer(struct thread * td,struct freebsd32_getitimer_args * uap)611 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
612 {
613 struct itimerval itv;
614 struct itimerval32 i32;
615 int error;
616
617 error = kern_getitimer(td, uap->which, &itv);
618 if (error || uap->itv == NULL)
619 return (error);
620 TV_CP(itv, i32, it_interval);
621 TV_CP(itv, i32, it_value);
622 return (copyout(&i32, uap->itv, sizeof(i32)));
623 }
624
625 int
freebsd32_select(struct thread * td,struct freebsd32_select_args * uap)626 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
627 {
628 struct timeval32 tv32;
629 struct timeval tv, *tvp;
630 int error;
631
632 if (uap->tv != NULL) {
633 error = copyin(uap->tv, &tv32, sizeof(tv32));
634 if (error)
635 return (error);
636 CP(tv32, tv, tv_sec);
637 CP(tv32, tv, tv_usec);
638 tvp = &tv;
639 } else
640 tvp = NULL;
641 /*
642 * XXX Do pointers need PTRIN()?
643 */
644 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
645 sizeof(int32_t) * 8));
646 }
647
648 int
freebsd32_pselect(struct thread * td,struct freebsd32_pselect_args * uap)649 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
650 {
651 struct timespec32 ts32;
652 struct timespec ts;
653 struct timeval tv, *tvp;
654 sigset_t set, *uset;
655 int error;
656
657 if (uap->ts != NULL) {
658 error = copyin(uap->ts, &ts32, sizeof(ts32));
659 if (error != 0)
660 return (error);
661 CP(ts32, ts, tv_sec);
662 CP(ts32, ts, tv_nsec);
663 TIMESPEC_TO_TIMEVAL(&tv, &ts);
664 tvp = &tv;
665 } else
666 tvp = NULL;
667 if (uap->sm != NULL) {
668 error = copyin(uap->sm, &set, sizeof(set));
669 if (error != 0)
670 return (error);
671 uset = &set;
672 } else
673 uset = NULL;
674 /*
675 * XXX Do pointers need PTRIN()?
676 */
677 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
678 uset, sizeof(int32_t) * 8);
679 return (error);
680 }
681
682 /*
683 * Copy 'count' items into the destination list pointed to by uap->eventlist.
684 */
685 static int
freebsd32_kevent_copyout(void * arg,struct kevent * kevp,int count)686 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
687 {
688 struct freebsd32_kevent_args *uap;
689 struct kevent32 ks32[KQ_NEVENTS];
690 uint64_t e;
691 int i, j, error;
692
693 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
694 uap = (struct freebsd32_kevent_args *)arg;
695
696 for (i = 0; i < count; i++) {
697 CP(kevp[i], ks32[i], ident);
698 CP(kevp[i], ks32[i], filter);
699 CP(kevp[i], ks32[i], flags);
700 CP(kevp[i], ks32[i], fflags);
701 #if BYTE_ORDER == LITTLE_ENDIAN
702 ks32[i].data1 = kevp[i].data;
703 ks32[i].data2 = kevp[i].data >> 32;
704 #else
705 ks32[i].data1 = kevp[i].data >> 32;
706 ks32[i].data2 = kevp[i].data;
707 #endif
708 PTROUT_CP(kevp[i], ks32[i], udata);
709 for (j = 0; j < nitems(kevp->ext); j++) {
710 e = kevp[i].ext[j];
711 #if BYTE_ORDER == LITTLE_ENDIAN
712 ks32[i].ext64[2 * j] = e;
713 ks32[i].ext64[2 * j + 1] = e >> 32;
714 #else
715 ks32[i].ext64[2 * j] = e >> 32;
716 ks32[i].ext64[2 * j + 1] = e;
717 #endif
718 }
719 }
720 error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
721 if (error == 0)
722 uap->eventlist += count;
723 return (error);
724 }
725
726 /*
727 * Copy 'count' items from the list pointed to by uap->changelist.
728 */
729 static int
freebsd32_kevent_copyin(void * arg,struct kevent * kevp,int count)730 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
731 {
732 struct freebsd32_kevent_args *uap;
733 struct kevent32 ks32[KQ_NEVENTS];
734 uint64_t e;
735 int i, j, error;
736
737 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
738 uap = (struct freebsd32_kevent_args *)arg;
739
740 error = copyin(uap->changelist, ks32, count * sizeof *ks32);
741 if (error)
742 goto done;
743 uap->changelist += count;
744
745 for (i = 0; i < count; i++) {
746 CP(ks32[i], kevp[i], ident);
747 CP(ks32[i], kevp[i], filter);
748 CP(ks32[i], kevp[i], flags);
749 CP(ks32[i], kevp[i], fflags);
750 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
751 PTRIN_CP(ks32[i], kevp[i], udata);
752 for (j = 0; j < nitems(kevp->ext); j++) {
753 #if BYTE_ORDER == LITTLE_ENDIAN
754 e = ks32[i].ext64[2 * j + 1];
755 e <<= 32;
756 e += ks32[i].ext64[2 * j];
757 #else
758 e = ks32[i].ext64[2 * j];
759 e <<= 32;
760 e += ks32[i].ext64[2 * j + 1];
761 #endif
762 kevp[i].ext[j] = e;
763 }
764 }
765 done:
766 return (error);
767 }
768
769 int
freebsd32_kevent(struct thread * td,struct freebsd32_kevent_args * uap)770 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
771 {
772 struct timespec32 ts32;
773 struct timespec ts, *tsp;
774 struct kevent_copyops k_ops = {
775 .arg = uap,
776 .k_copyout = freebsd32_kevent_copyout,
777 .k_copyin = freebsd32_kevent_copyin,
778 };
779 #ifdef KTRACE
780 struct kevent32 *eventlist = uap->eventlist;
781 #endif
782 int error;
783
784 if (uap->timeout) {
785 error = copyin(uap->timeout, &ts32, sizeof(ts32));
786 if (error)
787 return (error);
788 CP(ts32, ts, tv_sec);
789 CP(ts32, ts, tv_nsec);
790 tsp = &ts;
791 } else
792 tsp = NULL;
793 #ifdef KTRACE
794 if (KTRPOINT(td, KTR_STRUCT_ARRAY))
795 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
796 uap->nchanges, sizeof(struct kevent32));
797 #endif
798 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
799 &k_ops, tsp);
800 #ifdef KTRACE
801 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
802 ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
803 td->td_retval[0], sizeof(struct kevent32));
804 #endif
805 return (error);
806 }
807
808 #ifdef COMPAT_FREEBSD11
809 static int
freebsd32_kevent11_copyout(void * arg,struct kevent * kevp,int count)810 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
811 {
812 struct freebsd11_freebsd32_kevent_args *uap;
813 struct freebsd11_kevent32 ks32[KQ_NEVENTS];
814 int i, error;
815
816 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
817 uap = (struct freebsd11_freebsd32_kevent_args *)arg;
818
819 for (i = 0; i < count; i++) {
820 CP(kevp[i], ks32[i], ident);
821 CP(kevp[i], ks32[i], filter);
822 CP(kevp[i], ks32[i], flags);
823 CP(kevp[i], ks32[i], fflags);
824 CP(kevp[i], ks32[i], data);
825 PTROUT_CP(kevp[i], ks32[i], udata);
826 }
827 error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
828 if (error == 0)
829 uap->eventlist += count;
830 return (error);
831 }
832
833 /*
834 * Copy 'count' items from the list pointed to by uap->changelist.
835 */
836 static int
freebsd32_kevent11_copyin(void * arg,struct kevent * kevp,int count)837 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
838 {
839 struct freebsd11_freebsd32_kevent_args *uap;
840 struct freebsd11_kevent32 ks32[KQ_NEVENTS];
841 int i, j, error;
842
843 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
844 uap = (struct freebsd11_freebsd32_kevent_args *)arg;
845
846 error = copyin(uap->changelist, ks32, count * sizeof *ks32);
847 if (error)
848 goto done;
849 uap->changelist += count;
850
851 for (i = 0; i < count; i++) {
852 CP(ks32[i], kevp[i], ident);
853 CP(ks32[i], kevp[i], filter);
854 CP(ks32[i], kevp[i], flags);
855 CP(ks32[i], kevp[i], fflags);
856 CP(ks32[i], kevp[i], data);
857 PTRIN_CP(ks32[i], kevp[i], udata);
858 for (j = 0; j < nitems(kevp->ext); j++)
859 kevp[i].ext[j] = 0;
860 }
861 done:
862 return (error);
863 }
864
865 int
freebsd11_freebsd32_kevent(struct thread * td,struct freebsd11_freebsd32_kevent_args * uap)866 freebsd11_freebsd32_kevent(struct thread *td,
867 struct freebsd11_freebsd32_kevent_args *uap)
868 {
869 struct timespec32 ts32;
870 struct timespec ts, *tsp;
871 struct kevent_copyops k_ops = {
872 .arg = uap,
873 .k_copyout = freebsd32_kevent11_copyout,
874 .k_copyin = freebsd32_kevent11_copyin,
875 };
876 #ifdef KTRACE
877 struct freebsd11_kevent32 *eventlist = uap->eventlist;
878 #endif
879 int error;
880
881 if (uap->timeout) {
882 error = copyin(uap->timeout, &ts32, sizeof(ts32));
883 if (error)
884 return (error);
885 CP(ts32, ts, tv_sec);
886 CP(ts32, ts, tv_nsec);
887 tsp = &ts;
888 } else
889 tsp = NULL;
890 #ifdef KTRACE
891 if (KTRPOINT(td, KTR_STRUCT_ARRAY))
892 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
893 uap->changelist, uap->nchanges,
894 sizeof(struct freebsd11_kevent32));
895 #endif
896 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
897 &k_ops, tsp);
898 #ifdef KTRACE
899 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
900 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
901 eventlist, td->td_retval[0],
902 sizeof(struct freebsd11_kevent32));
903 #endif
904 return (error);
905 }
906 #endif
907
908 int
freebsd32_gettimeofday(struct thread * td,struct freebsd32_gettimeofday_args * uap)909 freebsd32_gettimeofday(struct thread *td,
910 struct freebsd32_gettimeofday_args *uap)
911 {
912 struct timeval atv;
913 struct timeval32 atv32;
914 struct timezone rtz;
915 int error = 0;
916
917 if (uap->tp) {
918 microtime(&atv);
919 CP(atv, atv32, tv_sec);
920 CP(atv, atv32, tv_usec);
921 error = copyout(&atv32, uap->tp, sizeof (atv32));
922 }
923 if (error == 0 && uap->tzp != NULL) {
924 rtz.tz_minuteswest = 0;
925 rtz.tz_dsttime = 0;
926 error = copyout(&rtz, uap->tzp, sizeof (rtz));
927 }
928 return (error);
929 }
930
931 int
freebsd32_getrusage(struct thread * td,struct freebsd32_getrusage_args * uap)932 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
933 {
934 struct rusage32 s32;
935 struct rusage s;
936 int error;
937
938 error = kern_getrusage(td, uap->who, &s);
939 if (error == 0) {
940 freebsd32_rusage_out(&s, &s32);
941 error = copyout(&s32, uap->rusage, sizeof(s32));
942 }
943 return (error);
944 }
945
946 static void
ptrace_lwpinfo_to32(const struct ptrace_lwpinfo * pl,struct ptrace_lwpinfo32 * pl32)947 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
948 struct ptrace_lwpinfo32 *pl32)
949 {
950
951 bzero(pl32, sizeof(*pl32));
952 pl32->pl_lwpid = pl->pl_lwpid;
953 pl32->pl_event = pl->pl_event;
954 pl32->pl_flags = pl->pl_flags;
955 pl32->pl_sigmask = pl->pl_sigmask;
956 pl32->pl_siglist = pl->pl_siglist;
957 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
958 strcpy(pl32->pl_tdname, pl->pl_tdname);
959 pl32->pl_child_pid = pl->pl_child_pid;
960 pl32->pl_syscall_code = pl->pl_syscall_code;
961 pl32->pl_syscall_narg = pl->pl_syscall_narg;
962 }
963
964 static void
ptrace_sc_ret_to32(const struct ptrace_sc_ret * psr,struct ptrace_sc_ret32 * psr32)965 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
966 struct ptrace_sc_ret32 *psr32)
967 {
968
969 bzero(psr32, sizeof(*psr32));
970 psr32->sr_retval[0] = psr->sr_retval[0];
971 psr32->sr_retval[1] = psr->sr_retval[1];
972 psr32->sr_error = psr->sr_error;
973 }
974
975 int
freebsd32_ptrace(struct thread * td,struct freebsd32_ptrace_args * uap)976 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
977 {
978 union {
979 struct ptrace_io_desc piod;
980 struct ptrace_lwpinfo pl;
981 struct ptrace_vm_entry pve;
982 struct ptrace_coredump pc;
983 struct ptrace_sc_remote sr;
984 struct dbreg32 dbreg;
985 struct fpreg32 fpreg;
986 struct reg32 reg;
987 struct iovec vec;
988 register_t args[nitems(td->td_sa.args)];
989 struct ptrace_sc_ret psr;
990 int ptevents;
991 } r;
992 union {
993 struct ptrace_io_desc32 piod;
994 struct ptrace_lwpinfo32 pl;
995 struct ptrace_vm_entry32 pve;
996 struct ptrace_coredump32 pc;
997 struct ptrace_sc_remote32 sr;
998 uint32_t args[nitems(td->td_sa.args)];
999 struct ptrace_sc_ret32 psr;
1000 struct iovec32 vec;
1001 } r32;
1002 syscallarg_t pscr_args[nitems(td->td_sa.args)];
1003 u_int pscr_args32[nitems(td->td_sa.args)];
1004 void *addr;
1005 int data, error, i;
1006
1007 if (!allow_ptrace)
1008 return (ENOSYS);
1009 error = 0;
1010
1011 AUDIT_ARG_PID(uap->pid);
1012 AUDIT_ARG_CMD(uap->req);
1013 AUDIT_ARG_VALUE(uap->data);
1014 addr = &r;
1015 data = uap->data;
1016 switch (uap->req) {
1017 case PT_GET_EVENT_MASK:
1018 case PT_GET_SC_ARGS:
1019 case PT_GET_SC_RET:
1020 break;
1021 case PT_LWPINFO:
1022 if (uap->data > sizeof(r32.pl))
1023 return (EINVAL);
1024
1025 /*
1026 * Pass size of native structure in 'data'. Truncate
1027 * if necessary to avoid siginfo.
1028 */
1029 data = sizeof(r.pl);
1030 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
1031 sizeof(struct __siginfo32))
1032 data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
1033 break;
1034 case PT_GETREGS:
1035 bzero(&r.reg, sizeof(r.reg));
1036 break;
1037 case PT_GETFPREGS:
1038 bzero(&r.fpreg, sizeof(r.fpreg));
1039 break;
1040 case PT_GETDBREGS:
1041 bzero(&r.dbreg, sizeof(r.dbreg));
1042 break;
1043 case PT_SETREGS:
1044 error = copyin(uap->addr, &r.reg, sizeof(r.reg));
1045 break;
1046 case PT_SETFPREGS:
1047 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
1048 break;
1049 case PT_SETDBREGS:
1050 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
1051 break;
1052 case PT_GETREGSET:
1053 case PT_SETREGSET:
1054 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec));
1055 if (error != 0)
1056 break;
1057
1058 r.vec.iov_len = r32.vec.iov_len;
1059 r.vec.iov_base = PTRIN(r32.vec.iov_base);
1060 break;
1061 case PT_SET_EVENT_MASK:
1062 if (uap->data != sizeof(r.ptevents))
1063 error = EINVAL;
1064 else
1065 error = copyin(uap->addr, &r.ptevents, uap->data);
1066 break;
1067 case PT_IO:
1068 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1069 if (error)
1070 break;
1071 CP(r32.piod, r.piod, piod_op);
1072 PTRIN_CP(r32.piod, r.piod, piod_offs);
1073 PTRIN_CP(r32.piod, r.piod, piod_addr);
1074 CP(r32.piod, r.piod, piod_len);
1075 break;
1076 case PT_VM_ENTRY:
1077 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1078 if (error)
1079 break;
1080
1081 CP(r32.pve, r.pve, pve_entry);
1082 CP(r32.pve, r.pve, pve_timestamp);
1083 CP(r32.pve, r.pve, pve_start);
1084 CP(r32.pve, r.pve, pve_end);
1085 CP(r32.pve, r.pve, pve_offset);
1086 CP(r32.pve, r.pve, pve_prot);
1087 CP(r32.pve, r.pve, pve_pathlen);
1088 CP(r32.pve, r.pve, pve_fileid);
1089 CP(r32.pve, r.pve, pve_fsid);
1090 PTRIN_CP(r32.pve, r.pve, pve_path);
1091 break;
1092 case PT_COREDUMP:
1093 if (uap->data != sizeof(r32.pc))
1094 error = EINVAL;
1095 else
1096 error = copyin(uap->addr, &r32.pc, uap->data);
1097 CP(r32.pc, r.pc, pc_fd);
1098 CP(r32.pc, r.pc, pc_flags);
1099 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1100 data = sizeof(r.pc);
1101 break;
1102 case PT_SC_REMOTE:
1103 if (uap->data != sizeof(r32.sr)) {
1104 error = EINVAL;
1105 break;
1106 }
1107 error = copyin(uap->addr, &r32.sr, uap->data);
1108 if (error != 0)
1109 break;
1110 CP(r32.sr, r.sr, pscr_syscall);
1111 CP(r32.sr, r.sr, pscr_nargs);
1112 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) {
1113 error = EINVAL;
1114 break;
1115 }
1116 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32,
1117 sizeof(u_int) * r32.sr.pscr_nargs);
1118 if (error != 0)
1119 break;
1120 for (i = 0; i < r32.sr.pscr_nargs; i++)
1121 pscr_args[i] = pscr_args32[i];
1122 r.sr.pscr_args = pscr_args;
1123 break;
1124 default:
1125 addr = uap->addr;
1126 break;
1127 }
1128 if (error)
1129 return (error);
1130
1131 error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1132 if (error)
1133 return (error);
1134
1135 switch (uap->req) {
1136 case PT_VM_ENTRY:
1137 CP(r.pve, r32.pve, pve_entry);
1138 CP(r.pve, r32.pve, pve_timestamp);
1139 CP(r.pve, r32.pve, pve_start);
1140 CP(r.pve, r32.pve, pve_end);
1141 CP(r.pve, r32.pve, pve_offset);
1142 CP(r.pve, r32.pve, pve_prot);
1143 CP(r.pve, r32.pve, pve_pathlen);
1144 CP(r.pve, r32.pve, pve_fileid);
1145 CP(r.pve, r32.pve, pve_fsid);
1146 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1147 break;
1148 case PT_IO:
1149 CP(r.piod, r32.piod, piod_len);
1150 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1151 break;
1152 case PT_GETREGS:
1153 error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1154 break;
1155 case PT_GETFPREGS:
1156 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1157 break;
1158 case PT_GETDBREGS:
1159 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1160 break;
1161 case PT_GETREGSET:
1162 r32.vec.iov_len = r.vec.iov_len;
1163 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec));
1164 break;
1165 case PT_GET_EVENT_MASK:
1166 /* NB: The size in uap->data is validated in kern_ptrace(). */
1167 error = copyout(&r.ptevents, uap->addr, uap->data);
1168 break;
1169 case PT_LWPINFO:
1170 ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1171 error = copyout(&r32.pl, uap->addr, uap->data);
1172 break;
1173 case PT_GET_SC_ARGS:
1174 for (i = 0; i < nitems(r.args); i++)
1175 r32.args[i] = (uint32_t)r.args[i];
1176 error = copyout(r32.args, uap->addr, MIN(uap->data,
1177 sizeof(r32.args)));
1178 break;
1179 case PT_GET_SC_RET:
1180 ptrace_sc_ret_to32(&r.psr, &r32.psr);
1181 error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1182 sizeof(r32.psr)));
1183 break;
1184 case PT_SC_REMOTE:
1185 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret);
1186 error = copyout(&r32.sr.pscr_ret, uap->addr +
1187 offsetof(struct ptrace_sc_remote32, pscr_ret),
1188 sizeof(r32.psr));
1189 break;
1190 }
1191
1192 return (error);
1193 }
1194
1195 int
freebsd32_copyinuio(const struct iovec32 * iovp,u_int iovcnt,struct uio ** uiop)1196 freebsd32_copyinuio(const struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1197 {
1198 struct iovec32 iov32;
1199 struct iovec *iov;
1200 struct uio *uio;
1201 int error, i;
1202
1203 *uiop = NULL;
1204 if (iovcnt > UIO_MAXIOV)
1205 return (EINVAL);
1206 uio = allocuio(iovcnt);
1207 iov = uio->uio_iov;
1208 for (i = 0; i < iovcnt; i++) {
1209 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1210 if (error) {
1211 freeuio(uio);
1212 return (error);
1213 }
1214 iov[i].iov_base = PTRIN(iov32.iov_base);
1215 iov[i].iov_len = iov32.iov_len;
1216 }
1217 uio->uio_iovcnt = iovcnt;
1218 uio->uio_segflg = UIO_USERSPACE;
1219 uio->uio_offset = -1;
1220 uio->uio_resid = 0;
1221 for (i = 0; i < iovcnt; i++) {
1222 if (iov->iov_len > INT_MAX - uio->uio_resid) {
1223 freeuio(uio);
1224 return (EINVAL);
1225 }
1226 uio->uio_resid += iov->iov_len;
1227 iov++;
1228 }
1229 *uiop = uio;
1230 return (0);
1231 }
1232
1233 int
freebsd32_readv(struct thread * td,struct freebsd32_readv_args * uap)1234 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1235 {
1236 struct uio *auio;
1237 int error;
1238
1239 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1240 if (error)
1241 return (error);
1242 error = kern_readv(td, uap->fd, auio);
1243 freeuio(auio);
1244 return (error);
1245 }
1246
1247 int
freebsd32_writev(struct thread * td,struct freebsd32_writev_args * uap)1248 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1249 {
1250 struct uio *auio;
1251 int error;
1252
1253 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1254 if (error)
1255 return (error);
1256 error = kern_writev(td, uap->fd, auio);
1257 freeuio(auio);
1258 return (error);
1259 }
1260
1261 int
freebsd32_preadv(struct thread * td,struct freebsd32_preadv_args * uap)1262 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1263 {
1264 struct uio *auio;
1265 int error;
1266
1267 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1268 if (error)
1269 return (error);
1270 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1271 freeuio(auio);
1272 return (error);
1273 }
1274
1275 int
freebsd32_pwritev(struct thread * td,struct freebsd32_pwritev_args * uap)1276 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1277 {
1278 struct uio *auio;
1279 int error;
1280
1281 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1282 if (error)
1283 return (error);
1284 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1285 freeuio(auio);
1286 return (error);
1287 }
1288
1289 int
freebsd32_copyiniov(struct iovec32 * iovp32,u_int iovcnt,struct iovec ** iovp,int error)1290 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1291 int error)
1292 {
1293 struct iovec32 iov32;
1294 struct iovec *iov;
1295 u_int iovlen;
1296 int i;
1297
1298 *iovp = NULL;
1299 if (iovcnt > UIO_MAXIOV)
1300 return (error);
1301 iovlen = iovcnt * sizeof(struct iovec);
1302 iov = malloc(iovlen, M_IOV, M_WAITOK);
1303 for (i = 0; i < iovcnt; i++) {
1304 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1305 if (error) {
1306 free(iov, M_IOV);
1307 return (error);
1308 }
1309 iov[i].iov_base = PTRIN(iov32.iov_base);
1310 iov[i].iov_len = iov32.iov_len;
1311 }
1312 *iovp = iov;
1313 return (0);
1314 }
1315
1316 static int
freebsd32_copyinmsghdr(const struct msghdr32 * msg32,struct msghdr * msg)1317 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg)
1318 {
1319 struct msghdr32 m32;
1320 int error;
1321
1322 error = copyin(msg32, &m32, sizeof(m32));
1323 if (error)
1324 return (error);
1325 msg->msg_name = PTRIN(m32.msg_name);
1326 msg->msg_namelen = m32.msg_namelen;
1327 msg->msg_iov = PTRIN(m32.msg_iov);
1328 msg->msg_iovlen = m32.msg_iovlen;
1329 msg->msg_control = PTRIN(m32.msg_control);
1330 msg->msg_controllen = m32.msg_controllen;
1331 msg->msg_flags = m32.msg_flags;
1332 return (0);
1333 }
1334
1335 static int
freebsd32_copyoutmsghdr(struct msghdr * msg,struct msghdr32 * msg32)1336 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1337 {
1338 struct msghdr32 m32;
1339 int error;
1340
1341 m32.msg_name = PTROUT(msg->msg_name);
1342 m32.msg_namelen = msg->msg_namelen;
1343 m32.msg_iov = PTROUT(msg->msg_iov);
1344 m32.msg_iovlen = msg->msg_iovlen;
1345 m32.msg_control = PTROUT(msg->msg_control);
1346 m32.msg_controllen = msg->msg_controllen;
1347 m32.msg_flags = msg->msg_flags;
1348 error = copyout(&m32, msg32, sizeof(m32));
1349 return (error);
1350 }
1351
1352 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1)
1353 #define FREEBSD32_ALIGN(p) \
1354 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1355 #define FREEBSD32_CMSG_SPACE(l) \
1356 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1357
1358 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \
1359 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1360
1361 static size_t
freebsd32_cmsg_convert(const struct cmsghdr * cm,void * data,socklen_t datalen)1362 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1363 {
1364 size_t copylen;
1365 union {
1366 struct timespec32 ts;
1367 struct timeval32 tv;
1368 struct bintime32 bt;
1369 } tmp32;
1370
1371 union {
1372 struct timespec ts;
1373 struct timeval tv;
1374 struct bintime bt;
1375 } *in;
1376
1377 in = data;
1378 copylen = 0;
1379 switch (cm->cmsg_level) {
1380 case SOL_SOCKET:
1381 switch (cm->cmsg_type) {
1382 case SCM_TIMESTAMP:
1383 TV_CP(*in, tmp32, tv);
1384 copylen = sizeof(tmp32.tv);
1385 break;
1386
1387 case SCM_BINTIME:
1388 BT_CP(*in, tmp32, bt);
1389 copylen = sizeof(tmp32.bt);
1390 break;
1391
1392 case SCM_REALTIME:
1393 case SCM_MONOTONIC:
1394 TS_CP(*in, tmp32, ts);
1395 copylen = sizeof(tmp32.ts);
1396 break;
1397
1398 default:
1399 break;
1400 }
1401
1402 default:
1403 break;
1404 }
1405
1406 if (copylen == 0)
1407 return (datalen);
1408
1409 KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1410
1411 bcopy(&tmp32, data, copylen);
1412 return (copylen);
1413 }
1414
1415 static int
freebsd32_copy_msg_out(struct msghdr * msg,struct mbuf * control)1416 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1417 {
1418 struct cmsghdr *cm;
1419 void *data;
1420 socklen_t clen, datalen, datalen_out, oldclen;
1421 int error;
1422 caddr_t ctlbuf;
1423 int len, copylen;
1424 struct mbuf *m;
1425 error = 0;
1426
1427 len = msg->msg_controllen;
1428 msg->msg_controllen = 0;
1429
1430 ctlbuf = msg->msg_control;
1431 for (m = control; m != NULL && len > 0; m = m->m_next) {
1432 cm = mtod(m, struct cmsghdr *);
1433 clen = m->m_len;
1434 while (cm != NULL) {
1435 if (sizeof(struct cmsghdr) > clen ||
1436 cm->cmsg_len > clen) {
1437 error = EINVAL;
1438 break;
1439 }
1440
1441 data = CMSG_DATA(cm);
1442 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1443 datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1444
1445 /*
1446 * Copy out the message header. Preserve the native
1447 * message size in case we need to inspect the message
1448 * contents later.
1449 */
1450 copylen = sizeof(struct cmsghdr);
1451 if (len < copylen) {
1452 msg->msg_flags |= MSG_CTRUNC;
1453 m_dispose_extcontrolm(m);
1454 goto exit;
1455 }
1456 oldclen = cm->cmsg_len;
1457 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1458 datalen_out;
1459 error = copyout(cm, ctlbuf, copylen);
1460 cm->cmsg_len = oldclen;
1461 if (error != 0)
1462 goto exit;
1463
1464 ctlbuf += FREEBSD32_ALIGN(copylen);
1465 len -= FREEBSD32_ALIGN(copylen);
1466
1467 copylen = datalen_out;
1468 if (len < copylen) {
1469 msg->msg_flags |= MSG_CTRUNC;
1470 m_dispose_extcontrolm(m);
1471 break;
1472 }
1473
1474 /* Copy out the message data. */
1475 error = copyout(data, ctlbuf, copylen);
1476 if (error)
1477 goto exit;
1478
1479 ctlbuf += FREEBSD32_ALIGN(copylen);
1480 len -= FREEBSD32_ALIGN(copylen);
1481
1482 if (CMSG_SPACE(datalen) < clen) {
1483 clen -= CMSG_SPACE(datalen);
1484 cm = (struct cmsghdr *)
1485 ((caddr_t)cm + CMSG_SPACE(datalen));
1486 } else {
1487 clen = 0;
1488 cm = NULL;
1489 }
1490
1491 msg->msg_controllen +=
1492 FREEBSD32_CMSG_SPACE(datalen_out);
1493 }
1494 }
1495 if (len == 0 && m != NULL) {
1496 msg->msg_flags |= MSG_CTRUNC;
1497 m_dispose_extcontrolm(m);
1498 }
1499
1500 exit:
1501 return (error);
1502 }
1503
1504 int
freebsd32_recvmsg(struct thread * td,struct freebsd32_recvmsg_args * uap)1505 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap)
1506 {
1507 struct msghdr msg;
1508 struct iovec *uiov, *iov;
1509 struct mbuf *control = NULL;
1510 struct mbuf **controlp;
1511 int error;
1512
1513 error = freebsd32_copyinmsghdr(uap->msg, &msg);
1514 if (error)
1515 return (error);
1516 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1517 EMSGSIZE);
1518 if (error)
1519 return (error);
1520 msg.msg_flags = uap->flags;
1521 uiov = msg.msg_iov;
1522 msg.msg_iov = iov;
1523
1524 controlp = (msg.msg_control != NULL) ? &control : NULL;
1525 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1526 if (error == 0) {
1527 msg.msg_iov = uiov;
1528
1529 if (control != NULL)
1530 error = freebsd32_copy_msg_out(&msg, control);
1531 else
1532 msg.msg_controllen = 0;
1533
1534 if (error == 0)
1535 error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1536 }
1537 free(iov, M_IOV);
1538
1539 if (control != NULL) {
1540 if (error != 0)
1541 m_dispose_extcontrolm(control);
1542 m_freem(control);
1543 }
1544
1545 return (error);
1546 }
1547
1548 #ifdef COMPAT_43
1549 int
ofreebsd32_recvmsg(struct thread * td,struct ofreebsd32_recvmsg_args * uap)1550 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap)
1551 {
1552 return (ENOSYS);
1553 }
1554 #endif
1555
1556 /*
1557 * Copy-in the array of control messages constructed using alignment
1558 * and padding suitable for a 32-bit environment and construct an
1559 * mbuf using alignment and padding suitable for a 64-bit kernel.
1560 * The alignment and padding are defined indirectly by CMSG_DATA(),
1561 * CMSG_SPACE() and CMSG_LEN().
1562 */
1563 static int
freebsd32_copyin_control(struct mbuf ** mp,caddr_t buf,u_int buflen)1564 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1565 {
1566 struct cmsghdr *cm;
1567 struct mbuf *m;
1568 void *in, *in1, *md;
1569 u_int msglen, outlen;
1570 int error;
1571
1572 /* Enforce the size limit of the native implementation. */
1573 if (buflen > MCLBYTES)
1574 return (EINVAL);
1575
1576 in = malloc(buflen, M_TEMP, M_WAITOK);
1577 error = copyin(buf, in, buflen);
1578 if (error != 0)
1579 goto out;
1580
1581 /*
1582 * Make a pass over the input buffer to determine the amount of space
1583 * required for 64 bit-aligned copies of the control messages.
1584 */
1585 in1 = in;
1586 outlen = 0;
1587 while (buflen > 0) {
1588 if (buflen < sizeof(*cm)) {
1589 error = EINVAL;
1590 break;
1591 }
1592 cm = (struct cmsghdr *)in1;
1593 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) ||
1594 cm->cmsg_len > buflen) {
1595 error = EINVAL;
1596 break;
1597 }
1598 msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1599 if (msglen < cm->cmsg_len) {
1600 error = EINVAL;
1601 break;
1602 }
1603 /* The native ABI permits the final padding to be omitted. */
1604 if (msglen > buflen)
1605 msglen = buflen;
1606 buflen -= msglen;
1607
1608 in1 = (char *)in1 + msglen;
1609 outlen += CMSG_ALIGN(sizeof(*cm)) +
1610 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1611 }
1612 if (error != 0)
1613 goto out;
1614
1615 /*
1616 * Allocate up to MJUMPAGESIZE space for the re-aligned and
1617 * re-padded control messages. This allows a full MCLBYTES of
1618 * 32-bit sized and aligned messages to fit and avoids an ABI
1619 * mismatch with the native implementation.
1620 */
1621 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1622 if (m == NULL) {
1623 error = EINVAL;
1624 goto out;
1625 }
1626 m->m_len = outlen;
1627 md = mtod(m, void *);
1628
1629 /*
1630 * Make a second pass over input messages, copying them into the output
1631 * buffer.
1632 */
1633 in1 = in;
1634 while (outlen > 0) {
1635 /* Copy the message header and align the length field. */
1636 cm = md;
1637 memcpy(cm, in1, sizeof(*cm));
1638 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1639 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1640
1641 /* Copy the message body. */
1642 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1643 md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1644 memcpy(md, in1, msglen);
1645 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1646 md = (char *)md + CMSG_ALIGN(msglen);
1647 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1648 ("outlen %u underflow, msglen %u", outlen, msglen));
1649 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1650 }
1651
1652 *mp = m;
1653 out:
1654 free(in, M_TEMP);
1655 return (error);
1656 }
1657
1658 int
freebsd32_sendmsg(struct thread * td,struct freebsd32_sendmsg_args * uap)1659 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap)
1660 {
1661 struct msghdr msg;
1662 struct iovec *iov;
1663 struct mbuf *control = NULL;
1664 struct sockaddr *to = NULL;
1665 int error;
1666
1667 error = freebsd32_copyinmsghdr(uap->msg, &msg);
1668 if (error)
1669 return (error);
1670 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1671 EMSGSIZE);
1672 if (error)
1673 return (error);
1674 msg.msg_iov = iov;
1675 if (msg.msg_name != NULL) {
1676 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1677 if (error) {
1678 to = NULL;
1679 goto out;
1680 }
1681 msg.msg_name = to;
1682 }
1683
1684 if (msg.msg_control) {
1685 if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1686 error = EINVAL;
1687 goto out;
1688 }
1689
1690 error = freebsd32_copyin_control(&control, msg.msg_control,
1691 msg.msg_controllen);
1692 if (error)
1693 goto out;
1694
1695 msg.msg_control = NULL;
1696 msg.msg_controllen = 0;
1697 }
1698
1699 error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1700 UIO_USERSPACE);
1701
1702 out:
1703 free(iov, M_IOV);
1704 if (to)
1705 free(to, M_SONAME);
1706 return (error);
1707 }
1708
1709 #ifdef COMPAT_43
1710 int
ofreebsd32_sendmsg(struct thread * td,struct ofreebsd32_sendmsg_args * uap)1711 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap)
1712 {
1713 return (ENOSYS);
1714 }
1715 #endif
1716
1717
1718 int
freebsd32_settimeofday(struct thread * td,struct freebsd32_settimeofday_args * uap)1719 freebsd32_settimeofday(struct thread *td,
1720 struct freebsd32_settimeofday_args *uap)
1721 {
1722 struct timeval32 tv32;
1723 struct timeval tv, *tvp;
1724 struct timezone tz, *tzp;
1725 int error;
1726
1727 if (uap->tv) {
1728 error = copyin(uap->tv, &tv32, sizeof(tv32));
1729 if (error)
1730 return (error);
1731 CP(tv32, tv, tv_sec);
1732 CP(tv32, tv, tv_usec);
1733 tvp = &tv;
1734 } else
1735 tvp = NULL;
1736 if (uap->tzp) {
1737 error = copyin(uap->tzp, &tz, sizeof(tz));
1738 if (error)
1739 return (error);
1740 tzp = &tz;
1741 } else
1742 tzp = NULL;
1743 return (kern_settimeofday(td, tvp, tzp));
1744 }
1745
1746 int
freebsd32_utimes(struct thread * td,struct freebsd32_utimes_args * uap)1747 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1748 {
1749 struct timeval32 s32[2];
1750 struct timeval s[2], *sp;
1751 int error;
1752
1753 if (uap->tptr != NULL) {
1754 error = copyin(uap->tptr, s32, sizeof(s32));
1755 if (error)
1756 return (error);
1757 CP(s32[0], s[0], tv_sec);
1758 CP(s32[0], s[0], tv_usec);
1759 CP(s32[1], s[1], tv_sec);
1760 CP(s32[1], s[1], tv_usec);
1761 sp = s;
1762 } else
1763 sp = NULL;
1764 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1765 sp, UIO_SYSSPACE));
1766 }
1767
1768 int
freebsd32_lutimes(struct thread * td,struct freebsd32_lutimes_args * uap)1769 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1770 {
1771 struct timeval32 s32[2];
1772 struct timeval s[2], *sp;
1773 int error;
1774
1775 if (uap->tptr != NULL) {
1776 error = copyin(uap->tptr, s32, sizeof(s32));
1777 if (error)
1778 return (error);
1779 CP(s32[0], s[0], tv_sec);
1780 CP(s32[0], s[0], tv_usec);
1781 CP(s32[1], s[1], tv_sec);
1782 CP(s32[1], s[1], tv_usec);
1783 sp = s;
1784 } else
1785 sp = NULL;
1786 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1787 }
1788
1789 int
freebsd32_futimes(struct thread * td,struct freebsd32_futimes_args * uap)1790 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1791 {
1792 struct timeval32 s32[2];
1793 struct timeval s[2], *sp;
1794 int error;
1795
1796 if (uap->tptr != NULL) {
1797 error = copyin(uap->tptr, s32, sizeof(s32));
1798 if (error)
1799 return (error);
1800 CP(s32[0], s[0], tv_sec);
1801 CP(s32[0], s[0], tv_usec);
1802 CP(s32[1], s[1], tv_sec);
1803 CP(s32[1], s[1], tv_usec);
1804 sp = s;
1805 } else
1806 sp = NULL;
1807 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1808 }
1809
1810 int
freebsd32_futimesat(struct thread * td,struct freebsd32_futimesat_args * uap)1811 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1812 {
1813 struct timeval32 s32[2];
1814 struct timeval s[2], *sp;
1815 int error;
1816
1817 if (uap->times != NULL) {
1818 error = copyin(uap->times, s32, sizeof(s32));
1819 if (error)
1820 return (error);
1821 CP(s32[0], s[0], tv_sec);
1822 CP(s32[0], s[0], tv_usec);
1823 CP(s32[1], s[1], tv_sec);
1824 CP(s32[1], s[1], tv_usec);
1825 sp = s;
1826 } else
1827 sp = NULL;
1828 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1829 sp, UIO_SYSSPACE));
1830 }
1831
1832 int
freebsd32_futimens(struct thread * td,struct freebsd32_futimens_args * uap)1833 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1834 {
1835 struct timespec32 ts32[2];
1836 struct timespec ts[2], *tsp;
1837 int error;
1838
1839 if (uap->times != NULL) {
1840 error = copyin(uap->times, ts32, sizeof(ts32));
1841 if (error)
1842 return (error);
1843 CP(ts32[0], ts[0], tv_sec);
1844 CP(ts32[0], ts[0], tv_nsec);
1845 CP(ts32[1], ts[1], tv_sec);
1846 CP(ts32[1], ts[1], tv_nsec);
1847 tsp = ts;
1848 } else
1849 tsp = NULL;
1850 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1851 }
1852
1853 int
freebsd32_utimensat(struct thread * td,struct freebsd32_utimensat_args * uap)1854 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1855 {
1856 struct timespec32 ts32[2];
1857 struct timespec ts[2], *tsp;
1858 int error;
1859
1860 if (uap->times != NULL) {
1861 error = copyin(uap->times, ts32, sizeof(ts32));
1862 if (error)
1863 return (error);
1864 CP(ts32[0], ts[0], tv_sec);
1865 CP(ts32[0], ts[0], tv_nsec);
1866 CP(ts32[1], ts[1], tv_sec);
1867 CP(ts32[1], ts[1], tv_nsec);
1868 tsp = ts;
1869 } else
1870 tsp = NULL;
1871 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1872 tsp, UIO_SYSSPACE, uap->flag));
1873 }
1874
1875 int
freebsd32_adjtime(struct thread * td,struct freebsd32_adjtime_args * uap)1876 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1877 {
1878 struct timeval32 tv32;
1879 struct timeval delta, olddelta, *deltap;
1880 int error;
1881
1882 if (uap->delta) {
1883 error = copyin(uap->delta, &tv32, sizeof(tv32));
1884 if (error)
1885 return (error);
1886 CP(tv32, delta, tv_sec);
1887 CP(tv32, delta, tv_usec);
1888 deltap = δ
1889 } else
1890 deltap = NULL;
1891 error = kern_adjtime(td, deltap, &olddelta);
1892 if (uap->olddelta && error == 0) {
1893 CP(olddelta, tv32, tv_sec);
1894 CP(olddelta, tv32, tv_usec);
1895 error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1896 }
1897 return (error);
1898 }
1899
1900 #ifdef COMPAT_FREEBSD4
1901 int
freebsd4_freebsd32_statfs(struct thread * td,struct freebsd4_freebsd32_statfs_args * uap)1902 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1903 {
1904 struct ostatfs32 s32;
1905 struct statfs *sp;
1906 int error;
1907
1908 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1909 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1910 if (error == 0) {
1911 copy_statfs(sp, &s32);
1912 error = copyout(&s32, uap->buf, sizeof(s32));
1913 }
1914 free(sp, M_STATFS);
1915 return (error);
1916 }
1917 #endif
1918
1919 #ifdef COMPAT_FREEBSD4
1920 int
freebsd4_freebsd32_fstatfs(struct thread * td,struct freebsd4_freebsd32_fstatfs_args * uap)1921 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1922 {
1923 struct ostatfs32 s32;
1924 struct statfs *sp;
1925 int error;
1926
1927 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1928 error = kern_fstatfs(td, uap->fd, sp);
1929 if (error == 0) {
1930 copy_statfs(sp, &s32);
1931 error = copyout(&s32, uap->buf, sizeof(s32));
1932 }
1933 free(sp, M_STATFS);
1934 return (error);
1935 }
1936 #endif
1937
1938 #ifdef COMPAT_FREEBSD4
1939 int
freebsd4_freebsd32_fhstatfs(struct thread * td,struct freebsd4_freebsd32_fhstatfs_args * uap)1940 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1941 {
1942 struct ostatfs32 s32;
1943 struct statfs *sp;
1944 fhandle_t fh;
1945 int error;
1946
1947 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
1948 return (error);
1949 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1950 error = kern_fhstatfs(td, fh, sp);
1951 if (error == 0) {
1952 copy_statfs(sp, &s32);
1953 error = copyout(&s32, uap->buf, sizeof(s32));
1954 }
1955 free(sp, M_STATFS);
1956 return (error);
1957 }
1958 #endif
1959
1960 int
freebsd32_pread(struct thread * td,struct freebsd32_pread_args * uap)1961 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
1962 {
1963
1964 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
1965 PAIR32TO64(off_t, uap->offset)));
1966 }
1967
1968 int
freebsd32_pwrite(struct thread * td,struct freebsd32_pwrite_args * uap)1969 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
1970 {
1971
1972 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
1973 PAIR32TO64(off_t, uap->offset)));
1974 }
1975
1976 #ifdef COMPAT_43
1977 int
ofreebsd32_lseek(struct thread * td,struct ofreebsd32_lseek_args * uap)1978 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
1979 {
1980
1981 return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
1982 }
1983 #endif
1984
1985 int
freebsd32_lseek(struct thread * td,struct freebsd32_lseek_args * uap)1986 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
1987 {
1988 int error;
1989 off_t pos;
1990
1991 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
1992 uap->whence);
1993 /* Expand the quad return into two parts for eax and edx */
1994 pos = td->td_uretoff.tdu_off;
1995 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
1996 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
1997 return error;
1998 }
1999
2000 int
freebsd32_truncate(struct thread * td,struct freebsd32_truncate_args * uap)2001 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
2002 {
2003
2004 return (kern_truncate(td, uap->path, UIO_USERSPACE,
2005 PAIR32TO64(off_t, uap->length)));
2006 }
2007
2008 #ifdef COMPAT_43
2009 int
ofreebsd32_truncate(struct thread * td,struct ofreebsd32_truncate_args * uap)2010 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap)
2011 {
2012 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length));
2013 }
2014 #endif
2015
2016 int
freebsd32_ftruncate(struct thread * td,struct freebsd32_ftruncate_args * uap)2017 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
2018 {
2019
2020 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2021 }
2022
2023 #ifdef COMPAT_43
2024 int
ofreebsd32_ftruncate(struct thread * td,struct ofreebsd32_ftruncate_args * uap)2025 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap)
2026 {
2027 return (kern_ftruncate(td, uap->fd, uap->length));
2028 }
2029
2030 int
ofreebsd32_getdirentries(struct thread * td,struct ofreebsd32_getdirentries_args * uap)2031 ofreebsd32_getdirentries(struct thread *td,
2032 struct ofreebsd32_getdirentries_args *uap)
2033 {
2034 struct ogetdirentries_args ap;
2035 int error;
2036 long loff;
2037 int32_t loff_cut;
2038
2039 ap.fd = uap->fd;
2040 ap.buf = uap->buf;
2041 ap.count = uap->count;
2042 ap.basep = NULL;
2043 error = kern_ogetdirentries(td, &ap, &loff);
2044 if (error == 0) {
2045 loff_cut = loff;
2046 error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
2047 }
2048 return (error);
2049 }
2050 #endif
2051
2052 #if defined(COMPAT_FREEBSD11)
2053 int
freebsd11_freebsd32_getdirentries(struct thread * td,struct freebsd11_freebsd32_getdirentries_args * uap)2054 freebsd11_freebsd32_getdirentries(struct thread *td,
2055 struct freebsd11_freebsd32_getdirentries_args *uap)
2056 {
2057 long base;
2058 int32_t base32;
2059 int error;
2060
2061 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
2062 &base, NULL);
2063 if (error)
2064 return (error);
2065 if (uap->basep != NULL) {
2066 base32 = base;
2067 error = copyout(&base32, uap->basep, sizeof(int32_t));
2068 }
2069 return (error);
2070 }
2071 #endif /* COMPAT_FREEBSD11 */
2072
2073 #ifdef COMPAT_FREEBSD6
2074 /* versions with the 'int pad' argument */
2075 int
freebsd6_freebsd32_pread(struct thread * td,struct freebsd6_freebsd32_pread_args * uap)2076 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
2077 {
2078
2079 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2080 PAIR32TO64(off_t, uap->offset)));
2081 }
2082
2083 int
freebsd6_freebsd32_pwrite(struct thread * td,struct freebsd6_freebsd32_pwrite_args * uap)2084 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2085 {
2086
2087 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2088 PAIR32TO64(off_t, uap->offset)));
2089 }
2090
2091 int
freebsd6_freebsd32_lseek(struct thread * td,struct freebsd6_freebsd32_lseek_args * uap)2092 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2093 {
2094 int error;
2095 off_t pos;
2096
2097 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2098 uap->whence);
2099 /* Expand the quad return into two parts for eax and edx */
2100 pos = *(off_t *)(td->td_retval);
2101 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
2102 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
2103 return error;
2104 }
2105
2106 int
freebsd6_freebsd32_truncate(struct thread * td,struct freebsd6_freebsd32_truncate_args * uap)2107 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2108 {
2109
2110 return (kern_truncate(td, uap->path, UIO_USERSPACE,
2111 PAIR32TO64(off_t, uap->length)));
2112 }
2113
2114 int
freebsd6_freebsd32_ftruncate(struct thread * td,struct freebsd6_freebsd32_ftruncate_args * uap)2115 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2116 {
2117
2118 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2119 }
2120 #endif /* COMPAT_FREEBSD6 */
2121
2122 struct sf_hdtr32 {
2123 uint32_t headers;
2124 int hdr_cnt;
2125 uint32_t trailers;
2126 int trl_cnt;
2127 };
2128
2129 static int
freebsd32_do_sendfile(struct thread * td,struct freebsd32_sendfile_args * uap,int compat)2130 freebsd32_do_sendfile(struct thread *td,
2131 struct freebsd32_sendfile_args *uap, int compat)
2132 {
2133 struct sf_hdtr32 hdtr32;
2134 struct sf_hdtr hdtr;
2135 struct uio *hdr_uio, *trl_uio;
2136 struct file *fp;
2137 cap_rights_t rights;
2138 struct iovec32 *iov32;
2139 off_t offset, sbytes;
2140 int error;
2141
2142 offset = PAIR32TO64(off_t, uap->offset);
2143 if (offset < 0)
2144 return (EINVAL);
2145
2146 hdr_uio = trl_uio = NULL;
2147
2148 if (uap->hdtr != NULL) {
2149 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2150 if (error)
2151 goto out;
2152 PTRIN_CP(hdtr32, hdtr, headers);
2153 CP(hdtr32, hdtr, hdr_cnt);
2154 PTRIN_CP(hdtr32, hdtr, trailers);
2155 CP(hdtr32, hdtr, trl_cnt);
2156
2157 if (hdtr.headers != NULL) {
2158 iov32 = PTRIN(hdtr32.headers);
2159 error = freebsd32_copyinuio(iov32,
2160 hdtr32.hdr_cnt, &hdr_uio);
2161 if (error)
2162 goto out;
2163 #ifdef COMPAT_FREEBSD4
2164 /*
2165 * In FreeBSD < 5.0 the nbytes to send also included
2166 * the header. If compat is specified subtract the
2167 * header size from nbytes.
2168 */
2169 if (compat) {
2170 if (uap->nbytes > hdr_uio->uio_resid)
2171 uap->nbytes -= hdr_uio->uio_resid;
2172 else
2173 uap->nbytes = 0;
2174 }
2175 #endif
2176 }
2177 if (hdtr.trailers != NULL) {
2178 iov32 = PTRIN(hdtr32.trailers);
2179 error = freebsd32_copyinuio(iov32,
2180 hdtr32.trl_cnt, &trl_uio);
2181 if (error)
2182 goto out;
2183 }
2184 }
2185
2186 AUDIT_ARG_FD(uap->fd);
2187
2188 if ((error = fget_read(td, uap->fd,
2189 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2190 goto out;
2191
2192 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2193 uap->nbytes, &sbytes, uap->flags, td);
2194 fdrop(fp, td);
2195
2196 if (uap->sbytes != NULL)
2197 (void)copyout(&sbytes, uap->sbytes, sizeof(off_t));
2198
2199 out:
2200 if (hdr_uio)
2201 freeuio(hdr_uio);
2202 if (trl_uio)
2203 freeuio(trl_uio);
2204 return (error);
2205 }
2206
2207 #ifdef COMPAT_FREEBSD4
2208 int
freebsd4_freebsd32_sendfile(struct thread * td,struct freebsd4_freebsd32_sendfile_args * uap)2209 freebsd4_freebsd32_sendfile(struct thread *td,
2210 struct freebsd4_freebsd32_sendfile_args *uap)
2211 {
2212 return (freebsd32_do_sendfile(td,
2213 (struct freebsd32_sendfile_args *)uap, 1));
2214 }
2215 #endif
2216
2217 int
freebsd32_sendfile(struct thread * td,struct freebsd32_sendfile_args * uap)2218 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2219 {
2220
2221 return (freebsd32_do_sendfile(td, uap, 0));
2222 }
2223
2224 static void
copy_stat(struct stat * in,struct stat32 * out)2225 copy_stat(struct stat *in, struct stat32 *out)
2226 {
2227
2228 #ifndef __amd64__
2229 /*
2230 * 32-bit architectures other than i386 have 64-bit time_t. This
2231 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2232 * and 4 bytes of padding. Zero the padding holes in struct stat32.
2233 */
2234 bzero(&out->st_atim, sizeof(out->st_atim));
2235 bzero(&out->st_mtim, sizeof(out->st_mtim));
2236 bzero(&out->st_ctim, sizeof(out->st_ctim));
2237 bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2238 #endif
2239 CP(*in, *out, st_dev);
2240 CP(*in, *out, st_ino);
2241 CP(*in, *out, st_mode);
2242 CP(*in, *out, st_nlink);
2243 CP(*in, *out, st_uid);
2244 CP(*in, *out, st_gid);
2245 CP(*in, *out, st_rdev);
2246 TS_CP(*in, *out, st_atim);
2247 TS_CP(*in, *out, st_mtim);
2248 TS_CP(*in, *out, st_ctim);
2249 CP(*in, *out, st_size);
2250 CP(*in, *out, st_blocks);
2251 CP(*in, *out, st_blksize);
2252 CP(*in, *out, st_flags);
2253 CP(*in, *out, st_gen);
2254 TS_CP(*in, *out, st_birthtim);
2255 out->st_padding0 = 0;
2256 out->st_padding1 = 0;
2257 #ifdef __STAT32_TIME_T_EXT
2258 out->st_atim_ext = 0;
2259 out->st_mtim_ext = 0;
2260 out->st_ctim_ext = 0;
2261 out->st_btim_ext = 0;
2262 #endif
2263 bzero(out->st_spare, sizeof(out->st_spare));
2264 }
2265
2266 #ifdef COMPAT_43
2267 static void
copy_ostat(struct stat * in,struct ostat32 * out)2268 copy_ostat(struct stat *in, struct ostat32 *out)
2269 {
2270
2271 bzero(out, sizeof(*out));
2272 CP(*in, *out, st_dev);
2273 CP(*in, *out, st_ino);
2274 CP(*in, *out, st_mode);
2275 CP(*in, *out, st_nlink);
2276 CP(*in, *out, st_uid);
2277 CP(*in, *out, st_gid);
2278 CP(*in, *out, st_rdev);
2279 out->st_size = MIN(in->st_size, INT32_MAX);
2280 TS_CP(*in, *out, st_atim);
2281 TS_CP(*in, *out, st_mtim);
2282 TS_CP(*in, *out, st_ctim);
2283 CP(*in, *out, st_blksize);
2284 CP(*in, *out, st_blocks);
2285 CP(*in, *out, st_flags);
2286 CP(*in, *out, st_gen);
2287 }
2288 #endif
2289
2290 #ifdef COMPAT_43
2291 int
ofreebsd32_stat(struct thread * td,struct ofreebsd32_stat_args * uap)2292 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2293 {
2294 struct stat sb;
2295 struct ostat32 sb32;
2296 int error;
2297
2298 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2299 if (error)
2300 return (error);
2301 copy_ostat(&sb, &sb32);
2302 error = copyout(&sb32, uap->ub, sizeof (sb32));
2303 return (error);
2304 }
2305 #endif
2306
2307 int
freebsd32_fstat(struct thread * td,struct freebsd32_fstat_args * uap)2308 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2309 {
2310 struct stat ub;
2311 struct stat32 ub32;
2312 int error;
2313
2314 error = kern_fstat(td, uap->fd, &ub);
2315 if (error)
2316 return (error);
2317 copy_stat(&ub, &ub32);
2318 error = copyout(&ub32, uap->sb, sizeof(ub32));
2319 return (error);
2320 }
2321
2322 #ifdef COMPAT_43
2323 int
ofreebsd32_fstat(struct thread * td,struct ofreebsd32_fstat_args * uap)2324 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2325 {
2326 struct stat ub;
2327 struct ostat32 ub32;
2328 int error;
2329
2330 error = kern_fstat(td, uap->fd, &ub);
2331 if (error)
2332 return (error);
2333 copy_ostat(&ub, &ub32);
2334 error = copyout(&ub32, uap->sb, sizeof(ub32));
2335 return (error);
2336 }
2337 #endif
2338
2339 int
freebsd32_fstatat(struct thread * td,struct freebsd32_fstatat_args * uap)2340 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2341 {
2342 struct stat ub;
2343 struct stat32 ub32;
2344 int error;
2345
2346 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2347 &ub);
2348 if (error)
2349 return (error);
2350 copy_stat(&ub, &ub32);
2351 error = copyout(&ub32, uap->buf, sizeof(ub32));
2352 return (error);
2353 }
2354
2355 #ifdef COMPAT_43
2356 int
ofreebsd32_lstat(struct thread * td,struct ofreebsd32_lstat_args * uap)2357 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2358 {
2359 struct stat sb;
2360 struct ostat32 sb32;
2361 int error;
2362
2363 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2364 UIO_USERSPACE, &sb);
2365 if (error)
2366 return (error);
2367 copy_ostat(&sb, &sb32);
2368 error = copyout(&sb32, uap->ub, sizeof (sb32));
2369 return (error);
2370 }
2371 #endif
2372
2373 int
freebsd32_fhstat(struct thread * td,struct freebsd32_fhstat_args * uap)2374 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2375 {
2376 struct stat sb;
2377 struct stat32 sb32;
2378 struct fhandle fh;
2379 int error;
2380
2381 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2382 if (error != 0)
2383 return (error);
2384 error = kern_fhstat(td, fh, &sb);
2385 if (error != 0)
2386 return (error);
2387 copy_stat(&sb, &sb32);
2388 error = copyout(&sb32, uap->sb, sizeof (sb32));
2389 return (error);
2390 }
2391
2392 #if defined(COMPAT_FREEBSD11)
2393 extern int ino64_trunc_error;
2394
2395 static int
freebsd11_cvtstat32(struct stat * in,struct freebsd11_stat32 * out)2396 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2397 {
2398
2399 #ifndef __amd64__
2400 /*
2401 * 32-bit architectures other than i386 have 64-bit time_t. This
2402 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2403 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32.
2404 */
2405 bzero(&out->st_atim, sizeof(out->st_atim));
2406 bzero(&out->st_mtim, sizeof(out->st_mtim));
2407 bzero(&out->st_ctim, sizeof(out->st_ctim));
2408 bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2409 #endif
2410
2411 CP(*in, *out, st_ino);
2412 if (in->st_ino != out->st_ino) {
2413 switch (ino64_trunc_error) {
2414 default:
2415 case 0:
2416 break;
2417 case 1:
2418 return (EOVERFLOW);
2419 case 2:
2420 out->st_ino = UINT32_MAX;
2421 break;
2422 }
2423 }
2424 CP(*in, *out, st_nlink);
2425 if (in->st_nlink != out->st_nlink) {
2426 switch (ino64_trunc_error) {
2427 default:
2428 case 0:
2429 break;
2430 case 1:
2431 return (EOVERFLOW);
2432 case 2:
2433 out->st_nlink = UINT16_MAX;
2434 break;
2435 }
2436 }
2437 out->st_dev = in->st_dev;
2438 if (out->st_dev != in->st_dev) {
2439 switch (ino64_trunc_error) {
2440 default:
2441 break;
2442 case 1:
2443 return (EOVERFLOW);
2444 }
2445 }
2446 CP(*in, *out, st_mode);
2447 CP(*in, *out, st_uid);
2448 CP(*in, *out, st_gid);
2449 out->st_rdev = in->st_rdev;
2450 if (out->st_rdev != in->st_rdev) {
2451 switch (ino64_trunc_error) {
2452 default:
2453 break;
2454 case 1:
2455 return (EOVERFLOW);
2456 }
2457 }
2458 TS_CP(*in, *out, st_atim);
2459 TS_CP(*in, *out, st_mtim);
2460 TS_CP(*in, *out, st_ctim);
2461 CP(*in, *out, st_size);
2462 CP(*in, *out, st_blocks);
2463 CP(*in, *out, st_blksize);
2464 CP(*in, *out, st_flags);
2465 CP(*in, *out, st_gen);
2466 TS_CP(*in, *out, st_birthtim);
2467 out->st_lspare = 0;
2468 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2469 sizeof(*out) - offsetof(struct freebsd11_stat32,
2470 st_birthtim) - sizeof(out->st_birthtim));
2471 return (0);
2472 }
2473
2474 int
freebsd11_freebsd32_stat(struct thread * td,struct freebsd11_freebsd32_stat_args * uap)2475 freebsd11_freebsd32_stat(struct thread *td,
2476 struct freebsd11_freebsd32_stat_args *uap)
2477 {
2478 struct stat sb;
2479 struct freebsd11_stat32 sb32;
2480 int error;
2481
2482 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2483 if (error != 0)
2484 return (error);
2485 error = freebsd11_cvtstat32(&sb, &sb32);
2486 if (error == 0)
2487 error = copyout(&sb32, uap->ub, sizeof (sb32));
2488 return (error);
2489 }
2490
2491 int
freebsd11_freebsd32_fstat(struct thread * td,struct freebsd11_freebsd32_fstat_args * uap)2492 freebsd11_freebsd32_fstat(struct thread *td,
2493 struct freebsd11_freebsd32_fstat_args *uap)
2494 {
2495 struct stat sb;
2496 struct freebsd11_stat32 sb32;
2497 int error;
2498
2499 error = kern_fstat(td, uap->fd, &sb);
2500 if (error != 0)
2501 return (error);
2502 error = freebsd11_cvtstat32(&sb, &sb32);
2503 if (error == 0)
2504 error = copyout(&sb32, uap->sb, sizeof (sb32));
2505 return (error);
2506 }
2507
2508 int
freebsd11_freebsd32_fstatat(struct thread * td,struct freebsd11_freebsd32_fstatat_args * uap)2509 freebsd11_freebsd32_fstatat(struct thread *td,
2510 struct freebsd11_freebsd32_fstatat_args *uap)
2511 {
2512 struct stat sb;
2513 struct freebsd11_stat32 sb32;
2514 int error;
2515
2516 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2517 &sb);
2518 if (error != 0)
2519 return (error);
2520 error = freebsd11_cvtstat32(&sb, &sb32);
2521 if (error == 0)
2522 error = copyout(&sb32, uap->buf, sizeof (sb32));
2523 return (error);
2524 }
2525
2526 int
freebsd11_freebsd32_lstat(struct thread * td,struct freebsd11_freebsd32_lstat_args * uap)2527 freebsd11_freebsd32_lstat(struct thread *td,
2528 struct freebsd11_freebsd32_lstat_args *uap)
2529 {
2530 struct stat sb;
2531 struct freebsd11_stat32 sb32;
2532 int error;
2533
2534 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2535 UIO_USERSPACE, &sb);
2536 if (error != 0)
2537 return (error);
2538 error = freebsd11_cvtstat32(&sb, &sb32);
2539 if (error == 0)
2540 error = copyout(&sb32, uap->ub, sizeof (sb32));
2541 return (error);
2542 }
2543
2544 int
freebsd11_freebsd32_fhstat(struct thread * td,struct freebsd11_freebsd32_fhstat_args * uap)2545 freebsd11_freebsd32_fhstat(struct thread *td,
2546 struct freebsd11_freebsd32_fhstat_args *uap)
2547 {
2548 struct stat sb;
2549 struct freebsd11_stat32 sb32;
2550 struct fhandle fh;
2551 int error;
2552
2553 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2554 if (error != 0)
2555 return (error);
2556 error = kern_fhstat(td, fh, &sb);
2557 if (error != 0)
2558 return (error);
2559 error = freebsd11_cvtstat32(&sb, &sb32);
2560 if (error == 0)
2561 error = copyout(&sb32, uap->sb, sizeof (sb32));
2562 return (error);
2563 }
2564
2565 static int
freebsd11_cvtnstat32(struct stat * sb,struct nstat32 * nsb32)2566 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32)
2567 {
2568 struct nstat nsb;
2569 int error;
2570
2571 error = freebsd11_cvtnstat(sb, &nsb);
2572 if (error != 0)
2573 return (error);
2574
2575 bzero(nsb32, sizeof(*nsb32));
2576 CP(nsb, *nsb32, st_dev);
2577 CP(nsb, *nsb32, st_ino);
2578 CP(nsb, *nsb32, st_mode);
2579 CP(nsb, *nsb32, st_nlink);
2580 CP(nsb, *nsb32, st_uid);
2581 CP(nsb, *nsb32, st_gid);
2582 CP(nsb, *nsb32, st_rdev);
2583 CP(nsb, *nsb32, st_atim.tv_sec);
2584 CP(nsb, *nsb32, st_atim.tv_nsec);
2585 CP(nsb, *nsb32, st_mtim.tv_sec);
2586 CP(nsb, *nsb32, st_mtim.tv_nsec);
2587 CP(nsb, *nsb32, st_ctim.tv_sec);
2588 CP(nsb, *nsb32, st_ctim.tv_nsec);
2589 CP(nsb, *nsb32, st_size);
2590 CP(nsb, *nsb32, st_blocks);
2591 CP(nsb, *nsb32, st_blksize);
2592 CP(nsb, *nsb32, st_flags);
2593 CP(nsb, *nsb32, st_gen);
2594 CP(nsb, *nsb32, st_birthtim.tv_sec);
2595 CP(nsb, *nsb32, st_birthtim.tv_nsec);
2596 return (0);
2597 }
2598
2599 int
freebsd11_freebsd32_nstat(struct thread * td,struct freebsd11_freebsd32_nstat_args * uap)2600 freebsd11_freebsd32_nstat(struct thread *td,
2601 struct freebsd11_freebsd32_nstat_args *uap)
2602 {
2603 struct stat sb;
2604 struct nstat32 nsb;
2605 int error;
2606
2607 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2608 if (error != 0)
2609 return (error);
2610 error = freebsd11_cvtnstat32(&sb, &nsb);
2611 if (error != 0)
2612 error = copyout(&nsb, uap->ub, sizeof (nsb));
2613 return (error);
2614 }
2615
2616 int
freebsd11_freebsd32_nlstat(struct thread * td,struct freebsd11_freebsd32_nlstat_args * uap)2617 freebsd11_freebsd32_nlstat(struct thread *td,
2618 struct freebsd11_freebsd32_nlstat_args *uap)
2619 {
2620 struct stat sb;
2621 struct nstat32 nsb;
2622 int error;
2623
2624 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2625 UIO_USERSPACE, &sb);
2626 if (error != 0)
2627 return (error);
2628 error = freebsd11_cvtnstat32(&sb, &nsb);
2629 if (error == 0)
2630 error = copyout(&nsb, uap->ub, sizeof (nsb));
2631 return (error);
2632 }
2633
2634 int
freebsd11_freebsd32_nfstat(struct thread * td,struct freebsd11_freebsd32_nfstat_args * uap)2635 freebsd11_freebsd32_nfstat(struct thread *td,
2636 struct freebsd11_freebsd32_nfstat_args *uap)
2637 {
2638 struct nstat32 nub;
2639 struct stat ub;
2640 int error;
2641
2642 error = kern_fstat(td, uap->fd, &ub);
2643 if (error != 0)
2644 return (error);
2645 error = freebsd11_cvtnstat32(&ub, &nub);
2646 if (error == 0)
2647 error = copyout(&nub, uap->sb, sizeof(nub));
2648 return (error);
2649 }
2650 #endif
2651
2652 int
freebsd32___sysctl(struct thread * td,struct freebsd32___sysctl_args * uap)2653 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2654 {
2655 int error, name[CTL_MAXNAME];
2656 size_t j, oldlen;
2657 uint32_t tmp;
2658
2659 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2660 return (EINVAL);
2661 error = copyin(uap->name, name, uap->namelen * sizeof(int));
2662 if (error)
2663 return (error);
2664 if (uap->oldlenp) {
2665 error = fueword32(uap->oldlenp, &tmp);
2666 oldlen = tmp;
2667 } else {
2668 oldlen = 0;
2669 }
2670 if (error != 0)
2671 return (EFAULT);
2672 error = userland_sysctl(td, name, uap->namelen,
2673 uap->old, &oldlen, 1,
2674 uap->new, uap->newlen, &j, SCTL_MASK32);
2675 if (error)
2676 return (error);
2677 if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0)
2678 error = EFAULT;
2679 return (error);
2680 }
2681
2682 int
freebsd32___sysctlbyname(struct thread * td,struct freebsd32___sysctlbyname_args * uap)2683 freebsd32___sysctlbyname(struct thread *td,
2684 struct freebsd32___sysctlbyname_args *uap)
2685 {
2686 size_t oldlen, rv;
2687 int error;
2688 uint32_t tmp;
2689
2690 if (uap->oldlenp != NULL) {
2691 error = fueword32(uap->oldlenp, &tmp);
2692 oldlen = tmp;
2693 } else {
2694 error = oldlen = 0;
2695 }
2696 if (error != 0)
2697 return (EFAULT);
2698 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2699 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2700 if (error != 0)
2701 return (error);
2702 if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0)
2703 error = EFAULT;
2704 return (error);
2705 }
2706
2707 int
freebsd32_jail(struct thread * td,struct freebsd32_jail_args * uap)2708 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2709 {
2710 uint32_t version;
2711 int error;
2712 struct jail j;
2713
2714 error = copyin(uap->jail, &version, sizeof(uint32_t));
2715 if (error)
2716 return (error);
2717
2718 switch (version) {
2719 case 0:
2720 {
2721 /* FreeBSD single IPv4 jails. */
2722 struct jail32_v0 j32_v0;
2723
2724 bzero(&j, sizeof(struct jail));
2725 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2726 if (error)
2727 return (error);
2728 CP(j32_v0, j, version);
2729 PTRIN_CP(j32_v0, j, path);
2730 PTRIN_CP(j32_v0, j, hostname);
2731 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */
2732 break;
2733 }
2734
2735 case 1:
2736 /*
2737 * Version 1 was used by multi-IPv4 jail implementations
2738 * that never made it into the official kernel.
2739 */
2740 return (EINVAL);
2741
2742 case 2: /* JAIL_API_VERSION */
2743 {
2744 /* FreeBSD multi-IPv4/IPv6,noIP jails. */
2745 struct jail32 j32;
2746
2747 error = copyin(uap->jail, &j32, sizeof(struct jail32));
2748 if (error)
2749 return (error);
2750 CP(j32, j, version);
2751 PTRIN_CP(j32, j, path);
2752 PTRIN_CP(j32, j, hostname);
2753 PTRIN_CP(j32, j, jailname);
2754 CP(j32, j, ip4s);
2755 CP(j32, j, ip6s);
2756 PTRIN_CP(j32, j, ip4);
2757 PTRIN_CP(j32, j, ip6);
2758 break;
2759 }
2760
2761 default:
2762 /* Sci-Fi jails are not supported, sorry. */
2763 return (EINVAL);
2764 }
2765 return (kern_jail(td, &j));
2766 }
2767
2768 int
freebsd32_jail_set(struct thread * td,struct freebsd32_jail_set_args * uap)2769 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2770 {
2771 struct uio *auio;
2772 int error;
2773
2774 /* Check that we have an even number of iovecs. */
2775 if (uap->iovcnt & 1)
2776 return (EINVAL);
2777
2778 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2779 if (error)
2780 return (error);
2781 error = kern_jail_set(td, auio, uap->flags);
2782 freeuio(auio);
2783 return (error);
2784 }
2785
2786 int
freebsd32_jail_get(struct thread * td,struct freebsd32_jail_get_args * uap)2787 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2788 {
2789 struct iovec32 iov32;
2790 struct uio *auio;
2791 int error, i;
2792
2793 /* Check that we have an even number of iovecs. */
2794 if (uap->iovcnt & 1)
2795 return (EINVAL);
2796
2797 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2798 if (error)
2799 return (error);
2800 error = kern_jail_get(td, auio, uap->flags);
2801 if (error == 0)
2802 for (i = 0; i < uap->iovcnt; i++) {
2803 PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2804 CP(auio->uio_iov[i], iov32, iov_len);
2805 error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2806 if (error != 0)
2807 break;
2808 }
2809 freeuio(auio);
2810 return (error);
2811 }
2812
2813 int
freebsd32_sigaction(struct thread * td,struct freebsd32_sigaction_args * uap)2814 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2815 {
2816 struct sigaction32 s32;
2817 struct sigaction sa, osa, *sap;
2818 int error;
2819
2820 if (uap->act) {
2821 error = copyin(uap->act, &s32, sizeof(s32));
2822 if (error)
2823 return (error);
2824 sa.sa_handler = PTRIN(s32.sa_u);
2825 CP(s32, sa, sa_flags);
2826 CP(s32, sa, sa_mask);
2827 sap = &sa;
2828 } else
2829 sap = NULL;
2830 error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2831 if (error == 0 && uap->oact != NULL) {
2832 s32.sa_u = PTROUT(osa.sa_handler);
2833 CP(osa, s32, sa_flags);
2834 CP(osa, s32, sa_mask);
2835 error = copyout(&s32, uap->oact, sizeof(s32));
2836 }
2837 return (error);
2838 }
2839
2840 #ifdef COMPAT_FREEBSD4
2841 int
freebsd4_freebsd32_sigaction(struct thread * td,struct freebsd4_freebsd32_sigaction_args * uap)2842 freebsd4_freebsd32_sigaction(struct thread *td,
2843 struct freebsd4_freebsd32_sigaction_args *uap)
2844 {
2845 struct sigaction32 s32;
2846 struct sigaction sa, osa, *sap;
2847 int error;
2848
2849 if (uap->act) {
2850 error = copyin(uap->act, &s32, sizeof(s32));
2851 if (error)
2852 return (error);
2853 sa.sa_handler = PTRIN(s32.sa_u);
2854 CP(s32, sa, sa_flags);
2855 CP(s32, sa, sa_mask);
2856 sap = &sa;
2857 } else
2858 sap = NULL;
2859 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2860 if (error == 0 && uap->oact != NULL) {
2861 s32.sa_u = PTROUT(osa.sa_handler);
2862 CP(osa, s32, sa_flags);
2863 CP(osa, s32, sa_mask);
2864 error = copyout(&s32, uap->oact, sizeof(s32));
2865 }
2866 return (error);
2867 }
2868 #endif
2869
2870 #ifdef COMPAT_43
2871 struct osigaction32 {
2872 uint32_t sa_u;
2873 osigset_t sa_mask;
2874 int sa_flags;
2875 };
2876
2877 #define ONSIG 32
2878
2879 int
ofreebsd32_sigaction(struct thread * td,struct ofreebsd32_sigaction_args * uap)2880 ofreebsd32_sigaction(struct thread *td,
2881 struct ofreebsd32_sigaction_args *uap)
2882 {
2883 struct osigaction32 s32;
2884 struct sigaction sa, osa, *sap;
2885 int error;
2886
2887 if (uap->signum <= 0 || uap->signum >= ONSIG)
2888 return (EINVAL);
2889
2890 if (uap->nsa) {
2891 error = copyin(uap->nsa, &s32, sizeof(s32));
2892 if (error)
2893 return (error);
2894 sa.sa_handler = PTRIN(s32.sa_u);
2895 CP(s32, sa, sa_flags);
2896 OSIG2SIG(s32.sa_mask, sa.sa_mask);
2897 sap = &sa;
2898 } else
2899 sap = NULL;
2900 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2901 if (error == 0 && uap->osa != NULL) {
2902 s32.sa_u = PTROUT(osa.sa_handler);
2903 CP(osa, s32, sa_flags);
2904 SIG2OSIG(osa.sa_mask, s32.sa_mask);
2905 error = copyout(&s32, uap->osa, sizeof(s32));
2906 }
2907 return (error);
2908 }
2909
2910 struct sigvec32 {
2911 uint32_t sv_handler;
2912 int sv_mask;
2913 int sv_flags;
2914 };
2915
2916 int
ofreebsd32_sigvec(struct thread * td,struct ofreebsd32_sigvec_args * uap)2917 ofreebsd32_sigvec(struct thread *td,
2918 struct ofreebsd32_sigvec_args *uap)
2919 {
2920 struct sigvec32 vec;
2921 struct sigaction sa, osa, *sap;
2922 int error;
2923
2924 if (uap->signum <= 0 || uap->signum >= ONSIG)
2925 return (EINVAL);
2926
2927 if (uap->nsv) {
2928 error = copyin(uap->nsv, &vec, sizeof(vec));
2929 if (error)
2930 return (error);
2931 sa.sa_handler = PTRIN(vec.sv_handler);
2932 OSIG2SIG(vec.sv_mask, sa.sa_mask);
2933 sa.sa_flags = vec.sv_flags;
2934 sa.sa_flags ^= SA_RESTART;
2935 sap = &sa;
2936 } else
2937 sap = NULL;
2938 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2939 if (error == 0 && uap->osv != NULL) {
2940 vec.sv_handler = PTROUT(osa.sa_handler);
2941 SIG2OSIG(osa.sa_mask, vec.sv_mask);
2942 vec.sv_flags = osa.sa_flags;
2943 vec.sv_flags &= ~SA_NOCLDWAIT;
2944 vec.sv_flags ^= SA_RESTART;
2945 error = copyout(&vec, uap->osv, sizeof(vec));
2946 }
2947 return (error);
2948 }
2949
2950 struct sigstack32 {
2951 uint32_t ss_sp;
2952 int ss_onstack;
2953 };
2954
2955 int
ofreebsd32_sigstack(struct thread * td,struct ofreebsd32_sigstack_args * uap)2956 ofreebsd32_sigstack(struct thread *td,
2957 struct ofreebsd32_sigstack_args *uap)
2958 {
2959 struct sigstack32 s32;
2960 struct sigstack nss, oss;
2961 int error = 0, unss;
2962
2963 if (uap->nss != NULL) {
2964 error = copyin(uap->nss, &s32, sizeof(s32));
2965 if (error)
2966 return (error);
2967 nss.ss_sp = PTRIN(s32.ss_sp);
2968 CP(s32, nss, ss_onstack);
2969 unss = 1;
2970 } else {
2971 unss = 0;
2972 }
2973 oss.ss_sp = td->td_sigstk.ss_sp;
2974 oss.ss_onstack = sigonstack(cpu_getstack(td));
2975 if (unss) {
2976 td->td_sigstk.ss_sp = nss.ss_sp;
2977 td->td_sigstk.ss_size = 0;
2978 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
2979 td->td_pflags |= TDP_ALTSTACK;
2980 }
2981 if (uap->oss != NULL) {
2982 s32.ss_sp = PTROUT(oss.ss_sp);
2983 CP(oss, s32, ss_onstack);
2984 error = copyout(&s32, uap->oss, sizeof(s32));
2985 }
2986 return (error);
2987 }
2988 #endif
2989
2990 int
freebsd32_nanosleep(struct thread * td,struct freebsd32_nanosleep_args * uap)2991 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
2992 {
2993
2994 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
2995 TIMER_RELTIME, uap->rqtp, uap->rmtp));
2996 }
2997
2998 int
freebsd32_clock_nanosleep(struct thread * td,struct freebsd32_clock_nanosleep_args * uap)2999 freebsd32_clock_nanosleep(struct thread *td,
3000 struct freebsd32_clock_nanosleep_args *uap)
3001 {
3002 int error;
3003
3004 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
3005 uap->rqtp, uap->rmtp);
3006 return (kern_posix_error(td, error));
3007 }
3008
3009 static int
freebsd32_user_clock_nanosleep(struct thread * td,clockid_t clock_id,int flags,const struct timespec32 * ua_rqtp,struct timespec32 * ua_rmtp)3010 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
3011 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
3012 {
3013 struct timespec32 rmt32, rqt32;
3014 struct timespec rmt, rqt;
3015 int error, error2;
3016
3017 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
3018 if (error)
3019 return (error);
3020
3021 CP(rqt32, rqt, tv_sec);
3022 CP(rqt32, rqt, tv_nsec);
3023
3024 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
3025 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
3026 CP(rmt, rmt32, tv_sec);
3027 CP(rmt, rmt32, tv_nsec);
3028
3029 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
3030 if (error2 != 0)
3031 error = error2;
3032 }
3033 return (error);
3034 }
3035
3036 int
freebsd32_clock_gettime(struct thread * td,struct freebsd32_clock_gettime_args * uap)3037 freebsd32_clock_gettime(struct thread *td,
3038 struct freebsd32_clock_gettime_args *uap)
3039 {
3040 struct timespec ats;
3041 struct timespec32 ats32;
3042 int error;
3043
3044 error = kern_clock_gettime(td, uap->clock_id, &ats);
3045 if (error == 0) {
3046 CP(ats, ats32, tv_sec);
3047 CP(ats, ats32, tv_nsec);
3048 error = copyout(&ats32, uap->tp, sizeof(ats32));
3049 }
3050 return (error);
3051 }
3052
3053 int
freebsd32_clock_settime(struct thread * td,struct freebsd32_clock_settime_args * uap)3054 freebsd32_clock_settime(struct thread *td,
3055 struct freebsd32_clock_settime_args *uap)
3056 {
3057 struct timespec ats;
3058 struct timespec32 ats32;
3059 int error;
3060
3061 error = copyin(uap->tp, &ats32, sizeof(ats32));
3062 if (error)
3063 return (error);
3064 CP(ats32, ats, tv_sec);
3065 CP(ats32, ats, tv_nsec);
3066
3067 return (kern_clock_settime(td, uap->clock_id, &ats));
3068 }
3069
3070 int
freebsd32_clock_getres(struct thread * td,struct freebsd32_clock_getres_args * uap)3071 freebsd32_clock_getres(struct thread *td,
3072 struct freebsd32_clock_getres_args *uap)
3073 {
3074 struct timespec ts;
3075 struct timespec32 ts32;
3076 int error;
3077
3078 if (uap->tp == NULL)
3079 return (0);
3080 error = kern_clock_getres(td, uap->clock_id, &ts);
3081 if (error == 0) {
3082 CP(ts, ts32, tv_sec);
3083 CP(ts, ts32, tv_nsec);
3084 error = copyout(&ts32, uap->tp, sizeof(ts32));
3085 }
3086 return (error);
3087 }
3088
freebsd32_ktimer_create(struct thread * td,struct freebsd32_ktimer_create_args * uap)3089 int freebsd32_ktimer_create(struct thread *td,
3090 struct freebsd32_ktimer_create_args *uap)
3091 {
3092 struct sigevent32 ev32;
3093 struct sigevent ev, *evp;
3094 int error, id;
3095
3096 if (uap->evp == NULL) {
3097 evp = NULL;
3098 } else {
3099 evp = &ev;
3100 error = copyin(uap->evp, &ev32, sizeof(ev32));
3101 if (error != 0)
3102 return (error);
3103 error = convert_sigevent32(&ev32, &ev);
3104 if (error != 0)
3105 return (error);
3106 }
3107 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
3108 if (error == 0) {
3109 error = copyout(&id, uap->timerid, sizeof(int));
3110 if (error != 0)
3111 kern_ktimer_delete(td, id);
3112 }
3113 return (error);
3114 }
3115
3116 int
freebsd32_ktimer_settime(struct thread * td,struct freebsd32_ktimer_settime_args * uap)3117 freebsd32_ktimer_settime(struct thread *td,
3118 struct freebsd32_ktimer_settime_args *uap)
3119 {
3120 struct itimerspec32 val32, oval32;
3121 struct itimerspec val, oval, *ovalp;
3122 int error;
3123
3124 error = copyin(uap->value, &val32, sizeof(val32));
3125 if (error != 0)
3126 return (error);
3127 ITS_CP(val32, val);
3128 ovalp = uap->ovalue != NULL ? &oval : NULL;
3129 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3130 if (error == 0 && uap->ovalue != NULL) {
3131 ITS_CP(oval, oval32);
3132 error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3133 }
3134 return (error);
3135 }
3136
3137 int
freebsd32_ktimer_gettime(struct thread * td,struct freebsd32_ktimer_gettime_args * uap)3138 freebsd32_ktimer_gettime(struct thread *td,
3139 struct freebsd32_ktimer_gettime_args *uap)
3140 {
3141 struct itimerspec32 val32;
3142 struct itimerspec val;
3143 int error;
3144
3145 error = kern_ktimer_gettime(td, uap->timerid, &val);
3146 if (error == 0) {
3147 ITS_CP(val, val32);
3148 error = copyout(&val32, uap->value, sizeof(val32));
3149 }
3150 return (error);
3151 }
3152
3153 int
freebsd32_timerfd_gettime(struct thread * td,struct freebsd32_timerfd_gettime_args * uap)3154 freebsd32_timerfd_gettime(struct thread *td,
3155 struct freebsd32_timerfd_gettime_args *uap)
3156 {
3157 struct itimerspec curr_value;
3158 struct itimerspec32 curr_value32;
3159 int error;
3160
3161 error = kern_timerfd_gettime(td, uap->fd, &curr_value);
3162 if (error == 0) {
3163 CP(curr_value, curr_value32, it_value.tv_sec);
3164 CP(curr_value, curr_value32, it_value.tv_nsec);
3165 CP(curr_value, curr_value32, it_interval.tv_sec);
3166 CP(curr_value, curr_value32, it_interval.tv_nsec);
3167 error = copyout(&curr_value32, uap->curr_value,
3168 sizeof(curr_value32));
3169 }
3170
3171 return (error);
3172 }
3173
3174 int
freebsd32_timerfd_settime(struct thread * td,struct freebsd32_timerfd_settime_args * uap)3175 freebsd32_timerfd_settime(struct thread *td,
3176 struct freebsd32_timerfd_settime_args *uap)
3177 {
3178 struct itimerspec new_value, old_value;
3179 struct itimerspec32 new_value32, old_value32;
3180 int error;
3181
3182 error = copyin(uap->new_value, &new_value32, sizeof(new_value32));
3183 if (error != 0)
3184 return (error);
3185 CP(new_value32, new_value, it_value.tv_sec);
3186 CP(new_value32, new_value, it_value.tv_nsec);
3187 CP(new_value32, new_value, it_interval.tv_sec);
3188 CP(new_value32, new_value, it_interval.tv_nsec);
3189 if (uap->old_value == NULL) {
3190 error = kern_timerfd_settime(td, uap->fd, uap->flags,
3191 &new_value, NULL);
3192 } else {
3193 error = kern_timerfd_settime(td, uap->fd, uap->flags,
3194 &new_value, &old_value);
3195 if (error == 0) {
3196 CP(old_value, old_value32, it_value.tv_sec);
3197 CP(old_value, old_value32, it_value.tv_nsec);
3198 CP(old_value, old_value32, it_interval.tv_sec);
3199 CP(old_value, old_value32, it_interval.tv_nsec);
3200 error = copyout(&old_value32, uap->old_value,
3201 sizeof(old_value32));
3202 }
3203 }
3204 return (error);
3205 }
3206
3207 int
freebsd32_clock_getcpuclockid2(struct thread * td,struct freebsd32_clock_getcpuclockid2_args * uap)3208 freebsd32_clock_getcpuclockid2(struct thread *td,
3209 struct freebsd32_clock_getcpuclockid2_args *uap)
3210 {
3211 clockid_t clk_id;
3212 int error;
3213
3214 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3215 uap->which, &clk_id);
3216 if (error == 0)
3217 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3218 return (error);
3219 }
3220
3221 int
freebsd32_thr_new(struct thread * td,struct freebsd32_thr_new_args * uap)3222 freebsd32_thr_new(struct thread *td,
3223 struct freebsd32_thr_new_args *uap)
3224 {
3225 struct thr_param32 param32;
3226 struct thr_param param;
3227 int error;
3228
3229 if (uap->param_size < 0 ||
3230 uap->param_size > sizeof(struct thr_param32))
3231 return (EINVAL);
3232 bzero(¶m, sizeof(struct thr_param));
3233 bzero(¶m32, sizeof(struct thr_param32));
3234 error = copyin(uap->param, ¶m32, uap->param_size);
3235 if (error != 0)
3236 return (error);
3237 param.start_func = PTRIN(param32.start_func);
3238 param.arg = PTRIN(param32.arg);
3239 param.stack_base = PTRIN(param32.stack_base);
3240 param.stack_size = param32.stack_size;
3241 param.tls_base = PTRIN(param32.tls_base);
3242 param.tls_size = param32.tls_size;
3243 param.child_tid = PTRIN(param32.child_tid);
3244 param.parent_tid = PTRIN(param32.parent_tid);
3245 param.flags = param32.flags;
3246 param.rtp = PTRIN(param32.rtp);
3247 param.spare[0] = PTRIN(param32.spare[0]);
3248 param.spare[1] = PTRIN(param32.spare[1]);
3249 param.spare[2] = PTRIN(param32.spare[2]);
3250
3251 return (kern_thr_new(td, ¶m));
3252 }
3253
3254 int
freebsd32_thr_suspend(struct thread * td,struct freebsd32_thr_suspend_args * uap)3255 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3256 {
3257 struct timespec32 ts32;
3258 struct timespec ts, *tsp;
3259 int error;
3260
3261 error = 0;
3262 tsp = NULL;
3263 if (uap->timeout != NULL) {
3264 error = copyin((const void *)uap->timeout, (void *)&ts32,
3265 sizeof(struct timespec32));
3266 if (error != 0)
3267 return (error);
3268 ts.tv_sec = ts32.tv_sec;
3269 ts.tv_nsec = ts32.tv_nsec;
3270 tsp = &ts;
3271 }
3272 return (kern_thr_suspend(td, tsp));
3273 }
3274
3275 void
siginfo_to_siginfo32(const siginfo_t * src,struct __siginfo32 * dst)3276 siginfo_to_siginfo32(const siginfo_t *src, struct __siginfo32 *dst)
3277 {
3278 bzero(dst, sizeof(*dst));
3279 dst->si_signo = src->si_signo;
3280 dst->si_errno = src->si_errno;
3281 dst->si_code = src->si_code;
3282 dst->si_pid = src->si_pid;
3283 dst->si_uid = src->si_uid;
3284 dst->si_status = src->si_status;
3285 dst->si_addr = (uintptr_t)src->si_addr;
3286 dst->si_value.sival_int = src->si_value.sival_int;
3287 dst->si_timerid = src->si_timerid;
3288 dst->si_overrun = src->si_overrun;
3289 }
3290
3291 #ifndef _FREEBSD32_SYSPROTO_H_
3292 struct freebsd32_sigqueue_args {
3293 pid_t pid;
3294 int signum;
3295 /* union sigval32 */ int value;
3296 };
3297 #endif
3298 int
freebsd32_sigqueue(struct thread * td,struct freebsd32_sigqueue_args * uap)3299 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3300 {
3301 union sigval sv;
3302
3303 /*
3304 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3305 * On 64-bit little-endian ABIs, the low bits are the same.
3306 * In 64-bit big-endian ABIs, sival_int overlaps with
3307 * sival_ptr's HIGH bits. We choose to support sival_int
3308 * rather than sival_ptr in this case as it seems to be
3309 * more common.
3310 */
3311 bzero(&sv, sizeof(sv));
3312 sv.sival_int = (uint32_t)(uint64_t)uap->value;
3313
3314 return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3315 }
3316
3317 int
freebsd32_sigtimedwait(struct thread * td,struct freebsd32_sigtimedwait_args * uap)3318 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3319 {
3320 struct timespec32 ts32;
3321 struct timespec ts;
3322 struct timespec *timeout;
3323 sigset_t set;
3324 ksiginfo_t ksi;
3325 struct __siginfo32 si32;
3326 int error;
3327
3328 if (uap->timeout) {
3329 error = copyin(uap->timeout, &ts32, sizeof(ts32));
3330 if (error)
3331 return (error);
3332 ts.tv_sec = ts32.tv_sec;
3333 ts.tv_nsec = ts32.tv_nsec;
3334 timeout = &ts;
3335 } else
3336 timeout = NULL;
3337
3338 error = copyin(uap->set, &set, sizeof(set));
3339 if (error)
3340 return (error);
3341
3342 error = kern_sigtimedwait(td, set, &ksi, timeout);
3343 if (error)
3344 return (error);
3345
3346 if (uap->info) {
3347 siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3348 error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3349 }
3350
3351 if (error == 0)
3352 td->td_retval[0] = ksi.ksi_signo;
3353 return (error);
3354 }
3355
3356 /*
3357 * MPSAFE
3358 */
3359 int
freebsd32_sigwaitinfo(struct thread * td,struct freebsd32_sigwaitinfo_args * uap)3360 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3361 {
3362 ksiginfo_t ksi;
3363 struct __siginfo32 si32;
3364 sigset_t set;
3365 int error;
3366
3367 error = copyin(uap->set, &set, sizeof(set));
3368 if (error)
3369 return (error);
3370
3371 error = kern_sigtimedwait(td, set, &ksi, NULL);
3372 if (error)
3373 return (error);
3374
3375 if (uap->info) {
3376 siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3377 error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3378 }
3379 if (error == 0)
3380 td->td_retval[0] = ksi.ksi_signo;
3381 return (error);
3382 }
3383
3384 int
freebsd32_cpuset_setid(struct thread * td,struct freebsd32_cpuset_setid_args * uap)3385 freebsd32_cpuset_setid(struct thread *td,
3386 struct freebsd32_cpuset_setid_args *uap)
3387 {
3388
3389 return (kern_cpuset_setid(td, uap->which,
3390 PAIR32TO64(id_t, uap->id), uap->setid));
3391 }
3392
3393 int
freebsd32_cpuset_getid(struct thread * td,struct freebsd32_cpuset_getid_args * uap)3394 freebsd32_cpuset_getid(struct thread *td,
3395 struct freebsd32_cpuset_getid_args *uap)
3396 {
3397
3398 return (kern_cpuset_getid(td, uap->level, uap->which,
3399 PAIR32TO64(id_t, uap->id), uap->setid));
3400 }
3401
3402 static int
copyin32_set(const void * u,void * k,size_t size)3403 copyin32_set(const void *u, void *k, size_t size)
3404 {
3405 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3406 int rv;
3407 struct bitset *kb = k;
3408 int *p;
3409
3410 rv = copyin(u, k, size);
3411 if (rv != 0)
3412 return (rv);
3413
3414 p = (int *)kb->__bits;
3415 /* Loop through swapping words.
3416 * `size' is in bytes, we need bits. */
3417 for (int i = 0; i < __bitset_words(size * 8); i++) {
3418 int tmp = p[0];
3419 p[0] = p[1];
3420 p[1] = tmp;
3421 p += 2;
3422 }
3423 return (0);
3424 #else
3425 return (copyin(u, k, size));
3426 #endif
3427 }
3428
3429 static int
copyout32_set(const void * k,void * u,size_t size)3430 copyout32_set(const void *k, void *u, size_t size)
3431 {
3432 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3433 const struct bitset *kb = k;
3434 struct bitset *ub = u;
3435 const int *kp = (const int *)kb->__bits;
3436 int *up = (int *)ub->__bits;
3437 int rv;
3438
3439 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) {
3440 /* `size' is in bytes, we need bits. */
3441 for (int i = 0; i < __bitset_words(size * 8); i++) {
3442 rv = suword32(up, kp[1]);
3443 if (rv == 0)
3444 rv = suword32(up + 1, kp[0]);
3445 if (rv != 0)
3446 return (EFAULT);
3447 }
3448 }
3449 return (0);
3450 #else
3451 return (copyout(k, u, size));
3452 #endif
3453 }
3454
3455 static const struct cpuset_copy_cb cpuset_copy32_cb = {
3456 .cpuset_copyin = copyin32_set,
3457 .cpuset_copyout = copyout32_set
3458 };
3459
3460 int
freebsd32_cpuset_getaffinity(struct thread * td,struct freebsd32_cpuset_getaffinity_args * uap)3461 freebsd32_cpuset_getaffinity(struct thread *td,
3462 struct freebsd32_cpuset_getaffinity_args *uap)
3463 {
3464
3465 return (user_cpuset_getaffinity(td, uap->level, uap->which,
3466 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3467 &cpuset_copy32_cb));
3468 }
3469
3470 int
freebsd32_cpuset_setaffinity(struct thread * td,struct freebsd32_cpuset_setaffinity_args * uap)3471 freebsd32_cpuset_setaffinity(struct thread *td,
3472 struct freebsd32_cpuset_setaffinity_args *uap)
3473 {
3474
3475 return (user_cpuset_setaffinity(td, uap->level, uap->which,
3476 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3477 &cpuset_copy32_cb));
3478 }
3479
3480 int
freebsd32_cpuset_getdomain(struct thread * td,struct freebsd32_cpuset_getdomain_args * uap)3481 freebsd32_cpuset_getdomain(struct thread *td,
3482 struct freebsd32_cpuset_getdomain_args *uap)
3483 {
3484
3485 return (kern_cpuset_getdomain(td, uap->level, uap->which,
3486 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3487 &cpuset_copy32_cb));
3488 }
3489
3490 int
freebsd32_cpuset_setdomain(struct thread * td,struct freebsd32_cpuset_setdomain_args * uap)3491 freebsd32_cpuset_setdomain(struct thread *td,
3492 struct freebsd32_cpuset_setdomain_args *uap)
3493 {
3494
3495 return (kern_cpuset_setdomain(td, uap->level, uap->which,
3496 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3497 &cpuset_copy32_cb));
3498 }
3499
3500 int
freebsd32_nmount(struct thread * td,struct freebsd32_nmount_args * uap)3501 freebsd32_nmount(struct thread *td,
3502 struct freebsd32_nmount_args /* {
3503 struct iovec *iovp;
3504 unsigned int iovcnt;
3505 int flags;
3506 } */ *uap)
3507 {
3508 struct uio *auio;
3509 uint64_t flags;
3510 int error;
3511
3512 /*
3513 * Mount flags are now 64-bits. On 32-bit archtectures only
3514 * 32-bits are passed in, but from here on everything handles
3515 * 64-bit flags correctly.
3516 */
3517 flags = uap->flags;
3518
3519 AUDIT_ARG_FFLAGS(flags);
3520
3521 /*
3522 * Filter out MNT_ROOTFS. We do not want clients of nmount() in
3523 * userspace to set this flag, but we must filter it out if we want
3524 * MNT_UPDATE on the root file system to work.
3525 * MNT_ROOTFS should only be set by the kernel when mounting its
3526 * root file system.
3527 */
3528 flags &= ~MNT_ROOTFS;
3529
3530 /*
3531 * check that we have an even number of iovec's
3532 * and that we have at least two options.
3533 */
3534 if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3535 return (EINVAL);
3536
3537 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3538 if (error)
3539 return (error);
3540 error = vfs_donmount(td, flags, auio);
3541
3542 freeuio(auio);
3543 return error;
3544 }
3545
3546 #if 0
3547 int
3548 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3549 {
3550 struct yyy32 *p32, s32;
3551 struct yyy *p = NULL, s;
3552 struct xxx_arg ap;
3553 int error;
3554
3555 if (uap->zzz) {
3556 error = copyin(uap->zzz, &s32, sizeof(s32));
3557 if (error)
3558 return (error);
3559 /* translate in */
3560 p = &s;
3561 }
3562 error = kern_xxx(td, p);
3563 if (error)
3564 return (error);
3565 if (uap->zzz) {
3566 /* translate out */
3567 error = copyout(&s32, p32, sizeof(s32));
3568 }
3569 return (error);
3570 }
3571 #endif
3572
3573 int
syscall32_module_handler(struct module * mod,int what,void * arg)3574 syscall32_module_handler(struct module *mod, int what, void *arg)
3575 {
3576
3577 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3578 }
3579
3580 int
syscall32_helper_register(struct syscall_helper_data * sd,int flags)3581 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3582 {
3583
3584 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3585 }
3586
3587 int
syscall32_helper_unregister(struct syscall_helper_data * sd)3588 syscall32_helper_unregister(struct syscall_helper_data *sd)
3589 {
3590
3591 return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3592 }
3593
3594 int
freebsd32_copyout_strings(struct image_params * imgp,uintptr_t * stack_base)3595 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3596 {
3597 struct sysentvec *sysent;
3598 int argc, envc, i;
3599 uint32_t *vectp;
3600 char *stringp;
3601 uintptr_t destp, ustringp;
3602 struct freebsd32_ps_strings *arginfo;
3603 char canary[sizeof(long) * 8];
3604 int32_t pagesizes32[MAXPAGESIZES];
3605 size_t execpath_len;
3606 int error, szsigcode;
3607
3608 sysent = imgp->sysent;
3609
3610 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc);
3611 imgp->ps_strings = arginfo;
3612 destp = (uintptr_t)arginfo;
3613
3614 /*
3615 * Install sigcode.
3616 */
3617 if (!PROC_HAS_SHP(imgp->proc)) {
3618 szsigcode = *sysent->sv_szsigcode;
3619 destp -= szsigcode;
3620 destp = rounddown2(destp, sizeof(uint32_t));
3621 error = copyout(sysent->sv_sigcode, (void *)destp,
3622 szsigcode);
3623 if (error != 0)
3624 return (error);
3625 }
3626
3627 /*
3628 * Copy the image path for the rtld.
3629 */
3630 if (imgp->execpath != NULL && imgp->auxargs != NULL) {
3631 execpath_len = strlen(imgp->execpath) + 1;
3632 destp -= execpath_len;
3633 imgp->execpathp = (void *)destp;
3634 error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3635 if (error != 0)
3636 return (error);
3637 }
3638
3639 /*
3640 * Prepare the canary for SSP.
3641 */
3642 arc4rand(canary, sizeof(canary), 0);
3643 destp -= sizeof(canary);
3644 imgp->canary = (void *)destp;
3645 error = copyout(canary, imgp->canary, sizeof(canary));
3646 if (error != 0)
3647 return (error);
3648 imgp->canarylen = sizeof(canary);
3649
3650 /*
3651 * Prepare the pagesizes array.
3652 */
3653 for (i = 0; i < MAXPAGESIZES; i++)
3654 pagesizes32[i] = (uint32_t)pagesizes[i];
3655 destp -= sizeof(pagesizes32);
3656 destp = rounddown2(destp, sizeof(uint32_t));
3657 imgp->pagesizes = (void *)destp;
3658 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3659 if (error != 0)
3660 return (error);
3661 imgp->pagesizeslen = sizeof(pagesizes32);
3662
3663 /*
3664 * Allocate room for the argument and environment strings.
3665 */
3666 destp -= ARG_MAX - imgp->args->stringspace;
3667 destp = rounddown2(destp, sizeof(uint32_t));
3668 ustringp = destp;
3669
3670 if (imgp->auxargs) {
3671 /*
3672 * Allocate room on the stack for the ELF auxargs
3673 * array. It has up to AT_COUNT entries.
3674 */
3675 destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3676 destp = rounddown2(destp, sizeof(uint32_t));
3677 }
3678
3679 vectp = (uint32_t *)destp;
3680
3681 /*
3682 * Allocate room for the argv[] and env vectors including the
3683 * terminating NULL pointers.
3684 */
3685 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3686
3687 /*
3688 * vectp also becomes our initial stack base
3689 */
3690 *stack_base = (uintptr_t)vectp;
3691
3692 stringp = imgp->args->begin_argv;
3693 argc = imgp->args->argc;
3694 envc = imgp->args->envc;
3695 /*
3696 * Copy out strings - arguments and environment.
3697 */
3698 error = copyout(stringp, (void *)ustringp,
3699 ARG_MAX - imgp->args->stringspace);
3700 if (error != 0)
3701 return (error);
3702
3703 /*
3704 * Fill in "ps_strings" struct for ps, w, etc.
3705 */
3706 imgp->argv = vectp;
3707 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 ||
3708 suword32(&arginfo->ps_nargvstr, argc) != 0)
3709 return (EFAULT);
3710
3711 /*
3712 * Fill in argument portion of vector table.
3713 */
3714 for (; argc > 0; --argc) {
3715 if (suword32(vectp++, ustringp) != 0)
3716 return (EFAULT);
3717 while (*stringp++ != 0)
3718 ustringp++;
3719 ustringp++;
3720 }
3721
3722 /* a null vector table pointer separates the argp's from the envp's */
3723 if (suword32(vectp++, 0) != 0)
3724 return (EFAULT);
3725
3726 imgp->envv = vectp;
3727 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 ||
3728 suword32(&arginfo->ps_nenvstr, envc) != 0)
3729 return (EFAULT);
3730
3731 /*
3732 * Fill in environment portion of vector table.
3733 */
3734 for (; envc > 0; --envc) {
3735 if (suword32(vectp++, ustringp) != 0)
3736 return (EFAULT);
3737 while (*stringp++ != 0)
3738 ustringp++;
3739 ustringp++;
3740 }
3741
3742 /* end of vector table is a null pointer */
3743 if (suword32(vectp, 0) != 0)
3744 return (EFAULT);
3745
3746 if (imgp->auxargs) {
3747 vectp++;
3748 error = imgp->sysent->sv_copyout_auxargs(imgp,
3749 (uintptr_t)vectp);
3750 if (error != 0)
3751 return (error);
3752 }
3753
3754 return (0);
3755 }
3756
3757 int
freebsd32_kldstat(struct thread * td,struct freebsd32_kldstat_args * uap)3758 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3759 {
3760 struct kld_file_stat *stat;
3761 struct kld_file_stat32 *stat32;
3762 int error, version;
3763
3764 if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3765 != 0)
3766 return (error);
3767 if (version != sizeof(struct kld_file_stat_1_32) &&
3768 version != sizeof(struct kld_file_stat32))
3769 return (EINVAL);
3770
3771 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3772 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3773 error = kern_kldstat(td, uap->fileid, stat);
3774 if (error == 0) {
3775 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3776 CP(*stat, *stat32, refs);
3777 CP(*stat, *stat32, id);
3778 PTROUT_CP(*stat, *stat32, address);
3779 CP(*stat, *stat32, size);
3780 bcopy(&stat->pathname[0], &stat32->pathname[0],
3781 sizeof(stat->pathname));
3782 stat32->version = version;
3783 error = copyout(stat32, uap->stat, version);
3784 }
3785 free(stat, M_TEMP);
3786 free(stat32, M_TEMP);
3787 return (error);
3788 }
3789
3790 int
freebsd32_posix_fallocate(struct thread * td,struct freebsd32_posix_fallocate_args * uap)3791 freebsd32_posix_fallocate(struct thread *td,
3792 struct freebsd32_posix_fallocate_args *uap)
3793 {
3794 int error;
3795
3796 error = kern_posix_fallocate(td, uap->fd,
3797 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3798 return (kern_posix_error(td, error));
3799 }
3800
3801 int
freebsd32_posix_fadvise(struct thread * td,struct freebsd32_posix_fadvise_args * uap)3802 freebsd32_posix_fadvise(struct thread *td,
3803 struct freebsd32_posix_fadvise_args *uap)
3804 {
3805 int error;
3806
3807 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3808 PAIR32TO64(off_t, uap->len), uap->advice);
3809 return (kern_posix_error(td, error));
3810 }
3811
3812 int
convert_sigevent32(struct sigevent32 * sig32,struct sigevent * sig)3813 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3814 {
3815
3816 CP(*sig32, *sig, sigev_notify);
3817 switch (sig->sigev_notify) {
3818 case SIGEV_NONE:
3819 break;
3820 case SIGEV_THREAD_ID:
3821 CP(*sig32, *sig, sigev_notify_thread_id);
3822 /* FALLTHROUGH */
3823 case SIGEV_SIGNAL:
3824 CP(*sig32, *sig, sigev_signo);
3825 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3826 break;
3827 case SIGEV_KEVENT:
3828 CP(*sig32, *sig, sigev_notify_kqueue);
3829 CP(*sig32, *sig, sigev_notify_kevent_flags);
3830 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3831 break;
3832 default:
3833 return (EINVAL);
3834 }
3835 return (0);
3836 }
3837
3838 int
freebsd32_procctl(struct thread * td,struct freebsd32_procctl_args * uap)3839 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3840 {
3841 void *data;
3842 union {
3843 struct procctl_reaper_status rs;
3844 struct procctl_reaper_pids rp;
3845 struct procctl_reaper_kill rk;
3846 } x;
3847 union {
3848 struct procctl_reaper_pids32 rp;
3849 } x32;
3850 int error, error1, flags, signum;
3851
3852 if (uap->com >= PROC_PROCCTL_MD_MIN)
3853 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3854 uap->com, PTRIN(uap->data)));
3855
3856 switch (uap->com) {
3857 case PROC_ASLR_CTL:
3858 case PROC_PROTMAX_CTL:
3859 case PROC_SPROTECT:
3860 case PROC_STACKGAP_CTL:
3861 case PROC_TRACE_CTL:
3862 case PROC_TRAPCAP_CTL:
3863 case PROC_NO_NEW_PRIVS_CTL:
3864 case PROC_WXMAP_CTL:
3865 case PROC_LOGSIGEXIT_CTL:
3866 error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3867 if (error != 0)
3868 return (error);
3869 data = &flags;
3870 break;
3871 case PROC_REAP_ACQUIRE:
3872 case PROC_REAP_RELEASE:
3873 if (uap->data != NULL)
3874 return (EINVAL);
3875 data = NULL;
3876 break;
3877 case PROC_REAP_STATUS:
3878 data = &x.rs;
3879 break;
3880 case PROC_REAP_GETPIDS:
3881 error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3882 if (error != 0)
3883 return (error);
3884 CP(x32.rp, x.rp, rp_count);
3885 PTRIN_CP(x32.rp, x.rp, rp_pids);
3886 data = &x.rp;
3887 break;
3888 case PROC_REAP_KILL:
3889 error = copyin(uap->data, &x.rk, sizeof(x.rk));
3890 if (error != 0)
3891 return (error);
3892 data = &x.rk;
3893 break;
3894 case PROC_ASLR_STATUS:
3895 case PROC_PROTMAX_STATUS:
3896 case PROC_STACKGAP_STATUS:
3897 case PROC_TRACE_STATUS:
3898 case PROC_TRAPCAP_STATUS:
3899 case PROC_NO_NEW_PRIVS_STATUS:
3900 case PROC_WXMAP_STATUS:
3901 case PROC_LOGSIGEXIT_STATUS:
3902 data = &flags;
3903 break;
3904 case PROC_PDEATHSIG_CTL:
3905 error = copyin(uap->data, &signum, sizeof(signum));
3906 if (error != 0)
3907 return (error);
3908 data = &signum;
3909 break;
3910 case PROC_PDEATHSIG_STATUS:
3911 data = &signum;
3912 break;
3913 default:
3914 return (EINVAL);
3915 }
3916 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3917 uap->com, data);
3918 switch (uap->com) {
3919 case PROC_REAP_STATUS:
3920 if (error == 0)
3921 error = copyout(&x.rs, uap->data, sizeof(x.rs));
3922 break;
3923 case PROC_REAP_KILL:
3924 error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3925 if (error == 0)
3926 error = error1;
3927 break;
3928 case PROC_ASLR_STATUS:
3929 case PROC_PROTMAX_STATUS:
3930 case PROC_STACKGAP_STATUS:
3931 case PROC_TRACE_STATUS:
3932 case PROC_TRAPCAP_STATUS:
3933 case PROC_NO_NEW_PRIVS_STATUS:
3934 case PROC_WXMAP_STATUS:
3935 case PROC_LOGSIGEXIT_STATUS:
3936 if (error == 0)
3937 error = copyout(&flags, uap->data, sizeof(flags));
3938 break;
3939 case PROC_PDEATHSIG_STATUS:
3940 if (error == 0)
3941 error = copyout(&signum, uap->data, sizeof(signum));
3942 break;
3943 }
3944 return (error);
3945 }
3946
3947 int
freebsd32_fcntl(struct thread * td,struct freebsd32_fcntl_args * uap)3948 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
3949 {
3950 intptr_t tmp;
3951
3952 switch (uap->cmd) {
3953 /*
3954 * Do unsigned conversion for arg when operation
3955 * interprets it as flags or pointer.
3956 */
3957 case F_SETLK_REMOTE:
3958 case F_SETLKW:
3959 case F_SETLK:
3960 case F_GETLK:
3961 case F_SETFD:
3962 case F_SETFL:
3963 case F_OGETLK:
3964 case F_OSETLK:
3965 case F_OSETLKW:
3966 case F_KINFO:
3967 tmp = (unsigned int)(uap->arg);
3968 break;
3969 default:
3970 tmp = uap->arg;
3971 break;
3972 }
3973 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
3974 }
3975
3976 int
freebsd32_ppoll(struct thread * td,struct freebsd32_ppoll_args * uap)3977 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
3978 {
3979 struct timespec32 ts32;
3980 struct timespec ts, *tsp;
3981 sigset_t set, *ssp;
3982 int error;
3983
3984 if (uap->ts != NULL) {
3985 error = copyin(uap->ts, &ts32, sizeof(ts32));
3986 if (error != 0)
3987 return (error);
3988 CP(ts32, ts, tv_sec);
3989 CP(ts32, ts, tv_nsec);
3990 tsp = &ts;
3991 } else
3992 tsp = NULL;
3993 if (uap->set != NULL) {
3994 error = copyin(uap->set, &set, sizeof(set));
3995 if (error != 0)
3996 return (error);
3997 ssp = &set;
3998 } else
3999 ssp = NULL;
4000
4001 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
4002 }
4003
4004 int
freebsd32_sched_rr_get_interval(struct thread * td,struct freebsd32_sched_rr_get_interval_args * uap)4005 freebsd32_sched_rr_get_interval(struct thread *td,
4006 struct freebsd32_sched_rr_get_interval_args *uap)
4007 {
4008 struct timespec ts;
4009 struct timespec32 ts32;
4010 int error;
4011
4012 error = kern_sched_rr_get_interval(td, uap->pid, &ts);
4013 if (error == 0) {
4014 CP(ts, ts32, tv_sec);
4015 CP(ts, ts32, tv_nsec);
4016 error = copyout(&ts32, uap->interval, sizeof(ts32));
4017 }
4018 return (error);
4019 }
4020
4021 static void
timex_to_32(struct timex32 * dst,struct timex * src)4022 timex_to_32(struct timex32 *dst, struct timex *src)
4023 {
4024 CP(*src, *dst, modes);
4025 CP(*src, *dst, offset);
4026 CP(*src, *dst, freq);
4027 CP(*src, *dst, maxerror);
4028 CP(*src, *dst, esterror);
4029 CP(*src, *dst, status);
4030 CP(*src, *dst, constant);
4031 CP(*src, *dst, precision);
4032 CP(*src, *dst, tolerance);
4033 CP(*src, *dst, ppsfreq);
4034 CP(*src, *dst, jitter);
4035 CP(*src, *dst, shift);
4036 CP(*src, *dst, stabil);
4037 CP(*src, *dst, jitcnt);
4038 CP(*src, *dst, calcnt);
4039 CP(*src, *dst, errcnt);
4040 CP(*src, *dst, stbcnt);
4041 }
4042
4043 static void
timex_from_32(struct timex * dst,struct timex32 * src)4044 timex_from_32(struct timex *dst, struct timex32 *src)
4045 {
4046 CP(*src, *dst, modes);
4047 CP(*src, *dst, offset);
4048 CP(*src, *dst, freq);
4049 CP(*src, *dst, maxerror);
4050 CP(*src, *dst, esterror);
4051 CP(*src, *dst, status);
4052 CP(*src, *dst, constant);
4053 CP(*src, *dst, precision);
4054 CP(*src, *dst, tolerance);
4055 CP(*src, *dst, ppsfreq);
4056 CP(*src, *dst, jitter);
4057 CP(*src, *dst, shift);
4058 CP(*src, *dst, stabil);
4059 CP(*src, *dst, jitcnt);
4060 CP(*src, *dst, calcnt);
4061 CP(*src, *dst, errcnt);
4062 CP(*src, *dst, stbcnt);
4063 }
4064
4065 int
freebsd32_ntp_adjtime(struct thread * td,struct freebsd32_ntp_adjtime_args * uap)4066 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
4067 {
4068 struct timex tx;
4069 struct timex32 tx32;
4070 int error, retval;
4071
4072 error = copyin(uap->tp, &tx32, sizeof(tx32));
4073 if (error == 0) {
4074 timex_from_32(&tx, &tx32);
4075 error = kern_ntp_adjtime(td, &tx, &retval);
4076 if (error == 0) {
4077 timex_to_32(&tx32, &tx);
4078 error = copyout(&tx32, uap->tp, sizeof(tx32));
4079 if (error == 0)
4080 td->td_retval[0] = retval;
4081 }
4082 }
4083 return (error);
4084 }
4085
4086 #ifdef FFCLOCK
4087 extern struct mtx ffclock_mtx;
4088 extern struct ffclock_estimate ffclock_estimate;
4089 extern int8_t ffclock_updated;
4090
4091 int
freebsd32_ffclock_setestimate(struct thread * td,struct freebsd32_ffclock_setestimate_args * uap)4092 freebsd32_ffclock_setestimate(struct thread *td,
4093 struct freebsd32_ffclock_setestimate_args *uap)
4094 {
4095 struct ffclock_estimate cest;
4096 struct ffclock_estimate32 cest32;
4097 int error;
4098
4099 /* Reuse of PRIV_CLOCK_SETTIME. */
4100 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
4101 return (error);
4102
4103 if ((error = copyin(uap->cest, &cest32,
4104 sizeof(struct ffclock_estimate32))) != 0)
4105 return (error);
4106
4107 CP(cest.update_time, cest32.update_time, sec);
4108 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t));
4109 CP(cest, cest32, update_ffcount);
4110 CP(cest, cest32, leapsec_next);
4111 CP(cest, cest32, period);
4112 CP(cest, cest32, errb_abs);
4113 CP(cest, cest32, errb_rate);
4114 CP(cest, cest32, status);
4115 CP(cest, cest32, leapsec_total);
4116 CP(cest, cest32, leapsec);
4117
4118 mtx_lock(&ffclock_mtx);
4119 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
4120 ffclock_updated++;
4121 mtx_unlock(&ffclock_mtx);
4122 return (error);
4123 }
4124
4125 int
freebsd32_ffclock_getestimate(struct thread * td,struct freebsd32_ffclock_getestimate_args * uap)4126 freebsd32_ffclock_getestimate(struct thread *td,
4127 struct freebsd32_ffclock_getestimate_args *uap)
4128 {
4129 struct ffclock_estimate cest;
4130 struct ffclock_estimate32 cest32;
4131 int error;
4132
4133 mtx_lock(&ffclock_mtx);
4134 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
4135 mtx_unlock(&ffclock_mtx);
4136
4137 CP(cest32.update_time, cest.update_time, sec);
4138 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t));
4139 CP(cest32, cest, update_ffcount);
4140 CP(cest32, cest, leapsec_next);
4141 CP(cest32, cest, period);
4142 CP(cest32, cest, errb_abs);
4143 CP(cest32, cest, errb_rate);
4144 CP(cest32, cest, status);
4145 CP(cest32, cest, leapsec_total);
4146 CP(cest32, cest, leapsec);
4147
4148 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32));
4149 return (error);
4150 }
4151 #else /* !FFCLOCK */
4152 int
freebsd32_ffclock_setestimate(struct thread * td,struct freebsd32_ffclock_setestimate_args * uap)4153 freebsd32_ffclock_setestimate(struct thread *td,
4154 struct freebsd32_ffclock_setestimate_args *uap)
4155 {
4156 return (ENOSYS);
4157 }
4158
4159 int
freebsd32_ffclock_getestimate(struct thread * td,struct freebsd32_ffclock_getestimate_args * uap)4160 freebsd32_ffclock_getestimate(struct thread *td,
4161 struct freebsd32_ffclock_getestimate_args *uap)
4162 {
4163 return (ENOSYS);
4164 }
4165 #endif /* FFCLOCK */
4166
4167 #ifdef COMPAT_43
4168 int
ofreebsd32_sethostid(struct thread * td,struct ofreebsd32_sethostid_args * uap)4169 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap)
4170 {
4171 int name[] = { CTL_KERN, KERN_HOSTID };
4172 long hostid;
4173
4174 hostid = uap->hostid;
4175 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid,
4176 sizeof(hostid), NULL, 0));
4177 }
4178 #endif
4179
4180 int
freebsd32_setcred(struct thread * td,struct freebsd32_setcred_args * uap)4181 freebsd32_setcred(struct thread *td, struct freebsd32_setcred_args *uap)
4182 {
4183 /* Last argument is 'is_32bit'. */
4184 return (user_setcred(td, uap->flags, uap->wcred, uap->size, true));
4185 }
4186