1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_ffclock.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_ktrace.h"
34
35 #define __ELF_WORD_SIZE 32
36
37 #ifdef COMPAT_FREEBSD11
38 #define _WANT_FREEBSD11_KEVENT
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/bus.h>
43 #include <sys/capsicum.h>
44 #include <sys/clock.h>
45 #include <sys/exec.h>
46 #include <sys/fcntl.h>
47 #include <sys/filedesc.h>
48 #include <sys/imgact.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/limits.h>
52 #include <sys/linker.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/file.h> /* Must come after sys/malloc.h */
56 #include <sys/imgact.h>
57 #include <sys/mbuf.h>
58 #include <sys/mman.h>
59 #include <sys/module.h>
60 #include <sys/mount.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/priv.h>
64 #include <sys/proc.h>
65 #include <sys/procctl.h>
66 #include <sys/ptrace.h>
67 #include <sys/reboot.h>
68 #include <sys/resource.h>
69 #include <sys/resourcevar.h>
70 #include <sys/selinfo.h>
71 #include <sys/eventvar.h> /* Must come after sys/selinfo.h */
72 #include <sys/pipe.h> /* Must come after sys/selinfo.h */
73 #include <sys/signal.h>
74 #include <sys/signalvar.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/stat.h>
78 #include <sys/syscall.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/sysproto.h>
83 #include <sys/systm.h>
84 #include <sys/thr.h>
85 #include <sys/timerfd.h>
86 #include <sys/timex.h>
87 #include <sys/unistd.h>
88 #include <sys/ucontext.h>
89 #include <sys/ucred.h>
90 #include <sys/vnode.h>
91 #include <sys/wait.h>
92 #include <sys/ipc.h>
93 #include <sys/msg.h>
94 #include <sys/sem.h>
95 #include <sys/shm.h>
96 #include <sys/timeffc.h>
97 #ifdef KTRACE
98 #include <sys/ktrace.h>
99 #endif
100
101 #ifdef INET
102 #include <netinet/in.h>
103 #endif
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_extern.h>
111
112 #include <machine/cpu.h>
113 #include <machine/elf.h>
114 #ifdef __amd64__
115 #include <machine/md_var.h>
116 #endif
117
118 #include <security/audit/audit.h>
119 #include <security/mac/mac_syscalls.h>
120
121 #include <compat/freebsd32/freebsd32_util.h>
122 #include <compat/freebsd32/freebsd32.h>
123 #include <compat/freebsd32/freebsd32_ipc.h>
124 #include <compat/freebsd32/freebsd32_misc.h>
125 #include <compat/freebsd32/freebsd32_signal.h>
126 #include <compat/freebsd32/freebsd32_proto.h>
127
128 int compat_freebsd_32bit = 1;
129
130 static void
register_compat32_feature(void * arg)131 register_compat32_feature(void *arg)
132 {
133 if (!compat_freebsd_32bit)
134 return;
135
136 FEATURE_ADD("compat_freebsd32", "Compatible with 32-bit FreeBSD");
137 FEATURE_ADD("compat_freebsd_32bit",
138 "Compatible with 32-bit FreeBSD (legacy feature name)");
139 }
140 SYSINIT(freebsd32, SI_SUB_EXEC, SI_ORDER_ANY, register_compat32_feature,
141 NULL);
142
143 struct ptrace_io_desc32 {
144 int piod_op;
145 uint32_t piod_offs;
146 uint32_t piod_addr;
147 uint32_t piod_len;
148 };
149
150 struct ptrace_vm_entry32 {
151 int pve_entry;
152 int pve_timestamp;
153 uint32_t pve_start;
154 uint32_t pve_end;
155 uint32_t pve_offset;
156 u_int pve_prot;
157 u_int pve_pathlen;
158 int32_t pve_fileid;
159 u_int pve_fsid;
160 uint32_t pve_path;
161 };
162
163 #ifdef __amd64__
164 CTASSERT(sizeof(struct timeval32) == 8);
165 CTASSERT(sizeof(struct timespec32) == 8);
166 CTASSERT(sizeof(struct itimerval32) == 16);
167 CTASSERT(sizeof(struct bintime32) == 12);
168 #else
169 CTASSERT(sizeof(struct timeval32) == 16);
170 CTASSERT(sizeof(struct timespec32) == 16);
171 CTASSERT(sizeof(struct itimerval32) == 32);
172 CTASSERT(sizeof(struct bintime32) == 16);
173 #endif
174 CTASSERT(sizeof(struct ostatfs32) == 256);
175 #ifdef __amd64__
176 CTASSERT(sizeof(struct rusage32) == 72);
177 #else
178 CTASSERT(sizeof(struct rusage32) == 88);
179 #endif
180 CTASSERT(sizeof(struct sigaltstack32) == 12);
181 #ifdef __amd64__
182 CTASSERT(sizeof(struct kevent32) == 56);
183 #else
184 CTASSERT(sizeof(struct kevent32) == 64);
185 #endif
186 CTASSERT(sizeof(struct iovec32) == 8);
187 CTASSERT(sizeof(struct msghdr32) == 28);
188 #ifdef __amd64__
189 CTASSERT(sizeof(struct stat32) == 208);
190 CTASSERT(sizeof(struct freebsd11_stat32) == 96);
191 #else
192 CTASSERT(sizeof(struct stat32) == 224);
193 CTASSERT(sizeof(struct freebsd11_stat32) == 120);
194 #endif
195 CTASSERT(sizeof(struct sigaction32) == 24);
196
197 static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count);
198 static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count);
199 static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
200 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp);
201
202 void
freebsd32_rusage_out(const struct rusage * s,struct rusage32 * s32)203 freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32)
204 {
205
206 TV_CP(*s, *s32, ru_utime);
207 TV_CP(*s, *s32, ru_stime);
208 CP(*s, *s32, ru_maxrss);
209 CP(*s, *s32, ru_ixrss);
210 CP(*s, *s32, ru_idrss);
211 CP(*s, *s32, ru_isrss);
212 CP(*s, *s32, ru_minflt);
213 CP(*s, *s32, ru_majflt);
214 CP(*s, *s32, ru_nswap);
215 CP(*s, *s32, ru_inblock);
216 CP(*s, *s32, ru_oublock);
217 CP(*s, *s32, ru_msgsnd);
218 CP(*s, *s32, ru_msgrcv);
219 CP(*s, *s32, ru_nsignals);
220 CP(*s, *s32, ru_nvcsw);
221 CP(*s, *s32, ru_nivcsw);
222 }
223
224 int
freebsd32_wait4(struct thread * td,struct freebsd32_wait4_args * uap)225 freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap)
226 {
227 int error, status;
228 struct rusage32 ru32;
229 struct rusage ru, *rup;
230
231 if (uap->rusage != NULL)
232 rup = &ru;
233 else
234 rup = NULL;
235 error = kern_wait(td, uap->pid, &status, uap->options, rup);
236 if (error)
237 return (error);
238 if (uap->status != NULL)
239 error = copyout(&status, uap->status, sizeof(status));
240 if (uap->rusage != NULL && error == 0) {
241 freebsd32_rusage_out(&ru, &ru32);
242 error = copyout(&ru32, uap->rusage, sizeof(ru32));
243 }
244 return (error);
245 }
246
247 int
freebsd32_wait6(struct thread * td,struct freebsd32_wait6_args * uap)248 freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap)
249 {
250 struct __wrusage32 wru32;
251 struct __wrusage wru, *wrup;
252 struct __siginfo32 si32;
253 struct __siginfo si, *sip;
254 int error, status;
255
256 if (uap->wrusage != NULL)
257 wrup = &wru;
258 else
259 wrup = NULL;
260 if (uap->info != NULL) {
261 sip = &si;
262 bzero(sip, sizeof(*sip));
263 } else
264 sip = NULL;
265 error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id),
266 &status, uap->options, wrup, sip);
267 if (error != 0)
268 return (error);
269 if (uap->status != NULL)
270 error = copyout(&status, uap->status, sizeof(status));
271 if (uap->wrusage != NULL && error == 0) {
272 freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self);
273 freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children);
274 error = copyout(&wru32, uap->wrusage, sizeof(wru32));
275 }
276 if (uap->info != NULL && error == 0) {
277 siginfo_to_siginfo32 (&si, &si32);
278 error = copyout(&si32, uap->info, sizeof(si32));
279 }
280 return (error);
281 }
282
283 #ifdef COMPAT_FREEBSD4
284 static void
copy_statfs(struct statfs * in,struct ostatfs32 * out)285 copy_statfs(struct statfs *in, struct ostatfs32 *out)
286 {
287
288 statfs_scale_blocks(in, INT32_MAX);
289 bzero(out, sizeof(*out));
290 CP(*in, *out, f_bsize);
291 out->f_iosize = MIN(in->f_iosize, INT32_MAX);
292 CP(*in, *out, f_blocks);
293 CP(*in, *out, f_bfree);
294 CP(*in, *out, f_bavail);
295 out->f_files = MIN(in->f_files, INT32_MAX);
296 out->f_ffree = MIN(in->f_ffree, INT32_MAX);
297 CP(*in, *out, f_fsid);
298 CP(*in, *out, f_owner);
299 CP(*in, *out, f_type);
300 CP(*in, *out, f_flags);
301 out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX);
302 out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX);
303 strlcpy(out->f_fstypename,
304 in->f_fstypename, MFSNAMELEN);
305 strlcpy(out->f_mntonname,
306 in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
307 out->f_syncreads = MIN(in->f_syncreads, INT32_MAX);
308 out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX);
309 strlcpy(out->f_mntfromname,
310 in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN));
311 }
312 #endif
313
314 int
freebsd32_getfsstat(struct thread * td,struct freebsd32_getfsstat_args * uap)315 freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap)
316 {
317 size_t count;
318 int error;
319
320 if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX)
321 return (EINVAL);
322 error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count,
323 UIO_USERSPACE, uap->mode);
324 if (error == 0)
325 td->td_retval[0] = count;
326 return (error);
327 }
328
329 #ifdef COMPAT_FREEBSD4
330 int
freebsd4_freebsd32_getfsstat(struct thread * td,struct freebsd4_freebsd32_getfsstat_args * uap)331 freebsd4_freebsd32_getfsstat(struct thread *td,
332 struct freebsd4_freebsd32_getfsstat_args *uap)
333 {
334 struct statfs *buf, *sp;
335 struct ostatfs32 stat32;
336 size_t count, size, copycount;
337 int error;
338
339 count = uap->bufsize / sizeof(struct ostatfs32);
340 size = count * sizeof(struct statfs);
341 error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode);
342 if (size > 0) {
343 sp = buf;
344 copycount = count;
345 while (copycount > 0 && error == 0) {
346 copy_statfs(sp, &stat32);
347 error = copyout(&stat32, uap->buf, sizeof(stat32));
348 sp++;
349 uap->buf++;
350 copycount--;
351 }
352 free(buf, M_STATFS);
353 }
354 if (error == 0)
355 td->td_retval[0] = count;
356 return (error);
357 }
358 #endif
359
360 #ifdef COMPAT_FREEBSD11
361 int
freebsd11_freebsd32_getfsstat(struct thread * td,struct freebsd11_freebsd32_getfsstat_args * uap)362 freebsd11_freebsd32_getfsstat(struct thread *td,
363 struct freebsd11_freebsd32_getfsstat_args *uap)
364 {
365 return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize,
366 uap->mode));
367 }
368 #endif
369
370 int
freebsd32_sigaltstack(struct thread * td,struct freebsd32_sigaltstack_args * uap)371 freebsd32_sigaltstack(struct thread *td,
372 struct freebsd32_sigaltstack_args *uap)
373 {
374 struct sigaltstack32 s32;
375 struct sigaltstack ss, oss, *ssp;
376 int error;
377
378 if (uap->ss != NULL) {
379 error = copyin(uap->ss, &s32, sizeof(s32));
380 if (error)
381 return (error);
382 PTRIN_CP(s32, ss, ss_sp);
383 CP(s32, ss, ss_size);
384 CP(s32, ss, ss_flags);
385 ssp = &ss;
386 } else
387 ssp = NULL;
388 error = kern_sigaltstack(td, ssp, &oss);
389 if (error == 0 && uap->oss != NULL) {
390 PTROUT_CP(oss, s32, ss_sp);
391 CP(oss, s32, ss_size);
392 CP(oss, s32, ss_flags);
393 error = copyout(&s32, uap->oss, sizeof(s32));
394 }
395 return (error);
396 }
397
398 /*
399 * Custom version of exec_copyin_args() so that we can translate
400 * the pointers.
401 */
402 int
freebsd32_exec_copyin_args(struct image_args * args,const char * fname,enum uio_seg segflg,uint32_t * argv,uint32_t * envv)403 freebsd32_exec_copyin_args(struct image_args *args, const char *fname,
404 enum uio_seg segflg, uint32_t *argv, uint32_t *envv)
405 {
406 char *argp, *envp;
407 uint32_t *p32, arg;
408 int error;
409
410 bzero(args, sizeof(*args));
411 if (argv == NULL)
412 return (EFAULT);
413
414 /*
415 * Allocate demand-paged memory for the file name, argument, and
416 * environment strings.
417 */
418 error = exec_alloc_args(args);
419 if (error != 0)
420 return (error);
421
422 /*
423 * Copy the file name.
424 */
425 error = exec_args_add_fname(args, fname, segflg);
426 if (error != 0)
427 goto err_exit;
428
429 /*
430 * extract arguments first
431 */
432 p32 = argv;
433 for (;;) {
434 error = copyin(p32++, &arg, sizeof(arg));
435 if (error)
436 goto err_exit;
437 if (arg == 0)
438 break;
439 argp = PTRIN(arg);
440 error = exec_args_add_arg(args, argp, UIO_USERSPACE);
441 if (error != 0)
442 goto err_exit;
443 }
444
445 /*
446 * extract environment strings
447 */
448 if (envv) {
449 p32 = envv;
450 for (;;) {
451 error = copyin(p32++, &arg, sizeof(arg));
452 if (error)
453 goto err_exit;
454 if (arg == 0)
455 break;
456 envp = PTRIN(arg);
457 error = exec_args_add_env(args, envp, UIO_USERSPACE);
458 if (error != 0)
459 goto err_exit;
460 }
461 }
462
463 return (0);
464
465 err_exit:
466 exec_free_args(args);
467 return (error);
468 }
469
470 int
freebsd32_execve(struct thread * td,struct freebsd32_execve_args * uap)471 freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap)
472 {
473 struct image_args eargs;
474 struct vmspace *oldvmspace;
475 int error;
476
477 error = pre_execve(td, &oldvmspace);
478 if (error != 0)
479 return (error);
480 error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE,
481 uap->argv, uap->envv);
482 if (error == 0)
483 error = kern_execve(td, &eargs, NULL, oldvmspace);
484 post_execve(td, error, oldvmspace);
485 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
486 return (error);
487 }
488
489 int
freebsd32_fexecve(struct thread * td,struct freebsd32_fexecve_args * uap)490 freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap)
491 {
492 struct image_args eargs;
493 struct vmspace *oldvmspace;
494 int error;
495
496 error = pre_execve(td, &oldvmspace);
497 if (error != 0)
498 return (error);
499 error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE,
500 uap->argv, uap->envv);
501 if (error == 0) {
502 eargs.fd = uap->fd;
503 error = kern_execve(td, &eargs, NULL, oldvmspace);
504 }
505 post_execve(td, error, oldvmspace);
506 AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
507 return (error);
508 }
509
510 int
freebsd32_mknodat(struct thread * td,struct freebsd32_mknodat_args * uap)511 freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap)
512 {
513
514 return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE,
515 uap->mode, PAIR32TO64(dev_t, uap->dev)));
516 }
517
518 int
freebsd32_mprotect(struct thread * td,struct freebsd32_mprotect_args * uap)519 freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap)
520 {
521 int prot;
522
523 prot = uap->prot;
524 #if defined(__amd64__)
525 if (i386_read_exec && (prot & PROT_READ) != 0)
526 prot |= PROT_EXEC;
527 #endif
528 return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len,
529 prot, 0));
530 }
531
532 int
freebsd32_mmap(struct thread * td,struct freebsd32_mmap_args * uap)533 freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap)
534 {
535 int prot;
536
537 prot = uap->prot;
538 #if defined(__amd64__)
539 if (i386_read_exec && (prot & PROT_READ))
540 prot |= PROT_EXEC;
541 #endif
542
543 return (kern_mmap(td, &(struct mmap_req){
544 .mr_hint = (uintptr_t)uap->addr,
545 .mr_len = uap->len,
546 .mr_prot = prot,
547 .mr_flags = uap->flags,
548 .mr_fd = uap->fd,
549 .mr_pos = PAIR32TO64(off_t, uap->pos),
550 }));
551 }
552
553 #ifdef COMPAT_FREEBSD6
554 int
freebsd6_freebsd32_mmap(struct thread * td,struct freebsd6_freebsd32_mmap_args * uap)555 freebsd6_freebsd32_mmap(struct thread *td,
556 struct freebsd6_freebsd32_mmap_args *uap)
557 {
558 int prot;
559
560 prot = uap->prot;
561 #if defined(__amd64__)
562 if (i386_read_exec && (prot & PROT_READ))
563 prot |= PROT_EXEC;
564 #endif
565
566 return (kern_mmap(td, &(struct mmap_req){
567 .mr_hint = (uintptr_t)uap->addr,
568 .mr_len = uap->len,
569 .mr_prot = prot,
570 .mr_flags = uap->flags,
571 .mr_fd = uap->fd,
572 .mr_pos = PAIR32TO64(off_t, uap->pos),
573 }));
574 }
575 #endif
576
577 #ifdef COMPAT_43
578 int
ofreebsd32_mmap(struct thread * td,struct ofreebsd32_mmap_args * uap)579 ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap)
580 {
581 return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot,
582 uap->flags, uap->fd, uap->pos));
583 }
584 #endif
585
586 int
freebsd32_setitimer(struct thread * td,struct freebsd32_setitimer_args * uap)587 freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap)
588 {
589 struct itimerval itv, oitv, *itvp;
590 struct itimerval32 i32;
591 int error;
592
593 if (uap->itv != NULL) {
594 error = copyin(uap->itv, &i32, sizeof(i32));
595 if (error)
596 return (error);
597 TV_CP(i32, itv, it_interval);
598 TV_CP(i32, itv, it_value);
599 itvp = &itv;
600 } else
601 itvp = NULL;
602 error = kern_setitimer(td, uap->which, itvp, &oitv);
603 if (error || uap->oitv == NULL)
604 return (error);
605 TV_CP(oitv, i32, it_interval);
606 TV_CP(oitv, i32, it_value);
607 return (copyout(&i32, uap->oitv, sizeof(i32)));
608 }
609
610 int
freebsd32_getitimer(struct thread * td,struct freebsd32_getitimer_args * uap)611 freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap)
612 {
613 struct itimerval itv;
614 struct itimerval32 i32;
615 int error;
616
617 error = kern_getitimer(td, uap->which, &itv);
618 if (error || uap->itv == NULL)
619 return (error);
620 TV_CP(itv, i32, it_interval);
621 TV_CP(itv, i32, it_value);
622 return (copyout(&i32, uap->itv, sizeof(i32)));
623 }
624
625 int
freebsd32_select(struct thread * td,struct freebsd32_select_args * uap)626 freebsd32_select(struct thread *td, struct freebsd32_select_args *uap)
627 {
628 struct timeval32 tv32;
629 struct timeval tv, *tvp;
630 int error;
631
632 if (uap->tv != NULL) {
633 error = copyin(uap->tv, &tv32, sizeof(tv32));
634 if (error)
635 return (error);
636 CP(tv32, tv, tv_sec);
637 CP(tv32, tv, tv_usec);
638 tvp = &tv;
639 } else
640 tvp = NULL;
641 /*
642 * XXX Do pointers need PTRIN()?
643 */
644 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
645 sizeof(int32_t) * 8));
646 }
647
648 int
freebsd32_pselect(struct thread * td,struct freebsd32_pselect_args * uap)649 freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap)
650 {
651 struct timespec32 ts32;
652 struct timespec ts;
653 struct timeval tv, *tvp;
654 sigset_t set, *uset;
655 int error;
656
657 if (uap->ts != NULL) {
658 error = copyin(uap->ts, &ts32, sizeof(ts32));
659 if (error != 0)
660 return (error);
661 CP(ts32, ts, tv_sec);
662 CP(ts32, ts, tv_nsec);
663 TIMESPEC_TO_TIMEVAL(&tv, &ts);
664 tvp = &tv;
665 } else
666 tvp = NULL;
667 if (uap->sm != NULL) {
668 error = copyin(uap->sm, &set, sizeof(set));
669 if (error != 0)
670 return (error);
671 uset = &set;
672 } else
673 uset = NULL;
674 /*
675 * XXX Do pointers need PTRIN()?
676 */
677 error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
678 uset, sizeof(int32_t) * 8);
679 return (error);
680 }
681
682 static void
freebsd32_kevent_to_kevent32(const struct kevent * kevp,struct kevent32 * ks32)683 freebsd32_kevent_to_kevent32(const struct kevent *kevp, struct kevent32 *ks32)
684 {
685 uint64_t e;
686 int j;
687
688 CP(*kevp, *ks32, ident);
689 CP(*kevp, *ks32, filter);
690 CP(*kevp, *ks32, flags);
691 CP(*kevp, *ks32, fflags);
692 #if BYTE_ORDER == LITTLE_ENDIAN
693 ks32->data1 = kevp->data;
694 ks32->data2 = kevp->data >> 32;
695 #else
696 ks32->data1 = kevp->data >> 32;
697 ks32->data2 = kevp->data;
698 #endif
699 PTROUT_CP(*kevp, *ks32, udata);
700 for (j = 0; j < nitems(kevp->ext); j++) {
701 e = kevp->ext[j];
702 #if BYTE_ORDER == LITTLE_ENDIAN
703 ks32->ext64[2 * j] = e;
704 ks32->ext64[2 * j + 1] = e >> 32;
705 #else
706 ks32->ext64[2 * j] = e >> 32;
707 ks32->ext64[2 * j + 1] = e;
708 #endif
709 }
710 }
711
712 void
freebsd32_kinfo_knote_to_32(const struct kinfo_knote * kin,struct kinfo_knote32 * kin32)713 freebsd32_kinfo_knote_to_32(const struct kinfo_knote *kin,
714 struct kinfo_knote32 *kin32)
715 {
716 memset(kin32, 0, sizeof(*kin32));
717 CP(*kin, *kin32, knt_kq_fd);
718 freebsd32_kevent_to_kevent32(&kin->knt_event, &kin32->knt_event);
719 CP(*kin, *kin32, knt_status);
720 CP(*kin, *kin32, knt_extdata);
721 switch (kin->knt_extdata) {
722 case KNOTE_EXTDATA_NONE:
723 break;
724 case KNOTE_EXTDATA_VNODE:
725 CP(*kin, *kin32, knt_vnode.knt_vnode_type);
726 #if BYTE_ORDER == LITTLE_ENDIAN
727 kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode.
728 knt_vnode_fsid;
729 kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode.
730 knt_vnode_fsid >> 32;
731 kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode.
732 knt_vnode_fileid;
733 kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode.
734 knt_vnode_fileid >> 32;
735 #else
736 kin32->knt_vnode.knt_vnode_fsid[1] = kin->knt_vnode.
737 knt_vnode_fsid;
738 kin32->knt_vnode.knt_vnode_fsid[0] = kin->knt_vnode.
739 knt_vnode_fsid >> 32;
740 kin32->knt_vnode.knt_vnode_fileid[1] = kin->knt_vnode.
741 knt_vnode_fileid;
742 kin32->knt_vnode.knt_vnode_fileid[0] = kin->knt_vnode.
743 knt_vnode_fileid >> 32;
744 #endif
745 memcpy(kin32->knt_vnode.knt_vnode_fullpath,
746 kin->knt_vnode.knt_vnode_fullpath, PATH_MAX);
747 break;
748 case KNOTE_EXTDATA_PIPE:
749 #if BYTE_ORDER == LITTLE_ENDIAN
750 kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe.knt_pipe_ino;
751 kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe.
752 knt_pipe_ino >> 32;
753 #else
754 kin32->knt_pipe.knt_pipe_ino[1] = kin->knt_pipe.knt_pipe_ino;
755 kin32->knt_pipe.knt_pipe_ino[0] = kin->knt_pipe.
756 knt_pipe_ino >> 32;
757 #endif
758 break;
759 }
760 }
761
762 /*
763 * Copy 'count' items into the destination list pointed to by uap->eventlist.
764 */
765 static int
freebsd32_kevent_copyout(void * arg,struct kevent * kevp,int count)766 freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count)
767 {
768 struct freebsd32_kevent_args *uap;
769 struct kevent32 ks32[KQ_NEVENTS];
770 int i, error;
771
772 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
773 uap = (struct freebsd32_kevent_args *)arg;
774
775 for (i = 0; i < count; i++)
776 freebsd32_kevent_to_kevent32(&kevp[i], &ks32[i]);
777 error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
778 if (error == 0)
779 uap->eventlist += count;
780 return (error);
781 }
782
783 /*
784 * Copy 'count' items from the list pointed to by uap->changelist.
785 */
786 static int
freebsd32_kevent_copyin(void * arg,struct kevent * kevp,int count)787 freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count)
788 {
789 struct freebsd32_kevent_args *uap;
790 struct kevent32 ks32[KQ_NEVENTS];
791 uint64_t e;
792 int i, j, error;
793
794 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
795 uap = (struct freebsd32_kevent_args *)arg;
796
797 error = copyin(uap->changelist, ks32, count * sizeof *ks32);
798 if (error)
799 goto done;
800 uap->changelist += count;
801
802 for (i = 0; i < count; i++) {
803 CP(ks32[i], kevp[i], ident);
804 CP(ks32[i], kevp[i], filter);
805 CP(ks32[i], kevp[i], flags);
806 CP(ks32[i], kevp[i], fflags);
807 kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data);
808 PTRIN_CP(ks32[i], kevp[i], udata);
809 for (j = 0; j < nitems(kevp->ext); j++) {
810 #if BYTE_ORDER == LITTLE_ENDIAN
811 e = ks32[i].ext64[2 * j + 1];
812 e <<= 32;
813 e += ks32[i].ext64[2 * j];
814 #else
815 e = ks32[i].ext64[2 * j];
816 e <<= 32;
817 e += ks32[i].ext64[2 * j + 1];
818 #endif
819 kevp[i].ext[j] = e;
820 }
821 }
822 done:
823 return (error);
824 }
825
826 int
freebsd32_kevent(struct thread * td,struct freebsd32_kevent_args * uap)827 freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap)
828 {
829 struct timespec32 ts32;
830 struct timespec ts, *tsp;
831 struct kevent_copyops k_ops = {
832 .arg = uap,
833 .k_copyout = freebsd32_kevent_copyout,
834 .k_copyin = freebsd32_kevent_copyin,
835 };
836 #ifdef KTRACE
837 struct kevent32 *eventlist = uap->eventlist;
838 #endif
839 int error;
840
841 if (uap->timeout) {
842 error = copyin(uap->timeout, &ts32, sizeof(ts32));
843 if (error)
844 return (error);
845 CP(ts32, ts, tv_sec);
846 CP(ts32, ts, tv_nsec);
847 tsp = &ts;
848 } else
849 tsp = NULL;
850 #ifdef KTRACE
851 if (KTRPOINT(td, KTR_STRUCT_ARRAY))
852 ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist,
853 uap->nchanges, sizeof(struct kevent32));
854 #endif
855 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
856 &k_ops, tsp);
857 #ifdef KTRACE
858 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
859 ktrstructarray("kevent32", UIO_USERSPACE, eventlist,
860 td->td_retval[0], sizeof(struct kevent32));
861 #endif
862 return (error);
863 }
864
865 #ifdef COMPAT_FREEBSD11
866 static int
freebsd32_kevent11_copyout(void * arg,struct kevent * kevp,int count)867 freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count)
868 {
869 struct freebsd11_freebsd32_kevent_args *uap;
870 struct freebsd11_kevent32 ks32[KQ_NEVENTS];
871 int i, error;
872
873 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
874 uap = (struct freebsd11_freebsd32_kevent_args *)arg;
875
876 for (i = 0; i < count; i++) {
877 CP(kevp[i], ks32[i], ident);
878 CP(kevp[i], ks32[i], filter);
879 CP(kevp[i], ks32[i], flags);
880 CP(kevp[i], ks32[i], fflags);
881 CP(kevp[i], ks32[i], data);
882 PTROUT_CP(kevp[i], ks32[i], udata);
883 }
884 error = copyout(ks32, uap->eventlist, count * sizeof *ks32);
885 if (error == 0)
886 uap->eventlist += count;
887 return (error);
888 }
889
890 /*
891 * Copy 'count' items from the list pointed to by uap->changelist.
892 */
893 static int
freebsd32_kevent11_copyin(void * arg,struct kevent * kevp,int count)894 freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count)
895 {
896 struct freebsd11_freebsd32_kevent_args *uap;
897 struct freebsd11_kevent32 ks32[KQ_NEVENTS];
898 int i, j, error;
899
900 KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count));
901 uap = (struct freebsd11_freebsd32_kevent_args *)arg;
902
903 error = copyin(uap->changelist, ks32, count * sizeof *ks32);
904 if (error)
905 goto done;
906 uap->changelist += count;
907
908 for (i = 0; i < count; i++) {
909 CP(ks32[i], kevp[i], ident);
910 CP(ks32[i], kevp[i], filter);
911 CP(ks32[i], kevp[i], flags);
912 CP(ks32[i], kevp[i], fflags);
913 CP(ks32[i], kevp[i], data);
914 PTRIN_CP(ks32[i], kevp[i], udata);
915 for (j = 0; j < nitems(kevp->ext); j++)
916 kevp[i].ext[j] = 0;
917 }
918 done:
919 return (error);
920 }
921
922 int
freebsd11_freebsd32_kevent(struct thread * td,struct freebsd11_freebsd32_kevent_args * uap)923 freebsd11_freebsd32_kevent(struct thread *td,
924 struct freebsd11_freebsd32_kevent_args *uap)
925 {
926 struct timespec32 ts32;
927 struct timespec ts, *tsp;
928 struct kevent_copyops k_ops = {
929 .arg = uap,
930 .k_copyout = freebsd32_kevent11_copyout,
931 .k_copyin = freebsd32_kevent11_copyin,
932 };
933 #ifdef KTRACE
934 struct freebsd11_kevent32 *eventlist = uap->eventlist;
935 #endif
936 int error;
937
938 if (uap->timeout) {
939 error = copyin(uap->timeout, &ts32, sizeof(ts32));
940 if (error)
941 return (error);
942 CP(ts32, ts, tv_sec);
943 CP(ts32, ts, tv_nsec);
944 tsp = &ts;
945 } else
946 tsp = NULL;
947 #ifdef KTRACE
948 if (KTRPOINT(td, KTR_STRUCT_ARRAY))
949 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
950 uap->changelist, uap->nchanges,
951 sizeof(struct freebsd11_kevent32));
952 #endif
953 error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents,
954 &k_ops, tsp);
955 #ifdef KTRACE
956 if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY))
957 ktrstructarray("freebsd11_kevent32", UIO_USERSPACE,
958 eventlist, td->td_retval[0],
959 sizeof(struct freebsd11_kevent32));
960 #endif
961 return (error);
962 }
963 #endif
964
965 int
freebsd32_gettimeofday(struct thread * td,struct freebsd32_gettimeofday_args * uap)966 freebsd32_gettimeofday(struct thread *td,
967 struct freebsd32_gettimeofday_args *uap)
968 {
969 struct timeval atv;
970 struct timeval32 atv32;
971 struct timezone rtz;
972 int error = 0;
973
974 if (uap->tp) {
975 microtime(&atv);
976 CP(atv, atv32, tv_sec);
977 CP(atv, atv32, tv_usec);
978 error = copyout(&atv32, uap->tp, sizeof (atv32));
979 }
980 if (error == 0 && uap->tzp != NULL) {
981 rtz.tz_minuteswest = 0;
982 rtz.tz_dsttime = 0;
983 error = copyout(&rtz, uap->tzp, sizeof (rtz));
984 }
985 return (error);
986 }
987
988 int
freebsd32_getrusage(struct thread * td,struct freebsd32_getrusage_args * uap)989 freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap)
990 {
991 struct rusage32 s32;
992 struct rusage s;
993 int error;
994
995 error = kern_getrusage(td, uap->who, &s);
996 if (error == 0) {
997 freebsd32_rusage_out(&s, &s32);
998 error = copyout(&s32, uap->rusage, sizeof(s32));
999 }
1000 return (error);
1001 }
1002
1003 static void
ptrace_lwpinfo_to32(const struct ptrace_lwpinfo * pl,struct ptrace_lwpinfo32 * pl32)1004 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl,
1005 struct ptrace_lwpinfo32 *pl32)
1006 {
1007
1008 bzero(pl32, sizeof(*pl32));
1009 pl32->pl_lwpid = pl->pl_lwpid;
1010 pl32->pl_event = pl->pl_event;
1011 pl32->pl_flags = pl->pl_flags;
1012 pl32->pl_sigmask = pl->pl_sigmask;
1013 pl32->pl_siglist = pl->pl_siglist;
1014 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo);
1015 strcpy(pl32->pl_tdname, pl->pl_tdname);
1016 pl32->pl_child_pid = pl->pl_child_pid;
1017 pl32->pl_syscall_code = pl->pl_syscall_code;
1018 pl32->pl_syscall_narg = pl->pl_syscall_narg;
1019 }
1020
1021 static void
ptrace_sc_ret_to32(const struct ptrace_sc_ret * psr,struct ptrace_sc_ret32 * psr32)1022 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr,
1023 struct ptrace_sc_ret32 *psr32)
1024 {
1025
1026 bzero(psr32, sizeof(*psr32));
1027 psr32->sr_retval[0] = psr->sr_retval[0];
1028 psr32->sr_retval[1] = psr->sr_retval[1];
1029 psr32->sr_error = psr->sr_error;
1030 }
1031
1032 int
freebsd32_ptrace(struct thread * td,struct freebsd32_ptrace_args * uap)1033 freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap)
1034 {
1035 union {
1036 struct ptrace_io_desc piod;
1037 struct ptrace_lwpinfo pl;
1038 struct ptrace_vm_entry pve;
1039 struct ptrace_coredump pc;
1040 struct ptrace_sc_remote sr;
1041 struct dbreg32 dbreg;
1042 struct fpreg32 fpreg;
1043 struct reg32 reg;
1044 struct iovec vec;
1045 register_t args[nitems(td->td_sa.args)];
1046 struct ptrace_sc_ret psr;
1047 int ptevents;
1048 } r;
1049 union {
1050 struct ptrace_io_desc32 piod;
1051 struct ptrace_lwpinfo32 pl;
1052 struct ptrace_vm_entry32 pve;
1053 struct ptrace_coredump32 pc;
1054 struct ptrace_sc_remote32 sr;
1055 uint32_t args[nitems(td->td_sa.args)];
1056 struct ptrace_sc_ret32 psr;
1057 struct iovec32 vec;
1058 } r32;
1059 syscallarg_t pscr_args[nitems(td->td_sa.args)];
1060 u_int pscr_args32[nitems(td->td_sa.args)];
1061 void *addr;
1062 int data, error, i;
1063
1064 if (!allow_ptrace)
1065 return (ENOSYS);
1066 error = 0;
1067
1068 AUDIT_ARG_PID(uap->pid);
1069 AUDIT_ARG_CMD(uap->req);
1070 AUDIT_ARG_VALUE(uap->data);
1071 addr = &r;
1072 data = uap->data;
1073 switch (uap->req) {
1074 case PT_GET_EVENT_MASK:
1075 case PT_GET_SC_ARGS:
1076 case PT_GET_SC_RET:
1077 break;
1078 case PT_LWPINFO:
1079 if (uap->data > sizeof(r32.pl))
1080 return (EINVAL);
1081
1082 /*
1083 * Pass size of native structure in 'data'. Truncate
1084 * if necessary to avoid siginfo.
1085 */
1086 data = sizeof(r.pl);
1087 if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) +
1088 sizeof(struct __siginfo32))
1089 data = offsetof(struct ptrace_lwpinfo, pl_siginfo);
1090 break;
1091 case PT_GETREGS:
1092 bzero(&r.reg, sizeof(r.reg));
1093 break;
1094 case PT_GETFPREGS:
1095 bzero(&r.fpreg, sizeof(r.fpreg));
1096 break;
1097 case PT_GETDBREGS:
1098 bzero(&r.dbreg, sizeof(r.dbreg));
1099 break;
1100 case PT_SETREGS:
1101 error = copyin(uap->addr, &r.reg, sizeof(r.reg));
1102 break;
1103 case PT_SETFPREGS:
1104 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg));
1105 break;
1106 case PT_SETDBREGS:
1107 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg));
1108 break;
1109 case PT_GETREGSET:
1110 case PT_SETREGSET:
1111 error = copyin(uap->addr, &r32.vec, sizeof(r32.vec));
1112 if (error != 0)
1113 break;
1114
1115 r.vec.iov_len = r32.vec.iov_len;
1116 r.vec.iov_base = PTRIN(r32.vec.iov_base);
1117 break;
1118 case PT_SET_EVENT_MASK:
1119 if (uap->data != sizeof(r.ptevents))
1120 error = EINVAL;
1121 else
1122 error = copyin(uap->addr, &r.ptevents, uap->data);
1123 break;
1124 case PT_IO:
1125 error = copyin(uap->addr, &r32.piod, sizeof(r32.piod));
1126 if (error)
1127 break;
1128 CP(r32.piod, r.piod, piod_op);
1129 PTRIN_CP(r32.piod, r.piod, piod_offs);
1130 PTRIN_CP(r32.piod, r.piod, piod_addr);
1131 CP(r32.piod, r.piod, piod_len);
1132 break;
1133 case PT_VM_ENTRY:
1134 error = copyin(uap->addr, &r32.pve, sizeof(r32.pve));
1135 if (error)
1136 break;
1137
1138 CP(r32.pve, r.pve, pve_entry);
1139 CP(r32.pve, r.pve, pve_timestamp);
1140 CP(r32.pve, r.pve, pve_start);
1141 CP(r32.pve, r.pve, pve_end);
1142 CP(r32.pve, r.pve, pve_offset);
1143 CP(r32.pve, r.pve, pve_prot);
1144 CP(r32.pve, r.pve, pve_pathlen);
1145 CP(r32.pve, r.pve, pve_fileid);
1146 CP(r32.pve, r.pve, pve_fsid);
1147 PTRIN_CP(r32.pve, r.pve, pve_path);
1148 break;
1149 case PT_COREDUMP:
1150 if (uap->data != sizeof(r32.pc))
1151 error = EINVAL;
1152 else
1153 error = copyin(uap->addr, &r32.pc, uap->data);
1154 CP(r32.pc, r.pc, pc_fd);
1155 CP(r32.pc, r.pc, pc_flags);
1156 r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit);
1157 data = sizeof(r.pc);
1158 break;
1159 case PT_SC_REMOTE:
1160 if (uap->data != sizeof(r32.sr)) {
1161 error = EINVAL;
1162 break;
1163 }
1164 error = copyin(uap->addr, &r32.sr, uap->data);
1165 if (error != 0)
1166 break;
1167 CP(r32.sr, r.sr, pscr_syscall);
1168 CP(r32.sr, r.sr, pscr_nargs);
1169 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) {
1170 error = EINVAL;
1171 break;
1172 }
1173 error = copyin(PTRIN(r32.sr.pscr_args), pscr_args32,
1174 sizeof(u_int) * r32.sr.pscr_nargs);
1175 if (error != 0)
1176 break;
1177 for (i = 0; i < r32.sr.pscr_nargs; i++)
1178 pscr_args[i] = pscr_args32[i];
1179 r.sr.pscr_args = pscr_args;
1180 break;
1181 default:
1182 addr = uap->addr;
1183 break;
1184 }
1185 if (error)
1186 return (error);
1187
1188 error = kern_ptrace(td, uap->req, uap->pid, addr, data);
1189 if (error)
1190 return (error);
1191
1192 switch (uap->req) {
1193 case PT_VM_ENTRY:
1194 CP(r.pve, r32.pve, pve_entry);
1195 CP(r.pve, r32.pve, pve_timestamp);
1196 CP(r.pve, r32.pve, pve_start);
1197 CP(r.pve, r32.pve, pve_end);
1198 CP(r.pve, r32.pve, pve_offset);
1199 CP(r.pve, r32.pve, pve_prot);
1200 CP(r.pve, r32.pve, pve_pathlen);
1201 CP(r.pve, r32.pve, pve_fileid);
1202 CP(r.pve, r32.pve, pve_fsid);
1203 error = copyout(&r32.pve, uap->addr, sizeof(r32.pve));
1204 break;
1205 case PT_IO:
1206 CP(r.piod, r32.piod, piod_len);
1207 error = copyout(&r32.piod, uap->addr, sizeof(r32.piod));
1208 break;
1209 case PT_GETREGS:
1210 error = copyout(&r.reg, uap->addr, sizeof(r.reg));
1211 break;
1212 case PT_GETFPREGS:
1213 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg));
1214 break;
1215 case PT_GETDBREGS:
1216 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg));
1217 break;
1218 case PT_GETREGSET:
1219 r32.vec.iov_len = r.vec.iov_len;
1220 error = copyout(&r32.vec, uap->addr, sizeof(r32.vec));
1221 break;
1222 case PT_GET_EVENT_MASK:
1223 /* NB: The size in uap->data is validated in kern_ptrace(). */
1224 error = copyout(&r.ptevents, uap->addr, uap->data);
1225 break;
1226 case PT_LWPINFO:
1227 ptrace_lwpinfo_to32(&r.pl, &r32.pl);
1228 error = copyout(&r32.pl, uap->addr, uap->data);
1229 break;
1230 case PT_GET_SC_ARGS:
1231 for (i = 0; i < nitems(r.args); i++)
1232 r32.args[i] = (uint32_t)r.args[i];
1233 error = copyout(r32.args, uap->addr, MIN(uap->data,
1234 sizeof(r32.args)));
1235 break;
1236 case PT_GET_SC_RET:
1237 ptrace_sc_ret_to32(&r.psr, &r32.psr);
1238 error = copyout(&r32.psr, uap->addr, MIN(uap->data,
1239 sizeof(r32.psr)));
1240 break;
1241 case PT_SC_REMOTE:
1242 ptrace_sc_ret_to32(&r.sr.pscr_ret, &r32.sr.pscr_ret);
1243 error = copyout(&r32.sr.pscr_ret, uap->addr +
1244 offsetof(struct ptrace_sc_remote32, pscr_ret),
1245 sizeof(r32.psr));
1246 break;
1247 }
1248
1249 return (error);
1250 }
1251
1252 int
freebsd32_copyinuio(const struct iovec32 * iovp,u_int iovcnt,struct uio ** uiop)1253 freebsd32_copyinuio(const struct iovec32 *iovp, u_int iovcnt, struct uio **uiop)
1254 {
1255 struct iovec32 iov32;
1256 struct iovec *iov;
1257 struct uio *uio;
1258 int error, i;
1259
1260 *uiop = NULL;
1261 if (iovcnt > UIO_MAXIOV)
1262 return (EINVAL);
1263 uio = allocuio(iovcnt);
1264 iov = uio->uio_iov;
1265 for (i = 0; i < iovcnt; i++) {
1266 error = copyin(&iovp[i], &iov32, sizeof(struct iovec32));
1267 if (error) {
1268 freeuio(uio);
1269 return (error);
1270 }
1271 iov[i].iov_base = PTRIN(iov32.iov_base);
1272 iov[i].iov_len = iov32.iov_len;
1273 }
1274 uio->uio_iovcnt = iovcnt;
1275 uio->uio_segflg = UIO_USERSPACE;
1276 uio->uio_offset = -1;
1277 uio->uio_resid = 0;
1278 for (i = 0; i < iovcnt; i++) {
1279 if (iov->iov_len > INT_MAX - uio->uio_resid) {
1280 freeuio(uio);
1281 return (EINVAL);
1282 }
1283 uio->uio_resid += iov->iov_len;
1284 iov++;
1285 }
1286 *uiop = uio;
1287 return (0);
1288 }
1289
1290 int
freebsd32_readv(struct thread * td,struct freebsd32_readv_args * uap)1291 freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap)
1292 {
1293 struct uio *auio;
1294 int error;
1295
1296 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1297 if (error)
1298 return (error);
1299 error = kern_readv(td, uap->fd, auio);
1300 freeuio(auio);
1301 return (error);
1302 }
1303
1304 int
freebsd32_writev(struct thread * td,struct freebsd32_writev_args * uap)1305 freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap)
1306 {
1307 struct uio *auio;
1308 int error;
1309
1310 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1311 if (error)
1312 return (error);
1313 error = kern_writev(td, uap->fd, auio);
1314 freeuio(auio);
1315 return (error);
1316 }
1317
1318 int
freebsd32_preadv(struct thread * td,struct freebsd32_preadv_args * uap)1319 freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap)
1320 {
1321 struct uio *auio;
1322 int error;
1323
1324 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1325 if (error)
1326 return (error);
1327 error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1328 freeuio(auio);
1329 return (error);
1330 }
1331
1332 int
freebsd32_pwritev(struct thread * td,struct freebsd32_pwritev_args * uap)1333 freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap)
1334 {
1335 struct uio *auio;
1336 int error;
1337
1338 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
1339 if (error)
1340 return (error);
1341 error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset));
1342 freeuio(auio);
1343 return (error);
1344 }
1345
1346 int
freebsd32_copyiniov(struct iovec32 * iovp32,u_int iovcnt,struct iovec ** iovp,int error)1347 freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp,
1348 int error)
1349 {
1350 struct iovec32 iov32;
1351 struct iovec *iov;
1352 u_int iovlen;
1353 int i;
1354
1355 *iovp = NULL;
1356 if (iovcnt > UIO_MAXIOV)
1357 return (error);
1358 iovlen = iovcnt * sizeof(struct iovec);
1359 iov = malloc(iovlen, M_IOV, M_WAITOK);
1360 for (i = 0; i < iovcnt; i++) {
1361 error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32));
1362 if (error) {
1363 free(iov, M_IOV);
1364 return (error);
1365 }
1366 iov[i].iov_base = PTRIN(iov32.iov_base);
1367 iov[i].iov_len = iov32.iov_len;
1368 }
1369 *iovp = iov;
1370 return (0);
1371 }
1372
1373 static int
freebsd32_copyinmsghdr(const struct msghdr32 * msg32,struct msghdr * msg)1374 freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg)
1375 {
1376 struct msghdr32 m32;
1377 int error;
1378
1379 error = copyin(msg32, &m32, sizeof(m32));
1380 if (error)
1381 return (error);
1382 msg->msg_name = PTRIN(m32.msg_name);
1383 msg->msg_namelen = m32.msg_namelen;
1384 msg->msg_iov = PTRIN(m32.msg_iov);
1385 msg->msg_iovlen = m32.msg_iovlen;
1386 msg->msg_control = PTRIN(m32.msg_control);
1387 msg->msg_controllen = m32.msg_controllen;
1388 msg->msg_flags = m32.msg_flags;
1389 return (0);
1390 }
1391
1392 static int
freebsd32_copyoutmsghdr(struct msghdr * msg,struct msghdr32 * msg32)1393 freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32)
1394 {
1395 struct msghdr32 m32;
1396 int error;
1397
1398 m32.msg_name = PTROUT(msg->msg_name);
1399 m32.msg_namelen = msg->msg_namelen;
1400 m32.msg_iov = PTROUT(msg->msg_iov);
1401 m32.msg_iovlen = msg->msg_iovlen;
1402 m32.msg_control = PTROUT(msg->msg_control);
1403 m32.msg_controllen = msg->msg_controllen;
1404 m32.msg_flags = msg->msg_flags;
1405 error = copyout(&m32, msg32, sizeof(m32));
1406 return (error);
1407 }
1408
1409 #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1)
1410 #define FREEBSD32_ALIGN(p) \
1411 (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES)
1412 #define FREEBSD32_CMSG_SPACE(l) \
1413 (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l))
1414
1415 #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \
1416 FREEBSD32_ALIGN(sizeof(struct cmsghdr)))
1417
1418 static size_t
freebsd32_cmsg_convert(const struct cmsghdr * cm,void * data,socklen_t datalen)1419 freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen)
1420 {
1421 size_t copylen;
1422 union {
1423 struct timespec32 ts;
1424 struct timeval32 tv;
1425 struct bintime32 bt;
1426 } tmp32;
1427
1428 union {
1429 struct timespec ts;
1430 struct timeval tv;
1431 struct bintime bt;
1432 } *in;
1433
1434 in = data;
1435 copylen = 0;
1436 switch (cm->cmsg_level) {
1437 case SOL_SOCKET:
1438 switch (cm->cmsg_type) {
1439 case SCM_TIMESTAMP:
1440 TV_CP(*in, tmp32, tv);
1441 copylen = sizeof(tmp32.tv);
1442 break;
1443
1444 case SCM_BINTIME:
1445 BT_CP(*in, tmp32, bt);
1446 copylen = sizeof(tmp32.bt);
1447 break;
1448
1449 case SCM_REALTIME:
1450 case SCM_MONOTONIC:
1451 TS_CP(*in, tmp32, ts);
1452 copylen = sizeof(tmp32.ts);
1453 break;
1454
1455 default:
1456 break;
1457 }
1458
1459 default:
1460 break;
1461 }
1462
1463 if (copylen == 0)
1464 return (datalen);
1465
1466 KASSERT((datalen >= copylen), ("corrupted cmsghdr"));
1467
1468 bcopy(&tmp32, data, copylen);
1469 return (copylen);
1470 }
1471
1472 static int
freebsd32_copy_msg_out(struct msghdr * msg,struct mbuf * control)1473 freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control)
1474 {
1475 struct cmsghdr *cm;
1476 void *data;
1477 socklen_t clen, datalen, datalen_out, oldclen;
1478 int error;
1479 caddr_t ctlbuf;
1480 int len, copylen;
1481 struct mbuf *m;
1482 error = 0;
1483
1484 len = msg->msg_controllen;
1485 msg->msg_controllen = 0;
1486
1487 ctlbuf = msg->msg_control;
1488 for (m = control; m != NULL && len > 0; m = m->m_next) {
1489 cm = mtod(m, struct cmsghdr *);
1490 clen = m->m_len;
1491 while (cm != NULL) {
1492 if (sizeof(struct cmsghdr) > clen ||
1493 cm->cmsg_len > clen) {
1494 error = EINVAL;
1495 break;
1496 }
1497
1498 data = CMSG_DATA(cm);
1499 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1500 datalen_out = freebsd32_cmsg_convert(cm, data, datalen);
1501
1502 /*
1503 * Copy out the message header. Preserve the native
1504 * message size in case we need to inspect the message
1505 * contents later.
1506 */
1507 copylen = sizeof(struct cmsghdr);
1508 if (len < copylen) {
1509 msg->msg_flags |= MSG_CTRUNC;
1510 m_dispose_extcontrolm(m);
1511 goto exit;
1512 }
1513 oldclen = cm->cmsg_len;
1514 cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) +
1515 datalen_out;
1516 error = copyout(cm, ctlbuf, copylen);
1517 cm->cmsg_len = oldclen;
1518 if (error != 0)
1519 goto exit;
1520
1521 ctlbuf += FREEBSD32_ALIGN(copylen);
1522 len -= FREEBSD32_ALIGN(copylen);
1523
1524 copylen = datalen_out;
1525 if (len < copylen) {
1526 msg->msg_flags |= MSG_CTRUNC;
1527 m_dispose_extcontrolm(m);
1528 break;
1529 }
1530
1531 /* Copy out the message data. */
1532 error = copyout(data, ctlbuf, copylen);
1533 if (error)
1534 goto exit;
1535
1536 ctlbuf += FREEBSD32_ALIGN(copylen);
1537 len -= FREEBSD32_ALIGN(copylen);
1538
1539 if (CMSG_SPACE(datalen) < clen) {
1540 clen -= CMSG_SPACE(datalen);
1541 cm = (struct cmsghdr *)
1542 ((caddr_t)cm + CMSG_SPACE(datalen));
1543 } else {
1544 clen = 0;
1545 cm = NULL;
1546 }
1547
1548 msg->msg_controllen +=
1549 FREEBSD32_CMSG_SPACE(datalen_out);
1550 }
1551 }
1552 if (len == 0 && m != NULL) {
1553 msg->msg_flags |= MSG_CTRUNC;
1554 m_dispose_extcontrolm(m);
1555 }
1556
1557 exit:
1558 return (error);
1559 }
1560
1561 int
freebsd32_recvmsg(struct thread * td,struct freebsd32_recvmsg_args * uap)1562 freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap)
1563 {
1564 struct msghdr msg;
1565 struct iovec *uiov, *iov;
1566 struct mbuf *control = NULL;
1567 struct mbuf **controlp;
1568 int error;
1569
1570 error = freebsd32_copyinmsghdr(uap->msg, &msg);
1571 if (error)
1572 return (error);
1573 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1574 EMSGSIZE);
1575 if (error)
1576 return (error);
1577 msg.msg_flags = uap->flags;
1578 uiov = msg.msg_iov;
1579 msg.msg_iov = iov;
1580
1581 controlp = (msg.msg_control != NULL) ? &control : NULL;
1582 error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp);
1583 if (error == 0) {
1584 msg.msg_iov = uiov;
1585
1586 if (control != NULL)
1587 error = freebsd32_copy_msg_out(&msg, control);
1588 else
1589 msg.msg_controllen = 0;
1590
1591 if (error == 0)
1592 error = freebsd32_copyoutmsghdr(&msg, uap->msg);
1593 }
1594 free(iov, M_IOV);
1595
1596 if (control != NULL) {
1597 if (error != 0)
1598 m_dispose_extcontrolm(control);
1599 m_freem(control);
1600 }
1601
1602 return (error);
1603 }
1604
1605 #ifdef COMPAT_43
1606 int
ofreebsd32_recvmsg(struct thread * td,struct ofreebsd32_recvmsg_args * uap)1607 ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap)
1608 {
1609 return (ENOSYS);
1610 }
1611 #endif
1612
1613 /*
1614 * Copy-in the array of control messages constructed using alignment
1615 * and padding suitable for a 32-bit environment and construct an
1616 * mbuf using alignment and padding suitable for a 64-bit kernel.
1617 * The alignment and padding are defined indirectly by CMSG_DATA(),
1618 * CMSG_SPACE() and CMSG_LEN().
1619 */
1620 static int
freebsd32_copyin_control(struct mbuf ** mp,caddr_t buf,u_int buflen)1621 freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen)
1622 {
1623 struct cmsghdr *cm;
1624 struct mbuf *m;
1625 void *in, *in1, *md;
1626 u_int msglen, outlen;
1627 int error;
1628
1629 /* Enforce the size limit of the native implementation. */
1630 if (buflen > MCLBYTES)
1631 return (EINVAL);
1632
1633 in = malloc(buflen, M_TEMP, M_WAITOK);
1634 error = copyin(buf, in, buflen);
1635 if (error != 0)
1636 goto out;
1637
1638 /*
1639 * Make a pass over the input buffer to determine the amount of space
1640 * required for 64 bit-aligned copies of the control messages.
1641 */
1642 in1 = in;
1643 outlen = 0;
1644 while (buflen > 0) {
1645 if (buflen < sizeof(*cm)) {
1646 error = EINVAL;
1647 break;
1648 }
1649 cm = (struct cmsghdr *)in1;
1650 if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm)) ||
1651 cm->cmsg_len > buflen) {
1652 error = EINVAL;
1653 break;
1654 }
1655 msglen = FREEBSD32_ALIGN(cm->cmsg_len);
1656 if (msglen < cm->cmsg_len) {
1657 error = EINVAL;
1658 break;
1659 }
1660 /* The native ABI permits the final padding to be omitted. */
1661 if (msglen > buflen)
1662 msglen = buflen;
1663 buflen -= msglen;
1664
1665 in1 = (char *)in1 + msglen;
1666 outlen += CMSG_ALIGN(sizeof(*cm)) +
1667 CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm)));
1668 }
1669 if (error != 0)
1670 goto out;
1671
1672 /*
1673 * Allocate up to MJUMPAGESIZE space for the re-aligned and
1674 * re-padded control messages. This allows a full MCLBYTES of
1675 * 32-bit sized and aligned messages to fit and avoids an ABI
1676 * mismatch with the native implementation.
1677 */
1678 m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0);
1679 if (m == NULL) {
1680 error = EINVAL;
1681 goto out;
1682 }
1683 m->m_len = outlen;
1684 md = mtod(m, void *);
1685
1686 /*
1687 * Make a second pass over input messages, copying them into the output
1688 * buffer.
1689 */
1690 in1 = in;
1691 while (outlen > 0) {
1692 /* Copy the message header and align the length field. */
1693 cm = md;
1694 memcpy(cm, in1, sizeof(*cm));
1695 msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm));
1696 cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen;
1697
1698 /* Copy the message body. */
1699 in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm));
1700 md = (char *)md + CMSG_ALIGN(sizeof(*cm));
1701 memcpy(md, in1, msglen);
1702 in1 = (char *)in1 + FREEBSD32_ALIGN(msglen);
1703 md = (char *)md + CMSG_ALIGN(msglen);
1704 KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen),
1705 ("outlen %u underflow, msglen %u", outlen, msglen));
1706 outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen);
1707 }
1708
1709 *mp = m;
1710 out:
1711 free(in, M_TEMP);
1712 return (error);
1713 }
1714
1715 int
freebsd32_sendmsg(struct thread * td,struct freebsd32_sendmsg_args * uap)1716 freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap)
1717 {
1718 struct msghdr msg;
1719 struct iovec *iov;
1720 struct mbuf *control = NULL;
1721 struct sockaddr *to = NULL;
1722 int error;
1723
1724 error = freebsd32_copyinmsghdr(uap->msg, &msg);
1725 if (error)
1726 return (error);
1727 error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov,
1728 EMSGSIZE);
1729 if (error)
1730 return (error);
1731 msg.msg_iov = iov;
1732 if (msg.msg_name != NULL) {
1733 error = getsockaddr(&to, msg.msg_name, msg.msg_namelen);
1734 if (error) {
1735 to = NULL;
1736 goto out;
1737 }
1738 msg.msg_name = to;
1739 }
1740
1741 if (msg.msg_control) {
1742 if (msg.msg_controllen < sizeof(struct cmsghdr)) {
1743 error = EINVAL;
1744 goto out;
1745 }
1746
1747 error = freebsd32_copyin_control(&control, msg.msg_control,
1748 msg.msg_controllen);
1749 if (error)
1750 goto out;
1751
1752 msg.msg_control = NULL;
1753 msg.msg_controllen = 0;
1754 }
1755
1756 error = kern_sendit(td, uap->s, &msg, uap->flags, control,
1757 UIO_USERSPACE);
1758
1759 out:
1760 free(iov, M_IOV);
1761 if (to)
1762 free(to, M_SONAME);
1763 return (error);
1764 }
1765
1766 #ifdef COMPAT_43
1767 int
ofreebsd32_sendmsg(struct thread * td,struct ofreebsd32_sendmsg_args * uap)1768 ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap)
1769 {
1770 return (ENOSYS);
1771 }
1772 #endif
1773
1774
1775 int
freebsd32_settimeofday(struct thread * td,struct freebsd32_settimeofday_args * uap)1776 freebsd32_settimeofday(struct thread *td,
1777 struct freebsd32_settimeofday_args *uap)
1778 {
1779 struct timeval32 tv32;
1780 struct timeval tv, *tvp;
1781 struct timezone tz, *tzp;
1782 int error;
1783
1784 if (uap->tv) {
1785 error = copyin(uap->tv, &tv32, sizeof(tv32));
1786 if (error)
1787 return (error);
1788 CP(tv32, tv, tv_sec);
1789 CP(tv32, tv, tv_usec);
1790 tvp = &tv;
1791 } else
1792 tvp = NULL;
1793 if (uap->tzp) {
1794 error = copyin(uap->tzp, &tz, sizeof(tz));
1795 if (error)
1796 return (error);
1797 tzp = &tz;
1798 } else
1799 tzp = NULL;
1800 return (kern_settimeofday(td, tvp, tzp));
1801 }
1802
1803 int
freebsd32_utimes(struct thread * td,struct freebsd32_utimes_args * uap)1804 freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap)
1805 {
1806 struct timeval32 s32[2];
1807 struct timeval s[2], *sp;
1808 int error;
1809
1810 if (uap->tptr != NULL) {
1811 error = copyin(uap->tptr, s32, sizeof(s32));
1812 if (error)
1813 return (error);
1814 CP(s32[0], s[0], tv_sec);
1815 CP(s32[0], s[0], tv_usec);
1816 CP(s32[1], s[1], tv_sec);
1817 CP(s32[1], s[1], tv_usec);
1818 sp = s;
1819 } else
1820 sp = NULL;
1821 return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE,
1822 sp, UIO_SYSSPACE));
1823 }
1824
1825 int
freebsd32_lutimes(struct thread * td,struct freebsd32_lutimes_args * uap)1826 freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap)
1827 {
1828 struct timeval32 s32[2];
1829 struct timeval s[2], *sp;
1830 int error;
1831
1832 if (uap->tptr != NULL) {
1833 error = copyin(uap->tptr, s32, sizeof(s32));
1834 if (error)
1835 return (error);
1836 CP(s32[0], s[0], tv_sec);
1837 CP(s32[0], s[0], tv_usec);
1838 CP(s32[1], s[1], tv_sec);
1839 CP(s32[1], s[1], tv_usec);
1840 sp = s;
1841 } else
1842 sp = NULL;
1843 return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE));
1844 }
1845
1846 int
freebsd32_futimes(struct thread * td,struct freebsd32_futimes_args * uap)1847 freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap)
1848 {
1849 struct timeval32 s32[2];
1850 struct timeval s[2], *sp;
1851 int error;
1852
1853 if (uap->tptr != NULL) {
1854 error = copyin(uap->tptr, s32, sizeof(s32));
1855 if (error)
1856 return (error);
1857 CP(s32[0], s[0], tv_sec);
1858 CP(s32[0], s[0], tv_usec);
1859 CP(s32[1], s[1], tv_sec);
1860 CP(s32[1], s[1], tv_usec);
1861 sp = s;
1862 } else
1863 sp = NULL;
1864 return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE));
1865 }
1866
1867 int
freebsd32_futimesat(struct thread * td,struct freebsd32_futimesat_args * uap)1868 freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap)
1869 {
1870 struct timeval32 s32[2];
1871 struct timeval s[2], *sp;
1872 int error;
1873
1874 if (uap->times != NULL) {
1875 error = copyin(uap->times, s32, sizeof(s32));
1876 if (error)
1877 return (error);
1878 CP(s32[0], s[0], tv_sec);
1879 CP(s32[0], s[0], tv_usec);
1880 CP(s32[1], s[1], tv_sec);
1881 CP(s32[1], s[1], tv_usec);
1882 sp = s;
1883 } else
1884 sp = NULL;
1885 return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE,
1886 sp, UIO_SYSSPACE));
1887 }
1888
1889 int
freebsd32_futimens(struct thread * td,struct freebsd32_futimens_args * uap)1890 freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap)
1891 {
1892 struct timespec32 ts32[2];
1893 struct timespec ts[2], *tsp;
1894 int error;
1895
1896 if (uap->times != NULL) {
1897 error = copyin(uap->times, ts32, sizeof(ts32));
1898 if (error)
1899 return (error);
1900 CP(ts32[0], ts[0], tv_sec);
1901 CP(ts32[0], ts[0], tv_nsec);
1902 CP(ts32[1], ts[1], tv_sec);
1903 CP(ts32[1], ts[1], tv_nsec);
1904 tsp = ts;
1905 } else
1906 tsp = NULL;
1907 return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE));
1908 }
1909
1910 int
freebsd32_utimensat(struct thread * td,struct freebsd32_utimensat_args * uap)1911 freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap)
1912 {
1913 struct timespec32 ts32[2];
1914 struct timespec ts[2], *tsp;
1915 int error;
1916
1917 if (uap->times != NULL) {
1918 error = copyin(uap->times, ts32, sizeof(ts32));
1919 if (error)
1920 return (error);
1921 CP(ts32[0], ts[0], tv_sec);
1922 CP(ts32[0], ts[0], tv_nsec);
1923 CP(ts32[1], ts[1], tv_sec);
1924 CP(ts32[1], ts[1], tv_nsec);
1925 tsp = ts;
1926 } else
1927 tsp = NULL;
1928 return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE,
1929 tsp, UIO_SYSSPACE, uap->flag));
1930 }
1931
1932 int
freebsd32_adjtime(struct thread * td,struct freebsd32_adjtime_args * uap)1933 freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap)
1934 {
1935 struct timeval32 tv32;
1936 struct timeval delta, olddelta, *deltap;
1937 int error;
1938
1939 if (uap->delta) {
1940 error = copyin(uap->delta, &tv32, sizeof(tv32));
1941 if (error)
1942 return (error);
1943 CP(tv32, delta, tv_sec);
1944 CP(tv32, delta, tv_usec);
1945 deltap = δ
1946 } else
1947 deltap = NULL;
1948 error = kern_adjtime(td, deltap, &olddelta);
1949 if (uap->olddelta && error == 0) {
1950 CP(olddelta, tv32, tv_sec);
1951 CP(olddelta, tv32, tv_usec);
1952 error = copyout(&tv32, uap->olddelta, sizeof(tv32));
1953 }
1954 return (error);
1955 }
1956
1957 #ifdef COMPAT_FREEBSD4
1958 int
freebsd4_freebsd32_statfs(struct thread * td,struct freebsd4_freebsd32_statfs_args * uap)1959 freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap)
1960 {
1961 struct ostatfs32 s32;
1962 struct statfs *sp;
1963 int error;
1964
1965 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1966 error = kern_statfs(td, uap->path, UIO_USERSPACE, sp);
1967 if (error == 0) {
1968 copy_statfs(sp, &s32);
1969 error = copyout(&s32, uap->buf, sizeof(s32));
1970 }
1971 free(sp, M_STATFS);
1972 return (error);
1973 }
1974 #endif
1975
1976 #ifdef COMPAT_FREEBSD4
1977 int
freebsd4_freebsd32_fstatfs(struct thread * td,struct freebsd4_freebsd32_fstatfs_args * uap)1978 freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap)
1979 {
1980 struct ostatfs32 s32;
1981 struct statfs *sp;
1982 int error;
1983
1984 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
1985 error = kern_fstatfs(td, uap->fd, sp);
1986 if (error == 0) {
1987 copy_statfs(sp, &s32);
1988 error = copyout(&s32, uap->buf, sizeof(s32));
1989 }
1990 free(sp, M_STATFS);
1991 return (error);
1992 }
1993 #endif
1994
1995 #ifdef COMPAT_FREEBSD4
1996 int
freebsd4_freebsd32_fhstatfs(struct thread * td,struct freebsd4_freebsd32_fhstatfs_args * uap)1997 freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap)
1998 {
1999 struct ostatfs32 s32;
2000 struct statfs *sp;
2001 fhandle_t fh;
2002 int error;
2003
2004 if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0)
2005 return (error);
2006 sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK);
2007 error = kern_fhstatfs(td, fh, sp);
2008 if (error == 0) {
2009 copy_statfs(sp, &s32);
2010 error = copyout(&s32, uap->buf, sizeof(s32));
2011 }
2012 free(sp, M_STATFS);
2013 return (error);
2014 }
2015 #endif
2016
2017 int
freebsd32_pread(struct thread * td,struct freebsd32_pread_args * uap)2018 freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap)
2019 {
2020
2021 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2022 PAIR32TO64(off_t, uap->offset)));
2023 }
2024
2025 int
freebsd32_pwrite(struct thread * td,struct freebsd32_pwrite_args * uap)2026 freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap)
2027 {
2028
2029 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2030 PAIR32TO64(off_t, uap->offset)));
2031 }
2032
2033 #ifdef COMPAT_43
2034 int
ofreebsd32_lseek(struct thread * td,struct ofreebsd32_lseek_args * uap)2035 ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap)
2036 {
2037
2038 return (kern_lseek(td, uap->fd, uap->offset, uap->whence));
2039 }
2040 #endif
2041
2042 int
freebsd32_lseek(struct thread * td,struct freebsd32_lseek_args * uap)2043 freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap)
2044 {
2045 int error;
2046 off_t pos;
2047
2048 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2049 uap->whence);
2050 /* Expand the quad return into two parts for eax and edx */
2051 pos = td->td_uretoff.tdu_off;
2052 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
2053 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
2054 return error;
2055 }
2056
2057 int
freebsd32_truncate(struct thread * td,struct freebsd32_truncate_args * uap)2058 freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap)
2059 {
2060
2061 return (kern_truncate(td, uap->path, UIO_USERSPACE,
2062 PAIR32TO64(off_t, uap->length)));
2063 }
2064
2065 #ifdef COMPAT_43
2066 int
ofreebsd32_truncate(struct thread * td,struct ofreebsd32_truncate_args * uap)2067 ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap)
2068 {
2069 return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length));
2070 }
2071 #endif
2072
2073 int
freebsd32_ftruncate(struct thread * td,struct freebsd32_ftruncate_args * uap)2074 freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap)
2075 {
2076
2077 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2078 }
2079
2080 #ifdef COMPAT_43
2081 int
ofreebsd32_ftruncate(struct thread * td,struct ofreebsd32_ftruncate_args * uap)2082 ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap)
2083 {
2084 return (kern_ftruncate(td, uap->fd, uap->length));
2085 }
2086
2087 int
ofreebsd32_getdirentries(struct thread * td,struct ofreebsd32_getdirentries_args * uap)2088 ofreebsd32_getdirentries(struct thread *td,
2089 struct ofreebsd32_getdirentries_args *uap)
2090 {
2091 struct ogetdirentries_args ap;
2092 int error;
2093 long loff;
2094 int32_t loff_cut;
2095
2096 ap.fd = uap->fd;
2097 ap.buf = uap->buf;
2098 ap.count = uap->count;
2099 ap.basep = NULL;
2100 error = kern_ogetdirentries(td, &ap, &loff);
2101 if (error == 0) {
2102 loff_cut = loff;
2103 error = copyout(&loff_cut, uap->basep, sizeof(int32_t));
2104 }
2105 return (error);
2106 }
2107 #endif
2108
2109 #if defined(COMPAT_FREEBSD11)
2110 int
freebsd11_freebsd32_getdirentries(struct thread * td,struct freebsd11_freebsd32_getdirentries_args * uap)2111 freebsd11_freebsd32_getdirentries(struct thread *td,
2112 struct freebsd11_freebsd32_getdirentries_args *uap)
2113 {
2114 long base;
2115 int32_t base32;
2116 int error;
2117
2118 error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count,
2119 &base, NULL);
2120 if (error)
2121 return (error);
2122 if (uap->basep != NULL) {
2123 base32 = base;
2124 error = copyout(&base32, uap->basep, sizeof(int32_t));
2125 }
2126 return (error);
2127 }
2128 #endif /* COMPAT_FREEBSD11 */
2129
2130 #ifdef COMPAT_FREEBSD6
2131 /* versions with the 'int pad' argument */
2132 int
freebsd6_freebsd32_pread(struct thread * td,struct freebsd6_freebsd32_pread_args * uap)2133 freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap)
2134 {
2135
2136 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte,
2137 PAIR32TO64(off_t, uap->offset)));
2138 }
2139
2140 int
freebsd6_freebsd32_pwrite(struct thread * td,struct freebsd6_freebsd32_pwrite_args * uap)2141 freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap)
2142 {
2143
2144 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte,
2145 PAIR32TO64(off_t, uap->offset)));
2146 }
2147
2148 int
freebsd6_freebsd32_lseek(struct thread * td,struct freebsd6_freebsd32_lseek_args * uap)2149 freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap)
2150 {
2151 int error;
2152 off_t pos;
2153
2154 error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset),
2155 uap->whence);
2156 /* Expand the quad return into two parts for eax and edx */
2157 pos = *(off_t *)(td->td_retval);
2158 td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */
2159 td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */
2160 return error;
2161 }
2162
2163 int
freebsd6_freebsd32_truncate(struct thread * td,struct freebsd6_freebsd32_truncate_args * uap)2164 freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap)
2165 {
2166
2167 return (kern_truncate(td, uap->path, UIO_USERSPACE,
2168 PAIR32TO64(off_t, uap->length)));
2169 }
2170
2171 int
freebsd6_freebsd32_ftruncate(struct thread * td,struct freebsd6_freebsd32_ftruncate_args * uap)2172 freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap)
2173 {
2174
2175 return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length)));
2176 }
2177 #endif /* COMPAT_FREEBSD6 */
2178
2179 struct sf_hdtr32 {
2180 uint32_t headers;
2181 int hdr_cnt;
2182 uint32_t trailers;
2183 int trl_cnt;
2184 };
2185
2186 static int
freebsd32_do_sendfile(struct thread * td,struct freebsd32_sendfile_args * uap,int compat)2187 freebsd32_do_sendfile(struct thread *td,
2188 struct freebsd32_sendfile_args *uap, int compat)
2189 {
2190 struct sf_hdtr32 hdtr32;
2191 struct sf_hdtr hdtr;
2192 struct uio *hdr_uio, *trl_uio;
2193 struct file *fp;
2194 cap_rights_t rights;
2195 struct iovec32 *iov32;
2196 off_t offset, sbytes;
2197 int error;
2198
2199 offset = PAIR32TO64(off_t, uap->offset);
2200 if (offset < 0)
2201 return (EINVAL);
2202
2203 hdr_uio = trl_uio = NULL;
2204
2205 if (uap->hdtr != NULL) {
2206 error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32));
2207 if (error)
2208 goto out;
2209 PTRIN_CP(hdtr32, hdtr, headers);
2210 CP(hdtr32, hdtr, hdr_cnt);
2211 PTRIN_CP(hdtr32, hdtr, trailers);
2212 CP(hdtr32, hdtr, trl_cnt);
2213
2214 if (hdtr.headers != NULL) {
2215 iov32 = PTRIN(hdtr32.headers);
2216 error = freebsd32_copyinuio(iov32,
2217 hdtr32.hdr_cnt, &hdr_uio);
2218 if (error)
2219 goto out;
2220 #ifdef COMPAT_FREEBSD4
2221 /*
2222 * In FreeBSD < 5.0 the nbytes to send also included
2223 * the header. If compat is specified subtract the
2224 * header size from nbytes.
2225 */
2226 if (compat) {
2227 if (uap->nbytes > hdr_uio->uio_resid)
2228 uap->nbytes -= hdr_uio->uio_resid;
2229 else
2230 uap->nbytes = 0;
2231 }
2232 #endif
2233 }
2234 if (hdtr.trailers != NULL) {
2235 iov32 = PTRIN(hdtr32.trailers);
2236 error = freebsd32_copyinuio(iov32,
2237 hdtr32.trl_cnt, &trl_uio);
2238 if (error)
2239 goto out;
2240 }
2241 }
2242
2243 AUDIT_ARG_FD(uap->fd);
2244
2245 if ((error = fget_read(td, uap->fd,
2246 cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0)
2247 goto out;
2248
2249 error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset,
2250 uap->nbytes, &sbytes, uap->flags, td);
2251 fdrop(fp, td);
2252
2253 if (uap->sbytes != NULL)
2254 (void)copyout(&sbytes, uap->sbytes, sizeof(off_t));
2255
2256 out:
2257 if (hdr_uio)
2258 freeuio(hdr_uio);
2259 if (trl_uio)
2260 freeuio(trl_uio);
2261 return (error);
2262 }
2263
2264 #ifdef COMPAT_FREEBSD4
2265 int
freebsd4_freebsd32_sendfile(struct thread * td,struct freebsd4_freebsd32_sendfile_args * uap)2266 freebsd4_freebsd32_sendfile(struct thread *td,
2267 struct freebsd4_freebsd32_sendfile_args *uap)
2268 {
2269 return (freebsd32_do_sendfile(td,
2270 (struct freebsd32_sendfile_args *)uap, 1));
2271 }
2272 #endif
2273
2274 int
freebsd32_sendfile(struct thread * td,struct freebsd32_sendfile_args * uap)2275 freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap)
2276 {
2277
2278 return (freebsd32_do_sendfile(td, uap, 0));
2279 }
2280
2281 static void
copy_stat(struct stat * in,struct stat32 * out)2282 copy_stat(struct stat *in, struct stat32 *out)
2283 {
2284
2285 #ifndef __amd64__
2286 /*
2287 * 32-bit architectures other than i386 have 64-bit time_t. This
2288 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2289 * and 4 bytes of padding. Zero the padding holes in struct stat32.
2290 */
2291 bzero(&out->st_atim, sizeof(out->st_atim));
2292 bzero(&out->st_mtim, sizeof(out->st_mtim));
2293 bzero(&out->st_ctim, sizeof(out->st_ctim));
2294 bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2295 #endif
2296 CP(*in, *out, st_dev);
2297 CP(*in, *out, st_ino);
2298 CP(*in, *out, st_mode);
2299 CP(*in, *out, st_nlink);
2300 CP(*in, *out, st_uid);
2301 CP(*in, *out, st_gid);
2302 CP(*in, *out, st_rdev);
2303 TS_CP(*in, *out, st_atim);
2304 TS_CP(*in, *out, st_mtim);
2305 TS_CP(*in, *out, st_ctim);
2306 CP(*in, *out, st_size);
2307 CP(*in, *out, st_blocks);
2308 CP(*in, *out, st_blksize);
2309 CP(*in, *out, st_flags);
2310 CP(*in, *out, st_gen);
2311 CP(*in, *out, st_filerev);
2312 TS_CP(*in, *out, st_birthtim);
2313 out->st_padding0 = 0;
2314 out->st_padding1 = 0;
2315 #ifdef __STAT32_TIME_T_EXT
2316 out->st_atim_ext = 0;
2317 out->st_mtim_ext = 0;
2318 out->st_ctim_ext = 0;
2319 out->st_btim_ext = 0;
2320 #endif
2321 bzero(out->st_spare, sizeof(out->st_spare));
2322 }
2323
2324 #ifdef COMPAT_43
2325 static void
copy_ostat(struct stat * in,struct ostat32 * out)2326 copy_ostat(struct stat *in, struct ostat32 *out)
2327 {
2328
2329 bzero(out, sizeof(*out));
2330 CP(*in, *out, st_dev);
2331 CP(*in, *out, st_ino);
2332 CP(*in, *out, st_mode);
2333 CP(*in, *out, st_nlink);
2334 CP(*in, *out, st_uid);
2335 CP(*in, *out, st_gid);
2336 CP(*in, *out, st_rdev);
2337 out->st_size = MIN(in->st_size, INT32_MAX);
2338 TS_CP(*in, *out, st_atim);
2339 TS_CP(*in, *out, st_mtim);
2340 TS_CP(*in, *out, st_ctim);
2341 CP(*in, *out, st_blksize);
2342 CP(*in, *out, st_blocks);
2343 CP(*in, *out, st_flags);
2344 CP(*in, *out, st_gen);
2345 }
2346 #endif
2347
2348 #ifdef COMPAT_43
2349 int
ofreebsd32_stat(struct thread * td,struct ofreebsd32_stat_args * uap)2350 ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap)
2351 {
2352 struct stat sb;
2353 struct ostat32 sb32;
2354 int error;
2355
2356 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2357 if (error)
2358 return (error);
2359 copy_ostat(&sb, &sb32);
2360 error = copyout(&sb32, uap->ub, sizeof (sb32));
2361 return (error);
2362 }
2363 #endif
2364
2365 int
freebsd32_fstat(struct thread * td,struct freebsd32_fstat_args * uap)2366 freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap)
2367 {
2368 struct stat ub;
2369 struct stat32 ub32;
2370 int error;
2371
2372 error = kern_fstat(td, uap->fd, &ub);
2373 if (error)
2374 return (error);
2375 copy_stat(&ub, &ub32);
2376 error = copyout(&ub32, uap->sb, sizeof(ub32));
2377 return (error);
2378 }
2379
2380 #ifdef COMPAT_43
2381 int
ofreebsd32_fstat(struct thread * td,struct ofreebsd32_fstat_args * uap)2382 ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap)
2383 {
2384 struct stat ub;
2385 struct ostat32 ub32;
2386 int error;
2387
2388 error = kern_fstat(td, uap->fd, &ub);
2389 if (error)
2390 return (error);
2391 copy_ostat(&ub, &ub32);
2392 error = copyout(&ub32, uap->sb, sizeof(ub32));
2393 return (error);
2394 }
2395 #endif
2396
2397 int
freebsd32_fstatat(struct thread * td,struct freebsd32_fstatat_args * uap)2398 freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap)
2399 {
2400 struct stat ub;
2401 struct stat32 ub32;
2402 int error;
2403
2404 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2405 &ub);
2406 if (error)
2407 return (error);
2408 copy_stat(&ub, &ub32);
2409 error = copyout(&ub32, uap->buf, sizeof(ub32));
2410 return (error);
2411 }
2412
2413 #ifdef COMPAT_43
2414 int
ofreebsd32_lstat(struct thread * td,struct ofreebsd32_lstat_args * uap)2415 ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap)
2416 {
2417 struct stat sb;
2418 struct ostat32 sb32;
2419 int error;
2420
2421 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2422 UIO_USERSPACE, &sb);
2423 if (error)
2424 return (error);
2425 copy_ostat(&sb, &sb32);
2426 error = copyout(&sb32, uap->ub, sizeof (sb32));
2427 return (error);
2428 }
2429 #endif
2430
2431 int
freebsd32_fhstat(struct thread * td,struct freebsd32_fhstat_args * uap)2432 freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap)
2433 {
2434 struct stat sb;
2435 struct stat32 sb32;
2436 struct fhandle fh;
2437 int error;
2438
2439 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2440 if (error != 0)
2441 return (error);
2442 error = kern_fhstat(td, fh, &sb);
2443 if (error != 0)
2444 return (error);
2445 copy_stat(&sb, &sb32);
2446 error = copyout(&sb32, uap->sb, sizeof (sb32));
2447 return (error);
2448 }
2449
2450 #if defined(COMPAT_FREEBSD11)
2451 extern int ino64_trunc_error;
2452
2453 static int
freebsd11_cvtstat32(struct stat * in,struct freebsd11_stat32 * out)2454 freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out)
2455 {
2456
2457 #ifndef __amd64__
2458 /*
2459 * 32-bit architectures other than i386 have 64-bit time_t. This
2460 * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec,
2461 * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32.
2462 */
2463 bzero(&out->st_atim, sizeof(out->st_atim));
2464 bzero(&out->st_mtim, sizeof(out->st_mtim));
2465 bzero(&out->st_ctim, sizeof(out->st_ctim));
2466 bzero(&out->st_birthtim, sizeof(out->st_birthtim));
2467 #endif
2468
2469 CP(*in, *out, st_ino);
2470 if (in->st_ino != out->st_ino) {
2471 switch (ino64_trunc_error) {
2472 default:
2473 case 0:
2474 break;
2475 case 1:
2476 return (EOVERFLOW);
2477 case 2:
2478 out->st_ino = UINT32_MAX;
2479 break;
2480 }
2481 }
2482 CP(*in, *out, st_nlink);
2483 if (in->st_nlink != out->st_nlink) {
2484 switch (ino64_trunc_error) {
2485 default:
2486 case 0:
2487 break;
2488 case 1:
2489 return (EOVERFLOW);
2490 case 2:
2491 out->st_nlink = UINT16_MAX;
2492 break;
2493 }
2494 }
2495 out->st_dev = in->st_dev;
2496 if (out->st_dev != in->st_dev) {
2497 switch (ino64_trunc_error) {
2498 default:
2499 break;
2500 case 1:
2501 return (EOVERFLOW);
2502 }
2503 }
2504 CP(*in, *out, st_mode);
2505 CP(*in, *out, st_uid);
2506 CP(*in, *out, st_gid);
2507 out->st_rdev = in->st_rdev;
2508 if (out->st_rdev != in->st_rdev) {
2509 switch (ino64_trunc_error) {
2510 default:
2511 break;
2512 case 1:
2513 return (EOVERFLOW);
2514 }
2515 }
2516 TS_CP(*in, *out, st_atim);
2517 TS_CP(*in, *out, st_mtim);
2518 TS_CP(*in, *out, st_ctim);
2519 CP(*in, *out, st_size);
2520 CP(*in, *out, st_blocks);
2521 CP(*in, *out, st_blksize);
2522 CP(*in, *out, st_flags);
2523 CP(*in, *out, st_gen);
2524 TS_CP(*in, *out, st_birthtim);
2525 out->st_lspare = 0;
2526 bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim),
2527 sizeof(*out) - offsetof(struct freebsd11_stat32,
2528 st_birthtim) - sizeof(out->st_birthtim));
2529 return (0);
2530 }
2531
2532 int
freebsd11_freebsd32_stat(struct thread * td,struct freebsd11_freebsd32_stat_args * uap)2533 freebsd11_freebsd32_stat(struct thread *td,
2534 struct freebsd11_freebsd32_stat_args *uap)
2535 {
2536 struct stat sb;
2537 struct freebsd11_stat32 sb32;
2538 int error;
2539
2540 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2541 if (error != 0)
2542 return (error);
2543 error = freebsd11_cvtstat32(&sb, &sb32);
2544 if (error == 0)
2545 error = copyout(&sb32, uap->ub, sizeof (sb32));
2546 return (error);
2547 }
2548
2549 int
freebsd11_freebsd32_fstat(struct thread * td,struct freebsd11_freebsd32_fstat_args * uap)2550 freebsd11_freebsd32_fstat(struct thread *td,
2551 struct freebsd11_freebsd32_fstat_args *uap)
2552 {
2553 struct stat sb;
2554 struct freebsd11_stat32 sb32;
2555 int error;
2556
2557 error = kern_fstat(td, uap->fd, &sb);
2558 if (error != 0)
2559 return (error);
2560 error = freebsd11_cvtstat32(&sb, &sb32);
2561 if (error == 0)
2562 error = copyout(&sb32, uap->sb, sizeof (sb32));
2563 return (error);
2564 }
2565
2566 int
freebsd11_freebsd32_fstatat(struct thread * td,struct freebsd11_freebsd32_fstatat_args * uap)2567 freebsd11_freebsd32_fstatat(struct thread *td,
2568 struct freebsd11_freebsd32_fstatat_args *uap)
2569 {
2570 struct stat sb;
2571 struct freebsd11_stat32 sb32;
2572 int error;
2573
2574 error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE,
2575 &sb);
2576 if (error != 0)
2577 return (error);
2578 error = freebsd11_cvtstat32(&sb, &sb32);
2579 if (error == 0)
2580 error = copyout(&sb32, uap->buf, sizeof (sb32));
2581 return (error);
2582 }
2583
2584 int
freebsd11_freebsd32_lstat(struct thread * td,struct freebsd11_freebsd32_lstat_args * uap)2585 freebsd11_freebsd32_lstat(struct thread *td,
2586 struct freebsd11_freebsd32_lstat_args *uap)
2587 {
2588 struct stat sb;
2589 struct freebsd11_stat32 sb32;
2590 int error;
2591
2592 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2593 UIO_USERSPACE, &sb);
2594 if (error != 0)
2595 return (error);
2596 error = freebsd11_cvtstat32(&sb, &sb32);
2597 if (error == 0)
2598 error = copyout(&sb32, uap->ub, sizeof (sb32));
2599 return (error);
2600 }
2601
2602 int
freebsd11_freebsd32_fhstat(struct thread * td,struct freebsd11_freebsd32_fhstat_args * uap)2603 freebsd11_freebsd32_fhstat(struct thread *td,
2604 struct freebsd11_freebsd32_fhstat_args *uap)
2605 {
2606 struct stat sb;
2607 struct freebsd11_stat32 sb32;
2608 struct fhandle fh;
2609 int error;
2610
2611 error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t));
2612 if (error != 0)
2613 return (error);
2614 error = kern_fhstat(td, fh, &sb);
2615 if (error != 0)
2616 return (error);
2617 error = freebsd11_cvtstat32(&sb, &sb32);
2618 if (error == 0)
2619 error = copyout(&sb32, uap->sb, sizeof (sb32));
2620 return (error);
2621 }
2622
2623 static int
freebsd11_cvtnstat32(struct stat * sb,struct nstat32 * nsb32)2624 freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32)
2625 {
2626 struct nstat nsb;
2627 int error;
2628
2629 error = freebsd11_cvtnstat(sb, &nsb);
2630 if (error != 0)
2631 return (error);
2632
2633 bzero(nsb32, sizeof(*nsb32));
2634 CP(nsb, *nsb32, st_dev);
2635 CP(nsb, *nsb32, st_ino);
2636 CP(nsb, *nsb32, st_mode);
2637 CP(nsb, *nsb32, st_nlink);
2638 CP(nsb, *nsb32, st_uid);
2639 CP(nsb, *nsb32, st_gid);
2640 CP(nsb, *nsb32, st_rdev);
2641 CP(nsb, *nsb32, st_atim.tv_sec);
2642 CP(nsb, *nsb32, st_atim.tv_nsec);
2643 CP(nsb, *nsb32, st_mtim.tv_sec);
2644 CP(nsb, *nsb32, st_mtim.tv_nsec);
2645 CP(nsb, *nsb32, st_ctim.tv_sec);
2646 CP(nsb, *nsb32, st_ctim.tv_nsec);
2647 CP(nsb, *nsb32, st_size);
2648 CP(nsb, *nsb32, st_blocks);
2649 CP(nsb, *nsb32, st_blksize);
2650 CP(nsb, *nsb32, st_flags);
2651 CP(nsb, *nsb32, st_gen);
2652 CP(nsb, *nsb32, st_birthtim.tv_sec);
2653 CP(nsb, *nsb32, st_birthtim.tv_nsec);
2654 return (0);
2655 }
2656
2657 int
freebsd11_freebsd32_nstat(struct thread * td,struct freebsd11_freebsd32_nstat_args * uap)2658 freebsd11_freebsd32_nstat(struct thread *td,
2659 struct freebsd11_freebsd32_nstat_args *uap)
2660 {
2661 struct stat sb;
2662 struct nstat32 nsb;
2663 int error;
2664
2665 error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb);
2666 if (error != 0)
2667 return (error);
2668 error = freebsd11_cvtnstat32(&sb, &nsb);
2669 if (error != 0)
2670 error = copyout(&nsb, uap->ub, sizeof (nsb));
2671 return (error);
2672 }
2673
2674 int
freebsd11_freebsd32_nlstat(struct thread * td,struct freebsd11_freebsd32_nlstat_args * uap)2675 freebsd11_freebsd32_nlstat(struct thread *td,
2676 struct freebsd11_freebsd32_nlstat_args *uap)
2677 {
2678 struct stat sb;
2679 struct nstat32 nsb;
2680 int error;
2681
2682 error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path,
2683 UIO_USERSPACE, &sb);
2684 if (error != 0)
2685 return (error);
2686 error = freebsd11_cvtnstat32(&sb, &nsb);
2687 if (error == 0)
2688 error = copyout(&nsb, uap->ub, sizeof (nsb));
2689 return (error);
2690 }
2691
2692 int
freebsd11_freebsd32_nfstat(struct thread * td,struct freebsd11_freebsd32_nfstat_args * uap)2693 freebsd11_freebsd32_nfstat(struct thread *td,
2694 struct freebsd11_freebsd32_nfstat_args *uap)
2695 {
2696 struct nstat32 nub;
2697 struct stat ub;
2698 int error;
2699
2700 error = kern_fstat(td, uap->fd, &ub);
2701 if (error != 0)
2702 return (error);
2703 error = freebsd11_cvtnstat32(&ub, &nub);
2704 if (error == 0)
2705 error = copyout(&nub, uap->sb, sizeof(nub));
2706 return (error);
2707 }
2708 #endif
2709
2710 int
freebsd32___sysctl(struct thread * td,struct freebsd32___sysctl_args * uap)2711 freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap)
2712 {
2713 int error, name[CTL_MAXNAME];
2714 size_t j, oldlen;
2715 uint32_t tmp;
2716
2717 if (uap->namelen > CTL_MAXNAME || uap->namelen < 2)
2718 return (EINVAL);
2719 error = copyin(uap->name, name, uap->namelen * sizeof(int));
2720 if (error)
2721 return (error);
2722 if (uap->oldlenp) {
2723 error = fueword32(uap->oldlenp, &tmp);
2724 oldlen = tmp;
2725 } else {
2726 oldlen = 0;
2727 }
2728 if (error != 0)
2729 return (EFAULT);
2730 error = userland_sysctl(td, name, uap->namelen,
2731 uap->old, &oldlen, 1,
2732 uap->new, uap->newlen, &j, SCTL_MASK32);
2733 if (error)
2734 return (error);
2735 if (uap->oldlenp != NULL && suword32(uap->oldlenp, j) != 0)
2736 error = EFAULT;
2737 return (error);
2738 }
2739
2740 int
freebsd32___sysctlbyname(struct thread * td,struct freebsd32___sysctlbyname_args * uap)2741 freebsd32___sysctlbyname(struct thread *td,
2742 struct freebsd32___sysctlbyname_args *uap)
2743 {
2744 size_t oldlen, rv;
2745 int error;
2746 uint32_t tmp;
2747
2748 if (uap->oldlenp != NULL) {
2749 error = fueword32(uap->oldlenp, &tmp);
2750 oldlen = tmp;
2751 } else {
2752 error = oldlen = 0;
2753 }
2754 if (error != 0)
2755 return (EFAULT);
2756 error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old,
2757 &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1);
2758 if (error != 0)
2759 return (error);
2760 if (uap->oldlenp != NULL && suword32(uap->oldlenp, rv) != 0)
2761 error = EFAULT;
2762 return (error);
2763 }
2764
2765 int
freebsd32_jail(struct thread * td,struct freebsd32_jail_args * uap)2766 freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
2767 {
2768 uint32_t version;
2769 int error;
2770 struct jail j;
2771
2772 error = copyin(uap->jail, &version, sizeof(uint32_t));
2773 if (error)
2774 return (error);
2775
2776 switch (version) {
2777 case 0:
2778 {
2779 /* FreeBSD single IPv4 jails. */
2780 struct jail32_v0 j32_v0;
2781
2782 bzero(&j, sizeof(struct jail));
2783 error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0));
2784 if (error)
2785 return (error);
2786 CP(j32_v0, j, version);
2787 PTRIN_CP(j32_v0, j, path);
2788 PTRIN_CP(j32_v0, j, hostname);
2789 j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */
2790 break;
2791 }
2792
2793 case 1:
2794 /*
2795 * Version 1 was used by multi-IPv4 jail implementations
2796 * that never made it into the official kernel.
2797 */
2798 return (EINVAL);
2799
2800 case 2: /* JAIL_API_VERSION */
2801 {
2802 /* FreeBSD multi-IPv4/IPv6,noIP jails. */
2803 struct jail32 j32;
2804
2805 error = copyin(uap->jail, &j32, sizeof(struct jail32));
2806 if (error)
2807 return (error);
2808 CP(j32, j, version);
2809 PTRIN_CP(j32, j, path);
2810 PTRIN_CP(j32, j, hostname);
2811 PTRIN_CP(j32, j, jailname);
2812 CP(j32, j, ip4s);
2813 CP(j32, j, ip6s);
2814 PTRIN_CP(j32, j, ip4);
2815 PTRIN_CP(j32, j, ip6);
2816 break;
2817 }
2818
2819 default:
2820 /* Sci-Fi jails are not supported, sorry. */
2821 return (EINVAL);
2822 }
2823 return (kern_jail(td, &j));
2824 }
2825
2826 int
freebsd32_jail_set(struct thread * td,struct freebsd32_jail_set_args * uap)2827 freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap)
2828 {
2829 struct uio *auio;
2830 int error;
2831
2832 /* Check that we have an even number of iovecs. */
2833 if (uap->iovcnt & 1)
2834 return (EINVAL);
2835
2836 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2837 if (error)
2838 return (error);
2839 error = kern_jail_set(td, auio, uap->flags);
2840 freeuio(auio);
2841 return (error);
2842 }
2843
2844 int
freebsd32_jail_get(struct thread * td,struct freebsd32_jail_get_args * uap)2845 freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap)
2846 {
2847 struct iovec32 iov32;
2848 struct uio *auio;
2849 int error, i;
2850
2851 /* Check that we have an even number of iovecs. */
2852 if (uap->iovcnt & 1)
2853 return (EINVAL);
2854
2855 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
2856 if (error)
2857 return (error);
2858 error = kern_jail_get(td, auio, uap->flags);
2859 if (error == 0)
2860 for (i = 0; i < uap->iovcnt; i++) {
2861 PTROUT_CP(auio->uio_iov[i], iov32, iov_base);
2862 CP(auio->uio_iov[i], iov32, iov_len);
2863 error = copyout(&iov32, uap->iovp + i, sizeof(iov32));
2864 if (error != 0)
2865 break;
2866 }
2867 freeuio(auio);
2868 return (error);
2869 }
2870
2871 int
freebsd32_sigaction(struct thread * td,struct freebsd32_sigaction_args * uap)2872 freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap)
2873 {
2874 struct sigaction32 s32;
2875 struct sigaction sa, osa, *sap;
2876 int error;
2877
2878 if (uap->act) {
2879 error = copyin(uap->act, &s32, sizeof(s32));
2880 if (error)
2881 return (error);
2882 sa.sa_handler = PTRIN(s32.sa_u);
2883 CP(s32, sa, sa_flags);
2884 CP(s32, sa, sa_mask);
2885 sap = &sa;
2886 } else
2887 sap = NULL;
2888 error = kern_sigaction(td, uap->sig, sap, &osa, 0);
2889 if (error == 0 && uap->oact != NULL) {
2890 s32.sa_u = PTROUT(osa.sa_handler);
2891 CP(osa, s32, sa_flags);
2892 CP(osa, s32, sa_mask);
2893 error = copyout(&s32, uap->oact, sizeof(s32));
2894 }
2895 return (error);
2896 }
2897
2898 #ifdef COMPAT_FREEBSD4
2899 int
freebsd4_freebsd32_sigaction(struct thread * td,struct freebsd4_freebsd32_sigaction_args * uap)2900 freebsd4_freebsd32_sigaction(struct thread *td,
2901 struct freebsd4_freebsd32_sigaction_args *uap)
2902 {
2903 struct sigaction32 s32;
2904 struct sigaction sa, osa, *sap;
2905 int error;
2906
2907 if (uap->act) {
2908 error = copyin(uap->act, &s32, sizeof(s32));
2909 if (error)
2910 return (error);
2911 sa.sa_handler = PTRIN(s32.sa_u);
2912 CP(s32, sa, sa_flags);
2913 CP(s32, sa, sa_mask);
2914 sap = &sa;
2915 } else
2916 sap = NULL;
2917 error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4);
2918 if (error == 0 && uap->oact != NULL) {
2919 s32.sa_u = PTROUT(osa.sa_handler);
2920 CP(osa, s32, sa_flags);
2921 CP(osa, s32, sa_mask);
2922 error = copyout(&s32, uap->oact, sizeof(s32));
2923 }
2924 return (error);
2925 }
2926 #endif
2927
2928 #ifdef COMPAT_43
2929 struct osigaction32 {
2930 uint32_t sa_u;
2931 osigset_t sa_mask;
2932 int sa_flags;
2933 };
2934
2935 #define ONSIG 32
2936
2937 int
ofreebsd32_sigaction(struct thread * td,struct ofreebsd32_sigaction_args * uap)2938 ofreebsd32_sigaction(struct thread *td,
2939 struct ofreebsd32_sigaction_args *uap)
2940 {
2941 struct osigaction32 s32;
2942 struct sigaction sa, osa, *sap;
2943 int error;
2944
2945 if (uap->signum <= 0 || uap->signum >= ONSIG)
2946 return (EINVAL);
2947
2948 if (uap->nsa) {
2949 error = copyin(uap->nsa, &s32, sizeof(s32));
2950 if (error)
2951 return (error);
2952 sa.sa_handler = PTRIN(s32.sa_u);
2953 CP(s32, sa, sa_flags);
2954 OSIG2SIG(s32.sa_mask, sa.sa_mask);
2955 sap = &sa;
2956 } else
2957 sap = NULL;
2958 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2959 if (error == 0 && uap->osa != NULL) {
2960 s32.sa_u = PTROUT(osa.sa_handler);
2961 CP(osa, s32, sa_flags);
2962 SIG2OSIG(osa.sa_mask, s32.sa_mask);
2963 error = copyout(&s32, uap->osa, sizeof(s32));
2964 }
2965 return (error);
2966 }
2967
2968 struct sigvec32 {
2969 uint32_t sv_handler;
2970 int sv_mask;
2971 int sv_flags;
2972 };
2973
2974 int
ofreebsd32_sigvec(struct thread * td,struct ofreebsd32_sigvec_args * uap)2975 ofreebsd32_sigvec(struct thread *td,
2976 struct ofreebsd32_sigvec_args *uap)
2977 {
2978 struct sigvec32 vec;
2979 struct sigaction sa, osa, *sap;
2980 int error;
2981
2982 if (uap->signum <= 0 || uap->signum >= ONSIG)
2983 return (EINVAL);
2984
2985 if (uap->nsv) {
2986 error = copyin(uap->nsv, &vec, sizeof(vec));
2987 if (error)
2988 return (error);
2989 sa.sa_handler = PTRIN(vec.sv_handler);
2990 OSIG2SIG(vec.sv_mask, sa.sa_mask);
2991 sa.sa_flags = vec.sv_flags;
2992 sa.sa_flags ^= SA_RESTART;
2993 sap = &sa;
2994 } else
2995 sap = NULL;
2996 error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET);
2997 if (error == 0 && uap->osv != NULL) {
2998 vec.sv_handler = PTROUT(osa.sa_handler);
2999 SIG2OSIG(osa.sa_mask, vec.sv_mask);
3000 vec.sv_flags = osa.sa_flags;
3001 vec.sv_flags &= ~SA_NOCLDWAIT;
3002 vec.sv_flags ^= SA_RESTART;
3003 error = copyout(&vec, uap->osv, sizeof(vec));
3004 }
3005 return (error);
3006 }
3007
3008 struct sigstack32 {
3009 uint32_t ss_sp;
3010 int ss_onstack;
3011 };
3012
3013 int
ofreebsd32_sigstack(struct thread * td,struct ofreebsd32_sigstack_args * uap)3014 ofreebsd32_sigstack(struct thread *td,
3015 struct ofreebsd32_sigstack_args *uap)
3016 {
3017 struct sigstack32 s32;
3018 struct sigstack nss, oss;
3019 int error = 0, unss;
3020
3021 if (uap->nss != NULL) {
3022 error = copyin(uap->nss, &s32, sizeof(s32));
3023 if (error)
3024 return (error);
3025 nss.ss_sp = PTRIN(s32.ss_sp);
3026 CP(s32, nss, ss_onstack);
3027 unss = 1;
3028 } else {
3029 unss = 0;
3030 }
3031 oss.ss_sp = td->td_sigstk.ss_sp;
3032 oss.ss_onstack = sigonstack(cpu_getstack(td));
3033 if (unss) {
3034 td->td_sigstk.ss_sp = nss.ss_sp;
3035 td->td_sigstk.ss_size = 0;
3036 td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK);
3037 td->td_pflags |= TDP_ALTSTACK;
3038 }
3039 if (uap->oss != NULL) {
3040 s32.ss_sp = PTROUT(oss.ss_sp);
3041 CP(oss, s32, ss_onstack);
3042 error = copyout(&s32, uap->oss, sizeof(s32));
3043 }
3044 return (error);
3045 }
3046 #endif
3047
3048 int
freebsd32_nanosleep(struct thread * td,struct freebsd32_nanosleep_args * uap)3049 freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap)
3050 {
3051
3052 return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME,
3053 TIMER_RELTIME, uap->rqtp, uap->rmtp));
3054 }
3055
3056 int
freebsd32_clock_nanosleep(struct thread * td,struct freebsd32_clock_nanosleep_args * uap)3057 freebsd32_clock_nanosleep(struct thread *td,
3058 struct freebsd32_clock_nanosleep_args *uap)
3059 {
3060 int error;
3061
3062 error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags,
3063 uap->rqtp, uap->rmtp);
3064 return (kern_posix_error(td, error));
3065 }
3066
3067 static int
freebsd32_user_clock_nanosleep(struct thread * td,clockid_t clock_id,int flags,const struct timespec32 * ua_rqtp,struct timespec32 * ua_rmtp)3068 freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id,
3069 int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp)
3070 {
3071 struct timespec32 rmt32, rqt32;
3072 struct timespec rmt, rqt;
3073 int error, error2;
3074
3075 error = copyin(ua_rqtp, &rqt32, sizeof(rqt32));
3076 if (error)
3077 return (error);
3078
3079 CP(rqt32, rqt, tv_sec);
3080 CP(rqt32, rqt, tv_nsec);
3081
3082 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
3083 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
3084 CP(rmt, rmt32, tv_sec);
3085 CP(rmt, rmt32, tv_nsec);
3086
3087 error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32));
3088 if (error2 != 0)
3089 error = error2;
3090 }
3091 return (error);
3092 }
3093
3094 int
freebsd32_clock_gettime(struct thread * td,struct freebsd32_clock_gettime_args * uap)3095 freebsd32_clock_gettime(struct thread *td,
3096 struct freebsd32_clock_gettime_args *uap)
3097 {
3098 struct timespec ats;
3099 struct timespec32 ats32;
3100 int error;
3101
3102 error = kern_clock_gettime(td, uap->clock_id, &ats);
3103 if (error == 0) {
3104 CP(ats, ats32, tv_sec);
3105 CP(ats, ats32, tv_nsec);
3106 error = copyout(&ats32, uap->tp, sizeof(ats32));
3107 }
3108 return (error);
3109 }
3110
3111 int
freebsd32_clock_settime(struct thread * td,struct freebsd32_clock_settime_args * uap)3112 freebsd32_clock_settime(struct thread *td,
3113 struct freebsd32_clock_settime_args *uap)
3114 {
3115 struct timespec ats;
3116 struct timespec32 ats32;
3117 int error;
3118
3119 error = copyin(uap->tp, &ats32, sizeof(ats32));
3120 if (error)
3121 return (error);
3122 CP(ats32, ats, tv_sec);
3123 CP(ats32, ats, tv_nsec);
3124
3125 return (kern_clock_settime(td, uap->clock_id, &ats));
3126 }
3127
3128 int
freebsd32_clock_getres(struct thread * td,struct freebsd32_clock_getres_args * uap)3129 freebsd32_clock_getres(struct thread *td,
3130 struct freebsd32_clock_getres_args *uap)
3131 {
3132 struct timespec ts;
3133 struct timespec32 ts32;
3134 int error;
3135
3136 if (uap->tp == NULL)
3137 return (0);
3138 error = kern_clock_getres(td, uap->clock_id, &ts);
3139 if (error == 0) {
3140 CP(ts, ts32, tv_sec);
3141 CP(ts, ts32, tv_nsec);
3142 error = copyout(&ts32, uap->tp, sizeof(ts32));
3143 }
3144 return (error);
3145 }
3146
freebsd32_ktimer_create(struct thread * td,struct freebsd32_ktimer_create_args * uap)3147 int freebsd32_ktimer_create(struct thread *td,
3148 struct freebsd32_ktimer_create_args *uap)
3149 {
3150 struct sigevent32 ev32;
3151 struct sigevent ev, *evp;
3152 int error, id;
3153
3154 if (uap->evp == NULL) {
3155 evp = NULL;
3156 } else {
3157 evp = &ev;
3158 error = copyin(uap->evp, &ev32, sizeof(ev32));
3159 if (error != 0)
3160 return (error);
3161 error = convert_sigevent32(&ev32, &ev);
3162 if (error != 0)
3163 return (error);
3164 }
3165 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
3166 if (error == 0) {
3167 error = copyout(&id, uap->timerid, sizeof(int));
3168 if (error != 0)
3169 kern_ktimer_delete(td, id);
3170 }
3171 return (error);
3172 }
3173
3174 int
freebsd32_ktimer_settime(struct thread * td,struct freebsd32_ktimer_settime_args * uap)3175 freebsd32_ktimer_settime(struct thread *td,
3176 struct freebsd32_ktimer_settime_args *uap)
3177 {
3178 struct itimerspec32 val32, oval32;
3179 struct itimerspec val, oval, *ovalp;
3180 int error;
3181
3182 error = copyin(uap->value, &val32, sizeof(val32));
3183 if (error != 0)
3184 return (error);
3185 ITS_CP(val32, val);
3186 ovalp = uap->ovalue != NULL ? &oval : NULL;
3187 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
3188 if (error == 0 && uap->ovalue != NULL) {
3189 ITS_CP(oval, oval32);
3190 error = copyout(&oval32, uap->ovalue, sizeof(oval32));
3191 }
3192 return (error);
3193 }
3194
3195 int
freebsd32_ktimer_gettime(struct thread * td,struct freebsd32_ktimer_gettime_args * uap)3196 freebsd32_ktimer_gettime(struct thread *td,
3197 struct freebsd32_ktimer_gettime_args *uap)
3198 {
3199 struct itimerspec32 val32;
3200 struct itimerspec val;
3201 int error;
3202
3203 error = kern_ktimer_gettime(td, uap->timerid, &val);
3204 if (error == 0) {
3205 ITS_CP(val, val32);
3206 error = copyout(&val32, uap->value, sizeof(val32));
3207 }
3208 return (error);
3209 }
3210
3211 int
freebsd32_timerfd_gettime(struct thread * td,struct freebsd32_timerfd_gettime_args * uap)3212 freebsd32_timerfd_gettime(struct thread *td,
3213 struct freebsd32_timerfd_gettime_args *uap)
3214 {
3215 struct itimerspec curr_value;
3216 struct itimerspec32 curr_value32;
3217 int error;
3218
3219 error = kern_timerfd_gettime(td, uap->fd, &curr_value);
3220 if (error == 0) {
3221 CP(curr_value, curr_value32, it_value.tv_sec);
3222 CP(curr_value, curr_value32, it_value.tv_nsec);
3223 CP(curr_value, curr_value32, it_interval.tv_sec);
3224 CP(curr_value, curr_value32, it_interval.tv_nsec);
3225 error = copyout(&curr_value32, uap->curr_value,
3226 sizeof(curr_value32));
3227 }
3228
3229 return (error);
3230 }
3231
3232 int
freebsd32_timerfd_settime(struct thread * td,struct freebsd32_timerfd_settime_args * uap)3233 freebsd32_timerfd_settime(struct thread *td,
3234 struct freebsd32_timerfd_settime_args *uap)
3235 {
3236 struct itimerspec new_value, old_value;
3237 struct itimerspec32 new_value32, old_value32;
3238 int error;
3239
3240 error = copyin(uap->new_value, &new_value32, sizeof(new_value32));
3241 if (error != 0)
3242 return (error);
3243 CP(new_value32, new_value, it_value.tv_sec);
3244 CP(new_value32, new_value, it_value.tv_nsec);
3245 CP(new_value32, new_value, it_interval.tv_sec);
3246 CP(new_value32, new_value, it_interval.tv_nsec);
3247 if (uap->old_value == NULL) {
3248 error = kern_timerfd_settime(td, uap->fd, uap->flags,
3249 &new_value, NULL);
3250 } else {
3251 error = kern_timerfd_settime(td, uap->fd, uap->flags,
3252 &new_value, &old_value);
3253 if (error == 0) {
3254 CP(old_value, old_value32, it_value.tv_sec);
3255 CP(old_value, old_value32, it_value.tv_nsec);
3256 CP(old_value, old_value32, it_interval.tv_sec);
3257 CP(old_value, old_value32, it_interval.tv_nsec);
3258 error = copyout(&old_value32, uap->old_value,
3259 sizeof(old_value32));
3260 }
3261 }
3262 return (error);
3263 }
3264
3265 int
freebsd32_clock_getcpuclockid2(struct thread * td,struct freebsd32_clock_getcpuclockid2_args * uap)3266 freebsd32_clock_getcpuclockid2(struct thread *td,
3267 struct freebsd32_clock_getcpuclockid2_args *uap)
3268 {
3269 clockid_t clk_id;
3270 int error;
3271
3272 error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id),
3273 uap->which, &clk_id);
3274 if (error == 0)
3275 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
3276 return (error);
3277 }
3278
3279 int
freebsd32_thr_new(struct thread * td,struct freebsd32_thr_new_args * uap)3280 freebsd32_thr_new(struct thread *td,
3281 struct freebsd32_thr_new_args *uap)
3282 {
3283 struct thr_param32 param32;
3284 struct thr_param param;
3285 int error;
3286
3287 if (uap->param_size < 0 ||
3288 uap->param_size > sizeof(struct thr_param32))
3289 return (EINVAL);
3290 bzero(¶m, sizeof(struct thr_param));
3291 bzero(¶m32, sizeof(struct thr_param32));
3292 error = copyin(uap->param, ¶m32, uap->param_size);
3293 if (error != 0)
3294 return (error);
3295 param.start_func = PTRIN(param32.start_func);
3296 param.arg = PTRIN(param32.arg);
3297 param.stack_base = PTRIN(param32.stack_base);
3298 param.stack_size = param32.stack_size;
3299 param.tls_base = PTRIN(param32.tls_base);
3300 param.tls_size = param32.tls_size;
3301 param.child_tid = PTRIN(param32.child_tid);
3302 param.parent_tid = PTRIN(param32.parent_tid);
3303 param.flags = param32.flags;
3304 param.rtp = PTRIN(param32.rtp);
3305 param.spare[0] = PTRIN(param32.spare[0]);
3306 param.spare[1] = PTRIN(param32.spare[1]);
3307 param.spare[2] = PTRIN(param32.spare[2]);
3308
3309 return (kern_thr_new(td, ¶m));
3310 }
3311
3312 int
freebsd32_thr_suspend(struct thread * td,struct freebsd32_thr_suspend_args * uap)3313 freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap)
3314 {
3315 struct timespec32 ts32;
3316 struct timespec ts, *tsp;
3317 int error;
3318
3319 error = 0;
3320 tsp = NULL;
3321 if (uap->timeout != NULL) {
3322 error = copyin((const void *)uap->timeout, (void *)&ts32,
3323 sizeof(struct timespec32));
3324 if (error != 0)
3325 return (error);
3326 ts.tv_sec = ts32.tv_sec;
3327 ts.tv_nsec = ts32.tv_nsec;
3328 tsp = &ts;
3329 }
3330 return (kern_thr_suspend(td, tsp));
3331 }
3332
3333 void
siginfo_to_siginfo32(const siginfo_t * src,struct __siginfo32 * dst)3334 siginfo_to_siginfo32(const siginfo_t *src, struct __siginfo32 *dst)
3335 {
3336 bzero(dst, sizeof(*dst));
3337 dst->si_signo = src->si_signo;
3338 dst->si_errno = src->si_errno;
3339 dst->si_code = src->si_code;
3340 dst->si_pid = src->si_pid;
3341 dst->si_uid = src->si_uid;
3342 dst->si_status = src->si_status;
3343 dst->si_addr = (uintptr_t)src->si_addr;
3344 dst->si_value.sival_int = src->si_value.sival_int;
3345 dst->si_timerid = src->si_timerid;
3346 dst->si_overrun = src->si_overrun;
3347 }
3348
3349 #ifndef _FREEBSD32_SYSPROTO_H_
3350 struct freebsd32_sigqueue_args {
3351 pid_t pid;
3352 int signum;
3353 /* union sigval32 */ int value;
3354 };
3355 #endif
3356 int
freebsd32_sigqueue(struct thread * td,struct freebsd32_sigqueue_args * uap)3357 freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap)
3358 {
3359 union sigval sv;
3360
3361 /*
3362 * On 32-bit ABIs, sival_int and sival_ptr are the same.
3363 * On 64-bit little-endian ABIs, the low bits are the same.
3364 * In 64-bit big-endian ABIs, sival_int overlaps with
3365 * sival_ptr's HIGH bits. We choose to support sival_int
3366 * rather than sival_ptr in this case as it seems to be
3367 * more common.
3368 */
3369 bzero(&sv, sizeof(sv));
3370 sv.sival_int = (uint32_t)(uint64_t)uap->value;
3371
3372 return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
3373 }
3374
3375 int
freebsd32_sigtimedwait(struct thread * td,struct freebsd32_sigtimedwait_args * uap)3376 freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap)
3377 {
3378 struct timespec32 ts32;
3379 struct timespec ts;
3380 struct timespec *timeout;
3381 sigset_t set;
3382 ksiginfo_t ksi;
3383 struct __siginfo32 si32;
3384 int error;
3385
3386 if (uap->timeout) {
3387 error = copyin(uap->timeout, &ts32, sizeof(ts32));
3388 if (error)
3389 return (error);
3390 ts.tv_sec = ts32.tv_sec;
3391 ts.tv_nsec = ts32.tv_nsec;
3392 timeout = &ts;
3393 } else
3394 timeout = NULL;
3395
3396 error = copyin(uap->set, &set, sizeof(set));
3397 if (error)
3398 return (error);
3399
3400 error = kern_sigtimedwait(td, set, &ksi, timeout);
3401 if (error)
3402 return (error);
3403
3404 if (uap->info) {
3405 siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3406 error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3407 }
3408
3409 if (error == 0)
3410 td->td_retval[0] = ksi.ksi_signo;
3411 return (error);
3412 }
3413
3414 /*
3415 * MPSAFE
3416 */
3417 int
freebsd32_sigwaitinfo(struct thread * td,struct freebsd32_sigwaitinfo_args * uap)3418 freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap)
3419 {
3420 ksiginfo_t ksi;
3421 struct __siginfo32 si32;
3422 sigset_t set;
3423 int error;
3424
3425 error = copyin(uap->set, &set, sizeof(set));
3426 if (error)
3427 return (error);
3428
3429 error = kern_sigtimedwait(td, set, &ksi, NULL);
3430 if (error)
3431 return (error);
3432
3433 if (uap->info) {
3434 siginfo_to_siginfo32(&ksi.ksi_info, &si32);
3435 error = copyout(&si32, uap->info, sizeof(struct __siginfo32));
3436 }
3437 if (error == 0)
3438 td->td_retval[0] = ksi.ksi_signo;
3439 return (error);
3440 }
3441
3442 int
freebsd32_cpuset_setid(struct thread * td,struct freebsd32_cpuset_setid_args * uap)3443 freebsd32_cpuset_setid(struct thread *td,
3444 struct freebsd32_cpuset_setid_args *uap)
3445 {
3446
3447 return (kern_cpuset_setid(td, uap->which,
3448 PAIR32TO64(id_t, uap->id), uap->setid));
3449 }
3450
3451 int
freebsd32_cpuset_getid(struct thread * td,struct freebsd32_cpuset_getid_args * uap)3452 freebsd32_cpuset_getid(struct thread *td,
3453 struct freebsd32_cpuset_getid_args *uap)
3454 {
3455
3456 return (kern_cpuset_getid(td, uap->level, uap->which,
3457 PAIR32TO64(id_t, uap->id), uap->setid));
3458 }
3459
3460 static int
copyin32_set(const void * u,void * k,size_t size)3461 copyin32_set(const void *u, void *k, size_t size)
3462 {
3463 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3464 int rv;
3465 struct bitset *kb = k;
3466 int *p;
3467
3468 rv = copyin(u, k, size);
3469 if (rv != 0)
3470 return (rv);
3471
3472 p = (int *)kb->__bits;
3473 /* Loop through swapping words.
3474 * `size' is in bytes, we need bits. */
3475 for (int i = 0; i < __bitset_words(size * 8); i++) {
3476 int tmp = p[0];
3477 p[0] = p[1];
3478 p[1] = tmp;
3479 p += 2;
3480 }
3481 return (0);
3482 #else
3483 return (copyin(u, k, size));
3484 #endif
3485 }
3486
3487 static int
copyout32_set(const void * k,void * u,size_t size)3488 copyout32_set(const void *k, void *u, size_t size)
3489 {
3490 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
3491 const struct bitset *kb = k;
3492 struct bitset *ub = u;
3493 const int *kp = (const int *)kb->__bits;
3494 int *up = (int *)ub->__bits;
3495 int rv;
3496
3497 for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) {
3498 /* `size' is in bytes, we need bits. */
3499 for (int i = 0; i < __bitset_words(size * 8); i++) {
3500 rv = suword32(up, kp[1]);
3501 if (rv == 0)
3502 rv = suword32(up + 1, kp[0]);
3503 if (rv != 0)
3504 return (EFAULT);
3505 }
3506 }
3507 return (0);
3508 #else
3509 return (copyout(k, u, size));
3510 #endif
3511 }
3512
3513 static const struct cpuset_copy_cb cpuset_copy32_cb = {
3514 .cpuset_copyin = copyin32_set,
3515 .cpuset_copyout = copyout32_set
3516 };
3517
3518 int
freebsd32_cpuset_getaffinity(struct thread * td,struct freebsd32_cpuset_getaffinity_args * uap)3519 freebsd32_cpuset_getaffinity(struct thread *td,
3520 struct freebsd32_cpuset_getaffinity_args *uap)
3521 {
3522
3523 return (user_cpuset_getaffinity(td, uap->level, uap->which,
3524 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3525 &cpuset_copy32_cb));
3526 }
3527
3528 int
freebsd32_cpuset_setaffinity(struct thread * td,struct freebsd32_cpuset_setaffinity_args * uap)3529 freebsd32_cpuset_setaffinity(struct thread *td,
3530 struct freebsd32_cpuset_setaffinity_args *uap)
3531 {
3532
3533 return (user_cpuset_setaffinity(td, uap->level, uap->which,
3534 PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask,
3535 &cpuset_copy32_cb));
3536 }
3537
3538 int
freebsd32_cpuset_getdomain(struct thread * td,struct freebsd32_cpuset_getdomain_args * uap)3539 freebsd32_cpuset_getdomain(struct thread *td,
3540 struct freebsd32_cpuset_getdomain_args *uap)
3541 {
3542
3543 return (kern_cpuset_getdomain(td, uap->level, uap->which,
3544 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3545 &cpuset_copy32_cb));
3546 }
3547
3548 int
freebsd32_cpuset_setdomain(struct thread * td,struct freebsd32_cpuset_setdomain_args * uap)3549 freebsd32_cpuset_setdomain(struct thread *td,
3550 struct freebsd32_cpuset_setdomain_args *uap)
3551 {
3552
3553 return (kern_cpuset_setdomain(td, uap->level, uap->which,
3554 PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy,
3555 &cpuset_copy32_cb));
3556 }
3557
3558 int
freebsd32_nmount(struct thread * td,struct freebsd32_nmount_args * uap)3559 freebsd32_nmount(struct thread *td,
3560 struct freebsd32_nmount_args /* {
3561 struct iovec *iovp;
3562 unsigned int iovcnt;
3563 int flags;
3564 } */ *uap)
3565 {
3566 struct uio *auio;
3567 uint64_t flags;
3568 int error;
3569
3570 /*
3571 * Mount flags are now 64-bits. On 32-bit archtectures only
3572 * 32-bits are passed in, but from here on everything handles
3573 * 64-bit flags correctly.
3574 */
3575 flags = uap->flags;
3576
3577 AUDIT_ARG_FFLAGS(flags);
3578
3579 /*
3580 * Filter out MNT_ROOTFS. We do not want clients of nmount() in
3581 * userspace to set this flag, but we must filter it out if we want
3582 * MNT_UPDATE on the root file system to work.
3583 * MNT_ROOTFS should only be set by the kernel when mounting its
3584 * root file system.
3585 */
3586 flags &= ~MNT_ROOTFS;
3587
3588 /*
3589 * check that we have an even number of iovec's
3590 * and that we have at least two options.
3591 */
3592 if ((uap->iovcnt & 1) || (uap->iovcnt < 4))
3593 return (EINVAL);
3594
3595 error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio);
3596 if (error)
3597 return (error);
3598 error = vfs_donmount(td, flags, auio);
3599
3600 freeuio(auio);
3601 return error;
3602 }
3603
3604 #if 0
3605 int
3606 freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap)
3607 {
3608 struct yyy32 *p32, s32;
3609 struct yyy *p = NULL, s;
3610 struct xxx_arg ap;
3611 int error;
3612
3613 if (uap->zzz) {
3614 error = copyin(uap->zzz, &s32, sizeof(s32));
3615 if (error)
3616 return (error);
3617 /* translate in */
3618 p = &s;
3619 }
3620 error = kern_xxx(td, p);
3621 if (error)
3622 return (error);
3623 if (uap->zzz) {
3624 /* translate out */
3625 error = copyout(&s32, p32, sizeof(s32));
3626 }
3627 return (error);
3628 }
3629 #endif
3630
3631 int
syscall32_module_handler(struct module * mod,int what,void * arg)3632 syscall32_module_handler(struct module *mod, int what, void *arg)
3633 {
3634
3635 return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg));
3636 }
3637
3638 int
syscall32_helper_register(struct syscall_helper_data * sd,int flags)3639 syscall32_helper_register(struct syscall_helper_data *sd, int flags)
3640 {
3641
3642 return (kern_syscall_helper_register(freebsd32_sysent, sd, flags));
3643 }
3644
3645 int
syscall32_helper_unregister(struct syscall_helper_data * sd)3646 syscall32_helper_unregister(struct syscall_helper_data *sd)
3647 {
3648
3649 return (kern_syscall_helper_unregister(freebsd32_sysent, sd));
3650 }
3651
3652 int
freebsd32_copyout_strings(struct image_params * imgp,uintptr_t * stack_base)3653 freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
3654 {
3655 struct sysentvec *sysent;
3656 int argc, envc, i;
3657 uint32_t *vectp;
3658 char *stringp;
3659 uintptr_t destp, ustringp;
3660 struct freebsd32_ps_strings *arginfo;
3661 char canary[sizeof(long) * 8];
3662 int32_t pagesizes32[MAXPAGESIZES];
3663 size_t execpath_len;
3664 int error, szsigcode;
3665
3666 sysent = imgp->sysent;
3667
3668 arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc);
3669 imgp->ps_strings = arginfo;
3670 destp = (uintptr_t)arginfo;
3671
3672 /*
3673 * Install sigcode.
3674 */
3675 if (!PROC_HAS_SHP(imgp->proc)) {
3676 szsigcode = *sysent->sv_szsigcode;
3677 destp -= szsigcode;
3678 destp = rounddown2(destp, sizeof(uint32_t));
3679 error = copyout(sysent->sv_sigcode, (void *)destp,
3680 szsigcode);
3681 if (error != 0)
3682 return (error);
3683 }
3684
3685 /*
3686 * Copy the image path for the rtld.
3687 */
3688 if (imgp->execpath != NULL && imgp->auxargs != NULL) {
3689 execpath_len = strlen(imgp->execpath) + 1;
3690 destp -= execpath_len;
3691 imgp->execpathp = (void *)destp;
3692 error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
3693 if (error != 0)
3694 return (error);
3695 }
3696
3697 /*
3698 * Prepare the canary for SSP.
3699 */
3700 arc4rand(canary, sizeof(canary), 0);
3701 destp -= sizeof(canary);
3702 imgp->canary = (void *)destp;
3703 error = copyout(canary, imgp->canary, sizeof(canary));
3704 if (error != 0)
3705 return (error);
3706 imgp->canarylen = sizeof(canary);
3707
3708 /*
3709 * Prepare the pagesizes array.
3710 */
3711 for (i = 0; i < MAXPAGESIZES; i++)
3712 pagesizes32[i] = (uint32_t)pagesizes[i];
3713 destp -= sizeof(pagesizes32);
3714 destp = rounddown2(destp, sizeof(uint32_t));
3715 imgp->pagesizes = (void *)destp;
3716 error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32));
3717 if (error != 0)
3718 return (error);
3719 imgp->pagesizeslen = sizeof(pagesizes32);
3720
3721 /*
3722 * Allocate room for the argument and environment strings.
3723 */
3724 destp -= ARG_MAX - imgp->args->stringspace;
3725 destp = rounddown2(destp, sizeof(uint32_t));
3726 ustringp = destp;
3727
3728 if (imgp->auxargs) {
3729 /*
3730 * Allocate room on the stack for the ELF auxargs
3731 * array. It has up to AT_COUNT entries.
3732 */
3733 destp -= AT_COUNT * sizeof(Elf32_Auxinfo);
3734 destp = rounddown2(destp, sizeof(uint32_t));
3735 }
3736
3737 vectp = (uint32_t *)destp;
3738
3739 /*
3740 * Allocate room for the argv[] and env vectors including the
3741 * terminating NULL pointers.
3742 */
3743 vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
3744
3745 /*
3746 * vectp also becomes our initial stack base
3747 */
3748 *stack_base = (uintptr_t)vectp;
3749
3750 stringp = imgp->args->begin_argv;
3751 argc = imgp->args->argc;
3752 envc = imgp->args->envc;
3753 /*
3754 * Copy out strings - arguments and environment.
3755 */
3756 error = copyout(stringp, (void *)ustringp,
3757 ARG_MAX - imgp->args->stringspace);
3758 if (error != 0)
3759 return (error);
3760
3761 /*
3762 * Fill in "ps_strings" struct for ps, w, etc.
3763 */
3764 imgp->argv = vectp;
3765 if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 ||
3766 suword32(&arginfo->ps_nargvstr, argc) != 0)
3767 return (EFAULT);
3768
3769 /*
3770 * Fill in argument portion of vector table.
3771 */
3772 for (; argc > 0; --argc) {
3773 if (suword32(vectp++, ustringp) != 0)
3774 return (EFAULT);
3775 while (*stringp++ != 0)
3776 ustringp++;
3777 ustringp++;
3778 }
3779
3780 /* a null vector table pointer separates the argp's from the envp's */
3781 if (suword32(vectp++, 0) != 0)
3782 return (EFAULT);
3783
3784 imgp->envv = vectp;
3785 if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 ||
3786 suword32(&arginfo->ps_nenvstr, envc) != 0)
3787 return (EFAULT);
3788
3789 /*
3790 * Fill in environment portion of vector table.
3791 */
3792 for (; envc > 0; --envc) {
3793 if (suword32(vectp++, ustringp) != 0)
3794 return (EFAULT);
3795 while (*stringp++ != 0)
3796 ustringp++;
3797 ustringp++;
3798 }
3799
3800 /* end of vector table is a null pointer */
3801 if (suword32(vectp, 0) != 0)
3802 return (EFAULT);
3803
3804 if (imgp->auxargs) {
3805 vectp++;
3806 error = imgp->sysent->sv_copyout_auxargs(imgp,
3807 (uintptr_t)vectp);
3808 if (error != 0)
3809 return (error);
3810 }
3811
3812 return (0);
3813 }
3814
3815 int
freebsd32_kldstat(struct thread * td,struct freebsd32_kldstat_args * uap)3816 freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap)
3817 {
3818 struct kld_file_stat *stat;
3819 struct kld_file_stat32 *stat32;
3820 int error, version;
3821
3822 if ((error = copyin(&uap->stat->version, &version, sizeof(version)))
3823 != 0)
3824 return (error);
3825 if (version != sizeof(struct kld_file_stat_1_32) &&
3826 version != sizeof(struct kld_file_stat32))
3827 return (EINVAL);
3828
3829 stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO);
3830 stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO);
3831 error = kern_kldstat(td, uap->fileid, stat);
3832 if (error == 0) {
3833 bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name));
3834 CP(*stat, *stat32, refs);
3835 CP(*stat, *stat32, id);
3836 PTROUT_CP(*stat, *stat32, address);
3837 CP(*stat, *stat32, size);
3838 bcopy(&stat->pathname[0], &stat32->pathname[0],
3839 sizeof(stat->pathname));
3840 stat32->version = version;
3841 error = copyout(stat32, uap->stat, version);
3842 }
3843 free(stat, M_TEMP);
3844 free(stat32, M_TEMP);
3845 return (error);
3846 }
3847
3848 int
freebsd32_posix_fallocate(struct thread * td,struct freebsd32_posix_fallocate_args * uap)3849 freebsd32_posix_fallocate(struct thread *td,
3850 struct freebsd32_posix_fallocate_args *uap)
3851 {
3852 int error;
3853
3854 error = kern_posix_fallocate(td, uap->fd,
3855 PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len));
3856 return (kern_posix_error(td, error));
3857 }
3858
3859 int
freebsd32_posix_fadvise(struct thread * td,struct freebsd32_posix_fadvise_args * uap)3860 freebsd32_posix_fadvise(struct thread *td,
3861 struct freebsd32_posix_fadvise_args *uap)
3862 {
3863 int error;
3864
3865 error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset),
3866 PAIR32TO64(off_t, uap->len), uap->advice);
3867 return (kern_posix_error(td, error));
3868 }
3869
3870 int
convert_sigevent32(struct sigevent32 * sig32,struct sigevent * sig)3871 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
3872 {
3873
3874 CP(*sig32, *sig, sigev_notify);
3875 switch (sig->sigev_notify) {
3876 case SIGEV_NONE:
3877 break;
3878 case SIGEV_THREAD_ID:
3879 CP(*sig32, *sig, sigev_notify_thread_id);
3880 /* FALLTHROUGH */
3881 case SIGEV_SIGNAL:
3882 CP(*sig32, *sig, sigev_signo);
3883 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3884 break;
3885 case SIGEV_KEVENT:
3886 CP(*sig32, *sig, sigev_notify_kqueue);
3887 CP(*sig32, *sig, sigev_notify_kevent_flags);
3888 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
3889 break;
3890 default:
3891 return (EINVAL);
3892 }
3893 return (0);
3894 }
3895
3896 int
freebsd32_procctl(struct thread * td,struct freebsd32_procctl_args * uap)3897 freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap)
3898 {
3899 void *data;
3900 union {
3901 struct procctl_reaper_status rs;
3902 struct procctl_reaper_pids rp;
3903 struct procctl_reaper_kill rk;
3904 } x;
3905 union {
3906 struct procctl_reaper_pids32 rp;
3907 } x32;
3908 int error, error1, flags, signum;
3909
3910 if (uap->com >= PROC_PROCCTL_MD_MIN)
3911 return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3912 uap->com, PTRIN(uap->data)));
3913
3914 switch (uap->com) {
3915 case PROC_ASLR_CTL:
3916 case PROC_PROTMAX_CTL:
3917 case PROC_SPROTECT:
3918 case PROC_STACKGAP_CTL:
3919 case PROC_TRACE_CTL:
3920 case PROC_TRAPCAP_CTL:
3921 case PROC_NO_NEW_PRIVS_CTL:
3922 case PROC_WXMAP_CTL:
3923 case PROC_LOGSIGEXIT_CTL:
3924 error = copyin(PTRIN(uap->data), &flags, sizeof(flags));
3925 if (error != 0)
3926 return (error);
3927 data = &flags;
3928 break;
3929 case PROC_REAP_ACQUIRE:
3930 case PROC_REAP_RELEASE:
3931 if (uap->data != NULL)
3932 return (EINVAL);
3933 data = NULL;
3934 break;
3935 case PROC_REAP_STATUS:
3936 data = &x.rs;
3937 break;
3938 case PROC_REAP_GETPIDS:
3939 error = copyin(uap->data, &x32.rp, sizeof(x32.rp));
3940 if (error != 0)
3941 return (error);
3942 CP(x32.rp, x.rp, rp_count);
3943 PTRIN_CP(x32.rp, x.rp, rp_pids);
3944 data = &x.rp;
3945 break;
3946 case PROC_REAP_KILL:
3947 error = copyin(uap->data, &x.rk, sizeof(x.rk));
3948 if (error != 0)
3949 return (error);
3950 data = &x.rk;
3951 break;
3952 case PROC_ASLR_STATUS:
3953 case PROC_PROTMAX_STATUS:
3954 case PROC_STACKGAP_STATUS:
3955 case PROC_TRACE_STATUS:
3956 case PROC_TRAPCAP_STATUS:
3957 case PROC_NO_NEW_PRIVS_STATUS:
3958 case PROC_WXMAP_STATUS:
3959 case PROC_LOGSIGEXIT_STATUS:
3960 data = &flags;
3961 break;
3962 case PROC_PDEATHSIG_CTL:
3963 error = copyin(uap->data, &signum, sizeof(signum));
3964 if (error != 0)
3965 return (error);
3966 data = &signum;
3967 break;
3968 case PROC_PDEATHSIG_STATUS:
3969 data = &signum;
3970 break;
3971 default:
3972 return (EINVAL);
3973 }
3974 error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id),
3975 uap->com, data);
3976 switch (uap->com) {
3977 case PROC_REAP_STATUS:
3978 if (error == 0)
3979 error = copyout(&x.rs, uap->data, sizeof(x.rs));
3980 break;
3981 case PROC_REAP_KILL:
3982 error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
3983 if (error == 0)
3984 error = error1;
3985 break;
3986 case PROC_ASLR_STATUS:
3987 case PROC_PROTMAX_STATUS:
3988 case PROC_STACKGAP_STATUS:
3989 case PROC_TRACE_STATUS:
3990 case PROC_TRAPCAP_STATUS:
3991 case PROC_NO_NEW_PRIVS_STATUS:
3992 case PROC_WXMAP_STATUS:
3993 case PROC_LOGSIGEXIT_STATUS:
3994 if (error == 0)
3995 error = copyout(&flags, uap->data, sizeof(flags));
3996 break;
3997 case PROC_PDEATHSIG_STATUS:
3998 if (error == 0)
3999 error = copyout(&signum, uap->data, sizeof(signum));
4000 break;
4001 }
4002 return (error);
4003 }
4004
4005 int
freebsd32_fcntl(struct thread * td,struct freebsd32_fcntl_args * uap)4006 freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap)
4007 {
4008 intptr_t tmp;
4009
4010 switch (uap->cmd) {
4011 /*
4012 * Do unsigned conversion for arg when operation
4013 * interprets it as flags or pointer.
4014 */
4015 case F_SETLK_REMOTE:
4016 case F_SETLKW:
4017 case F_SETLK:
4018 case F_GETLK:
4019 case F_SETFD:
4020 case F_SETFL:
4021 case F_OGETLK:
4022 case F_OSETLK:
4023 case F_OSETLKW:
4024 case F_KINFO:
4025 tmp = (unsigned int)(uap->arg);
4026 break;
4027 default:
4028 tmp = uap->arg;
4029 break;
4030 }
4031 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp));
4032 }
4033
4034 int
freebsd32_ppoll(struct thread * td,struct freebsd32_ppoll_args * uap)4035 freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap)
4036 {
4037 struct timespec32 ts32;
4038 struct timespec ts, *tsp;
4039 sigset_t set, *ssp;
4040 int error;
4041
4042 if (uap->ts != NULL) {
4043 error = copyin(uap->ts, &ts32, sizeof(ts32));
4044 if (error != 0)
4045 return (error);
4046 CP(ts32, ts, tv_sec);
4047 CP(ts32, ts, tv_nsec);
4048 tsp = &ts;
4049 } else
4050 tsp = NULL;
4051 if (uap->set != NULL) {
4052 error = copyin(uap->set, &set, sizeof(set));
4053 if (error != 0)
4054 return (error);
4055 ssp = &set;
4056 } else
4057 ssp = NULL;
4058
4059 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
4060 }
4061
4062 int
freebsd32_sched_rr_get_interval(struct thread * td,struct freebsd32_sched_rr_get_interval_args * uap)4063 freebsd32_sched_rr_get_interval(struct thread *td,
4064 struct freebsd32_sched_rr_get_interval_args *uap)
4065 {
4066 struct timespec ts;
4067 struct timespec32 ts32;
4068 int error;
4069
4070 error = kern_sched_rr_get_interval(td, uap->pid, &ts);
4071 if (error == 0) {
4072 CP(ts, ts32, tv_sec);
4073 CP(ts, ts32, tv_nsec);
4074 error = copyout(&ts32, uap->interval, sizeof(ts32));
4075 }
4076 return (error);
4077 }
4078
4079 static void
timex_to_32(struct timex32 * dst,struct timex * src)4080 timex_to_32(struct timex32 *dst, struct timex *src)
4081 {
4082 CP(*src, *dst, modes);
4083 CP(*src, *dst, offset);
4084 CP(*src, *dst, freq);
4085 CP(*src, *dst, maxerror);
4086 CP(*src, *dst, esterror);
4087 CP(*src, *dst, status);
4088 CP(*src, *dst, constant);
4089 CP(*src, *dst, precision);
4090 CP(*src, *dst, tolerance);
4091 CP(*src, *dst, ppsfreq);
4092 CP(*src, *dst, jitter);
4093 CP(*src, *dst, shift);
4094 CP(*src, *dst, stabil);
4095 CP(*src, *dst, jitcnt);
4096 CP(*src, *dst, calcnt);
4097 CP(*src, *dst, errcnt);
4098 CP(*src, *dst, stbcnt);
4099 }
4100
4101 static void
timex_from_32(struct timex * dst,struct timex32 * src)4102 timex_from_32(struct timex *dst, struct timex32 *src)
4103 {
4104 CP(*src, *dst, modes);
4105 CP(*src, *dst, offset);
4106 CP(*src, *dst, freq);
4107 CP(*src, *dst, maxerror);
4108 CP(*src, *dst, esterror);
4109 CP(*src, *dst, status);
4110 CP(*src, *dst, constant);
4111 CP(*src, *dst, precision);
4112 CP(*src, *dst, tolerance);
4113 CP(*src, *dst, ppsfreq);
4114 CP(*src, *dst, jitter);
4115 CP(*src, *dst, shift);
4116 CP(*src, *dst, stabil);
4117 CP(*src, *dst, jitcnt);
4118 CP(*src, *dst, calcnt);
4119 CP(*src, *dst, errcnt);
4120 CP(*src, *dst, stbcnt);
4121 }
4122
4123 int
freebsd32_ntp_adjtime(struct thread * td,struct freebsd32_ntp_adjtime_args * uap)4124 freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap)
4125 {
4126 struct timex tx;
4127 struct timex32 tx32;
4128 int error, retval;
4129
4130 error = copyin(uap->tp, &tx32, sizeof(tx32));
4131 if (error == 0) {
4132 timex_from_32(&tx, &tx32);
4133 error = kern_ntp_adjtime(td, &tx, &retval);
4134 if (error == 0) {
4135 timex_to_32(&tx32, &tx);
4136 error = copyout(&tx32, uap->tp, sizeof(tx32));
4137 if (error == 0)
4138 td->td_retval[0] = retval;
4139 }
4140 }
4141 return (error);
4142 }
4143
4144 #ifdef FFCLOCK
4145 extern struct mtx ffclock_mtx;
4146 extern struct ffclock_estimate ffclock_estimate;
4147 extern int8_t ffclock_updated;
4148
4149 int
freebsd32_ffclock_setestimate(struct thread * td,struct freebsd32_ffclock_setestimate_args * uap)4150 freebsd32_ffclock_setestimate(struct thread *td,
4151 struct freebsd32_ffclock_setestimate_args *uap)
4152 {
4153 struct ffclock_estimate cest;
4154 struct ffclock_estimate32 cest32;
4155 int error;
4156
4157 /* Reuse of PRIV_CLOCK_SETTIME. */
4158 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
4159 return (error);
4160
4161 if ((error = copyin(uap->cest, &cest32,
4162 sizeof(struct ffclock_estimate32))) != 0)
4163 return (error);
4164
4165 CP(cest.update_time, cest32.update_time, sec);
4166 memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t));
4167 CP(cest, cest32, update_ffcount);
4168 CP(cest, cest32, leapsec_next);
4169 CP(cest, cest32, period);
4170 CP(cest, cest32, errb_abs);
4171 CP(cest, cest32, errb_rate);
4172 CP(cest, cest32, status);
4173 CP(cest, cest32, leapsec_total);
4174 CP(cest, cest32, leapsec);
4175
4176 mtx_lock(&ffclock_mtx);
4177 memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
4178 ffclock_updated++;
4179 mtx_unlock(&ffclock_mtx);
4180 return (error);
4181 }
4182
4183 int
freebsd32_ffclock_getestimate(struct thread * td,struct freebsd32_ffclock_getestimate_args * uap)4184 freebsd32_ffclock_getestimate(struct thread *td,
4185 struct freebsd32_ffclock_getestimate_args *uap)
4186 {
4187 struct ffclock_estimate cest;
4188 struct ffclock_estimate32 cest32;
4189 int error;
4190
4191 mtx_lock(&ffclock_mtx);
4192 memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
4193 mtx_unlock(&ffclock_mtx);
4194
4195 CP(cest32.update_time, cest.update_time, sec);
4196 memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t));
4197 CP(cest32, cest, update_ffcount);
4198 CP(cest32, cest, leapsec_next);
4199 CP(cest32, cest, period);
4200 CP(cest32, cest, errb_abs);
4201 CP(cest32, cest, errb_rate);
4202 CP(cest32, cest, status);
4203 CP(cest32, cest, leapsec_total);
4204 CP(cest32, cest, leapsec);
4205
4206 error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32));
4207 return (error);
4208 }
4209 #else /* !FFCLOCK */
4210 int
freebsd32_ffclock_setestimate(struct thread * td,struct freebsd32_ffclock_setestimate_args * uap)4211 freebsd32_ffclock_setestimate(struct thread *td,
4212 struct freebsd32_ffclock_setestimate_args *uap)
4213 {
4214 return (ENOSYS);
4215 }
4216
4217 int
freebsd32_ffclock_getestimate(struct thread * td,struct freebsd32_ffclock_getestimate_args * uap)4218 freebsd32_ffclock_getestimate(struct thread *td,
4219 struct freebsd32_ffclock_getestimate_args *uap)
4220 {
4221 return (ENOSYS);
4222 }
4223 #endif /* FFCLOCK */
4224
4225 #ifdef COMPAT_43
4226 int
ofreebsd32_sethostid(struct thread * td,struct ofreebsd32_sethostid_args * uap)4227 ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap)
4228 {
4229 int name[] = { CTL_KERN, KERN_HOSTID };
4230 long hostid;
4231
4232 hostid = uap->hostid;
4233 return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid,
4234 sizeof(hostid), NULL, 0));
4235 }
4236 #endif
4237
4238 int
freebsd32_setcred(struct thread * td,struct freebsd32_setcred_args * uap)4239 freebsd32_setcred(struct thread *td, struct freebsd32_setcred_args *uap)
4240 {
4241 /* Last argument is 'is_32bit'. */
4242 return (user_setcred(td, uap->flags, uap->wcred, uap->size, true));
4243 }
4244