1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997 John S. Dyson. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. John S. Dyson's name may not be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything
15 * bad that happens because of using this software isn't the responsibility
16 * of the author. This software is distributed AS-IS.
17 */
18
19 /*
20 * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21 */
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/malloc.h>
26 #include <sys/bio.h>
27 #include <sys/buf.h>
28 #include <sys/capsicum.h>
29 #include <sys/eventhandler.h>
30 #include <sys/sysproto.h>
31 #include <sys/filedesc.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/kthread.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/unistd.h>
41 #include <sys/posix4.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/sema.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/syscall.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/sx.h>
55 #include <sys/taskqueue.h>
56 #include <sys/vnode.h>
57 #include <sys/conf.h>
58 #include <sys/event.h>
59 #include <sys/mount.h>
60 #include <geom/geom.h>
61
62 #include <machine/atomic.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vnode_pager.h>
71 #include <vm/uma.h>
72 #include <sys/aio.h>
73
74 /*
75 * Counter for aio_fsync.
76 */
77 static uint64_t jobseqno;
78
79 #ifndef MAX_AIO_PER_PROC
80 #define MAX_AIO_PER_PROC 32
81 #endif
82
83 #ifndef MAX_AIO_QUEUE_PER_PROC
84 #define MAX_AIO_QUEUE_PER_PROC 256
85 #endif
86
87 #ifndef MAX_AIO_QUEUE
88 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
89 #endif
90
91 #ifndef MAX_BUF_AIO
92 #define MAX_BUF_AIO 16
93 #endif
94
95 FEATURE(aio, "Asynchronous I/O");
96 SYSCTL_DECL(_p1003_1b);
97
98 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
99 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
100
101 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102 "Async IO management");
103
104 static int enable_aio_unsafe = 0;
105 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
106 "Permit asynchronous IO on all file types, not just known-safe types");
107
108 static unsigned int unsafe_warningcnt = 1;
109 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
110 &unsafe_warningcnt, 0,
111 "Warnings that will be triggered upon failed IO requests on unsafe files");
112
113 static int max_aio_procs = MAX_AIO_PROCS;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
115 "Maximum number of kernel processes to use for handling async IO ");
116
117 static int num_aio_procs = 0;
118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
119 "Number of presently active kernel processes for async IO");
120
121 /*
122 * The code will adjust the actual number of AIO processes towards this
123 * number when it gets a chance.
124 */
125 static int target_aio_procs = TARGET_AIO_PROCS;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
127 0,
128 "Preferred number of ready kernel processes for async IO");
129
130 static int max_queue_count = MAX_AIO_QUEUE;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
132 "Maximum number of aio requests to queue, globally");
133
134 static int num_queue_count = 0;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
136 "Number of queued aio requests");
137
138 static int num_buf_aio = 0;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
140 "Number of aio requests presently handled by the buf subsystem");
141
142 static int num_unmapped_aio = 0;
143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
144 0,
145 "Number of aio requests presently handled by unmapped I/O buffers");
146
147 /* Number of async I/O processes in the process of being started */
148 /* XXX This should be local to aio_aqueue() */
149 static int num_aio_resv_start = 0;
150
151 static int aiod_lifetime;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
153 "Maximum lifetime for idle aiod");
154
155 static int max_aio_per_proc = MAX_AIO_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
157 0,
158 "Maximum active aio requests per process");
159
160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
162 &max_aio_queue_per_proc, 0,
163 "Maximum queued aio requests per process");
164
165 static int max_buf_aio = MAX_BUF_AIO;
166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
167 "Maximum buf aio requests per process");
168
169 /*
170 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
171 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
172 * vfs.aio.aio_listio_max.
173 */
174 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
175 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
176 0, "Maximum aio requests for a single lio_listio call");
177
178 #ifdef COMPAT_FREEBSD6
179 typedef struct oaiocb {
180 int aio_fildes; /* File descriptor */
181 off_t aio_offset; /* File offset for I/O */
182 volatile void *aio_buf; /* I/O buffer in process space */
183 size_t aio_nbytes; /* Number of bytes for I/O */
184 struct osigevent aio_sigevent; /* Signal to deliver */
185 int aio_lio_opcode; /* LIO opcode */
186 int aio_reqprio; /* Request priority -- ignored */
187 struct __aiocb_private _aiocb_private;
188 } oaiocb_t;
189 #endif
190
191 /*
192 * Below is a key of locks used to protect each member of struct kaiocb
193 * aioliojob and kaioinfo and any backends.
194 *
195 * * - need not protected
196 * a - locked by kaioinfo lock
197 * b - locked by backend lock, the backend lock can be null in some cases,
198 * for example, BIO belongs to this type, in this case, proc lock is
199 * reused.
200 * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
201 */
202
203 /*
204 * If the routine that services an AIO request blocks while running in an
205 * AIO kernel process it can starve other I/O requests. BIO requests
206 * queued via aio_qbio() complete asynchronously and do not use AIO kernel
207 * processes at all. Socket I/O requests use a separate pool of
208 * kprocs and also force non-blocking I/O. Other file I/O requests
209 * use the generic fo_read/fo_write operations which can block. The
210 * fsync and mlock operations can also block while executing. Ideally
211 * none of these requests would block while executing.
212 *
213 * Note that the service routines cannot toggle O_NONBLOCK in the file
214 * structure directly while handling a request due to races with
215 * userland threads.
216 */
217
218 /* jobflags */
219 #define KAIOCB_QUEUEING 0x01
220 #define KAIOCB_CANCELLED 0x02
221 #define KAIOCB_CANCELLING 0x04
222 #define KAIOCB_CHECKSYNC 0x08
223 #define KAIOCB_CLEARED 0x10
224 #define KAIOCB_FINISHED 0x20
225
226 /* ioflags */
227 #define KAIOCB_IO_FOFFSET 0x01
228
229 /*
230 * AIO process info
231 */
232 #define AIOP_FREE 0x1 /* proc on free queue */
233
234 struct aioproc {
235 int aioprocflags; /* (c) AIO proc flags */
236 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */
237 struct proc *aioproc; /* (*) the AIO proc */
238 };
239
240 /*
241 * data-structure for lio signal management
242 */
243 struct aioliojob {
244 int lioj_flags; /* (a) listio flags */
245 int lioj_count; /* (a) count of jobs */
246 int lioj_finished_count; /* (a) count of finished jobs */
247 struct sigevent lioj_signal; /* (a) signal on all I/O done */
248 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */
249 struct knlist klist; /* (a) list of knotes */
250 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */
251 };
252
253 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */
254 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */
255 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */
256
257 /*
258 * per process aio data structure
259 */
260 struct kaioinfo {
261 struct mtx kaio_mtx; /* the lock to protect this struct */
262 int kaio_flags; /* (a) per process kaio flags */
263 int kaio_active_count; /* (c) number of currently used AIOs */
264 int kaio_count; /* (a) size of AIO queue */
265 int kaio_buffer_count; /* (a) number of bio buffers */
266 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */
267 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */
268 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
269 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */
270 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */
271 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */
272 struct task kaio_task; /* (*) task to kick aio processes */
273 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */
274 };
275
276 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx)
277 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx)
278 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f))
279 #define AIO_MTX(ki) (&(ki)->kaio_mtx)
280
281 #define KAIO_RUNDOWN 0x1 /* process is being run down */
282 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */
283
284 /*
285 * Operations used to interact with userland aio control blocks.
286 * Different ABIs provide their own operations.
287 */
288 struct aiocb_ops {
289 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
290 long (*fetch_status)(struct aiocb *ujob);
291 long (*fetch_error)(struct aiocb *ujob);
292 int (*store_status)(struct aiocb *ujob, long status);
293 int (*store_error)(struct aiocb *ujob, long error);
294 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
295 };
296
297 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */
298 static struct sema aio_newproc_sem;
299 static struct mtx aio_job_mtx;
300 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */
301 static struct unrhdr *aiod_unr;
302
303 static void aio_biocleanup(struct bio *bp);
304 static int aio_init_aioinfo(struct proc *p);
305 static int aio_onceonly(void);
306 static int aio_free_entry(struct kaiocb *job);
307 static void aio_process_rw(struct kaiocb *job);
308 static void aio_process_sync(struct kaiocb *job);
309 static void aio_process_mlock(struct kaiocb *job);
310 static void aio_schedule_fsync(void *context, int pending);
311 static int aio_newproc(int *);
312 static int aio_aqueue(struct thread *td, struct aiocb *ujob,
313 struct aioliojob *lio, int type, struct aiocb_ops *ops);
314 static int aio_queue_file(struct file *fp, struct kaiocb *job);
315 static void aio_biowakeup(struct bio *bp);
316 static void aio_proc_rundown(void *arg, struct proc *p);
317 static void aio_proc_rundown_exec(void *arg, struct proc *p,
318 struct image_params *imgp);
319 static int aio_qbio(struct proc *p, struct kaiocb *job);
320 static void aio_daemon(void *param);
321 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
322 static bool aio_clear_cancel_function_locked(struct kaiocb *job);
323 static int aio_kick(struct proc *userp);
324 static void aio_kick_nowait(struct proc *userp);
325 static void aio_kick_helper(void *context, int pending);
326 static int filt_aioattach(struct knote *kn);
327 static void filt_aiodetach(struct knote *kn);
328 static int filt_aio(struct knote *kn, long hint);
329 static int filt_lioattach(struct knote *kn);
330 static void filt_liodetach(struct knote *kn);
331 static int filt_lio(struct knote *kn, long hint);
332
333 /*
334 * Zones for:
335 * kaio Per process async io info
336 * aiocb async io jobs
337 * aiolio list io jobs
338 */
339 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
340
341 /* kqueue filters for aio */
342 static const struct filterops aio_filtops = {
343 .f_isfd = 0,
344 .f_attach = filt_aioattach,
345 .f_detach = filt_aiodetach,
346 .f_event = filt_aio,
347 };
348 static const struct filterops lio_filtops = {
349 .f_isfd = 0,
350 .f_attach = filt_lioattach,
351 .f_detach = filt_liodetach,
352 .f_event = filt_lio
353 };
354
355 static eventhandler_tag exit_tag, exec_tag;
356
357 TASKQUEUE_DEFINE_THREAD(aiod_kick);
358
359 /*
360 * Main operations function for use as a kernel module.
361 */
362 static int
aio_modload(struct module * module,int cmd,void * arg)363 aio_modload(struct module *module, int cmd, void *arg)
364 {
365 int error = 0;
366
367 switch (cmd) {
368 case MOD_LOAD:
369 aio_onceonly();
370 break;
371 case MOD_SHUTDOWN:
372 break;
373 default:
374 error = EOPNOTSUPP;
375 break;
376 }
377 return (error);
378 }
379
380 static moduledata_t aio_mod = {
381 "aio",
382 &aio_modload,
383 NULL
384 };
385
386 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
387 MODULE_VERSION(aio, 1);
388
389 /*
390 * Startup initialization
391 */
392 static int
aio_onceonly(void)393 aio_onceonly(void)
394 {
395
396 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
397 EVENTHANDLER_PRI_ANY);
398 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
399 NULL, EVENTHANDLER_PRI_ANY);
400 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
401 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
402 TAILQ_INIT(&aio_freeproc);
403 sema_init(&aio_newproc_sem, 0, "aio_new_proc");
404 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
405 TAILQ_INIT(&aio_jobs);
406 aiod_unr = new_unrhdr(1, INT_MAX, NULL);
407 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
408 NULL, NULL, UMA_ALIGN_PTR, 0);
409 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
410 NULL, NULL, UMA_ALIGN_PTR, 0);
411 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
412 NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
413 aiod_lifetime = AIOD_LIFETIME_DEFAULT;
414 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
415 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
416 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
417
418 return (0);
419 }
420
421 /*
422 * Init the per-process aioinfo structure. The aioinfo limits are set
423 * per-process for user limit (resource) management.
424 */
425 static int
aio_init_aioinfo(struct proc * p)426 aio_init_aioinfo(struct proc *p)
427 {
428 struct kaioinfo *ki;
429 int error;
430
431 ki = uma_zalloc(kaio_zone, M_WAITOK);
432 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
433 ki->kaio_flags = 0;
434 ki->kaio_active_count = 0;
435 ki->kaio_count = 0;
436 ki->kaio_buffer_count = 0;
437 TAILQ_INIT(&ki->kaio_all);
438 TAILQ_INIT(&ki->kaio_done);
439 TAILQ_INIT(&ki->kaio_jobqueue);
440 TAILQ_INIT(&ki->kaio_liojoblist);
441 TAILQ_INIT(&ki->kaio_syncqueue);
442 TAILQ_INIT(&ki->kaio_syncready);
443 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
444 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
445 PROC_LOCK(p);
446 if (p->p_aioinfo == NULL) {
447 p->p_aioinfo = ki;
448 PROC_UNLOCK(p);
449 } else {
450 PROC_UNLOCK(p);
451 mtx_destroy(&ki->kaio_mtx);
452 uma_zfree(kaio_zone, ki);
453 }
454
455 error = 0;
456 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) {
457 error = aio_newproc(NULL);
458 if (error != 0)
459 break;
460 }
461 return (error);
462 }
463
464 static int
aio_sendsig(struct proc * p,struct sigevent * sigev,ksiginfo_t * ksi,bool ext)465 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
466 {
467 struct thread *td;
468 int error;
469
470 error = sigev_findtd(p, sigev, &td);
471 if (error)
472 return (error);
473 if (!KSI_ONQ(ksi)) {
474 ksiginfo_set_sigev(ksi, sigev);
475 ksi->ksi_code = SI_ASYNCIO;
476 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
477 tdsendsignal(p, td, ksi->ksi_signo, ksi);
478 }
479 PROC_UNLOCK(p);
480 return (error);
481 }
482
483 /*
484 * Free a job entry. Wait for completion if it is currently active, but don't
485 * delay forever. If we delay, we return a flag that says that we have to
486 * restart the queue scan.
487 */
488 static int
aio_free_entry(struct kaiocb * job)489 aio_free_entry(struct kaiocb *job)
490 {
491 struct kaioinfo *ki;
492 struct aioliojob *lj;
493 struct proc *p;
494
495 p = job->userproc;
496 MPASS(curproc == p);
497 ki = p->p_aioinfo;
498 MPASS(ki != NULL);
499
500 AIO_LOCK_ASSERT(ki, MA_OWNED);
501 MPASS(job->jobflags & KAIOCB_FINISHED);
502
503 atomic_subtract_int(&num_queue_count, 1);
504
505 ki->kaio_count--;
506 MPASS(ki->kaio_count >= 0);
507
508 TAILQ_REMOVE(&ki->kaio_done, job, plist);
509 TAILQ_REMOVE(&ki->kaio_all, job, allist);
510
511 lj = job->lio;
512 if (lj) {
513 lj->lioj_count--;
514 lj->lioj_finished_count--;
515
516 if (lj->lioj_count == 0) {
517 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
518 /* lio is going away, we need to destroy any knotes */
519 knlist_delete(&lj->klist, curthread, 1);
520 PROC_LOCK(p);
521 sigqueue_take(&lj->lioj_ksi);
522 PROC_UNLOCK(p);
523 uma_zfree(aiolio_zone, lj);
524 }
525 }
526
527 /* job is going away, we need to destroy any knotes */
528 knlist_delete(&job->klist, curthread, 1);
529 PROC_LOCK(p);
530 sigqueue_take(&job->ksi);
531 PROC_UNLOCK(p);
532
533 AIO_UNLOCK(ki);
534
535 /*
536 * The thread argument here is used to find the owning process
537 * and is also passed to fo_close() which may pass it to various
538 * places such as devsw close() routines. Because of that, we
539 * need a thread pointer from the process owning the job that is
540 * persistent and won't disappear out from under us or move to
541 * another process.
542 *
543 * Currently, all the callers of this function call it to remove
544 * a kaiocb from the current process' job list either via a
545 * syscall or due to the current process calling exit() or
546 * execve(). Thus, we know that p == curproc. We also know that
547 * curthread can't exit since we are curthread.
548 *
549 * Therefore, we use curthread as the thread to pass to
550 * knlist_delete(). This does mean that it is possible for the
551 * thread pointer at close time to differ from the thread pointer
552 * at open time, but this is already true of file descriptors in
553 * a multithreaded process.
554 */
555 if (job->fd_file)
556 fdrop(job->fd_file, curthread);
557 crfree(job->cred);
558 if (job->uiop != &job->uio)
559 freeuio(job->uiop);
560 uma_zfree(aiocb_zone, job);
561 AIO_LOCK(ki);
562
563 return (0);
564 }
565
566 static void
aio_proc_rundown_exec(void * arg,struct proc * p,struct image_params * imgp __unused)567 aio_proc_rundown_exec(void *arg, struct proc *p,
568 struct image_params *imgp __unused)
569 {
570 aio_proc_rundown(arg, p);
571 }
572
573 static int
aio_cancel_job(struct proc * p,struct kaioinfo * ki,struct kaiocb * job)574 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
575 {
576 aio_cancel_fn_t *func;
577 int cancelled;
578
579 AIO_LOCK_ASSERT(ki, MA_OWNED);
580 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
581 return (0);
582 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
583 job->jobflags |= KAIOCB_CANCELLED;
584
585 func = job->cancel_fn;
586
587 /*
588 * If there is no cancel routine, just leave the job marked as
589 * cancelled. The job should be in active use by a caller who
590 * should complete it normally or when it fails to install a
591 * cancel routine.
592 */
593 if (func == NULL)
594 return (0);
595
596 /*
597 * Set the CANCELLING flag so that aio_complete() will defer
598 * completions of this job. This prevents the job from being
599 * freed out from under the cancel callback. After the
600 * callback any deferred completion (whether from the callback
601 * or any other source) will be completed.
602 */
603 job->jobflags |= KAIOCB_CANCELLING;
604 AIO_UNLOCK(ki);
605 func(job);
606 AIO_LOCK(ki);
607 job->jobflags &= ~KAIOCB_CANCELLING;
608 if (job->jobflags & KAIOCB_FINISHED) {
609 cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
610 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
611 aio_bio_done_notify(p, job);
612 } else {
613 /*
614 * The cancel callback might have scheduled an
615 * operation to cancel this request, but it is
616 * only counted as cancelled if the request is
617 * cancelled when the callback returns.
618 */
619 cancelled = 0;
620 }
621 return (cancelled);
622 }
623
624 /*
625 * Rundown the jobs for a given process.
626 */
627 static void
aio_proc_rundown(void * arg,struct proc * p)628 aio_proc_rundown(void *arg, struct proc *p)
629 {
630 struct kaioinfo *ki;
631 struct aioliojob *lj;
632 struct kaiocb *job, *jobn;
633
634 KASSERT(curthread->td_proc == p,
635 ("%s: called on non-curproc", __func__));
636 ki = p->p_aioinfo;
637 if (ki == NULL)
638 return;
639
640 AIO_LOCK(ki);
641 ki->kaio_flags |= KAIO_RUNDOWN;
642
643 restart:
644
645 /*
646 * Try to cancel all pending requests. This code simulates
647 * aio_cancel on all pending I/O requests.
648 */
649 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
650 aio_cancel_job(p, ki, job);
651 }
652
653 /* Wait for all running I/O to be finished */
654 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
655 ki->kaio_flags |= KAIO_WAKEUP;
656 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
657 goto restart;
658 }
659
660 /* Free all completed I/O requests. */
661 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
662 aio_free_entry(job);
663
664 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
665 if (lj->lioj_count == 0) {
666 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
667 knlist_delete(&lj->klist, curthread, 1);
668 PROC_LOCK(p);
669 sigqueue_take(&lj->lioj_ksi);
670 PROC_UNLOCK(p);
671 uma_zfree(aiolio_zone, lj);
672 } else {
673 panic("LIO job not cleaned up: C:%d, FC:%d\n",
674 lj->lioj_count, lj->lioj_finished_count);
675 }
676 }
677 AIO_UNLOCK(ki);
678 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
679 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
680 mtx_destroy(&ki->kaio_mtx);
681 uma_zfree(kaio_zone, ki);
682 p->p_aioinfo = NULL;
683 }
684
685 /*
686 * Select a job to run (called by an AIO daemon).
687 */
688 static struct kaiocb *
aio_selectjob(struct aioproc * aiop)689 aio_selectjob(struct aioproc *aiop)
690 {
691 struct kaiocb *job;
692 struct kaioinfo *ki;
693 struct proc *userp;
694
695 mtx_assert(&aio_job_mtx, MA_OWNED);
696 restart:
697 TAILQ_FOREACH(job, &aio_jobs, list) {
698 userp = job->userproc;
699 ki = userp->p_aioinfo;
700
701 if (ki->kaio_active_count < max_aio_per_proc) {
702 TAILQ_REMOVE(&aio_jobs, job, list);
703 if (!aio_clear_cancel_function(job))
704 goto restart;
705
706 /* Account for currently active jobs. */
707 ki->kaio_active_count++;
708 break;
709 }
710 }
711 return (job);
712 }
713
714 /*
715 * Move all data to a permanent storage device. This code
716 * simulates the fsync and fdatasync syscalls.
717 */
718 static int
aio_fsync_vnode(struct thread * td,struct vnode * vp,int op)719 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
720 {
721 struct mount *mp;
722 int error;
723
724 for (;;) {
725 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
726 if (error != 0)
727 break;
728 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
729 vnode_pager_clean_async(vp);
730 if (op == LIO_DSYNC)
731 error = VOP_FDATASYNC(vp, td);
732 else
733 error = VOP_FSYNC(vp, MNT_WAIT, td);
734
735 VOP_UNLOCK(vp);
736 vn_finished_write(mp);
737 if (error != ERELOOKUP)
738 break;
739 }
740 return (error);
741 }
742
743 /*
744 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that
745 * does the I/O request for the non-bio version of the operations. The normal
746 * vn operations are used, and this code should work in all instances for every
747 * type of file, including pipes, sockets, fifos, and regular files.
748 *
749 * XXX I don't think it works well for socket, pipe, and fifo.
750 */
751 static void
aio_process_rw(struct kaiocb * job)752 aio_process_rw(struct kaiocb *job)
753 {
754 struct ucred *td_savedcred;
755 struct thread *td;
756 struct file *fp;
757 ssize_t cnt;
758 long msgsnd_st, msgsnd_end;
759 long msgrcv_st, msgrcv_end;
760 long oublock_st, oublock_end;
761 long inblock_st, inblock_end;
762 int error, opcode;
763
764 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
765 KASSERT(opcode == LIO_READ || opcode == LIO_READV ||
766 opcode == LIO_WRITE || opcode == LIO_WRITEV,
767 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
768
769 aio_switch_vmspace(job);
770 td = curthread;
771 td_savedcred = td->td_ucred;
772 td->td_ucred = job->cred;
773 job->uiop->uio_td = td;
774 fp = job->fd_file;
775
776 cnt = job->uiop->uio_resid;
777
778 msgrcv_st = td->td_ru.ru_msgrcv;
779 msgsnd_st = td->td_ru.ru_msgsnd;
780 inblock_st = td->td_ru.ru_inblock;
781 oublock_st = td->td_ru.ru_oublock;
782
783 /*
784 * aio_aqueue() acquires a reference to the file that is
785 * released in aio_free_entry().
786 */
787 if (opcode == LIO_READ || opcode == LIO_READV) {
788 if (job->uiop->uio_resid == 0)
789 error = 0;
790 else
791 error = fo_read(fp, job->uiop, fp->f_cred,
792 (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 :
793 FOF_OFFSET, td);
794 } else {
795 if (fp->f_type == DTYPE_VNODE)
796 bwillwrite();
797 error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags &
798 KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td);
799 }
800 msgrcv_end = td->td_ru.ru_msgrcv;
801 msgsnd_end = td->td_ru.ru_msgsnd;
802 inblock_end = td->td_ru.ru_inblock;
803 oublock_end = td->td_ru.ru_oublock;
804
805 job->msgrcv = msgrcv_end - msgrcv_st;
806 job->msgsnd = msgsnd_end - msgsnd_st;
807 job->inblock = inblock_end - inblock_st;
808 job->outblock = oublock_end - oublock_st;
809
810 if (error != 0 && job->uiop->uio_resid != cnt) {
811 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
812 error = 0;
813 if (error == EPIPE && (opcode & LIO_WRITE)) {
814 PROC_LOCK(job->userproc);
815 kern_psignal(job->userproc, SIGPIPE);
816 PROC_UNLOCK(job->userproc);
817 }
818 }
819
820 cnt -= job->uiop->uio_resid;
821 td->td_ucred = td_savedcred;
822 if (error)
823 aio_complete(job, -1, error);
824 else
825 aio_complete(job, cnt, 0);
826 }
827
828 static void
aio_process_sync(struct kaiocb * job)829 aio_process_sync(struct kaiocb *job)
830 {
831 struct thread *td = curthread;
832 struct ucred *td_savedcred = td->td_ucred;
833 struct file *fp = job->fd_file;
834 int error = 0;
835
836 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
837 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
838
839 td->td_ucred = job->cred;
840 if (fp->f_vnode != NULL) {
841 error = aio_fsync_vnode(td, fp->f_vnode,
842 job->uaiocb.aio_lio_opcode);
843 }
844 td->td_ucred = td_savedcred;
845 if (error)
846 aio_complete(job, -1, error);
847 else
848 aio_complete(job, 0, 0);
849 }
850
851 static void
aio_process_mlock(struct kaiocb * job)852 aio_process_mlock(struct kaiocb *job)
853 {
854 struct aiocb *cb = &job->uaiocb;
855 int error;
856
857 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
858 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
859
860 aio_switch_vmspace(job);
861 error = kern_mlock(job->userproc, job->cred,
862 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
863 aio_complete(job, error != 0 ? -1 : 0, error);
864 }
865
866 static void
aio_bio_done_notify(struct proc * userp,struct kaiocb * job)867 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
868 {
869 struct aioliojob *lj;
870 struct kaioinfo *ki;
871 struct kaiocb *sjob, *sjobn;
872 int lj_done;
873 bool schedule_fsync;
874
875 ki = userp->p_aioinfo;
876 AIO_LOCK_ASSERT(ki, MA_OWNED);
877 lj = job->lio;
878 lj_done = 0;
879 if (lj) {
880 lj->lioj_finished_count++;
881 if (lj->lioj_count == lj->lioj_finished_count)
882 lj_done = 1;
883 }
884 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
885 MPASS(job->jobflags & KAIOCB_FINISHED);
886
887 if (ki->kaio_flags & KAIO_RUNDOWN)
888 goto notification_done;
889
890 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
891 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
892 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
893
894 KNOTE_LOCKED(&job->klist, 1);
895
896 if (lj_done) {
897 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
898 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
899 KNOTE_LOCKED(&lj->klist, 1);
900 }
901 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
902 == LIOJ_SIGNAL &&
903 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
904 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
905 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
906 true);
907 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
908 }
909 }
910
911 notification_done:
912 if (job->jobflags & KAIOCB_CHECKSYNC) {
913 schedule_fsync = false;
914 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
915 if (job->fd_file != sjob->fd_file ||
916 job->seqno >= sjob->seqno)
917 continue;
918 if (--sjob->pending > 0)
919 continue;
920 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
921 if (!aio_clear_cancel_function_locked(sjob))
922 continue;
923 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
924 schedule_fsync = true;
925 }
926 if (schedule_fsync)
927 taskqueue_enqueue(taskqueue_aiod_kick,
928 &ki->kaio_sync_task);
929 }
930 if (ki->kaio_flags & KAIO_WAKEUP) {
931 ki->kaio_flags &= ~KAIO_WAKEUP;
932 wakeup(&userp->p_aioinfo);
933 }
934 }
935
936 static void
aio_schedule_fsync(void * context,int pending)937 aio_schedule_fsync(void *context, int pending)
938 {
939 struct kaioinfo *ki;
940 struct kaiocb *job;
941
942 ki = context;
943 AIO_LOCK(ki);
944 while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
945 job = TAILQ_FIRST(&ki->kaio_syncready);
946 TAILQ_REMOVE(&ki->kaio_syncready, job, list);
947 AIO_UNLOCK(ki);
948 aio_schedule(job, aio_process_sync);
949 AIO_LOCK(ki);
950 }
951 AIO_UNLOCK(ki);
952 }
953
954 bool
aio_cancel_cleared(struct kaiocb * job)955 aio_cancel_cleared(struct kaiocb *job)
956 {
957
958 /*
959 * The caller should hold the same queue lock held when
960 * aio_clear_cancel_function() was called and set this flag
961 * ensuring this check sees an up-to-date value. However,
962 * there is no way to assert that.
963 */
964 return ((job->jobflags & KAIOCB_CLEARED) != 0);
965 }
966
967 static bool
aio_clear_cancel_function_locked(struct kaiocb * job)968 aio_clear_cancel_function_locked(struct kaiocb *job)
969 {
970
971 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
972 MPASS(job->cancel_fn != NULL);
973 if (job->jobflags & KAIOCB_CANCELLING) {
974 job->jobflags |= KAIOCB_CLEARED;
975 return (false);
976 }
977 job->cancel_fn = NULL;
978 return (true);
979 }
980
981 bool
aio_clear_cancel_function(struct kaiocb * job)982 aio_clear_cancel_function(struct kaiocb *job)
983 {
984 struct kaioinfo *ki;
985 bool ret;
986
987 ki = job->userproc->p_aioinfo;
988 AIO_LOCK(ki);
989 ret = aio_clear_cancel_function_locked(job);
990 AIO_UNLOCK(ki);
991 return (ret);
992 }
993
994 static bool
aio_set_cancel_function_locked(struct kaiocb * job,aio_cancel_fn_t * func)995 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
996 {
997
998 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
999 if (job->jobflags & KAIOCB_CANCELLED)
1000 return (false);
1001 job->cancel_fn = func;
1002 return (true);
1003 }
1004
1005 bool
aio_set_cancel_function(struct kaiocb * job,aio_cancel_fn_t * func)1006 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1007 {
1008 struct kaioinfo *ki;
1009 bool ret;
1010
1011 ki = job->userproc->p_aioinfo;
1012 AIO_LOCK(ki);
1013 ret = aio_set_cancel_function_locked(job, func);
1014 AIO_UNLOCK(ki);
1015 return (ret);
1016 }
1017
1018 void
aio_complete(struct kaiocb * job,long status,int error)1019 aio_complete(struct kaiocb *job, long status, int error)
1020 {
1021 struct kaioinfo *ki;
1022 struct proc *userp;
1023
1024 job->uaiocb._aiocb_private.error = error;
1025 job->uaiocb._aiocb_private.status = status;
1026
1027 userp = job->userproc;
1028 ki = userp->p_aioinfo;
1029
1030 AIO_LOCK(ki);
1031 KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1032 ("duplicate aio_complete"));
1033 job->jobflags |= KAIOCB_FINISHED;
1034 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1035 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1036 aio_bio_done_notify(userp, job);
1037 }
1038 AIO_UNLOCK(ki);
1039 }
1040
1041 void
aio_cancel(struct kaiocb * job)1042 aio_cancel(struct kaiocb *job)
1043 {
1044
1045 aio_complete(job, -1, ECANCELED);
1046 }
1047
1048 void
aio_switch_vmspace(struct kaiocb * job)1049 aio_switch_vmspace(struct kaiocb *job)
1050 {
1051
1052 vmspace_switch_aio(job->userproc->p_vmspace);
1053 }
1054
1055 /*
1056 * The AIO daemon, most of the actual work is done in aio_process_*,
1057 * but the setup (and address space mgmt) is done in this routine.
1058 */
1059 static void
aio_daemon(void * _id)1060 aio_daemon(void *_id)
1061 {
1062 struct kaiocb *job;
1063 struct aioproc *aiop;
1064 struct kaioinfo *ki;
1065 struct proc *p;
1066 struct vmspace *myvm;
1067 struct thread *td = curthread;
1068 int id = (intptr_t)_id;
1069
1070 /*
1071 * Grab an extra reference on the daemon's vmspace so that it
1072 * doesn't get freed by jobs that switch to a different
1073 * vmspace.
1074 */
1075 p = td->td_proc;
1076 myvm = vmspace_acquire_ref(p);
1077
1078 KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1079
1080 /*
1081 * Allocate and ready the aio control info. There is one aiop structure
1082 * per daemon.
1083 */
1084 aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
1085 aiop->aioproc = p;
1086 aiop->aioprocflags = 0;
1087
1088 /*
1089 * Wakeup parent process. (Parent sleeps to keep from blasting away
1090 * and creating too many daemons.)
1091 */
1092 sema_post(&aio_newproc_sem);
1093
1094 mtx_lock(&aio_job_mtx);
1095 for (;;) {
1096 /*
1097 * Take daemon off of free queue
1098 */
1099 if (aiop->aioprocflags & AIOP_FREE) {
1100 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1101 aiop->aioprocflags &= ~AIOP_FREE;
1102 }
1103
1104 /*
1105 * Check for jobs.
1106 */
1107 while ((job = aio_selectjob(aiop)) != NULL) {
1108 mtx_unlock(&aio_job_mtx);
1109
1110 ki = job->userproc->p_aioinfo;
1111 job->handle_fn(job);
1112
1113 mtx_lock(&aio_job_mtx);
1114 /* Decrement the active job count. */
1115 ki->kaio_active_count--;
1116 }
1117
1118 /*
1119 * Disconnect from user address space.
1120 */
1121 if (p->p_vmspace != myvm) {
1122 mtx_unlock(&aio_job_mtx);
1123 vmspace_switch_aio(myvm);
1124 mtx_lock(&aio_job_mtx);
1125 /*
1126 * We have to restart to avoid race, we only sleep if
1127 * no job can be selected.
1128 */
1129 continue;
1130 }
1131
1132 mtx_assert(&aio_job_mtx, MA_OWNED);
1133
1134 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1135 aiop->aioprocflags |= AIOP_FREE;
1136
1137 /*
1138 * If daemon is inactive for a long time, allow it to exit,
1139 * thereby freeing resources.
1140 */
1141 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1142 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1143 (aiop->aioprocflags & AIOP_FREE) &&
1144 num_aio_procs > target_aio_procs)
1145 break;
1146 }
1147 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1148 num_aio_procs--;
1149 mtx_unlock(&aio_job_mtx);
1150 free(aiop, M_AIO);
1151 free_unr(aiod_unr, id);
1152 vmspace_free(myvm);
1153
1154 KASSERT(p->p_vmspace == myvm,
1155 ("AIOD: bad vmspace for exiting daemon"));
1156 KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1157 ("AIOD: bad vm refcnt for exiting daemon: %d",
1158 refcount_load(&myvm->vm_refcnt)));
1159 kproc_exit(0);
1160 }
1161
1162 /*
1163 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1164 * AIO daemon modifies its environment itself.
1165 */
1166 static int
aio_newproc(int * start)1167 aio_newproc(int *start)
1168 {
1169 int error;
1170 struct proc *p;
1171 int id;
1172
1173 id = alloc_unr(aiod_unr);
1174 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1175 RFNOWAIT, 0, "aiod%d", id);
1176 if (error == 0) {
1177 /*
1178 * Wait until daemon is started.
1179 */
1180 sema_wait(&aio_newproc_sem);
1181 mtx_lock(&aio_job_mtx);
1182 num_aio_procs++;
1183 if (start != NULL)
1184 (*start)--;
1185 mtx_unlock(&aio_job_mtx);
1186 } else {
1187 free_unr(aiod_unr, id);
1188 }
1189 return (error);
1190 }
1191
1192 /*
1193 * Try the high-performance, low-overhead bio method for eligible
1194 * VCHR devices. This method doesn't use an aio helper thread, and
1195 * thus has very low overhead.
1196 *
1197 * Assumes that the caller, aio_aqueue(), has incremented the file
1198 * structure's reference count, preventing its deallocation for the
1199 * duration of this call.
1200 */
1201 static int
aio_qbio(struct proc * p,struct kaiocb * job)1202 aio_qbio(struct proc *p, struct kaiocb *job)
1203 {
1204 struct aiocb *cb;
1205 struct file *fp;
1206 struct buf *pbuf;
1207 struct vnode *vp;
1208 struct cdevsw *csw;
1209 struct cdev *dev;
1210 struct kaioinfo *ki;
1211 struct bio **bios = NULL;
1212 off_t offset;
1213 int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1214 vm_prot_t prot;
1215 bool use_unmapped;
1216
1217 cb = &job->uaiocb;
1218 fp = job->fd_file;
1219 opcode = cb->aio_lio_opcode;
1220
1221 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1222 opcode == LIO_READ || opcode == LIO_READV))
1223 return (-1);
1224 if (fp == NULL || fp->f_type != DTYPE_VNODE)
1225 return (-1);
1226
1227 vp = fp->f_vnode;
1228 if (vp->v_type != VCHR)
1229 return (-1);
1230 if (vp->v_bufobj.bo_bsize == 0)
1231 return (-1);
1232
1233 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1234 iovcnt = job->uiop->uio_iovcnt;
1235 if (iovcnt > max_buf_aio)
1236 return (-1);
1237 for (i = 0; i < iovcnt; i++) {
1238 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1239 return (-1);
1240 if (job->uiop->uio_iov[i].iov_len > maxphys) {
1241 error = -1;
1242 return (-1);
1243 }
1244 }
1245 offset = cb->aio_offset;
1246
1247 ref = 0;
1248 csw = devvn_refthread(vp, &dev, &ref);
1249 if (csw == NULL)
1250 return (ENXIO);
1251
1252 if ((csw->d_flags & D_DISK) == 0) {
1253 error = -1;
1254 goto unref;
1255 }
1256 if (job->uiop->uio_resid > dev->si_iosize_max) {
1257 error = -1;
1258 goto unref;
1259 }
1260
1261 ki = p->p_aioinfo;
1262 job->error = 0;
1263
1264 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1265 if (!use_unmapped) {
1266 AIO_LOCK(ki);
1267 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1268 AIO_UNLOCK(ki);
1269 error = EAGAIN;
1270 goto unref;
1271 }
1272 ki->kaio_buffer_count += iovcnt;
1273 AIO_UNLOCK(ki);
1274 }
1275
1276 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1277 refcount_init(&job->nbio, iovcnt);
1278 for (i = 0; i < iovcnt; i++) {
1279 struct vm_page** pages;
1280 struct bio *bp;
1281 void *buf;
1282 size_t nbytes;
1283 int npages;
1284
1285 buf = job->uiop->uio_iov[i].iov_base;
1286 nbytes = job->uiop->uio_iov[i].iov_len;
1287
1288 bios[i] = g_alloc_bio();
1289 bp = bios[i];
1290
1291 poff = (vm_offset_t)buf & PAGE_MASK;
1292 if (use_unmapped) {
1293 pbuf = NULL;
1294 pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1295 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1296 } else {
1297 pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1298 BUF_KERNPROC(pbuf);
1299 pages = pbuf->b_pages;
1300 }
1301
1302 bp->bio_length = nbytes;
1303 bp->bio_bcount = nbytes;
1304 bp->bio_done = aio_biowakeup;
1305 bp->bio_offset = offset;
1306 bp->bio_cmd = bio_cmd;
1307 bp->bio_dev = dev;
1308 bp->bio_caller1 = job;
1309 bp->bio_caller2 = pbuf;
1310
1311 prot = VM_PROT_READ;
1312 if (opcode == LIO_READ || opcode == LIO_READV)
1313 prot |= VM_PROT_WRITE; /* Less backwards than it looks */
1314 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1315 (vm_offset_t)buf, bp->bio_length, prot, pages,
1316 atop(maxphys) + 1);
1317 if (npages < 0) {
1318 if (pbuf != NULL)
1319 uma_zfree(pbuf_zone, pbuf);
1320 else
1321 free(pages, M_TEMP);
1322 error = EFAULT;
1323 g_destroy_bio(bp);
1324 i--;
1325 goto destroy_bios;
1326 }
1327 if (pbuf != NULL) {
1328 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1329 bp->bio_data = pbuf->b_data + poff;
1330 pbuf->b_npages = npages;
1331 atomic_add_int(&num_buf_aio, 1);
1332 } else {
1333 bp->bio_ma = pages;
1334 bp->bio_ma_n = npages;
1335 bp->bio_ma_offset = poff;
1336 bp->bio_data = unmapped_buf;
1337 bp->bio_flags |= BIO_UNMAPPED;
1338 atomic_add_int(&num_unmapped_aio, 1);
1339 }
1340
1341 offset += nbytes;
1342 }
1343
1344 /* Perform transfer. */
1345 for (i = 0; i < iovcnt; i++)
1346 csw->d_strategy(bios[i]);
1347 free(bios, M_TEMP);
1348
1349 dev_relthread(dev, ref);
1350 return (0);
1351
1352 destroy_bios:
1353 for (; i >= 0; i--)
1354 aio_biocleanup(bios[i]);
1355 free(bios, M_TEMP);
1356 unref:
1357 dev_relthread(dev, ref);
1358 return (error);
1359 }
1360
1361 #ifdef COMPAT_FREEBSD6
1362 static int
convert_old_sigevent(struct osigevent * osig,struct sigevent * nsig)1363 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1364 {
1365
1366 /*
1367 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1368 * supported by AIO with the old sigevent structure.
1369 */
1370 nsig->sigev_notify = osig->sigev_notify;
1371 switch (nsig->sigev_notify) {
1372 case SIGEV_NONE:
1373 break;
1374 case SIGEV_SIGNAL:
1375 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1376 break;
1377 case SIGEV_KEVENT:
1378 nsig->sigev_notify_kqueue =
1379 osig->__sigev_u.__sigev_notify_kqueue;
1380 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1381 break;
1382 default:
1383 return (EINVAL);
1384 }
1385 return (0);
1386 }
1387
1388 static int
aiocb_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)1389 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1390 int type __unused)
1391 {
1392 struct oaiocb *ojob;
1393 struct aiocb *kcb = &kjob->uaiocb;
1394 int error;
1395
1396 bzero(kcb, sizeof(struct aiocb));
1397 error = copyin(ujob, kcb, sizeof(struct oaiocb));
1398 if (error)
1399 return (error);
1400 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1401 ojob = (struct oaiocb *)kcb;
1402 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1403 }
1404 #endif
1405
1406 static int
aiocb_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)1407 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1408 {
1409 struct aiocb *kcb = &kjob->uaiocb;
1410 int error;
1411
1412 error = copyin(ujob, kcb, sizeof(struct aiocb));
1413 if (error)
1414 return (error);
1415 if (type == LIO_NOP)
1416 type = kcb->aio_lio_opcode;
1417 if (type & LIO_VECTORED) {
1418 /* malloc a uio and copy in the iovec */
1419 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1420 kcb->aio_iovcnt, &kjob->uiop);
1421 }
1422
1423 return (error);
1424 }
1425
1426 static long
aiocb_fetch_status(struct aiocb * ujob)1427 aiocb_fetch_status(struct aiocb *ujob)
1428 {
1429
1430 return (fuword(&ujob->_aiocb_private.status));
1431 }
1432
1433 static long
aiocb_fetch_error(struct aiocb * ujob)1434 aiocb_fetch_error(struct aiocb *ujob)
1435 {
1436
1437 return (fuword(&ujob->_aiocb_private.error));
1438 }
1439
1440 static int
aiocb_store_status(struct aiocb * ujob,long status)1441 aiocb_store_status(struct aiocb *ujob, long status)
1442 {
1443
1444 return (suword(&ujob->_aiocb_private.status, status));
1445 }
1446
1447 static int
aiocb_store_error(struct aiocb * ujob,long error)1448 aiocb_store_error(struct aiocb *ujob, long error)
1449 {
1450
1451 return (suword(&ujob->_aiocb_private.error, error));
1452 }
1453
1454 static int
aiocb_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)1455 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1456 {
1457
1458 return (suword(ujobp, (long)ujob));
1459 }
1460
1461 static struct aiocb_ops aiocb_ops = {
1462 .aio_copyin = aiocb_copyin,
1463 .fetch_status = aiocb_fetch_status,
1464 .fetch_error = aiocb_fetch_error,
1465 .store_status = aiocb_store_status,
1466 .store_error = aiocb_store_error,
1467 .store_aiocb = aiocb_store_aiocb,
1468 };
1469
1470 #ifdef COMPAT_FREEBSD6
1471 static struct aiocb_ops aiocb_ops_osigevent = {
1472 .aio_copyin = aiocb_copyin_old_sigevent,
1473 .fetch_status = aiocb_fetch_status,
1474 .fetch_error = aiocb_fetch_error,
1475 .store_status = aiocb_store_status,
1476 .store_error = aiocb_store_error,
1477 .store_aiocb = aiocb_store_aiocb,
1478 };
1479 #endif
1480
1481 /*
1482 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR
1483 * technique is done in this code.
1484 */
1485 static int
aio_aqueue(struct thread * td,struct aiocb * ujob,struct aioliojob * lj,int type,struct aiocb_ops * ops)1486 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1487 int type, struct aiocb_ops *ops)
1488 {
1489 struct proc *p = td->td_proc;
1490 struct file *fp = NULL;
1491 struct kaiocb *job;
1492 struct kaioinfo *ki;
1493 struct kevent kev;
1494 int opcode;
1495 int error;
1496 int fd, kqfd;
1497 u_short evflags;
1498
1499 if (p->p_aioinfo == NULL) {
1500 error = aio_init_aioinfo(p);
1501 if (error != 0)
1502 goto err1;
1503 }
1504
1505 ki = p->p_aioinfo;
1506
1507 ops->store_status(ujob, -1);
1508 ops->store_error(ujob, 0);
1509
1510 if (num_queue_count >= max_queue_count ||
1511 ki->kaio_count >= max_aio_queue_per_proc) {
1512 error = EAGAIN;
1513 goto err1;
1514 }
1515
1516 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1517 knlist_init_mtx(&job->klist, AIO_MTX(ki));
1518
1519 error = ops->aio_copyin(ujob, job, type);
1520 if (error)
1521 goto err2;
1522
1523 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1524 error = EINVAL;
1525 goto err2;
1526 }
1527
1528 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1529 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1530 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1531 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1532 error = EINVAL;
1533 goto err2;
1534 }
1535
1536 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1537 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1538 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1539 error = EINVAL;
1540 goto err2;
1541 }
1542
1543 /* Get the opcode. */
1544 if (type == LIO_NOP) {
1545 switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) {
1546 case LIO_WRITE:
1547 case LIO_WRITEV:
1548 case LIO_NOP:
1549 case LIO_READ:
1550 case LIO_READV:
1551 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
1552 if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0)
1553 job->ioflags |= KAIOCB_IO_FOFFSET;
1554 break;
1555 default:
1556 error = EINVAL;
1557 goto err2;
1558 }
1559 } else
1560 opcode = job->uaiocb.aio_lio_opcode = type;
1561
1562 ksiginfo_init(&job->ksi);
1563
1564 /* Save userspace address of the job info. */
1565 job->ujob = ujob;
1566
1567 /*
1568 * Validate the opcode and fetch the file object for the specified
1569 * file descriptor.
1570 *
1571 * XXXRW: Moved the opcode validation up here so that we don't
1572 * retrieve a file descriptor without knowing what the capabiltity
1573 * should be.
1574 */
1575 fd = job->uaiocb.aio_fildes;
1576 switch (opcode) {
1577 case LIO_WRITE:
1578 case LIO_WRITEV:
1579 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1580 break;
1581 case LIO_READ:
1582 case LIO_READV:
1583 error = fget_read(td, fd, &cap_pread_rights, &fp);
1584 break;
1585 case LIO_SYNC:
1586 case LIO_DSYNC:
1587 error = fget(td, fd, &cap_fsync_rights, &fp);
1588 break;
1589 case LIO_MLOCK:
1590 break;
1591 case LIO_NOP:
1592 error = fget(td, fd, &cap_no_rights, &fp);
1593 break;
1594 default:
1595 error = EINVAL;
1596 }
1597 if (error)
1598 goto err3;
1599
1600 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1601 error = EINVAL;
1602 goto err3;
1603 }
1604
1605 if ((opcode == LIO_READ || opcode == LIO_READV ||
1606 opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1607 job->uaiocb.aio_offset < 0 &&
1608 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1609 error = EINVAL;
1610 goto err3;
1611 }
1612
1613 if (fp != NULL && fp->f_ops == &path_fileops) {
1614 error = EBADF;
1615 goto err3;
1616 }
1617
1618 job->fd_file = fp;
1619
1620 mtx_lock(&aio_job_mtx);
1621 job->seqno = jobseqno++;
1622 mtx_unlock(&aio_job_mtx);
1623 if (opcode == LIO_NOP) {
1624 fdrop(fp, td);
1625 MPASS(job->uiop == &job->uio || job->uiop == NULL);
1626 uma_zfree(aiocb_zone, job);
1627 return (0);
1628 }
1629
1630 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1631 goto no_kqueue;
1632 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1633 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1634 error = EINVAL;
1635 goto err3;
1636 }
1637 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1638 memset(&kev, 0, sizeof(kev));
1639 kev.ident = (uintptr_t)job->ujob;
1640 kev.filter = EVFILT_AIO;
1641 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1642 kev.data = (intptr_t)job;
1643 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1644 error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1645 if (error)
1646 goto err3;
1647
1648 no_kqueue:
1649
1650 ops->store_error(ujob, EINPROGRESS);
1651 job->uaiocb._aiocb_private.error = EINPROGRESS;
1652 job->userproc = p;
1653 job->cred = crhold(td->td_ucred);
1654 job->jobflags = KAIOCB_QUEUEING;
1655 job->lio = lj;
1656
1657 if (opcode & LIO_VECTORED) {
1658 /* Use the uio copied in by aio_copyin */
1659 MPASS(job->uiop != &job->uio && job->uiop != NULL);
1660 } else {
1661 /* Setup the inline uio */
1662 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1663 job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1664 job->uio.uio_iov = job->iov;
1665 job->uio.uio_iovcnt = 1;
1666 job->uio.uio_resid = job->uaiocb.aio_nbytes;
1667 job->uio.uio_segflg = UIO_USERSPACE;
1668 job->uiop = &job->uio;
1669 }
1670 switch (opcode & (LIO_READ | LIO_WRITE)) {
1671 case LIO_READ:
1672 job->uiop->uio_rw = UIO_READ;
1673 break;
1674 case LIO_WRITE:
1675 job->uiop->uio_rw = UIO_WRITE;
1676 break;
1677 }
1678 job->uiop->uio_offset = job->uaiocb.aio_offset;
1679 job->uiop->uio_td = td;
1680
1681 if (opcode == LIO_MLOCK) {
1682 aio_schedule(job, aio_process_mlock);
1683 error = 0;
1684 } else if (fp->f_ops->fo_aio_queue == NULL)
1685 error = aio_queue_file(fp, job);
1686 else
1687 error = fo_aio_queue(fp, job);
1688 if (error)
1689 goto err4;
1690
1691 AIO_LOCK(ki);
1692 job->jobflags &= ~KAIOCB_QUEUEING;
1693 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1694 ki->kaio_count++;
1695 if (lj)
1696 lj->lioj_count++;
1697 atomic_add_int(&num_queue_count, 1);
1698 if (job->jobflags & KAIOCB_FINISHED) {
1699 /*
1700 * The queue callback completed the request synchronously.
1701 * The bulk of the completion is deferred in that case
1702 * until this point.
1703 */
1704 aio_bio_done_notify(p, job);
1705 } else
1706 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1707 AIO_UNLOCK(ki);
1708 return (0);
1709
1710 err4:
1711 crfree(job->cred);
1712 err3:
1713 if (fp)
1714 fdrop(fp, td);
1715 knlist_delete(&job->klist, curthread, 0);
1716 err2:
1717 if (job->uiop != &job->uio)
1718 freeuio(job->uiop);
1719 uma_zfree(aiocb_zone, job);
1720 err1:
1721 ops->store_error(ujob, error);
1722 return (error);
1723 }
1724
1725 static void
aio_cancel_daemon_job(struct kaiocb * job)1726 aio_cancel_daemon_job(struct kaiocb *job)
1727 {
1728
1729 mtx_lock(&aio_job_mtx);
1730 if (!aio_cancel_cleared(job))
1731 TAILQ_REMOVE(&aio_jobs, job, list);
1732 mtx_unlock(&aio_job_mtx);
1733 aio_cancel(job);
1734 }
1735
1736 void
aio_schedule(struct kaiocb * job,aio_handle_fn_t * func)1737 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1738 {
1739
1740 mtx_lock(&aio_job_mtx);
1741 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1742 mtx_unlock(&aio_job_mtx);
1743 aio_cancel(job);
1744 return;
1745 }
1746 job->handle_fn = func;
1747 TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1748 aio_kick_nowait(job->userproc);
1749 mtx_unlock(&aio_job_mtx);
1750 }
1751
1752 static void
aio_cancel_sync(struct kaiocb * job)1753 aio_cancel_sync(struct kaiocb *job)
1754 {
1755 struct kaioinfo *ki;
1756
1757 ki = job->userproc->p_aioinfo;
1758 AIO_LOCK(ki);
1759 if (!aio_cancel_cleared(job))
1760 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1761 AIO_UNLOCK(ki);
1762 aio_cancel(job);
1763 }
1764
1765 int
aio_queue_file(struct file * fp,struct kaiocb * job)1766 aio_queue_file(struct file *fp, struct kaiocb *job)
1767 {
1768 struct kaioinfo *ki;
1769 struct kaiocb *job2;
1770 struct vnode *vp;
1771 struct mount *mp;
1772 int error;
1773 bool safe;
1774
1775 ki = job->userproc->p_aioinfo;
1776 error = aio_qbio(job->userproc, job);
1777 if (error >= 0)
1778 return (error);
1779 safe = false;
1780 if (fp->f_type == DTYPE_VNODE) {
1781 vp = fp->f_vnode;
1782 if (vp->v_type == VREG || vp->v_type == VDIR) {
1783 mp = fp->f_vnode->v_mount;
1784 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1785 safe = true;
1786 }
1787 }
1788 if (!(safe || enable_aio_unsafe)) {
1789 counted_warning(&unsafe_warningcnt,
1790 "is attempting to use unsafe AIO requests");
1791 return (EOPNOTSUPP);
1792 }
1793
1794 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1795 aio_schedule(job, aio_process_rw);
1796 error = 0;
1797 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1798 AIO_LOCK(ki);
1799 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1800 if (job2->fd_file == job->fd_file &&
1801 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1802 job2->seqno < job->seqno) {
1803 job2->jobflags |= KAIOCB_CHECKSYNC;
1804 job->pending++;
1805 }
1806 }
1807 if (job->pending != 0) {
1808 if (!aio_set_cancel_function_locked(job,
1809 aio_cancel_sync)) {
1810 AIO_UNLOCK(ki);
1811 aio_cancel(job);
1812 return (0);
1813 }
1814 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1815 AIO_UNLOCK(ki);
1816 return (0);
1817 }
1818 AIO_UNLOCK(ki);
1819 aio_schedule(job, aio_process_sync);
1820 error = 0;
1821 } else {
1822 error = EINVAL;
1823 }
1824 return (error);
1825 }
1826
1827 static void
aio_kick_nowait(struct proc * userp)1828 aio_kick_nowait(struct proc *userp)
1829 {
1830 struct kaioinfo *ki = userp->p_aioinfo;
1831 struct aioproc *aiop;
1832
1833 mtx_assert(&aio_job_mtx, MA_OWNED);
1834 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1835 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1836 aiop->aioprocflags &= ~AIOP_FREE;
1837 wakeup(aiop->aioproc);
1838 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1839 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1840 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1841 }
1842 }
1843
1844 static int
aio_kick(struct proc * userp)1845 aio_kick(struct proc *userp)
1846 {
1847 struct kaioinfo *ki = userp->p_aioinfo;
1848 struct aioproc *aiop;
1849 int error, ret = 0;
1850
1851 mtx_assert(&aio_job_mtx, MA_OWNED);
1852 retryproc:
1853 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1854 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1855 aiop->aioprocflags &= ~AIOP_FREE;
1856 wakeup(aiop->aioproc);
1857 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1858 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1859 num_aio_resv_start++;
1860 mtx_unlock(&aio_job_mtx);
1861 error = aio_newproc(&num_aio_resv_start);
1862 mtx_lock(&aio_job_mtx);
1863 if (error) {
1864 num_aio_resv_start--;
1865 goto retryproc;
1866 }
1867 } else {
1868 ret = -1;
1869 }
1870 return (ret);
1871 }
1872
1873 static void
aio_kick_helper(void * context,int pending)1874 aio_kick_helper(void *context, int pending)
1875 {
1876 struct proc *userp = context;
1877
1878 mtx_lock(&aio_job_mtx);
1879 while (--pending >= 0) {
1880 if (aio_kick(userp))
1881 break;
1882 }
1883 mtx_unlock(&aio_job_mtx);
1884 }
1885
1886 /*
1887 * Support the aio_return system call, as a side-effect, kernel resources are
1888 * released.
1889 */
1890 static int
kern_aio_return(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)1891 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1892 {
1893 struct proc *p = td->td_proc;
1894 struct kaiocb *job;
1895 struct kaioinfo *ki;
1896 long status, error;
1897
1898 ki = p->p_aioinfo;
1899 if (ki == NULL)
1900 return (EINVAL);
1901 AIO_LOCK(ki);
1902 TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1903 if (job->ujob == ujob)
1904 break;
1905 }
1906 if (job != NULL) {
1907 MPASS(job->jobflags & KAIOCB_FINISHED);
1908 status = job->uaiocb._aiocb_private.status;
1909 error = job->uaiocb._aiocb_private.error;
1910 td->td_retval[0] = status;
1911 td->td_ru.ru_oublock += job->outblock;
1912 td->td_ru.ru_inblock += job->inblock;
1913 td->td_ru.ru_msgsnd += job->msgsnd;
1914 td->td_ru.ru_msgrcv += job->msgrcv;
1915 aio_free_entry(job);
1916 AIO_UNLOCK(ki);
1917 ops->store_error(ujob, error);
1918 ops->store_status(ujob, status);
1919 } else {
1920 error = EINVAL;
1921 AIO_UNLOCK(ki);
1922 }
1923 return (error);
1924 }
1925
1926 int
sys_aio_return(struct thread * td,struct aio_return_args * uap)1927 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1928 {
1929
1930 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1931 }
1932
1933 /*
1934 * Allow a process to wakeup when any of the I/O requests are completed.
1935 */
1936 static int
kern_aio_suspend(struct thread * td,int njoblist,struct aiocb ** ujoblist,struct timespec * ts)1937 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1938 struct timespec *ts)
1939 {
1940 struct proc *p = td->td_proc;
1941 struct timeval atv;
1942 struct kaioinfo *ki;
1943 struct kaiocb *firstjob, *job;
1944 int error, i, timo;
1945
1946 timo = 0;
1947 if (ts) {
1948 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1949 return (EINVAL);
1950
1951 TIMESPEC_TO_TIMEVAL(&atv, ts);
1952 if (itimerfix(&atv))
1953 return (EINVAL);
1954 timo = tvtohz(&atv);
1955 }
1956
1957 ki = p->p_aioinfo;
1958 if (ki == NULL)
1959 return (EAGAIN);
1960
1961 if (njoblist == 0)
1962 return (0);
1963
1964 AIO_LOCK(ki);
1965 for (;;) {
1966 firstjob = NULL;
1967 error = 0;
1968 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1969 for (i = 0; i < njoblist; i++) {
1970 if (job->ujob == ujoblist[i]) {
1971 if (firstjob == NULL)
1972 firstjob = job;
1973 if (job->jobflags & KAIOCB_FINISHED)
1974 goto RETURN;
1975 }
1976 }
1977 }
1978 /* All tasks were finished. */
1979 if (firstjob == NULL)
1980 break;
1981
1982 ki->kaio_flags |= KAIO_WAKEUP;
1983 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1984 "aiospn", timo);
1985 if (error == ERESTART)
1986 error = EINTR;
1987 if (error)
1988 break;
1989 }
1990 RETURN:
1991 AIO_UNLOCK(ki);
1992 return (error);
1993 }
1994
1995 int
sys_aio_suspend(struct thread * td,struct aio_suspend_args * uap)1996 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
1997 {
1998 struct timespec ts, *tsp;
1999 struct aiocb **ujoblist;
2000 int error;
2001
2002 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2003 return (EINVAL);
2004
2005 if (uap->timeout) {
2006 /* Get timespec struct. */
2007 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2008 return (error);
2009 tsp = &ts;
2010 } else
2011 tsp = NULL;
2012
2013 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2014 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2015 if (error == 0)
2016 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2017 free(ujoblist, M_AIO);
2018 return (error);
2019 }
2020
2021 /*
2022 * aio_cancel cancels any non-bio aio operations not currently in progress.
2023 */
2024 int
sys_aio_cancel(struct thread * td,struct aio_cancel_args * uap)2025 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2026 {
2027 struct proc *p = td->td_proc;
2028 struct kaioinfo *ki;
2029 struct kaiocb *job, *jobn;
2030 struct file *fp;
2031 int error;
2032 int cancelled = 0;
2033 int notcancelled = 0;
2034 struct vnode *vp;
2035
2036 /* Lookup file object. */
2037 error = fget(td, uap->fd, &cap_no_rights, &fp);
2038 if (error)
2039 return (error);
2040
2041 ki = p->p_aioinfo;
2042 if (ki == NULL)
2043 goto done;
2044
2045 if (fp->f_type == DTYPE_VNODE) {
2046 vp = fp->f_vnode;
2047 if (vn_isdisk(vp)) {
2048 fdrop(fp, td);
2049 td->td_retval[0] = AIO_NOTCANCELED;
2050 return (0);
2051 }
2052 }
2053
2054 AIO_LOCK(ki);
2055 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2056 if ((uap->fd == job->uaiocb.aio_fildes) &&
2057 ((uap->aiocbp == NULL) ||
2058 (uap->aiocbp == job->ujob))) {
2059 if (aio_cancel_job(p, ki, job)) {
2060 cancelled++;
2061 } else {
2062 notcancelled++;
2063 }
2064 if (uap->aiocbp != NULL)
2065 break;
2066 }
2067 }
2068 AIO_UNLOCK(ki);
2069
2070 done:
2071 fdrop(fp, td);
2072
2073 if (uap->aiocbp != NULL) {
2074 if (cancelled) {
2075 td->td_retval[0] = AIO_CANCELED;
2076 return (0);
2077 }
2078 }
2079
2080 if (notcancelled) {
2081 td->td_retval[0] = AIO_NOTCANCELED;
2082 return (0);
2083 }
2084
2085 if (cancelled) {
2086 td->td_retval[0] = AIO_CANCELED;
2087 return (0);
2088 }
2089
2090 td->td_retval[0] = AIO_ALLDONE;
2091
2092 return (0);
2093 }
2094
2095 /*
2096 * aio_error is implemented in the kernel level for compatibility purposes
2097 * only. For a user mode async implementation, it would be best to do it in
2098 * a userland subroutine.
2099 */
2100 static int
kern_aio_error(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)2101 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2102 {
2103 struct proc *p = td->td_proc;
2104 struct kaiocb *job;
2105 struct kaioinfo *ki;
2106 int status;
2107
2108 ki = p->p_aioinfo;
2109 if (ki == NULL) {
2110 td->td_retval[0] = EINVAL;
2111 return (0);
2112 }
2113
2114 AIO_LOCK(ki);
2115 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2116 if (job->ujob == ujob) {
2117 if (job->jobflags & KAIOCB_FINISHED)
2118 td->td_retval[0] =
2119 job->uaiocb._aiocb_private.error;
2120 else
2121 td->td_retval[0] = EINPROGRESS;
2122 AIO_UNLOCK(ki);
2123 return (0);
2124 }
2125 }
2126 AIO_UNLOCK(ki);
2127
2128 /*
2129 * Hack for failure of aio_aqueue.
2130 */
2131 status = ops->fetch_status(ujob);
2132 if (status == -1) {
2133 td->td_retval[0] = ops->fetch_error(ujob);
2134 return (0);
2135 }
2136
2137 td->td_retval[0] = EINVAL;
2138 return (0);
2139 }
2140
2141 int
sys_aio_error(struct thread * td,struct aio_error_args * uap)2142 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2143 {
2144
2145 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2146 }
2147
2148 /* syscall - asynchronous read from a file (REALTIME) */
2149 #ifdef COMPAT_FREEBSD6
2150 int
freebsd6_aio_read(struct thread * td,struct freebsd6_aio_read_args * uap)2151 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2152 {
2153
2154 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2155 &aiocb_ops_osigevent));
2156 }
2157 #endif
2158
2159 int
sys_aio_read(struct thread * td,struct aio_read_args * uap)2160 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2161 {
2162
2163 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2164 }
2165
2166 int
sys_aio_readv(struct thread * td,struct aio_readv_args * uap)2167 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2168 {
2169
2170 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2171 }
2172
2173 /* syscall - asynchronous write to a file (REALTIME) */
2174 #ifdef COMPAT_FREEBSD6
2175 int
freebsd6_aio_write(struct thread * td,struct freebsd6_aio_write_args * uap)2176 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2177 {
2178
2179 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2180 &aiocb_ops_osigevent));
2181 }
2182 #endif
2183
2184 int
sys_aio_write(struct thread * td,struct aio_write_args * uap)2185 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2186 {
2187
2188 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2189 }
2190
2191 int
sys_aio_writev(struct thread * td,struct aio_writev_args * uap)2192 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2193 {
2194
2195 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2196 }
2197
2198 int
sys_aio_mlock(struct thread * td,struct aio_mlock_args * uap)2199 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2200 {
2201
2202 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2203 }
2204
2205 static int
kern_lio_listio(struct thread * td,int mode,struct aiocb * const * uacb_list,struct aiocb ** acb_list,int nent,struct sigevent * sig,struct aiocb_ops * ops)2206 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2207 struct aiocb **acb_list, int nent, struct sigevent *sig,
2208 struct aiocb_ops *ops)
2209 {
2210 struct proc *p = td->td_proc;
2211 struct aiocb *job;
2212 struct kaioinfo *ki;
2213 struct aioliojob *lj;
2214 struct kevent kev;
2215 int error;
2216 int nagain, nerror;
2217 int i;
2218
2219 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2220 return (EINVAL);
2221
2222 if (nent < 0 || nent > max_aio_queue_per_proc)
2223 return (EINVAL);
2224
2225 if (p->p_aioinfo == NULL) {
2226 error = aio_init_aioinfo(p);
2227 if (error != 0)
2228 return (error);
2229 }
2230
2231 ki = p->p_aioinfo;
2232
2233 lj = uma_zalloc(aiolio_zone, M_WAITOK);
2234 lj->lioj_flags = 0;
2235 lj->lioj_count = 0;
2236 lj->lioj_finished_count = 0;
2237 lj->lioj_signal.sigev_notify = SIGEV_NONE;
2238 knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2239 ksiginfo_init(&lj->lioj_ksi);
2240
2241 /*
2242 * Setup signal.
2243 */
2244 if (sig && (mode == LIO_NOWAIT)) {
2245 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2246 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2247 /* Assume only new style KEVENT */
2248 memset(&kev, 0, sizeof(kev));
2249 kev.filter = EVFILT_LIO;
2250 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2251 kev.ident = (uintptr_t)uacb_list; /* something unique */
2252 kev.data = (intptr_t)lj;
2253 /* pass user defined sigval data */
2254 kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2255 error = kqfd_register(
2256 lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2257 M_WAITOK);
2258 if (error) {
2259 uma_zfree(aiolio_zone, lj);
2260 return (error);
2261 }
2262 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2263 ;
2264 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2265 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2266 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2267 uma_zfree(aiolio_zone, lj);
2268 return EINVAL;
2269 }
2270 lj->lioj_flags |= LIOJ_SIGNAL;
2271 } else {
2272 uma_zfree(aiolio_zone, lj);
2273 return EINVAL;
2274 }
2275 }
2276
2277 AIO_LOCK(ki);
2278 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2279 /*
2280 * Add extra aiocb count to avoid the lio to be freed
2281 * by other threads doing aio_waitcomplete or aio_return,
2282 * and prevent event from being sent until we have queued
2283 * all tasks.
2284 */
2285 lj->lioj_count = 1;
2286 AIO_UNLOCK(ki);
2287
2288 /*
2289 * Get pointers to the list of I/O requests.
2290 */
2291 nagain = 0;
2292 nerror = 0;
2293 for (i = 0; i < nent; i++) {
2294 job = acb_list[i];
2295 if (job != NULL) {
2296 error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2297 if (error == EAGAIN)
2298 nagain++;
2299 else if (error != 0)
2300 nerror++;
2301 }
2302 }
2303
2304 error = 0;
2305 AIO_LOCK(ki);
2306 if (mode == LIO_WAIT) {
2307 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2308 ki->kaio_flags |= KAIO_WAKEUP;
2309 error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2310 PRIBIO | PCATCH, "aiospn", 0);
2311 if (error == ERESTART)
2312 error = EINTR;
2313 if (error)
2314 break;
2315 }
2316 } else {
2317 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2318 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2319 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2320 KNOTE_LOCKED(&lj->klist, 1);
2321 }
2322 if ((lj->lioj_flags & (LIOJ_SIGNAL |
2323 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2324 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2325 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2326 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2327 lj->lioj_count != 1);
2328 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2329 }
2330 }
2331 }
2332 lj->lioj_count--;
2333 if (lj->lioj_count == 0) {
2334 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2335 knlist_delete(&lj->klist, curthread, 1);
2336 PROC_LOCK(p);
2337 sigqueue_take(&lj->lioj_ksi);
2338 PROC_UNLOCK(p);
2339 AIO_UNLOCK(ki);
2340 uma_zfree(aiolio_zone, lj);
2341 } else
2342 AIO_UNLOCK(ki);
2343
2344 if (nerror)
2345 return (EIO);
2346 else if (nagain)
2347 return (EAGAIN);
2348 else
2349 return (error);
2350 }
2351
2352 /* syscall - list directed I/O (REALTIME) */
2353 #ifdef COMPAT_FREEBSD6
2354 int
freebsd6_lio_listio(struct thread * td,struct freebsd6_lio_listio_args * uap)2355 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2356 {
2357 struct aiocb **acb_list;
2358 struct sigevent *sigp, sig;
2359 struct osigevent osig;
2360 int error, nent;
2361
2362 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2363 return (EINVAL);
2364
2365 nent = uap->nent;
2366 if (nent < 0 || nent > max_aio_queue_per_proc)
2367 return (EINVAL);
2368
2369 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2370 error = copyin(uap->sig, &osig, sizeof(osig));
2371 if (error)
2372 return (error);
2373 error = convert_old_sigevent(&osig, &sig);
2374 if (error)
2375 return (error);
2376 sigp = &sig;
2377 } else
2378 sigp = NULL;
2379
2380 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2381 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2382 if (error == 0)
2383 error = kern_lio_listio(td, uap->mode,
2384 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2385 &aiocb_ops_osigevent);
2386 free(acb_list, M_LIO);
2387 return (error);
2388 }
2389 #endif
2390
2391 /* syscall - list directed I/O (REALTIME) */
2392 int
sys_lio_listio(struct thread * td,struct lio_listio_args * uap)2393 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2394 {
2395 struct aiocb **acb_list;
2396 struct sigevent *sigp, sig;
2397 int error, nent;
2398
2399 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2400 return (EINVAL);
2401
2402 nent = uap->nent;
2403 if (nent < 0 || nent > max_aio_queue_per_proc)
2404 return (EINVAL);
2405
2406 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2407 error = copyin(uap->sig, &sig, sizeof(sig));
2408 if (error)
2409 return (error);
2410 sigp = &sig;
2411 } else
2412 sigp = NULL;
2413
2414 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2415 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2416 if (error == 0)
2417 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2418 nent, sigp, &aiocb_ops);
2419 free(acb_list, M_LIO);
2420 return (error);
2421 }
2422
2423 static void
aio_biocleanup(struct bio * bp)2424 aio_biocleanup(struct bio *bp)
2425 {
2426 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2427 struct kaioinfo *ki;
2428 struct buf *pbuf = (struct buf *)bp->bio_caller2;
2429
2430 /* Release mapping into kernel space. */
2431 if (pbuf != NULL) {
2432 MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2433 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2434 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2435 uma_zfree(pbuf_zone, pbuf);
2436 atomic_subtract_int(&num_buf_aio, 1);
2437 ki = job->userproc->p_aioinfo;
2438 AIO_LOCK(ki);
2439 ki->kaio_buffer_count--;
2440 AIO_UNLOCK(ki);
2441 } else {
2442 MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2443 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2444 free(bp->bio_ma, M_TEMP);
2445 atomic_subtract_int(&num_unmapped_aio, 1);
2446 }
2447 g_destroy_bio(bp);
2448 }
2449
2450 static void
aio_biowakeup(struct bio * bp)2451 aio_biowakeup(struct bio *bp)
2452 {
2453 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2454 size_t nbytes;
2455 long bcount = bp->bio_bcount;
2456 long resid = bp->bio_resid;
2457 int opcode, nblks;
2458 int bio_error = bp->bio_error;
2459 uint16_t flags = bp->bio_flags;
2460
2461 opcode = job->uaiocb.aio_lio_opcode;
2462
2463 aio_biocleanup(bp);
2464
2465 nbytes = bcount - resid;
2466 atomic_add_acq_long(&job->nbytes, nbytes);
2467 nblks = btodb(nbytes);
2468
2469 /*
2470 * If multiple bios experienced an error, the job will reflect the
2471 * error of whichever failed bio completed last.
2472 */
2473 if (flags & BIO_ERROR)
2474 atomic_store_int(&job->error, bio_error);
2475 if (opcode & LIO_WRITE)
2476 atomic_add_int(&job->outblock, nblks);
2477 else
2478 atomic_add_int(&job->inblock, nblks);
2479
2480 if (refcount_release(&job->nbio)) {
2481 bio_error = atomic_load_int(&job->error);
2482 if (bio_error != 0)
2483 aio_complete(job, -1, bio_error);
2484 else
2485 aio_complete(job, atomic_load_long(&job->nbytes), 0);
2486 }
2487 }
2488
2489 /* syscall - wait for the next completion of an aio request */
2490 static int
kern_aio_waitcomplete(struct thread * td,struct aiocb ** ujobp,struct timespec * ts,struct aiocb_ops * ops)2491 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2492 struct timespec *ts, struct aiocb_ops *ops)
2493 {
2494 struct proc *p = td->td_proc;
2495 struct timeval atv;
2496 struct kaioinfo *ki;
2497 struct kaiocb *job;
2498 struct aiocb *ujob;
2499 long error, status;
2500 int timo;
2501
2502 ops->store_aiocb(ujobp, NULL);
2503
2504 if (ts == NULL) {
2505 timo = 0;
2506 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2507 timo = -1;
2508 } else {
2509 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2510 return (EINVAL);
2511
2512 TIMESPEC_TO_TIMEVAL(&atv, ts);
2513 if (itimerfix(&atv))
2514 return (EINVAL);
2515 timo = tvtohz(&atv);
2516 }
2517
2518 if (p->p_aioinfo == NULL) {
2519 error = aio_init_aioinfo(p);
2520 if (error != 0)
2521 return (error);
2522 }
2523 ki = p->p_aioinfo;
2524
2525 error = 0;
2526 job = NULL;
2527 AIO_LOCK(ki);
2528 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2529 if (timo == -1) {
2530 error = EWOULDBLOCK;
2531 break;
2532 }
2533 ki->kaio_flags |= KAIO_WAKEUP;
2534 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2535 "aiowc", timo);
2536 if (timo && error == ERESTART)
2537 error = EINTR;
2538 if (error)
2539 break;
2540 }
2541
2542 if (job != NULL) {
2543 MPASS(job->jobflags & KAIOCB_FINISHED);
2544 ujob = job->ujob;
2545 status = job->uaiocb._aiocb_private.status;
2546 error = job->uaiocb._aiocb_private.error;
2547 td->td_retval[0] = status;
2548 td->td_ru.ru_oublock += job->outblock;
2549 td->td_ru.ru_inblock += job->inblock;
2550 td->td_ru.ru_msgsnd += job->msgsnd;
2551 td->td_ru.ru_msgrcv += job->msgrcv;
2552 aio_free_entry(job);
2553 AIO_UNLOCK(ki);
2554 ops->store_aiocb(ujobp, ujob);
2555 ops->store_error(ujob, error);
2556 ops->store_status(ujob, status);
2557 } else
2558 AIO_UNLOCK(ki);
2559
2560 return (error);
2561 }
2562
2563 int
sys_aio_waitcomplete(struct thread * td,struct aio_waitcomplete_args * uap)2564 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2565 {
2566 struct timespec ts, *tsp;
2567 int error;
2568
2569 if (uap->timeout) {
2570 /* Get timespec struct. */
2571 error = copyin(uap->timeout, &ts, sizeof(ts));
2572 if (error)
2573 return (error);
2574 tsp = &ts;
2575 } else
2576 tsp = NULL;
2577
2578 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2579 }
2580
2581 static int
kern_aio_fsync(struct thread * td,int op,struct aiocb * ujob,struct aiocb_ops * ops)2582 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2583 struct aiocb_ops *ops)
2584 {
2585 int listop;
2586
2587 switch (op) {
2588 case O_SYNC:
2589 listop = LIO_SYNC;
2590 break;
2591 case O_DSYNC:
2592 listop = LIO_DSYNC;
2593 break;
2594 default:
2595 return (EINVAL);
2596 }
2597
2598 return (aio_aqueue(td, ujob, NULL, listop, ops));
2599 }
2600
2601 int
sys_aio_fsync(struct thread * td,struct aio_fsync_args * uap)2602 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2603 {
2604
2605 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2606 }
2607
2608 /* kqueue attach function */
2609 static int
filt_aioattach(struct knote * kn)2610 filt_aioattach(struct knote *kn)
2611 {
2612 struct kaiocb *job;
2613
2614 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2615
2616 /*
2617 * The job pointer must be validated before using it, so
2618 * registration is restricted to the kernel; the user cannot
2619 * set EV_FLAG1.
2620 */
2621 if ((kn->kn_flags & EV_FLAG1) == 0)
2622 return (EPERM);
2623 kn->kn_ptr.p_aio = job;
2624 kn->kn_flags &= ~EV_FLAG1;
2625
2626 knlist_add(&job->klist, kn, 0);
2627
2628 return (0);
2629 }
2630
2631 /* kqueue detach function */
2632 static void
filt_aiodetach(struct knote * kn)2633 filt_aiodetach(struct knote *kn)
2634 {
2635 struct knlist *knl;
2636
2637 knl = &kn->kn_ptr.p_aio->klist;
2638 knl->kl_lock(knl->kl_lockarg);
2639 if (!knlist_empty(knl))
2640 knlist_remove(knl, kn, 1);
2641 knl->kl_unlock(knl->kl_lockarg);
2642 }
2643
2644 /* kqueue filter function */
2645 /*ARGSUSED*/
2646 static int
filt_aio(struct knote * kn,long hint)2647 filt_aio(struct knote *kn, long hint)
2648 {
2649 struct kaiocb *job = kn->kn_ptr.p_aio;
2650
2651 kn->kn_data = job->uaiocb._aiocb_private.error;
2652 if (!(job->jobflags & KAIOCB_FINISHED))
2653 return (0);
2654 kn->kn_flags |= EV_EOF;
2655 return (1);
2656 }
2657
2658 /* kqueue attach function */
2659 static int
filt_lioattach(struct knote * kn)2660 filt_lioattach(struct knote *kn)
2661 {
2662 struct aioliojob *lj;
2663
2664 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2665
2666 /*
2667 * The aioliojob pointer must be validated before using it, so
2668 * registration is restricted to the kernel; the user cannot
2669 * set EV_FLAG1.
2670 */
2671 if ((kn->kn_flags & EV_FLAG1) == 0)
2672 return (EPERM);
2673 kn->kn_ptr.p_lio = lj;
2674 kn->kn_flags &= ~EV_FLAG1;
2675
2676 knlist_add(&lj->klist, kn, 0);
2677
2678 return (0);
2679 }
2680
2681 /* kqueue detach function */
2682 static void
filt_liodetach(struct knote * kn)2683 filt_liodetach(struct knote *kn)
2684 {
2685 struct knlist *knl;
2686
2687 knl = &kn->kn_ptr.p_lio->klist;
2688 knl->kl_lock(knl->kl_lockarg);
2689 if (!knlist_empty(knl))
2690 knlist_remove(knl, kn, 1);
2691 knl->kl_unlock(knl->kl_lockarg);
2692 }
2693
2694 /* kqueue filter function */
2695 /*ARGSUSED*/
2696 static int
filt_lio(struct knote * kn,long hint)2697 filt_lio(struct knote *kn, long hint)
2698 {
2699 struct aioliojob * lj = kn->kn_ptr.p_lio;
2700
2701 return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2702 }
2703
2704 #ifdef COMPAT_FREEBSD32
2705 #include <sys/mount.h>
2706 #include <sys/socket.h>
2707 #include <sys/sysent.h>
2708 #include <compat/freebsd32/freebsd32.h>
2709 #include <compat/freebsd32/freebsd32_proto.h>
2710 #include <compat/freebsd32/freebsd32_signal.h>
2711 #include <compat/freebsd32/freebsd32_syscall.h>
2712 #include <compat/freebsd32/freebsd32_util.h>
2713
2714 struct __aiocb_private32 {
2715 int32_t status;
2716 int32_t error;
2717 uint32_t spare;
2718 };
2719
2720 #ifdef COMPAT_FREEBSD6
2721 typedef struct oaiocb32 {
2722 int aio_fildes; /* File descriptor */
2723 uint64_t aio_offset __packed; /* File offset for I/O */
2724 uint32_t aio_buf; /* I/O buffer in process space */
2725 uint32_t aio_nbytes; /* Number of bytes for I/O */
2726 struct osigevent32 aio_sigevent; /* Signal to deliver */
2727 int aio_lio_opcode; /* LIO opcode */
2728 int aio_reqprio; /* Request priority -- ignored */
2729 struct __aiocb_private32 _aiocb_private;
2730 } oaiocb32_t;
2731 #endif
2732
2733 typedef struct aiocb32 {
2734 int32_t aio_fildes; /* File descriptor */
2735 uint64_t aio_offset __packed; /* File offset for I/O */
2736 uint32_t aio_buf; /* I/O buffer in process space */
2737 uint32_t aio_nbytes; /* Number of bytes for I/O */
2738 int __spare__[2];
2739 uint32_t __spare2__;
2740 int aio_lio_opcode; /* LIO opcode */
2741 int aio_reqprio; /* Request priority -- ignored */
2742 struct __aiocb_private32 _aiocb_private;
2743 struct sigevent32 aio_sigevent; /* Signal to deliver */
2744 } aiocb32_t;
2745
2746 #ifdef COMPAT_FREEBSD6
2747 static int
convert_old_sigevent32(struct osigevent32 * osig,struct sigevent * nsig)2748 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2749 {
2750
2751 /*
2752 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2753 * supported by AIO with the old sigevent structure.
2754 */
2755 CP(*osig, *nsig, sigev_notify);
2756 switch (nsig->sigev_notify) {
2757 case SIGEV_NONE:
2758 break;
2759 case SIGEV_SIGNAL:
2760 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2761 break;
2762 case SIGEV_KEVENT:
2763 nsig->sigev_notify_kqueue =
2764 osig->__sigev_u.__sigev_notify_kqueue;
2765 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2766 break;
2767 default:
2768 return (EINVAL);
2769 }
2770 return (0);
2771 }
2772
2773 static int
aiocb32_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)2774 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2775 int type __unused)
2776 {
2777 struct oaiocb32 job32;
2778 struct aiocb *kcb = &kjob->uaiocb;
2779 int error;
2780
2781 bzero(kcb, sizeof(struct aiocb));
2782 error = copyin(ujob, &job32, sizeof(job32));
2783 if (error)
2784 return (error);
2785
2786 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2787
2788 CP(job32, *kcb, aio_fildes);
2789 CP(job32, *kcb, aio_offset);
2790 PTRIN_CP(job32, *kcb, aio_buf);
2791 CP(job32, *kcb, aio_nbytes);
2792 CP(job32, *kcb, aio_lio_opcode);
2793 CP(job32, *kcb, aio_reqprio);
2794 CP(job32, *kcb, _aiocb_private.status);
2795 CP(job32, *kcb, _aiocb_private.error);
2796 return (convert_old_sigevent32(&job32.aio_sigevent,
2797 &kcb->aio_sigevent));
2798 }
2799 #endif
2800
2801 static int
aiocb32_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)2802 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2803 {
2804 struct aiocb32 job32;
2805 struct aiocb *kcb = &kjob->uaiocb;
2806 struct iovec32 *iov32;
2807 int error;
2808
2809 error = copyin(ujob, &job32, sizeof(job32));
2810 if (error)
2811 return (error);
2812 CP(job32, *kcb, aio_fildes);
2813 CP(job32, *kcb, aio_offset);
2814 CP(job32, *kcb, aio_lio_opcode);
2815 if (type == LIO_NOP)
2816 type = kcb->aio_lio_opcode;
2817 if (type & LIO_VECTORED) {
2818 iov32 = PTRIN(job32.aio_iov);
2819 CP(job32, *kcb, aio_iovcnt);
2820 /* malloc a uio and copy in the iovec */
2821 error = freebsd32_copyinuio(iov32,
2822 kcb->aio_iovcnt, &kjob->uiop);
2823 if (error)
2824 return (error);
2825 } else {
2826 PTRIN_CP(job32, *kcb, aio_buf);
2827 CP(job32, *kcb, aio_nbytes);
2828 }
2829 CP(job32, *kcb, aio_reqprio);
2830 CP(job32, *kcb, _aiocb_private.status);
2831 CP(job32, *kcb, _aiocb_private.error);
2832 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2833
2834 return (error);
2835 }
2836
2837 static long
aiocb32_fetch_status(struct aiocb * ujob)2838 aiocb32_fetch_status(struct aiocb *ujob)
2839 {
2840 struct aiocb32 *ujob32;
2841
2842 ujob32 = (struct aiocb32 *)ujob;
2843 return (fuword32(&ujob32->_aiocb_private.status));
2844 }
2845
2846 static long
aiocb32_fetch_error(struct aiocb * ujob)2847 aiocb32_fetch_error(struct aiocb *ujob)
2848 {
2849 struct aiocb32 *ujob32;
2850
2851 ujob32 = (struct aiocb32 *)ujob;
2852 return (fuword32(&ujob32->_aiocb_private.error));
2853 }
2854
2855 static int
aiocb32_store_status(struct aiocb * ujob,long status)2856 aiocb32_store_status(struct aiocb *ujob, long status)
2857 {
2858 struct aiocb32 *ujob32;
2859
2860 ujob32 = (struct aiocb32 *)ujob;
2861 return (suword32(&ujob32->_aiocb_private.status, status));
2862 }
2863
2864 static int
aiocb32_store_error(struct aiocb * ujob,long error)2865 aiocb32_store_error(struct aiocb *ujob, long error)
2866 {
2867 struct aiocb32 *ujob32;
2868
2869 ujob32 = (struct aiocb32 *)ujob;
2870 return (suword32(&ujob32->_aiocb_private.error, error));
2871 }
2872
2873 static int
aiocb32_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)2874 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2875 {
2876
2877 return (suword32(ujobp, (long)ujob));
2878 }
2879
2880 static struct aiocb_ops aiocb32_ops = {
2881 .aio_copyin = aiocb32_copyin,
2882 .fetch_status = aiocb32_fetch_status,
2883 .fetch_error = aiocb32_fetch_error,
2884 .store_status = aiocb32_store_status,
2885 .store_error = aiocb32_store_error,
2886 .store_aiocb = aiocb32_store_aiocb,
2887 };
2888
2889 #ifdef COMPAT_FREEBSD6
2890 static struct aiocb_ops aiocb32_ops_osigevent = {
2891 .aio_copyin = aiocb32_copyin_old_sigevent,
2892 .fetch_status = aiocb32_fetch_status,
2893 .fetch_error = aiocb32_fetch_error,
2894 .store_status = aiocb32_store_status,
2895 .store_error = aiocb32_store_error,
2896 .store_aiocb = aiocb32_store_aiocb,
2897 };
2898 #endif
2899
2900 int
freebsd32_aio_return(struct thread * td,struct freebsd32_aio_return_args * uap)2901 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2902 {
2903
2904 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2905 }
2906
2907 int
freebsd32_aio_suspend(struct thread * td,struct freebsd32_aio_suspend_args * uap)2908 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2909 {
2910 struct timespec32 ts32;
2911 struct timespec ts, *tsp;
2912 struct aiocb **ujoblist;
2913 uint32_t *ujoblist32;
2914 int error, i;
2915
2916 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2917 return (EINVAL);
2918
2919 if (uap->timeout) {
2920 /* Get timespec struct. */
2921 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2922 return (error);
2923 CP(ts32, ts, tv_sec);
2924 CP(ts32, ts, tv_nsec);
2925 tsp = &ts;
2926 } else
2927 tsp = NULL;
2928
2929 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2930 ujoblist32 = (uint32_t *)ujoblist;
2931 error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2932 sizeof(ujoblist32[0]));
2933 if (error == 0) {
2934 for (i = uap->nent - 1; i >= 0; i--)
2935 ujoblist[i] = PTRIN(ujoblist32[i]);
2936
2937 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2938 }
2939 free(ujoblist, M_AIO);
2940 return (error);
2941 }
2942
2943 int
freebsd32_aio_error(struct thread * td,struct freebsd32_aio_error_args * uap)2944 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2945 {
2946
2947 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2948 }
2949
2950 #ifdef COMPAT_FREEBSD6
2951 int
freebsd6_freebsd32_aio_read(struct thread * td,struct freebsd6_freebsd32_aio_read_args * uap)2952 freebsd6_freebsd32_aio_read(struct thread *td,
2953 struct freebsd6_freebsd32_aio_read_args *uap)
2954 {
2955
2956 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2957 &aiocb32_ops_osigevent));
2958 }
2959 #endif
2960
2961 int
freebsd32_aio_read(struct thread * td,struct freebsd32_aio_read_args * uap)2962 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2963 {
2964
2965 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2966 &aiocb32_ops));
2967 }
2968
2969 int
freebsd32_aio_readv(struct thread * td,struct freebsd32_aio_readv_args * uap)2970 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
2971 {
2972
2973 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
2974 &aiocb32_ops));
2975 }
2976
2977 #ifdef COMPAT_FREEBSD6
2978 int
freebsd6_freebsd32_aio_write(struct thread * td,struct freebsd6_freebsd32_aio_write_args * uap)2979 freebsd6_freebsd32_aio_write(struct thread *td,
2980 struct freebsd6_freebsd32_aio_write_args *uap)
2981 {
2982
2983 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2984 &aiocb32_ops_osigevent));
2985 }
2986 #endif
2987
2988 int
freebsd32_aio_write(struct thread * td,struct freebsd32_aio_write_args * uap)2989 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2990 {
2991
2992 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2993 &aiocb32_ops));
2994 }
2995
2996 int
freebsd32_aio_writev(struct thread * td,struct freebsd32_aio_writev_args * uap)2997 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
2998 {
2999
3000 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
3001 &aiocb32_ops));
3002 }
3003
3004 int
freebsd32_aio_mlock(struct thread * td,struct freebsd32_aio_mlock_args * uap)3005 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
3006 {
3007
3008 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
3009 &aiocb32_ops));
3010 }
3011
3012 int
freebsd32_aio_waitcomplete(struct thread * td,struct freebsd32_aio_waitcomplete_args * uap)3013 freebsd32_aio_waitcomplete(struct thread *td,
3014 struct freebsd32_aio_waitcomplete_args *uap)
3015 {
3016 struct timespec32 ts32;
3017 struct timespec ts, *tsp;
3018 int error;
3019
3020 if (uap->timeout) {
3021 /* Get timespec struct. */
3022 error = copyin(uap->timeout, &ts32, sizeof(ts32));
3023 if (error)
3024 return (error);
3025 CP(ts32, ts, tv_sec);
3026 CP(ts32, ts, tv_nsec);
3027 tsp = &ts;
3028 } else
3029 tsp = NULL;
3030
3031 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3032 &aiocb32_ops));
3033 }
3034
3035 int
freebsd32_aio_fsync(struct thread * td,struct freebsd32_aio_fsync_args * uap)3036 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3037 {
3038
3039 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3040 &aiocb32_ops));
3041 }
3042
3043 #ifdef COMPAT_FREEBSD6
3044 int
freebsd6_freebsd32_lio_listio(struct thread * td,struct freebsd6_freebsd32_lio_listio_args * uap)3045 freebsd6_freebsd32_lio_listio(struct thread *td,
3046 struct freebsd6_freebsd32_lio_listio_args *uap)
3047 {
3048 struct aiocb **acb_list;
3049 struct sigevent *sigp, sig;
3050 struct osigevent32 osig;
3051 uint32_t *acb_list32;
3052 int error, i, nent;
3053
3054 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3055 return (EINVAL);
3056
3057 nent = uap->nent;
3058 if (nent < 0 || nent > max_aio_queue_per_proc)
3059 return (EINVAL);
3060
3061 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3062 error = copyin(uap->sig, &osig, sizeof(osig));
3063 if (error)
3064 return (error);
3065 error = convert_old_sigevent32(&osig, &sig);
3066 if (error)
3067 return (error);
3068 sigp = &sig;
3069 } else
3070 sigp = NULL;
3071
3072 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3073 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3074 if (error) {
3075 free(acb_list32, M_LIO);
3076 return (error);
3077 }
3078 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3079 for (i = 0; i < nent; i++)
3080 acb_list[i] = PTRIN(acb_list32[i]);
3081 free(acb_list32, M_LIO);
3082
3083 error = kern_lio_listio(td, uap->mode,
3084 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3085 &aiocb32_ops_osigevent);
3086 free(acb_list, M_LIO);
3087 return (error);
3088 }
3089 #endif
3090
3091 int
freebsd32_lio_listio(struct thread * td,struct freebsd32_lio_listio_args * uap)3092 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3093 {
3094 struct aiocb **acb_list;
3095 struct sigevent *sigp, sig;
3096 struct sigevent32 sig32;
3097 uint32_t *acb_list32;
3098 int error, i, nent;
3099
3100 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3101 return (EINVAL);
3102
3103 nent = uap->nent;
3104 if (nent < 0 || nent > max_aio_queue_per_proc)
3105 return (EINVAL);
3106
3107 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3108 error = copyin(uap->sig, &sig32, sizeof(sig32));
3109 if (error)
3110 return (error);
3111 error = convert_sigevent32(&sig32, &sig);
3112 if (error)
3113 return (error);
3114 sigp = &sig;
3115 } else
3116 sigp = NULL;
3117
3118 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3119 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3120 if (error) {
3121 free(acb_list32, M_LIO);
3122 return (error);
3123 }
3124 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3125 for (i = 0; i < nent; i++)
3126 acb_list[i] = PTRIN(acb_list32[i]);
3127 free(acb_list32, M_LIO);
3128
3129 error = kern_lio_listio(td, uap->mode,
3130 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3131 &aiocb32_ops);
3132 free(acb_list, M_LIO);
3133 return (error);
3134 }
3135
3136 #endif
3137