xref: /freebsd/sys/kern/vfs_aio.c (revision 4685fa8e4bef169e6a1ceaf07f149232326de805)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. John S. Dyson's name may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
15  * bad that happens because of using this software isn't the responsibility
16  * of the author.  This software is distributed AS-IS.
17  */
18 
19 /*
20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21  */
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/malloc.h>
26 #include <sys/bio.h>
27 #include <sys/buf.h>
28 #include <sys/capsicum.h>
29 #include <sys/eventhandler.h>
30 #include <sys/sysproto.h>
31 #include <sys/filedesc.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/kthread.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/unistd.h>
41 #include <sys/posix4.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/sema.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/syscall.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/sx.h>
55 #include <sys/taskqueue.h>
56 #include <sys/vnode.h>
57 #include <sys/conf.h>
58 #include <sys/event.h>
59 #include <sys/mount.h>
60 #include <geom/geom.h>
61 
62 #include <machine/atomic.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vnode_pager.h>
71 #include <vm/uma.h>
72 #include <sys/aio.h>
73 
74 /*
75  * Counter for aio_fsync.
76  */
77 static uint64_t jobseqno;
78 
79 #ifndef MAX_AIO_PER_PROC
80 #define MAX_AIO_PER_PROC	32
81 #endif
82 
83 #ifndef MAX_AIO_QUEUE_PER_PROC
84 #define MAX_AIO_QUEUE_PER_PROC	256
85 #endif
86 
87 #ifndef MAX_AIO_QUEUE
88 #define MAX_AIO_QUEUE		1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
89 #endif
90 
91 #ifndef MAX_BUF_AIO
92 #define MAX_BUF_AIO		16
93 #endif
94 
95 FEATURE(aio, "Asynchronous I/O");
96 SYSCTL_DECL(_p1003_1b);
97 
98 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
99 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
100 
101 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102     "Async IO management");
103 
104 static int enable_aio_unsafe = 0;
105 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
106     "Permit asynchronous IO on all file types, not just known-safe types");
107 
108 static unsigned int unsafe_warningcnt = 1;
109 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
110     &unsafe_warningcnt, 0,
111     "Warnings that will be triggered upon failed IO requests on unsafe files");
112 
113 static int max_aio_procs = MAX_AIO_PROCS;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
115     "Maximum number of kernel processes to use for handling async IO ");
116 
117 static int num_aio_procs = 0;
118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
119     "Number of presently active kernel processes for async IO");
120 
121 /*
122  * The code will adjust the actual number of AIO processes towards this
123  * number when it gets a chance.
124  */
125 static int target_aio_procs = TARGET_AIO_PROCS;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
127     0,
128     "Preferred number of ready kernel processes for async IO");
129 
130 static int max_queue_count = MAX_AIO_QUEUE;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
132     "Maximum number of aio requests to queue, globally");
133 
134 static int num_queue_count = 0;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
136     "Number of queued aio requests");
137 
138 static int num_buf_aio = 0;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
140     "Number of aio requests presently handled by the buf subsystem");
141 
142 static int num_unmapped_aio = 0;
143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
144     0,
145     "Number of aio requests presently handled by unmapped I/O buffers");
146 
147 /* Number of async I/O processes in the process of being started */
148 /* XXX This should be local to aio_aqueue() */
149 static int num_aio_resv_start = 0;
150 
151 static int aiod_lifetime;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
153     "Maximum lifetime for idle aiod");
154 
155 static int max_aio_per_proc = MAX_AIO_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
157     0,
158     "Maximum active aio requests per process");
159 
160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
162     &max_aio_queue_per_proc, 0,
163     "Maximum queued aio requests per process");
164 
165 static int max_buf_aio = MAX_BUF_AIO;
166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
167     "Maximum buf aio requests per process");
168 
169 /*
170  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
171  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
172  * vfs.aio.aio_listio_max.
173  */
174 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
175     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
176     0, "Maximum aio requests for a single lio_listio call");
177 
178 #ifdef COMPAT_FREEBSD6
179 typedef struct oaiocb {
180 	int	aio_fildes;		/* File descriptor */
181 	off_t	aio_offset;		/* File offset for I/O */
182 	volatile void *aio_buf;         /* I/O buffer in process space */
183 	size_t	aio_nbytes;		/* Number of bytes for I/O */
184 	struct	osigevent aio_sigevent;	/* Signal to deliver */
185 	int	aio_lio_opcode;		/* LIO opcode */
186 	int	aio_reqprio;		/* Request priority -- ignored */
187 	struct	__aiocb_private	_aiocb_private;
188 } oaiocb_t;
189 #endif
190 
191 /*
192  * Below is a key of locks used to protect each member of struct kaiocb
193  * aioliojob and kaioinfo and any backends.
194  *
195  * * - need not protected
196  * a - locked by kaioinfo lock
197  * b - locked by backend lock, the backend lock can be null in some cases,
198  *     for example, BIO belongs to this type, in this case, proc lock is
199  *     reused.
200  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
201  */
202 
203 /*
204  * If the routine that services an AIO request blocks while running in an
205  * AIO kernel process it can starve other I/O requests.  BIO requests
206  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
207  * processes at all.  Socket I/O requests use a separate pool of
208  * kprocs and also force non-blocking I/O.  Other file I/O requests
209  * use the generic fo_read/fo_write operations which can block.  The
210  * fsync and mlock operations can also block while executing.  Ideally
211  * none of these requests would block while executing.
212  *
213  * Note that the service routines cannot toggle O_NONBLOCK in the file
214  * structure directly while handling a request due to races with
215  * userland threads.
216  */
217 
218 /* jobflags */
219 #define	KAIOCB_QUEUEING		0x01
220 #define	KAIOCB_CANCELLED	0x02
221 #define	KAIOCB_CANCELLING	0x04
222 #define	KAIOCB_CHECKSYNC	0x08
223 #define	KAIOCB_CLEARED		0x10
224 #define	KAIOCB_FINISHED		0x20
225 
226 /* ioflags */
227 #define	KAIOCB_IO_FOFFSET	0x01
228 
229 /*
230  * AIO process info
231  */
232 #define AIOP_FREE	0x1			/* proc on free queue */
233 
234 struct aioproc {
235 	int	aioprocflags;			/* (c) AIO proc flags */
236 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
237 	struct	proc *aioproc;			/* (*) the AIO proc */
238 };
239 
240 /*
241  * data-structure for lio signal management
242  */
243 struct aioliojob {
244 	int	lioj_flags;			/* (a) listio flags */
245 	int	lioj_count;			/* (a) count of jobs */
246 	int	lioj_finished_count;		/* (a) count of finished jobs */
247 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
248 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
249 	struct	knlist klist;			/* (a) list of knotes */
250 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
251 };
252 
253 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
254 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
255 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
256 
257 /*
258  * per process aio data structure
259  */
260 struct kaioinfo {
261 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
262 	int	kaio_flags;		/* (a) per process kaio flags */
263 	int	kaio_active_count;	/* (c) number of currently used AIOs */
264 	int	kaio_count;		/* (a) size of AIO queue */
265 	int	kaio_buffer_count;	/* (a) number of bio buffers */
266 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
267 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
268 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
269 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
270 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
271 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
272 	struct	task kaio_task;		/* (*) task to kick aio processes */
273 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
274 };
275 
276 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
277 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
278 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
279 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
280 
281 #define KAIO_RUNDOWN	0x1	/* process is being run down */
282 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
283 
284 /*
285  * Operations used to interact with userland aio control blocks.
286  * Different ABIs provide their own operations.
287  */
288 struct aiocb_ops {
289 	int	(*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
290 	long	(*fetch_status)(struct aiocb *ujob);
291 	long	(*fetch_error)(struct aiocb *ujob);
292 	int	(*store_status)(struct aiocb *ujob, long status);
293 	int	(*store_error)(struct aiocb *ujob, long error);
294 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
295 };
296 
297 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
298 static struct sema aio_newproc_sem;
299 static struct mtx aio_job_mtx;
300 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
301 static struct unrhdr *aiod_unr;
302 
303 static void	aio_biocleanup(struct bio *bp);
304 static int	aio_init_aioinfo(struct proc *p);
305 static int	aio_onceonly(void);
306 static int	aio_free_entry(struct kaiocb *job);
307 static void	aio_process_rw(struct kaiocb *job);
308 static void	aio_process_sync(struct kaiocb *job);
309 static void	aio_process_mlock(struct kaiocb *job);
310 static void	aio_schedule_fsync(void *context, int pending);
311 static int	aio_newproc(int *);
312 static int	aio_aqueue(struct thread *td, struct aiocb *ujob,
313 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
314 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
315 static void	aio_biowakeup(struct bio *bp);
316 static void	aio_proc_rundown(void *arg, struct proc *p);
317 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
318 		    struct image_params *imgp);
319 static int	aio_qbio(struct proc *p, struct kaiocb *job);
320 static void	aio_daemon(void *param);
321 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
322 static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
323 static int	aio_kick(struct proc *userp);
324 static void	aio_kick_nowait(struct proc *userp);
325 static void	aio_kick_helper(void *context, int pending);
326 static int	filt_aioattach(struct knote *kn);
327 static void	filt_aiodetach(struct knote *kn);
328 static int	filt_aio(struct knote *kn, long hint);
329 static int	filt_lioattach(struct knote *kn);
330 static void	filt_liodetach(struct knote *kn);
331 static int	filt_lio(struct knote *kn, long hint);
332 
333 /*
334  * Zones for:
335  * 	kaio	Per process async io info
336  *	aiocb	async io jobs
337  *	aiolio	list io jobs
338  */
339 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
340 
341 /* kqueue filters for aio */
342 static const struct filterops aio_filtops = {
343 	.f_isfd = 0,
344 	.f_attach = filt_aioattach,
345 	.f_detach = filt_aiodetach,
346 	.f_event = filt_aio,
347 };
348 static const struct filterops lio_filtops = {
349 	.f_isfd = 0,
350 	.f_attach = filt_lioattach,
351 	.f_detach = filt_liodetach,
352 	.f_event = filt_lio
353 };
354 
355 static eventhandler_tag exit_tag, exec_tag;
356 
357 TASKQUEUE_DEFINE_THREAD(aiod_kick);
358 
359 /*
360  * Main operations function for use as a kernel module.
361  */
362 static int
aio_modload(struct module * module,int cmd,void * arg)363 aio_modload(struct module *module, int cmd, void *arg)
364 {
365 	int error = 0;
366 
367 	switch (cmd) {
368 	case MOD_LOAD:
369 		aio_onceonly();
370 		break;
371 	case MOD_SHUTDOWN:
372 		break;
373 	default:
374 		error = EOPNOTSUPP;
375 		break;
376 	}
377 	return (error);
378 }
379 
380 static moduledata_t aio_mod = {
381 	"aio",
382 	&aio_modload,
383 	NULL
384 };
385 
386 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
387 MODULE_VERSION(aio, 1);
388 
389 /*
390  * Startup initialization
391  */
392 static int
aio_onceonly(void)393 aio_onceonly(void)
394 {
395 
396 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
397 	    EVENTHANDLER_PRI_ANY);
398 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
399 	    NULL, EVENTHANDLER_PRI_ANY);
400 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
401 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
402 	TAILQ_INIT(&aio_freeproc);
403 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
404 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
405 	TAILQ_INIT(&aio_jobs);
406 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
407 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
408 	    NULL, NULL, UMA_ALIGN_PTR, 0);
409 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
410 	    NULL, NULL, UMA_ALIGN_PTR, 0);
411 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
412 	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
413 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
414 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
415 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
416 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
417 
418 	return (0);
419 }
420 
421 /*
422  * Init the per-process aioinfo structure.  The aioinfo limits are set
423  * per-process for user limit (resource) management.
424  */
425 static int
aio_init_aioinfo(struct proc * p)426 aio_init_aioinfo(struct proc *p)
427 {
428 	struct kaioinfo *ki;
429 	int error;
430 
431 	ki = uma_zalloc(kaio_zone, M_WAITOK);
432 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
433 	ki->kaio_flags = 0;
434 	ki->kaio_active_count = 0;
435 	ki->kaio_count = 0;
436 	ki->kaio_buffer_count = 0;
437 	TAILQ_INIT(&ki->kaio_all);
438 	TAILQ_INIT(&ki->kaio_done);
439 	TAILQ_INIT(&ki->kaio_jobqueue);
440 	TAILQ_INIT(&ki->kaio_liojoblist);
441 	TAILQ_INIT(&ki->kaio_syncqueue);
442 	TAILQ_INIT(&ki->kaio_syncready);
443 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
444 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
445 	PROC_LOCK(p);
446 	if (p->p_aioinfo == NULL) {
447 		p->p_aioinfo = ki;
448 		PROC_UNLOCK(p);
449 	} else {
450 		PROC_UNLOCK(p);
451 		mtx_destroy(&ki->kaio_mtx);
452 		uma_zfree(kaio_zone, ki);
453 	}
454 
455 	error = 0;
456 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) {
457 		error = aio_newproc(NULL);
458 		if (error != 0)
459 			break;
460 	}
461 	return (error);
462 }
463 
464 static int
aio_sendsig(struct proc * p,struct sigevent * sigev,ksiginfo_t * ksi,bool ext)465 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
466 {
467 	struct thread *td;
468 	int error;
469 
470 	error = sigev_findtd(p, sigev, &td);
471 	if (error)
472 		return (error);
473 	if (!KSI_ONQ(ksi)) {
474 		ksiginfo_set_sigev(ksi, sigev);
475 		ksi->ksi_code = SI_ASYNCIO;
476 		ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
477 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
478 	}
479 	PROC_UNLOCK(p);
480 	return (error);
481 }
482 
483 /*
484  * Free a job entry.  Wait for completion if it is currently active, but don't
485  * delay forever.  If we delay, we return a flag that says that we have to
486  * restart the queue scan.
487  */
488 static int
aio_free_entry(struct kaiocb * job)489 aio_free_entry(struct kaiocb *job)
490 {
491 	struct kaioinfo *ki;
492 	struct aioliojob *lj;
493 	struct proc *p;
494 
495 	p = job->userproc;
496 	MPASS(curproc == p);
497 	ki = p->p_aioinfo;
498 	MPASS(ki != NULL);
499 
500 	AIO_LOCK_ASSERT(ki, MA_OWNED);
501 	MPASS(job->jobflags & KAIOCB_FINISHED);
502 
503 	atomic_subtract_int(&num_queue_count, 1);
504 
505 	ki->kaio_count--;
506 	MPASS(ki->kaio_count >= 0);
507 
508 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
509 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
510 
511 	lj = job->lio;
512 	if (lj) {
513 		lj->lioj_count--;
514 		lj->lioj_finished_count--;
515 
516 		if (lj->lioj_count == 0) {
517 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
518 			/* lio is going away, we need to destroy any knotes */
519 			knlist_delete(&lj->klist, curthread, 1);
520 			PROC_LOCK(p);
521 			sigqueue_take(&lj->lioj_ksi);
522 			PROC_UNLOCK(p);
523 			uma_zfree(aiolio_zone, lj);
524 		}
525 	}
526 
527 	/* job is going away, we need to destroy any knotes */
528 	knlist_delete(&job->klist, curthread, 1);
529 	PROC_LOCK(p);
530 	sigqueue_take(&job->ksi);
531 	PROC_UNLOCK(p);
532 
533 	AIO_UNLOCK(ki);
534 
535 	/*
536 	 * The thread argument here is used to find the owning process
537 	 * and is also passed to fo_close() which may pass it to various
538 	 * places such as devsw close() routines.  Because of that, we
539 	 * need a thread pointer from the process owning the job that is
540 	 * persistent and won't disappear out from under us or move to
541 	 * another process.
542 	 *
543 	 * Currently, all the callers of this function call it to remove
544 	 * a kaiocb from the current process' job list either via a
545 	 * syscall or due to the current process calling exit() or
546 	 * execve().  Thus, we know that p == curproc.  We also know that
547 	 * curthread can't exit since we are curthread.
548 	 *
549 	 * Therefore, we use curthread as the thread to pass to
550 	 * knlist_delete().  This does mean that it is possible for the
551 	 * thread pointer at close time to differ from the thread pointer
552 	 * at open time, but this is already true of file descriptors in
553 	 * a multithreaded process.
554 	 */
555 	if (job->fd_file)
556 		fdrop(job->fd_file, curthread);
557 	crfree(job->cred);
558 	if (job->uiop != &job->uio)
559 		freeuio(job->uiop);
560 	uma_zfree(aiocb_zone, job);
561 	AIO_LOCK(ki);
562 
563 	return (0);
564 }
565 
566 static void
aio_proc_rundown_exec(void * arg,struct proc * p,struct image_params * imgp __unused)567 aio_proc_rundown_exec(void *arg, struct proc *p,
568     struct image_params *imgp __unused)
569 {
570    	aio_proc_rundown(arg, p);
571 }
572 
573 static int
aio_cancel_job(struct proc * p,struct kaioinfo * ki,struct kaiocb * job)574 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
575 {
576 	aio_cancel_fn_t *func;
577 	int cancelled;
578 
579 	AIO_LOCK_ASSERT(ki, MA_OWNED);
580 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
581 		return (0);
582 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
583 	job->jobflags |= KAIOCB_CANCELLED;
584 
585 	func = job->cancel_fn;
586 
587 	/*
588 	 * If there is no cancel routine, just leave the job marked as
589 	 * cancelled.  The job should be in active use by a caller who
590 	 * should complete it normally or when it fails to install a
591 	 * cancel routine.
592 	 */
593 	if (func == NULL)
594 		return (0);
595 
596 	/*
597 	 * Set the CANCELLING flag so that aio_complete() will defer
598 	 * completions of this job.  This prevents the job from being
599 	 * freed out from under the cancel callback.  After the
600 	 * callback any deferred completion (whether from the callback
601 	 * or any other source) will be completed.
602 	 */
603 	job->jobflags |= KAIOCB_CANCELLING;
604 	AIO_UNLOCK(ki);
605 	func(job);
606 	AIO_LOCK(ki);
607 	job->jobflags &= ~KAIOCB_CANCELLING;
608 	if (job->jobflags & KAIOCB_FINISHED) {
609 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
610 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
611 		aio_bio_done_notify(p, job);
612 	} else {
613 		/*
614 		 * The cancel callback might have scheduled an
615 		 * operation to cancel this request, but it is
616 		 * only counted as cancelled if the request is
617 		 * cancelled when the callback returns.
618 		 */
619 		cancelled = 0;
620 	}
621 	return (cancelled);
622 }
623 
624 /*
625  * Rundown the jobs for a given process.
626  */
627 static void
aio_proc_rundown(void * arg,struct proc * p)628 aio_proc_rundown(void *arg, struct proc *p)
629 {
630 	struct kaioinfo *ki;
631 	struct aioliojob *lj;
632 	struct kaiocb *job, *jobn;
633 
634 	KASSERT(curthread->td_proc == p,
635 	    ("%s: called on non-curproc", __func__));
636 	ki = p->p_aioinfo;
637 	if (ki == NULL)
638 		return;
639 
640 	AIO_LOCK(ki);
641 	ki->kaio_flags |= KAIO_RUNDOWN;
642 
643 restart:
644 
645 	/*
646 	 * Try to cancel all pending requests. This code simulates
647 	 * aio_cancel on all pending I/O requests.
648 	 */
649 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
650 		aio_cancel_job(p, ki, job);
651 	}
652 
653 	/* Wait for all running I/O to be finished */
654 	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
655 		ki->kaio_flags |= KAIO_WAKEUP;
656 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
657 		goto restart;
658 	}
659 
660 	/* Free all completed I/O requests. */
661 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
662 		aio_free_entry(job);
663 
664 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
665 		if (lj->lioj_count == 0) {
666 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
667 			knlist_delete(&lj->klist, curthread, 1);
668 			PROC_LOCK(p);
669 			sigqueue_take(&lj->lioj_ksi);
670 			PROC_UNLOCK(p);
671 			uma_zfree(aiolio_zone, lj);
672 		} else {
673 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
674 			    lj->lioj_count, lj->lioj_finished_count);
675 		}
676 	}
677 	AIO_UNLOCK(ki);
678 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
679 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
680 	mtx_destroy(&ki->kaio_mtx);
681 	uma_zfree(kaio_zone, ki);
682 	p->p_aioinfo = NULL;
683 }
684 
685 /*
686  * Select a job to run (called by an AIO daemon).
687  */
688 static struct kaiocb *
aio_selectjob(struct aioproc * aiop)689 aio_selectjob(struct aioproc *aiop)
690 {
691 	struct kaiocb *job;
692 	struct kaioinfo *ki;
693 	struct proc *userp;
694 
695 	mtx_assert(&aio_job_mtx, MA_OWNED);
696 restart:
697 	TAILQ_FOREACH(job, &aio_jobs, list) {
698 		userp = job->userproc;
699 		ki = userp->p_aioinfo;
700 
701 		if (ki->kaio_active_count < max_aio_per_proc) {
702 			TAILQ_REMOVE(&aio_jobs, job, list);
703 			if (!aio_clear_cancel_function(job))
704 				goto restart;
705 
706 			/* Account for currently active jobs. */
707 			ki->kaio_active_count++;
708 			break;
709 		}
710 	}
711 	return (job);
712 }
713 
714 /*
715  * Move all data to a permanent storage device.  This code
716  * simulates the fsync and fdatasync syscalls.
717  */
718 static int
aio_fsync_vnode(struct thread * td,struct vnode * vp,int op)719 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
720 {
721 	struct mount *mp;
722 	int error;
723 
724 	for (;;) {
725 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
726 		if (error != 0)
727 			break;
728 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
729 		vnode_pager_clean_async(vp);
730 		if (op == LIO_DSYNC)
731 			error = VOP_FDATASYNC(vp, td);
732 		else
733 			error = VOP_FSYNC(vp, MNT_WAIT, td);
734 
735 		VOP_UNLOCK(vp);
736 		vn_finished_write(mp);
737 		if (error != ERELOOKUP)
738 			break;
739 	}
740 	return (error);
741 }
742 
743 /*
744  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
745  * does the I/O request for the non-bio version of the operations.  The normal
746  * vn operations are used, and this code should work in all instances for every
747  * type of file, including pipes, sockets, fifos, and regular files.
748  *
749  * XXX I don't think it works well for socket, pipe, and fifo.
750  */
751 static void
aio_process_rw(struct kaiocb * job)752 aio_process_rw(struct kaiocb *job)
753 {
754 	struct ucred *td_savedcred;
755 	struct thread *td;
756 	struct file *fp;
757 	ssize_t cnt;
758 	long msgsnd_st, msgsnd_end;
759 	long msgrcv_st, msgrcv_end;
760 	long oublock_st, oublock_end;
761 	long inblock_st, inblock_end;
762 	int error, opcode;
763 
764 	opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
765 	KASSERT(opcode == LIO_READ || opcode == LIO_READV ||
766 	    opcode == LIO_WRITE || opcode == LIO_WRITEV,
767 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
768 
769 	aio_switch_vmspace(job);
770 	td = curthread;
771 	td_savedcred = td->td_ucred;
772 	td->td_ucred = job->cred;
773 	job->uiop->uio_td = td;
774 	fp = job->fd_file;
775 
776 	cnt = job->uiop->uio_resid;
777 
778 	msgrcv_st = td->td_ru.ru_msgrcv;
779 	msgsnd_st = td->td_ru.ru_msgsnd;
780 	inblock_st = td->td_ru.ru_inblock;
781 	oublock_st = td->td_ru.ru_oublock;
782 
783 	/*
784 	 * aio_aqueue() acquires a reference to the file that is
785 	 * released in aio_free_entry().
786 	 */
787 	if (opcode == LIO_READ || opcode == LIO_READV) {
788 		if (job->uiop->uio_resid == 0)
789 			error = 0;
790 		else
791 			error = fo_read(fp, job->uiop, fp->f_cred,
792 			    (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 :
793 			    FOF_OFFSET, td);
794 	} else {
795 		if (fp->f_type == DTYPE_VNODE)
796 			bwillwrite();
797 		error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags &
798 		    KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td);
799 	}
800 	msgrcv_end = td->td_ru.ru_msgrcv;
801 	msgsnd_end = td->td_ru.ru_msgsnd;
802 	inblock_end = td->td_ru.ru_inblock;
803 	oublock_end = td->td_ru.ru_oublock;
804 
805 	job->msgrcv = msgrcv_end - msgrcv_st;
806 	job->msgsnd = msgsnd_end - msgsnd_st;
807 	job->inblock = inblock_end - inblock_st;
808 	job->outblock = oublock_end - oublock_st;
809 
810 	if (error != 0 && job->uiop->uio_resid != cnt) {
811 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
812 			error = 0;
813 		if (error == EPIPE && (opcode & LIO_WRITE)) {
814 			PROC_LOCK(job->userproc);
815 			kern_psignal(job->userproc, SIGPIPE);
816 			PROC_UNLOCK(job->userproc);
817 		}
818 	}
819 
820 	cnt -= job->uiop->uio_resid;
821 	td->td_ucred = td_savedcred;
822 	if (error)
823 		aio_complete(job, -1, error);
824 	else
825 		aio_complete(job, cnt, 0);
826 }
827 
828 static void
aio_process_sync(struct kaiocb * job)829 aio_process_sync(struct kaiocb *job)
830 {
831 	struct thread *td = curthread;
832 	struct ucred *td_savedcred = td->td_ucred;
833 	struct file *fp = job->fd_file;
834 	int error = 0;
835 
836 	KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
837 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
838 
839 	td->td_ucred = job->cred;
840 	if (fp->f_vnode != NULL) {
841 		error = aio_fsync_vnode(td, fp->f_vnode,
842 		    job->uaiocb.aio_lio_opcode);
843 	}
844 	td->td_ucred = td_savedcred;
845 	if (error)
846 		aio_complete(job, -1, error);
847 	else
848 		aio_complete(job, 0, 0);
849 }
850 
851 static void
aio_process_mlock(struct kaiocb * job)852 aio_process_mlock(struct kaiocb *job)
853 {
854 	struct aiocb *cb = &job->uaiocb;
855 	int error;
856 
857 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
858 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
859 
860 	aio_switch_vmspace(job);
861 	error = kern_mlock(job->userproc, job->cred,
862 	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
863 	aio_complete(job, error != 0 ? -1 : 0, error);
864 }
865 
866 static void
aio_bio_done_notify(struct proc * userp,struct kaiocb * job)867 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
868 {
869 	struct aioliojob *lj;
870 	struct kaioinfo *ki;
871 	struct kaiocb *sjob, *sjobn;
872 	int lj_done;
873 	bool schedule_fsync;
874 
875 	ki = userp->p_aioinfo;
876 	AIO_LOCK_ASSERT(ki, MA_OWNED);
877 	lj = job->lio;
878 	lj_done = 0;
879 	if (lj) {
880 		lj->lioj_finished_count++;
881 		if (lj->lioj_count == lj->lioj_finished_count)
882 			lj_done = 1;
883 	}
884 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
885 	MPASS(job->jobflags & KAIOCB_FINISHED);
886 
887 	if (ki->kaio_flags & KAIO_RUNDOWN)
888 		goto notification_done;
889 
890 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
891 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
892 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
893 
894 	KNOTE_LOCKED(&job->klist, 1);
895 
896 	if (lj_done) {
897 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
898 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
899 			KNOTE_LOCKED(&lj->klist, 1);
900 		}
901 		if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
902 		    == LIOJ_SIGNAL &&
903 		    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
904 		    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
905 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
906 			    true);
907 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
908 		}
909 	}
910 
911 notification_done:
912 	if (job->jobflags & KAIOCB_CHECKSYNC) {
913 		schedule_fsync = false;
914 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
915 			if (job->fd_file != sjob->fd_file ||
916 			    job->seqno >= sjob->seqno)
917 				continue;
918 			if (--sjob->pending > 0)
919 				continue;
920 			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
921 			if (!aio_clear_cancel_function_locked(sjob))
922 				continue;
923 			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
924 			schedule_fsync = true;
925 		}
926 		if (schedule_fsync)
927 			taskqueue_enqueue(taskqueue_aiod_kick,
928 			    &ki->kaio_sync_task);
929 	}
930 	if (ki->kaio_flags & KAIO_WAKEUP) {
931 		ki->kaio_flags &= ~KAIO_WAKEUP;
932 		wakeup(&userp->p_aioinfo);
933 	}
934 }
935 
936 static void
aio_schedule_fsync(void * context,int pending)937 aio_schedule_fsync(void *context, int pending)
938 {
939 	struct kaioinfo *ki;
940 	struct kaiocb *job;
941 
942 	ki = context;
943 	AIO_LOCK(ki);
944 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
945 		job = TAILQ_FIRST(&ki->kaio_syncready);
946 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
947 		AIO_UNLOCK(ki);
948 		aio_schedule(job, aio_process_sync);
949 		AIO_LOCK(ki);
950 	}
951 	AIO_UNLOCK(ki);
952 }
953 
954 bool
aio_cancel_cleared(struct kaiocb * job)955 aio_cancel_cleared(struct kaiocb *job)
956 {
957 
958 	/*
959 	 * The caller should hold the same queue lock held when
960 	 * aio_clear_cancel_function() was called and set this flag
961 	 * ensuring this check sees an up-to-date value.  However,
962 	 * there is no way to assert that.
963 	 */
964 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
965 }
966 
967 static bool
aio_clear_cancel_function_locked(struct kaiocb * job)968 aio_clear_cancel_function_locked(struct kaiocb *job)
969 {
970 
971 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
972 	MPASS(job->cancel_fn != NULL);
973 	if (job->jobflags & KAIOCB_CANCELLING) {
974 		job->jobflags |= KAIOCB_CLEARED;
975 		return (false);
976 	}
977 	job->cancel_fn = NULL;
978 	return (true);
979 }
980 
981 bool
aio_clear_cancel_function(struct kaiocb * job)982 aio_clear_cancel_function(struct kaiocb *job)
983 {
984 	struct kaioinfo *ki;
985 	bool ret;
986 
987 	ki = job->userproc->p_aioinfo;
988 	AIO_LOCK(ki);
989 	ret = aio_clear_cancel_function_locked(job);
990 	AIO_UNLOCK(ki);
991 	return (ret);
992 }
993 
994 static bool
aio_set_cancel_function_locked(struct kaiocb * job,aio_cancel_fn_t * func)995 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
996 {
997 
998 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
999 	if (job->jobflags & KAIOCB_CANCELLED)
1000 		return (false);
1001 	job->cancel_fn = func;
1002 	return (true);
1003 }
1004 
1005 bool
aio_set_cancel_function(struct kaiocb * job,aio_cancel_fn_t * func)1006 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1007 {
1008 	struct kaioinfo *ki;
1009 	bool ret;
1010 
1011 	ki = job->userproc->p_aioinfo;
1012 	AIO_LOCK(ki);
1013 	ret = aio_set_cancel_function_locked(job, func);
1014 	AIO_UNLOCK(ki);
1015 	return (ret);
1016 }
1017 
1018 void
aio_complete(struct kaiocb * job,long status,int error)1019 aio_complete(struct kaiocb *job, long status, int error)
1020 {
1021 	struct kaioinfo *ki;
1022 	struct proc *userp;
1023 
1024 	job->uaiocb._aiocb_private.error = error;
1025 	job->uaiocb._aiocb_private.status = status;
1026 
1027 	userp = job->userproc;
1028 	ki = userp->p_aioinfo;
1029 
1030 	AIO_LOCK(ki);
1031 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1032 	    ("duplicate aio_complete"));
1033 	job->jobflags |= KAIOCB_FINISHED;
1034 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1035 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1036 		aio_bio_done_notify(userp, job);
1037 	}
1038 	AIO_UNLOCK(ki);
1039 }
1040 
1041 void
aio_cancel(struct kaiocb * job)1042 aio_cancel(struct kaiocb *job)
1043 {
1044 
1045 	aio_complete(job, -1, ECANCELED);
1046 }
1047 
1048 void
aio_switch_vmspace(struct kaiocb * job)1049 aio_switch_vmspace(struct kaiocb *job)
1050 {
1051 
1052 	vmspace_switch_aio(job->userproc->p_vmspace);
1053 }
1054 
1055 /*
1056  * The AIO daemon, most of the actual work is done in aio_process_*,
1057  * but the setup (and address space mgmt) is done in this routine.
1058  */
1059 static void
aio_daemon(void * _id)1060 aio_daemon(void *_id)
1061 {
1062 	struct kaiocb *job;
1063 	struct aioproc *aiop;
1064 	struct kaioinfo *ki;
1065 	struct proc *p;
1066 	struct vmspace *myvm;
1067 	struct thread *td = curthread;
1068 	int id = (intptr_t)_id;
1069 
1070 	/*
1071 	 * Grab an extra reference on the daemon's vmspace so that it
1072 	 * doesn't get freed by jobs that switch to a different
1073 	 * vmspace.
1074 	 */
1075 	p = td->td_proc;
1076 	myvm = vmspace_acquire_ref(p);
1077 
1078 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1079 
1080 	/*
1081 	 * Allocate and ready the aio control info.  There is one aiop structure
1082 	 * per daemon.
1083 	 */
1084 	aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
1085 	aiop->aioproc = p;
1086 	aiop->aioprocflags = 0;
1087 
1088 	/*
1089 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1090 	 * and creating too many daemons.)
1091 	 */
1092 	sema_post(&aio_newproc_sem);
1093 
1094 	mtx_lock(&aio_job_mtx);
1095 	for (;;) {
1096 		/*
1097 		 * Take daemon off of free queue
1098 		 */
1099 		if (aiop->aioprocflags & AIOP_FREE) {
1100 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1101 			aiop->aioprocflags &= ~AIOP_FREE;
1102 		}
1103 
1104 		/*
1105 		 * Check for jobs.
1106 		 */
1107 		while ((job = aio_selectjob(aiop)) != NULL) {
1108 			mtx_unlock(&aio_job_mtx);
1109 
1110 			ki = job->userproc->p_aioinfo;
1111 			job->handle_fn(job);
1112 
1113 			mtx_lock(&aio_job_mtx);
1114 			/* Decrement the active job count. */
1115 			ki->kaio_active_count--;
1116 		}
1117 
1118 		/*
1119 		 * Disconnect from user address space.
1120 		 */
1121 		if (p->p_vmspace != myvm) {
1122 			mtx_unlock(&aio_job_mtx);
1123 			vmspace_switch_aio(myvm);
1124 			mtx_lock(&aio_job_mtx);
1125 			/*
1126 			 * We have to restart to avoid race, we only sleep if
1127 			 * no job can be selected.
1128 			 */
1129 			continue;
1130 		}
1131 
1132 		mtx_assert(&aio_job_mtx, MA_OWNED);
1133 
1134 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1135 		aiop->aioprocflags |= AIOP_FREE;
1136 
1137 		/*
1138 		 * If daemon is inactive for a long time, allow it to exit,
1139 		 * thereby freeing resources.
1140 		 */
1141 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1142 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1143 		    (aiop->aioprocflags & AIOP_FREE) &&
1144 		    num_aio_procs > target_aio_procs)
1145 			break;
1146 	}
1147 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1148 	num_aio_procs--;
1149 	mtx_unlock(&aio_job_mtx);
1150 	free(aiop, M_AIO);
1151 	free_unr(aiod_unr, id);
1152 	vmspace_free(myvm);
1153 
1154 	KASSERT(p->p_vmspace == myvm,
1155 	    ("AIOD: bad vmspace for exiting daemon"));
1156 	KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1157 	    ("AIOD: bad vm refcnt for exiting daemon: %d",
1158 	    refcount_load(&myvm->vm_refcnt)));
1159 	kproc_exit(0);
1160 }
1161 
1162 /*
1163  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1164  * AIO daemon modifies its environment itself.
1165  */
1166 static int
aio_newproc(int * start)1167 aio_newproc(int *start)
1168 {
1169 	int error;
1170 	struct proc *p;
1171 	int id;
1172 
1173 	id = alloc_unr(aiod_unr);
1174 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1175 		RFNOWAIT, 0, "aiod%d", id);
1176 	if (error == 0) {
1177 		/*
1178 		 * Wait until daemon is started.
1179 		 */
1180 		sema_wait(&aio_newproc_sem);
1181 		mtx_lock(&aio_job_mtx);
1182 		num_aio_procs++;
1183 		if (start != NULL)
1184 			(*start)--;
1185 		mtx_unlock(&aio_job_mtx);
1186 	} else {
1187 		free_unr(aiod_unr, id);
1188 	}
1189 	return (error);
1190 }
1191 
1192 /*
1193  * Try the high-performance, low-overhead bio method for eligible
1194  * VCHR devices.  This method doesn't use an aio helper thread, and
1195  * thus has very low overhead.
1196  *
1197  * Assumes that the caller, aio_aqueue(), has incremented the file
1198  * structure's reference count, preventing its deallocation for the
1199  * duration of this call.
1200  */
1201 static int
aio_qbio(struct proc * p,struct kaiocb * job)1202 aio_qbio(struct proc *p, struct kaiocb *job)
1203 {
1204 	struct aiocb *cb;
1205 	struct file *fp;
1206 	struct buf *pbuf;
1207 	struct vnode *vp;
1208 	struct cdevsw *csw;
1209 	struct cdev *dev;
1210 	struct kaioinfo *ki;
1211 	struct bio **bios = NULL;
1212 	off_t offset;
1213 	int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1214 	vm_prot_t prot;
1215 	bool use_unmapped;
1216 
1217 	cb = &job->uaiocb;
1218 	fp = job->fd_file;
1219 	opcode = cb->aio_lio_opcode;
1220 
1221 	if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1222 	    opcode == LIO_READ || opcode == LIO_READV))
1223 		return (-1);
1224 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1225 		return (-1);
1226 
1227 	vp = fp->f_vnode;
1228 	if (vp->v_type != VCHR)
1229 		return (-1);
1230 	if (vp->v_bufobj.bo_bsize == 0)
1231 		return (-1);
1232 
1233 	bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1234 	iovcnt = job->uiop->uio_iovcnt;
1235 	if (iovcnt > max_buf_aio)
1236 		return (-1);
1237 	for (i = 0; i < iovcnt; i++) {
1238 		if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1239 			return (-1);
1240 		if (job->uiop->uio_iov[i].iov_len > maxphys) {
1241 			error = -1;
1242 			return (-1);
1243 		}
1244 	}
1245 	offset = cb->aio_offset;
1246 
1247 	ref = 0;
1248 	csw = devvn_refthread(vp, &dev, &ref);
1249 	if (csw == NULL)
1250 		return (ENXIO);
1251 
1252 	if ((csw->d_flags & D_DISK) == 0) {
1253 		error = -1;
1254 		goto unref;
1255 	}
1256 	if (job->uiop->uio_resid > dev->si_iosize_max) {
1257 		error = -1;
1258 		goto unref;
1259 	}
1260 
1261 	ki = p->p_aioinfo;
1262 	job->error = 0;
1263 
1264 	use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1265 	if (!use_unmapped) {
1266 		AIO_LOCK(ki);
1267 		if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1268 			AIO_UNLOCK(ki);
1269 			error = EAGAIN;
1270 			goto unref;
1271 		}
1272 		ki->kaio_buffer_count += iovcnt;
1273 		AIO_UNLOCK(ki);
1274 	}
1275 
1276 	bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1277 	refcount_init(&job->nbio, iovcnt);
1278 	for (i = 0; i < iovcnt; i++) {
1279 		struct vm_page** pages;
1280 		struct bio *bp;
1281 		void *buf;
1282 		size_t nbytes;
1283 		int npages;
1284 
1285 		buf = job->uiop->uio_iov[i].iov_base;
1286 		nbytes = job->uiop->uio_iov[i].iov_len;
1287 
1288 		bios[i] = g_alloc_bio();
1289 		bp = bios[i];
1290 
1291 		poff = (vm_offset_t)buf & PAGE_MASK;
1292 		if (use_unmapped) {
1293 			pbuf = NULL;
1294 			pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1295 			    nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1296 		} else {
1297 			pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1298 			BUF_KERNPROC(pbuf);
1299 			pages = pbuf->b_pages;
1300 		}
1301 
1302 		bp->bio_length = nbytes;
1303 		bp->bio_bcount = nbytes;
1304 		bp->bio_done = aio_biowakeup;
1305 		bp->bio_offset = offset;
1306 		bp->bio_cmd = bio_cmd;
1307 		bp->bio_dev = dev;
1308 		bp->bio_caller1 = job;
1309 		bp->bio_caller2 = pbuf;
1310 
1311 		prot = VM_PROT_READ;
1312 		if (opcode == LIO_READ || opcode == LIO_READV)
1313 			prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1314 		npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1315 		    (vm_offset_t)buf, bp->bio_length, prot, pages,
1316 		    atop(maxphys) + 1);
1317 		if (npages < 0) {
1318 			if (pbuf != NULL)
1319 				uma_zfree(pbuf_zone, pbuf);
1320 			else
1321 				free(pages, M_TEMP);
1322 			error = EFAULT;
1323 			g_destroy_bio(bp);
1324 			i--;
1325 			goto destroy_bios;
1326 		}
1327 		if (pbuf != NULL) {
1328 			pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1329 			bp->bio_data = pbuf->b_data + poff;
1330 			pbuf->b_npages = npages;
1331 			atomic_add_int(&num_buf_aio, 1);
1332 		} else {
1333 			bp->bio_ma = pages;
1334 			bp->bio_ma_n = npages;
1335 			bp->bio_ma_offset = poff;
1336 			bp->bio_data = unmapped_buf;
1337 			bp->bio_flags |= BIO_UNMAPPED;
1338 			atomic_add_int(&num_unmapped_aio, 1);
1339 		}
1340 
1341 		offset += nbytes;
1342 	}
1343 
1344 	/* Perform transfer. */
1345 	for (i = 0; i < iovcnt; i++)
1346 		csw->d_strategy(bios[i]);
1347 	free(bios, M_TEMP);
1348 
1349 	dev_relthread(dev, ref);
1350 	return (0);
1351 
1352 destroy_bios:
1353 	for (; i >= 0; i--)
1354 		aio_biocleanup(bios[i]);
1355 	free(bios, M_TEMP);
1356 unref:
1357 	dev_relthread(dev, ref);
1358 	return (error);
1359 }
1360 
1361 #ifdef COMPAT_FREEBSD6
1362 static int
convert_old_sigevent(struct osigevent * osig,struct sigevent * nsig)1363 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1364 {
1365 
1366 	/*
1367 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1368 	 * supported by AIO with the old sigevent structure.
1369 	 */
1370 	nsig->sigev_notify = osig->sigev_notify;
1371 	switch (nsig->sigev_notify) {
1372 	case SIGEV_NONE:
1373 		break;
1374 	case SIGEV_SIGNAL:
1375 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1376 		break;
1377 	case SIGEV_KEVENT:
1378 		nsig->sigev_notify_kqueue =
1379 		    osig->__sigev_u.__sigev_notify_kqueue;
1380 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1381 		break;
1382 	default:
1383 		return (EINVAL);
1384 	}
1385 	return (0);
1386 }
1387 
1388 static int
aiocb_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)1389 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1390     int type __unused)
1391 {
1392 	struct oaiocb *ojob;
1393 	struct aiocb *kcb = &kjob->uaiocb;
1394 	int error;
1395 
1396 	bzero(kcb, sizeof(struct aiocb));
1397 	error = copyin(ujob, kcb, sizeof(struct oaiocb));
1398 	if (error)
1399 		return (error);
1400 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1401 	ojob = (struct oaiocb *)kcb;
1402 	return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1403 }
1404 #endif
1405 
1406 static int
aiocb_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)1407 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1408 {
1409 	struct aiocb *kcb = &kjob->uaiocb;
1410 	int error;
1411 
1412 	error = copyin(ujob, kcb, sizeof(struct aiocb));
1413 	if (error)
1414 		return (error);
1415 	if (type == LIO_NOP)
1416 		type = kcb->aio_lio_opcode;
1417 	if (type & LIO_VECTORED) {
1418 		/* malloc a uio and copy in the iovec */
1419 		error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1420 		    kcb->aio_iovcnt, &kjob->uiop);
1421 	}
1422 
1423 	return (error);
1424 }
1425 
1426 static long
aiocb_fetch_status(struct aiocb * ujob)1427 aiocb_fetch_status(struct aiocb *ujob)
1428 {
1429 
1430 	return (fuword(&ujob->_aiocb_private.status));
1431 }
1432 
1433 static long
aiocb_fetch_error(struct aiocb * ujob)1434 aiocb_fetch_error(struct aiocb *ujob)
1435 {
1436 
1437 	return (fuword(&ujob->_aiocb_private.error));
1438 }
1439 
1440 static int
aiocb_store_status(struct aiocb * ujob,long status)1441 aiocb_store_status(struct aiocb *ujob, long status)
1442 {
1443 
1444 	return (suword(&ujob->_aiocb_private.status, status));
1445 }
1446 
1447 static int
aiocb_store_error(struct aiocb * ujob,long error)1448 aiocb_store_error(struct aiocb *ujob, long error)
1449 {
1450 
1451 	return (suword(&ujob->_aiocb_private.error, error));
1452 }
1453 
1454 static int
aiocb_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)1455 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1456 {
1457 
1458 	return (suword(ujobp, (long)ujob));
1459 }
1460 
1461 static struct aiocb_ops aiocb_ops = {
1462 	.aio_copyin = aiocb_copyin,
1463 	.fetch_status = aiocb_fetch_status,
1464 	.fetch_error = aiocb_fetch_error,
1465 	.store_status = aiocb_store_status,
1466 	.store_error = aiocb_store_error,
1467 	.store_aiocb = aiocb_store_aiocb,
1468 };
1469 
1470 #ifdef COMPAT_FREEBSD6
1471 static struct aiocb_ops aiocb_ops_osigevent = {
1472 	.aio_copyin = aiocb_copyin_old_sigevent,
1473 	.fetch_status = aiocb_fetch_status,
1474 	.fetch_error = aiocb_fetch_error,
1475 	.store_status = aiocb_store_status,
1476 	.store_error = aiocb_store_error,
1477 	.store_aiocb = aiocb_store_aiocb,
1478 };
1479 #endif
1480 
1481 /*
1482  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
1483  * technique is done in this code.
1484  */
1485 static int
aio_aqueue(struct thread * td,struct aiocb * ujob,struct aioliojob * lj,int type,struct aiocb_ops * ops)1486 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1487     int type, struct aiocb_ops *ops)
1488 {
1489 	struct proc *p = td->td_proc;
1490 	struct file *fp = NULL;
1491 	struct kaiocb *job;
1492 	struct kaioinfo *ki;
1493 	struct kevent kev;
1494 	int opcode;
1495 	int error;
1496 	int fd, kqfd;
1497 	u_short evflags;
1498 
1499 	if (p->p_aioinfo == NULL) {
1500 		error = aio_init_aioinfo(p);
1501 		if (error != 0)
1502 			goto err1;
1503 	}
1504 
1505 	ki = p->p_aioinfo;
1506 
1507 	ops->store_status(ujob, -1);
1508 	ops->store_error(ujob, 0);
1509 
1510 	if (num_queue_count >= max_queue_count ||
1511 	    ki->kaio_count >= max_aio_queue_per_proc) {
1512 		error = EAGAIN;
1513 		goto err1;
1514 	}
1515 
1516 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1517 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1518 
1519 	error = ops->aio_copyin(ujob, job, type);
1520 	if (error)
1521 		goto err2;
1522 
1523 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1524 		error = EINVAL;
1525 		goto err2;
1526 	}
1527 
1528 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1529 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1530 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1531 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1532 		error = EINVAL;
1533 		goto err2;
1534 	}
1535 
1536 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1537 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1538 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1539 		error = EINVAL;
1540 		goto err2;
1541 	}
1542 
1543 	/* Get the opcode. */
1544 	if (type == LIO_NOP) {
1545 		switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) {
1546 		case LIO_WRITE:
1547 		case LIO_WRITEV:
1548 		case LIO_NOP:
1549 		case LIO_READ:
1550 		case LIO_READV:
1551 			opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
1552 			if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0)
1553 				job->ioflags |= KAIOCB_IO_FOFFSET;
1554 			break;
1555 		default:
1556 			error = EINVAL;
1557 			goto err2;
1558 		}
1559 	} else
1560 		opcode = job->uaiocb.aio_lio_opcode = type;
1561 
1562 	ksiginfo_init(&job->ksi);
1563 
1564 	/* Save userspace address of the job info. */
1565 	job->ujob = ujob;
1566 
1567 	/*
1568 	 * Validate the opcode and fetch the file object for the specified
1569 	 * file descriptor.
1570 	 *
1571 	 * XXXRW: Moved the opcode validation up here so that we don't
1572 	 * retrieve a file descriptor without knowing what the capabiltity
1573 	 * should be.
1574 	 */
1575 	fd = job->uaiocb.aio_fildes;
1576 	switch (opcode) {
1577 	case LIO_WRITE:
1578 	case LIO_WRITEV:
1579 		error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1580 		break;
1581 	case LIO_READ:
1582 	case LIO_READV:
1583 		error = fget_read(td, fd, &cap_pread_rights, &fp);
1584 		break;
1585 	case LIO_SYNC:
1586 	case LIO_DSYNC:
1587 		error = fget(td, fd, &cap_fsync_rights, &fp);
1588 		break;
1589 	case LIO_MLOCK:
1590 		break;
1591 	case LIO_NOP:
1592 		error = fget(td, fd, &cap_no_rights, &fp);
1593 		break;
1594 	default:
1595 		error = EINVAL;
1596 	}
1597 	if (error)
1598 		goto err3;
1599 
1600 	if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1601 		error = EINVAL;
1602 		goto err3;
1603 	}
1604 
1605 	if ((opcode == LIO_READ || opcode == LIO_READV ||
1606 	    opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1607 	    job->uaiocb.aio_offset < 0 &&
1608 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1609 		error = EINVAL;
1610 		goto err3;
1611 	}
1612 
1613 	if (fp != NULL && fp->f_ops == &path_fileops) {
1614 		error = EBADF;
1615 		goto err3;
1616 	}
1617 
1618 	job->fd_file = fp;
1619 
1620 	mtx_lock(&aio_job_mtx);
1621 	job->seqno = jobseqno++;
1622 	mtx_unlock(&aio_job_mtx);
1623 	if (opcode == LIO_NOP) {
1624 		fdrop(fp, td);
1625 		MPASS(job->uiop == &job->uio || job->uiop == NULL);
1626 		uma_zfree(aiocb_zone, job);
1627 		return (0);
1628 	}
1629 
1630 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1631 		goto no_kqueue;
1632 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1633 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1634 		error = EINVAL;
1635 		goto err3;
1636 	}
1637 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1638 	memset(&kev, 0, sizeof(kev));
1639 	kev.ident = (uintptr_t)job->ujob;
1640 	kev.filter = EVFILT_AIO;
1641 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1642 	kev.data = (intptr_t)job;
1643 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1644 	error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1645 	if (error)
1646 		goto err3;
1647 
1648 no_kqueue:
1649 
1650 	ops->store_error(ujob, EINPROGRESS);
1651 	job->uaiocb._aiocb_private.error = EINPROGRESS;
1652 	job->userproc = p;
1653 	job->cred = crhold(td->td_ucred);
1654 	job->jobflags = KAIOCB_QUEUEING;
1655 	job->lio = lj;
1656 
1657 	if (opcode & LIO_VECTORED) {
1658 		/* Use the uio copied in by aio_copyin */
1659 		MPASS(job->uiop != &job->uio && job->uiop != NULL);
1660 	} else {
1661 		/* Setup the inline uio */
1662 		job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1663 		job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1664 		job->uio.uio_iov = job->iov;
1665 		job->uio.uio_iovcnt = 1;
1666 		job->uio.uio_resid = job->uaiocb.aio_nbytes;
1667 		job->uio.uio_segflg = UIO_USERSPACE;
1668 		job->uiop = &job->uio;
1669 	}
1670 	switch (opcode & (LIO_READ | LIO_WRITE)) {
1671 	case LIO_READ:
1672 		job->uiop->uio_rw = UIO_READ;
1673 		break;
1674 	case LIO_WRITE:
1675 		job->uiop->uio_rw = UIO_WRITE;
1676 		break;
1677 	}
1678 	job->uiop->uio_offset = job->uaiocb.aio_offset;
1679 	job->uiop->uio_td = td;
1680 
1681 	if (opcode == LIO_MLOCK) {
1682 		aio_schedule(job, aio_process_mlock);
1683 		error = 0;
1684 	} else if (fp->f_ops->fo_aio_queue == NULL)
1685 		error = aio_queue_file(fp, job);
1686 	else
1687 		error = fo_aio_queue(fp, job);
1688 	if (error)
1689 		goto err4;
1690 
1691 	AIO_LOCK(ki);
1692 	job->jobflags &= ~KAIOCB_QUEUEING;
1693 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1694 	ki->kaio_count++;
1695 	if (lj)
1696 		lj->lioj_count++;
1697 	atomic_add_int(&num_queue_count, 1);
1698 	if (job->jobflags & KAIOCB_FINISHED) {
1699 		/*
1700 		 * The queue callback completed the request synchronously.
1701 		 * The bulk of the completion is deferred in that case
1702 		 * until this point.
1703 		 */
1704 		aio_bio_done_notify(p, job);
1705 	} else
1706 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1707 	AIO_UNLOCK(ki);
1708 	return (0);
1709 
1710 err4:
1711 	crfree(job->cred);
1712 err3:
1713 	if (fp)
1714 		fdrop(fp, td);
1715 	knlist_delete(&job->klist, curthread, 0);
1716 err2:
1717 	if (job->uiop != &job->uio)
1718 		freeuio(job->uiop);
1719 	uma_zfree(aiocb_zone, job);
1720 err1:
1721 	ops->store_error(ujob, error);
1722 	return (error);
1723 }
1724 
1725 static void
aio_cancel_daemon_job(struct kaiocb * job)1726 aio_cancel_daemon_job(struct kaiocb *job)
1727 {
1728 
1729 	mtx_lock(&aio_job_mtx);
1730 	if (!aio_cancel_cleared(job))
1731 		TAILQ_REMOVE(&aio_jobs, job, list);
1732 	mtx_unlock(&aio_job_mtx);
1733 	aio_cancel(job);
1734 }
1735 
1736 void
aio_schedule(struct kaiocb * job,aio_handle_fn_t * func)1737 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1738 {
1739 
1740 	mtx_lock(&aio_job_mtx);
1741 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1742 		mtx_unlock(&aio_job_mtx);
1743 		aio_cancel(job);
1744 		return;
1745 	}
1746 	job->handle_fn = func;
1747 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1748 	aio_kick_nowait(job->userproc);
1749 	mtx_unlock(&aio_job_mtx);
1750 }
1751 
1752 static void
aio_cancel_sync(struct kaiocb * job)1753 aio_cancel_sync(struct kaiocb *job)
1754 {
1755 	struct kaioinfo *ki;
1756 
1757 	ki = job->userproc->p_aioinfo;
1758 	AIO_LOCK(ki);
1759 	if (!aio_cancel_cleared(job))
1760 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1761 	AIO_UNLOCK(ki);
1762 	aio_cancel(job);
1763 }
1764 
1765 int
aio_queue_file(struct file * fp,struct kaiocb * job)1766 aio_queue_file(struct file *fp, struct kaiocb *job)
1767 {
1768 	struct kaioinfo *ki;
1769 	struct kaiocb *job2;
1770 	struct vnode *vp;
1771 	struct mount *mp;
1772 	int error;
1773 	bool safe;
1774 
1775 	ki = job->userproc->p_aioinfo;
1776 	error = aio_qbio(job->userproc, job);
1777 	if (error >= 0)
1778 		return (error);
1779 	safe = false;
1780 	if (fp->f_type == DTYPE_VNODE) {
1781 		vp = fp->f_vnode;
1782 		if (vp->v_type == VREG || vp->v_type == VDIR) {
1783 			mp = fp->f_vnode->v_mount;
1784 			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1785 				safe = true;
1786 		}
1787 	}
1788 	if (!(safe || enable_aio_unsafe)) {
1789 		counted_warning(&unsafe_warningcnt,
1790 		    "is attempting to use unsafe AIO requests");
1791 		return (EOPNOTSUPP);
1792 	}
1793 
1794 	if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1795 		aio_schedule(job, aio_process_rw);
1796 		error = 0;
1797 	} else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1798 		AIO_LOCK(ki);
1799 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1800 			if (job2->fd_file == job->fd_file &&
1801 			    ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1802 			    job2->seqno < job->seqno) {
1803 				job2->jobflags |= KAIOCB_CHECKSYNC;
1804 				job->pending++;
1805 			}
1806 		}
1807 		if (job->pending != 0) {
1808 			if (!aio_set_cancel_function_locked(job,
1809 				aio_cancel_sync)) {
1810 				AIO_UNLOCK(ki);
1811 				aio_cancel(job);
1812 				return (0);
1813 			}
1814 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1815 			AIO_UNLOCK(ki);
1816 			return (0);
1817 		}
1818 		AIO_UNLOCK(ki);
1819 		aio_schedule(job, aio_process_sync);
1820 		error = 0;
1821 	} else {
1822 		error = EINVAL;
1823 	}
1824 	return (error);
1825 }
1826 
1827 static void
aio_kick_nowait(struct proc * userp)1828 aio_kick_nowait(struct proc *userp)
1829 {
1830 	struct kaioinfo *ki = userp->p_aioinfo;
1831 	struct aioproc *aiop;
1832 
1833 	mtx_assert(&aio_job_mtx, MA_OWNED);
1834 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1835 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1836 		aiop->aioprocflags &= ~AIOP_FREE;
1837 		wakeup(aiop->aioproc);
1838 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1839 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1840 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1841 	}
1842 }
1843 
1844 static int
aio_kick(struct proc * userp)1845 aio_kick(struct proc *userp)
1846 {
1847 	struct kaioinfo *ki = userp->p_aioinfo;
1848 	struct aioproc *aiop;
1849 	int error, ret = 0;
1850 
1851 	mtx_assert(&aio_job_mtx, MA_OWNED);
1852 retryproc:
1853 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1854 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1855 		aiop->aioprocflags &= ~AIOP_FREE;
1856 		wakeup(aiop->aioproc);
1857 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1858 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1859 		num_aio_resv_start++;
1860 		mtx_unlock(&aio_job_mtx);
1861 		error = aio_newproc(&num_aio_resv_start);
1862 		mtx_lock(&aio_job_mtx);
1863 		if (error) {
1864 			num_aio_resv_start--;
1865 			goto retryproc;
1866 		}
1867 	} else {
1868 		ret = -1;
1869 	}
1870 	return (ret);
1871 }
1872 
1873 static void
aio_kick_helper(void * context,int pending)1874 aio_kick_helper(void *context, int pending)
1875 {
1876 	struct proc *userp = context;
1877 
1878 	mtx_lock(&aio_job_mtx);
1879 	while (--pending >= 0) {
1880 		if (aio_kick(userp))
1881 			break;
1882 	}
1883 	mtx_unlock(&aio_job_mtx);
1884 }
1885 
1886 /*
1887  * Support the aio_return system call, as a side-effect, kernel resources are
1888  * released.
1889  */
1890 static int
kern_aio_return(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)1891 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1892 {
1893 	struct proc *p = td->td_proc;
1894 	struct kaiocb *job;
1895 	struct kaioinfo *ki;
1896 	long status, error;
1897 
1898 	ki = p->p_aioinfo;
1899 	if (ki == NULL)
1900 		return (EINVAL);
1901 	AIO_LOCK(ki);
1902 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1903 		if (job->ujob == ujob)
1904 			break;
1905 	}
1906 	if (job != NULL) {
1907 		MPASS(job->jobflags & KAIOCB_FINISHED);
1908 		status = job->uaiocb._aiocb_private.status;
1909 		error = job->uaiocb._aiocb_private.error;
1910 		td->td_retval[0] = status;
1911 		td->td_ru.ru_oublock += job->outblock;
1912 		td->td_ru.ru_inblock += job->inblock;
1913 		td->td_ru.ru_msgsnd += job->msgsnd;
1914 		td->td_ru.ru_msgrcv += job->msgrcv;
1915 		aio_free_entry(job);
1916 		AIO_UNLOCK(ki);
1917 		ops->store_error(ujob, error);
1918 		ops->store_status(ujob, status);
1919 	} else {
1920 		error = EINVAL;
1921 		AIO_UNLOCK(ki);
1922 	}
1923 	return (error);
1924 }
1925 
1926 int
sys_aio_return(struct thread * td,struct aio_return_args * uap)1927 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1928 {
1929 
1930 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1931 }
1932 
1933 /*
1934  * Allow a process to wakeup when any of the I/O requests are completed.
1935  */
1936 static int
kern_aio_suspend(struct thread * td,int njoblist,struct aiocb ** ujoblist,struct timespec * ts)1937 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1938     struct timespec *ts)
1939 {
1940 	struct proc *p = td->td_proc;
1941 	struct timeval atv;
1942 	struct kaioinfo *ki;
1943 	struct kaiocb *firstjob, *job;
1944 	int error, i, timo;
1945 
1946 	timo = 0;
1947 	if (ts) {
1948 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1949 			return (EINVAL);
1950 
1951 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1952 		if (itimerfix(&atv))
1953 			return (EINVAL);
1954 		timo = tvtohz(&atv);
1955 	}
1956 
1957 	ki = p->p_aioinfo;
1958 	if (ki == NULL)
1959 		return (EAGAIN);
1960 
1961 	if (njoblist == 0)
1962 		return (0);
1963 
1964 	AIO_LOCK(ki);
1965 	for (;;) {
1966 		firstjob = NULL;
1967 		error = 0;
1968 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1969 			for (i = 0; i < njoblist; i++) {
1970 				if (job->ujob == ujoblist[i]) {
1971 					if (firstjob == NULL)
1972 						firstjob = job;
1973 					if (job->jobflags & KAIOCB_FINISHED)
1974 						goto RETURN;
1975 				}
1976 			}
1977 		}
1978 		/* All tasks were finished. */
1979 		if (firstjob == NULL)
1980 			break;
1981 
1982 		ki->kaio_flags |= KAIO_WAKEUP;
1983 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1984 		    "aiospn", timo);
1985 		if (error == ERESTART)
1986 			error = EINTR;
1987 		if (error)
1988 			break;
1989 	}
1990 RETURN:
1991 	AIO_UNLOCK(ki);
1992 	return (error);
1993 }
1994 
1995 int
sys_aio_suspend(struct thread * td,struct aio_suspend_args * uap)1996 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
1997 {
1998 	struct timespec ts, *tsp;
1999 	struct aiocb **ujoblist;
2000 	int error;
2001 
2002 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2003 		return (EINVAL);
2004 
2005 	if (uap->timeout) {
2006 		/* Get timespec struct. */
2007 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2008 			return (error);
2009 		tsp = &ts;
2010 	} else
2011 		tsp = NULL;
2012 
2013 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2014 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2015 	if (error == 0)
2016 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2017 	free(ujoblist, M_AIO);
2018 	return (error);
2019 }
2020 
2021 /*
2022  * aio_cancel cancels any non-bio aio operations not currently in progress.
2023  */
2024 int
sys_aio_cancel(struct thread * td,struct aio_cancel_args * uap)2025 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2026 {
2027 	struct proc *p = td->td_proc;
2028 	struct kaioinfo *ki;
2029 	struct kaiocb *job, *jobn;
2030 	struct file *fp;
2031 	int error;
2032 	int cancelled = 0;
2033 	int notcancelled = 0;
2034 	struct vnode *vp;
2035 
2036 	/* Lookup file object. */
2037 	error = fget(td, uap->fd, &cap_no_rights, &fp);
2038 	if (error)
2039 		return (error);
2040 
2041 	ki = p->p_aioinfo;
2042 	if (ki == NULL)
2043 		goto done;
2044 
2045 	if (fp->f_type == DTYPE_VNODE) {
2046 		vp = fp->f_vnode;
2047 		if (vn_isdisk(vp)) {
2048 			fdrop(fp, td);
2049 			td->td_retval[0] = AIO_NOTCANCELED;
2050 			return (0);
2051 		}
2052 	}
2053 
2054 	AIO_LOCK(ki);
2055 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2056 		if ((uap->fd == job->uaiocb.aio_fildes) &&
2057 		    ((uap->aiocbp == NULL) ||
2058 		     (uap->aiocbp == job->ujob))) {
2059 			if (aio_cancel_job(p, ki, job)) {
2060 				cancelled++;
2061 			} else {
2062 				notcancelled++;
2063 			}
2064 			if (uap->aiocbp != NULL)
2065 				break;
2066 		}
2067 	}
2068 	AIO_UNLOCK(ki);
2069 
2070 done:
2071 	fdrop(fp, td);
2072 
2073 	if (uap->aiocbp != NULL) {
2074 		if (cancelled) {
2075 			td->td_retval[0] = AIO_CANCELED;
2076 			return (0);
2077 		}
2078 	}
2079 
2080 	if (notcancelled) {
2081 		td->td_retval[0] = AIO_NOTCANCELED;
2082 		return (0);
2083 	}
2084 
2085 	if (cancelled) {
2086 		td->td_retval[0] = AIO_CANCELED;
2087 		return (0);
2088 	}
2089 
2090 	td->td_retval[0] = AIO_ALLDONE;
2091 
2092 	return (0);
2093 }
2094 
2095 /*
2096  * aio_error is implemented in the kernel level for compatibility purposes
2097  * only.  For a user mode async implementation, it would be best to do it in
2098  * a userland subroutine.
2099  */
2100 static int
kern_aio_error(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)2101 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2102 {
2103 	struct proc *p = td->td_proc;
2104 	struct kaiocb *job;
2105 	struct kaioinfo *ki;
2106 	int status;
2107 
2108 	ki = p->p_aioinfo;
2109 	if (ki == NULL) {
2110 		td->td_retval[0] = EINVAL;
2111 		return (0);
2112 	}
2113 
2114 	AIO_LOCK(ki);
2115 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2116 		if (job->ujob == ujob) {
2117 			if (job->jobflags & KAIOCB_FINISHED)
2118 				td->td_retval[0] =
2119 					job->uaiocb._aiocb_private.error;
2120 			else
2121 				td->td_retval[0] = EINPROGRESS;
2122 			AIO_UNLOCK(ki);
2123 			return (0);
2124 		}
2125 	}
2126 	AIO_UNLOCK(ki);
2127 
2128 	/*
2129 	 * Hack for failure of aio_aqueue.
2130 	 */
2131 	status = ops->fetch_status(ujob);
2132 	if (status == -1) {
2133 		td->td_retval[0] = ops->fetch_error(ujob);
2134 		return (0);
2135 	}
2136 
2137 	td->td_retval[0] = EINVAL;
2138 	return (0);
2139 }
2140 
2141 int
sys_aio_error(struct thread * td,struct aio_error_args * uap)2142 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2143 {
2144 
2145 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2146 }
2147 
2148 /* syscall - asynchronous read from a file (REALTIME) */
2149 #ifdef COMPAT_FREEBSD6
2150 int
freebsd6_aio_read(struct thread * td,struct freebsd6_aio_read_args * uap)2151 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2152 {
2153 
2154 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2155 	    &aiocb_ops_osigevent));
2156 }
2157 #endif
2158 
2159 int
sys_aio_read(struct thread * td,struct aio_read_args * uap)2160 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2161 {
2162 
2163 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2164 }
2165 
2166 int
sys_aio_readv(struct thread * td,struct aio_readv_args * uap)2167 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2168 {
2169 
2170 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2171 }
2172 
2173 /* syscall - asynchronous write to a file (REALTIME) */
2174 #ifdef COMPAT_FREEBSD6
2175 int
freebsd6_aio_write(struct thread * td,struct freebsd6_aio_write_args * uap)2176 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2177 {
2178 
2179 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2180 	    &aiocb_ops_osigevent));
2181 }
2182 #endif
2183 
2184 int
sys_aio_write(struct thread * td,struct aio_write_args * uap)2185 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2186 {
2187 
2188 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2189 }
2190 
2191 int
sys_aio_writev(struct thread * td,struct aio_writev_args * uap)2192 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2193 {
2194 
2195 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2196 }
2197 
2198 int
sys_aio_mlock(struct thread * td,struct aio_mlock_args * uap)2199 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2200 {
2201 
2202 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2203 }
2204 
2205 static int
kern_lio_listio(struct thread * td,int mode,struct aiocb * const * uacb_list,struct aiocb ** acb_list,int nent,struct sigevent * sig,struct aiocb_ops * ops)2206 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2207     struct aiocb **acb_list, int nent, struct sigevent *sig,
2208     struct aiocb_ops *ops)
2209 {
2210 	struct proc *p = td->td_proc;
2211 	struct aiocb *job;
2212 	struct kaioinfo *ki;
2213 	struct aioliojob *lj;
2214 	struct kevent kev;
2215 	int error;
2216 	int nagain, nerror;
2217 	int i;
2218 
2219 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2220 		return (EINVAL);
2221 
2222 	if (nent < 0 || nent > max_aio_queue_per_proc)
2223 		return (EINVAL);
2224 
2225 	if (p->p_aioinfo == NULL) {
2226 		error = aio_init_aioinfo(p);
2227 		if (error != 0)
2228 			return (error);
2229 	}
2230 
2231 	ki = p->p_aioinfo;
2232 
2233 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2234 	lj->lioj_flags = 0;
2235 	lj->lioj_count = 0;
2236 	lj->lioj_finished_count = 0;
2237 	lj->lioj_signal.sigev_notify = SIGEV_NONE;
2238 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2239 	ksiginfo_init(&lj->lioj_ksi);
2240 
2241 	/*
2242 	 * Setup signal.
2243 	 */
2244 	if (sig && (mode == LIO_NOWAIT)) {
2245 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2246 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2247 			/* Assume only new style KEVENT */
2248 			memset(&kev, 0, sizeof(kev));
2249 			kev.filter = EVFILT_LIO;
2250 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2251 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2252 			kev.data = (intptr_t)lj;
2253 			/* pass user defined sigval data */
2254 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2255 			error = kqfd_register(
2256 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2257 			    M_WAITOK);
2258 			if (error) {
2259 				uma_zfree(aiolio_zone, lj);
2260 				return (error);
2261 			}
2262 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2263 			;
2264 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2265 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2266 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2267 					uma_zfree(aiolio_zone, lj);
2268 					return EINVAL;
2269 				}
2270 				lj->lioj_flags |= LIOJ_SIGNAL;
2271 		} else {
2272 			uma_zfree(aiolio_zone, lj);
2273 			return EINVAL;
2274 		}
2275 	}
2276 
2277 	AIO_LOCK(ki);
2278 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2279 	/*
2280 	 * Add extra aiocb count to avoid the lio to be freed
2281 	 * by other threads doing aio_waitcomplete or aio_return,
2282 	 * and prevent event from being sent until we have queued
2283 	 * all tasks.
2284 	 */
2285 	lj->lioj_count = 1;
2286 	AIO_UNLOCK(ki);
2287 
2288 	/*
2289 	 * Get pointers to the list of I/O requests.
2290 	 */
2291 	nagain = 0;
2292 	nerror = 0;
2293 	for (i = 0; i < nent; i++) {
2294 		job = acb_list[i];
2295 		if (job != NULL) {
2296 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2297 			if (error == EAGAIN)
2298 				nagain++;
2299 			else if (error != 0)
2300 				nerror++;
2301 		}
2302 	}
2303 
2304 	error = 0;
2305 	AIO_LOCK(ki);
2306 	if (mode == LIO_WAIT) {
2307 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2308 			ki->kaio_flags |= KAIO_WAKEUP;
2309 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2310 			    PRIBIO | PCATCH, "aiospn", 0);
2311 			if (error == ERESTART)
2312 				error = EINTR;
2313 			if (error)
2314 				break;
2315 		}
2316 	} else {
2317 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2318 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2319 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2320 				KNOTE_LOCKED(&lj->klist, 1);
2321 			}
2322 			if ((lj->lioj_flags & (LIOJ_SIGNAL |
2323 			    LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2324 			    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2325 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2326 				aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2327 				    lj->lioj_count != 1);
2328 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2329 			}
2330 		}
2331 	}
2332 	lj->lioj_count--;
2333 	if (lj->lioj_count == 0) {
2334 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2335 		knlist_delete(&lj->klist, curthread, 1);
2336 		PROC_LOCK(p);
2337 		sigqueue_take(&lj->lioj_ksi);
2338 		PROC_UNLOCK(p);
2339 		AIO_UNLOCK(ki);
2340 		uma_zfree(aiolio_zone, lj);
2341 	} else
2342 		AIO_UNLOCK(ki);
2343 
2344 	if (nerror)
2345 		return (EIO);
2346 	else if (nagain)
2347 		return (EAGAIN);
2348 	else
2349 		return (error);
2350 }
2351 
2352 /* syscall - list directed I/O (REALTIME) */
2353 #ifdef COMPAT_FREEBSD6
2354 int
freebsd6_lio_listio(struct thread * td,struct freebsd6_lio_listio_args * uap)2355 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2356 {
2357 	struct aiocb **acb_list;
2358 	struct sigevent *sigp, sig;
2359 	struct osigevent osig;
2360 	int error, nent;
2361 
2362 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2363 		return (EINVAL);
2364 
2365 	nent = uap->nent;
2366 	if (nent < 0 || nent > max_aio_queue_per_proc)
2367 		return (EINVAL);
2368 
2369 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2370 		error = copyin(uap->sig, &osig, sizeof(osig));
2371 		if (error)
2372 			return (error);
2373 		error = convert_old_sigevent(&osig, &sig);
2374 		if (error)
2375 			return (error);
2376 		sigp = &sig;
2377 	} else
2378 		sigp = NULL;
2379 
2380 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2381 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2382 	if (error == 0)
2383 		error = kern_lio_listio(td, uap->mode,
2384 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2385 		    &aiocb_ops_osigevent);
2386 	free(acb_list, M_LIO);
2387 	return (error);
2388 }
2389 #endif
2390 
2391 /* syscall - list directed I/O (REALTIME) */
2392 int
sys_lio_listio(struct thread * td,struct lio_listio_args * uap)2393 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2394 {
2395 	struct aiocb **acb_list;
2396 	struct sigevent *sigp, sig;
2397 	int error, nent;
2398 
2399 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2400 		return (EINVAL);
2401 
2402 	nent = uap->nent;
2403 	if (nent < 0 || nent > max_aio_queue_per_proc)
2404 		return (EINVAL);
2405 
2406 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2407 		error = copyin(uap->sig, &sig, sizeof(sig));
2408 		if (error)
2409 			return (error);
2410 		sigp = &sig;
2411 	} else
2412 		sigp = NULL;
2413 
2414 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2415 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2416 	if (error == 0)
2417 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2418 		    nent, sigp, &aiocb_ops);
2419 	free(acb_list, M_LIO);
2420 	return (error);
2421 }
2422 
2423 static void
aio_biocleanup(struct bio * bp)2424 aio_biocleanup(struct bio *bp)
2425 {
2426 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2427 	struct kaioinfo *ki;
2428 	struct buf *pbuf = (struct buf *)bp->bio_caller2;
2429 
2430 	/* Release mapping into kernel space. */
2431 	if (pbuf != NULL) {
2432 		MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2433 		pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2434 		vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2435 		uma_zfree(pbuf_zone, pbuf);
2436 		atomic_subtract_int(&num_buf_aio, 1);
2437 		ki = job->userproc->p_aioinfo;
2438 		AIO_LOCK(ki);
2439 		ki->kaio_buffer_count--;
2440 		AIO_UNLOCK(ki);
2441 	} else {
2442 		MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2443 		vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2444 		free(bp->bio_ma, M_TEMP);
2445 		atomic_subtract_int(&num_unmapped_aio, 1);
2446 	}
2447 	g_destroy_bio(bp);
2448 }
2449 
2450 static void
aio_biowakeup(struct bio * bp)2451 aio_biowakeup(struct bio *bp)
2452 {
2453 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2454 	size_t nbytes;
2455 	long bcount = bp->bio_bcount;
2456 	long resid = bp->bio_resid;
2457 	int opcode, nblks;
2458 	int bio_error = bp->bio_error;
2459 	uint16_t flags = bp->bio_flags;
2460 
2461 	opcode = job->uaiocb.aio_lio_opcode;
2462 
2463 	aio_biocleanup(bp);
2464 
2465 	nbytes = bcount - resid;
2466 	atomic_add_acq_long(&job->nbytes, nbytes);
2467 	nblks = btodb(nbytes);
2468 
2469 	/*
2470 	 * If multiple bios experienced an error, the job will reflect the
2471 	 * error of whichever failed bio completed last.
2472 	 */
2473 	if (flags & BIO_ERROR)
2474 		atomic_store_int(&job->error, bio_error);
2475 	if (opcode & LIO_WRITE)
2476 		atomic_add_int(&job->outblock, nblks);
2477 	else
2478 		atomic_add_int(&job->inblock, nblks);
2479 
2480 	if (refcount_release(&job->nbio)) {
2481 		bio_error = atomic_load_int(&job->error);
2482 		if (bio_error != 0)
2483 			aio_complete(job, -1, bio_error);
2484 		else
2485 			aio_complete(job, atomic_load_long(&job->nbytes), 0);
2486 	}
2487 }
2488 
2489 /* syscall - wait for the next completion of an aio request */
2490 static int
kern_aio_waitcomplete(struct thread * td,struct aiocb ** ujobp,struct timespec * ts,struct aiocb_ops * ops)2491 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2492     struct timespec *ts, struct aiocb_ops *ops)
2493 {
2494 	struct proc *p = td->td_proc;
2495 	struct timeval atv;
2496 	struct kaioinfo *ki;
2497 	struct kaiocb *job;
2498 	struct aiocb *ujob;
2499 	long error, status;
2500 	int timo;
2501 
2502 	ops->store_aiocb(ujobp, NULL);
2503 
2504 	if (ts == NULL) {
2505 		timo = 0;
2506 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2507 		timo = -1;
2508 	} else {
2509 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2510 			return (EINVAL);
2511 
2512 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2513 		if (itimerfix(&atv))
2514 			return (EINVAL);
2515 		timo = tvtohz(&atv);
2516 	}
2517 
2518 	if (p->p_aioinfo == NULL) {
2519 		error = aio_init_aioinfo(p);
2520 		if (error != 0)
2521 			return (error);
2522 	}
2523 	ki = p->p_aioinfo;
2524 
2525 	error = 0;
2526 	job = NULL;
2527 	AIO_LOCK(ki);
2528 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2529 		if (timo == -1) {
2530 			error = EWOULDBLOCK;
2531 			break;
2532 		}
2533 		ki->kaio_flags |= KAIO_WAKEUP;
2534 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2535 		    "aiowc", timo);
2536 		if (timo && error == ERESTART)
2537 			error = EINTR;
2538 		if (error)
2539 			break;
2540 	}
2541 
2542 	if (job != NULL) {
2543 		MPASS(job->jobflags & KAIOCB_FINISHED);
2544 		ujob = job->ujob;
2545 		status = job->uaiocb._aiocb_private.status;
2546 		error = job->uaiocb._aiocb_private.error;
2547 		td->td_retval[0] = status;
2548 		td->td_ru.ru_oublock += job->outblock;
2549 		td->td_ru.ru_inblock += job->inblock;
2550 		td->td_ru.ru_msgsnd += job->msgsnd;
2551 		td->td_ru.ru_msgrcv += job->msgrcv;
2552 		aio_free_entry(job);
2553 		AIO_UNLOCK(ki);
2554 		ops->store_aiocb(ujobp, ujob);
2555 		ops->store_error(ujob, error);
2556 		ops->store_status(ujob, status);
2557 	} else
2558 		AIO_UNLOCK(ki);
2559 
2560 	return (error);
2561 }
2562 
2563 int
sys_aio_waitcomplete(struct thread * td,struct aio_waitcomplete_args * uap)2564 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2565 {
2566 	struct timespec ts, *tsp;
2567 	int error;
2568 
2569 	if (uap->timeout) {
2570 		/* Get timespec struct. */
2571 		error = copyin(uap->timeout, &ts, sizeof(ts));
2572 		if (error)
2573 			return (error);
2574 		tsp = &ts;
2575 	} else
2576 		tsp = NULL;
2577 
2578 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2579 }
2580 
2581 static int
kern_aio_fsync(struct thread * td,int op,struct aiocb * ujob,struct aiocb_ops * ops)2582 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2583     struct aiocb_ops *ops)
2584 {
2585 	int listop;
2586 
2587 	switch (op) {
2588 	case O_SYNC:
2589 		listop = LIO_SYNC;
2590 		break;
2591 	case O_DSYNC:
2592 		listop = LIO_DSYNC;
2593 		break;
2594 	default:
2595 		return (EINVAL);
2596 	}
2597 
2598 	return (aio_aqueue(td, ujob, NULL, listop, ops));
2599 }
2600 
2601 int
sys_aio_fsync(struct thread * td,struct aio_fsync_args * uap)2602 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2603 {
2604 
2605 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2606 }
2607 
2608 /* kqueue attach function */
2609 static int
filt_aioattach(struct knote * kn)2610 filt_aioattach(struct knote *kn)
2611 {
2612 	struct kaiocb *job;
2613 
2614 	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2615 
2616 	/*
2617 	 * The job pointer must be validated before using it, so
2618 	 * registration is restricted to the kernel; the user cannot
2619 	 * set EV_FLAG1.
2620 	 */
2621 	if ((kn->kn_flags & EV_FLAG1) == 0)
2622 		return (EPERM);
2623 	kn->kn_ptr.p_aio = job;
2624 	kn->kn_flags &= ~EV_FLAG1;
2625 
2626 	knlist_add(&job->klist, kn, 0);
2627 
2628 	return (0);
2629 }
2630 
2631 /* kqueue detach function */
2632 static void
filt_aiodetach(struct knote * kn)2633 filt_aiodetach(struct knote *kn)
2634 {
2635 	struct knlist *knl;
2636 
2637 	knl = &kn->kn_ptr.p_aio->klist;
2638 	knl->kl_lock(knl->kl_lockarg);
2639 	if (!knlist_empty(knl))
2640 		knlist_remove(knl, kn, 1);
2641 	knl->kl_unlock(knl->kl_lockarg);
2642 }
2643 
2644 /* kqueue filter function */
2645 /*ARGSUSED*/
2646 static int
filt_aio(struct knote * kn,long hint)2647 filt_aio(struct knote *kn, long hint)
2648 {
2649 	struct kaiocb *job = kn->kn_ptr.p_aio;
2650 
2651 	kn->kn_data = job->uaiocb._aiocb_private.error;
2652 	if (!(job->jobflags & KAIOCB_FINISHED))
2653 		return (0);
2654 	kn->kn_flags |= EV_EOF;
2655 	return (1);
2656 }
2657 
2658 /* kqueue attach function */
2659 static int
filt_lioattach(struct knote * kn)2660 filt_lioattach(struct knote *kn)
2661 {
2662 	struct aioliojob *lj;
2663 
2664 	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2665 
2666 	/*
2667 	 * The aioliojob pointer must be validated before using it, so
2668 	 * registration is restricted to the kernel; the user cannot
2669 	 * set EV_FLAG1.
2670 	 */
2671 	if ((kn->kn_flags & EV_FLAG1) == 0)
2672 		return (EPERM);
2673 	kn->kn_ptr.p_lio = lj;
2674 	kn->kn_flags &= ~EV_FLAG1;
2675 
2676 	knlist_add(&lj->klist, kn, 0);
2677 
2678 	return (0);
2679 }
2680 
2681 /* kqueue detach function */
2682 static void
filt_liodetach(struct knote * kn)2683 filt_liodetach(struct knote *kn)
2684 {
2685 	struct knlist *knl;
2686 
2687 	knl = &kn->kn_ptr.p_lio->klist;
2688 	knl->kl_lock(knl->kl_lockarg);
2689 	if (!knlist_empty(knl))
2690 		knlist_remove(knl, kn, 1);
2691 	knl->kl_unlock(knl->kl_lockarg);
2692 }
2693 
2694 /* kqueue filter function */
2695 /*ARGSUSED*/
2696 static int
filt_lio(struct knote * kn,long hint)2697 filt_lio(struct knote *kn, long hint)
2698 {
2699 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2700 
2701 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2702 }
2703 
2704 #ifdef COMPAT_FREEBSD32
2705 #include <sys/mount.h>
2706 #include <sys/socket.h>
2707 #include <sys/sysent.h>
2708 #include <compat/freebsd32/freebsd32.h>
2709 #include <compat/freebsd32/freebsd32_proto.h>
2710 #include <compat/freebsd32/freebsd32_signal.h>
2711 #include <compat/freebsd32/freebsd32_syscall.h>
2712 #include <compat/freebsd32/freebsd32_util.h>
2713 
2714 struct __aiocb_private32 {
2715 	int32_t	status;
2716 	int32_t	error;
2717 	uint32_t spare;
2718 };
2719 
2720 #ifdef COMPAT_FREEBSD6
2721 typedef struct oaiocb32 {
2722 	int	aio_fildes;		/* File descriptor */
2723 	uint64_t aio_offset __packed;	/* File offset for I/O */
2724 	uint32_t aio_buf;		/* I/O buffer in process space */
2725 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2726 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2727 	int	aio_lio_opcode;		/* LIO opcode */
2728 	int	aio_reqprio;		/* Request priority -- ignored */
2729 	struct	__aiocb_private32 _aiocb_private;
2730 } oaiocb32_t;
2731 #endif
2732 
2733 typedef struct aiocb32 {
2734 	int32_t	aio_fildes;		/* File descriptor */
2735 	uint64_t aio_offset __packed;	/* File offset for I/O */
2736 	uint32_t aio_buf;	/* I/O buffer in process space */
2737 	uint32_t aio_nbytes;	/* Number of bytes for I/O */
2738 	int	__spare__[2];
2739 	uint32_t __spare2__;
2740 	int	aio_lio_opcode;		/* LIO opcode */
2741 	int	aio_reqprio;		/* Request priority -- ignored */
2742 	struct	__aiocb_private32 _aiocb_private;
2743 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2744 } aiocb32_t;
2745 
2746 #ifdef COMPAT_FREEBSD6
2747 static int
convert_old_sigevent32(struct osigevent32 * osig,struct sigevent * nsig)2748 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2749 {
2750 
2751 	/*
2752 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2753 	 * supported by AIO with the old sigevent structure.
2754 	 */
2755 	CP(*osig, *nsig, sigev_notify);
2756 	switch (nsig->sigev_notify) {
2757 	case SIGEV_NONE:
2758 		break;
2759 	case SIGEV_SIGNAL:
2760 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2761 		break;
2762 	case SIGEV_KEVENT:
2763 		nsig->sigev_notify_kqueue =
2764 		    osig->__sigev_u.__sigev_notify_kqueue;
2765 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2766 		break;
2767 	default:
2768 		return (EINVAL);
2769 	}
2770 	return (0);
2771 }
2772 
2773 static int
aiocb32_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)2774 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2775     int type __unused)
2776 {
2777 	struct oaiocb32 job32;
2778 	struct aiocb *kcb = &kjob->uaiocb;
2779 	int error;
2780 
2781 	bzero(kcb, sizeof(struct aiocb));
2782 	error = copyin(ujob, &job32, sizeof(job32));
2783 	if (error)
2784 		return (error);
2785 
2786 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2787 
2788 	CP(job32, *kcb, aio_fildes);
2789 	CP(job32, *kcb, aio_offset);
2790 	PTRIN_CP(job32, *kcb, aio_buf);
2791 	CP(job32, *kcb, aio_nbytes);
2792 	CP(job32, *kcb, aio_lio_opcode);
2793 	CP(job32, *kcb, aio_reqprio);
2794 	CP(job32, *kcb, _aiocb_private.status);
2795 	CP(job32, *kcb, _aiocb_private.error);
2796 	return (convert_old_sigevent32(&job32.aio_sigevent,
2797 	    &kcb->aio_sigevent));
2798 }
2799 #endif
2800 
2801 static int
aiocb32_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)2802 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2803 {
2804 	struct aiocb32 job32;
2805 	struct aiocb *kcb = &kjob->uaiocb;
2806 	struct iovec32 *iov32;
2807 	int error;
2808 
2809 	error = copyin(ujob, &job32, sizeof(job32));
2810 	if (error)
2811 		return (error);
2812 	CP(job32, *kcb, aio_fildes);
2813 	CP(job32, *kcb, aio_offset);
2814 	CP(job32, *kcb, aio_lio_opcode);
2815 	if (type == LIO_NOP)
2816 		type = kcb->aio_lio_opcode;
2817 	if (type & LIO_VECTORED) {
2818 		iov32 = PTRIN(job32.aio_iov);
2819 		CP(job32, *kcb, aio_iovcnt);
2820 		/* malloc a uio and copy in the iovec */
2821 		error = freebsd32_copyinuio(iov32,
2822 		    kcb->aio_iovcnt, &kjob->uiop);
2823 		if (error)
2824 			return (error);
2825 	} else {
2826 		PTRIN_CP(job32, *kcb, aio_buf);
2827 		CP(job32, *kcb, aio_nbytes);
2828 	}
2829 	CP(job32, *kcb, aio_reqprio);
2830 	CP(job32, *kcb, _aiocb_private.status);
2831 	CP(job32, *kcb, _aiocb_private.error);
2832 	error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2833 
2834 	return (error);
2835 }
2836 
2837 static long
aiocb32_fetch_status(struct aiocb * ujob)2838 aiocb32_fetch_status(struct aiocb *ujob)
2839 {
2840 	struct aiocb32 *ujob32;
2841 
2842 	ujob32 = (struct aiocb32 *)ujob;
2843 	return (fuword32(&ujob32->_aiocb_private.status));
2844 }
2845 
2846 static long
aiocb32_fetch_error(struct aiocb * ujob)2847 aiocb32_fetch_error(struct aiocb *ujob)
2848 {
2849 	struct aiocb32 *ujob32;
2850 
2851 	ujob32 = (struct aiocb32 *)ujob;
2852 	return (fuword32(&ujob32->_aiocb_private.error));
2853 }
2854 
2855 static int
aiocb32_store_status(struct aiocb * ujob,long status)2856 aiocb32_store_status(struct aiocb *ujob, long status)
2857 {
2858 	struct aiocb32 *ujob32;
2859 
2860 	ujob32 = (struct aiocb32 *)ujob;
2861 	return (suword32(&ujob32->_aiocb_private.status, status));
2862 }
2863 
2864 static int
aiocb32_store_error(struct aiocb * ujob,long error)2865 aiocb32_store_error(struct aiocb *ujob, long error)
2866 {
2867 	struct aiocb32 *ujob32;
2868 
2869 	ujob32 = (struct aiocb32 *)ujob;
2870 	return (suword32(&ujob32->_aiocb_private.error, error));
2871 }
2872 
2873 static int
aiocb32_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)2874 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2875 {
2876 
2877 	return (suword32(ujobp, (long)ujob));
2878 }
2879 
2880 static struct aiocb_ops aiocb32_ops = {
2881 	.aio_copyin = aiocb32_copyin,
2882 	.fetch_status = aiocb32_fetch_status,
2883 	.fetch_error = aiocb32_fetch_error,
2884 	.store_status = aiocb32_store_status,
2885 	.store_error = aiocb32_store_error,
2886 	.store_aiocb = aiocb32_store_aiocb,
2887 };
2888 
2889 #ifdef COMPAT_FREEBSD6
2890 static struct aiocb_ops aiocb32_ops_osigevent = {
2891 	.aio_copyin = aiocb32_copyin_old_sigevent,
2892 	.fetch_status = aiocb32_fetch_status,
2893 	.fetch_error = aiocb32_fetch_error,
2894 	.store_status = aiocb32_store_status,
2895 	.store_error = aiocb32_store_error,
2896 	.store_aiocb = aiocb32_store_aiocb,
2897 };
2898 #endif
2899 
2900 int
freebsd32_aio_return(struct thread * td,struct freebsd32_aio_return_args * uap)2901 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2902 {
2903 
2904 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2905 }
2906 
2907 int
freebsd32_aio_suspend(struct thread * td,struct freebsd32_aio_suspend_args * uap)2908 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2909 {
2910 	struct timespec32 ts32;
2911 	struct timespec ts, *tsp;
2912 	struct aiocb **ujoblist;
2913 	uint32_t *ujoblist32;
2914 	int error, i;
2915 
2916 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2917 		return (EINVAL);
2918 
2919 	if (uap->timeout) {
2920 		/* Get timespec struct. */
2921 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2922 			return (error);
2923 		CP(ts32, ts, tv_sec);
2924 		CP(ts32, ts, tv_nsec);
2925 		tsp = &ts;
2926 	} else
2927 		tsp = NULL;
2928 
2929 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2930 	ujoblist32 = (uint32_t *)ujoblist;
2931 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2932 	    sizeof(ujoblist32[0]));
2933 	if (error == 0) {
2934 		for (i = uap->nent - 1; i >= 0; i--)
2935 			ujoblist[i] = PTRIN(ujoblist32[i]);
2936 
2937 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2938 	}
2939 	free(ujoblist, M_AIO);
2940 	return (error);
2941 }
2942 
2943 int
freebsd32_aio_error(struct thread * td,struct freebsd32_aio_error_args * uap)2944 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2945 {
2946 
2947 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2948 }
2949 
2950 #ifdef COMPAT_FREEBSD6
2951 int
freebsd6_freebsd32_aio_read(struct thread * td,struct freebsd6_freebsd32_aio_read_args * uap)2952 freebsd6_freebsd32_aio_read(struct thread *td,
2953     struct freebsd6_freebsd32_aio_read_args *uap)
2954 {
2955 
2956 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2957 	    &aiocb32_ops_osigevent));
2958 }
2959 #endif
2960 
2961 int
freebsd32_aio_read(struct thread * td,struct freebsd32_aio_read_args * uap)2962 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2963 {
2964 
2965 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2966 	    &aiocb32_ops));
2967 }
2968 
2969 int
freebsd32_aio_readv(struct thread * td,struct freebsd32_aio_readv_args * uap)2970 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
2971 {
2972 
2973 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
2974 	    &aiocb32_ops));
2975 }
2976 
2977 #ifdef COMPAT_FREEBSD6
2978 int
freebsd6_freebsd32_aio_write(struct thread * td,struct freebsd6_freebsd32_aio_write_args * uap)2979 freebsd6_freebsd32_aio_write(struct thread *td,
2980     struct freebsd6_freebsd32_aio_write_args *uap)
2981 {
2982 
2983 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2984 	    &aiocb32_ops_osigevent));
2985 }
2986 #endif
2987 
2988 int
freebsd32_aio_write(struct thread * td,struct freebsd32_aio_write_args * uap)2989 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2990 {
2991 
2992 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2993 	    &aiocb32_ops));
2994 }
2995 
2996 int
freebsd32_aio_writev(struct thread * td,struct freebsd32_aio_writev_args * uap)2997 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
2998 {
2999 
3000 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
3001 	    &aiocb32_ops));
3002 }
3003 
3004 int
freebsd32_aio_mlock(struct thread * td,struct freebsd32_aio_mlock_args * uap)3005 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
3006 {
3007 
3008 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
3009 	    &aiocb32_ops));
3010 }
3011 
3012 int
freebsd32_aio_waitcomplete(struct thread * td,struct freebsd32_aio_waitcomplete_args * uap)3013 freebsd32_aio_waitcomplete(struct thread *td,
3014     struct freebsd32_aio_waitcomplete_args *uap)
3015 {
3016 	struct timespec32 ts32;
3017 	struct timespec ts, *tsp;
3018 	int error;
3019 
3020 	if (uap->timeout) {
3021 		/* Get timespec struct. */
3022 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3023 		if (error)
3024 			return (error);
3025 		CP(ts32, ts, tv_sec);
3026 		CP(ts32, ts, tv_nsec);
3027 		tsp = &ts;
3028 	} else
3029 		tsp = NULL;
3030 
3031 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3032 	    &aiocb32_ops));
3033 }
3034 
3035 int
freebsd32_aio_fsync(struct thread * td,struct freebsd32_aio_fsync_args * uap)3036 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3037 {
3038 
3039 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3040 	    &aiocb32_ops));
3041 }
3042 
3043 #ifdef COMPAT_FREEBSD6
3044 int
freebsd6_freebsd32_lio_listio(struct thread * td,struct freebsd6_freebsd32_lio_listio_args * uap)3045 freebsd6_freebsd32_lio_listio(struct thread *td,
3046     struct freebsd6_freebsd32_lio_listio_args *uap)
3047 {
3048 	struct aiocb **acb_list;
3049 	struct sigevent *sigp, sig;
3050 	struct osigevent32 osig;
3051 	uint32_t *acb_list32;
3052 	int error, i, nent;
3053 
3054 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3055 		return (EINVAL);
3056 
3057 	nent = uap->nent;
3058 	if (nent < 0 || nent > max_aio_queue_per_proc)
3059 		return (EINVAL);
3060 
3061 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3062 		error = copyin(uap->sig, &osig, sizeof(osig));
3063 		if (error)
3064 			return (error);
3065 		error = convert_old_sigevent32(&osig, &sig);
3066 		if (error)
3067 			return (error);
3068 		sigp = &sig;
3069 	} else
3070 		sigp = NULL;
3071 
3072 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3073 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3074 	if (error) {
3075 		free(acb_list32, M_LIO);
3076 		return (error);
3077 	}
3078 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3079 	for (i = 0; i < nent; i++)
3080 		acb_list[i] = PTRIN(acb_list32[i]);
3081 	free(acb_list32, M_LIO);
3082 
3083 	error = kern_lio_listio(td, uap->mode,
3084 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3085 	    &aiocb32_ops_osigevent);
3086 	free(acb_list, M_LIO);
3087 	return (error);
3088 }
3089 #endif
3090 
3091 int
freebsd32_lio_listio(struct thread * td,struct freebsd32_lio_listio_args * uap)3092 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3093 {
3094 	struct aiocb **acb_list;
3095 	struct sigevent *sigp, sig;
3096 	struct sigevent32 sig32;
3097 	uint32_t *acb_list32;
3098 	int error, i, nent;
3099 
3100 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3101 		return (EINVAL);
3102 
3103 	nent = uap->nent;
3104 	if (nent < 0 || nent > max_aio_queue_per_proc)
3105 		return (EINVAL);
3106 
3107 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3108 		error = copyin(uap->sig, &sig32, sizeof(sig32));
3109 		if (error)
3110 			return (error);
3111 		error = convert_sigevent32(&sig32, &sig);
3112 		if (error)
3113 			return (error);
3114 		sigp = &sig;
3115 	} else
3116 		sigp = NULL;
3117 
3118 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3119 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3120 	if (error) {
3121 		free(acb_list32, M_LIO);
3122 		return (error);
3123 	}
3124 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3125 	for (i = 0; i < nent; i++)
3126 		acb_list[i] = PTRIN(acb_list32[i]);
3127 	free(acb_list32, M_LIO);
3128 
3129 	error = kern_lio_listio(td, uap->mode,
3130 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3131 	    &aiocb32_ops);
3132 	free(acb_list, M_LIO);
3133 	return (error);
3134 }
3135 
3136 #endif
3137