1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include "opt_capsicum.h"
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40
41 #include <sys/systm.h>
42 #include <sys/capsicum.h>
43 #include <sys/conf.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/filio.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/limits.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/namei.h>
56 #include <sys/selinfo.h>
57 #include <sys/poll.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/protosw.h>
61 #include <sys/racct.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sbuf.h>
64 #include <sys/signalvar.h>
65 #include <sys/kdb.h>
66 #include <sys/smr.h>
67 #include <sys/stat.h>
68 #include <sys/sx.h>
69 #include <sys/syscallsubr.h>
70 #include <sys/sysctl.h>
71 #include <sys/sysproto.h>
72 #include <sys/unistd.h>
73 #include <sys/user.h>
74 #include <sys/vnode.h>
75 #include <sys/ktrace.h>
76
77 #include <net/vnet.h>
78
79 #include <security/audit/audit.h>
80
81 #include <vm/uma.h>
82 #include <vm/vm.h>
83
84 #include <ddb/ddb.h>
85
86 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table");
87 static MALLOC_DEFINE(M_PWD, "pwd", "Descriptor table vnodes");
88 static MALLOC_DEFINE(M_PWDDESC, "pwddesc", "Pwd descriptors");
89 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader",
90 "file desc to leader structures");
91 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
92 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities");
93
94 MALLOC_DECLARE(M_FADVISE);
95
96 static __read_mostly uma_zone_t file_zone;
97 static __read_mostly uma_zone_t filedesc0_zone;
98 __read_mostly uma_zone_t pwd_zone;
99 VFS_SMR_DECLARE;
100
101 static int closefp(struct filedesc *fdp, int fd, struct file *fp,
102 struct thread *td, bool holdleaders, bool audit);
103 static void export_file_to_kinfo(struct file *fp, int fd,
104 cap_rights_t *rightsp, struct kinfo_file *kif,
105 struct filedesc *fdp, int flags);
106 static int fd_first_free(struct filedesc *fdp, int low, int size);
107 static void fdgrowtable(struct filedesc *fdp, int nfd);
108 static void fdgrowtable_exp(struct filedesc *fdp, int nfd);
109 static void fdunused(struct filedesc *fdp, int fd);
110 static void fdused(struct filedesc *fdp, int fd);
111 static int fget_unlocked_seq(struct thread *td, int fd,
112 cap_rights_t *needrightsp, struct file **fpp, seqc_t *seqp);
113 static int getmaxfd(struct thread *td);
114 static u_long *filecaps_copy_prep(const struct filecaps *src);
115 static void filecaps_copy_finish(const struct filecaps *src,
116 struct filecaps *dst, u_long *ioctls);
117 static u_long *filecaps_free_prep(struct filecaps *fcaps);
118 static void filecaps_free_finish(u_long *ioctls);
119
120 static struct pwd *pwd_alloc(void);
121
122 /*
123 * Each process has:
124 *
125 * - An array of open file descriptors (fd_ofiles)
126 * - An array of file flags (fd_ofileflags)
127 * - A bitmap recording which descriptors are in use (fd_map)
128 *
129 * A process starts out with NDFILE descriptors. The value of NDFILE has
130 * been selected based the historical limit of 20 open files, and an
131 * assumption that the majority of processes, especially short-lived
132 * processes like shells, will never need more.
133 *
134 * If this initial allocation is exhausted, a larger descriptor table and
135 * map are allocated dynamically, and the pointers in the process's struct
136 * filedesc are updated to point to those. This is repeated every time
137 * the process runs out of file descriptors (provided it hasn't hit its
138 * resource limit).
139 *
140 * Since threads may hold references to individual descriptor table
141 * entries, the tables are never freed. Instead, they are placed on a
142 * linked list and freed only when the struct filedesc is released.
143 */
144 #define NDFILE 20
145 #define NDSLOTSIZE sizeof(NDSLOTTYPE)
146 #define NDENTRIES (NDSLOTSIZE * __CHAR_BIT)
147 #define NDSLOT(x) ((x) / NDENTRIES)
148 #define NDBIT(x) ((NDSLOTTYPE)1 << ((x) % NDENTRIES))
149 #define NDSLOTS(x) (((x) + NDENTRIES - 1) / NDENTRIES)
150
151 #define FILEDESC_FOREACH_FDE(fdp, _iterator, _fde) \
152 struct filedesc *_fdp = (fdp); \
153 int _lastfile = fdlastfile_single(_fdp); \
154 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
155 if ((_fde = &_fdp->fd_ofiles[_iterator])->fde_file != NULL)
156
157 #define FILEDESC_FOREACH_FP(fdp, _iterator, _fp) \
158 struct filedesc *_fdp = (fdp); \
159 int _lastfile = fdlastfile_single(_fdp); \
160 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
161 if ((_fp = _fdp->fd_ofiles[_iterator].fde_file) != NULL)
162
163 /*
164 * SLIST entry used to keep track of ofiles which must be reclaimed when
165 * the process exits.
166 */
167 struct freetable {
168 struct fdescenttbl *ft_table;
169 SLIST_ENTRY(freetable) ft_next;
170 };
171
172 /*
173 * Initial allocation: a filedesc structure + the head of SLIST used to
174 * keep track of old ofiles + enough space for NDFILE descriptors.
175 */
176
177 struct fdescenttbl0 {
178 int fdt_nfiles;
179 struct filedescent fdt_ofiles[NDFILE];
180 };
181
182 struct filedesc0 {
183 struct filedesc fd_fd;
184 SLIST_HEAD(, freetable) fd_free;
185 struct fdescenttbl0 fd_dfiles;
186 NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)];
187 };
188
189 /*
190 * Descriptor management.
191 */
192 static int __exclusive_cache_line openfiles; /* actual number of open files */
193 struct mtx sigio_lock; /* mtx to protect pointers to sigio */
194 void __read_mostly (*mq_fdclose)(struct thread *td, int fd, struct file *fp);
195
196 /*
197 * If low >= size, just return low. Otherwise find the first zero bit in the
198 * given bitmap, starting at low and not exceeding size - 1. Return size if
199 * not found.
200 */
201 static int
fd_first_free(struct filedesc * fdp,int low,int size)202 fd_first_free(struct filedesc *fdp, int low, int size)
203 {
204 NDSLOTTYPE *map = fdp->fd_map;
205 NDSLOTTYPE mask;
206 int off, maxoff;
207
208 if (low >= size)
209 return (low);
210
211 off = NDSLOT(low);
212 if (low % NDENTRIES) {
213 mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES)));
214 if ((mask &= ~map[off]) != 0UL)
215 return (off * NDENTRIES + ffsl(mask) - 1);
216 ++off;
217 }
218 for (maxoff = NDSLOTS(size); off < maxoff; ++off)
219 if (map[off] != ~0UL)
220 return (off * NDENTRIES + ffsl(~map[off]) - 1);
221 return (size);
222 }
223
224 /*
225 * Find the last used fd.
226 *
227 * Call this variant if fdp can't be modified by anyone else (e.g, during exec).
228 * Otherwise use fdlastfile.
229 */
230 int
fdlastfile_single(struct filedesc * fdp)231 fdlastfile_single(struct filedesc *fdp)
232 {
233 NDSLOTTYPE *map = fdp->fd_map;
234 int off, minoff;
235
236 off = NDSLOT(fdp->fd_nfiles - 1);
237 for (minoff = NDSLOT(0); off >= minoff; --off)
238 if (map[off] != 0)
239 return (off * NDENTRIES + flsl(map[off]) - 1);
240 return (-1);
241 }
242
243 int
fdlastfile(struct filedesc * fdp)244 fdlastfile(struct filedesc *fdp)
245 {
246
247 FILEDESC_LOCK_ASSERT(fdp);
248 return (fdlastfile_single(fdp));
249 }
250
251 static int
fdisused(struct filedesc * fdp,int fd)252 fdisused(struct filedesc *fdp, int fd)
253 {
254
255 KASSERT(fd >= 0 && fd < fdp->fd_nfiles,
256 ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles));
257
258 return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0);
259 }
260
261 /*
262 * Mark a file descriptor as used.
263 */
264 static void
fdused_init(struct filedesc * fdp,int fd)265 fdused_init(struct filedesc *fdp, int fd)
266 {
267
268 KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd));
269
270 fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd);
271 }
272
273 static void
fdused(struct filedesc * fdp,int fd)274 fdused(struct filedesc *fdp, int fd)
275 {
276
277 FILEDESC_XLOCK_ASSERT(fdp);
278
279 fdused_init(fdp, fd);
280 if (fd == fdp->fd_freefile)
281 fdp->fd_freefile++;
282 }
283
284 /*
285 * Mark a file descriptor as unused.
286 */
287 static void
fdunused(struct filedesc * fdp,int fd)288 fdunused(struct filedesc *fdp, int fd)
289 {
290
291 FILEDESC_XLOCK_ASSERT(fdp);
292
293 KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd));
294 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
295 ("fd=%d is still in use", fd));
296
297 fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd);
298 if (fd < fdp->fd_freefile)
299 fdp->fd_freefile = fd;
300 }
301
302 /*
303 * Free a file descriptor.
304 *
305 * Avoid some work if fdp is about to be destroyed.
306 */
307 static inline void
fdefree_last(struct filedescent * fde)308 fdefree_last(struct filedescent *fde)
309 {
310
311 filecaps_free(&fde->fde_caps);
312 }
313
314 static inline void
fdfree(struct filedesc * fdp,int fd)315 fdfree(struct filedesc *fdp, int fd)
316 {
317 struct filedescent *fde;
318
319 FILEDESC_XLOCK_ASSERT(fdp);
320 fde = &fdp->fd_ofiles[fd];
321 #ifdef CAPABILITIES
322 seqc_write_begin(&fde->fde_seqc);
323 #endif
324 fde->fde_file = NULL;
325 #ifdef CAPABILITIES
326 seqc_write_end(&fde->fde_seqc);
327 #endif
328 fdefree_last(fde);
329 fdunused(fdp, fd);
330 }
331
332 /*
333 * System calls on descriptors.
334 */
335 #ifndef _SYS_SYSPROTO_H_
336 struct getdtablesize_args {
337 int dummy;
338 };
339 #endif
340 /* ARGSUSED */
341 int
sys_getdtablesize(struct thread * td,struct getdtablesize_args * uap)342 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap)
343 {
344 #ifdef RACCT
345 uint64_t lim;
346 #endif
347
348 td->td_retval[0] = getmaxfd(td);
349 #ifdef RACCT
350 PROC_LOCK(td->td_proc);
351 lim = racct_get_limit(td->td_proc, RACCT_NOFILE);
352 PROC_UNLOCK(td->td_proc);
353 if (lim < td->td_retval[0])
354 td->td_retval[0] = lim;
355 #endif
356 return (0);
357 }
358
359 /*
360 * Duplicate a file descriptor to a particular value.
361 *
362 * Note: keep in mind that a potential race condition exists when closing
363 * descriptors from a shared descriptor table (via rfork).
364 */
365 #ifndef _SYS_SYSPROTO_H_
366 struct dup2_args {
367 u_int from;
368 u_int to;
369 };
370 #endif
371 /* ARGSUSED */
372 int
sys_dup2(struct thread * td,struct dup2_args * uap)373 sys_dup2(struct thread *td, struct dup2_args *uap)
374 {
375
376 return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to));
377 }
378
379 /*
380 * Duplicate a file descriptor.
381 */
382 #ifndef _SYS_SYSPROTO_H_
383 struct dup_args {
384 u_int fd;
385 };
386 #endif
387 /* ARGSUSED */
388 int
sys_dup(struct thread * td,struct dup_args * uap)389 sys_dup(struct thread *td, struct dup_args *uap)
390 {
391
392 return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0));
393 }
394
395 /*
396 * The file control system call.
397 */
398 #ifndef _SYS_SYSPROTO_H_
399 struct fcntl_args {
400 int fd;
401 int cmd;
402 long arg;
403 };
404 #endif
405 /* ARGSUSED */
406 int
sys_fcntl(struct thread * td,struct fcntl_args * uap)407 sys_fcntl(struct thread *td, struct fcntl_args *uap)
408 {
409
410 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg));
411 }
412
413 int
kern_fcntl_freebsd(struct thread * td,int fd,int cmd,intptr_t arg)414 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, intptr_t arg)
415 {
416 struct flock fl;
417 struct __oflock ofl;
418 intptr_t arg1;
419 int error, newcmd;
420
421 error = 0;
422 newcmd = cmd;
423 switch (cmd) {
424 case F_OGETLK:
425 case F_OSETLK:
426 case F_OSETLKW:
427 /*
428 * Convert old flock structure to new.
429 */
430 error = copyin((void *)arg, &ofl, sizeof(ofl));
431 fl.l_start = ofl.l_start;
432 fl.l_len = ofl.l_len;
433 fl.l_pid = ofl.l_pid;
434 fl.l_type = ofl.l_type;
435 fl.l_whence = ofl.l_whence;
436 fl.l_sysid = 0;
437
438 switch (cmd) {
439 case F_OGETLK:
440 newcmd = F_GETLK;
441 break;
442 case F_OSETLK:
443 newcmd = F_SETLK;
444 break;
445 case F_OSETLKW:
446 newcmd = F_SETLKW;
447 break;
448 }
449 arg1 = (intptr_t)&fl;
450 break;
451 case F_GETLK:
452 case F_SETLK:
453 case F_SETLKW:
454 case F_SETLK_REMOTE:
455 error = copyin((void *)arg, &fl, sizeof(fl));
456 arg1 = (intptr_t)&fl;
457 break;
458 default:
459 arg1 = arg;
460 break;
461 }
462 if (error)
463 return (error);
464 error = kern_fcntl(td, fd, newcmd, arg1);
465 if (error)
466 return (error);
467 if (cmd == F_OGETLK) {
468 ofl.l_start = fl.l_start;
469 ofl.l_len = fl.l_len;
470 ofl.l_pid = fl.l_pid;
471 ofl.l_type = fl.l_type;
472 ofl.l_whence = fl.l_whence;
473 error = copyout(&ofl, (void *)arg, sizeof(ofl));
474 } else if (cmd == F_GETLK) {
475 error = copyout(&fl, (void *)arg, sizeof(fl));
476 }
477 return (error);
478 }
479
480 int
kern_fcntl(struct thread * td,int fd,int cmd,intptr_t arg)481 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg)
482 {
483 struct filedesc *fdp;
484 struct flock *flp;
485 struct file *fp, *fp2;
486 struct filedescent *fde;
487 struct proc *p;
488 struct vnode *vp;
489 struct mount *mp;
490 struct kinfo_file *kif;
491 int error, flg, kif_sz, seals, tmp, got_set, got_cleared;
492 uint64_t bsize;
493 off_t foffset;
494
495 error = 0;
496 flg = F_POSIX;
497 p = td->td_proc;
498 fdp = p->p_fd;
499
500 AUDIT_ARG_FD(cmd);
501 AUDIT_ARG_CMD(cmd);
502 switch (cmd) {
503 case F_DUPFD:
504 tmp = arg;
505 error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp);
506 break;
507
508 case F_DUPFD_CLOEXEC:
509 tmp = arg;
510 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp);
511 break;
512
513 case F_DUP2FD:
514 tmp = arg;
515 error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp);
516 break;
517
518 case F_DUP2FD_CLOEXEC:
519 tmp = arg;
520 error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp);
521 break;
522
523 case F_GETFD:
524 error = EBADF;
525 FILEDESC_SLOCK(fdp);
526 fde = fdeget_noref(fdp, fd);
527 if (fde != NULL) {
528 td->td_retval[0] =
529 (fde->fde_flags & UF_EXCLOSE) ? FD_CLOEXEC : 0;
530 error = 0;
531 }
532 FILEDESC_SUNLOCK(fdp);
533 break;
534
535 case F_SETFD:
536 error = EBADF;
537 FILEDESC_XLOCK(fdp);
538 fde = fdeget_noref(fdp, fd);
539 if (fde != NULL) {
540 fde->fde_flags = (fde->fde_flags & ~UF_EXCLOSE) |
541 (arg & FD_CLOEXEC ? UF_EXCLOSE : 0);
542 error = 0;
543 }
544 FILEDESC_XUNLOCK(fdp);
545 break;
546
547 case F_GETFL:
548 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp);
549 if (error != 0)
550 break;
551 td->td_retval[0] = OFLAGS(fp->f_flag);
552 fdrop(fp, td);
553 break;
554
555 case F_SETFL:
556 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp);
557 if (error != 0)
558 break;
559 if (fp->f_ops == &path_fileops) {
560 fdrop(fp, td);
561 error = EBADF;
562 break;
563 }
564 do {
565 tmp = flg = fp->f_flag;
566 tmp &= ~FCNTLFLAGS;
567 tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS;
568 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
569 got_set = tmp & ~flg;
570 got_cleared = flg & ~tmp;
571 tmp = fp->f_flag & FNONBLOCK;
572 error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
573 if (error != 0)
574 goto revert_f_setfl;
575 tmp = fp->f_flag & FASYNC;
576 error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td);
577 if (error == 0) {
578 fdrop(fp, td);
579 break;
580 }
581 atomic_clear_int(&fp->f_flag, FNONBLOCK);
582 tmp = 0;
583 (void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
584 revert_f_setfl:
585 do {
586 tmp = flg = fp->f_flag;
587 tmp &= ~FCNTLFLAGS;
588 tmp |= got_cleared;
589 tmp &= ~got_set;
590 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
591 fdrop(fp, td);
592 break;
593
594 case F_GETOWN:
595 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp);
596 if (error != 0)
597 break;
598 error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td);
599 if (error == 0)
600 td->td_retval[0] = tmp;
601 fdrop(fp, td);
602 break;
603
604 case F_SETOWN:
605 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp);
606 if (error != 0)
607 break;
608 tmp = arg;
609 error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td);
610 fdrop(fp, td);
611 break;
612
613 case F_SETLK_REMOTE:
614 error = priv_check(td, PRIV_NFS_LOCKD);
615 if (error != 0)
616 return (error);
617 flg = F_REMOTE;
618 goto do_setlk;
619
620 case F_SETLKW:
621 flg |= F_WAIT;
622 /* FALLTHROUGH F_SETLK */
623
624 case F_SETLK:
625 do_setlk:
626 flp = (struct flock *)arg;
627 if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) {
628 error = EINVAL;
629 break;
630 }
631
632 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
633 if (error != 0)
634 break;
635 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
636 error = EBADF;
637 fdrop(fp, td);
638 break;
639 }
640
641 if (flp->l_whence == SEEK_CUR) {
642 foffset = foffset_get(fp);
643 if (foffset < 0 ||
644 (flp->l_start > 0 &&
645 foffset > OFF_MAX - flp->l_start)) {
646 error = EOVERFLOW;
647 fdrop(fp, td);
648 break;
649 }
650 flp->l_start += foffset;
651 }
652
653 vp = fp->f_vnode;
654 switch (flp->l_type) {
655 case F_RDLCK:
656 if ((fp->f_flag & FREAD) == 0) {
657 error = EBADF;
658 break;
659 }
660 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
661 PROC_LOCK(p->p_leader);
662 p->p_leader->p_flag |= P_ADVLOCK;
663 PROC_UNLOCK(p->p_leader);
664 }
665 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
666 flp, flg);
667 break;
668 case F_WRLCK:
669 if ((fp->f_flag & FWRITE) == 0) {
670 error = EBADF;
671 break;
672 }
673 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
674 PROC_LOCK(p->p_leader);
675 p->p_leader->p_flag |= P_ADVLOCK;
676 PROC_UNLOCK(p->p_leader);
677 }
678 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
679 flp, flg);
680 break;
681 case F_UNLCK:
682 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
683 flp, flg);
684 break;
685 case F_UNLCKSYS:
686 if (flg != F_REMOTE) {
687 error = EINVAL;
688 break;
689 }
690 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
691 F_UNLCKSYS, flp, flg);
692 break;
693 default:
694 error = EINVAL;
695 break;
696 }
697 if (error != 0 || flp->l_type == F_UNLCK ||
698 flp->l_type == F_UNLCKSYS) {
699 fdrop(fp, td);
700 break;
701 }
702
703 /*
704 * Check for a race with close.
705 *
706 * The vnode is now advisory locked (or unlocked, but this case
707 * is not really important) as the caller requested.
708 * We had to drop the filedesc lock, so we need to recheck if
709 * the descriptor is still valid, because if it was closed
710 * in the meantime we need to remove advisory lock from the
711 * vnode - close on any descriptor leading to an advisory
712 * locked vnode, removes that lock.
713 * We will return 0 on purpose in that case, as the result of
714 * successful advisory lock might have been externally visible
715 * already. This is fine - effectively we pretend to the caller
716 * that the closing thread was a bit slower and that the
717 * advisory lock succeeded before the close.
718 */
719 error = fget_unlocked(td, fd, &cap_no_rights, &fp2);
720 if (error != 0) {
721 fdrop(fp, td);
722 break;
723 }
724 if (fp != fp2) {
725 flp->l_whence = SEEK_SET;
726 flp->l_start = 0;
727 flp->l_len = 0;
728 flp->l_type = F_UNLCK;
729 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
730 F_UNLCK, flp, F_POSIX);
731 }
732 fdrop(fp, td);
733 fdrop(fp2, td);
734 break;
735
736 case F_GETLK:
737 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
738 if (error != 0)
739 break;
740 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
741 error = EBADF;
742 fdrop(fp, td);
743 break;
744 }
745 flp = (struct flock *)arg;
746 if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK &&
747 flp->l_type != F_UNLCK) {
748 error = EINVAL;
749 fdrop(fp, td);
750 break;
751 }
752 if (flp->l_whence == SEEK_CUR) {
753 foffset = foffset_get(fp);
754 if ((flp->l_start > 0 &&
755 foffset > OFF_MAX - flp->l_start) ||
756 (flp->l_start < 0 &&
757 foffset < OFF_MIN - flp->l_start)) {
758 error = EOVERFLOW;
759 fdrop(fp, td);
760 break;
761 }
762 flp->l_start += foffset;
763 }
764 vp = fp->f_vnode;
765 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp,
766 F_POSIX);
767 fdrop(fp, td);
768 break;
769
770 case F_ADD_SEALS:
771 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
772 if (error != 0)
773 break;
774 error = fo_add_seals(fp, arg);
775 fdrop(fp, td);
776 break;
777
778 case F_GET_SEALS:
779 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
780 if (error != 0)
781 break;
782 if (fo_get_seals(fp, &seals) == 0)
783 td->td_retval[0] = seals;
784 else
785 error = EINVAL;
786 fdrop(fp, td);
787 break;
788
789 case F_RDAHEAD:
790 arg = arg ? 128 * 1024: 0;
791 /* FALLTHROUGH */
792 case F_READAHEAD:
793 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
794 if (error != 0)
795 break;
796 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
797 fdrop(fp, td);
798 error = EBADF;
799 break;
800 }
801 vp = fp->f_vnode;
802 if (vp->v_type != VREG) {
803 fdrop(fp, td);
804 error = ENOTTY;
805 break;
806 }
807
808 /*
809 * Exclusive lock synchronizes against f_seqcount reads and
810 * writes in sequential_heuristic().
811 */
812 error = vn_lock(vp, LK_EXCLUSIVE);
813 if (error != 0) {
814 fdrop(fp, td);
815 break;
816 }
817 if (arg >= 0) {
818 bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize;
819 arg = MIN(arg, INT_MAX - bsize + 1);
820 fp->f_seqcount[UIO_READ] = MIN(IO_SEQMAX,
821 (arg + bsize - 1) / bsize);
822 atomic_set_int(&fp->f_flag, FRDAHEAD);
823 } else {
824 atomic_clear_int(&fp->f_flag, FRDAHEAD);
825 }
826 VOP_UNLOCK(vp);
827 fdrop(fp, td);
828 break;
829
830 case F_ISUNIONSTACK:
831 /*
832 * Check if the vnode is part of a union stack (either the
833 * "union" flag from mount(2) or unionfs).
834 *
835 * Prior to introduction of this op libc's readdir would call
836 * fstatfs(2), in effect unnecessarily copying kilobytes of
837 * data just to check fs name and a mount flag.
838 *
839 * Fixing the code to handle everything in the kernel instead
840 * is a non-trivial endeavor and has low priority, thus this
841 * horrible kludge facilitates the current behavior in a much
842 * cheaper manner until someone(tm) sorts this out.
843 */
844 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
845 if (error != 0)
846 break;
847 if (fp->f_type != DTYPE_VNODE) {
848 fdrop(fp, td);
849 error = EBADF;
850 break;
851 }
852 vp = fp->f_vnode;
853 /*
854 * Since we don't prevent dooming the vnode even non-null mp
855 * found can become immediately stale. This is tolerable since
856 * mount points are type-stable (providing safe memory access)
857 * and any vfs op on this vnode going forward will return an
858 * error (meaning return value in this case is meaningless).
859 */
860 mp = atomic_load_ptr(&vp->v_mount);
861 if (__predict_false(mp == NULL)) {
862 fdrop(fp, td);
863 error = EBADF;
864 break;
865 }
866 td->td_retval[0] = 0;
867 if (mp->mnt_kern_flag & MNTK_UNIONFS ||
868 mp->mnt_flag & MNT_UNION)
869 td->td_retval[0] = 1;
870 fdrop(fp, td);
871 break;
872
873 case F_KINFO:
874 #ifdef CAPABILITY_MODE
875 if (CAP_TRACING(td))
876 ktrcapfail(CAPFAIL_SYSCALL, &cmd);
877 if (IN_CAPABILITY_MODE(td)) {
878 error = ECAPMODE;
879 break;
880 }
881 #endif
882 error = copyin((void *)arg, &kif_sz, sizeof(kif_sz));
883 if (error != 0)
884 break;
885 if (kif_sz != sizeof(*kif)) {
886 error = EINVAL;
887 break;
888 }
889 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK | M_ZERO);
890 FILEDESC_SLOCK(fdp);
891 error = fget_cap_noref(fdp, fd, &cap_fcntl_rights, &fp, NULL);
892 if (error == 0 && fhold(fp)) {
893 export_file_to_kinfo(fp, fd, NULL, kif, fdp, 0);
894 FILEDESC_SUNLOCK(fdp);
895 fdrop(fp, td);
896 if ((kif->kf_status & KF_ATTR_VALID) != 0) {
897 kif->kf_structsize = sizeof(*kif);
898 error = copyout(kif, (void *)arg, sizeof(*kif));
899 } else {
900 error = EBADF;
901 }
902 } else {
903 FILEDESC_SUNLOCK(fdp);
904 if (error == 0)
905 error = EBADF;
906 }
907 free(kif, M_TEMP);
908 break;
909
910 default:
911 error = EINVAL;
912 break;
913 }
914 return (error);
915 }
916
917 static int
getmaxfd(struct thread * td)918 getmaxfd(struct thread *td)
919 {
920
921 return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc));
922 }
923
924 /*
925 * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD).
926 */
927 int
kern_dup(struct thread * td,u_int mode,int flags,int old,int new)928 kern_dup(struct thread *td, u_int mode, int flags, int old, int new)
929 {
930 struct filedesc *fdp;
931 struct filedescent *oldfde, *newfde;
932 struct proc *p;
933 struct file *delfp, *oldfp;
934 u_long *oioctls, *nioctls;
935 int error, maxfd;
936
937 p = td->td_proc;
938 fdp = p->p_fd;
939 oioctls = NULL;
940
941 MPASS((flags & ~(FDDUP_FLAG_CLOEXEC)) == 0);
942 MPASS(mode < FDDUP_LASTMODE);
943
944 AUDIT_ARG_FD(old);
945 /* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */
946
947 /*
948 * Verify we have a valid descriptor to dup from and possibly to
949 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should
950 * return EINVAL when the new descriptor is out of bounds.
951 */
952 if (old < 0)
953 return (EBADF);
954 if (new < 0)
955 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
956 maxfd = getmaxfd(td);
957 if (new >= maxfd)
958 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
959
960 error = EBADF;
961 FILEDESC_XLOCK(fdp);
962 if (fget_noref(fdp, old) == NULL)
963 goto unlock;
964 if (mode == FDDUP_FIXED && old == new) {
965 td->td_retval[0] = new;
966 if (flags & FDDUP_FLAG_CLOEXEC)
967 fdp->fd_ofiles[new].fde_flags |= UF_EXCLOSE;
968 error = 0;
969 goto unlock;
970 }
971
972 oldfde = &fdp->fd_ofiles[old];
973 oldfp = oldfde->fde_file;
974 if (!fhold(oldfp))
975 goto unlock;
976
977 /*
978 * If the caller specified a file descriptor, make sure the file
979 * table is large enough to hold it, and grab it. Otherwise, just
980 * allocate a new descriptor the usual way.
981 */
982 switch (mode) {
983 case FDDUP_NORMAL:
984 case FDDUP_FCNTL:
985 if ((error = fdalloc(td, new, &new)) != 0) {
986 fdrop(oldfp, td);
987 goto unlock;
988 }
989 break;
990 case FDDUP_FIXED:
991 if (new >= fdp->fd_nfiles) {
992 /*
993 * The resource limits are here instead of e.g.
994 * fdalloc(), because the file descriptor table may be
995 * shared between processes, so we can't really use
996 * racct_add()/racct_sub(). Instead of counting the
997 * number of actually allocated descriptors, just put
998 * the limit on the size of the file descriptor table.
999 */
1000 #ifdef RACCT
1001 if (RACCT_ENABLED()) {
1002 error = racct_set_unlocked(p, RACCT_NOFILE, new + 1);
1003 if (error != 0) {
1004 error = EMFILE;
1005 fdrop(oldfp, td);
1006 goto unlock;
1007 }
1008 }
1009 #endif
1010 fdgrowtable_exp(fdp, new + 1);
1011 }
1012 if (!fdisused(fdp, new))
1013 fdused(fdp, new);
1014 break;
1015 default:
1016 KASSERT(0, ("%s unsupported mode %d", __func__, mode));
1017 }
1018
1019 KASSERT(old != new, ("new fd is same as old"));
1020
1021 /* Refetch oldfde because the table may have grown and old one freed. */
1022 oldfde = &fdp->fd_ofiles[old];
1023 KASSERT(oldfp == oldfde->fde_file,
1024 ("fdt_ofiles shift from growth observed at fd %d",
1025 old));
1026
1027 newfde = &fdp->fd_ofiles[new];
1028 delfp = newfde->fde_file;
1029
1030 nioctls = filecaps_copy_prep(&oldfde->fde_caps);
1031
1032 /*
1033 * Duplicate the source descriptor.
1034 */
1035 #ifdef CAPABILITIES
1036 seqc_write_begin(&newfde->fde_seqc);
1037 #endif
1038 oioctls = filecaps_free_prep(&newfde->fde_caps);
1039 fde_copy(oldfde, newfde);
1040 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
1041 nioctls);
1042 if ((flags & FDDUP_FLAG_CLOEXEC) != 0)
1043 newfde->fde_flags = oldfde->fde_flags | UF_EXCLOSE;
1044 else
1045 newfde->fde_flags = oldfde->fde_flags & ~UF_EXCLOSE;
1046 #ifdef CAPABILITIES
1047 seqc_write_end(&newfde->fde_seqc);
1048 #endif
1049 td->td_retval[0] = new;
1050
1051 error = 0;
1052
1053 if (delfp != NULL) {
1054 (void) closefp(fdp, new, delfp, td, true, false);
1055 FILEDESC_UNLOCK_ASSERT(fdp);
1056 } else {
1057 unlock:
1058 FILEDESC_XUNLOCK(fdp);
1059 }
1060
1061 filecaps_free_finish(oioctls);
1062 return (error);
1063 }
1064
1065 static void
sigiofree(struct sigio * sigio)1066 sigiofree(struct sigio *sigio)
1067 {
1068 crfree(sigio->sio_ucred);
1069 free(sigio, M_SIGIO);
1070 }
1071
1072 static struct sigio *
funsetown_locked(struct sigio * sigio)1073 funsetown_locked(struct sigio *sigio)
1074 {
1075 struct proc *p;
1076 struct pgrp *pg;
1077
1078 SIGIO_ASSERT_LOCKED();
1079
1080 if (sigio == NULL)
1081 return (NULL);
1082 *sigio->sio_myref = NULL;
1083 if (sigio->sio_pgid < 0) {
1084 pg = sigio->sio_pgrp;
1085 PGRP_LOCK(pg);
1086 SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, sio_pgsigio);
1087 PGRP_UNLOCK(pg);
1088 } else {
1089 p = sigio->sio_proc;
1090 PROC_LOCK(p);
1091 SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
1092 PROC_UNLOCK(p);
1093 }
1094 return (sigio);
1095 }
1096
1097 /*
1098 * If sigio is on the list associated with a process or process group,
1099 * disable signalling from the device, remove sigio from the list and
1100 * free sigio.
1101 */
1102 void
funsetown(struct sigio ** sigiop)1103 funsetown(struct sigio **sigiop)
1104 {
1105 struct sigio *sigio;
1106
1107 /* Racy check, consumers must provide synchronization. */
1108 if (*sigiop == NULL)
1109 return;
1110
1111 SIGIO_LOCK();
1112 sigio = funsetown_locked(*sigiop);
1113 SIGIO_UNLOCK();
1114 if (sigio != NULL)
1115 sigiofree(sigio);
1116 }
1117
1118 /*
1119 * Free a list of sigio structures. The caller must ensure that new sigio
1120 * structures cannot be added after this point. For process groups this is
1121 * guaranteed using the proctree lock; for processes, the P_WEXIT flag serves
1122 * as an interlock.
1123 */
1124 void
funsetownlst(struct sigiolst * sigiolst)1125 funsetownlst(struct sigiolst *sigiolst)
1126 {
1127 struct proc *p;
1128 struct pgrp *pg;
1129 struct sigio *sigio, *tmp;
1130
1131 /* Racy check. */
1132 sigio = SLIST_FIRST(sigiolst);
1133 if (sigio == NULL)
1134 return;
1135
1136 p = NULL;
1137 pg = NULL;
1138
1139 SIGIO_LOCK();
1140 sigio = SLIST_FIRST(sigiolst);
1141 if (sigio == NULL) {
1142 SIGIO_UNLOCK();
1143 return;
1144 }
1145
1146 /*
1147 * Every entry of the list should belong to a single proc or pgrp.
1148 */
1149 if (sigio->sio_pgid < 0) {
1150 pg = sigio->sio_pgrp;
1151 sx_assert(&proctree_lock, SX_XLOCKED);
1152 PGRP_LOCK(pg);
1153 } else /* if (sigio->sio_pgid > 0) */ {
1154 p = sigio->sio_proc;
1155 PROC_LOCK(p);
1156 KASSERT((p->p_flag & P_WEXIT) != 0,
1157 ("%s: process %p is not exiting", __func__, p));
1158 }
1159
1160 SLIST_FOREACH(sigio, sigiolst, sio_pgsigio) {
1161 *sigio->sio_myref = NULL;
1162 if (pg != NULL) {
1163 KASSERT(sigio->sio_pgid < 0,
1164 ("Proc sigio in pgrp sigio list"));
1165 KASSERT(sigio->sio_pgrp == pg,
1166 ("Bogus pgrp in sigio list"));
1167 } else /* if (p != NULL) */ {
1168 KASSERT(sigio->sio_pgid > 0,
1169 ("Pgrp sigio in proc sigio list"));
1170 KASSERT(sigio->sio_proc == p,
1171 ("Bogus proc in sigio list"));
1172 }
1173 }
1174
1175 if (pg != NULL)
1176 PGRP_UNLOCK(pg);
1177 else
1178 PROC_UNLOCK(p);
1179 SIGIO_UNLOCK();
1180
1181 SLIST_FOREACH_SAFE(sigio, sigiolst, sio_pgsigio, tmp)
1182 sigiofree(sigio);
1183 }
1184
1185 /*
1186 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
1187 *
1188 * After permission checking, add a sigio structure to the sigio list for
1189 * the process or process group.
1190 */
1191 int
fsetown(pid_t pgid,struct sigio ** sigiop)1192 fsetown(pid_t pgid, struct sigio **sigiop)
1193 {
1194 struct proc *proc;
1195 struct pgrp *pgrp;
1196 struct sigio *osigio, *sigio;
1197 int ret;
1198
1199 if (pgid == 0) {
1200 funsetown(sigiop);
1201 return (0);
1202 }
1203
1204 sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
1205 sigio->sio_pgid = pgid;
1206 sigio->sio_ucred = crhold(curthread->td_ucred);
1207 sigio->sio_myref = sigiop;
1208
1209 ret = 0;
1210 if (pgid > 0) {
1211 ret = pget(pgid, PGET_NOTWEXIT | PGET_NOTID | PGET_HOLD, &proc);
1212 SIGIO_LOCK();
1213 osigio = funsetown_locked(*sigiop);
1214 if (ret == 0) {
1215 PROC_LOCK(proc);
1216 _PRELE(proc);
1217 if ((proc->p_flag & P_WEXIT) != 0) {
1218 ret = ESRCH;
1219 } else if (proc->p_session !=
1220 curthread->td_proc->p_session) {
1221 /*
1222 * Policy - Don't allow a process to FSETOWN a
1223 * process in another session.
1224 *
1225 * Remove this test to allow maximum flexibility
1226 * or restrict FSETOWN to the current process or
1227 * process group for maximum safety.
1228 */
1229 ret = EPERM;
1230 } else {
1231 sigio->sio_proc = proc;
1232 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio,
1233 sio_pgsigio);
1234 }
1235 PROC_UNLOCK(proc);
1236 }
1237 } else /* if (pgid < 0) */ {
1238 sx_slock(&proctree_lock);
1239 SIGIO_LOCK();
1240 osigio = funsetown_locked(*sigiop);
1241 pgrp = pgfind(-pgid);
1242 if (pgrp == NULL) {
1243 ret = ESRCH;
1244 } else {
1245 if (pgrp->pg_session != curthread->td_proc->p_session) {
1246 /*
1247 * Policy - Don't allow a process to FSETOWN a
1248 * process in another session.
1249 *
1250 * Remove this test to allow maximum flexibility
1251 * or restrict FSETOWN to the current process or
1252 * process group for maximum safety.
1253 */
1254 ret = EPERM;
1255 } else {
1256 sigio->sio_pgrp = pgrp;
1257 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio,
1258 sio_pgsigio);
1259 }
1260 PGRP_UNLOCK(pgrp);
1261 }
1262 sx_sunlock(&proctree_lock);
1263 }
1264 if (ret == 0)
1265 *sigiop = sigio;
1266 SIGIO_UNLOCK();
1267 if (osigio != NULL)
1268 sigiofree(osigio);
1269 return (ret);
1270 }
1271
1272 /*
1273 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
1274 */
1275 pid_t
fgetown(struct sigio ** sigiop)1276 fgetown(struct sigio **sigiop)
1277 {
1278 pid_t pgid;
1279
1280 SIGIO_LOCK();
1281 pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0;
1282 SIGIO_UNLOCK();
1283 return (pgid);
1284 }
1285
1286 static int
closefp_impl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool audit)1287 closefp_impl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1288 bool audit)
1289 {
1290 int error;
1291
1292 FILEDESC_XLOCK_ASSERT(fdp);
1293
1294 /*
1295 * We now hold the fp reference that used to be owned by the
1296 * descriptor array. We have to unlock the FILEDESC *AFTER*
1297 * knote_fdclose to prevent a race of the fd getting opened, a knote
1298 * added, and deleteing a knote for the new fd.
1299 */
1300 if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist)))
1301 knote_fdclose(td, fd);
1302
1303 /*
1304 * We need to notify mqueue if the object is of type mqueue.
1305 */
1306 if (__predict_false(fp->f_type == DTYPE_MQUEUE))
1307 mq_fdclose(td, fd, fp);
1308 FILEDESC_XUNLOCK(fdp);
1309
1310 #ifdef AUDIT
1311 if (AUDITING_TD(td) && audit)
1312 audit_sysclose(td, fd, fp);
1313 #endif
1314 error = closef(fp, td);
1315
1316 /*
1317 * All paths leading up to closefp() will have already removed or
1318 * replaced the fd in the filedesc table, so a restart would not
1319 * operate on the same file.
1320 */
1321 if (error == ERESTART)
1322 error = EINTR;
1323
1324 return (error);
1325 }
1326
1327 static int
closefp_hl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1328 closefp_hl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1329 bool holdleaders, bool audit)
1330 {
1331 int error;
1332
1333 FILEDESC_XLOCK_ASSERT(fdp);
1334
1335 if (holdleaders) {
1336 if (td->td_proc->p_fdtol != NULL) {
1337 /*
1338 * Ask fdfree() to sleep to ensure that all relevant
1339 * process leaders can be traversed in closef().
1340 */
1341 fdp->fd_holdleaderscount++;
1342 } else {
1343 holdleaders = false;
1344 }
1345 }
1346
1347 error = closefp_impl(fdp, fd, fp, td, audit);
1348 if (holdleaders) {
1349 FILEDESC_XLOCK(fdp);
1350 fdp->fd_holdleaderscount--;
1351 if (fdp->fd_holdleaderscount == 0 &&
1352 fdp->fd_holdleaderswakeup != 0) {
1353 fdp->fd_holdleaderswakeup = 0;
1354 wakeup(&fdp->fd_holdleaderscount);
1355 }
1356 FILEDESC_XUNLOCK(fdp);
1357 }
1358 return (error);
1359 }
1360
1361 static int
closefp(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1362 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1363 bool holdleaders, bool audit)
1364 {
1365
1366 FILEDESC_XLOCK_ASSERT(fdp);
1367
1368 if (__predict_false(td->td_proc->p_fdtol != NULL)) {
1369 return (closefp_hl(fdp, fd, fp, td, holdleaders, audit));
1370 } else {
1371 return (closefp_impl(fdp, fd, fp, td, audit));
1372 }
1373 }
1374
1375 /*
1376 * Close a file descriptor.
1377 */
1378 #ifndef _SYS_SYSPROTO_H_
1379 struct close_args {
1380 int fd;
1381 };
1382 #endif
1383 /* ARGSUSED */
1384 int
sys_close(struct thread * td,struct close_args * uap)1385 sys_close(struct thread *td, struct close_args *uap)
1386 {
1387
1388 return (kern_close(td, uap->fd));
1389 }
1390
1391 int
kern_close(struct thread * td,int fd)1392 kern_close(struct thread *td, int fd)
1393 {
1394 struct filedesc *fdp;
1395 struct file *fp;
1396
1397 fdp = td->td_proc->p_fd;
1398
1399 FILEDESC_XLOCK(fdp);
1400 if ((fp = fget_noref(fdp, fd)) == NULL) {
1401 FILEDESC_XUNLOCK(fdp);
1402 return (EBADF);
1403 }
1404 fdfree(fdp, fd);
1405
1406 /* closefp() drops the FILEDESC lock for us. */
1407 return (closefp(fdp, fd, fp, td, true, true));
1408 }
1409
1410 static int
close_range_cloexec(struct thread * td,u_int lowfd,u_int highfd)1411 close_range_cloexec(struct thread *td, u_int lowfd, u_int highfd)
1412 {
1413 struct filedesc *fdp;
1414 struct fdescenttbl *fdt;
1415 struct filedescent *fde;
1416 int fd;
1417
1418 fdp = td->td_proc->p_fd;
1419 FILEDESC_XLOCK(fdp);
1420 fdt = atomic_load_ptr(&fdp->fd_files);
1421 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1422 fd = lowfd;
1423 if (__predict_false(fd > highfd)) {
1424 goto out_locked;
1425 }
1426 for (; fd <= highfd; fd++) {
1427 fde = &fdt->fdt_ofiles[fd];
1428 if (fde->fde_file != NULL)
1429 fde->fde_flags |= UF_EXCLOSE;
1430 }
1431 out_locked:
1432 FILEDESC_XUNLOCK(fdp);
1433 return (0);
1434 }
1435
1436 static int
close_range_impl(struct thread * td,u_int lowfd,u_int highfd)1437 close_range_impl(struct thread *td, u_int lowfd, u_int highfd)
1438 {
1439 struct filedesc *fdp;
1440 const struct fdescenttbl *fdt;
1441 struct file *fp;
1442 int fd;
1443
1444 fdp = td->td_proc->p_fd;
1445 FILEDESC_XLOCK(fdp);
1446 fdt = atomic_load_ptr(&fdp->fd_files);
1447 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1448 fd = lowfd;
1449 if (__predict_false(fd > highfd)) {
1450 goto out_locked;
1451 }
1452 for (;;) {
1453 fp = fdt->fdt_ofiles[fd].fde_file;
1454 if (fp == NULL) {
1455 if (fd == highfd)
1456 goto out_locked;
1457 } else {
1458 fdfree(fdp, fd);
1459 (void) closefp(fdp, fd, fp, td, true, true);
1460 if (fd == highfd)
1461 goto out_unlocked;
1462 FILEDESC_XLOCK(fdp);
1463 fdt = atomic_load_ptr(&fdp->fd_files);
1464 }
1465 fd++;
1466 }
1467 out_locked:
1468 FILEDESC_XUNLOCK(fdp);
1469 out_unlocked:
1470 return (0);
1471 }
1472
1473 int
kern_close_range(struct thread * td,int flags,u_int lowfd,u_int highfd)1474 kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd)
1475 {
1476
1477 /*
1478 * Check this prior to clamping; closefrom(3) with only fd 0, 1, and 2
1479 * open should not be a usage error. From a close_range() perspective,
1480 * close_range(3, ~0U, 0) in the same scenario should also likely not
1481 * be a usage error as all fd above 3 are in-fact already closed.
1482 */
1483 if (highfd < lowfd) {
1484 return (EINVAL);
1485 }
1486
1487 if ((flags & CLOSE_RANGE_CLOEXEC) != 0)
1488 return (close_range_cloexec(td, lowfd, highfd));
1489
1490 return (close_range_impl(td, lowfd, highfd));
1491 }
1492
1493 #ifndef _SYS_SYSPROTO_H_
1494 struct close_range_args {
1495 u_int lowfd;
1496 u_int highfd;
1497 int flags;
1498 };
1499 #endif
1500 int
sys_close_range(struct thread * td,struct close_range_args * uap)1501 sys_close_range(struct thread *td, struct close_range_args *uap)
1502 {
1503
1504 AUDIT_ARG_FD(uap->lowfd);
1505 AUDIT_ARG_CMD(uap->highfd);
1506 AUDIT_ARG_FFLAGS(uap->flags);
1507
1508 if ((uap->flags & ~(CLOSE_RANGE_CLOEXEC)) != 0)
1509 return (EINVAL);
1510 return (kern_close_range(td, uap->flags, uap->lowfd, uap->highfd));
1511 }
1512
1513 #ifdef COMPAT_FREEBSD12
1514 /*
1515 * Close open file descriptors.
1516 */
1517 #ifndef _SYS_SYSPROTO_H_
1518 struct freebsd12_closefrom_args {
1519 int lowfd;
1520 };
1521 #endif
1522 /* ARGSUSED */
1523 int
freebsd12_closefrom(struct thread * td,struct freebsd12_closefrom_args * uap)1524 freebsd12_closefrom(struct thread *td, struct freebsd12_closefrom_args *uap)
1525 {
1526 u_int lowfd;
1527
1528 AUDIT_ARG_FD(uap->lowfd);
1529
1530 /*
1531 * Treat negative starting file descriptor values identical to
1532 * closefrom(0) which closes all files.
1533 */
1534 lowfd = MAX(0, uap->lowfd);
1535 return (kern_close_range(td, 0, lowfd, ~0U));
1536 }
1537 #endif /* COMPAT_FREEBSD12 */
1538
1539 #if defined(COMPAT_43)
1540 /*
1541 * Return status information about a file descriptor.
1542 */
1543 #ifndef _SYS_SYSPROTO_H_
1544 struct ofstat_args {
1545 int fd;
1546 struct ostat *sb;
1547 };
1548 #endif
1549 /* ARGSUSED */
1550 int
ofstat(struct thread * td,struct ofstat_args * uap)1551 ofstat(struct thread *td, struct ofstat_args *uap)
1552 {
1553 struct ostat oub;
1554 struct stat ub;
1555 int error;
1556
1557 error = kern_fstat(td, uap->fd, &ub);
1558 if (error == 0) {
1559 cvtstat(&ub, &oub);
1560 error = copyout(&oub, uap->sb, sizeof(oub));
1561 }
1562 return (error);
1563 }
1564 #endif /* COMPAT_43 */
1565
1566 #if defined(COMPAT_FREEBSD11)
1567 int
freebsd11_fstat(struct thread * td,struct freebsd11_fstat_args * uap)1568 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap)
1569 {
1570 struct stat sb;
1571 struct freebsd11_stat osb;
1572 int error;
1573
1574 error = kern_fstat(td, uap->fd, &sb);
1575 if (error != 0)
1576 return (error);
1577 error = freebsd11_cvtstat(&sb, &osb);
1578 if (error == 0)
1579 error = copyout(&osb, uap->sb, sizeof(osb));
1580 return (error);
1581 }
1582 #endif /* COMPAT_FREEBSD11 */
1583
1584 /*
1585 * Return status information about a file descriptor.
1586 */
1587 #ifndef _SYS_SYSPROTO_H_
1588 struct fstat_args {
1589 int fd;
1590 struct stat *sb;
1591 };
1592 #endif
1593 /* ARGSUSED */
1594 int
sys_fstat(struct thread * td,struct fstat_args * uap)1595 sys_fstat(struct thread *td, struct fstat_args *uap)
1596 {
1597 struct stat ub;
1598 int error;
1599
1600 error = kern_fstat(td, uap->fd, &ub);
1601 if (error == 0)
1602 error = copyout(&ub, uap->sb, sizeof(ub));
1603 return (error);
1604 }
1605
1606 int
kern_fstat(struct thread * td,int fd,struct stat * sbp)1607 kern_fstat(struct thread *td, int fd, struct stat *sbp)
1608 {
1609 struct file *fp;
1610 int error;
1611
1612 AUDIT_ARG_FD(fd);
1613
1614 error = fget(td, fd, &cap_fstat_rights, &fp);
1615 if (__predict_false(error != 0))
1616 return (error);
1617
1618 AUDIT_ARG_FILE(td->td_proc, fp);
1619
1620 sbp->st_filerev = 0;
1621 sbp->st_bsdflags = 0;
1622 error = fo_stat(fp, sbp, td->td_ucred);
1623 fdrop(fp, td);
1624 #ifdef __STAT_TIME_T_EXT
1625 sbp->st_atim_ext = 0;
1626 sbp->st_mtim_ext = 0;
1627 sbp->st_ctim_ext = 0;
1628 sbp->st_btim_ext = 0;
1629 #endif
1630 #ifdef KTRACE
1631 if (KTRPOINT(td, KTR_STRUCT))
1632 ktrstat_error(sbp, error);
1633 #endif
1634 return (error);
1635 }
1636
1637 #if defined(COMPAT_FREEBSD11)
1638 /*
1639 * Return status information about a file descriptor.
1640 */
1641 #ifndef _SYS_SYSPROTO_H_
1642 struct freebsd11_nfstat_args {
1643 int fd;
1644 struct nstat *sb;
1645 };
1646 #endif
1647 /* ARGSUSED */
1648 int
freebsd11_nfstat(struct thread * td,struct freebsd11_nfstat_args * uap)1649 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap)
1650 {
1651 struct nstat nub;
1652 struct stat ub;
1653 int error;
1654
1655 error = kern_fstat(td, uap->fd, &ub);
1656 if (error != 0)
1657 return (error);
1658 error = freebsd11_cvtnstat(&ub, &nub);
1659 if (error != 0)
1660 error = copyout(&nub, uap->sb, sizeof(nub));
1661 return (error);
1662 }
1663 #endif /* COMPAT_FREEBSD11 */
1664
1665 /*
1666 * Return pathconf information about a file descriptor.
1667 */
1668 #ifndef _SYS_SYSPROTO_H_
1669 struct fpathconf_args {
1670 int fd;
1671 int name;
1672 };
1673 #endif
1674 /* ARGSUSED */
1675 int
sys_fpathconf(struct thread * td,struct fpathconf_args * uap)1676 sys_fpathconf(struct thread *td, struct fpathconf_args *uap)
1677 {
1678 long value;
1679 int error;
1680
1681 error = kern_fpathconf(td, uap->fd, uap->name, &value);
1682 if (error == 0)
1683 td->td_retval[0] = value;
1684 return (error);
1685 }
1686
1687 int
kern_fpathconf(struct thread * td,int fd,int name,long * valuep)1688 kern_fpathconf(struct thread *td, int fd, int name, long *valuep)
1689 {
1690 struct file *fp;
1691 struct vnode *vp;
1692 int error;
1693
1694 error = fget(td, fd, &cap_fpathconf_rights, &fp);
1695 if (error != 0)
1696 return (error);
1697
1698 if (name == _PC_ASYNC_IO) {
1699 *valuep = _POSIX_ASYNCHRONOUS_IO;
1700 goto out;
1701 }
1702 vp = fp->f_vnode;
1703 if (vp != NULL) {
1704 vn_lock(vp, LK_SHARED | LK_RETRY);
1705 error = VOP_PATHCONF(vp, name, valuep);
1706 VOP_UNLOCK(vp);
1707 } else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) {
1708 if (name != _PC_PIPE_BUF) {
1709 error = EINVAL;
1710 } else {
1711 *valuep = PIPE_BUF;
1712 error = 0;
1713 }
1714 } else {
1715 error = EOPNOTSUPP;
1716 }
1717 out:
1718 fdrop(fp, td);
1719 return (error);
1720 }
1721
1722 /*
1723 * Copy filecaps structure allocating memory for ioctls array if needed.
1724 *
1725 * The last parameter indicates whether the fdtable is locked. If it is not and
1726 * ioctls are encountered, copying fails and the caller must lock the table.
1727 *
1728 * Note that if the table was not locked, the caller has to check the relevant
1729 * sequence counter to determine whether the operation was successful.
1730 */
1731 bool
filecaps_copy(const struct filecaps * src,struct filecaps * dst,bool locked)1732 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked)
1733 {
1734 size_t size;
1735
1736 if (src->fc_ioctls != NULL && !locked)
1737 return (false);
1738 memcpy(dst, src, sizeof(*src));
1739 if (src->fc_ioctls == NULL)
1740 return (true);
1741
1742 KASSERT(src->fc_nioctls > 0,
1743 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1744
1745 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1746 dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1747 memcpy(dst->fc_ioctls, src->fc_ioctls, size);
1748 return (true);
1749 }
1750
1751 static u_long *
filecaps_copy_prep(const struct filecaps * src)1752 filecaps_copy_prep(const struct filecaps *src)
1753 {
1754 u_long *ioctls;
1755 size_t size;
1756
1757 if (__predict_true(src->fc_ioctls == NULL))
1758 return (NULL);
1759
1760 KASSERT(src->fc_nioctls > 0,
1761 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1762
1763 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1764 ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1765 return (ioctls);
1766 }
1767
1768 static void
filecaps_copy_finish(const struct filecaps * src,struct filecaps * dst,u_long * ioctls)1769 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst,
1770 u_long *ioctls)
1771 {
1772 size_t size;
1773
1774 *dst = *src;
1775 if (__predict_true(src->fc_ioctls == NULL)) {
1776 MPASS(ioctls == NULL);
1777 return;
1778 }
1779
1780 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1781 dst->fc_ioctls = ioctls;
1782 bcopy(src->fc_ioctls, dst->fc_ioctls, size);
1783 }
1784
1785 /*
1786 * Move filecaps structure to the new place and clear the old place.
1787 */
1788 void
filecaps_move(struct filecaps * src,struct filecaps * dst)1789 filecaps_move(struct filecaps *src, struct filecaps *dst)
1790 {
1791
1792 *dst = *src;
1793 bzero(src, sizeof(*src));
1794 }
1795
1796 /*
1797 * Fill the given filecaps structure with full rights.
1798 */
1799 static void
filecaps_fill(struct filecaps * fcaps)1800 filecaps_fill(struct filecaps *fcaps)
1801 {
1802
1803 CAP_ALL(&fcaps->fc_rights);
1804 fcaps->fc_ioctls = NULL;
1805 fcaps->fc_nioctls = -1;
1806 fcaps->fc_fcntls = CAP_FCNTL_ALL;
1807 }
1808
1809 /*
1810 * Free memory allocated within filecaps structure.
1811 */
1812 static void
filecaps_free_ioctl(struct filecaps * fcaps)1813 filecaps_free_ioctl(struct filecaps *fcaps)
1814 {
1815
1816 free(fcaps->fc_ioctls, M_FILECAPS);
1817 fcaps->fc_ioctls = NULL;
1818 }
1819
1820 void
filecaps_free(struct filecaps * fcaps)1821 filecaps_free(struct filecaps *fcaps)
1822 {
1823
1824 filecaps_free_ioctl(fcaps);
1825 bzero(fcaps, sizeof(*fcaps));
1826 }
1827
1828 static u_long *
filecaps_free_prep(struct filecaps * fcaps)1829 filecaps_free_prep(struct filecaps *fcaps)
1830 {
1831 u_long *ioctls;
1832
1833 ioctls = fcaps->fc_ioctls;
1834 bzero(fcaps, sizeof(*fcaps));
1835 return (ioctls);
1836 }
1837
1838 static void
filecaps_free_finish(u_long * ioctls)1839 filecaps_free_finish(u_long *ioctls)
1840 {
1841
1842 free(ioctls, M_FILECAPS);
1843 }
1844
1845 /*
1846 * Validate the given filecaps structure.
1847 */
1848 static void
filecaps_validate(const struct filecaps * fcaps,const char * func)1849 filecaps_validate(const struct filecaps *fcaps, const char *func)
1850 {
1851
1852 KASSERT(cap_rights_is_valid(&fcaps->fc_rights),
1853 ("%s: invalid rights", func));
1854 KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0,
1855 ("%s: invalid fcntls", func));
1856 KASSERT(fcaps->fc_fcntls == 0 ||
1857 cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL),
1858 ("%s: fcntls without CAP_FCNTL", func));
1859 /*
1860 * open calls without WANTIOCTLCAPS free caps but leave the counter
1861 */
1862 #if 0
1863 KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 :
1864 (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0),
1865 ("%s: invalid ioctls", func));
1866 #endif
1867 KASSERT(fcaps->fc_nioctls == 0 ||
1868 cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL),
1869 ("%s: ioctls without CAP_IOCTL", func));
1870 }
1871
1872 static void
fdgrowtable_exp(struct filedesc * fdp,int nfd)1873 fdgrowtable_exp(struct filedesc *fdp, int nfd)
1874 {
1875 int nfd1;
1876
1877 FILEDESC_XLOCK_ASSERT(fdp);
1878
1879 nfd1 = fdp->fd_nfiles * 2;
1880 if (nfd1 < nfd)
1881 nfd1 = nfd;
1882 fdgrowtable(fdp, nfd1);
1883 }
1884
1885 /*
1886 * Grow the file table to accommodate (at least) nfd descriptors.
1887 */
1888 static void
fdgrowtable(struct filedesc * fdp,int nfd)1889 fdgrowtable(struct filedesc *fdp, int nfd)
1890 {
1891 struct filedesc0 *fdp0;
1892 struct freetable *ft;
1893 struct fdescenttbl *ntable;
1894 struct fdescenttbl *otable;
1895 int nnfiles, onfiles;
1896 NDSLOTTYPE *nmap, *omap;
1897
1898 KASSERT(fdp->fd_nfiles > 0, ("zero-length file table"));
1899
1900 /* save old values */
1901 onfiles = fdp->fd_nfiles;
1902 otable = fdp->fd_files;
1903 omap = fdp->fd_map;
1904
1905 /* compute the size of the new table */
1906 nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */
1907 if (nnfiles <= onfiles)
1908 /* the table is already large enough */
1909 return;
1910
1911 /*
1912 * Allocate a new table. We need enough space for the number of
1913 * entries, file entries themselves and the struct freetable we will use
1914 * when we decommission the table and place it on the freelist.
1915 * We place the struct freetable in the middle so we don't have
1916 * to worry about padding.
1917 */
1918 ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) +
1919 nnfiles * sizeof(ntable->fdt_ofiles[0]) +
1920 sizeof(struct freetable),
1921 M_FILEDESC, M_ZERO | M_WAITOK);
1922 /* copy the old data */
1923 ntable->fdt_nfiles = nnfiles;
1924 memcpy(ntable->fdt_ofiles, otable->fdt_ofiles,
1925 onfiles * sizeof(ntable->fdt_ofiles[0]));
1926
1927 /*
1928 * Allocate a new map only if the old is not large enough. It will
1929 * grow at a slower rate than the table as it can map more
1930 * entries than the table can hold.
1931 */
1932 if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) {
1933 nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC,
1934 M_ZERO | M_WAITOK);
1935 /* copy over the old data and update the pointer */
1936 memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap));
1937 fdp->fd_map = nmap;
1938 }
1939
1940 /*
1941 * Make sure that ntable is correctly initialized before we replace
1942 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent
1943 * data.
1944 */
1945 atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable);
1946
1947 /*
1948 * Free the old file table when not shared by other threads or processes.
1949 * The old file table is considered to be shared when either are true:
1950 * - The process has more than one thread.
1951 * - The file descriptor table has been shared via fdshare().
1952 *
1953 * When shared, the old file table will be placed on a freelist
1954 * which will be processed when the struct filedesc is released.
1955 *
1956 * Note that if onfiles == NDFILE, we're dealing with the original
1957 * static allocation contained within (struct filedesc0 *)fdp,
1958 * which must not be freed.
1959 */
1960 if (onfiles > NDFILE) {
1961 /*
1962 * Note we may be called here from fdinit while allocating a
1963 * table for a new process in which case ->p_fd points
1964 * elsewhere.
1965 */
1966 if (curproc->p_fd != fdp || FILEDESC_IS_ONLY_USER(fdp)) {
1967 free(otable, M_FILEDESC);
1968 } else {
1969 ft = (struct freetable *)&otable->fdt_ofiles[onfiles];
1970 fdp0 = (struct filedesc0 *)fdp;
1971 ft->ft_table = otable;
1972 SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next);
1973 }
1974 }
1975 /*
1976 * The map does not have the same possibility of threads still
1977 * holding references to it. So always free it as long as it
1978 * does not reference the original static allocation.
1979 */
1980 if (NDSLOTS(onfiles) > NDSLOTS(NDFILE))
1981 free(omap, M_FILEDESC);
1982 }
1983
1984 /*
1985 * Allocate a file descriptor for the process.
1986 */
1987 int
fdalloc(struct thread * td,int minfd,int * result)1988 fdalloc(struct thread *td, int minfd, int *result)
1989 {
1990 struct proc *p = td->td_proc;
1991 struct filedesc *fdp = p->p_fd;
1992 int fd, maxfd, allocfd;
1993 #ifdef RACCT
1994 int error;
1995 #endif
1996
1997 FILEDESC_XLOCK_ASSERT(fdp);
1998
1999 if (fdp->fd_freefile > minfd)
2000 minfd = fdp->fd_freefile;
2001
2002 maxfd = getmaxfd(td);
2003
2004 /*
2005 * Search the bitmap for a free descriptor starting at minfd.
2006 * If none is found, grow the file table.
2007 */
2008 fd = fd_first_free(fdp, minfd, fdp->fd_nfiles);
2009 if (__predict_false(fd >= maxfd))
2010 return (EMFILE);
2011 if (__predict_false(fd >= fdp->fd_nfiles)) {
2012 allocfd = min(fd * 2, maxfd);
2013 #ifdef RACCT
2014 if (RACCT_ENABLED()) {
2015 error = racct_set_unlocked(p, RACCT_NOFILE, allocfd);
2016 if (error != 0)
2017 return (EMFILE);
2018 }
2019 #endif
2020 /*
2021 * fd is already equal to first free descriptor >= minfd, so
2022 * we only need to grow the table and we are done.
2023 */
2024 fdgrowtable_exp(fdp, allocfd);
2025 }
2026
2027 /*
2028 * Perform some sanity checks, then mark the file descriptor as
2029 * used and return it to the caller.
2030 */
2031 KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles),
2032 ("invalid descriptor %d", fd));
2033 KASSERT(!fdisused(fdp, fd),
2034 ("fd_first_free() returned non-free descriptor"));
2035 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
2036 ("file descriptor isn't free"));
2037 fdused(fdp, fd);
2038 *result = fd;
2039 return (0);
2040 }
2041
2042 /*
2043 * Allocate n file descriptors for the process.
2044 */
2045 int
fdallocn(struct thread * td,int minfd,int * fds,int n)2046 fdallocn(struct thread *td, int minfd, int *fds, int n)
2047 {
2048 struct proc *p = td->td_proc;
2049 struct filedesc *fdp = p->p_fd;
2050 int i;
2051
2052 FILEDESC_XLOCK_ASSERT(fdp);
2053
2054 for (i = 0; i < n; i++)
2055 if (fdalloc(td, 0, &fds[i]) != 0)
2056 break;
2057
2058 if (i < n) {
2059 for (i--; i >= 0; i--)
2060 fdunused(fdp, fds[i]);
2061 return (EMFILE);
2062 }
2063
2064 return (0);
2065 }
2066
2067 /*
2068 * Create a new open file structure and allocate a file descriptor for the
2069 * process that refers to it. We add one reference to the file for the
2070 * descriptor table and one reference for resultfp. This is to prevent us
2071 * being preempted and the entry in the descriptor table closed after we
2072 * release the FILEDESC lock.
2073 */
2074 int
falloc_caps(struct thread * td,struct file ** resultfp,int * resultfd,int flags,struct filecaps * fcaps)2075 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags,
2076 struct filecaps *fcaps)
2077 {
2078 struct file *fp;
2079 int error, fd;
2080
2081 MPASS(resultfp != NULL);
2082 MPASS(resultfd != NULL);
2083
2084 error = _falloc_noinstall(td, &fp, 2);
2085 if (__predict_false(error != 0)) {
2086 return (error);
2087 }
2088
2089 error = finstall_refed(td, fp, &fd, flags, fcaps);
2090 if (__predict_false(error != 0)) {
2091 falloc_abort(td, fp);
2092 return (error);
2093 }
2094
2095 *resultfp = fp;
2096 *resultfd = fd;
2097
2098 return (0);
2099 }
2100
2101 /*
2102 * Create a new open file structure without allocating a file descriptor.
2103 */
2104 int
_falloc_noinstall(struct thread * td,struct file ** resultfp,u_int n)2105 _falloc_noinstall(struct thread *td, struct file **resultfp, u_int n)
2106 {
2107 struct file *fp;
2108 int maxuserfiles = maxfiles - (maxfiles / 20);
2109 int openfiles_new;
2110 static struct timeval lastfail;
2111 static int curfail;
2112
2113 KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__));
2114 MPASS(n > 0);
2115
2116 openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1;
2117 if ((openfiles_new >= maxuserfiles &&
2118 priv_check(td, PRIV_MAXFILES) != 0) ||
2119 openfiles_new >= maxfiles) {
2120 atomic_subtract_int(&openfiles, 1);
2121 if (ppsratecheck(&lastfail, &curfail, 1)) {
2122 printf("kern.maxfiles limit exceeded by uid %i, (%s) "
2123 "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm);
2124 }
2125 return (ENFILE);
2126 }
2127 fp = uma_zalloc(file_zone, M_WAITOK);
2128 bzero(fp, sizeof(*fp));
2129 refcount_init(&fp->f_count, n);
2130 fp->f_cred = crhold(td->td_ucred);
2131 fp->f_ops = &badfileops;
2132 *resultfp = fp;
2133 return (0);
2134 }
2135
2136 void
falloc_abort(struct thread * td,struct file * fp)2137 falloc_abort(struct thread *td, struct file *fp)
2138 {
2139
2140 /*
2141 * For assertion purposes.
2142 */
2143 refcount_init(&fp->f_count, 0);
2144 _fdrop(fp, td);
2145 }
2146
2147 /*
2148 * Install a file in a file descriptor table.
2149 */
2150 void
_finstall(struct filedesc * fdp,struct file * fp,int fd,int flags,struct filecaps * fcaps)2151 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags,
2152 struct filecaps *fcaps)
2153 {
2154 struct filedescent *fde;
2155
2156 MPASS(fp != NULL);
2157 if (fcaps != NULL)
2158 filecaps_validate(fcaps, __func__);
2159 FILEDESC_XLOCK_ASSERT(fdp);
2160
2161 fde = &fdp->fd_ofiles[fd];
2162 #ifdef CAPABILITIES
2163 seqc_write_begin(&fde->fde_seqc);
2164 #endif
2165 fde->fde_file = fp;
2166 fde->fde_flags = (flags & O_CLOEXEC) != 0 ? UF_EXCLOSE : 0;
2167 if (fcaps != NULL)
2168 filecaps_move(fcaps, &fde->fde_caps);
2169 else
2170 filecaps_fill(&fde->fde_caps);
2171 #ifdef CAPABILITIES
2172 seqc_write_end(&fde->fde_seqc);
2173 #endif
2174 }
2175
2176 int
finstall_refed(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2177 finstall_refed(struct thread *td, struct file *fp, int *fd, int flags,
2178 struct filecaps *fcaps)
2179 {
2180 struct filedesc *fdp = td->td_proc->p_fd;
2181 int error;
2182
2183 MPASS(fd != NULL);
2184
2185 FILEDESC_XLOCK(fdp);
2186 error = fdalloc(td, 0, fd);
2187 if (__predict_true(error == 0)) {
2188 _finstall(fdp, fp, *fd, flags, fcaps);
2189 }
2190 FILEDESC_XUNLOCK(fdp);
2191 return (error);
2192 }
2193
2194 int
finstall(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2195 finstall(struct thread *td, struct file *fp, int *fd, int flags,
2196 struct filecaps *fcaps)
2197 {
2198 int error;
2199
2200 MPASS(fd != NULL);
2201
2202 if (!fhold(fp))
2203 return (EBADF);
2204 error = finstall_refed(td, fp, fd, flags, fcaps);
2205 if (__predict_false(error != 0)) {
2206 fdrop(fp, td);
2207 }
2208 return (error);
2209 }
2210
2211 /*
2212 * Build a new filedesc structure from another.
2213 *
2214 * If fdp is not NULL, return with it shared locked.
2215 */
2216 struct filedesc *
fdinit(void)2217 fdinit(void)
2218 {
2219 struct filedesc0 *newfdp0;
2220 struct filedesc *newfdp;
2221
2222 newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO);
2223 newfdp = &newfdp0->fd_fd;
2224
2225 /* Create the file descriptor table. */
2226 FILEDESC_LOCK_INIT(newfdp);
2227 refcount_init(&newfdp->fd_refcnt, 1);
2228 refcount_init(&newfdp->fd_holdcnt, 1);
2229 newfdp->fd_map = newfdp0->fd_dmap;
2230 newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles;
2231 newfdp->fd_files->fdt_nfiles = NDFILE;
2232
2233 return (newfdp);
2234 }
2235
2236 /*
2237 * Build a pwddesc structure from another.
2238 * Copy the current, root, and jail root vnode references.
2239 *
2240 * If pdp is not NULL and keeplock is true, return with it (exclusively) locked.
2241 */
2242 struct pwddesc *
pdinit(struct pwddesc * pdp,bool keeplock)2243 pdinit(struct pwddesc *pdp, bool keeplock)
2244 {
2245 struct pwddesc *newpdp;
2246 struct pwd *newpwd;
2247
2248 newpdp = malloc(sizeof(*newpdp), M_PWDDESC, M_WAITOK | M_ZERO);
2249
2250 PWDDESC_LOCK_INIT(newpdp);
2251 refcount_init(&newpdp->pd_refcount, 1);
2252 newpdp->pd_cmask = CMASK;
2253
2254 if (pdp == NULL) {
2255 newpwd = pwd_alloc();
2256 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2257 return (newpdp);
2258 }
2259
2260 PWDDESC_XLOCK(pdp);
2261 newpwd = pwd_hold_pwddesc(pdp);
2262 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2263 if (!keeplock)
2264 PWDDESC_XUNLOCK(pdp);
2265 return (newpdp);
2266 }
2267
2268 /*
2269 * Hold either filedesc or pwddesc of the passed process.
2270 *
2271 * The process lock is used to synchronize against the target exiting and
2272 * freeing the data.
2273 *
2274 * Clearing can be ilustrated in 3 steps:
2275 * 1. set the pointer to NULL. Either routine can race against it, hence
2276 * atomic_load_ptr.
2277 * 2. observe the process lock as not taken. Until then fdhold/pdhold can
2278 * race to either still see the pointer or find NULL. It is still safe to
2279 * grab a reference as clearing is stalled.
2280 * 3. after the lock is observed as not taken, any fdhold/pdhold calls are
2281 * guaranteed to see NULL, making it safe to finish clearing
2282 */
2283 static struct filedesc *
fdhold(struct proc * p)2284 fdhold(struct proc *p)
2285 {
2286 struct filedesc *fdp;
2287
2288 PROC_LOCK_ASSERT(p, MA_OWNED);
2289 fdp = atomic_load_ptr(&p->p_fd);
2290 if (fdp != NULL)
2291 refcount_acquire(&fdp->fd_holdcnt);
2292 return (fdp);
2293 }
2294
2295 static struct pwddesc *
pdhold(struct proc * p)2296 pdhold(struct proc *p)
2297 {
2298 struct pwddesc *pdp;
2299
2300 PROC_LOCK_ASSERT(p, MA_OWNED);
2301 pdp = atomic_load_ptr(&p->p_pd);
2302 if (pdp != NULL)
2303 refcount_acquire(&pdp->pd_refcount);
2304 return (pdp);
2305 }
2306
2307 static void
fddrop(struct filedesc * fdp)2308 fddrop(struct filedesc *fdp)
2309 {
2310
2311 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2312 if (refcount_release(&fdp->fd_holdcnt) == 0)
2313 return;
2314 }
2315
2316 FILEDESC_LOCK_DESTROY(fdp);
2317 uma_zfree(filedesc0_zone, fdp);
2318 }
2319
2320 static void
pddrop(struct pwddesc * pdp)2321 pddrop(struct pwddesc *pdp)
2322 {
2323 struct pwd *pwd;
2324
2325 if (refcount_release_if_not_last(&pdp->pd_refcount))
2326 return;
2327
2328 PWDDESC_XLOCK(pdp);
2329 if (refcount_release(&pdp->pd_refcount) == 0) {
2330 PWDDESC_XUNLOCK(pdp);
2331 return;
2332 }
2333 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
2334 pwd_set(pdp, NULL);
2335 PWDDESC_XUNLOCK(pdp);
2336 pwd_drop(pwd);
2337
2338 PWDDESC_LOCK_DESTROY(pdp);
2339 free(pdp, M_PWDDESC);
2340 }
2341
2342 /*
2343 * Share a filedesc structure.
2344 */
2345 struct filedesc *
fdshare(struct filedesc * fdp)2346 fdshare(struct filedesc *fdp)
2347 {
2348
2349 refcount_acquire(&fdp->fd_refcnt);
2350 return (fdp);
2351 }
2352
2353 /*
2354 * Share a pwddesc structure.
2355 */
2356 struct pwddesc *
pdshare(struct pwddesc * pdp)2357 pdshare(struct pwddesc *pdp)
2358 {
2359 refcount_acquire(&pdp->pd_refcount);
2360 return (pdp);
2361 }
2362
2363 /*
2364 * Unshare a filedesc structure, if necessary by making a copy
2365 */
2366 void
fdunshare(struct thread * td)2367 fdunshare(struct thread *td)
2368 {
2369 struct filedesc *tmp;
2370 struct proc *p = td->td_proc;
2371
2372 if (refcount_load(&p->p_fd->fd_refcnt) == 1)
2373 return;
2374
2375 tmp = fdcopy(p->p_fd);
2376 fdescfree(td);
2377 p->p_fd = tmp;
2378 }
2379
2380 /*
2381 * Unshare a pwddesc structure.
2382 */
2383 void
pdunshare(struct thread * td)2384 pdunshare(struct thread *td)
2385 {
2386 struct pwddesc *pdp;
2387 struct proc *p;
2388
2389 p = td->td_proc;
2390 /* Not shared. */
2391 if (refcount_load(&p->p_pd->pd_refcount) == 1)
2392 return;
2393
2394 pdp = pdcopy(p->p_pd);
2395 pdescfree(td);
2396 p->p_pd = pdp;
2397 }
2398
2399 /*
2400 * Copy a filedesc structure. A NULL pointer in returns a NULL reference,
2401 * this is to ease callers, not catch errors.
2402 */
2403 struct filedesc *
fdcopy(struct filedesc * fdp)2404 fdcopy(struct filedesc *fdp)
2405 {
2406 struct filedesc *newfdp;
2407 struct filedescent *nfde, *ofde;
2408 int i, lastfile;
2409
2410 MPASS(fdp != NULL);
2411
2412 newfdp = fdinit();
2413 FILEDESC_SLOCK(fdp);
2414 for (;;) {
2415 lastfile = fdlastfile(fdp);
2416 if (lastfile < newfdp->fd_nfiles)
2417 break;
2418 FILEDESC_SUNLOCK(fdp);
2419 fdgrowtable(newfdp, lastfile + 1);
2420 FILEDESC_SLOCK(fdp);
2421 }
2422 /* copy all passable descriptors (i.e. not kqueue) */
2423 newfdp->fd_freefile = fdp->fd_freefile;
2424 FILEDESC_FOREACH_FDE(fdp, i, ofde) {
2425 if ((ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0 ||
2426 !fhold(ofde->fde_file)) {
2427 if (newfdp->fd_freefile == fdp->fd_freefile)
2428 newfdp->fd_freefile = i;
2429 continue;
2430 }
2431 nfde = &newfdp->fd_ofiles[i];
2432 *nfde = *ofde;
2433 filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
2434 fdused_init(newfdp, i);
2435 }
2436 MPASS(newfdp->fd_freefile != -1);
2437 FILEDESC_SUNLOCK(fdp);
2438 return (newfdp);
2439 }
2440
2441 /*
2442 * Copy a pwddesc structure.
2443 */
2444 struct pwddesc *
pdcopy(struct pwddesc * pdp)2445 pdcopy(struct pwddesc *pdp)
2446 {
2447 struct pwddesc *newpdp;
2448
2449 MPASS(pdp != NULL);
2450
2451 newpdp = pdinit(pdp, true);
2452 newpdp->pd_cmask = pdp->pd_cmask;
2453 PWDDESC_XUNLOCK(pdp);
2454 return (newpdp);
2455 }
2456
2457 /*
2458 * Clear POSIX style locks. This is only used when fdp looses a reference (i.e.
2459 * one of processes using it exits) and the table used to be shared.
2460 */
2461 static void
fdclearlocks(struct thread * td)2462 fdclearlocks(struct thread *td)
2463 {
2464 struct filedesc *fdp;
2465 struct filedesc_to_leader *fdtol;
2466 struct flock lf;
2467 struct file *fp;
2468 struct proc *p;
2469 struct vnode *vp;
2470 int i;
2471
2472 p = td->td_proc;
2473 fdp = p->p_fd;
2474 fdtol = p->p_fdtol;
2475 MPASS(fdtol != NULL);
2476
2477 FILEDESC_XLOCK(fdp);
2478 KASSERT(fdtol->fdl_refcount > 0,
2479 ("filedesc_to_refcount botch: fdl_refcount=%d",
2480 fdtol->fdl_refcount));
2481 if (fdtol->fdl_refcount == 1 &&
2482 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2483 FILEDESC_FOREACH_FP(fdp, i, fp) {
2484 if (fp->f_type != DTYPE_VNODE ||
2485 !fhold(fp))
2486 continue;
2487 FILEDESC_XUNLOCK(fdp);
2488 lf.l_whence = SEEK_SET;
2489 lf.l_start = 0;
2490 lf.l_len = 0;
2491 lf.l_type = F_UNLCK;
2492 vp = fp->f_vnode;
2493 (void) VOP_ADVLOCK(vp,
2494 (caddr_t)p->p_leader, F_UNLCK,
2495 &lf, F_POSIX);
2496 FILEDESC_XLOCK(fdp);
2497 fdrop(fp, td);
2498 }
2499 }
2500 retry:
2501 if (fdtol->fdl_refcount == 1) {
2502 if (fdp->fd_holdleaderscount > 0 &&
2503 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2504 /*
2505 * close() or kern_dup() has cleared a reference
2506 * in a shared file descriptor table.
2507 */
2508 fdp->fd_holdleaderswakeup = 1;
2509 sx_sleep(&fdp->fd_holdleaderscount,
2510 FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0);
2511 goto retry;
2512 }
2513 if (fdtol->fdl_holdcount > 0) {
2514 /*
2515 * Ensure that fdtol->fdl_leader remains
2516 * valid in closef().
2517 */
2518 fdtol->fdl_wakeup = 1;
2519 sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK,
2520 "fdlhold", 0);
2521 goto retry;
2522 }
2523 }
2524 fdtol->fdl_refcount--;
2525 if (fdtol->fdl_refcount == 0 &&
2526 fdtol->fdl_holdcount == 0) {
2527 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2528 fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2529 } else
2530 fdtol = NULL;
2531 p->p_fdtol = NULL;
2532 FILEDESC_XUNLOCK(fdp);
2533 if (fdtol != NULL)
2534 free(fdtol, M_FILEDESC_TO_LEADER);
2535 }
2536
2537 /*
2538 * Release a filedesc structure.
2539 */
2540 static void
fdescfree_fds(struct thread * td,struct filedesc * fdp)2541 fdescfree_fds(struct thread *td, struct filedesc *fdp)
2542 {
2543 struct filedesc0 *fdp0;
2544 struct freetable *ft, *tft;
2545 struct filedescent *fde;
2546 struct file *fp;
2547 int i;
2548
2549 KASSERT(refcount_load(&fdp->fd_refcnt) == 0,
2550 ("%s: fd table %p carries references", __func__, fdp));
2551
2552 /*
2553 * Serialize with threads iterating over the table, if any.
2554 */
2555 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2556 FILEDESC_XLOCK(fdp);
2557 FILEDESC_XUNLOCK(fdp);
2558 }
2559
2560 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2561 fp = fde->fde_file;
2562 fdefree_last(fde);
2563 (void) closef(fp, td);
2564 }
2565
2566 if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE))
2567 free(fdp->fd_map, M_FILEDESC);
2568 if (fdp->fd_nfiles > NDFILE)
2569 free(fdp->fd_files, M_FILEDESC);
2570
2571 fdp0 = (struct filedesc0 *)fdp;
2572 SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft)
2573 free(ft->ft_table, M_FILEDESC);
2574
2575 fddrop(fdp);
2576 }
2577
2578 void
fdescfree(struct thread * td)2579 fdescfree(struct thread *td)
2580 {
2581 struct proc *p;
2582 struct filedesc *fdp;
2583
2584 p = td->td_proc;
2585 fdp = p->p_fd;
2586 MPASS(fdp != NULL);
2587
2588 #ifdef RACCT
2589 if (RACCT_ENABLED())
2590 racct_set_unlocked(p, RACCT_NOFILE, 0);
2591 #endif
2592
2593 if (p->p_fdtol != NULL)
2594 fdclearlocks(td);
2595
2596 /*
2597 * Check fdhold for an explanation.
2598 */
2599 atomic_store_ptr(&p->p_fd, NULL);
2600 atomic_thread_fence_seq_cst();
2601 PROC_WAIT_UNLOCKED(p);
2602
2603 if (refcount_release(&fdp->fd_refcnt) == 0)
2604 return;
2605
2606 fdescfree_fds(td, fdp);
2607 }
2608
2609 void
pdescfree(struct thread * td)2610 pdescfree(struct thread *td)
2611 {
2612 struct proc *p;
2613 struct pwddesc *pdp;
2614
2615 p = td->td_proc;
2616 pdp = p->p_pd;
2617 MPASS(pdp != NULL);
2618
2619 /*
2620 * Check pdhold for an explanation.
2621 */
2622 atomic_store_ptr(&p->p_pd, NULL);
2623 atomic_thread_fence_seq_cst();
2624 PROC_WAIT_UNLOCKED(p);
2625
2626 pddrop(pdp);
2627 }
2628
2629 /*
2630 * For setugid programs, we don't want to people to use that setugidness
2631 * to generate error messages which write to a file which otherwise would
2632 * otherwise be off-limits to the process. We check for filesystems where
2633 * the vnode can change out from under us after execve (like [lin]procfs).
2634 *
2635 * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is
2636 * sufficient. We also don't check for setugidness since we know we are.
2637 */
2638 static bool
is_unsafe(struct file * fp)2639 is_unsafe(struct file *fp)
2640 {
2641 struct vnode *vp;
2642
2643 if (fp->f_type != DTYPE_VNODE)
2644 return (false);
2645
2646 vp = fp->f_vnode;
2647 return ((vp->v_vflag & VV_PROCDEP) != 0);
2648 }
2649
2650 /*
2651 * Make this setguid thing safe, if at all possible.
2652 */
2653 void
fdsetugidsafety(struct thread * td)2654 fdsetugidsafety(struct thread *td)
2655 {
2656 struct filedesc *fdp;
2657 struct file *fp;
2658 int i;
2659
2660 fdp = td->td_proc->p_fd;
2661 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2662 ("the fdtable should not be shared"));
2663 MPASS(fdp->fd_nfiles >= 3);
2664 for (i = 0; i <= 2; i++) {
2665 fp = fdp->fd_ofiles[i].fde_file;
2666 if (fp != NULL && is_unsafe(fp)) {
2667 FILEDESC_XLOCK(fdp);
2668 knote_fdclose(td, i);
2669 /*
2670 * NULL-out descriptor prior to close to avoid
2671 * a race while close blocks.
2672 */
2673 fdfree(fdp, i);
2674 FILEDESC_XUNLOCK(fdp);
2675 (void) closef(fp, td);
2676 }
2677 }
2678 }
2679
2680 /*
2681 * If a specific file object occupies a specific file descriptor, close the
2682 * file descriptor entry and drop a reference on the file object. This is a
2683 * convenience function to handle a subsequent error in a function that calls
2684 * falloc() that handles the race that another thread might have closed the
2685 * file descriptor out from under the thread creating the file object.
2686 */
2687 void
fdclose(struct thread * td,struct file * fp,int idx)2688 fdclose(struct thread *td, struct file *fp, int idx)
2689 {
2690 struct filedesc *fdp = td->td_proc->p_fd;
2691
2692 FILEDESC_XLOCK(fdp);
2693 if (fdp->fd_ofiles[idx].fde_file == fp) {
2694 fdfree(fdp, idx);
2695 FILEDESC_XUNLOCK(fdp);
2696 fdrop(fp, td);
2697 } else
2698 FILEDESC_XUNLOCK(fdp);
2699 }
2700
2701 /*
2702 * Close any files on exec?
2703 */
2704 void
fdcloseexec(struct thread * td)2705 fdcloseexec(struct thread *td)
2706 {
2707 struct filedesc *fdp;
2708 struct filedescent *fde;
2709 struct file *fp;
2710 int i;
2711
2712 fdp = td->td_proc->p_fd;
2713 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2714 ("the fdtable should not be shared"));
2715 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2716 fp = fde->fde_file;
2717 if (fp->f_type == DTYPE_MQUEUE ||
2718 (fde->fde_flags & UF_EXCLOSE)) {
2719 FILEDESC_XLOCK(fdp);
2720 fdfree(fdp, i);
2721 (void) closefp(fdp, i, fp, td, false, false);
2722 FILEDESC_UNLOCK_ASSERT(fdp);
2723 }
2724 }
2725 }
2726
2727 /*
2728 * It is unsafe for set[ug]id processes to be started with file
2729 * descriptors 0..2 closed, as these descriptors are given implicit
2730 * significance in the Standard C library. fdcheckstd() will create a
2731 * descriptor referencing /dev/null for each of stdin, stdout, and
2732 * stderr that is not already open.
2733 */
2734 int
fdcheckstd(struct thread * td)2735 fdcheckstd(struct thread *td)
2736 {
2737 struct filedesc *fdp;
2738 register_t save;
2739 int i, error, devnull;
2740
2741 fdp = td->td_proc->p_fd;
2742 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2743 ("the fdtable should not be shared"));
2744 MPASS(fdp->fd_nfiles >= 3);
2745 devnull = -1;
2746 for (i = 0; i <= 2; i++) {
2747 if (fdp->fd_ofiles[i].fde_file != NULL)
2748 continue;
2749
2750 save = td->td_retval[0];
2751 if (devnull != -1) {
2752 error = kern_dup(td, FDDUP_FIXED, 0, devnull, i);
2753 } else {
2754 error = kern_openat(td, AT_FDCWD, "/dev/null",
2755 UIO_SYSSPACE, O_RDWR, 0);
2756 if (error == 0) {
2757 devnull = td->td_retval[0];
2758 KASSERT(devnull == i, ("we didn't get our fd"));
2759 }
2760 }
2761 td->td_retval[0] = save;
2762 if (error != 0)
2763 return (error);
2764 }
2765 return (0);
2766 }
2767
2768 /*
2769 * Internal form of close. Decrement reference count on file structure.
2770 * Note: td may be NULL when closing a file that was being passed in a
2771 * message.
2772 */
2773 int
closef(struct file * fp,struct thread * td)2774 closef(struct file *fp, struct thread *td)
2775 {
2776 struct vnode *vp;
2777 struct flock lf;
2778 struct filedesc_to_leader *fdtol;
2779 struct filedesc *fdp;
2780
2781 MPASS(td != NULL);
2782
2783 /*
2784 * POSIX record locking dictates that any close releases ALL
2785 * locks owned by this process. This is handled by setting
2786 * a flag in the unlock to free ONLY locks obeying POSIX
2787 * semantics, and not to free BSD-style file locks.
2788 * If the descriptor was in a message, POSIX-style locks
2789 * aren't passed with the descriptor, and the thread pointer
2790 * will be NULL. Callers should be careful only to pass a
2791 * NULL thread pointer when there really is no owning
2792 * context that might have locks, or the locks will be
2793 * leaked.
2794 */
2795 if (fp->f_type == DTYPE_VNODE) {
2796 vp = fp->f_vnode;
2797 if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) {
2798 lf.l_whence = SEEK_SET;
2799 lf.l_start = 0;
2800 lf.l_len = 0;
2801 lf.l_type = F_UNLCK;
2802 (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader,
2803 F_UNLCK, &lf, F_POSIX);
2804 }
2805 fdtol = td->td_proc->p_fdtol;
2806 if (fdtol != NULL) {
2807 /*
2808 * Handle special case where file descriptor table is
2809 * shared between multiple process leaders.
2810 */
2811 fdp = td->td_proc->p_fd;
2812 FILEDESC_XLOCK(fdp);
2813 for (fdtol = fdtol->fdl_next;
2814 fdtol != td->td_proc->p_fdtol;
2815 fdtol = fdtol->fdl_next) {
2816 if ((fdtol->fdl_leader->p_flag &
2817 P_ADVLOCK) == 0)
2818 continue;
2819 fdtol->fdl_holdcount++;
2820 FILEDESC_XUNLOCK(fdp);
2821 lf.l_whence = SEEK_SET;
2822 lf.l_start = 0;
2823 lf.l_len = 0;
2824 lf.l_type = F_UNLCK;
2825 vp = fp->f_vnode;
2826 (void) VOP_ADVLOCK(vp,
2827 (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf,
2828 F_POSIX);
2829 FILEDESC_XLOCK(fdp);
2830 fdtol->fdl_holdcount--;
2831 if (fdtol->fdl_holdcount == 0 &&
2832 fdtol->fdl_wakeup != 0) {
2833 fdtol->fdl_wakeup = 0;
2834 wakeup(fdtol);
2835 }
2836 }
2837 FILEDESC_XUNLOCK(fdp);
2838 }
2839 }
2840 return (fdrop_close(fp, td));
2841 }
2842
2843 /*
2844 * Hack for file descriptor passing code.
2845 */
2846 void
closef_nothread(struct file * fp)2847 closef_nothread(struct file *fp)
2848 {
2849
2850 fdrop(fp, NULL);
2851 }
2852
2853 /*
2854 * Initialize the file pointer with the specified properties.
2855 *
2856 * The ops are set with release semantics to be certain that the flags, type,
2857 * and data are visible when ops is. This is to prevent ops methods from being
2858 * called with bad data.
2859 */
2860 void
finit(struct file * fp,u_int flag,short type,void * data,const struct fileops * ops)2861 finit(struct file *fp, u_int flag, short type, void *data,
2862 const struct fileops *ops)
2863 {
2864 fp->f_data = data;
2865 fp->f_flag = flag;
2866 fp->f_type = type;
2867 atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops);
2868 }
2869
2870 void
finit_vnode(struct file * fp,u_int flag,void * data,const struct fileops * ops)2871 finit_vnode(struct file *fp, u_int flag, void *data, const struct fileops *ops)
2872 {
2873 fp->f_seqcount[UIO_READ] = 1;
2874 fp->f_seqcount[UIO_WRITE] = 1;
2875 finit(fp, (flag & FMASK) | (fp->f_flag & FHASLOCK), DTYPE_VNODE,
2876 data, ops);
2877 }
2878
2879 int
fget_cap_noref(struct filedesc * fdp,int fd,cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2880 fget_cap_noref(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
2881 struct file **fpp, struct filecaps *havecapsp)
2882 {
2883 struct filedescent *fde;
2884 int error;
2885
2886 FILEDESC_LOCK_ASSERT(fdp);
2887
2888 *fpp = NULL;
2889 fde = fdeget_noref(fdp, fd);
2890 if (fde == NULL) {
2891 error = EBADF;
2892 goto out;
2893 }
2894
2895 #ifdef CAPABILITIES
2896 error = cap_check(cap_rights_fde_inline(fde), needrightsp);
2897 if (error != 0)
2898 goto out;
2899 #endif
2900
2901 if (havecapsp != NULL)
2902 filecaps_copy(&fde->fde_caps, havecapsp, true);
2903
2904 *fpp = fde->fde_file;
2905
2906 error = 0;
2907 out:
2908 return (error);
2909 }
2910
2911 #ifdef CAPABILITIES
2912 int
fget_cap(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2913 fget_cap(struct thread *td, int fd, cap_rights_t *needrightsp,
2914 struct file **fpp, struct filecaps *havecapsp)
2915 {
2916 struct filedesc *fdp = td->td_proc->p_fd;
2917 int error;
2918 struct file *fp;
2919 seqc_t seq;
2920
2921 *fpp = NULL;
2922 for (;;) {
2923 error = fget_unlocked_seq(td, fd, needrightsp, &fp, &seq);
2924 if (error != 0)
2925 return (error);
2926
2927 if (havecapsp != NULL) {
2928 if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps,
2929 havecapsp, false)) {
2930 fdrop(fp, td);
2931 goto get_locked;
2932 }
2933 }
2934
2935 if (!fd_modified(fdp, fd, seq))
2936 break;
2937 fdrop(fp, td);
2938 }
2939
2940 *fpp = fp;
2941 return (0);
2942
2943 get_locked:
2944 FILEDESC_SLOCK(fdp);
2945 error = fget_cap_noref(fdp, fd, needrightsp, fpp, havecapsp);
2946 if (error == 0 && !fhold(*fpp))
2947 error = EBADF;
2948 FILEDESC_SUNLOCK(fdp);
2949 return (error);
2950 }
2951 #else
2952 int
fget_cap(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2953 fget_cap(struct thread *td, int fd, cap_rights_t *needrightsp,
2954 struct file **fpp, struct filecaps *havecapsp)
2955 {
2956 int error;
2957 error = fget_unlocked(td, fd, needrightsp, fpp);
2958 if (havecapsp != NULL && error == 0)
2959 filecaps_fill(havecapsp);
2960
2961 return (error);
2962 }
2963 #endif
2964
2965 int
fget_remote(struct thread * td,struct proc * p,int fd,struct file ** fpp)2966 fget_remote(struct thread *td, struct proc *p, int fd, struct file **fpp)
2967 {
2968 struct filedesc *fdp;
2969 struct file *fp;
2970 int error;
2971
2972 if (p == td->td_proc) /* curproc */
2973 return (fget_unlocked(td, fd, &cap_no_rights, fpp));
2974
2975 PROC_LOCK(p);
2976 fdp = fdhold(p);
2977 PROC_UNLOCK(p);
2978 if (fdp == NULL)
2979 return (ENOENT);
2980 FILEDESC_SLOCK(fdp);
2981 if (refcount_load(&fdp->fd_refcnt) != 0) {
2982 fp = fget_noref(fdp, fd);
2983 if (fp != NULL && fhold(fp)) {
2984 *fpp = fp;
2985 error = 0;
2986 } else {
2987 error = EBADF;
2988 }
2989 } else {
2990 error = ENOENT;
2991 }
2992 FILEDESC_SUNLOCK(fdp);
2993 fddrop(fdp);
2994 return (error);
2995 }
2996
2997 int
fget_remote_foreach(struct thread * td,struct proc * p,int (* fn)(struct proc *,int,struct file *,void *),void * arg)2998 fget_remote_foreach(struct thread *td, struct proc *p,
2999 int (*fn)(struct proc *, int, struct file *, void *), void *arg)
3000 {
3001 struct filedesc *fdp;
3002 struct fdescenttbl *fdt;
3003 struct file *fp;
3004 int error, error1, fd, highfd;
3005
3006 error = 0;
3007 PROC_LOCK(p);
3008 fdp = fdhold(p);
3009 PROC_UNLOCK(p);
3010 if (fdp == NULL)
3011 return (ENOENT);
3012
3013 FILEDESC_SLOCK(fdp);
3014 if (refcount_load(&fdp->fd_refcnt) != 0) {
3015 fdt = atomic_load_ptr(&fdp->fd_files);
3016 highfd = fdt->fdt_nfiles - 1;
3017 FILEDESC_SUNLOCK(fdp);
3018 } else {
3019 error = ENOENT;
3020 FILEDESC_SUNLOCK(fdp);
3021 goto out;
3022 }
3023
3024 for (fd = 0; fd <= highfd; fd++) {
3025 error1 = fget_remote(td, p, fd, &fp);
3026 if (error1 != 0)
3027 continue;
3028 error = fn(p, fd, fp, arg);
3029 fdrop(fp, td);
3030 if (error != 0)
3031 break;
3032 }
3033 out:
3034 fddrop(fdp);
3035 return (error);
3036 }
3037
3038 #ifdef CAPABILITIES
3039 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,bool * fsearch)3040 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
3041 {
3042 const struct filedescent *fde;
3043 const struct fdescenttbl *fdt;
3044 struct filedesc *fdp;
3045 struct file *fp;
3046 struct vnode *vp;
3047 const cap_rights_t *haverights;
3048 cap_rights_t rights;
3049 seqc_t seq;
3050 int fd;
3051
3052 VFS_SMR_ASSERT_ENTERED();
3053
3054 fd = ndp->ni_dirfd;
3055 rights = *ndp->ni_rightsneeded;
3056 cap_rights_set_one(&rights, CAP_LOOKUP);
3057
3058 fdp = curproc->p_fd;
3059 fdt = fdp->fd_files;
3060 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3061 return (EBADF);
3062 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3063 fde = &fdt->fdt_ofiles[fd];
3064 haverights = cap_rights_fde_inline(fde);
3065 fp = fde->fde_file;
3066 if (__predict_false(fp == NULL))
3067 return (EAGAIN);
3068 if (__predict_false(cap_check_inline_transient(haverights, &rights)))
3069 return (EAGAIN);
3070 *fsearch = ((fp->f_flag & FSEARCH) != 0);
3071 vp = fp->f_vnode;
3072 if (__predict_false(vp == NULL)) {
3073 return (EAGAIN);
3074 }
3075 if (!filecaps_copy(&fde->fde_caps, &ndp->ni_filecaps, false)) {
3076 return (EAGAIN);
3077 }
3078 /*
3079 * Use an acquire barrier to force re-reading of fdt so it is
3080 * refreshed for verification.
3081 */
3082 atomic_thread_fence_acq();
3083 fdt = fdp->fd_files;
3084 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3085 return (EAGAIN);
3086 /*
3087 * If file descriptor doesn't have all rights,
3088 * all lookups relative to it must also be
3089 * strictly relative.
3090 *
3091 * Not yet supported by fast path.
3092 */
3093 CAP_ALL(&rights);
3094 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3095 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3096 ndp->ni_filecaps.fc_nioctls != -1) {
3097 #ifdef notyet
3098 ndp->ni_lcf |= NI_LCF_STRICTREL;
3099 #else
3100 return (EAGAIN);
3101 #endif
3102 }
3103 *vpp = vp;
3104 return (0);
3105 }
3106 #else
3107 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,bool * fsearch)3108 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
3109 {
3110 const struct fdescenttbl *fdt;
3111 struct filedesc *fdp;
3112 struct file *fp;
3113 struct vnode *vp;
3114 int fd;
3115
3116 VFS_SMR_ASSERT_ENTERED();
3117
3118 fd = ndp->ni_dirfd;
3119 fdp = curproc->p_fd;
3120 fdt = fdp->fd_files;
3121 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3122 return (EBADF);
3123 fp = fdt->fdt_ofiles[fd].fde_file;
3124 if (__predict_false(fp == NULL))
3125 return (EAGAIN);
3126 *fsearch = ((fp->f_flag & FSEARCH) != 0);
3127 vp = fp->f_vnode;
3128 if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
3129 return (EAGAIN);
3130 }
3131 /*
3132 * Use an acquire barrier to force re-reading of fdt so it is
3133 * refreshed for verification.
3134 */
3135 atomic_thread_fence_acq();
3136 fdt = fdp->fd_files;
3137 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3138 return (EAGAIN);
3139 filecaps_fill(&ndp->ni_filecaps);
3140 *vpp = vp;
3141 return (0);
3142 }
3143 #endif
3144
3145 int
fgetvp_lookup(struct nameidata * ndp,struct vnode ** vpp)3146 fgetvp_lookup(struct nameidata *ndp, struct vnode **vpp)
3147 {
3148 struct thread *td;
3149 struct file *fp;
3150 struct vnode *vp;
3151 struct componentname *cnp;
3152 cap_rights_t rights;
3153 int error;
3154
3155 td = curthread;
3156 rights = *ndp->ni_rightsneeded;
3157 cap_rights_set_one(&rights, CAP_LOOKUP);
3158 cnp = &ndp->ni_cnd;
3159
3160 error = fget_cap(td, ndp->ni_dirfd, &rights, &fp, &ndp->ni_filecaps);
3161 if (__predict_false(error != 0))
3162 return (error);
3163 if (__predict_false(fp->f_ops == &badfileops)) {
3164 error = EBADF;
3165 goto out_free;
3166 }
3167 vp = fp->f_vnode;
3168 if (__predict_false(vp == NULL)) {
3169 error = ENOTDIR;
3170 goto out_free;
3171 }
3172 vrefact(vp);
3173 /*
3174 * XXX does not check for VDIR, handled by namei_setup
3175 */
3176 if ((fp->f_flag & FSEARCH) != 0)
3177 cnp->cn_flags |= NOEXECCHECK;
3178 fdrop(fp, td);
3179
3180 #ifdef CAPABILITIES
3181 /*
3182 * If file descriptor doesn't have all rights,
3183 * all lookups relative to it must also be
3184 * strictly relative.
3185 */
3186 CAP_ALL(&rights);
3187 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3188 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3189 ndp->ni_filecaps.fc_nioctls != -1) {
3190 ndp->ni_lcf |= NI_LCF_STRICTREL;
3191 ndp->ni_resflags |= NIRES_STRICTREL;
3192 }
3193 #endif
3194
3195 /*
3196 * TODO: avoid copying ioctl caps if it can be helped to begin with
3197 */
3198 if ((cnp->cn_flags & WANTIOCTLCAPS) == 0)
3199 filecaps_free_ioctl(&ndp->ni_filecaps);
3200
3201 *vpp = vp;
3202 return (0);
3203
3204 out_free:
3205 filecaps_free(&ndp->ni_filecaps);
3206 fdrop(fp, td);
3207 return (error);
3208 }
3209
3210 /*
3211 * Fetch the descriptor locklessly.
3212 *
3213 * We avoid fdrop() races by never raising a refcount above 0. To accomplish
3214 * this we have to use a cmpset loop rather than an atomic_add. The descriptor
3215 * must be re-verified once we acquire a reference to be certain that the
3216 * identity is still correct and we did not lose a race due to preemption.
3217 *
3218 * Force a reload of fdt when looping. Another thread could reallocate
3219 * the table before this fd was closed, so it is possible that there is
3220 * a stale fp pointer in cached version.
3221 */
3222 #ifdef CAPABILITIES
3223 static int
fget_unlocked_seq(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,seqc_t * seqp)3224 fget_unlocked_seq(struct thread *td, int fd, cap_rights_t *needrightsp,
3225 struct file **fpp, seqc_t *seqp)
3226 {
3227 struct filedesc *fdp;
3228 const struct filedescent *fde;
3229 const struct fdescenttbl *fdt;
3230 struct file *fp;
3231 seqc_t seq;
3232 cap_rights_t haverights;
3233 int error;
3234
3235 fdp = td->td_proc->p_fd;
3236 fdt = fdp->fd_files;
3237 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3238 return (EBADF);
3239
3240 for (;;) {
3241 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3242 fde = &fdt->fdt_ofiles[fd];
3243 haverights = *cap_rights_fde_inline(fde);
3244 fp = fde->fde_file;
3245 if (__predict_false(fp == NULL)) {
3246 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3247 return (EBADF);
3248 fdt = atomic_load_ptr(&fdp->fd_files);
3249 continue;
3250 }
3251 error = cap_check_inline(&haverights, needrightsp);
3252 if (__predict_false(error != 0)) {
3253 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3254 return (error);
3255 fdt = atomic_load_ptr(&fdp->fd_files);
3256 continue;
3257 }
3258 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3259 fdt = atomic_load_ptr(&fdp->fd_files);
3260 continue;
3261 }
3262 /*
3263 * Use an acquire barrier to force re-reading of fdt so it is
3264 * refreshed for verification.
3265 */
3266 atomic_thread_fence_acq();
3267 fdt = fdp->fd_files;
3268 if (seqc_consistent_no_fence(fd_seqc(fdt, fd), seq))
3269 break;
3270 fdrop(fp, td);
3271 }
3272 *fpp = fp;
3273 if (seqp != NULL) {
3274 *seqp = seq;
3275 }
3276 return (0);
3277 }
3278 #else
3279 static int
fget_unlocked_seq(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp,seqc_t * seqp __unused)3280 fget_unlocked_seq(struct thread *td, int fd, cap_rights_t *needrightsp,
3281 struct file **fpp, seqc_t *seqp __unused)
3282 {
3283 struct filedesc *fdp;
3284 const struct fdescenttbl *fdt;
3285 struct file *fp;
3286
3287 fdp = td->td_proc->p_fd;
3288 fdt = fdp->fd_files;
3289 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3290 return (EBADF);
3291
3292 for (;;) {
3293 fp = fdt->fdt_ofiles[fd].fde_file;
3294 if (__predict_false(fp == NULL))
3295 return (EBADF);
3296 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3297 fdt = atomic_load_ptr(&fdp->fd_files);
3298 continue;
3299 }
3300 /*
3301 * Use an acquire barrier to force re-reading of fdt so it is
3302 * refreshed for verification.
3303 */
3304 atomic_thread_fence_acq();
3305 fdt = fdp->fd_files;
3306 if (__predict_true(fp == fdt->fdt_ofiles[fd].fde_file))
3307 break;
3308 fdrop(fp, td);
3309 }
3310 *fpp = fp;
3311 return (0);
3312 }
3313 #endif
3314
3315 /*
3316 * See the comments in fget_unlocked_seq for an explanation of how this works.
3317 *
3318 * This is a simplified variant which bails out to the aforementioned routine
3319 * if anything goes wrong. In practice this only happens when userspace is
3320 * racing with itself.
3321 */
3322 int
fget_unlocked(struct thread * td,int fd,cap_rights_t * needrightsp,struct file ** fpp)3323 fget_unlocked(struct thread *td, int fd, cap_rights_t *needrightsp,
3324 struct file **fpp)
3325 {
3326 struct filedesc *fdp;
3327 #ifdef CAPABILITIES
3328 const struct filedescent *fde;
3329 #endif
3330 const struct fdescenttbl *fdt;
3331 struct file *fp;
3332 #ifdef CAPABILITIES
3333 seqc_t seq;
3334 const cap_rights_t *haverights;
3335 #endif
3336
3337 fdp = td->td_proc->p_fd;
3338 fdt = fdp->fd_files;
3339 if (__predict_false((u_int)fd >= fdt->fdt_nfiles)) {
3340 *fpp = NULL;
3341 return (EBADF);
3342 }
3343 #ifdef CAPABILITIES
3344 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3345 fde = &fdt->fdt_ofiles[fd];
3346 haverights = cap_rights_fde_inline(fde);
3347 fp = fde->fde_file;
3348 #else
3349 fp = fdt->fdt_ofiles[fd].fde_file;
3350 #endif
3351 if (__predict_false(fp == NULL))
3352 goto out_fallback;
3353 #ifdef CAPABILITIES
3354 if (__predict_false(cap_check_inline_transient(haverights, needrightsp)))
3355 goto out_fallback;
3356 #endif
3357 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count)))
3358 goto out_fallback;
3359
3360 /*
3361 * Use an acquire barrier to force re-reading of fdt so it is
3362 * refreshed for verification.
3363 */
3364 atomic_thread_fence_acq();
3365 fdt = fdp->fd_files;
3366 #ifdef CAPABILITIES
3367 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3368 #else
3369 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3370 #endif
3371 goto out_fdrop;
3372 *fpp = fp;
3373 return (0);
3374 out_fdrop:
3375 fdrop(fp, td);
3376 out_fallback:
3377 *fpp = NULL;
3378 return (fget_unlocked_seq(td, fd, needrightsp, fpp, NULL));
3379 }
3380
3381 /*
3382 * Translate fd -> file when the caller guarantees the file descriptor table
3383 * can't be changed by others.
3384 *
3385 * Note this does not mean the file object itself is only visible to the caller,
3386 * merely that it wont disappear without having to be referenced.
3387 *
3388 * Must be paired with fput_only_user.
3389 */
3390 #ifdef CAPABILITIES
3391 int
fget_only_user(struct filedesc * fdp,int fd,cap_rights_t * needrightsp,struct file ** fpp)3392 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
3393 struct file **fpp)
3394 {
3395 const struct filedescent *fde;
3396 const struct fdescenttbl *fdt;
3397 const cap_rights_t *haverights;
3398 struct file *fp;
3399 int error;
3400
3401 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3402
3403 *fpp = NULL;
3404 if (__predict_false(fd >= fdp->fd_nfiles))
3405 return (EBADF);
3406
3407 fdt = fdp->fd_files;
3408 fde = &fdt->fdt_ofiles[fd];
3409 fp = fde->fde_file;
3410 if (__predict_false(fp == NULL))
3411 return (EBADF);
3412 MPASS(refcount_load(&fp->f_count) > 0);
3413 haverights = cap_rights_fde_inline(fde);
3414 error = cap_check_inline(haverights, needrightsp);
3415 if (__predict_false(error != 0))
3416 return (error);
3417 *fpp = fp;
3418 return (0);
3419 }
3420 #else
3421 int
fget_only_user(struct filedesc * fdp,int fd,cap_rights_t * needrightsp,struct file ** fpp)3422 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
3423 struct file **fpp)
3424 {
3425 struct file *fp;
3426
3427 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3428
3429 *fpp = NULL;
3430 if (__predict_false(fd >= fdp->fd_nfiles))
3431 return (EBADF);
3432
3433 fp = fdp->fd_ofiles[fd].fde_file;
3434 if (__predict_false(fp == NULL))
3435 return (EBADF);
3436
3437 MPASS(refcount_load(&fp->f_count) > 0);
3438 *fpp = fp;
3439 return (0);
3440 }
3441 #endif
3442
3443 /*
3444 * Extract the file pointer associated with the specified descriptor for the
3445 * current user process.
3446 *
3447 * If the descriptor doesn't exist or doesn't match 'flags', EBADF is
3448 * returned.
3449 *
3450 * File's rights will be checked against the capability rights mask.
3451 *
3452 * If an error occurred the non-zero error is returned and *fpp is set to
3453 * NULL. Otherwise *fpp is held and set and zero is returned. Caller is
3454 * responsible for fdrop().
3455 */
3456 static __inline int
_fget(struct thread * td,int fd,struct file ** fpp,int flags,cap_rights_t * needrightsp)3457 _fget(struct thread *td, int fd, struct file **fpp, int flags,
3458 cap_rights_t *needrightsp)
3459 {
3460 struct file *fp;
3461 int error;
3462
3463 *fpp = NULL;
3464 error = fget_unlocked(td, fd, needrightsp, &fp);
3465 if (__predict_false(error != 0))
3466 return (error);
3467 if (__predict_false(fp->f_ops == &badfileops)) {
3468 fdrop(fp, td);
3469 return (EBADF);
3470 }
3471
3472 /*
3473 * FREAD and FWRITE failure return EBADF as per POSIX.
3474 */
3475 error = 0;
3476 switch (flags) {
3477 case FREAD:
3478 case FWRITE:
3479 if ((fp->f_flag & flags) == 0)
3480 error = EBADF;
3481 break;
3482 case FEXEC:
3483 if (fp->f_ops != &path_fileops &&
3484 ((fp->f_flag & (FREAD | FEXEC)) == 0 ||
3485 (fp->f_flag & FWRITE) != 0))
3486 error = EBADF;
3487 break;
3488 case 0:
3489 break;
3490 default:
3491 KASSERT(0, ("wrong flags"));
3492 }
3493
3494 if (error != 0) {
3495 fdrop(fp, td);
3496 return (error);
3497 }
3498
3499 *fpp = fp;
3500 return (0);
3501 }
3502
3503 int
fget(struct thread * td,int fd,cap_rights_t * rightsp,struct file ** fpp)3504 fget(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
3505 {
3506
3507 return (_fget(td, fd, fpp, 0, rightsp));
3508 }
3509
3510 int
fget_mmap(struct thread * td,int fd,cap_rights_t * rightsp,vm_prot_t * maxprotp,struct file ** fpp)3511 fget_mmap(struct thread *td, int fd, cap_rights_t *rightsp, vm_prot_t *maxprotp,
3512 struct file **fpp)
3513 {
3514 int error;
3515 #ifndef CAPABILITIES
3516 error = _fget(td, fd, fpp, 0, rightsp);
3517 if (maxprotp != NULL)
3518 *maxprotp = VM_PROT_ALL;
3519 return (error);
3520 #else
3521 cap_rights_t fdrights;
3522 struct filedesc *fdp;
3523 struct file *fp;
3524 seqc_t seq;
3525
3526 *fpp = NULL;
3527 fdp = td->td_proc->p_fd;
3528 MPASS(cap_rights_is_set(rightsp, CAP_MMAP));
3529 for (;;) {
3530 error = fget_unlocked_seq(td, fd, rightsp, &fp, &seq);
3531 if (__predict_false(error != 0))
3532 return (error);
3533 if (__predict_false(fp->f_ops == &badfileops)) {
3534 fdrop(fp, td);
3535 return (EBADF);
3536 }
3537 if (maxprotp != NULL)
3538 fdrights = *cap_rights(fdp, fd);
3539 if (!fd_modified(fdp, fd, seq))
3540 break;
3541 fdrop(fp, td);
3542 }
3543
3544 /*
3545 * If requested, convert capability rights to access flags.
3546 */
3547 if (maxprotp != NULL)
3548 *maxprotp = cap_rights_to_vmprot(&fdrights);
3549 *fpp = fp;
3550 return (0);
3551 #endif
3552 }
3553
3554 int
fget_read(struct thread * td,int fd,cap_rights_t * rightsp,struct file ** fpp)3555 fget_read(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
3556 {
3557
3558 return (_fget(td, fd, fpp, FREAD, rightsp));
3559 }
3560
3561 int
fget_write(struct thread * td,int fd,cap_rights_t * rightsp,struct file ** fpp)3562 fget_write(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
3563 {
3564
3565 return (_fget(td, fd, fpp, FWRITE, rightsp));
3566 }
3567
3568 int
fget_fcntl(struct thread * td,int fd,cap_rights_t * rightsp,int needfcntl,struct file ** fpp)3569 fget_fcntl(struct thread *td, int fd, cap_rights_t *rightsp, int needfcntl,
3570 struct file **fpp)
3571 {
3572 #ifndef CAPABILITIES
3573 return (fget_unlocked(td, fd, rightsp, fpp));
3574 #else
3575 struct filedesc *fdp = td->td_proc->p_fd;
3576 struct file *fp;
3577 int error;
3578 seqc_t seq;
3579
3580 *fpp = NULL;
3581 MPASS(cap_rights_is_set(rightsp, CAP_FCNTL));
3582 for (;;) {
3583 error = fget_unlocked_seq(td, fd, rightsp, &fp, &seq);
3584 if (error != 0)
3585 return (error);
3586 error = cap_fcntl_check(fdp, fd, needfcntl);
3587 if (!fd_modified(fdp, fd, seq))
3588 break;
3589 fdrop(fp, td);
3590 }
3591 if (error != 0) {
3592 fdrop(fp, td);
3593 return (error);
3594 }
3595 *fpp = fp;
3596 return (0);
3597 #endif
3598 }
3599
3600 /*
3601 * Like fget() but loads the underlying vnode, or returns an error if the
3602 * descriptor does not represent a vnode. Note that pipes use vnodes but
3603 * never have VM objects. The returned vnode will be vref()'d.
3604 *
3605 * XXX: what about the unused flags ?
3606 */
3607 static __inline int
_fgetvp(struct thread * td,int fd,int flags,cap_rights_t * needrightsp,struct vnode ** vpp)3608 _fgetvp(struct thread *td, int fd, int flags, cap_rights_t *needrightsp,
3609 struct vnode **vpp)
3610 {
3611 struct file *fp;
3612 int error;
3613
3614 *vpp = NULL;
3615 error = _fget(td, fd, &fp, flags, needrightsp);
3616 if (error != 0)
3617 return (error);
3618 if (fp->f_vnode == NULL) {
3619 error = EINVAL;
3620 } else {
3621 *vpp = fp->f_vnode;
3622 vrefact(*vpp);
3623 }
3624 fdrop(fp, td);
3625
3626 return (error);
3627 }
3628
3629 int
fgetvp(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3630 fgetvp(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
3631 {
3632
3633 return (_fgetvp(td, fd, 0, rightsp, vpp));
3634 }
3635
3636 int
fgetvp_rights(struct thread * td,int fd,cap_rights_t * needrightsp,struct filecaps * havecaps,struct vnode ** vpp)3637 fgetvp_rights(struct thread *td, int fd, cap_rights_t *needrightsp,
3638 struct filecaps *havecaps, struct vnode **vpp)
3639 {
3640 struct filecaps caps;
3641 struct file *fp;
3642 int error;
3643
3644 error = fget_cap(td, fd, needrightsp, &fp, &caps);
3645 if (error != 0)
3646 return (error);
3647 if (fp->f_ops == &badfileops) {
3648 error = EBADF;
3649 goto out;
3650 }
3651 if (fp->f_vnode == NULL) {
3652 error = EINVAL;
3653 goto out;
3654 }
3655
3656 *havecaps = caps;
3657 *vpp = fp->f_vnode;
3658 vrefact(*vpp);
3659 fdrop(fp, td);
3660
3661 return (0);
3662 out:
3663 filecaps_free(&caps);
3664 fdrop(fp, td);
3665 return (error);
3666 }
3667
3668 int
fgetvp_read(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3669 fgetvp_read(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
3670 {
3671
3672 return (_fgetvp(td, fd, FREAD, rightsp, vpp));
3673 }
3674
3675 int
fgetvp_exec(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3676 fgetvp_exec(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
3677 {
3678
3679 return (_fgetvp(td, fd, FEXEC, rightsp, vpp));
3680 }
3681
3682 #ifdef notyet
3683 int
fgetvp_write(struct thread * td,int fd,cap_rights_t * rightsp,struct vnode ** vpp)3684 fgetvp_write(struct thread *td, int fd, cap_rights_t *rightsp,
3685 struct vnode **vpp)
3686 {
3687
3688 return (_fgetvp(td, fd, FWRITE, rightsp, vpp));
3689 }
3690 #endif
3691
3692 /*
3693 * Handle the last reference to a file being closed.
3694 *
3695 * Without the noinline attribute clang keeps inlining the func thorough this
3696 * file when fdrop is used.
3697 */
3698 int __noinline
_fdrop(struct file * fp,struct thread * td)3699 _fdrop(struct file *fp, struct thread *td)
3700 {
3701 int error;
3702 #ifdef INVARIANTS
3703 int count;
3704
3705 count = refcount_load(&fp->f_count);
3706 if (count != 0)
3707 panic("fdrop: fp %p count %d", fp, count);
3708 #endif
3709 error = fo_close(fp, td);
3710 atomic_subtract_int(&openfiles, 1);
3711 crfree(fp->f_cred);
3712 free(fp->f_advice, M_FADVISE);
3713 uma_zfree(file_zone, fp);
3714
3715 return (error);
3716 }
3717
3718 /*
3719 * Apply an advisory lock on a file descriptor.
3720 *
3721 * Just attempt to get a record lock of the requested type on the entire file
3722 * (l_whence = SEEK_SET, l_start = 0, l_len = 0).
3723 */
3724 #ifndef _SYS_SYSPROTO_H_
3725 struct flock_args {
3726 int fd;
3727 int how;
3728 };
3729 #endif
3730 /* ARGSUSED */
3731 int
sys_flock(struct thread * td,struct flock_args * uap)3732 sys_flock(struct thread *td, struct flock_args *uap)
3733 {
3734 struct file *fp;
3735 struct vnode *vp;
3736 struct flock lf;
3737 int error;
3738
3739 error = fget(td, uap->fd, &cap_flock_rights, &fp);
3740 if (error != 0)
3741 return (error);
3742 error = EOPNOTSUPP;
3743 if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
3744 goto done;
3745 }
3746 if (fp->f_ops == &path_fileops) {
3747 goto done;
3748 }
3749
3750 error = 0;
3751 vp = fp->f_vnode;
3752 lf.l_whence = SEEK_SET;
3753 lf.l_start = 0;
3754 lf.l_len = 0;
3755 if (uap->how & LOCK_UN) {
3756 lf.l_type = F_UNLCK;
3757 atomic_clear_int(&fp->f_flag, FHASLOCK);
3758 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
3759 goto done;
3760 }
3761 if (uap->how & LOCK_EX)
3762 lf.l_type = F_WRLCK;
3763 else if (uap->how & LOCK_SH)
3764 lf.l_type = F_RDLCK;
3765 else {
3766 error = EBADF;
3767 goto done;
3768 }
3769 atomic_set_int(&fp->f_flag, FHASLOCK);
3770 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf,
3771 (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT);
3772 done:
3773 fdrop(fp, td);
3774 return (error);
3775 }
3776 /*
3777 * Duplicate the specified descriptor to a free descriptor.
3778 */
3779 int
dupfdopen(struct thread * td,struct filedesc * fdp,int dfd,int mode,int openerror,int * indxp)3780 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode,
3781 int openerror, int *indxp)
3782 {
3783 struct filedescent *newfde, *oldfde;
3784 struct file *fp;
3785 u_long *ioctls;
3786 int error, indx;
3787
3788 KASSERT(openerror == ENODEV || openerror == ENXIO,
3789 ("unexpected error %d in %s", openerror, __func__));
3790
3791 /*
3792 * If the to-be-dup'd fd number is greater than the allowed number
3793 * of file descriptors, or the fd to be dup'd has already been
3794 * closed, then reject.
3795 */
3796 FILEDESC_XLOCK(fdp);
3797 if ((fp = fget_noref(fdp, dfd)) == NULL) {
3798 FILEDESC_XUNLOCK(fdp);
3799 return (EBADF);
3800 }
3801
3802 error = fdalloc(td, 0, &indx);
3803 if (error != 0) {
3804 FILEDESC_XUNLOCK(fdp);
3805 return (error);
3806 }
3807
3808 /*
3809 * There are two cases of interest here.
3810 *
3811 * For ENODEV simply dup (dfd) to file descriptor (indx) and return.
3812 *
3813 * For ENXIO steal away the file structure from (dfd) and store it in
3814 * (indx). (dfd) is effectively closed by this operation.
3815 */
3816 switch (openerror) {
3817 case ENODEV:
3818 /*
3819 * Check that the mode the file is being opened for is a
3820 * subset of the mode of the existing descriptor.
3821 */
3822 if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
3823 fdunused(fdp, indx);
3824 FILEDESC_XUNLOCK(fdp);
3825 return (EACCES);
3826 }
3827 if (!fhold(fp)) {
3828 fdunused(fdp, indx);
3829 FILEDESC_XUNLOCK(fdp);
3830 return (EBADF);
3831 }
3832 newfde = &fdp->fd_ofiles[indx];
3833 oldfde = &fdp->fd_ofiles[dfd];
3834 ioctls = filecaps_copy_prep(&oldfde->fde_caps);
3835 #ifdef CAPABILITIES
3836 seqc_write_begin(&newfde->fde_seqc);
3837 #endif
3838 fde_copy(oldfde, newfde);
3839 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
3840 ioctls);
3841 #ifdef CAPABILITIES
3842 seqc_write_end(&newfde->fde_seqc);
3843 #endif
3844 break;
3845 case ENXIO:
3846 /*
3847 * Steal away the file pointer from dfd and stuff it into indx.
3848 */
3849 newfde = &fdp->fd_ofiles[indx];
3850 oldfde = &fdp->fd_ofiles[dfd];
3851 #ifdef CAPABILITIES
3852 seqc_write_begin(&oldfde->fde_seqc);
3853 seqc_write_begin(&newfde->fde_seqc);
3854 #endif
3855 fde_copy(oldfde, newfde);
3856 oldfde->fde_file = NULL;
3857 fdunused(fdp, dfd);
3858 #ifdef CAPABILITIES
3859 seqc_write_end(&newfde->fde_seqc);
3860 seqc_write_end(&oldfde->fde_seqc);
3861 #endif
3862 break;
3863 }
3864 FILEDESC_XUNLOCK(fdp);
3865 *indxp = indx;
3866 return (0);
3867 }
3868
3869 /*
3870 * This sysctl determines if we will allow a process to chroot(2) if it
3871 * has a directory open:
3872 * 0: disallowed for all processes.
3873 * 1: allowed for processes that were not already chroot(2)'ed.
3874 * 2: allowed for all processes.
3875 */
3876
3877 static int chroot_allow_open_directories = 1;
3878
3879 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW,
3880 &chroot_allow_open_directories, 0,
3881 "Allow a process to chroot(2) if it has a directory open");
3882
3883 /*
3884 * Helper function for raised chroot(2) security function: Refuse if
3885 * any filedescriptors are open directories.
3886 */
3887 static int
chroot_refuse_vdir_fds(struct filedesc * fdp)3888 chroot_refuse_vdir_fds(struct filedesc *fdp)
3889 {
3890 struct vnode *vp;
3891 struct file *fp;
3892 int i;
3893
3894 FILEDESC_LOCK_ASSERT(fdp);
3895
3896 FILEDESC_FOREACH_FP(fdp, i, fp) {
3897 if (fp->f_type == DTYPE_VNODE) {
3898 vp = fp->f_vnode;
3899 if (vp->v_type == VDIR)
3900 return (EPERM);
3901 }
3902 }
3903 return (0);
3904 }
3905
3906 static void
pwd_fill(struct pwd * oldpwd,struct pwd * newpwd)3907 pwd_fill(struct pwd *oldpwd, struct pwd *newpwd)
3908 {
3909
3910 if (newpwd->pwd_cdir == NULL && oldpwd->pwd_cdir != NULL) {
3911 vrefact(oldpwd->pwd_cdir);
3912 newpwd->pwd_cdir = oldpwd->pwd_cdir;
3913 }
3914
3915 if (newpwd->pwd_rdir == NULL && oldpwd->pwd_rdir != NULL) {
3916 vrefact(oldpwd->pwd_rdir);
3917 newpwd->pwd_rdir = oldpwd->pwd_rdir;
3918 }
3919
3920 if (newpwd->pwd_jdir == NULL && oldpwd->pwd_jdir != NULL) {
3921 vrefact(oldpwd->pwd_jdir);
3922 newpwd->pwd_jdir = oldpwd->pwd_jdir;
3923 }
3924
3925 if (newpwd->pwd_adir == NULL && oldpwd->pwd_adir != NULL) {
3926 vrefact(oldpwd->pwd_adir);
3927 newpwd->pwd_adir = oldpwd->pwd_adir;
3928 }
3929 }
3930
3931 struct pwd *
pwd_hold_pwddesc(struct pwddesc * pdp)3932 pwd_hold_pwddesc(struct pwddesc *pdp)
3933 {
3934 struct pwd *pwd;
3935
3936 PWDDESC_ASSERT_XLOCKED(pdp);
3937 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
3938 if (pwd != NULL)
3939 refcount_acquire(&pwd->pwd_refcount);
3940 return (pwd);
3941 }
3942
3943 bool
pwd_hold_smr(struct pwd * pwd)3944 pwd_hold_smr(struct pwd *pwd)
3945 {
3946
3947 MPASS(pwd != NULL);
3948 if (__predict_true(refcount_acquire_if_not_zero(&pwd->pwd_refcount))) {
3949 return (true);
3950 }
3951 return (false);
3952 }
3953
3954 struct pwd *
pwd_hold(struct thread * td)3955 pwd_hold(struct thread *td)
3956 {
3957 struct pwddesc *pdp;
3958 struct pwd *pwd;
3959
3960 pdp = td->td_proc->p_pd;
3961
3962 vfs_smr_enter();
3963 pwd = vfs_smr_entered_load(&pdp->pd_pwd);
3964 if (pwd_hold_smr(pwd)) {
3965 vfs_smr_exit();
3966 return (pwd);
3967 }
3968 vfs_smr_exit();
3969 PWDDESC_XLOCK(pdp);
3970 pwd = pwd_hold_pwddesc(pdp);
3971 MPASS(pwd != NULL);
3972 PWDDESC_XUNLOCK(pdp);
3973 return (pwd);
3974 }
3975
3976 struct pwd *
pwd_hold_proc(struct proc * p)3977 pwd_hold_proc(struct proc *p)
3978 {
3979 struct pwddesc *pdp;
3980 struct pwd *pwd;
3981
3982 PROC_ASSERT_HELD(p);
3983 PROC_LOCK(p);
3984 pdp = pdhold(p);
3985 MPASS(pdp != NULL);
3986 PROC_UNLOCK(p);
3987
3988 PWDDESC_XLOCK(pdp);
3989 pwd = pwd_hold_pwddesc(pdp);
3990 MPASS(pwd != NULL);
3991 PWDDESC_XUNLOCK(pdp);
3992 pddrop(pdp);
3993 return (pwd);
3994 }
3995
3996 static struct pwd *
pwd_alloc(void)3997 pwd_alloc(void)
3998 {
3999 struct pwd *pwd;
4000
4001 pwd = uma_zalloc_smr(pwd_zone, M_WAITOK);
4002 bzero(pwd, sizeof(*pwd));
4003 refcount_init(&pwd->pwd_refcount, 1);
4004 return (pwd);
4005 }
4006
4007 void
pwd_drop(struct pwd * pwd)4008 pwd_drop(struct pwd *pwd)
4009 {
4010
4011 if (!refcount_release(&pwd->pwd_refcount))
4012 return;
4013
4014 if (pwd->pwd_cdir != NULL)
4015 vrele(pwd->pwd_cdir);
4016 if (pwd->pwd_rdir != NULL)
4017 vrele(pwd->pwd_rdir);
4018 if (pwd->pwd_jdir != NULL)
4019 vrele(pwd->pwd_jdir);
4020 if (pwd->pwd_adir != NULL)
4021 vrele(pwd->pwd_adir);
4022 uma_zfree_smr(pwd_zone, pwd);
4023 }
4024
4025 /*
4026 * The caller is responsible for invoking priv_check() and
4027 * mac_vnode_check_chroot() to authorize this operation.
4028 */
4029 int
pwd_chroot(struct thread * td,struct vnode * vp)4030 pwd_chroot(struct thread *td, struct vnode *vp)
4031 {
4032 struct pwddesc *pdp;
4033 struct filedesc *fdp;
4034 struct pwd *newpwd, *oldpwd;
4035 int error;
4036
4037 fdp = td->td_proc->p_fd;
4038 pdp = td->td_proc->p_pd;
4039 newpwd = pwd_alloc();
4040 FILEDESC_SLOCK(fdp);
4041 PWDDESC_XLOCK(pdp);
4042 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4043 if (chroot_allow_open_directories == 0 ||
4044 (chroot_allow_open_directories == 1 &&
4045 oldpwd->pwd_rdir != rootvnode)) {
4046 error = chroot_refuse_vdir_fds(fdp);
4047 FILEDESC_SUNLOCK(fdp);
4048 if (error != 0) {
4049 PWDDESC_XUNLOCK(pdp);
4050 pwd_drop(newpwd);
4051 return (error);
4052 }
4053 } else {
4054 FILEDESC_SUNLOCK(fdp);
4055 }
4056
4057 vrefact(vp);
4058 newpwd->pwd_rdir = vp;
4059 vrefact(vp);
4060 newpwd->pwd_adir = vp;
4061 if (oldpwd->pwd_jdir == NULL) {
4062 vrefact(vp);
4063 newpwd->pwd_jdir = vp;
4064 }
4065 pwd_fill(oldpwd, newpwd);
4066 pwd_set(pdp, newpwd);
4067 PWDDESC_XUNLOCK(pdp);
4068 pwd_drop(oldpwd);
4069 return (0);
4070 }
4071
4072 void
pwd_chdir(struct thread * td,struct vnode * vp)4073 pwd_chdir(struct thread *td, struct vnode *vp)
4074 {
4075 struct pwddesc *pdp;
4076 struct pwd *newpwd, *oldpwd;
4077
4078 VNPASS(vp->v_usecount > 0, vp);
4079
4080 newpwd = pwd_alloc();
4081 pdp = td->td_proc->p_pd;
4082 PWDDESC_XLOCK(pdp);
4083 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4084 newpwd->pwd_cdir = vp;
4085 pwd_fill(oldpwd, newpwd);
4086 pwd_set(pdp, newpwd);
4087 PWDDESC_XUNLOCK(pdp);
4088 pwd_drop(oldpwd);
4089 }
4090
4091 /*
4092 * Process is transitioning to/from a non-native ABI.
4093 */
4094 void
pwd_altroot(struct thread * td,struct vnode * altroot_vp)4095 pwd_altroot(struct thread *td, struct vnode *altroot_vp)
4096 {
4097 struct pwddesc *pdp;
4098 struct pwd *newpwd, *oldpwd;
4099
4100 newpwd = pwd_alloc();
4101 pdp = td->td_proc->p_pd;
4102 PWDDESC_XLOCK(pdp);
4103 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4104 if (altroot_vp != NULL) {
4105 /*
4106 * Native process to a non-native ABI.
4107 */
4108
4109 vrefact(altroot_vp);
4110 newpwd->pwd_adir = altroot_vp;
4111 } else {
4112 /*
4113 * Non-native process to the native ABI.
4114 */
4115
4116 vrefact(oldpwd->pwd_rdir);
4117 newpwd->pwd_adir = oldpwd->pwd_rdir;
4118 }
4119 pwd_fill(oldpwd, newpwd);
4120 pwd_set(pdp, newpwd);
4121 PWDDESC_XUNLOCK(pdp);
4122 pwd_drop(oldpwd);
4123 }
4124
4125 /*
4126 * jail_attach(2) changes both root and working directories.
4127 */
4128 int
pwd_chroot_chdir(struct thread * td,struct vnode * vp)4129 pwd_chroot_chdir(struct thread *td, struct vnode *vp)
4130 {
4131 struct pwddesc *pdp;
4132 struct filedesc *fdp;
4133 struct pwd *newpwd, *oldpwd;
4134 int error;
4135
4136 fdp = td->td_proc->p_fd;
4137 pdp = td->td_proc->p_pd;
4138 newpwd = pwd_alloc();
4139 FILEDESC_SLOCK(fdp);
4140 PWDDESC_XLOCK(pdp);
4141 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4142 error = chroot_refuse_vdir_fds(fdp);
4143 FILEDESC_SUNLOCK(fdp);
4144 if (error != 0) {
4145 PWDDESC_XUNLOCK(pdp);
4146 pwd_drop(newpwd);
4147 return (error);
4148 }
4149
4150 vrefact(vp);
4151 newpwd->pwd_rdir = vp;
4152 vrefact(vp);
4153 newpwd->pwd_cdir = vp;
4154 if (oldpwd->pwd_jdir == NULL) {
4155 vrefact(vp);
4156 newpwd->pwd_jdir = vp;
4157 }
4158 vrefact(vp);
4159 newpwd->pwd_adir = vp;
4160 pwd_fill(oldpwd, newpwd);
4161 pwd_set(pdp, newpwd);
4162 PWDDESC_XUNLOCK(pdp);
4163 pwd_drop(oldpwd);
4164 return (0);
4165 }
4166
4167 void
pwd_ensure_dirs(void)4168 pwd_ensure_dirs(void)
4169 {
4170 struct pwddesc *pdp;
4171 struct pwd *oldpwd, *newpwd;
4172
4173 pdp = curproc->p_pd;
4174 PWDDESC_XLOCK(pdp);
4175 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4176 if (oldpwd->pwd_cdir != NULL && oldpwd->pwd_rdir != NULL &&
4177 oldpwd->pwd_adir != NULL) {
4178 PWDDESC_XUNLOCK(pdp);
4179 return;
4180 }
4181 PWDDESC_XUNLOCK(pdp);
4182
4183 newpwd = pwd_alloc();
4184 PWDDESC_XLOCK(pdp);
4185 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4186 pwd_fill(oldpwd, newpwd);
4187 if (newpwd->pwd_cdir == NULL) {
4188 vrefact(rootvnode);
4189 newpwd->pwd_cdir = rootvnode;
4190 }
4191 if (newpwd->pwd_rdir == NULL) {
4192 vrefact(rootvnode);
4193 newpwd->pwd_rdir = rootvnode;
4194 }
4195 if (newpwd->pwd_adir == NULL) {
4196 vrefact(rootvnode);
4197 newpwd->pwd_adir = rootvnode;
4198 }
4199 pwd_set(pdp, newpwd);
4200 PWDDESC_XUNLOCK(pdp);
4201 pwd_drop(oldpwd);
4202 }
4203
4204 void
pwd_set_rootvnode(void)4205 pwd_set_rootvnode(void)
4206 {
4207 struct pwddesc *pdp;
4208 struct pwd *oldpwd, *newpwd;
4209
4210 pdp = curproc->p_pd;
4211
4212 newpwd = pwd_alloc();
4213 PWDDESC_XLOCK(pdp);
4214 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4215 vrefact(rootvnode);
4216 newpwd->pwd_cdir = rootvnode;
4217 vrefact(rootvnode);
4218 newpwd->pwd_rdir = rootvnode;
4219 vrefact(rootvnode);
4220 newpwd->pwd_adir = rootvnode;
4221 pwd_fill(oldpwd, newpwd);
4222 pwd_set(pdp, newpwd);
4223 PWDDESC_XUNLOCK(pdp);
4224 pwd_drop(oldpwd);
4225 }
4226
4227 /*
4228 * Scan all active processes and prisons to see if any of them have a current
4229 * or root directory of `olddp'. If so, replace them with the new mount point.
4230 */
4231 void
mountcheckdirs(struct vnode * olddp,struct vnode * newdp)4232 mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
4233 {
4234 struct pwddesc *pdp;
4235 struct pwd *newpwd, *oldpwd;
4236 struct prison *pr;
4237 struct proc *p;
4238 int nrele;
4239
4240 if (vrefcnt(olddp) == 1)
4241 return;
4242 nrele = 0;
4243 newpwd = pwd_alloc();
4244 sx_slock(&allproc_lock);
4245 FOREACH_PROC_IN_SYSTEM(p) {
4246 PROC_LOCK(p);
4247 pdp = pdhold(p);
4248 PROC_UNLOCK(p);
4249 if (pdp == NULL)
4250 continue;
4251 PWDDESC_XLOCK(pdp);
4252 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4253 if (oldpwd == NULL ||
4254 (oldpwd->pwd_cdir != olddp &&
4255 oldpwd->pwd_rdir != olddp &&
4256 oldpwd->pwd_jdir != olddp &&
4257 oldpwd->pwd_adir != olddp)) {
4258 PWDDESC_XUNLOCK(pdp);
4259 pddrop(pdp);
4260 continue;
4261 }
4262 if (oldpwd->pwd_cdir == olddp) {
4263 vrefact(newdp);
4264 newpwd->pwd_cdir = newdp;
4265 }
4266 if (oldpwd->pwd_rdir == olddp) {
4267 vrefact(newdp);
4268 newpwd->pwd_rdir = newdp;
4269 }
4270 if (oldpwd->pwd_jdir == olddp) {
4271 vrefact(newdp);
4272 newpwd->pwd_jdir = newdp;
4273 }
4274 if (oldpwd->pwd_adir == olddp) {
4275 vrefact(newdp);
4276 newpwd->pwd_adir = newdp;
4277 }
4278 pwd_fill(oldpwd, newpwd);
4279 pwd_set(pdp, newpwd);
4280 PWDDESC_XUNLOCK(pdp);
4281 pwd_drop(oldpwd);
4282 pddrop(pdp);
4283 newpwd = pwd_alloc();
4284 }
4285 sx_sunlock(&allproc_lock);
4286 pwd_drop(newpwd);
4287 if (rootvnode == olddp) {
4288 vrefact(newdp);
4289 rootvnode = newdp;
4290 nrele++;
4291 }
4292 mtx_lock(&prison0.pr_mtx);
4293 if (prison0.pr_root == olddp) {
4294 vrefact(newdp);
4295 prison0.pr_root = newdp;
4296 nrele++;
4297 }
4298 mtx_unlock(&prison0.pr_mtx);
4299 sx_slock(&allprison_lock);
4300 TAILQ_FOREACH(pr, &allprison, pr_list) {
4301 mtx_lock(&pr->pr_mtx);
4302 if (pr->pr_root == olddp) {
4303 vrefact(newdp);
4304 pr->pr_root = newdp;
4305 nrele++;
4306 }
4307 mtx_unlock(&pr->pr_mtx);
4308 }
4309 sx_sunlock(&allprison_lock);
4310 while (nrele--)
4311 vrele(olddp);
4312 }
4313
4314 int
descrip_check_write_mp(struct filedesc * fdp,struct mount * mp)4315 descrip_check_write_mp(struct filedesc *fdp, struct mount *mp)
4316 {
4317 struct file *fp;
4318 struct vnode *vp;
4319 int error, i;
4320
4321 error = 0;
4322 FILEDESC_SLOCK(fdp);
4323 FILEDESC_FOREACH_FP(fdp, i, fp) {
4324 if (fp->f_type != DTYPE_VNODE ||
4325 (atomic_load_int(&fp->f_flag) & FWRITE) == 0)
4326 continue;
4327 vp = fp->f_vnode;
4328 if (vp->v_mount == mp) {
4329 error = EDEADLK;
4330 break;
4331 }
4332 }
4333 FILEDESC_SUNLOCK(fdp);
4334 return (error);
4335 }
4336
4337 struct filedesc_to_leader *
filedesc_to_leader_alloc(struct filedesc_to_leader * old,struct filedesc * fdp,struct proc * leader)4338 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp,
4339 struct proc *leader)
4340 {
4341 struct filedesc_to_leader *fdtol;
4342
4343 fdtol = malloc(sizeof(struct filedesc_to_leader),
4344 M_FILEDESC_TO_LEADER, M_WAITOK);
4345 fdtol->fdl_refcount = 1;
4346 fdtol->fdl_holdcount = 0;
4347 fdtol->fdl_wakeup = 0;
4348 fdtol->fdl_leader = leader;
4349 if (old != NULL) {
4350 FILEDESC_XLOCK(fdp);
4351 fdtol->fdl_next = old->fdl_next;
4352 fdtol->fdl_prev = old;
4353 old->fdl_next = fdtol;
4354 fdtol->fdl_next->fdl_prev = fdtol;
4355 FILEDESC_XUNLOCK(fdp);
4356 } else {
4357 fdtol->fdl_next = fdtol;
4358 fdtol->fdl_prev = fdtol;
4359 }
4360 return (fdtol);
4361 }
4362
4363 struct filedesc_to_leader *
filedesc_to_leader_share(struct filedesc_to_leader * fdtol,struct filedesc * fdp)4364 filedesc_to_leader_share(struct filedesc_to_leader *fdtol, struct filedesc *fdp)
4365 {
4366 FILEDESC_XLOCK(fdp);
4367 fdtol->fdl_refcount++;
4368 FILEDESC_XUNLOCK(fdp);
4369 return (fdtol);
4370 }
4371
4372 static int
filedesc_nfiles(struct filedesc * fdp)4373 filedesc_nfiles(struct filedesc *fdp)
4374 {
4375 NDSLOTTYPE *map;
4376 int count, off, minoff;
4377
4378 if (fdp == NULL)
4379 return (0);
4380 count = 0;
4381 FILEDESC_SLOCK(fdp);
4382 map = fdp->fd_map;
4383 off = NDSLOT(fdp->fd_nfiles - 1);
4384 for (minoff = NDSLOT(0); off >= minoff; --off)
4385 count += bitcountl(map[off]);
4386 FILEDESC_SUNLOCK(fdp);
4387 return (count);
4388 }
4389
4390 int
proc_nfiles(struct proc * p)4391 proc_nfiles(struct proc *p)
4392 {
4393 struct filedesc *fdp;
4394 int res;
4395
4396 PROC_LOCK(p);
4397 fdp = fdhold(p);
4398 PROC_UNLOCK(p);
4399 res = filedesc_nfiles(fdp);
4400 fddrop(fdp);
4401 return (res);
4402 }
4403
4404 static int
sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)4405 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)
4406 {
4407 u_int namelen;
4408 int count;
4409
4410 namelen = arg2;
4411 if (namelen != 1)
4412 return (EINVAL);
4413
4414 if (*(int *)arg1 != 0)
4415 return (EINVAL);
4416
4417 count = filedesc_nfiles(curproc->p_fd);
4418 return (SYSCTL_OUT(req, &count, sizeof(count)));
4419 }
4420
4421 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds,
4422 CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds,
4423 "Number of open file descriptors");
4424
4425 /*
4426 * Get file structures globally.
4427 */
4428 static int
sysctl_kern_file(SYSCTL_HANDLER_ARGS)4429 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
4430 {
4431 struct xfile xf;
4432 struct filedesc *fdp;
4433 struct file *fp;
4434 struct proc *p;
4435 int error, n;
4436
4437 error = sysctl_wire_old_buffer(req, 0);
4438 if (error != 0)
4439 return (error);
4440 if (req->oldptr == NULL) {
4441 n = 0;
4442 sx_slock(&allproc_lock);
4443 FOREACH_PROC_IN_SYSTEM(p) {
4444 PROC_LOCK(p);
4445 if (p->p_state == PRS_NEW) {
4446 PROC_UNLOCK(p);
4447 continue;
4448 }
4449 fdp = fdhold(p);
4450 PROC_UNLOCK(p);
4451 if (fdp == NULL)
4452 continue;
4453 /* overestimates sparse tables. */
4454 n += fdp->fd_nfiles;
4455 fddrop(fdp);
4456 }
4457 sx_sunlock(&allproc_lock);
4458 return (SYSCTL_OUT(req, 0, n * sizeof(xf)));
4459 }
4460 error = 0;
4461 bzero(&xf, sizeof(xf));
4462 xf.xf_size = sizeof(xf);
4463 sx_slock(&allproc_lock);
4464 FOREACH_PROC_IN_SYSTEM(p) {
4465 PROC_LOCK(p);
4466 if (p->p_state == PRS_NEW) {
4467 PROC_UNLOCK(p);
4468 continue;
4469 }
4470 if (p_cansee(req->td, p) != 0) {
4471 PROC_UNLOCK(p);
4472 continue;
4473 }
4474 xf.xf_pid = p->p_pid;
4475 xf.xf_uid = p->p_ucred->cr_uid;
4476 fdp = fdhold(p);
4477 PROC_UNLOCK(p);
4478 if (fdp == NULL)
4479 continue;
4480 FILEDESC_SLOCK(fdp);
4481 if (refcount_load(&fdp->fd_refcnt) == 0)
4482 goto nextproc;
4483 FILEDESC_FOREACH_FP(fdp, n, fp) {
4484 xf.xf_fd = n;
4485 xf.xf_file = (uintptr_t)fp;
4486 xf.xf_data = (uintptr_t)fp->f_data;
4487 xf.xf_vnode = (uintptr_t)fp->f_vnode;
4488 xf.xf_type = (uintptr_t)fp->f_type;
4489 xf.xf_count = refcount_load(&fp->f_count);
4490 xf.xf_msgcount = 0;
4491 xf.xf_offset = foffset_get(fp);
4492 xf.xf_flag = fp->f_flag;
4493 error = SYSCTL_OUT(req, &xf, sizeof(xf));
4494
4495 /*
4496 * There is no need to re-check the fdtable refcount
4497 * here since the filedesc lock is not dropped in the
4498 * loop body.
4499 */
4500 if (error != 0)
4501 break;
4502 }
4503 nextproc:
4504 FILEDESC_SUNLOCK(fdp);
4505 fddrop(fdp);
4506 if (error)
4507 break;
4508 }
4509 sx_sunlock(&allproc_lock);
4510 return (error);
4511 }
4512
4513 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
4514 0, 0, sysctl_kern_file, "S,xfile", "Entire file table");
4515
4516 #ifdef KINFO_FILE_SIZE
4517 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
4518 #endif
4519
4520 static int
xlate_fflags(int fflags)4521 xlate_fflags(int fflags)
4522 {
4523 static const struct {
4524 int fflag;
4525 int kf_fflag;
4526 } fflags_table[] = {
4527 { FAPPEND, KF_FLAG_APPEND },
4528 { FASYNC, KF_FLAG_ASYNC },
4529 { FFSYNC, KF_FLAG_FSYNC },
4530 { FHASLOCK, KF_FLAG_HASLOCK },
4531 { FNONBLOCK, KF_FLAG_NONBLOCK },
4532 { FREAD, KF_FLAG_READ },
4533 { FWRITE, KF_FLAG_WRITE },
4534 { O_CREAT, KF_FLAG_CREAT },
4535 { O_DIRECT, KF_FLAG_DIRECT },
4536 { O_EXCL, KF_FLAG_EXCL },
4537 { O_EXEC, KF_FLAG_EXEC },
4538 { O_EXLOCK, KF_FLAG_EXLOCK },
4539 { O_NOFOLLOW, KF_FLAG_NOFOLLOW },
4540 { O_SHLOCK, KF_FLAG_SHLOCK },
4541 { O_TRUNC, KF_FLAG_TRUNC }
4542 };
4543 unsigned int i;
4544 int kflags;
4545
4546 kflags = 0;
4547 for (i = 0; i < nitems(fflags_table); i++)
4548 if (fflags & fflags_table[i].fflag)
4549 kflags |= fflags_table[i].kf_fflag;
4550 return (kflags);
4551 }
4552
4553 /* Trim unused data from kf_path by truncating the structure size. */
4554 void
pack_kinfo(struct kinfo_file * kif)4555 pack_kinfo(struct kinfo_file *kif)
4556 {
4557
4558 kif->kf_structsize = offsetof(struct kinfo_file, kf_path) +
4559 strlen(kif->kf_path) + 1;
4560 kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t));
4561 }
4562
4563 static void
export_file_to_kinfo(struct file * fp,int fd,cap_rights_t * rightsp,struct kinfo_file * kif,struct filedesc * fdp,int flags)4564 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp,
4565 struct kinfo_file *kif, struct filedesc *fdp, int flags)
4566 {
4567 int error;
4568
4569 bzero(kif, sizeof(*kif));
4570
4571 /* Set a default type to allow for empty fill_kinfo() methods. */
4572 kif->kf_type = KF_TYPE_UNKNOWN;
4573 kif->kf_flags = xlate_fflags(fp->f_flag);
4574 if (rightsp != NULL)
4575 kif->kf_cap_rights = *rightsp;
4576 else
4577 cap_rights_init_zero(&kif->kf_cap_rights);
4578 kif->kf_fd = fd;
4579 kif->kf_ref_count = refcount_load(&fp->f_count);
4580 kif->kf_offset = foffset_get(fp);
4581
4582 /*
4583 * This may drop the filedesc lock, so the 'fp' cannot be
4584 * accessed after this call.
4585 */
4586 error = fo_fill_kinfo(fp, kif, fdp);
4587 if (error == 0)
4588 kif->kf_status |= KF_ATTR_VALID;
4589 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4590 pack_kinfo(kif);
4591 else
4592 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4593 }
4594
4595 static void
export_vnode_to_kinfo(struct vnode * vp,int fd,int fflags,struct kinfo_file * kif,int flags)4596 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags,
4597 struct kinfo_file *kif, int flags)
4598 {
4599 int error;
4600
4601 bzero(kif, sizeof(*kif));
4602
4603 kif->kf_type = KF_TYPE_VNODE;
4604 error = vn_fill_kinfo_vnode(vp, kif);
4605 if (error == 0)
4606 kif->kf_status |= KF_ATTR_VALID;
4607 kif->kf_flags = xlate_fflags(fflags);
4608 cap_rights_init_zero(&kif->kf_cap_rights);
4609 kif->kf_fd = fd;
4610 kif->kf_ref_count = -1;
4611 kif->kf_offset = -1;
4612 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4613 pack_kinfo(kif);
4614 else
4615 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4616 vrele(vp);
4617 }
4618
4619 struct export_fd_buf {
4620 struct filedesc *fdp;
4621 struct pwddesc *pdp;
4622 struct sbuf *sb;
4623 ssize_t remainder;
4624 struct kinfo_file kif;
4625 int flags;
4626 };
4627
4628 static int
export_kinfo_to_sb(struct export_fd_buf * efbuf)4629 export_kinfo_to_sb(struct export_fd_buf *efbuf)
4630 {
4631 struct kinfo_file *kif;
4632
4633 kif = &efbuf->kif;
4634 if (efbuf->remainder != -1) {
4635 if (efbuf->remainder < kif->kf_structsize)
4636 return (ENOMEM);
4637 efbuf->remainder -= kif->kf_structsize;
4638 }
4639 if (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) != 0)
4640 return (sbuf_error(efbuf->sb));
4641 return (0);
4642 }
4643
4644 static int
export_file_to_sb(struct file * fp,int fd,cap_rights_t * rightsp,struct export_fd_buf * efbuf)4645 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp,
4646 struct export_fd_buf *efbuf)
4647 {
4648 int error;
4649
4650 if (efbuf->remainder == 0)
4651 return (ENOMEM);
4652 export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp,
4653 efbuf->flags);
4654 FILEDESC_SUNLOCK(efbuf->fdp);
4655 error = export_kinfo_to_sb(efbuf);
4656 FILEDESC_SLOCK(efbuf->fdp);
4657 return (error);
4658 }
4659
4660 static int
export_vnode_to_sb(struct vnode * vp,int fd,int fflags,struct export_fd_buf * efbuf)4661 export_vnode_to_sb(struct vnode *vp, int fd, int fflags,
4662 struct export_fd_buf *efbuf)
4663 {
4664 int error;
4665
4666 if (efbuf->remainder == 0)
4667 return (ENOMEM);
4668 if (efbuf->pdp != NULL)
4669 PWDDESC_XUNLOCK(efbuf->pdp);
4670 export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags);
4671 error = export_kinfo_to_sb(efbuf);
4672 if (efbuf->pdp != NULL)
4673 PWDDESC_XLOCK(efbuf->pdp);
4674 return (error);
4675 }
4676
4677 /*
4678 * Store a process file descriptor information to sbuf.
4679 *
4680 * Takes a locked proc as argument, and returns with the proc unlocked.
4681 */
4682 int
kern_proc_filedesc_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)4683 kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen,
4684 int flags)
4685 {
4686 struct file *fp;
4687 struct filedesc *fdp;
4688 struct pwddesc *pdp;
4689 struct export_fd_buf *efbuf;
4690 struct vnode *cttyvp, *textvp, *tracevp;
4691 struct pwd *pwd;
4692 int error, i;
4693 cap_rights_t rights;
4694
4695 PROC_LOCK_ASSERT(p, MA_OWNED);
4696
4697 /* ktrace vnode */
4698 tracevp = ktr_get_tracevp(p, true);
4699 /* text vnode */
4700 textvp = p->p_textvp;
4701 if (textvp != NULL)
4702 vrefact(textvp);
4703 /* Controlling tty. */
4704 cttyvp = NULL;
4705 if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) {
4706 cttyvp = p->p_pgrp->pg_session->s_ttyvp;
4707 if (cttyvp != NULL)
4708 vrefact(cttyvp);
4709 }
4710 fdp = fdhold(p);
4711 pdp = pdhold(p);
4712 PROC_UNLOCK(p);
4713
4714 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
4715 efbuf->fdp = NULL;
4716 efbuf->pdp = NULL;
4717 efbuf->sb = sb;
4718 efbuf->remainder = maxlen;
4719 efbuf->flags = flags;
4720
4721 error = 0;
4722 if (tracevp != NULL)
4723 error = export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE,
4724 FREAD | FWRITE, efbuf);
4725 if (error == 0 && textvp != NULL)
4726 error = export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD,
4727 efbuf);
4728 if (error == 0 && cttyvp != NULL)
4729 error = export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY,
4730 FREAD | FWRITE, efbuf);
4731 if (error != 0 || pdp == NULL || fdp == NULL)
4732 goto fail;
4733 efbuf->fdp = fdp;
4734 efbuf->pdp = pdp;
4735 PWDDESC_XLOCK(pdp);
4736 pwd = pwd_hold_pwddesc(pdp);
4737 if (pwd != NULL) {
4738 /* working directory */
4739 if (pwd->pwd_cdir != NULL) {
4740 vrefact(pwd->pwd_cdir);
4741 error = export_vnode_to_sb(pwd->pwd_cdir,
4742 KF_FD_TYPE_CWD, FREAD, efbuf);
4743 }
4744 /* root directory */
4745 if (error == 0 && pwd->pwd_rdir != NULL) {
4746 vrefact(pwd->pwd_rdir);
4747 error = export_vnode_to_sb(pwd->pwd_rdir,
4748 KF_FD_TYPE_ROOT, FREAD, efbuf);
4749 }
4750 /* jail directory */
4751 if (error == 0 && pwd->pwd_jdir != NULL) {
4752 vrefact(pwd->pwd_jdir);
4753 error = export_vnode_to_sb(pwd->pwd_jdir,
4754 KF_FD_TYPE_JAIL, FREAD, efbuf);
4755 }
4756 }
4757 PWDDESC_XUNLOCK(pdp);
4758 if (error != 0)
4759 goto fail;
4760 if (pwd != NULL)
4761 pwd_drop(pwd);
4762 FILEDESC_SLOCK(fdp);
4763 if (refcount_load(&fdp->fd_refcnt) == 0)
4764 goto skip;
4765 FILEDESC_FOREACH_FP(fdp, i, fp) {
4766 #ifdef CAPABILITIES
4767 rights = *cap_rights(fdp, i);
4768 #else /* !CAPABILITIES */
4769 rights = cap_no_rights;
4770 #endif
4771 /*
4772 * Create sysctl entry. It is OK to drop the filedesc
4773 * lock inside of export_file_to_sb() as we will
4774 * re-validate and re-evaluate its properties when the
4775 * loop continues.
4776 */
4777 error = export_file_to_sb(fp, i, &rights, efbuf);
4778 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4779 break;
4780 }
4781 skip:
4782 FILEDESC_SUNLOCK(fdp);
4783 fail:
4784 if (fdp != NULL)
4785 fddrop(fdp);
4786 if (pdp != NULL)
4787 pddrop(pdp);
4788 free(efbuf, M_TEMP);
4789 return (error);
4790 }
4791
4792 #define FILEDESC_SBUF_SIZE (sizeof(struct kinfo_file) * 5)
4793
4794 /*
4795 * Get per-process file descriptors for use by procstat(1), et al.
4796 */
4797 static int
sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)4798 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)
4799 {
4800 struct sbuf sb;
4801 struct proc *p;
4802 ssize_t maxlen;
4803 u_int namelen;
4804 int error, error2, *name;
4805
4806 namelen = arg2;
4807 if (namelen != 1)
4808 return (EINVAL);
4809
4810 name = (int *)arg1;
4811
4812 sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req);
4813 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
4814 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4815 if (error != 0) {
4816 sbuf_delete(&sb);
4817 return (error);
4818 }
4819 maxlen = req->oldptr != NULL ? req->oldlen : -1;
4820 error = kern_proc_filedesc_out(p, &sb, maxlen,
4821 KERN_FILEDESC_PACK_KINFO);
4822 error2 = sbuf_finish(&sb);
4823 sbuf_delete(&sb);
4824 return (error != 0 ? error : error2);
4825 }
4826
4827 #ifdef COMPAT_FREEBSD7
4828 #ifdef KINFO_OFILE_SIZE
4829 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE);
4830 #endif
4831
4832 static void
kinfo_to_okinfo(struct kinfo_file * kif,struct kinfo_ofile * okif)4833 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif)
4834 {
4835
4836 okif->kf_structsize = sizeof(*okif);
4837 okif->kf_type = kif->kf_type;
4838 okif->kf_fd = kif->kf_fd;
4839 okif->kf_ref_count = kif->kf_ref_count;
4840 okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE |
4841 KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK |
4842 KF_FLAG_DIRECT | KF_FLAG_HASLOCK);
4843 okif->kf_offset = kif->kf_offset;
4844 if (kif->kf_type == KF_TYPE_VNODE)
4845 okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type;
4846 else
4847 okif->kf_vnode_type = KF_VTYPE_VNON;
4848 strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path));
4849 if (kif->kf_type == KF_TYPE_SOCKET) {
4850 okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0;
4851 okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0;
4852 okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0;
4853 okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local;
4854 okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer;
4855 } else {
4856 okif->kf_sa_local.ss_family = AF_UNSPEC;
4857 okif->kf_sa_peer.ss_family = AF_UNSPEC;
4858 }
4859 }
4860
4861 static int
export_vnode_for_osysctl(struct vnode * vp,int type,struct kinfo_file * kif,struct kinfo_ofile * okif,struct pwddesc * pdp,struct sysctl_req * req)4862 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif,
4863 struct kinfo_ofile *okif, struct pwddesc *pdp, struct sysctl_req *req)
4864 {
4865 int error;
4866
4867 vrefact(vp);
4868 PWDDESC_XUNLOCK(pdp);
4869 export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO);
4870 kinfo_to_okinfo(kif, okif);
4871 error = SYSCTL_OUT(req, okif, sizeof(*okif));
4872 PWDDESC_XLOCK(pdp);
4873 return (error);
4874 }
4875
4876 /*
4877 * Get per-process file descriptors for use by procstat(1), et al.
4878 */
4879 static int
sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)4880 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)
4881 {
4882 struct kinfo_ofile *okif;
4883 struct kinfo_file *kif;
4884 struct filedesc *fdp;
4885 struct pwddesc *pdp;
4886 struct pwd *pwd;
4887 u_int namelen;
4888 int error, i, *name;
4889 struct file *fp;
4890 struct proc *p;
4891
4892 namelen = arg2;
4893 if (namelen != 1)
4894 return (EINVAL);
4895
4896 name = (int *)arg1;
4897 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4898 if (error != 0)
4899 return (error);
4900 fdp = fdhold(p);
4901 if (fdp != NULL)
4902 pdp = pdhold(p);
4903 PROC_UNLOCK(p);
4904 if (fdp == NULL || pdp == NULL) {
4905 if (fdp != NULL)
4906 fddrop(fdp);
4907 return (ENOENT);
4908 }
4909 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK);
4910 okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK);
4911 PWDDESC_XLOCK(pdp);
4912 pwd = pwd_hold_pwddesc(pdp);
4913 if (pwd != NULL) {
4914 if (pwd->pwd_cdir != NULL)
4915 export_vnode_for_osysctl(pwd->pwd_cdir, KF_FD_TYPE_CWD, kif,
4916 okif, pdp, req);
4917 if (pwd->pwd_rdir != NULL)
4918 export_vnode_for_osysctl(pwd->pwd_rdir, KF_FD_TYPE_ROOT, kif,
4919 okif, pdp, req);
4920 if (pwd->pwd_jdir != NULL)
4921 export_vnode_for_osysctl(pwd->pwd_jdir, KF_FD_TYPE_JAIL, kif,
4922 okif, pdp, req);
4923 }
4924 PWDDESC_XUNLOCK(pdp);
4925 if (pwd != NULL)
4926 pwd_drop(pwd);
4927 FILEDESC_SLOCK(fdp);
4928 if (refcount_load(&fdp->fd_refcnt) == 0)
4929 goto skip;
4930 FILEDESC_FOREACH_FP(fdp, i, fp) {
4931 export_file_to_kinfo(fp, i, NULL, kif, fdp,
4932 KERN_FILEDESC_PACK_KINFO);
4933 FILEDESC_SUNLOCK(fdp);
4934 kinfo_to_okinfo(kif, okif);
4935 error = SYSCTL_OUT(req, okif, sizeof(*okif));
4936 FILEDESC_SLOCK(fdp);
4937 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4938 break;
4939 }
4940 skip:
4941 FILEDESC_SUNLOCK(fdp);
4942 fddrop(fdp);
4943 pddrop(pdp);
4944 free(kif, M_TEMP);
4945 free(okif, M_TEMP);
4946 return (0);
4947 }
4948
4949 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc,
4950 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc,
4951 "Process ofiledesc entries");
4952 #endif /* COMPAT_FREEBSD7 */
4953
4954 int
vntype_to_kinfo(int vtype)4955 vntype_to_kinfo(int vtype)
4956 {
4957 struct {
4958 int vtype;
4959 int kf_vtype;
4960 } vtypes_table[] = {
4961 { VBAD, KF_VTYPE_VBAD },
4962 { VBLK, KF_VTYPE_VBLK },
4963 { VCHR, KF_VTYPE_VCHR },
4964 { VDIR, KF_VTYPE_VDIR },
4965 { VFIFO, KF_VTYPE_VFIFO },
4966 { VLNK, KF_VTYPE_VLNK },
4967 { VNON, KF_VTYPE_VNON },
4968 { VREG, KF_VTYPE_VREG },
4969 { VSOCK, KF_VTYPE_VSOCK }
4970 };
4971 unsigned int i;
4972
4973 /*
4974 * Perform vtype translation.
4975 */
4976 for (i = 0; i < nitems(vtypes_table); i++)
4977 if (vtypes_table[i].vtype == vtype)
4978 return (vtypes_table[i].kf_vtype);
4979
4980 return (KF_VTYPE_UNKNOWN);
4981 }
4982
4983 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc,
4984 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc,
4985 "Process filedesc entries");
4986
4987 /*
4988 * Store a process current working directory information to sbuf.
4989 *
4990 * Takes a locked proc as argument, and returns with the proc unlocked.
4991 */
4992 int
kern_proc_cwd_out(struct proc * p,struct sbuf * sb,ssize_t maxlen)4993 kern_proc_cwd_out(struct proc *p, struct sbuf *sb, ssize_t maxlen)
4994 {
4995 struct pwddesc *pdp;
4996 struct pwd *pwd;
4997 struct export_fd_buf *efbuf;
4998 struct vnode *cdir;
4999 int error;
5000
5001 PROC_LOCK_ASSERT(p, MA_OWNED);
5002
5003 pdp = pdhold(p);
5004 PROC_UNLOCK(p);
5005 if (pdp == NULL)
5006 return (EINVAL);
5007
5008 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
5009 efbuf->fdp = NULL;
5010 efbuf->pdp = pdp;
5011 efbuf->sb = sb;
5012 efbuf->remainder = maxlen;
5013 efbuf->flags = 0;
5014
5015 PWDDESC_XLOCK(pdp);
5016 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
5017 cdir = pwd->pwd_cdir;
5018 if (cdir == NULL) {
5019 error = EINVAL;
5020 } else {
5021 vrefact(cdir);
5022 error = export_vnode_to_sb(cdir, KF_FD_TYPE_CWD, FREAD, efbuf);
5023 }
5024 PWDDESC_XUNLOCK(pdp);
5025 pddrop(pdp);
5026 free(efbuf, M_TEMP);
5027 return (error);
5028 }
5029
5030 /*
5031 * Get per-process current working directory.
5032 */
5033 static int
sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)5034 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
5035 {
5036 struct sbuf sb;
5037 struct proc *p;
5038 ssize_t maxlen;
5039 u_int namelen;
5040 int error, error2, *name;
5041
5042 namelen = arg2;
5043 if (namelen != 1)
5044 return (EINVAL);
5045
5046 name = (int *)arg1;
5047
5048 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req);
5049 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
5050 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5051 if (error != 0) {
5052 sbuf_delete(&sb);
5053 return (error);
5054 }
5055 maxlen = req->oldptr != NULL ? req->oldlen : -1;
5056 error = kern_proc_cwd_out(p, &sb, maxlen);
5057 error2 = sbuf_finish(&sb);
5058 sbuf_delete(&sb);
5059 return (error != 0 ? error : error2);
5060 }
5061
5062 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE,
5063 sysctl_kern_proc_cwd, "Process current working directory");
5064
5065 #ifdef DDB
5066 /*
5067 * For the purposes of debugging, generate a human-readable string for the
5068 * file type.
5069 */
5070 static const char *
file_type_to_name(short type)5071 file_type_to_name(short type)
5072 {
5073
5074 switch (type) {
5075 case 0:
5076 return ("zero");
5077 case DTYPE_VNODE:
5078 return ("vnode");
5079 case DTYPE_SOCKET:
5080 return ("socket");
5081 case DTYPE_PIPE:
5082 return ("pipe");
5083 case DTYPE_FIFO:
5084 return ("fifo");
5085 case DTYPE_KQUEUE:
5086 return ("kqueue");
5087 case DTYPE_CRYPTO:
5088 return ("crypto");
5089 case DTYPE_MQUEUE:
5090 return ("mqueue");
5091 case DTYPE_SHM:
5092 return ("shm");
5093 case DTYPE_SEM:
5094 return ("ksem");
5095 case DTYPE_PTS:
5096 return ("pts");
5097 case DTYPE_DEV:
5098 return ("dev");
5099 case DTYPE_PROCDESC:
5100 return ("proc");
5101 case DTYPE_EVENTFD:
5102 return ("eventfd");
5103 case DTYPE_TIMERFD:
5104 return ("timerfd");
5105 default:
5106 return ("unkn");
5107 }
5108 }
5109
5110 /*
5111 * For the purposes of debugging, identify a process (if any, perhaps one of
5112 * many) that references the passed file in its file descriptor array. Return
5113 * NULL if none.
5114 */
5115 static struct proc *
file_to_first_proc(struct file * fp)5116 file_to_first_proc(struct file *fp)
5117 {
5118 struct filedesc *fdp;
5119 struct proc *p;
5120 int n;
5121
5122 FOREACH_PROC_IN_SYSTEM(p) {
5123 if (p->p_state == PRS_NEW)
5124 continue;
5125 fdp = p->p_fd;
5126 if (fdp == NULL)
5127 continue;
5128 for (n = 0; n < fdp->fd_nfiles; n++) {
5129 if (fp == fdp->fd_ofiles[n].fde_file)
5130 return (p);
5131 }
5132 }
5133 return (NULL);
5134 }
5135
5136 static void
db_print_file(struct file * fp,int header)5137 db_print_file(struct file *fp, int header)
5138 {
5139 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4))
5140 struct proc *p;
5141
5142 if (header)
5143 db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n",
5144 XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag",
5145 "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID",
5146 "FCmd");
5147 p = file_to_first_proc(fp);
5148 db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH,
5149 fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data,
5150 fp->f_flag, 0, refcount_load(&fp->f_count), 0, XPTRWIDTH, fp->f_vnode,
5151 p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-");
5152
5153 #undef XPTRWIDTH
5154 }
5155
DB_SHOW_COMMAND(file,db_show_file)5156 DB_SHOW_COMMAND(file, db_show_file)
5157 {
5158 struct file *fp;
5159
5160 if (!have_addr) {
5161 db_printf("usage: show file <addr>\n");
5162 return;
5163 }
5164 fp = (struct file *)addr;
5165 db_print_file(fp, 1);
5166 }
5167
DB_SHOW_COMMAND_FLAGS(files,db_show_files,DB_CMD_MEMSAFE)5168 DB_SHOW_COMMAND_FLAGS(files, db_show_files, DB_CMD_MEMSAFE)
5169 {
5170 struct filedesc *fdp;
5171 struct file *fp;
5172 struct proc *p;
5173 int header;
5174 int n;
5175
5176 header = 1;
5177 FOREACH_PROC_IN_SYSTEM(p) {
5178 if (p->p_state == PRS_NEW)
5179 continue;
5180 if ((fdp = p->p_fd) == NULL)
5181 continue;
5182 for (n = 0; n < fdp->fd_nfiles; ++n) {
5183 if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
5184 continue;
5185 db_print_file(fp, header);
5186 header = 0;
5187 }
5188 }
5189 }
5190 #endif
5191
5192 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc,
5193 CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5194 &maxfilesperproc, 0, "Maximum files allowed open per process");
5195
5196 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5197 &maxfiles, 0, "Maximum number of files");
5198
5199 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
5200 &openfiles, 0, "System-wide number of open files");
5201
5202 /* ARGSUSED*/
5203 static void
filelistinit(void * dummy)5204 filelistinit(void *dummy)
5205 {
5206
5207 file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL,
5208 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
5209 filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0),
5210 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
5211 pwd_zone = uma_zcreate("PWD", sizeof(struct pwd), NULL, NULL,
5212 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_SMR);
5213 /*
5214 * XXXMJG this is a temporary hack due to boot ordering issues against
5215 * the vnode zone.
5216 */
5217 vfs_smr = uma_zone_get_smr(pwd_zone);
5218 mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF);
5219 }
5220 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL);
5221
5222 /*-------------------------------------------------------------------*/
5223
5224 static int
badfo_readwrite(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5225 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred,
5226 int flags, struct thread *td)
5227 {
5228
5229 return (EBADF);
5230 }
5231
5232 static int
badfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5233 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5234 struct thread *td)
5235 {
5236
5237 return (EINVAL);
5238 }
5239
5240 static int
badfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5241 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
5242 struct thread *td)
5243 {
5244
5245 return (EBADF);
5246 }
5247
5248 static int
badfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5249 badfo_poll(struct file *fp, int events, struct ucred *active_cred,
5250 struct thread *td)
5251 {
5252
5253 return (0);
5254 }
5255
5256 static int
badfo_kqfilter(struct file * fp,struct knote * kn)5257 badfo_kqfilter(struct file *fp, struct knote *kn)
5258 {
5259
5260 return (EBADF);
5261 }
5262
5263 static int
badfo_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)5264 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
5265 {
5266
5267 return (EBADF);
5268 }
5269
5270 static int
badfo_close(struct file * fp,struct thread * td)5271 badfo_close(struct file *fp, struct thread *td)
5272 {
5273
5274 return (0);
5275 }
5276
5277 static int
badfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5278 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5279 struct thread *td)
5280 {
5281
5282 return (EBADF);
5283 }
5284
5285 static int
badfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5286 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5287 struct thread *td)
5288 {
5289
5290 return (EBADF);
5291 }
5292
5293 static int
badfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5294 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5295 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5296 struct thread *td)
5297 {
5298
5299 return (EBADF);
5300 }
5301
5302 static int
badfo_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)5303 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
5304 {
5305
5306 return (0);
5307 }
5308
5309 const struct fileops badfileops = {
5310 .fo_read = badfo_readwrite,
5311 .fo_write = badfo_readwrite,
5312 .fo_truncate = badfo_truncate,
5313 .fo_ioctl = badfo_ioctl,
5314 .fo_poll = badfo_poll,
5315 .fo_kqfilter = badfo_kqfilter,
5316 .fo_stat = badfo_stat,
5317 .fo_close = badfo_close,
5318 .fo_chmod = badfo_chmod,
5319 .fo_chown = badfo_chown,
5320 .fo_sendfile = badfo_sendfile,
5321 .fo_fill_kinfo = badfo_fill_kinfo,
5322 };
5323
5324 static int
path_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5325 path_poll(struct file *fp, int events, struct ucred *active_cred,
5326 struct thread *td)
5327 {
5328 return (POLLNVAL);
5329 }
5330
5331 static int
path_close(struct file * fp,struct thread * td)5332 path_close(struct file *fp, struct thread *td)
5333 {
5334 MPASS(fp->f_type == DTYPE_VNODE);
5335 fp->f_ops = &badfileops;
5336 vrele(fp->f_vnode);
5337 return (0);
5338 }
5339
5340 const struct fileops path_fileops = {
5341 .fo_read = badfo_readwrite,
5342 .fo_write = badfo_readwrite,
5343 .fo_truncate = badfo_truncate,
5344 .fo_ioctl = badfo_ioctl,
5345 .fo_poll = path_poll,
5346 .fo_kqfilter = vn_kqfilter_opath,
5347 .fo_stat = vn_statfile,
5348 .fo_close = path_close,
5349 .fo_chmod = badfo_chmod,
5350 .fo_chown = badfo_chown,
5351 .fo_sendfile = badfo_sendfile,
5352 .fo_fill_kinfo = vn_fill_kinfo,
5353 .fo_cmp = vn_cmp,
5354 .fo_flags = DFLAG_PASSABLE,
5355 };
5356
5357 int
invfo_rdwr(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5358 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred,
5359 int flags, struct thread *td)
5360 {
5361
5362 return (EOPNOTSUPP);
5363 }
5364
5365 int
invfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5366 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5367 struct thread *td)
5368 {
5369
5370 return (EINVAL);
5371 }
5372
5373 int
invfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5374 invfo_ioctl(struct file *fp, u_long com, void *data,
5375 struct ucred *active_cred, struct thread *td)
5376 {
5377
5378 return (ENOTTY);
5379 }
5380
5381 int
invfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5382 invfo_poll(struct file *fp, int events, struct ucred *active_cred,
5383 struct thread *td)
5384 {
5385
5386 return (poll_no_poll(events));
5387 }
5388
5389 int
invfo_kqfilter(struct file * fp,struct knote * kn)5390 invfo_kqfilter(struct file *fp, struct knote *kn)
5391 {
5392
5393 return (EINVAL);
5394 }
5395
5396 int
invfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5397 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5398 struct thread *td)
5399 {
5400
5401 return (EINVAL);
5402 }
5403
5404 int
invfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5405 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5406 struct thread *td)
5407 {
5408
5409 return (EINVAL);
5410 }
5411
5412 int
invfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5413 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5414 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5415 struct thread *td)
5416 {
5417
5418 return (EINVAL);
5419 }
5420
5421 /*-------------------------------------------------------------------*/
5422
5423 /*
5424 * File Descriptor pseudo-device driver (/dev/fd/).
5425 *
5426 * Opening minor device N dup()s the file (if any) connected to file
5427 * descriptor N belonging to the calling process. Note that this driver
5428 * consists of only the ``open()'' routine, because all subsequent
5429 * references to this file will be direct to the other driver.
5430 *
5431 * XXX: we could give this one a cloning event handler if necessary.
5432 */
5433
5434 /* ARGSUSED */
5435 static int
fdopen(struct cdev * dev,int mode,int type,struct thread * td)5436 fdopen(struct cdev *dev, int mode, int type, struct thread *td)
5437 {
5438
5439 /*
5440 * XXX Kludge: set curthread->td_dupfd to contain the value of the
5441 * the file descriptor being sought for duplication. The error
5442 * return ensures that the vnode for this device will be released
5443 * by vn_open. Open will detect this special error and take the
5444 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
5445 * will simply report the error.
5446 */
5447 td->td_dupfd = dev2unit(dev);
5448 return (ENODEV);
5449 }
5450
5451 static struct cdevsw fildesc_cdevsw = {
5452 .d_version = D_VERSION,
5453 .d_open = fdopen,
5454 .d_name = "FD",
5455 };
5456
5457 static void
fildesc_drvinit(void * unused)5458 fildesc_drvinit(void *unused)
5459 {
5460 struct cdev *dev;
5461
5462 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL,
5463 UID_ROOT, GID_WHEEL, 0666, "fd/0");
5464 make_dev_alias(dev, "stdin");
5465 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL,
5466 UID_ROOT, GID_WHEEL, 0666, "fd/1");
5467 make_dev_alias(dev, "stdout");
5468 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL,
5469 UID_ROOT, GID_WHEEL, 0666, "fd/2");
5470 make_dev_alias(dev, "stderr");
5471 }
5472
5473 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);
5474