xref: /linux/drivers/infiniband/hw/hns/hns_roce_mr.c (revision dd91b5e1d6448794c07378d1be12e3261c8769e7)
1 /*
2  * Copyright (c) 2016 Hisilicon Limited.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/vmalloc.h>
35 #include <linux/count_zeros.h>
36 #include <rdma/ib_umem.h>
37 #include <linux/math.h>
38 #include "hns_roce_device.h"
39 #include "hns_roce_cmd.h"
40 #include "hns_roce_hem.h"
41 #include "hns_roce_trace.h"
42 
hw_index_to_key(int ind)43 static u32 hw_index_to_key(int ind)
44 {
45 	return ((u32)ind >> 24) | ((u32)ind << 8);
46 }
47 
key_to_hw_index(u32 key)48 unsigned long key_to_hw_index(u32 key)
49 {
50 	return (key << 24) | (key >> 8);
51 }
52 
alloc_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)53 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
54 {
55 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
56 	struct ib_device *ibdev = &hr_dev->ib_dev;
57 	int err;
58 	int id;
59 
60 	/* Allocate a key for mr from mr_table */
61 	id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
62 			     GFP_KERNEL);
63 	if (id < 0) {
64 		ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
65 		return -ENOMEM;
66 	}
67 
68 	mr->key = hw_index_to_key(id); /* MR key */
69 
70 	err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
71 				 (unsigned long)id);
72 	if (err) {
73 		ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
74 		goto err_free_bitmap;
75 	}
76 
77 	return 0;
78 err_free_bitmap:
79 	ida_free(&mtpt_ida->ida, id);
80 	return err;
81 }
82 
free_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)83 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
84 {
85 	unsigned long obj = key_to_hw_index(mr->key);
86 
87 	hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
88 	ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
89 }
90 
alloc_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr,struct ib_udata * udata,u64 start)91 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
92 			struct ib_udata *udata, u64 start)
93 {
94 	struct ib_device *ibdev = &hr_dev->ib_dev;
95 	bool is_fast = mr->type == MR_TYPE_FRMR;
96 	struct hns_roce_buf_attr buf_attr = {};
97 	int err;
98 
99 	mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
100 	buf_attr.page_shift = is_fast ? PAGE_SHIFT :
101 			      hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
102 	buf_attr.region[0].size = mr->size;
103 	buf_attr.region[0].hopnum = mr->pbl_hop_num;
104 	buf_attr.region_count = 1;
105 	buf_attr.user_access = mr->access;
106 	/* fast MR's buffer is alloced before mapping, not at creation */
107 	buf_attr.mtt_only = is_fast;
108 	buf_attr.iova = mr->iova;
109 	/* pagesize and hopnum is fixed for fast MR */
110 	buf_attr.adaptive = !is_fast;
111 	buf_attr.type = MTR_PBL;
112 
113 	err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
114 				  hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
115 				  udata, start);
116 	if (err) {
117 		ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
118 		return err;
119 	}
120 
121 	mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
122 	mr->pbl_hop_num = buf_attr.region[0].hopnum;
123 
124 	return err;
125 }
126 
free_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)127 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
128 {
129 	hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
130 }
131 
hns_roce_mr_free(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)132 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
133 {
134 	struct ib_device *ibdev = &hr_dev->ib_dev;
135 	int ret;
136 
137 	if (mr->enabled) {
138 		ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
139 					      key_to_hw_index(mr->key) &
140 					      (hr_dev->caps.num_mtpts - 1));
141 		if (ret)
142 			ibdev_warn_ratelimited(ibdev, "failed to destroy mpt, ret = %d.\n",
143 					       ret);
144 	}
145 
146 	free_mr_pbl(hr_dev, mr);
147 	free_mr_key(hr_dev, mr);
148 }
149 
hns_roce_mr_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)150 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
151 			      struct hns_roce_mr *mr)
152 {
153 	unsigned long mtpt_idx = key_to_hw_index(mr->key);
154 	struct hns_roce_cmd_mailbox *mailbox;
155 	struct device *dev = hr_dev->dev;
156 	int ret;
157 
158 	/* Allocate mailbox memory */
159 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
160 	if (IS_ERR(mailbox))
161 		return PTR_ERR(mailbox);
162 
163 	trace_hns_mr(mr);
164 	if (mr->type != MR_TYPE_FRMR)
165 		ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
166 	else
167 		ret = hr_dev->hw->frmr_write_mtpt(mailbox->buf, mr);
168 	if (ret) {
169 		dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
170 		goto err_page;
171 	}
172 
173 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
174 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
175 	if (ret) {
176 		dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
177 		goto err_page;
178 	}
179 
180 	mr->enabled = 1;
181 
182 err_page:
183 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
184 
185 	return ret;
186 }
187 
hns_roce_init_mr_table(struct hns_roce_dev * hr_dev)188 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
189 {
190 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
191 
192 	ida_init(&mtpt_ida->ida);
193 	mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
194 	mtpt_ida->min = hr_dev->caps.reserved_mrws;
195 }
196 
hns_roce_get_dma_mr(struct ib_pd * pd,int acc)197 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
198 {
199 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
200 	struct hns_roce_mr *mr;
201 	int ret;
202 
203 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
204 	if (!mr)
205 		return  ERR_PTR(-ENOMEM);
206 
207 	mr->type = MR_TYPE_DMA;
208 	mr->pd = to_hr_pd(pd)->pdn;
209 	mr->access = acc;
210 
211 	/* Allocate memory region key */
212 	hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
213 	ret = alloc_mr_key(hr_dev, mr);
214 	if (ret)
215 		goto err_free;
216 
217 	ret = hns_roce_mr_enable(hr_dev, mr);
218 	if (ret)
219 		goto err_mr;
220 
221 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
222 
223 	return &mr->ibmr;
224 err_mr:
225 	free_mr_key(hr_dev, mr);
226 
227 err_free:
228 	kfree(mr);
229 	return ERR_PTR(ret);
230 }
231 
hns_roce_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)232 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
233 				   u64 virt_addr, int access_flags,
234 				   struct ib_udata *udata)
235 {
236 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
237 	struct hns_roce_mr *mr;
238 	int ret;
239 
240 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
241 	if (!mr) {
242 		ret = -ENOMEM;
243 		goto err_out;
244 	}
245 
246 	mr->iova = virt_addr;
247 	mr->size = length;
248 	mr->pd = to_hr_pd(pd)->pdn;
249 	mr->access = access_flags;
250 	mr->type = MR_TYPE_MR;
251 
252 	ret = alloc_mr_key(hr_dev, mr);
253 	if (ret)
254 		goto err_alloc_mr;
255 
256 	ret = alloc_mr_pbl(hr_dev, mr, udata, start);
257 	if (ret)
258 		goto err_alloc_key;
259 
260 	ret = hns_roce_mr_enable(hr_dev, mr);
261 	if (ret)
262 		goto err_alloc_pbl;
263 
264 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
265 
266 	return &mr->ibmr;
267 
268 err_alloc_pbl:
269 	free_mr_pbl(hr_dev, mr);
270 err_alloc_key:
271 	free_mr_key(hr_dev, mr);
272 err_alloc_mr:
273 	kfree(mr);
274 err_out:
275 	atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REG_ERR_CNT]);
276 
277 	return ERR_PTR(ret);
278 }
279 
hns_roce_rereg_user_mr(struct ib_mr * ibmr,int flags,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_pd * pd,struct ib_udata * udata)280 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
281 				     u64 length, u64 virt_addr,
282 				     int mr_access_flags, struct ib_pd *pd,
283 				     struct ib_udata *udata)
284 {
285 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
286 	struct ib_device *ib_dev = &hr_dev->ib_dev;
287 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
288 	struct hns_roce_cmd_mailbox *mailbox;
289 	unsigned long mtpt_idx;
290 	int ret;
291 
292 	if (!mr->enabled) {
293 		ret = -EINVAL;
294 		goto err_out;
295 	}
296 
297 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
298 	ret = PTR_ERR_OR_ZERO(mailbox);
299 	if (ret)
300 		goto err_out;
301 
302 	mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
303 
304 	ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
305 				mtpt_idx);
306 	if (ret)
307 		goto free_cmd_mbox;
308 
309 	ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
310 				      mtpt_idx);
311 	if (ret)
312 		ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
313 
314 	mr->enabled = 0;
315 	mr->iova = virt_addr;
316 	mr->size = length;
317 
318 	if (flags & IB_MR_REREG_PD)
319 		mr->pd = to_hr_pd(pd)->pdn;
320 
321 	if (flags & IB_MR_REREG_ACCESS)
322 		mr->access = mr_access_flags;
323 
324 	if (flags & IB_MR_REREG_TRANS) {
325 		free_mr_pbl(hr_dev, mr);
326 		ret = alloc_mr_pbl(hr_dev, mr, udata, start);
327 		if (ret) {
328 			ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
329 				  ret);
330 			goto free_cmd_mbox;
331 		}
332 	}
333 
334 	ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
335 	if (ret) {
336 		ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
337 		goto free_cmd_mbox;
338 	}
339 
340 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
341 				     mtpt_idx);
342 	if (ret) {
343 		ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
344 		goto free_cmd_mbox;
345 	}
346 
347 	mr->enabled = 1;
348 
349 free_cmd_mbox:
350 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
351 
352 err_out:
353 	if (ret) {
354 		atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REREG_ERR_CNT]);
355 		return ERR_PTR(ret);
356 	}
357 
358 	return NULL;
359 }
360 
hns_roce_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)361 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
362 {
363 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
364 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
365 
366 	if (hr_dev->hw->dereg_mr)
367 		hr_dev->hw->dereg_mr(hr_dev);
368 
369 	hns_roce_mr_free(hr_dev, mr);
370 	kfree(mr);
371 
372 	return 0;
373 }
374 
hns_roce_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)375 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
376 				u32 max_num_sg)
377 {
378 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
379 	struct device *dev = hr_dev->dev;
380 	struct hns_roce_mr *mr;
381 	int ret;
382 
383 	if (mr_type != IB_MR_TYPE_MEM_REG)
384 		return ERR_PTR(-EINVAL);
385 
386 	if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
387 		dev_err(dev, "max_num_sg larger than %d\n",
388 			HNS_ROCE_FRMR_MAX_PA);
389 		return ERR_PTR(-EINVAL);
390 	}
391 
392 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
393 	if (!mr)
394 		return ERR_PTR(-ENOMEM);
395 
396 	mr->type = MR_TYPE_FRMR;
397 	mr->pd = to_hr_pd(pd)->pdn;
398 	mr->size = max_num_sg * (1 << PAGE_SHIFT);
399 
400 	/* Allocate memory region key */
401 	ret = alloc_mr_key(hr_dev, mr);
402 	if (ret)
403 		goto err_free;
404 
405 	ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
406 	if (ret)
407 		goto err_key;
408 
409 	ret = hns_roce_mr_enable(hr_dev, mr);
410 	if (ret)
411 		goto err_pbl;
412 
413 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
414 	mr->ibmr.length = mr->size;
415 
416 	return &mr->ibmr;
417 
418 err_pbl:
419 	free_mr_pbl(hr_dev, mr);
420 err_key:
421 	free_mr_key(hr_dev, mr);
422 err_free:
423 	kfree(mr);
424 	return ERR_PTR(ret);
425 }
426 
hns_roce_set_page(struct ib_mr * ibmr,u64 addr)427 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
428 {
429 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
430 
431 	if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
432 		mr->page_list[mr->npages++] = addr;
433 		return 0;
434 	}
435 
436 	return -ENOBUFS;
437 }
438 
hns_roce_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset_p)439 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
440 		       unsigned int *sg_offset_p)
441 {
442 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
443 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
444 	struct ib_device *ibdev = &hr_dev->ib_dev;
445 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
446 	struct hns_roce_mtr *mtr = &mr->pbl_mtr;
447 	int ret, sg_num = 0;
448 
449 	if (!IS_ALIGNED(sg_offset, HNS_ROCE_FRMR_ALIGN_SIZE) ||
450 	    ibmr->page_size < HNS_HW_PAGE_SIZE ||
451 	    ibmr->page_size > HNS_HW_MAX_PAGE_SIZE)
452 		return sg_num;
453 
454 	mr->npages = 0;
455 	mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
456 				 sizeof(dma_addr_t), GFP_KERNEL);
457 	if (!mr->page_list)
458 		return sg_num;
459 
460 	sg_num = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset_p, hns_roce_set_page);
461 	if (sg_num < 1) {
462 		ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
463 			  mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, sg_num);
464 		goto err_page_list;
465 	}
466 
467 	mtr->hem_cfg.region[0].offset = 0;
468 	mtr->hem_cfg.region[0].count = mr->npages;
469 	mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
470 	mtr->hem_cfg.region_count = 1;
471 	ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
472 	if (ret) {
473 		ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
474 		sg_num = 0;
475 	} else {
476 		mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
477 	}
478 
479 err_page_list:
480 	kvfree(mr->page_list);
481 	mr->page_list = NULL;
482 
483 	return sg_num;
484 }
485 
hns_roce_mw_free(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)486 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
487 			     struct hns_roce_mw *mw)
488 {
489 	struct device *dev = hr_dev->dev;
490 	int ret;
491 
492 	if (mw->enabled) {
493 		ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
494 					      key_to_hw_index(mw->rkey) &
495 					      (hr_dev->caps.num_mtpts - 1));
496 		if (ret)
497 			dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
498 
499 		hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
500 				   key_to_hw_index(mw->rkey));
501 	}
502 
503 	ida_free(&hr_dev->mr_table.mtpt_ida.ida,
504 		 (int)key_to_hw_index(mw->rkey));
505 }
506 
hns_roce_mw_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)507 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
508 			      struct hns_roce_mw *mw)
509 {
510 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
511 	struct hns_roce_cmd_mailbox *mailbox;
512 	struct device *dev = hr_dev->dev;
513 	unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
514 	int ret;
515 
516 	/* prepare HEM entry memory */
517 	ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
518 	if (ret)
519 		return ret;
520 
521 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
522 	if (IS_ERR(mailbox)) {
523 		ret = PTR_ERR(mailbox);
524 		goto err_table;
525 	}
526 
527 	ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
528 	if (ret) {
529 		dev_err(dev, "MW write mtpt fail!\n");
530 		goto err_page;
531 	}
532 
533 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
534 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
535 	if (ret) {
536 		dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
537 		goto err_page;
538 	}
539 
540 	mw->enabled = 1;
541 
542 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
543 
544 	return 0;
545 
546 err_page:
547 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
548 
549 err_table:
550 	hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
551 
552 	return ret;
553 }
554 
hns_roce_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)555 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
556 {
557 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
558 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
559 	struct ib_device *ibdev = &hr_dev->ib_dev;
560 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
561 	int ret;
562 	int id;
563 
564 	/* Allocate a key for mw from mr_table */
565 	id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
566 			     GFP_KERNEL);
567 	if (id < 0) {
568 		ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id);
569 		return -ENOMEM;
570 	}
571 
572 	mw->rkey = hw_index_to_key(id);
573 
574 	ibmw->rkey = mw->rkey;
575 	mw->pdn = to_hr_pd(ibmw->pd)->pdn;
576 	mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
577 	mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
578 	mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
579 
580 	ret = hns_roce_mw_enable(hr_dev, mw);
581 	if (ret)
582 		goto err_mw;
583 
584 	return 0;
585 
586 err_mw:
587 	hns_roce_mw_free(hr_dev, mw);
588 	return ret;
589 }
590 
hns_roce_dealloc_mw(struct ib_mw * ibmw)591 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
592 {
593 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
594 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
595 
596 	hns_roce_mw_free(hr_dev, mw);
597 	return 0;
598 }
599 
mtr_map_region(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_region * region,dma_addr_t * pages,int max_count)600 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
601 			  struct hns_roce_buf_region *region, dma_addr_t *pages,
602 			  int max_count)
603 {
604 	int count, npage;
605 	int offset, end;
606 	__le64 *mtts;
607 	u64 addr;
608 	int i;
609 
610 	offset = region->offset;
611 	end = offset + region->count;
612 	npage = 0;
613 	while (offset < end && npage < max_count) {
614 		count = 0;
615 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
616 						  offset, &count);
617 		if (!mtts)
618 			return -ENOBUFS;
619 
620 		for (i = 0; i < count && npage < max_count; i++) {
621 			addr = pages[npage];
622 
623 			mtts[i] = cpu_to_le64(addr);
624 			npage++;
625 		}
626 		offset += count;
627 	}
628 
629 	return npage;
630 }
631 
mtr_has_mtt(struct hns_roce_buf_attr * attr)632 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
633 {
634 	int i;
635 
636 	for (i = 0; i < attr->region_count; i++)
637 		if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
638 		    attr->region[i].hopnum > 0)
639 			return true;
640 
641 	/* because the mtr only one root base address, when hopnum is 0 means
642 	 * root base address equals the first buffer address, thus all alloced
643 	 * memory must in a continuous space accessed by direct mode.
644 	 */
645 	return false;
646 }
647 
mtr_bufs_size(struct hns_roce_buf_attr * attr)648 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
649 {
650 	size_t size = 0;
651 	int i;
652 
653 	for (i = 0; i < attr->region_count; i++)
654 		size += attr->region[i].size;
655 
656 	return size;
657 }
658 
659 /*
660  * check the given pages in continuous address space
661  * Returns 0 on success, or the error page num.
662  */
mtr_check_direct_pages(dma_addr_t * pages,int page_count,unsigned int page_shift)663 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
664 					 unsigned int page_shift)
665 {
666 	size_t page_size = 1 << page_shift;
667 	int i;
668 
669 	for (i = 1; i < page_count; i++)
670 		if (pages[i] - pages[i - 1] != page_size)
671 			return i;
672 
673 	return 0;
674 }
675 
mtr_free_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)676 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
677 {
678 	/* release user buffers */
679 	if (mtr->umem) {
680 		ib_umem_release(mtr->umem);
681 		mtr->umem = NULL;
682 	}
683 
684 	/* release kernel buffers */
685 	if (mtr->kmem) {
686 		hns_roce_buf_free(hr_dev, mtr->kmem);
687 		mtr->kmem = NULL;
688 	}
689 }
690 
mtr_alloc_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,struct ib_udata * udata,unsigned long user_addr)691 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
692 			  struct hns_roce_buf_attr *buf_attr,
693 			  struct ib_udata *udata, unsigned long user_addr)
694 {
695 	struct ib_device *ibdev = &hr_dev->ib_dev;
696 	size_t total_size;
697 
698 	total_size = mtr_bufs_size(buf_attr);
699 
700 	if (udata) {
701 		mtr->kmem = NULL;
702 		mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
703 					buf_attr->user_access);
704 		if (IS_ERR(mtr->umem)) {
705 			ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
706 				  PTR_ERR(mtr->umem));
707 			return -ENOMEM;
708 		}
709 	} else {
710 		mtr->umem = NULL;
711 		mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
712 					       buf_attr->page_shift,
713 					       !mtr_has_mtt(buf_attr) ?
714 					       HNS_ROCE_BUF_DIRECT : 0);
715 		if (IS_ERR(mtr->kmem)) {
716 			ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
717 				  PTR_ERR(mtr->kmem));
718 			return PTR_ERR(mtr->kmem);
719 		}
720 	}
721 
722 	return 0;
723 }
724 
cal_mtr_pg_cnt(struct hns_roce_mtr * mtr)725 static int cal_mtr_pg_cnt(struct hns_roce_mtr *mtr)
726 {
727 	struct hns_roce_buf_region *region;
728 	int page_cnt = 0;
729 	int i;
730 
731 	for (i = 0; i < mtr->hem_cfg.region_count; i++) {
732 		region = &mtr->hem_cfg.region[i];
733 		page_cnt += region->count;
734 	}
735 
736 	return page_cnt;
737 }
738 
need_split_huge_page(struct hns_roce_mtr * mtr)739 static bool need_split_huge_page(struct hns_roce_mtr *mtr)
740 {
741 	/* When HEM buffer uses 0-level addressing, the page size is
742 	 * equal to the whole buffer size. If the current MTR has multiple
743 	 * regions, we split the buffer into small pages(4k, required by hns
744 	 * ROCEE). These pages will be used in multiple regions.
745 	 */
746 	return mtr->hem_cfg.is_direct && mtr->hem_cfg.region_count > 1;
747 }
748 
mtr_map_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)749 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
750 {
751 	struct ib_device *ibdev = &hr_dev->ib_dev;
752 	int page_count = cal_mtr_pg_cnt(mtr);
753 	unsigned int page_shift;
754 	dma_addr_t *pages;
755 	int npage;
756 	int ret;
757 
758 	page_shift = need_split_huge_page(mtr) ? HNS_HW_PAGE_SHIFT :
759 						 mtr->hem_cfg.buf_pg_shift;
760 	/* alloc a tmp array to store buffer's dma address */
761 	pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
762 	if (!pages)
763 		return -ENOMEM;
764 
765 	if (mtr->umem)
766 		npage = hns_roce_get_umem_bufs(pages, page_count,
767 					       mtr->umem, page_shift);
768 	else
769 		npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
770 					       mtr->kmem, page_shift);
771 
772 	if (npage != page_count) {
773 		ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
774 			  page_count);
775 		ret = -ENOBUFS;
776 		goto err_alloc_list;
777 	}
778 
779 	if (need_split_huge_page(mtr) && npage > 1) {
780 		ret = mtr_check_direct_pages(pages, npage, page_shift);
781 		if (ret) {
782 			ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
783 				  mtr->umem ? "umtr" : "kmtr", ret, npage);
784 			ret = -ENOBUFS;
785 			goto err_alloc_list;
786 		}
787 	}
788 
789 	ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
790 	if (ret)
791 		ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
792 
793 err_alloc_list:
794 	kvfree(pages);
795 
796 	return ret;
797 }
798 
hns_roce_mtr_map(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,dma_addr_t * pages,unsigned int page_cnt)799 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
800 		     dma_addr_t *pages, unsigned int page_cnt)
801 {
802 	struct ib_device *ibdev = &hr_dev->ib_dev;
803 	struct hns_roce_buf_region *r;
804 	unsigned int i, mapped_cnt;
805 	int ret = 0;
806 
807 	/*
808 	 * Only use the first page address as root ba when hopnum is 0, this
809 	 * is because the addresses of all pages are consecutive in this case.
810 	 */
811 	if (mtr->hem_cfg.is_direct) {
812 		mtr->hem_cfg.root_ba = pages[0];
813 		return 0;
814 	}
815 
816 	for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
817 	     mapped_cnt < page_cnt; i++) {
818 		r = &mtr->hem_cfg.region[i];
819 
820 		if (r->offset + r->count > page_cnt) {
821 			ret = -EINVAL;
822 			ibdev_err(ibdev,
823 				  "failed to check mtr%u count %u + %u > %u.\n",
824 				  i, r->offset, r->count, page_cnt);
825 			return ret;
826 		}
827 
828 		ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
829 				     page_cnt - mapped_cnt);
830 		if (ret < 0) {
831 			ibdev_err(ibdev,
832 				  "failed to map mtr%u offset %u, ret = %d.\n",
833 				  i, r->offset, ret);
834 			return ret;
835 		}
836 		mapped_cnt += ret;
837 		ret = 0;
838 	}
839 
840 	if (mapped_cnt < page_cnt) {
841 		ret = -ENOBUFS;
842 		ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
843 			  mapped_cnt, page_cnt);
844 	}
845 
846 	return ret;
847 }
848 
hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg * cfg,u32 start_index,u64 * mtt_buf,int mtt_cnt)849 static int hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg *cfg,
850 					u32 start_index, u64 *mtt_buf,
851 					int mtt_cnt)
852 {
853 	int mtt_count;
854 	int total = 0;
855 	u32 npage;
856 	u64 addr;
857 
858 	if (mtt_cnt > cfg->region_count)
859 		return -EINVAL;
860 
861 	for (mtt_count = 0; mtt_count < cfg->region_count && total < mtt_cnt;
862 	     mtt_count++) {
863 		npage = cfg->region[mtt_count].offset;
864 		if (npage < start_index)
865 			continue;
866 
867 		addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
868 		mtt_buf[total] = addr;
869 
870 		total++;
871 	}
872 
873 	if (!total)
874 		return -ENOENT;
875 
876 	return 0;
877 }
878 
hns_roce_get_mhop_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 start_index,u64 * mtt_buf,int mtt_cnt)879 static int hns_roce_get_mhop_mtt(struct hns_roce_dev *hr_dev,
880 				 struct hns_roce_mtr *mtr, u32 start_index,
881 				 u64 *mtt_buf, int mtt_cnt)
882 {
883 	int left = mtt_cnt;
884 	int total = 0;
885 	int mtt_count;
886 	__le64 *mtts;
887 	u32 npage;
888 
889 	while (left > 0) {
890 		mtt_count = 0;
891 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
892 						  start_index + total,
893 						  &mtt_count);
894 		if (!mtts || !mtt_count)
895 			break;
896 
897 		npage = min(mtt_count, left);
898 		left -= npage;
899 		for (mtt_count = 0; mtt_count < npage; mtt_count++)
900 			mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
901 	}
902 
903 	if (!total)
904 		return -ENOENT;
905 
906 	return 0;
907 }
908 
hns_roce_mtr_find(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 offset,u64 * mtt_buf,int mtt_max)909 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
910 		      u32 offset, u64 *mtt_buf, int mtt_max)
911 {
912 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
913 	u32 start_index;
914 	int ret;
915 
916 	if (!mtt_buf || mtt_max < 1)
917 		return -EINVAL;
918 
919 	/* no mtt memory in direct mode, so just return the buffer address */
920 	if (cfg->is_direct) {
921 		start_index = offset >> HNS_HW_PAGE_SHIFT;
922 		ret = hns_roce_get_direct_addr_mtt(cfg, start_index,
923 						   mtt_buf, mtt_max);
924 	} else {
925 		start_index = offset >> cfg->buf_pg_shift;
926 		ret = hns_roce_get_mhop_mtt(hr_dev, mtr, start_index,
927 					    mtt_buf, mtt_max);
928 	}
929 	return ret;
930 }
931 
get_best_page_shift(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr)932 static int get_best_page_shift(struct hns_roce_dev *hr_dev,
933 			       struct hns_roce_mtr *mtr,
934 			       struct hns_roce_buf_attr *buf_attr)
935 {
936 	unsigned int page_sz;
937 
938 	if (!buf_attr->adaptive || buf_attr->type != MTR_PBL || !mtr->umem)
939 		return 0;
940 
941 	page_sz = ib_umem_find_best_pgsz(mtr->umem,
942 					 hr_dev->caps.page_size_cap,
943 					 buf_attr->iova);
944 	if (!page_sz)
945 		return -EINVAL;
946 
947 	buf_attr->page_shift = order_base_2(page_sz);
948 	return 0;
949 }
950 
get_best_hop_num(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_pg_shift)951 static int get_best_hop_num(struct hns_roce_dev *hr_dev,
952 			    struct hns_roce_mtr *mtr,
953 			    struct hns_roce_buf_attr *buf_attr,
954 			    unsigned int ba_pg_shift)
955 {
956 #define INVALID_HOPNUM -1
957 #define MIN_BA_CNT 1
958 	size_t buf_pg_sz = 1 << buf_attr->page_shift;
959 	struct ib_device *ibdev = &hr_dev->ib_dev;
960 	size_t ba_pg_sz = 1 << ba_pg_shift;
961 	int hop_num = INVALID_HOPNUM;
962 	size_t unit = MIN_BA_CNT;
963 	size_t ba_cnt;
964 	int j;
965 
966 	if (!buf_attr->adaptive || buf_attr->type != MTR_PBL)
967 		return 0;
968 
969 	/* Caculating the number of buf pages, each buf page need a BA */
970 	if (mtr->umem)
971 		ba_cnt = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
972 	else
973 		ba_cnt = DIV_ROUND_UP(buf_attr->region[0].size, buf_pg_sz);
974 
975 	for (j = 0; j <= HNS_ROCE_MAX_HOP_NUM; j++) {
976 		if (ba_cnt <= unit) {
977 			hop_num = j;
978 			break;
979 		}
980 		/* Number of BAs can be represented at per hop */
981 		unit *= ba_pg_sz / BA_BYTE_LEN;
982 	}
983 
984 	if (hop_num < 0) {
985 		ibdev_err(ibdev,
986 			  "failed to calculate a valid hopnum.\n");
987 		return -EINVAL;
988 	}
989 
990 	buf_attr->region[0].hopnum = hop_num;
991 
992 	return 0;
993 }
994 
is_buf_attr_valid(struct hns_roce_dev * hr_dev,struct hns_roce_buf_attr * attr)995 static bool is_buf_attr_valid(struct hns_roce_dev *hr_dev,
996 			      struct hns_roce_buf_attr *attr)
997 {
998 	struct ib_device *ibdev = &hr_dev->ib_dev;
999 
1000 	if (attr->region_count > ARRAY_SIZE(attr->region) ||
1001 	    attr->region_count < 1 || attr->page_shift < HNS_HW_PAGE_SHIFT) {
1002 		ibdev_err(ibdev,
1003 			  "invalid buf attr, region count %u, page shift %u.\n",
1004 			  attr->region_count, attr->page_shift);
1005 		return false;
1006 	}
1007 
1008 	return true;
1009 }
1010 
mtr_init_buf_cfg(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * attr)1011 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
1012 			    struct hns_roce_mtr *mtr,
1013 			    struct hns_roce_buf_attr *attr)
1014 {
1015 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
1016 	struct hns_roce_buf_region *r;
1017 	size_t buf_pg_sz;
1018 	size_t buf_size;
1019 	int page_cnt, i;
1020 	u64 pgoff = 0;
1021 
1022 	if (!is_buf_attr_valid(hr_dev, attr))
1023 		return -EINVAL;
1024 
1025 	/* If mtt is disabled, all pages must be within a continuous range */
1026 	cfg->is_direct = !mtr_has_mtt(attr);
1027 	cfg->region_count = attr->region_count;
1028 	buf_size = mtr_bufs_size(attr);
1029 	if (need_split_huge_page(mtr)) {
1030 		buf_pg_sz = HNS_HW_PAGE_SIZE;
1031 		cfg->buf_pg_count = 1;
1032 		/* The ROCEE requires the page size to be 4K * 2 ^ N. */
1033 		cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
1034 			order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
1035 	} else {
1036 		buf_pg_sz = 1 << attr->page_shift;
1037 		cfg->buf_pg_count = mtr->umem ?
1038 			ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz) :
1039 			DIV_ROUND_UP(buf_size, buf_pg_sz);
1040 		cfg->buf_pg_shift = attr->page_shift;
1041 		pgoff = mtr->umem ? mtr->umem->address & ~PAGE_MASK : 0;
1042 	}
1043 
1044 	/* Convert buffer size to page index and page count for each region and
1045 	 * the buffer's offset needs to be appended to the first region.
1046 	 */
1047 	for (page_cnt = 0, i = 0; i < attr->region_count; i++) {
1048 		r = &cfg->region[i];
1049 		r->offset = page_cnt;
1050 		buf_size = hr_hw_page_align(attr->region[i].size + pgoff);
1051 		if (attr->type == MTR_PBL && mtr->umem)
1052 			r->count = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
1053 		else
1054 			r->count = DIV_ROUND_UP(buf_size, buf_pg_sz);
1055 
1056 		pgoff = 0;
1057 		page_cnt += r->count;
1058 		r->hopnum = to_hr_hem_hopnum(attr->region[i].hopnum, r->count);
1059 	}
1060 
1061 	return 0;
1062 }
1063 
cal_pages_per_l1ba(unsigned int ba_per_bt,unsigned int hopnum)1064 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum)
1065 {
1066 	return int_pow(ba_per_bt, hopnum - 1);
1067 }
1068 
cal_best_bt_pg_sz(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int pg_shift)1069 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev,
1070 				      struct hns_roce_mtr *mtr,
1071 				      unsigned int pg_shift)
1072 {
1073 	unsigned long cap = hr_dev->caps.page_size_cap;
1074 	struct hns_roce_buf_region *re;
1075 	unsigned int pgs_per_l1ba;
1076 	unsigned int ba_per_bt;
1077 	unsigned int ba_num;
1078 	int i;
1079 
1080 	for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) {
1081 		if (!(BIT(pg_shift) & cap))
1082 			continue;
1083 
1084 		ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN;
1085 		ba_num = 0;
1086 		for (i = 0; i < mtr->hem_cfg.region_count; i++) {
1087 			re = &mtr->hem_cfg.region[i];
1088 			if (re->hopnum == 0)
1089 				continue;
1090 
1091 			pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum);
1092 			ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba);
1093 		}
1094 
1095 		if (ba_num <= ba_per_bt)
1096 			return pg_shift;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
mtr_alloc_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int ba_page_shift)1102 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1103 			 unsigned int ba_page_shift)
1104 {
1105 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
1106 	int ret;
1107 
1108 	hns_roce_hem_list_init(&mtr->hem_list);
1109 	if (!cfg->is_direct) {
1110 		ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift);
1111 		if (!ba_page_shift)
1112 			return -ERANGE;
1113 
1114 		ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
1115 						cfg->region, cfg->region_count,
1116 						ba_page_shift);
1117 		if (ret)
1118 			return ret;
1119 		cfg->root_ba = mtr->hem_list.root_ba;
1120 		cfg->ba_pg_shift = ba_page_shift;
1121 	} else {
1122 		cfg->ba_pg_shift = cfg->buf_pg_shift;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
mtr_free_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1128 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1129 {
1130 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1131 }
1132 
1133 /**
1134  * hns_roce_mtr_create - Create hns memory translate region.
1135  *
1136  * @hr_dev: RoCE device struct pointer
1137  * @mtr: memory translate region
1138  * @buf_attr: buffer attribute for creating mtr
1139  * @ba_page_shift: page shift for multi-hop base address table
1140  * @udata: user space context, if it's NULL, means kernel space
1141  * @user_addr: userspace virtual address to start at
1142  */
hns_roce_mtr_create(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_page_shift,struct ib_udata * udata,unsigned long user_addr)1143 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1144 			struct hns_roce_buf_attr *buf_attr,
1145 			unsigned int ba_page_shift, struct ib_udata *udata,
1146 			unsigned long user_addr)
1147 {
1148 	struct ib_device *ibdev = &hr_dev->ib_dev;
1149 	int ret;
1150 
1151 	trace_hns_buf_attr(buf_attr);
1152 	/* The caller has its own buffer list and invokes the hns_roce_mtr_map()
1153 	 * to finish the MTT configuration.
1154 	 */
1155 	if (buf_attr->mtt_only) {
1156 		mtr->umem = NULL;
1157 		mtr->kmem = NULL;
1158 	} else {
1159 		ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
1160 		if (ret) {
1161 			ibdev_err(ibdev,
1162 				  "failed to alloc mtr bufs, ret = %d.\n", ret);
1163 			return ret;
1164 		}
1165 
1166 		ret = get_best_page_shift(hr_dev, mtr, buf_attr);
1167 		if (ret)
1168 			goto err_init_buf;
1169 
1170 		ret = get_best_hop_num(hr_dev, mtr, buf_attr, ba_page_shift);
1171 		if (ret)
1172 			goto err_init_buf;
1173 	}
1174 
1175 	ret = mtr_init_buf_cfg(hr_dev, mtr, buf_attr);
1176 	if (ret)
1177 		goto err_init_buf;
1178 
1179 	ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
1180 	if (ret) {
1181 		ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
1182 		goto err_init_buf;
1183 	}
1184 
1185 	if (buf_attr->mtt_only)
1186 		return 0;
1187 
1188 	/* Write buffer's dma address to MTT */
1189 	ret = mtr_map_bufs(hr_dev, mtr);
1190 	if (ret) {
1191 		ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
1192 		goto err_alloc_mtt;
1193 	}
1194 
1195 	return 0;
1196 
1197 err_alloc_mtt:
1198 	mtr_free_mtt(hr_dev, mtr);
1199 err_init_buf:
1200 	mtr_free_bufs(hr_dev, mtr);
1201 
1202 	return ret;
1203 }
1204 
hns_roce_mtr_destroy(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1205 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1206 {
1207 	/* release multi-hop addressing resource */
1208 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1209 
1210 	/* free buffers */
1211 	mtr_free_bufs(hr_dev, mtr);
1212 }
1213