xref: /freebsd/sys/kern/kern_malloc.c (revision 74361d693aec892b01c1553bda7176f8d341b2ff)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1987, 1991, 1993
5  *	The Regents of the University of California.
6  * Copyright (c) 2005-2009 Robert N. M. Watson
7  * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
37  * based on memory types.  Back end is implemented using the UMA(9) zone
38  * allocator.  A set of fixed-size buckets are used for smaller allocations,
39  * and a special UMA allocation interface is used for larger allocations.
40  * Callers declare memory types, and statistics are maintained independently
41  * for each memory type.  Statistics are maintained per-CPU for performance
42  * reasons.  See malloc(9) and comments in malloc.h for a detailed
43  * description.
44  */
45 
46 #include <sys/cdefs.h>
47 #include "opt_ddb.h"
48 #include "opt_vm.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/asan.h>
53 #include <sys/kdb.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/msan.h>
58 #include <sys/mutex.h>
59 #include <sys/vmmeter.h>
60 #include <sys/proc.h>
61 #include <sys/queue.h>
62 #include <sys/sbuf.h>
63 #include <sys/smp.h>
64 #include <sys/sysctl.h>
65 #include <sys/time.h>
66 #include <sys/vmem.h>
67 #ifdef EPOCH_TRACE
68 #include <sys/epoch.h>
69 #endif
70 
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #include <vm/vm_domainset.h>
74 #include <vm/vm_pageout.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_phys.h>
81 #include <vm/vm_pagequeue.h>
82 #include <vm/uma.h>
83 #include <vm/uma_int.h>
84 #include <vm/uma_dbg.h>
85 
86 #ifdef DEBUG_MEMGUARD
87 #include <vm/memguard.h>
88 #endif
89 #ifdef DEBUG_REDZONE
90 #include <vm/redzone.h>
91 #endif
92 
93 #if defined(INVARIANTS) && defined(__i386__)
94 #include <machine/cpu.h>
95 #endif
96 
97 #include <ddb/ddb.h>
98 
99 #ifdef KDTRACE_HOOKS
100 #include <sys/dtrace_bsd.h>
101 
102 bool	__read_frequently			dtrace_malloc_enabled;
103 dtrace_malloc_probe_func_t __read_mostly	dtrace_malloc_probe;
104 #endif
105 
106 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) ||		\
107     defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE)
108 #define	MALLOC_DEBUG	1
109 #endif
110 
111 #if defined(KASAN) || defined(DEBUG_REDZONE)
112 #define	DEBUG_REDZONE_ARG_DEF	, unsigned long osize
113 #define	DEBUG_REDZONE_ARG	, osize
114 #else
115 #define	DEBUG_REDZONE_ARG_DEF
116 #define	DEBUG_REDZONE_ARG
117 #endif
118 
119 typedef	enum {
120 	SLAB_COOKIE_SLAB_PTR		= 0x0,
121 	SLAB_COOKIE_MALLOC_LARGE	= 0x1,
122 	SLAB_COOKIE_CONTIG_MALLOC	= 0x2,
123 } slab_cookie_t;
124 #define	SLAB_COOKIE_MASK		0x3
125 #define	SLAB_COOKIE_SHIFT		2
126 #define	GET_SLAB_COOKIE(_slab)						\
127     ((slab_cookie_t)(uintptr_t)(_slab) & SLAB_COOKIE_MASK)
128 
129 /*
130  * When realloc() is called, if the new size is sufficiently smaller than
131  * the old size, realloc() will allocate a new, smaller block to avoid
132  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
133  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
134  */
135 #ifndef REALLOC_FRACTION
136 #define	REALLOC_FRACTION	1	/* new block if <= half the size */
137 #endif
138 
139 /*
140  * Centrally define some common malloc types.
141  */
142 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
143 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
144 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
145 
146 static struct malloc_type *kmemstatistics;
147 static int kmemcount;
148 
149 #define KMEM_ZSHIFT	4
150 #define KMEM_ZBASE	16
151 #define KMEM_ZMASK	(KMEM_ZBASE - 1)
152 
153 #define KMEM_ZMAX	65536
154 #define KMEM_ZSIZE	(KMEM_ZMAX >> KMEM_ZSHIFT)
155 static uint8_t kmemsize[KMEM_ZSIZE + 1];
156 
157 #ifndef MALLOC_DEBUG_MAXZONES
158 #define	MALLOC_DEBUG_MAXZONES	1
159 #endif
160 static int numzones = MALLOC_DEBUG_MAXZONES;
161 
162 /*
163  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
164  * of various sizes.
165  *
166  * Warning: the layout of the struct is duplicated in libmemstat for KVM support.
167  *
168  * XXX: The comment here used to read "These won't be powers of two for
169  * long."  It's possible that a significant amount of wasted memory could be
170  * recovered by tuning the sizes of these buckets.
171  */
172 struct {
173 	int kz_size;
174 	const char *kz_name;
175 	uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
176 } kmemzones[] = {
177 	{16, "malloc-16", },
178 	{32, "malloc-32", },
179 	{64, "malloc-64", },
180 	{128, "malloc-128", },
181 	{256, "malloc-256", },
182 	{384, "malloc-384", },
183 	{512, "malloc-512", },
184 	{1024, "malloc-1024", },
185 	{2048, "malloc-2048", },
186 	{4096, "malloc-4096", },
187 	{8192, "malloc-8192", },
188 	{16384, "malloc-16384", },
189 	{32768, "malloc-32768", },
190 	{65536, "malloc-65536", },
191 	{0, NULL},
192 };
193 
194 u_long vm_kmem_size;
195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
196     "Size of kernel memory");
197 
198 static u_long kmem_zmax = KMEM_ZMAX;
199 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
200     "Maximum allocation size that malloc(9) would use UMA as backend");
201 
202 static u_long vm_kmem_size_min;
203 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
204     "Minimum size of kernel memory");
205 
206 static u_long vm_kmem_size_max;
207 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
208     "Maximum size of kernel memory");
209 
210 static u_int vm_kmem_size_scale;
211 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
212     "Scale factor for kernel memory size");
213 
214 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
215 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
216     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
217     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
218 
219 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
220 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
221     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
222     sysctl_kmem_map_free, "LU", "Free space in kmem");
223 
224 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
225     "Malloc information");
226 
227 static u_int vm_malloc_zone_count = nitems(kmemzones);
228 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count,
229     CTLFLAG_RD, &vm_malloc_zone_count, 0,
230     "Number of malloc zones");
231 
232 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS);
233 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes,
234     CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
235     sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc");
236 
237 /*
238  * The malloc_mtx protects the kmemstatistics linked list.
239  */
240 struct mtx malloc_mtx;
241 
242 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
243 
244 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
245 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
246     "Kernel malloc debugging options");
247 #endif
248 
249 /*
250  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
251  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
252  */
253 #ifdef MALLOC_MAKE_FAILURES
254 static int malloc_failure_rate;
255 static int malloc_nowait_count;
256 static int malloc_failure_count;
257 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
258     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
259 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
260     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
261 #endif
262 
263 static int
sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)264 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
265 {
266 	u_long size;
267 
268 	size = uma_size();
269 	return (sysctl_handle_long(oidp, &size, 0, req));
270 }
271 
272 static int
sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)273 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
274 {
275 	u_long size, limit;
276 
277 	/* The sysctl is unsigned, implement as a saturation value. */
278 	size = uma_size();
279 	limit = uma_limit();
280 	if (size > limit)
281 		size = 0;
282 	else
283 		size = limit - size;
284 	return (sysctl_handle_long(oidp, &size, 0, req));
285 }
286 
287 static int
sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS)288 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS)
289 {
290 	int sizes[nitems(kmemzones)];
291 	int i;
292 
293 	for (i = 0; i < nitems(kmemzones); i++) {
294 		sizes[i] = kmemzones[i].kz_size;
295 	}
296 
297 	return (SYSCTL_OUT(req, &sizes, sizeof(sizes)));
298 }
299 
300 /*
301  * malloc(9) uma zone separation -- sub-page buffer overruns in one
302  * malloc type will affect only a subset of other malloc types.
303  */
304 #if MALLOC_DEBUG_MAXZONES > 1
305 static void
tunable_set_numzones(void)306 tunable_set_numzones(void)
307 {
308 
309 	TUNABLE_INT_FETCH("debug.malloc.numzones",
310 	    &numzones);
311 
312 	/* Sanity check the number of malloc uma zones. */
313 	if (numzones <= 0)
314 		numzones = 1;
315 	if (numzones > MALLOC_DEBUG_MAXZONES)
316 		numzones = MALLOC_DEBUG_MAXZONES;
317 }
318 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
319 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
320     &numzones, 0, "Number of malloc uma subzones");
321 
322 /*
323  * Any number that changes regularly is an okay choice for the
324  * offset.  Build numbers are pretty good of you have them.
325  */
326 static u_int zone_offset = __FreeBSD_version;
327 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
328 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
329     &zone_offset, 0, "Separate malloc types by examining the "
330     "Nth character in the malloc type short description.");
331 
332 static void
mtp_set_subzone(struct malloc_type * mtp)333 mtp_set_subzone(struct malloc_type *mtp)
334 {
335 	struct malloc_type_internal *mtip;
336 	const char *desc;
337 	size_t len;
338 	u_int val;
339 
340 	mtip = &mtp->ks_mti;
341 	desc = mtp->ks_shortdesc;
342 	if (desc == NULL || (len = strlen(desc)) == 0)
343 		val = 0;
344 	else
345 		val = desc[zone_offset % len];
346 	mtip->mti_zone = (val % numzones);
347 }
348 
349 static inline u_int
mtp_get_subzone(struct malloc_type * mtp)350 mtp_get_subzone(struct malloc_type *mtp)
351 {
352 	struct malloc_type_internal *mtip;
353 
354 	mtip = &mtp->ks_mti;
355 
356 	KASSERT(mtip->mti_zone < numzones,
357 	    ("mti_zone %u out of range %d",
358 	    mtip->mti_zone, numzones));
359 	return (mtip->mti_zone);
360 }
361 #elif MALLOC_DEBUG_MAXZONES == 0
362 #error "MALLOC_DEBUG_MAXZONES must be positive."
363 #else
364 static void
mtp_set_subzone(struct malloc_type * mtp)365 mtp_set_subzone(struct malloc_type *mtp)
366 {
367 	struct malloc_type_internal *mtip;
368 
369 	mtip = &mtp->ks_mti;
370 	mtip->mti_zone = 0;
371 }
372 
373 static inline u_int
mtp_get_subzone(struct malloc_type * mtp)374 mtp_get_subzone(struct malloc_type *mtp)
375 {
376 
377 	return (0);
378 }
379 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
380 
381 /*
382  * An allocation has succeeded -- update malloc type statistics for the
383  * amount of bucket size.  Occurs within a critical section so that the
384  * thread isn't preempted and doesn't migrate while updating per-PCU
385  * statistics.
386  */
387 static void
malloc_type_zone_allocated(struct malloc_type * mtp,unsigned long size,int zindx)388 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
389     int zindx)
390 {
391 	struct malloc_type_internal *mtip;
392 	struct malloc_type_stats *mtsp;
393 
394 	critical_enter();
395 	mtip = &mtp->ks_mti;
396 	mtsp = zpcpu_get(mtip->mti_stats);
397 	if (size > 0) {
398 		mtsp->mts_memalloced += size;
399 		mtsp->mts_numallocs++;
400 	}
401 	if (zindx != -1)
402 		mtsp->mts_size |= 1 << zindx;
403 
404 #ifdef KDTRACE_HOOKS
405 	if (__predict_false(dtrace_malloc_enabled)) {
406 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
407 		if (probe_id != 0)
408 			(dtrace_malloc_probe)(probe_id,
409 			    (uintptr_t) mtp, (uintptr_t) mtip,
410 			    (uintptr_t) mtsp, size, zindx);
411 	}
412 #endif
413 
414 	critical_exit();
415 }
416 
417 void
malloc_type_allocated(struct malloc_type * mtp,unsigned long size)418 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
419 {
420 
421 	if (size > 0)
422 		malloc_type_zone_allocated(mtp, size, -1);
423 }
424 
425 /*
426  * A free operation has occurred -- update malloc type statistics for the
427  * amount of the bucket size.  Occurs within a critical section so that the
428  * thread isn't preempted and doesn't migrate while updating per-CPU
429  * statistics.
430  */
431 void
malloc_type_freed(struct malloc_type * mtp,unsigned long size)432 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
433 {
434 	struct malloc_type_internal *mtip;
435 	struct malloc_type_stats *mtsp;
436 
437 	critical_enter();
438 	mtip = &mtp->ks_mti;
439 	mtsp = zpcpu_get(mtip->mti_stats);
440 	mtsp->mts_memfreed += size;
441 	mtsp->mts_numfrees++;
442 
443 #ifdef KDTRACE_HOOKS
444 	if (__predict_false(dtrace_malloc_enabled)) {
445 		uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
446 		if (probe_id != 0)
447 			(dtrace_malloc_probe)(probe_id,
448 			    (uintptr_t) mtp, (uintptr_t) mtip,
449 			    (uintptr_t) mtsp, size, 0);
450 	}
451 #endif
452 
453 	critical_exit();
454 }
455 
456 /*
457  *	contigmalloc:
458  *
459  *	Allocate a block of physically contiguous memory.
460  *
461  *	If M_NOWAIT is set, this routine will not block and return NULL if
462  *	the allocation fails.
463  */
464 #define	IS_CONTIG_MALLOC(_slab)						\
465     (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_CONTIG_MALLOC)
466 #define	CONTIG_MALLOC_SLAB(_size)					\
467     ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_CONTIG_MALLOC))
468 static inline size_t
contigmalloc_size(uma_slab_t slab)469 contigmalloc_size(uma_slab_t slab)
470 {
471 	uintptr_t va;
472 
473 	KASSERT(IS_CONTIG_MALLOC(slab),
474 	    ("%s: called on non-contigmalloc allocation: %p", __func__, slab));
475 	va = (uintptr_t)slab;
476 	return (va >> SLAB_COOKIE_SHIFT);
477 }
478 
479 void *
contigmalloc(unsigned long osize,struct malloc_type * type,int flags,vm_paddr_t low,vm_paddr_t high,unsigned long alignment,vm_paddr_t boundary)480 contigmalloc(unsigned long osize, struct malloc_type *type, int flags,
481     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
482     vm_paddr_t boundary)
483 {
484 	void *ret;
485 	unsigned long size;
486 
487 #ifdef DEBUG_REDZONE
488 	size = redzone_size_ntor(osize);
489 #else
490 	size = osize;
491 #endif
492 
493 	ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment,
494 	    boundary, VM_MEMATTR_DEFAULT);
495 	if (ret != NULL) {
496 		/* Use low bits unused for slab pointers. */
497 		vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size));
498 		malloc_type_allocated(type, round_page(size));
499 #ifdef DEBUG_REDZONE
500 		ret = redzone_setup(ret, osize);
501 #endif
502 	}
503 	return (ret);
504 }
505 
506 void *
contigmalloc_domainset(unsigned long osize,struct malloc_type * type,struct domainset * ds,int flags,vm_paddr_t low,vm_paddr_t high,unsigned long alignment,vm_paddr_t boundary)507 contigmalloc_domainset(unsigned long osize, struct malloc_type *type,
508     struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high,
509     unsigned long alignment, vm_paddr_t boundary)
510 {
511 	void *ret;
512 	unsigned long size;
513 
514 #ifdef DEBUG_REDZONE
515 	size = redzone_size_ntor(osize);
516 #else
517 	size = osize;
518 #endif
519 
520 	ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high,
521 	    alignment, boundary, VM_MEMATTR_DEFAULT);
522 	if (ret != NULL) {
523 		/* Use low bits unused for slab pointers. */
524 		vsetzoneslab((uintptr_t)ret, NULL, CONTIG_MALLOC_SLAB(size));
525 		malloc_type_allocated(type, round_page(size));
526 #ifdef DEBUG_REDZONE
527 		ret = redzone_setup(ret, osize);
528 #endif
529 	}
530 	return (ret);
531 }
532 #undef	IS_CONTIG_MALLOC
533 #undef	CONTIG_MALLOC_SLAB
534 
535 /* contigfree(9) is deprecated. */
536 void
contigfree(void * addr,unsigned long size __unused,struct malloc_type * type)537 contigfree(void *addr, unsigned long size __unused, struct malloc_type *type)
538 {
539 	free(addr, type);
540 }
541 
542 #ifdef MALLOC_DEBUG
543 static int
malloc_dbg(caddr_t * vap,size_t * sizep,struct malloc_type * mtp,int flags)544 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp,
545     int flags)
546 {
547 	KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version"));
548 	KASSERT((flags & (M_WAITOK | M_NOWAIT)) != 0,
549 	    ("malloc: flags must include either M_WAITOK or M_NOWAIT"));
550 	KASSERT((flags & (M_WAITOK | M_NOWAIT)) != (M_WAITOK | M_NOWAIT),
551 	    ("malloc: flags may not include both M_WAITOK and M_NOWAIT"));
552 	KASSERT((flags & M_NEVERFREED) == 0,
553 	    ("malloc: M_NEVERFREED is for internal use only"));
554 #ifdef MALLOC_MAKE_FAILURES
555 	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
556 		atomic_add_int(&malloc_nowait_count, 1);
557 		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
558 			atomic_add_int(&malloc_failure_count, 1);
559 			*vap = NULL;
560 			return (EJUSTRETURN);
561 		}
562 	}
563 #endif
564 	if (flags & M_WAITOK) {
565 		KASSERT(curthread->td_intr_nesting_level == 0,
566 		   ("malloc(M_WAITOK) in interrupt context"));
567 		if (__predict_false(!THREAD_CAN_SLEEP())) {
568 #ifdef EPOCH_TRACE
569 			epoch_trace_list(curthread);
570 #endif
571 			KASSERT(0,
572 			    ("malloc(M_WAITOK) with sleeping prohibited"));
573 		}
574 	}
575 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
576 	    ("malloc: called with spinlock or critical section held"));
577 
578 #ifdef DEBUG_MEMGUARD
579 	if (memguard_cmp_mtp(mtp, *sizep)) {
580 		*vap = memguard_alloc(*sizep, flags);
581 		if (*vap != NULL)
582 			return (EJUSTRETURN);
583 		/* This is unfortunate but should not be fatal. */
584 	}
585 #endif
586 
587 #ifdef DEBUG_REDZONE
588 	*sizep = redzone_size_ntor(*sizep);
589 #endif
590 
591 	return (0);
592 }
593 #endif
594 
595 /*
596  * Handle large allocations and frees by using kmem_malloc directly.
597  */
598 #define	IS_MALLOC_LARGE(_slab)						\
599     (GET_SLAB_COOKIE(_slab) == SLAB_COOKIE_MALLOC_LARGE)
600 #define	MALLOC_LARGE_SLAB(_size)					\
601     ((void *)(((_size) << SLAB_COOKIE_SHIFT) | SLAB_COOKIE_MALLOC_LARGE))
602 static inline size_t
malloc_large_size(uma_slab_t slab)603 malloc_large_size(uma_slab_t slab)
604 {
605 	uintptr_t va;
606 
607 	va = (uintptr_t)slab;
608 	KASSERT(IS_MALLOC_LARGE(slab),
609 	    ("%s: called on non-malloc_large allocation: %p", __func__, slab));
610 	return (va >> SLAB_COOKIE_SHIFT);
611 }
612 
613 static caddr_t __noinline
malloc_large(size_t size,struct malloc_type * mtp,struct domainset * policy,int flags DEBUG_REDZONE_ARG_DEF)614 malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy,
615     int flags DEBUG_REDZONE_ARG_DEF)
616 {
617 	void *va;
618 
619 	size = roundup(size, PAGE_SIZE);
620 	va = kmem_malloc_domainset(policy, size, flags);
621 	if (va != NULL) {
622 		/* Use low bits unused for slab pointers. */
623 		vsetzoneslab((uintptr_t)va, NULL, MALLOC_LARGE_SLAB(size));
624 		uma_total_inc(size);
625 	}
626 	malloc_type_allocated(mtp, va == NULL ? 0 : size);
627 	if (__predict_false(va == NULL)) {
628 		KASSERT((flags & M_WAITOK) == 0,
629 		    ("malloc(M_WAITOK) returned NULL"));
630 	} else {
631 #ifdef DEBUG_REDZONE
632 		va = redzone_setup(va, osize);
633 #endif
634 		kasan_mark(va, osize, size, KASAN_MALLOC_REDZONE);
635 	}
636 	return (va);
637 }
638 
639 static void
free_large(void * addr,size_t size)640 free_large(void *addr, size_t size)
641 {
642 
643 	kmem_free(addr, size);
644 	uma_total_dec(size);
645 }
646 #undef	IS_MALLOC_LARGE
647 #undef	MALLOC_LARGE_SLAB
648 
649 /*
650  *	malloc:
651  *
652  *	Allocate a block of memory.
653  *
654  *	If M_NOWAIT is set, this routine will not block and return NULL if
655  *	the allocation fails.
656  */
657 void *
658 (malloc)(size_t size, struct malloc_type *mtp, int flags)
659 {
660 	int indx;
661 	caddr_t va;
662 	uma_zone_t zone;
663 #if defined(DEBUG_REDZONE) || defined(KASAN)
664 	unsigned long osize = size;
665 #endif
666 
667 	MPASS((flags & M_EXEC) == 0);
668 
669 #ifdef MALLOC_DEBUG
670 	va = NULL;
671 	if (malloc_dbg(&va, &size, mtp, flags) != 0)
672 		return (va);
673 #endif
674 
675 	if (__predict_false(size > kmem_zmax))
676 		return (malloc_large(size, mtp, DOMAINSET_RR(), flags
677 		    DEBUG_REDZONE_ARG));
678 
679 	if (size & KMEM_ZMASK)
680 		size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
681 	indx = kmemsize[size >> KMEM_ZSHIFT];
682 	zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
683 	va = uma_zalloc_arg(zone, zone, flags);
684 	if (va != NULL) {
685 		size = zone->uz_size;
686 		if ((flags & M_ZERO) == 0) {
687 			kmsan_mark(va, size, KMSAN_STATE_UNINIT);
688 			kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR);
689 		}
690 	}
691 	malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
692 	if (__predict_false(va == NULL)) {
693 		KASSERT((flags & M_WAITOK) == 0,
694 		    ("malloc(M_WAITOK) returned NULL"));
695 	}
696 #ifdef DEBUG_REDZONE
697 	if (va != NULL)
698 		va = redzone_setup(va, osize);
699 #endif
700 #ifdef KASAN
701 	if (va != NULL)
702 		kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE);
703 #endif
704 	return ((void *) va);
705 }
706 
707 static void *
malloc_domain(size_t * sizep,int * indxp,struct malloc_type * mtp,int domain,int flags)708 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain,
709     int flags)
710 {
711 	uma_zone_t zone;
712 	caddr_t va;
713 	size_t size;
714 	int indx;
715 
716 	size = *sizep;
717 	KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0,
718 	    ("malloc_domain: Called with bad flag / size combination"));
719 	if (size & KMEM_ZMASK)
720 		size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
721 	indx = kmemsize[size >> KMEM_ZSHIFT];
722 	zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
723 	va = uma_zalloc_domain(zone, zone, domain, flags);
724 	if (va != NULL)
725 		*sizep = zone->uz_size;
726 	*indxp = indx;
727 	return ((void *)va);
728 }
729 
730 void *
malloc_domainset(size_t size,struct malloc_type * mtp,struct domainset * ds,int flags)731 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds,
732     int flags)
733 {
734 	struct vm_domainset_iter di;
735 	caddr_t va;
736 	int domain;
737 	int indx;
738 #if defined(KASAN) || defined(DEBUG_REDZONE)
739 	unsigned long osize = size;
740 #endif
741 
742 	MPASS((flags & M_EXEC) == 0);
743 
744 #ifdef MALLOC_DEBUG
745 	va = NULL;
746 	if (malloc_dbg(&va, &size, mtp, flags) != 0)
747 		return (va);
748 #endif
749 
750 	if (__predict_false(size > kmem_zmax))
751 		return (malloc_large(size, mtp, DOMAINSET_RR(), flags
752 		    DEBUG_REDZONE_ARG));
753 
754 	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
755 	do {
756 		va = malloc_domain(&size, &indx, mtp, domain, flags);
757 	} while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0);
758 	malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
759 	if (__predict_false(va == NULL)) {
760 		KASSERT((flags & M_WAITOK) == 0,
761 		    ("malloc(M_WAITOK) returned NULL"));
762 	}
763 #ifdef DEBUG_REDZONE
764 	if (va != NULL)
765 		va = redzone_setup(va, osize);
766 #endif
767 #ifdef KASAN
768 	if (va != NULL)
769 		kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE);
770 #endif
771 #ifdef KMSAN
772 	if ((flags & M_ZERO) == 0) {
773 		kmsan_mark(va, size, KMSAN_STATE_UNINIT);
774 		kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR);
775 	}
776 #endif
777 	return (va);
778 }
779 
780 /*
781  * Allocate an executable area.
782  */
783 void *
malloc_exec(size_t size,struct malloc_type * mtp,int flags)784 malloc_exec(size_t size, struct malloc_type *mtp, int flags)
785 {
786 
787 	return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags));
788 }
789 
790 void *
malloc_domainset_exec(size_t size,struct malloc_type * mtp,struct domainset * ds,int flags)791 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds,
792     int flags)
793 {
794 #if defined(DEBUG_REDZONE) || defined(KASAN)
795 	unsigned long osize = size;
796 #endif
797 #ifdef MALLOC_DEBUG
798 	caddr_t va;
799 #endif
800 
801 	flags |= M_EXEC;
802 
803 #ifdef MALLOC_DEBUG
804 	va = NULL;
805 	if (malloc_dbg(&va, &size, mtp, flags) != 0)
806 		return (va);
807 #endif
808 
809 	return (malloc_large(size, mtp, ds, flags DEBUG_REDZONE_ARG));
810 }
811 
812 void *
malloc_aligned(size_t size,size_t align,struct malloc_type * type,int flags)813 malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags)
814 {
815 	return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(),
816 	    flags));
817 }
818 
819 void *
malloc_domainset_aligned(size_t size,size_t align,struct malloc_type * mtp,struct domainset * ds,int flags)820 malloc_domainset_aligned(size_t size, size_t align,
821     struct malloc_type *mtp, struct domainset *ds, int flags)
822 {
823 	void *res;
824 	size_t asize;
825 
826 	KASSERT(powerof2(align),
827 	    ("malloc_domainset_aligned: wrong align %#zx size %#zx",
828 	    align, size));
829 	KASSERT(align <= PAGE_SIZE,
830 	    ("malloc_domainset_aligned: align %#zx (size %#zx) too large",
831 	    align, size));
832 
833 	/*
834 	 * Round the allocation size up to the next power of 2,
835 	 * because we can only guarantee alignment for
836 	 * power-of-2-sized allocations.  Further increase the
837 	 * allocation size to align if the rounded size is less than
838 	 * align, since malloc zones provide alignment equal to their
839 	 * size.
840 	 */
841 	if (size == 0)
842 		size = 1;
843 	asize = size <= align ? align : 1UL << flsl(size - 1);
844 
845 	res = malloc_domainset(asize, mtp, ds, flags);
846 	KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0,
847 	    ("malloc_domainset_aligned: result not aligned %p size %#zx "
848 	    "allocsize %#zx align %#zx", res, size, asize, align));
849 	return (res);
850 }
851 
852 void *
mallocarray(size_t nmemb,size_t size,struct malloc_type * type,int flags)853 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
854 {
855 
856 	if (WOULD_OVERFLOW(nmemb, size))
857 		panic("mallocarray: %zu * %zu overflowed", nmemb, size);
858 
859 	return (malloc(size * nmemb, type, flags));
860 }
861 
862 void *
mallocarray_domainset(size_t nmemb,size_t size,struct malloc_type * type,struct domainset * ds,int flags)863 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type,
864     struct domainset *ds, int flags)
865 {
866 
867 	if (WOULD_OVERFLOW(nmemb, size))
868 		panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size);
869 
870 	return (malloc_domainset(size * nmemb, type, ds, flags));
871 }
872 
873 #if defined(INVARIANTS) && !defined(KASAN)
874 static void
free_save_type(void * addr,struct malloc_type * mtp,u_long size)875 free_save_type(void *addr, struct malloc_type *mtp, u_long size)
876 {
877 	struct malloc_type **mtpp = addr;
878 
879 	/*
880 	 * Cache a pointer to the malloc_type that most recently freed
881 	 * this memory here.  This way we know who is most likely to
882 	 * have stepped on it later.
883 	 *
884 	 * This code assumes that size is a multiple of 8 bytes for
885 	 * 64 bit machines
886 	 */
887 	mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
888 	mtpp += (size - sizeof(struct malloc_type *)) /
889 	    sizeof(struct malloc_type *);
890 	*mtpp = mtp;
891 }
892 #endif
893 
894 #ifdef MALLOC_DEBUG
895 static int
free_dbg(void ** addrp,struct malloc_type * mtp)896 free_dbg(void **addrp, struct malloc_type *mtp)
897 {
898 	void *addr;
899 
900 	addr = *addrp;
901 	KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version"));
902 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
903 	    ("free: called with spinlock or critical section held"));
904 
905 	/* free(NULL, ...) does nothing */
906 	if (addr == NULL)
907 		return (EJUSTRETURN);
908 
909 #ifdef DEBUG_MEMGUARD
910 	if (is_memguard_addr(addr)) {
911 		memguard_free(addr);
912 		return (EJUSTRETURN);
913 	}
914 #endif
915 
916 #ifdef DEBUG_REDZONE
917 	redzone_check(addr);
918 	*addrp = redzone_addr_ntor(addr);
919 #endif
920 
921 	return (0);
922 }
923 #endif
924 
925 static __always_inline void
_free(void * addr,struct malloc_type * mtp,bool dozero)926 _free(void *addr, struct malloc_type *mtp, bool dozero)
927 {
928 	uma_zone_t zone;
929 	uma_slab_t slab;
930 	u_long size;
931 
932 #ifdef MALLOC_DEBUG
933 	if (free_dbg(&addr, mtp) != 0)
934 		return;
935 #endif
936 	/* free(NULL, ...) does nothing */
937 	if (addr == NULL)
938 		return;
939 
940 	vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
941 	if (slab == NULL)
942 		panic("%s(%d): address %p(%p) has not been allocated", __func__,
943 		    dozero, addr, (void *)((uintptr_t)addr & (~UMA_SLAB_MASK)));
944 
945 	switch (GET_SLAB_COOKIE(slab)) {
946 	case __predict_true(SLAB_COOKIE_SLAB_PTR):
947 		size = zone->uz_size;
948 #if defined(INVARIANTS) && !defined(KASAN)
949 		free_save_type(addr, mtp, size);
950 #endif
951 		if (dozero) {
952 			kasan_mark(addr, size, size, 0);
953 			explicit_bzero(addr, size);
954 		}
955 		uma_zfree_arg(zone, addr, slab);
956 		break;
957 	case SLAB_COOKIE_MALLOC_LARGE:
958 		size = malloc_large_size(slab);
959 		if (dozero) {
960 			kasan_mark(addr, size, size, 0);
961 			explicit_bzero(addr, size);
962 		}
963 		free_large(addr, size);
964 		break;
965 	case SLAB_COOKIE_CONTIG_MALLOC:
966 		size = round_page(contigmalloc_size(slab));
967 		if (dozero)
968 			explicit_bzero(addr, size);
969 		kmem_free(addr, size);
970 		break;
971 	default:
972 		panic("%s(%d): addr %p slab %p with unknown cookie %d",
973 		    __func__, dozero, addr, slab, GET_SLAB_COOKIE(slab));
974 		/* NOTREACHED */
975 	}
976 	malloc_type_freed(mtp, size);
977 }
978 
979 /*
980  * free:
981  *	Free a block of memory allocated by malloc/contigmalloc.
982  *	This routine may not block.
983  */
984 void
free(void * addr,struct malloc_type * mtp)985 free(void *addr, struct malloc_type *mtp)
986 {
987 	_free(addr, mtp, false);
988 }
989 
990 /*
991  * zfree:
992  *	Zero then free a block of memory allocated by malloc/contigmalloc.
993  *	This routine may not block.
994  */
995 void
zfree(void * addr,struct malloc_type * mtp)996 zfree(void *addr, struct malloc_type *mtp)
997 {
998 	_free(addr, mtp, true);
999 }
1000 
1001 /*
1002  *	realloc: change the size of a memory block
1003  */
1004 void *
realloc(void * addr,size_t size,struct malloc_type * mtp,int flags)1005 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
1006 {
1007 #ifndef DEBUG_REDZONE
1008 	uma_zone_t zone;
1009 	uma_slab_t slab;
1010 #endif
1011 	unsigned long alloc;
1012 	void *newaddr;
1013 
1014 	KASSERT(mtp->ks_version == M_VERSION,
1015 	    ("realloc: bad malloc type version"));
1016 	KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
1017 	    ("realloc: called with spinlock or critical section held"));
1018 
1019 	/* realloc(NULL, ...) is equivalent to malloc(...) */
1020 	if (addr == NULL)
1021 		return (malloc(size, mtp, flags));
1022 
1023 	/*
1024 	 * XXX: Should report free of old memory and alloc of new memory to
1025 	 * per-CPU stats.
1026 	 */
1027 
1028 #ifdef DEBUG_MEMGUARD
1029 	if (is_memguard_addr(addr))
1030 		return (memguard_realloc(addr, size, mtp, flags));
1031 #endif
1032 
1033 #ifdef DEBUG_REDZONE
1034 	alloc = redzone_get_size(addr);
1035 #else
1036 	vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
1037 
1038 	/* Sanity check */
1039 	KASSERT(slab != NULL,
1040 	    ("realloc: address %p out of range", (void *)addr));
1041 
1042 	/* Get the size of the original block */
1043 	switch (GET_SLAB_COOKIE(slab)) {
1044 	case __predict_true(SLAB_COOKIE_SLAB_PTR):
1045 		alloc = zone->uz_size;
1046 		break;
1047 	case SLAB_COOKIE_MALLOC_LARGE:
1048 		alloc = malloc_large_size(slab);
1049 		break;
1050 	default:
1051 #ifdef INVARIANTS
1052 		panic("%s: called for addr %p of unsupported allocation type; "
1053 		    "slab %p cookie %d", __func__, addr, slab, GET_SLAB_COOKIE(slab));
1054 #endif
1055 		return (NULL);
1056 	}
1057 
1058 	/* Reuse the original block if appropriate */
1059 	if (size <= alloc &&
1060 	    (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) {
1061 		kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE);
1062 		return (addr);
1063 	}
1064 #endif /* !DEBUG_REDZONE */
1065 
1066 	/* Allocate a new, bigger (or smaller) block */
1067 	if ((newaddr = malloc(size, mtp, flags)) == NULL)
1068 		return (NULL);
1069 
1070 	/*
1071 	 * Copy over original contents.  For KASAN, the redzone must be marked
1072 	 * valid before performing the copy.
1073 	 */
1074 	kasan_mark(addr, alloc, alloc, 0);
1075 	bcopy(addr, newaddr, min(size, alloc));
1076 	free(addr, mtp);
1077 	return (newaddr);
1078 }
1079 
1080 /*
1081  *	reallocf: same as realloc() but free memory on failure.
1082  */
1083 void *
reallocf(void * addr,size_t size,struct malloc_type * mtp,int flags)1084 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
1085 {
1086 	void *mem;
1087 
1088 	if ((mem = realloc(addr, size, mtp, flags)) == NULL)
1089 		free(addr, mtp);
1090 	return (mem);
1091 }
1092 
1093 /*
1094  * 	malloc_size: returns the number of bytes allocated for a request of the
1095  * 		     specified size
1096  */
1097 size_t
malloc_size(size_t size)1098 malloc_size(size_t size)
1099 {
1100 	int indx;
1101 
1102 	if (size > kmem_zmax)
1103 		return (round_page(size));
1104 	if (size & KMEM_ZMASK)
1105 		size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
1106 	indx = kmemsize[size >> KMEM_ZSHIFT];
1107 	return (kmemzones[indx].kz_size);
1108 }
1109 
1110 /*
1111  *	malloc_usable_size: returns the usable size of the allocation.
1112  */
1113 size_t
malloc_usable_size(const void * addr)1114 malloc_usable_size(const void *addr)
1115 {
1116 #ifndef DEBUG_REDZONE
1117 	uma_zone_t zone;
1118 	uma_slab_t slab;
1119 #endif
1120 	u_long size;
1121 
1122 	if (addr == NULL)
1123 		return (0);
1124 
1125 #ifdef DEBUG_MEMGUARD
1126 	if (is_memguard_addr(__DECONST(void *, addr)))
1127 		return (memguard_get_req_size(addr));
1128 #endif
1129 
1130 #ifdef DEBUG_REDZONE
1131 	size = redzone_get_size(__DECONST(void *, addr));
1132 #else
1133 	vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
1134 	if (slab == NULL)
1135 		panic("malloc_usable_size: address %p(%p) is not allocated",
1136 		    addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
1137 
1138 	switch (GET_SLAB_COOKIE(slab)) {
1139 	case __predict_true(SLAB_COOKIE_SLAB_PTR):
1140 		size = zone->uz_size;
1141 		break;
1142 	case SLAB_COOKIE_MALLOC_LARGE:
1143 		size = malloc_large_size(slab);
1144 		break;
1145 	default:
1146 		__assert_unreachable();
1147 		size = 0;
1148 		break;
1149 	}
1150 #endif
1151 
1152 	/*
1153 	 * Unmark the redzone to avoid reports from consumers who are
1154 	 * (presumably) about to use the full allocation size.
1155 	 */
1156 	kasan_mark(addr, size, size, 0);
1157 
1158 	return (size);
1159 }
1160 
1161 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
1162 
1163 /*
1164  * Initialize the kernel memory (kmem) arena.
1165  */
1166 void
kmeminit(void)1167 kmeminit(void)
1168 {
1169 	u_long mem_size;
1170 	u_long tmp;
1171 
1172 #ifdef VM_KMEM_SIZE
1173 	if (vm_kmem_size == 0)
1174 		vm_kmem_size = VM_KMEM_SIZE;
1175 #endif
1176 #ifdef VM_KMEM_SIZE_MIN
1177 	if (vm_kmem_size_min == 0)
1178 		vm_kmem_size_min = VM_KMEM_SIZE_MIN;
1179 #endif
1180 #ifdef VM_KMEM_SIZE_MAX
1181 	if (vm_kmem_size_max == 0)
1182 		vm_kmem_size_max = VM_KMEM_SIZE_MAX;
1183 #endif
1184 	/*
1185 	 * Calculate the amount of kernel virtual address (KVA) space that is
1186 	 * preallocated to the kmem arena.  In order to support a wide range
1187 	 * of machines, it is a function of the physical memory size,
1188 	 * specifically,
1189 	 *
1190 	 *	min(max(physical memory size / VM_KMEM_SIZE_SCALE,
1191 	 *	    VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
1192 	 *
1193 	 * Every architecture must define an integral value for
1194 	 * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
1195 	 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
1196 	 * ceiling on this preallocation, are optional.  Typically,
1197 	 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
1198 	 * a given architecture.
1199 	 */
1200 	mem_size = vm_cnt.v_page_count;
1201 	if (mem_size <= 32768) /* delphij XXX 128MB */
1202 		kmem_zmax = PAGE_SIZE;
1203 
1204 	if (vm_kmem_size_scale < 1)
1205 		vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
1206 
1207 	/*
1208 	 * Check if we should use defaults for the "vm_kmem_size"
1209 	 * variable:
1210 	 */
1211 	if (vm_kmem_size == 0) {
1212 		vm_kmem_size = mem_size / vm_kmem_size_scale;
1213 		vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ?
1214 		    vm_kmem_size_max : vm_kmem_size * PAGE_SIZE;
1215 		if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
1216 			vm_kmem_size = vm_kmem_size_min;
1217 		if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
1218 			vm_kmem_size = vm_kmem_size_max;
1219 	}
1220 	if (vm_kmem_size == 0)
1221 		panic("Tune VM_KMEM_SIZE_* for the platform");
1222 
1223 	/*
1224 	 * The amount of KVA space that is preallocated to the
1225 	 * kmem arena can be set statically at compile-time or manually
1226 	 * through the kernel environment.  However, it is still limited to
1227 	 * twice the physical memory size, which has been sufficient to handle
1228 	 * the most severe cases of external fragmentation in the kmem arena.
1229 	 */
1230 	if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
1231 		vm_kmem_size = 2 * mem_size * PAGE_SIZE;
1232 
1233 	vm_kmem_size = round_page(vm_kmem_size);
1234 
1235 	/*
1236 	 * With KASAN or KMSAN enabled, dynamically allocated kernel memory is
1237 	 * shadowed.  Account for this when setting the UMA limit.
1238 	 */
1239 #if defined(KASAN)
1240 	vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) /
1241 	    (KASAN_SHADOW_SCALE + 1);
1242 #elif defined(KMSAN)
1243 	vm_kmem_size /= 3;
1244 #endif
1245 
1246 #ifdef DEBUG_MEMGUARD
1247 	tmp = memguard_fudge(vm_kmem_size, kernel_map);
1248 #else
1249 	tmp = vm_kmem_size;
1250 #endif
1251 	uma_set_limit(tmp);
1252 
1253 #ifdef DEBUG_MEMGUARD
1254 	/*
1255 	 * Initialize MemGuard if support compiled in.  MemGuard is a
1256 	 * replacement allocator used for detecting tamper-after-free
1257 	 * scenarios as they occur.  It is only used for debugging.
1258 	 */
1259 	memguard_init(kernel_arena);
1260 #endif
1261 }
1262 
1263 /*
1264  * Initialize the kernel memory allocator
1265  */
1266 /* ARGSUSED*/
1267 static void
mallocinit(void * dummy)1268 mallocinit(void *dummy)
1269 {
1270 	int i;
1271 	uint8_t indx;
1272 
1273 	mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
1274 
1275 	kmeminit();
1276 
1277 	if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
1278 		kmem_zmax = KMEM_ZMAX;
1279 
1280 	for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
1281 		int size = kmemzones[indx].kz_size;
1282 		const char *name = kmemzones[indx].kz_name;
1283 		size_t align;
1284 		int subzone;
1285 
1286 		align = UMA_ALIGN_PTR;
1287 		if (powerof2(size) && size > sizeof(void *))
1288 			align = MIN(size, PAGE_SIZE) - 1;
1289 		for (subzone = 0; subzone < numzones; subzone++) {
1290 			kmemzones[indx].kz_zone[subzone] =
1291 			    uma_zcreate(name, size,
1292 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
1293 			    mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
1294 #else
1295 			    NULL, NULL, NULL, NULL,
1296 #endif
1297 			    align, UMA_ZONE_MALLOC);
1298 		}
1299 		for (;i <= size; i+= KMEM_ZBASE)
1300 			kmemsize[i >> KMEM_ZSHIFT] = indx;
1301 	}
1302 }
1303 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
1304 
1305 void
malloc_init(void * data)1306 malloc_init(void *data)
1307 {
1308 	struct malloc_type_internal *mtip;
1309 	struct malloc_type *mtp;
1310 
1311 	KASSERT(vm_cnt.v_page_count != 0,
1312 	    ("malloc_init() called before vm_mem_init()"));
1313 
1314 	mtp = data;
1315 	if (mtp->ks_version != M_VERSION)
1316 		panic("malloc_init: type %s with unsupported version %lu",
1317 		    mtp->ks_shortdesc, mtp->ks_version);
1318 
1319 	mtip = &mtp->ks_mti;
1320 	mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO);
1321 	mtp_set_subzone(mtp);
1322 
1323 	mtx_lock(&malloc_mtx);
1324 	mtp->ks_next = kmemstatistics;
1325 	kmemstatistics = mtp;
1326 	kmemcount++;
1327 	mtx_unlock(&malloc_mtx);
1328 }
1329 
1330 void
malloc_uninit(void * data)1331 malloc_uninit(void *data)
1332 {
1333 	struct malloc_type_internal *mtip;
1334 	struct malloc_type_stats *mtsp;
1335 	struct malloc_type *mtp, *temp;
1336 	long temp_allocs, temp_bytes;
1337 	int i;
1338 
1339 	mtp = data;
1340 	KASSERT(mtp->ks_version == M_VERSION,
1341 	    ("malloc_uninit: bad malloc type version"));
1342 
1343 	mtx_lock(&malloc_mtx);
1344 	mtip = &mtp->ks_mti;
1345 	if (mtp != kmemstatistics) {
1346 		for (temp = kmemstatistics; temp != NULL;
1347 		    temp = temp->ks_next) {
1348 			if (temp->ks_next == mtp) {
1349 				temp->ks_next = mtp->ks_next;
1350 				break;
1351 			}
1352 		}
1353 		KASSERT(temp,
1354 		    ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
1355 	} else
1356 		kmemstatistics = mtp->ks_next;
1357 	kmemcount--;
1358 	mtx_unlock(&malloc_mtx);
1359 
1360 	/*
1361 	 * Look for memory leaks.
1362 	 */
1363 	temp_allocs = temp_bytes = 0;
1364 	for (i = 0; i <= mp_maxid; i++) {
1365 		mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
1366 		temp_allocs += mtsp->mts_numallocs;
1367 		temp_allocs -= mtsp->mts_numfrees;
1368 		temp_bytes += mtsp->mts_memalloced;
1369 		temp_bytes -= mtsp->mts_memfreed;
1370 	}
1371 	if (temp_allocs > 0 || temp_bytes > 0) {
1372 		printf("Warning: memory type %s leaked memory on destroy "
1373 		    "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
1374 		    temp_allocs, temp_bytes);
1375 	}
1376 
1377 	uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats);
1378 }
1379 
1380 struct malloc_type *
malloc_desc2type(const char * desc)1381 malloc_desc2type(const char *desc)
1382 {
1383 	struct malloc_type *mtp;
1384 
1385 	mtx_assert(&malloc_mtx, MA_OWNED);
1386 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1387 		if (strcmp(mtp->ks_shortdesc, desc) == 0)
1388 			return (mtp);
1389 	}
1390 	return (NULL);
1391 }
1392 
1393 static int
sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)1394 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
1395 {
1396 	struct malloc_type_stream_header mtsh;
1397 	struct malloc_type_internal *mtip;
1398 	struct malloc_type_stats *mtsp, zeromts;
1399 	struct malloc_type_header mth;
1400 	struct malloc_type *mtp;
1401 	int error, i;
1402 	struct sbuf sbuf;
1403 
1404 	error = sysctl_wire_old_buffer(req, 0);
1405 	if (error != 0)
1406 		return (error);
1407 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1408 	sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
1409 	mtx_lock(&malloc_mtx);
1410 
1411 	bzero(&zeromts, sizeof(zeromts));
1412 
1413 	/*
1414 	 * Insert stream header.
1415 	 */
1416 	bzero(&mtsh, sizeof(mtsh));
1417 	mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
1418 	mtsh.mtsh_maxcpus = MAXCPU;
1419 	mtsh.mtsh_count = kmemcount;
1420 	(void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
1421 
1422 	/*
1423 	 * Insert alternating sequence of type headers and type statistics.
1424 	 */
1425 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1426 		mtip = &mtp->ks_mti;
1427 
1428 		/*
1429 		 * Insert type header.
1430 		 */
1431 		bzero(&mth, sizeof(mth));
1432 		strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
1433 		(void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
1434 
1435 		/*
1436 		 * Insert type statistics for each CPU.
1437 		 */
1438 		for (i = 0; i <= mp_maxid; i++) {
1439 			mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
1440 			(void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp));
1441 		}
1442 		/*
1443 		 * Fill in the missing CPUs.
1444 		 */
1445 		for (; i < MAXCPU; i++) {
1446 			(void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts));
1447 		}
1448 	}
1449 	mtx_unlock(&malloc_mtx);
1450 	error = sbuf_finish(&sbuf);
1451 	sbuf_delete(&sbuf);
1452 	return (error);
1453 }
1454 
1455 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats,
1456     CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0,
1457     sysctl_kern_malloc_stats, "s,malloc_type_ustats",
1458     "Return malloc types");
1459 
1460 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
1461     "Count of kernel malloc types");
1462 
1463 void
malloc_type_list(malloc_type_list_func_t * func,void * arg)1464 malloc_type_list(malloc_type_list_func_t *func, void *arg)
1465 {
1466 	struct malloc_type *mtp, **bufmtp;
1467 	int count, i;
1468 	size_t buflen;
1469 
1470 	mtx_lock(&malloc_mtx);
1471 restart:
1472 	mtx_assert(&malloc_mtx, MA_OWNED);
1473 	count = kmemcount;
1474 	mtx_unlock(&malloc_mtx);
1475 
1476 	buflen = sizeof(struct malloc_type *) * count;
1477 	bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
1478 
1479 	mtx_lock(&malloc_mtx);
1480 
1481 	if (count < kmemcount) {
1482 		free(bufmtp, M_TEMP);
1483 		goto restart;
1484 	}
1485 
1486 	for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
1487 		bufmtp[i] = mtp;
1488 
1489 	mtx_unlock(&malloc_mtx);
1490 
1491 	for (i = 0; i < count; i++)
1492 		(func)(bufmtp[i], arg);
1493 
1494 	free(bufmtp, M_TEMP);
1495 }
1496 
1497 #ifdef DDB
1498 static int64_t
get_malloc_stats(const struct malloc_type_internal * mtip,uint64_t * allocs,uint64_t * inuse)1499 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs,
1500     uint64_t *inuse)
1501 {
1502 	const struct malloc_type_stats *mtsp;
1503 	uint64_t frees, alloced, freed;
1504 	int i;
1505 
1506 	*allocs = 0;
1507 	frees = 0;
1508 	alloced = 0;
1509 	freed = 0;
1510 	for (i = 0; i <= mp_maxid; i++) {
1511 		mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
1512 
1513 		*allocs += mtsp->mts_numallocs;
1514 		frees += mtsp->mts_numfrees;
1515 		alloced += mtsp->mts_memalloced;
1516 		freed += mtsp->mts_memfreed;
1517 	}
1518 	*inuse = *allocs - frees;
1519 	return (alloced - freed);
1520 }
1521 
DB_SHOW_COMMAND_FLAGS(malloc,db_show_malloc,DB_CMD_MEMSAFE)1522 DB_SHOW_COMMAND_FLAGS(malloc, db_show_malloc, DB_CMD_MEMSAFE)
1523 {
1524 	const char *fmt_hdr, *fmt_entry;
1525 	struct malloc_type *mtp;
1526 	uint64_t allocs, inuse;
1527 	int64_t size;
1528 	/* variables for sorting */
1529 	struct malloc_type *last_mtype, *cur_mtype;
1530 	int64_t cur_size, last_size;
1531 	int ties;
1532 
1533 	if (modif[0] == 'i') {
1534 		fmt_hdr = "%s,%s,%s,%s\n";
1535 		fmt_entry = "\"%s\",%ju,%jdK,%ju\n";
1536 	} else {
1537 		fmt_hdr = "%18s %12s  %12s %12s\n";
1538 		fmt_entry = "%18s %12ju %12jdK %12ju\n";
1539 	}
1540 
1541 	db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests");
1542 
1543 	/* Select sort, largest size first. */
1544 	last_mtype = NULL;
1545 	last_size = INT64_MAX;
1546 	for (;;) {
1547 		cur_mtype = NULL;
1548 		cur_size = -1;
1549 		ties = 0;
1550 
1551 		for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1552 			/*
1553 			 * In the case of size ties, print out mtypes
1554 			 * in the order they are encountered.  That is,
1555 			 * when we encounter the most recently output
1556 			 * mtype, we have already printed all preceding
1557 			 * ties, and we must print all following ties.
1558 			 */
1559 			if (mtp == last_mtype) {
1560 				ties = 1;
1561 				continue;
1562 			}
1563 			size = get_malloc_stats(&mtp->ks_mti, &allocs,
1564 			    &inuse);
1565 			if (size > cur_size && size < last_size + ties) {
1566 				cur_size = size;
1567 				cur_mtype = mtp;
1568 			}
1569 		}
1570 		if (cur_mtype == NULL)
1571 			break;
1572 
1573 		size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse);
1574 		db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse,
1575 		    howmany(size, 1024), allocs);
1576 
1577 		if (db_pager_quit)
1578 			break;
1579 
1580 		last_mtype = cur_mtype;
1581 		last_size = cur_size;
1582 	}
1583 }
1584 
1585 #if MALLOC_DEBUG_MAXZONES > 1
DB_SHOW_COMMAND(multizone_matches,db_show_multizone_matches)1586 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1587 {
1588 	struct malloc_type_internal *mtip;
1589 	struct malloc_type *mtp;
1590 	u_int subzone;
1591 
1592 	if (!have_addr) {
1593 		db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1594 		return;
1595 	}
1596 	mtp = (void *)addr;
1597 	if (mtp->ks_version != M_VERSION) {
1598 		db_printf("Version %lx does not match expected %x\n",
1599 		    mtp->ks_version, M_VERSION);
1600 		return;
1601 	}
1602 
1603 	mtip = &mtp->ks_mti;
1604 	subzone = mtip->mti_zone;
1605 
1606 	for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1607 		mtip = &mtp->ks_mti;
1608 		if (mtip->mti_zone != subzone)
1609 			continue;
1610 		db_printf("%s\n", mtp->ks_shortdesc);
1611 		if (db_pager_quit)
1612 			break;
1613 	}
1614 }
1615 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
1616 #endif /* DDB */
1617