xref: /linux/drivers/iommu/dma-iommu.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iommu-dma.h>
21 #include <linux/iova.h>
22 #include <linux/irq.h>
23 #include <linux/list_sort.h>
24 #include <linux/memremap.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/msi.h>
28 #include <linux/of_iommu.h>
29 #include <linux/pci.h>
30 #include <linux/pci-p2pdma.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spinlock.h>
33 #include <linux/swiotlb.h>
34 #include <linux/vmalloc.h>
35 #include <trace/events/swiotlb.h>
36 
37 #include "dma-iommu.h"
38 #include "iommu-pages.h"
39 
40 struct iommu_dma_msi_page {
41 	struct list_head	list;
42 	dma_addr_t		iova;
43 	phys_addr_t		phys;
44 };
45 
46 enum iommu_dma_queue_type {
47 	IOMMU_DMA_OPTS_PER_CPU_QUEUE,
48 	IOMMU_DMA_OPTS_SINGLE_QUEUE,
49 };
50 
51 struct iommu_dma_options {
52 	enum iommu_dma_queue_type qt;
53 	size_t		fq_size;
54 	unsigned int	fq_timeout;
55 };
56 
57 struct iommu_dma_cookie {
58 	struct iova_domain iovad;
59 	struct list_head msi_page_list;
60 	/* Flush queue */
61 	union {
62 		struct iova_fq *single_fq;
63 		struct iova_fq __percpu *percpu_fq;
64 	};
65 	/* Number of TLB flushes that have been started */
66 	atomic64_t fq_flush_start_cnt;
67 	/* Number of TLB flushes that have been finished */
68 	atomic64_t fq_flush_finish_cnt;
69 	/* Timer to regularily empty the flush queues */
70 	struct timer_list fq_timer;
71 	/* 1 when timer is active, 0 when not */
72 	atomic_t fq_timer_on;
73 	/* Domain for flush queue callback; NULL if flush queue not in use */
74 	struct iommu_domain *fq_domain;
75 	/* Options for dma-iommu use */
76 	struct iommu_dma_options options;
77 };
78 
79 struct iommu_dma_msi_cookie {
80 	dma_addr_t msi_iova;
81 	struct list_head msi_page_list;
82 };
83 
84 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
85 bool iommu_dma_forcedac __read_mostly;
86 
iommu_dma_forcedac_setup(char * str)87 static int __init iommu_dma_forcedac_setup(char *str)
88 {
89 	int ret = kstrtobool(str, &iommu_dma_forcedac);
90 
91 	if (!ret && iommu_dma_forcedac)
92 		pr_info("Forcing DAC for PCI devices\n");
93 	return ret;
94 }
95 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
96 
97 /* Number of entries per flush queue */
98 #define IOVA_DEFAULT_FQ_SIZE	256
99 #define IOVA_SINGLE_FQ_SIZE	32768
100 
101 /* Timeout (in ms) after which entries are flushed from the queue */
102 #define IOVA_DEFAULT_FQ_TIMEOUT	10
103 #define IOVA_SINGLE_FQ_TIMEOUT	1000
104 
105 /* Flush queue entry for deferred flushing */
106 struct iova_fq_entry {
107 	unsigned long iova_pfn;
108 	unsigned long pages;
109 	struct iommu_pages_list freelist;
110 	u64 counter; /* Flush counter when this entry was added */
111 };
112 
113 /* Per-CPU flush queue structure */
114 struct iova_fq {
115 	spinlock_t lock;
116 	unsigned int head, tail;
117 	unsigned int mod_mask;
118 	struct iova_fq_entry entries[];
119 };
120 
121 #define fq_ring_for_each(i, fq) \
122 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
123 
fq_full(struct iova_fq * fq)124 static inline bool fq_full(struct iova_fq *fq)
125 {
126 	assert_spin_locked(&fq->lock);
127 	return (((fq->tail + 1) & fq->mod_mask) == fq->head);
128 }
129 
fq_ring_add(struct iova_fq * fq)130 static inline unsigned int fq_ring_add(struct iova_fq *fq)
131 {
132 	unsigned int idx = fq->tail;
133 
134 	assert_spin_locked(&fq->lock);
135 
136 	fq->tail = (idx + 1) & fq->mod_mask;
137 
138 	return idx;
139 }
140 
fq_ring_free_locked(struct iommu_dma_cookie * cookie,struct iova_fq * fq)141 static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
142 {
143 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
144 	unsigned int idx;
145 
146 	assert_spin_locked(&fq->lock);
147 
148 	fq_ring_for_each(idx, fq) {
149 
150 		if (fq->entries[idx].counter >= counter)
151 			break;
152 
153 		iommu_put_pages_list(&fq->entries[idx].freelist);
154 		free_iova_fast(&cookie->iovad,
155 			       fq->entries[idx].iova_pfn,
156 			       fq->entries[idx].pages);
157 
158 		fq->entries[idx].freelist =
159 			IOMMU_PAGES_LIST_INIT(fq->entries[idx].freelist);
160 		fq->head = (fq->head + 1) & fq->mod_mask;
161 	}
162 }
163 
fq_ring_free(struct iommu_dma_cookie * cookie,struct iova_fq * fq)164 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
165 {
166 	unsigned long flags;
167 
168 	spin_lock_irqsave(&fq->lock, flags);
169 	fq_ring_free_locked(cookie, fq);
170 	spin_unlock_irqrestore(&fq->lock, flags);
171 }
172 
fq_flush_iotlb(struct iommu_dma_cookie * cookie)173 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
174 {
175 	atomic64_inc(&cookie->fq_flush_start_cnt);
176 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
177 	atomic64_inc(&cookie->fq_flush_finish_cnt);
178 }
179 
fq_flush_timeout(struct timer_list * t)180 static void fq_flush_timeout(struct timer_list *t)
181 {
182 	struct iommu_dma_cookie *cookie = timer_container_of(cookie, t,
183 							     fq_timer);
184 	int cpu;
185 
186 	atomic_set(&cookie->fq_timer_on, 0);
187 	fq_flush_iotlb(cookie);
188 
189 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
190 		fq_ring_free(cookie, cookie->single_fq);
191 	} else {
192 		for_each_possible_cpu(cpu)
193 			fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
194 	}
195 }
196 
queue_iova(struct iommu_dma_cookie * cookie,unsigned long pfn,unsigned long pages,struct iommu_pages_list * freelist)197 static void queue_iova(struct iommu_dma_cookie *cookie,
198 		unsigned long pfn, unsigned long pages,
199 		struct iommu_pages_list *freelist)
200 {
201 	struct iova_fq *fq;
202 	unsigned long flags;
203 	unsigned int idx;
204 
205 	/*
206 	 * Order against the IOMMU driver's pagetable update from unmapping
207 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
208 	 * from a different CPU before we release the lock below. Full barrier
209 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
210 	 * written fq state here.
211 	 */
212 	smp_mb();
213 
214 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
215 		fq = cookie->single_fq;
216 	else
217 		fq = raw_cpu_ptr(cookie->percpu_fq);
218 
219 	spin_lock_irqsave(&fq->lock, flags);
220 
221 	/*
222 	 * First remove all entries from the flush queue that have already been
223 	 * flushed out on another CPU. This makes the fq_full() check below less
224 	 * likely to be true.
225 	 */
226 	fq_ring_free_locked(cookie, fq);
227 
228 	if (fq_full(fq)) {
229 		fq_flush_iotlb(cookie);
230 		fq_ring_free_locked(cookie, fq);
231 	}
232 
233 	idx = fq_ring_add(fq);
234 
235 	fq->entries[idx].iova_pfn = pfn;
236 	fq->entries[idx].pages    = pages;
237 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
238 	iommu_pages_list_splice(freelist, &fq->entries[idx].freelist);
239 
240 	spin_unlock_irqrestore(&fq->lock, flags);
241 
242 	/* Avoid false sharing as much as possible. */
243 	if (!atomic_read(&cookie->fq_timer_on) &&
244 	    !atomic_xchg(&cookie->fq_timer_on, 1))
245 		mod_timer(&cookie->fq_timer,
246 			  jiffies + msecs_to_jiffies(cookie->options.fq_timeout));
247 }
248 
iommu_dma_free_fq_single(struct iova_fq * fq)249 static void iommu_dma_free_fq_single(struct iova_fq *fq)
250 {
251 	int idx;
252 
253 	fq_ring_for_each(idx, fq)
254 		iommu_put_pages_list(&fq->entries[idx].freelist);
255 	vfree(fq);
256 }
257 
iommu_dma_free_fq_percpu(struct iova_fq __percpu * percpu_fq)258 static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
259 {
260 	int cpu, idx;
261 
262 	/* The IOVAs will be torn down separately, so just free our queued pages */
263 	for_each_possible_cpu(cpu) {
264 		struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
265 
266 		fq_ring_for_each(idx, fq)
267 			iommu_put_pages_list(&fq->entries[idx].freelist);
268 	}
269 
270 	free_percpu(percpu_fq);
271 }
272 
iommu_dma_free_fq(struct iommu_dma_cookie * cookie)273 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
274 {
275 	if (!cookie->fq_domain)
276 		return;
277 
278 	timer_delete_sync(&cookie->fq_timer);
279 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
280 		iommu_dma_free_fq_single(cookie->single_fq);
281 	else
282 		iommu_dma_free_fq_percpu(cookie->percpu_fq);
283 }
284 
iommu_dma_init_one_fq(struct iova_fq * fq,size_t fq_size)285 static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
286 {
287 	int i;
288 
289 	fq->head = 0;
290 	fq->tail = 0;
291 	fq->mod_mask = fq_size - 1;
292 
293 	spin_lock_init(&fq->lock);
294 
295 	for (i = 0; i < fq_size; i++)
296 		fq->entries[i].freelist =
297 			IOMMU_PAGES_LIST_INIT(fq->entries[i].freelist);
298 }
299 
iommu_dma_init_fq_single(struct iommu_dma_cookie * cookie)300 static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
301 {
302 	size_t fq_size = cookie->options.fq_size;
303 	struct iova_fq *queue;
304 
305 	queue = vmalloc(struct_size(queue, entries, fq_size));
306 	if (!queue)
307 		return -ENOMEM;
308 	iommu_dma_init_one_fq(queue, fq_size);
309 	cookie->single_fq = queue;
310 
311 	return 0;
312 }
313 
iommu_dma_init_fq_percpu(struct iommu_dma_cookie * cookie)314 static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
315 {
316 	size_t fq_size = cookie->options.fq_size;
317 	struct iova_fq __percpu *queue;
318 	int cpu;
319 
320 	queue = __alloc_percpu(struct_size(queue, entries, fq_size),
321 			       __alignof__(*queue));
322 	if (!queue)
323 		return -ENOMEM;
324 
325 	for_each_possible_cpu(cpu)
326 		iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
327 	cookie->percpu_fq = queue;
328 	return 0;
329 }
330 
331 /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)332 int iommu_dma_init_fq(struct iommu_domain *domain)
333 {
334 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
335 	int rc;
336 
337 	if (cookie->fq_domain)
338 		return 0;
339 
340 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
341 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
342 
343 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
344 		rc = iommu_dma_init_fq_single(cookie);
345 	else
346 		rc = iommu_dma_init_fq_percpu(cookie);
347 
348 	if (rc) {
349 		pr_warn("iova flush queue initialization failed\n");
350 		return -ENOMEM;
351 	}
352 
353 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
354 	atomic_set(&cookie->fq_timer_on, 0);
355 	/*
356 	 * Prevent incomplete fq state being observable. Pairs with path from
357 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
358 	 */
359 	smp_wmb();
360 	WRITE_ONCE(cookie->fq_domain, domain);
361 	return 0;
362 }
363 
364 /**
365  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
366  * @domain: IOMMU domain to prepare for DMA-API usage
367  */
iommu_get_dma_cookie(struct iommu_domain * domain)368 int iommu_get_dma_cookie(struct iommu_domain *domain)
369 {
370 	struct iommu_dma_cookie *cookie;
371 
372 	if (domain->cookie_type != IOMMU_COOKIE_NONE)
373 		return -EEXIST;
374 
375 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
376 	if (!cookie)
377 		return -ENOMEM;
378 
379 	INIT_LIST_HEAD(&cookie->msi_page_list);
380 	domain->cookie_type = IOMMU_COOKIE_DMA_IOVA;
381 	domain->iova_cookie = cookie;
382 	return 0;
383 }
384 
385 /**
386  * iommu_get_msi_cookie - Acquire just MSI remapping resources
387  * @domain: IOMMU domain to prepare
388  * @base: Start address of IOVA region for MSI mappings
389  *
390  * Users who manage their own IOVA allocation and do not want DMA API support,
391  * but would still like to take advantage of automatic MSI remapping, can use
392  * this to initialise their own domain appropriately. Users should reserve a
393  * contiguous IOVA region, starting at @base, large enough to accommodate the
394  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
395  * used by the devices attached to @domain.
396  */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)397 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
398 {
399 	struct iommu_dma_msi_cookie *cookie;
400 
401 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
402 		return -EINVAL;
403 
404 	if (domain->cookie_type != IOMMU_COOKIE_NONE)
405 		return -EEXIST;
406 
407 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
408 	if (!cookie)
409 		return -ENOMEM;
410 
411 	cookie->msi_iova = base;
412 	INIT_LIST_HEAD(&cookie->msi_page_list);
413 	domain->cookie_type = IOMMU_COOKIE_DMA_MSI;
414 	domain->msi_cookie = cookie;
415 	return 0;
416 }
417 EXPORT_SYMBOL(iommu_get_msi_cookie);
418 
419 /**
420  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
421  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
422  */
iommu_put_dma_cookie(struct iommu_domain * domain)423 void iommu_put_dma_cookie(struct iommu_domain *domain)
424 {
425 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
426 	struct iommu_dma_msi_page *msi, *tmp;
427 
428 	if (cookie->iovad.granule) {
429 		iommu_dma_free_fq(cookie);
430 		put_iova_domain(&cookie->iovad);
431 	}
432 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list)
433 		kfree(msi);
434 	kfree(cookie);
435 }
436 
437 /**
438  * iommu_put_msi_cookie - Release a domain's MSI mapping resources
439  * @domain: IOMMU domain previously prepared by iommu_get_msi_cookie()
440  */
iommu_put_msi_cookie(struct iommu_domain * domain)441 void iommu_put_msi_cookie(struct iommu_domain *domain)
442 {
443 	struct iommu_dma_msi_cookie *cookie = domain->msi_cookie;
444 	struct iommu_dma_msi_page *msi, *tmp;
445 
446 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list)
447 		kfree(msi);
448 	kfree(cookie);
449 }
450 
451 /**
452  * iommu_dma_get_resv_regions - Reserved region driver helper
453  * @dev: Device from iommu_get_resv_regions()
454  * @list: Reserved region list from iommu_get_resv_regions()
455  *
456  * IOMMU drivers can use this to implement their .get_resv_regions callback
457  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
458  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
459  * reservation.
460  */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)461 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
462 {
463 
464 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
465 		iort_iommu_get_resv_regions(dev, list);
466 
467 	if (dev->of_node)
468 		of_iommu_get_resv_regions(dev, list);
469 }
470 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
471 
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)472 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
473 		phys_addr_t start, phys_addr_t end)
474 {
475 	struct iova_domain *iovad = &cookie->iovad;
476 	struct iommu_dma_msi_page *msi_page;
477 	int i, num_pages;
478 
479 	start -= iova_offset(iovad, start);
480 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
481 
482 	for (i = 0; i < num_pages; i++) {
483 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
484 		if (!msi_page)
485 			return -ENOMEM;
486 
487 		msi_page->phys = start;
488 		msi_page->iova = start;
489 		INIT_LIST_HEAD(&msi_page->list);
490 		list_add(&msi_page->list, &cookie->msi_page_list);
491 		start += iovad->granule;
492 	}
493 
494 	return 0;
495 }
496 
iommu_dma_ranges_sort(void * priv,const struct list_head * a,const struct list_head * b)497 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
498 		const struct list_head *b)
499 {
500 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
501 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
502 
503 	return res_a->res->start > res_b->res->start;
504 }
505 
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)506 static int iova_reserve_pci_windows(struct pci_dev *dev,
507 		struct iova_domain *iovad)
508 {
509 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
510 	struct resource_entry *window;
511 	unsigned long lo, hi;
512 	phys_addr_t start = 0, end;
513 
514 	resource_list_for_each_entry(window, &bridge->windows) {
515 		if (resource_type(window->res) != IORESOURCE_MEM)
516 			continue;
517 
518 		lo = iova_pfn(iovad, window->res->start - window->offset);
519 		hi = iova_pfn(iovad, window->res->end - window->offset);
520 		reserve_iova(iovad, lo, hi);
521 	}
522 
523 	/* Get reserved DMA windows from host bridge */
524 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
525 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
526 		end = window->res->start - window->offset;
527 resv_iova:
528 		if (end > start) {
529 			lo = iova_pfn(iovad, start);
530 			hi = iova_pfn(iovad, end);
531 			reserve_iova(iovad, lo, hi);
532 		} else if (end < start) {
533 			/* DMA ranges should be non-overlapping */
534 			dev_err(&dev->dev,
535 				"Failed to reserve IOVA [%pa-%pa]\n",
536 				&start, &end);
537 			return -EINVAL;
538 		}
539 
540 		start = window->res->end - window->offset + 1;
541 		/* If window is last entry */
542 		if (window->node.next == &bridge->dma_ranges &&
543 		    end != ~(phys_addr_t)0) {
544 			end = ~(phys_addr_t)0;
545 			goto resv_iova;
546 		}
547 	}
548 
549 	return 0;
550 }
551 
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)552 static int iova_reserve_iommu_regions(struct device *dev,
553 		struct iommu_domain *domain)
554 {
555 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
556 	struct iova_domain *iovad = &cookie->iovad;
557 	struct iommu_resv_region *region;
558 	LIST_HEAD(resv_regions);
559 	int ret = 0;
560 
561 	if (dev_is_pci(dev)) {
562 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
563 		if (ret)
564 			return ret;
565 	}
566 
567 	iommu_get_resv_regions(dev, &resv_regions);
568 	list_for_each_entry(region, &resv_regions, list) {
569 		unsigned long lo, hi;
570 
571 		/* We ARE the software that manages these! */
572 		if (region->type == IOMMU_RESV_SW_MSI)
573 			continue;
574 
575 		lo = iova_pfn(iovad, region->start);
576 		hi = iova_pfn(iovad, region->start + region->length - 1);
577 		reserve_iova(iovad, lo, hi);
578 
579 		if (region->type == IOMMU_RESV_MSI)
580 			ret = cookie_init_hw_msi_region(cookie, region->start,
581 					region->start + region->length);
582 		if (ret)
583 			break;
584 	}
585 	iommu_put_resv_regions(dev, &resv_regions);
586 
587 	return ret;
588 }
589 
dev_is_untrusted(struct device * dev)590 static bool dev_is_untrusted(struct device *dev)
591 {
592 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
593 }
594 
dev_use_swiotlb(struct device * dev,size_t size,enum dma_data_direction dir)595 static bool dev_use_swiotlb(struct device *dev, size_t size,
596 			    enum dma_data_direction dir)
597 {
598 	return IS_ENABLED(CONFIG_SWIOTLB) &&
599 		(dev_is_untrusted(dev) ||
600 		 dma_kmalloc_needs_bounce(dev, size, dir));
601 }
602 
dev_use_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)603 static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
604 			       int nents, enum dma_data_direction dir)
605 {
606 	struct scatterlist *s;
607 	int i;
608 
609 	if (!IS_ENABLED(CONFIG_SWIOTLB))
610 		return false;
611 
612 	if (dev_is_untrusted(dev))
613 		return true;
614 
615 	/*
616 	 * If kmalloc() buffers are not DMA-safe for this device and
617 	 * direction, check the individual lengths in the sg list. If any
618 	 * element is deemed unsafe, use the swiotlb for bouncing.
619 	 */
620 	if (!dma_kmalloc_safe(dev, dir)) {
621 		for_each_sg(sg, s, nents, i)
622 			if (!dma_kmalloc_size_aligned(s->length))
623 				return true;
624 	}
625 
626 	return false;
627 }
628 
629 /**
630  * iommu_dma_init_options - Initialize dma-iommu options
631  * @options: The options to be initialized
632  * @dev: Device the options are set for
633  *
634  * This allows tuning dma-iommu specific to device properties
635  */
iommu_dma_init_options(struct iommu_dma_options * options,struct device * dev)636 static void iommu_dma_init_options(struct iommu_dma_options *options,
637 				   struct device *dev)
638 {
639 	/* Shadowing IOTLB flushes do better with a single large queue */
640 	if (dev->iommu->shadow_on_flush) {
641 		options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
642 		options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
643 		options->fq_size = IOVA_SINGLE_FQ_SIZE;
644 	} else {
645 		options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
646 		options->fq_size = IOVA_DEFAULT_FQ_SIZE;
647 		options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
648 	}
649 }
650 
651 /**
652  * iommu_dma_init_domain - Initialise a DMA mapping domain
653  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
654  * @dev: Device the domain is being initialised for
655  *
656  * If the geometry and dma_range_map include address 0, we reserve that page
657  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
658  * any change which could make prior IOVAs invalid will fail.
659  */
iommu_dma_init_domain(struct iommu_domain * domain,struct device * dev)660 static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev)
661 {
662 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
663 	const struct bus_dma_region *map = dev->dma_range_map;
664 	unsigned long order, base_pfn;
665 	struct iova_domain *iovad;
666 	int ret;
667 
668 	if (!cookie || domain->cookie_type != IOMMU_COOKIE_DMA_IOVA)
669 		return -EINVAL;
670 
671 	iovad = &cookie->iovad;
672 
673 	/* Use the smallest supported page size for IOVA granularity */
674 	order = __ffs(domain->pgsize_bitmap);
675 	base_pfn = 1;
676 
677 	/* Check the domain allows at least some access to the device... */
678 	if (map) {
679 		if (dma_range_map_min(map) > domain->geometry.aperture_end ||
680 		    dma_range_map_max(map) < domain->geometry.aperture_start) {
681 			pr_warn("specified DMA range outside IOMMU capability\n");
682 			return -EFAULT;
683 		}
684 	}
685 	/* ...then finally give it a kicking to make sure it fits */
686 	base_pfn = max_t(unsigned long, base_pfn,
687 			 domain->geometry.aperture_start >> order);
688 
689 	/* start_pfn is always nonzero for an already-initialised domain */
690 	if (iovad->start_pfn) {
691 		if (1UL << order != iovad->granule ||
692 		    base_pfn != iovad->start_pfn) {
693 			pr_warn("Incompatible range for DMA domain\n");
694 			return -EFAULT;
695 		}
696 
697 		return 0;
698 	}
699 
700 	init_iova_domain(iovad, 1UL << order, base_pfn);
701 	ret = iova_domain_init_rcaches(iovad);
702 	if (ret)
703 		return ret;
704 
705 	iommu_dma_init_options(&cookie->options, dev);
706 
707 	/* If the FQ fails we can simply fall back to strict mode */
708 	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
709 	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
710 		domain->type = IOMMU_DOMAIN_DMA;
711 
712 	return iova_reserve_iommu_regions(dev, domain);
713 }
714 
715 /**
716  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
717  *                    page flags.
718  * @dir: Direction of DMA transfer
719  * @coherent: Is the DMA master cache-coherent?
720  * @attrs: DMA attributes for the mapping
721  *
722  * Return: corresponding IOMMU API page protection flags
723  */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)724 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
725 		     unsigned long attrs)
726 {
727 	int prot = coherent ? IOMMU_CACHE : 0;
728 
729 	if (attrs & DMA_ATTR_PRIVILEGED)
730 		prot |= IOMMU_PRIV;
731 
732 	switch (dir) {
733 	case DMA_BIDIRECTIONAL:
734 		return prot | IOMMU_READ | IOMMU_WRITE;
735 	case DMA_TO_DEVICE:
736 		return prot | IOMMU_READ;
737 	case DMA_FROM_DEVICE:
738 		return prot | IOMMU_WRITE;
739 	default:
740 		return 0;
741 	}
742 }
743 
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)744 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
745 		size_t size, u64 dma_limit, struct device *dev)
746 {
747 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
748 	struct iova_domain *iovad = &cookie->iovad;
749 	unsigned long shift, iova_len, iova;
750 
751 	if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI) {
752 		domain->msi_cookie->msi_iova += size;
753 		return domain->msi_cookie->msi_iova - size;
754 	}
755 
756 	shift = iova_shift(iovad);
757 	iova_len = size >> shift;
758 
759 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
760 
761 	if (domain->geometry.force_aperture)
762 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
763 
764 	/*
765 	 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
766 	 * DAC reasoning loses relevance with PCIe, but enough hardware and
767 	 * firmware bugs are still lurking out there that it's safest not to
768 	 * venture into the 64-bit space until necessary.
769 	 *
770 	 * If your device goes wrong after seeing the notice then likely either
771 	 * its driver is not setting DMA masks accurately, the hardware has
772 	 * some inherent bug in handling >32-bit addresses, or not all the
773 	 * expected address bits are wired up between the device and the IOMMU.
774 	 */
775 	if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
776 		iova = alloc_iova_fast(iovad, iova_len,
777 				       DMA_BIT_MASK(32) >> shift, false);
778 		if (iova)
779 			goto done;
780 
781 		dev->iommu->pci_32bit_workaround = false;
782 		dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
783 	}
784 
785 	iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
786 done:
787 	return (dma_addr_t)iova << shift;
788 }
789 
iommu_dma_free_iova(struct iommu_domain * domain,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)790 static void iommu_dma_free_iova(struct iommu_domain *domain, dma_addr_t iova,
791 				size_t size, struct iommu_iotlb_gather *gather)
792 {
793 	struct iova_domain *iovad = &domain->iova_cookie->iovad;
794 
795 	/* The MSI case is only ever cleaning up its most recent allocation */
796 	if (domain->cookie_type == IOMMU_COOKIE_DMA_MSI)
797 		domain->msi_cookie->msi_iova -= size;
798 	else if (gather && gather->queued)
799 		queue_iova(domain->iova_cookie, iova_pfn(iovad, iova),
800 				size >> iova_shift(iovad),
801 				&gather->freelist);
802 	else
803 		free_iova_fast(iovad, iova_pfn(iovad, iova),
804 				size >> iova_shift(iovad));
805 }
806 
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)807 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
808 		size_t size)
809 {
810 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
811 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
812 	struct iova_domain *iovad = &cookie->iovad;
813 	size_t iova_off = iova_offset(iovad, dma_addr);
814 	struct iommu_iotlb_gather iotlb_gather;
815 	size_t unmapped;
816 
817 	dma_addr -= iova_off;
818 	size = iova_align(iovad, size + iova_off);
819 	iommu_iotlb_gather_init(&iotlb_gather);
820 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
821 
822 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
823 	WARN_ON(unmapped != size);
824 
825 	if (!iotlb_gather.queued)
826 		iommu_iotlb_sync(domain, &iotlb_gather);
827 	iommu_dma_free_iova(domain, dma_addr, size, &iotlb_gather);
828 }
829 
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)830 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
831 		size_t size, int prot, u64 dma_mask)
832 {
833 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
834 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
835 	struct iova_domain *iovad = &cookie->iovad;
836 	size_t iova_off = iova_offset(iovad, phys);
837 	dma_addr_t iova;
838 
839 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
840 	    iommu_deferred_attach(dev, domain))
841 		return DMA_MAPPING_ERROR;
842 
843 	/* If anyone ever wants this we'd need support in the IOVA allocator */
844 	if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
845 	    "Unsupported alignment constraint\n"))
846 		return DMA_MAPPING_ERROR;
847 
848 	size = iova_align(iovad, size + iova_off);
849 
850 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
851 	if (!iova)
852 		return DMA_MAPPING_ERROR;
853 
854 	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
855 		iommu_dma_free_iova(domain, iova, size, NULL);
856 		return DMA_MAPPING_ERROR;
857 	}
858 	return iova + iova_off;
859 }
860 
__iommu_dma_free_pages(struct page ** pages,int count)861 static void __iommu_dma_free_pages(struct page **pages, int count)
862 {
863 	while (count--)
864 		__free_page(pages[count]);
865 	kvfree(pages);
866 }
867 
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)868 static struct page **__iommu_dma_alloc_pages(struct device *dev,
869 		unsigned int count, unsigned long order_mask, gfp_t gfp)
870 {
871 	struct page **pages;
872 	unsigned int i = 0, nid = dev_to_node(dev);
873 
874 	order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
875 	if (!order_mask)
876 		return NULL;
877 
878 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
879 	if (!pages)
880 		return NULL;
881 
882 	/* IOMMU can map any pages, so himem can also be used here */
883 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
884 
885 	while (count) {
886 		struct page *page = NULL;
887 		unsigned int order_size;
888 
889 		/*
890 		 * Higher-order allocations are a convenience rather
891 		 * than a necessity, hence using __GFP_NORETRY until
892 		 * falling back to minimum-order allocations.
893 		 */
894 		for (order_mask &= GENMASK(__fls(count), 0);
895 		     order_mask; order_mask &= ~order_size) {
896 			unsigned int order = __fls(order_mask);
897 			gfp_t alloc_flags = gfp;
898 
899 			order_size = 1U << order;
900 			if (order_mask > order_size)
901 				alloc_flags |= __GFP_NORETRY;
902 			page = alloc_pages_node(nid, alloc_flags, order);
903 			if (!page)
904 				continue;
905 			if (order)
906 				split_page(page, order);
907 			break;
908 		}
909 		if (!page) {
910 			__iommu_dma_free_pages(pages, i);
911 			return NULL;
912 		}
913 		count -= order_size;
914 		while (order_size--)
915 			pages[i++] = page++;
916 	}
917 	return pages;
918 }
919 
920 /*
921  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
922  * but an IOMMU which supports smaller pages might not map the whole thing.
923  */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,unsigned long attrs)924 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
925 		size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs)
926 {
927 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
928 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
929 	struct iova_domain *iovad = &cookie->iovad;
930 	bool coherent = dev_is_dma_coherent(dev);
931 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
932 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
933 	struct page **pages;
934 	dma_addr_t iova;
935 	ssize_t ret;
936 
937 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
938 	    iommu_deferred_attach(dev, domain))
939 		return NULL;
940 
941 	min_size = alloc_sizes & -alloc_sizes;
942 	if (min_size < PAGE_SIZE) {
943 		min_size = PAGE_SIZE;
944 		alloc_sizes |= PAGE_SIZE;
945 	} else {
946 		size = ALIGN(size, min_size);
947 	}
948 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
949 		alloc_sizes = min_size;
950 
951 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
952 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
953 					gfp);
954 	if (!pages)
955 		return NULL;
956 
957 	size = iova_align(iovad, size);
958 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
959 	if (!iova)
960 		goto out_free_pages;
961 
962 	/*
963 	 * Remove the zone/policy flags from the GFP - these are applied to the
964 	 * __iommu_dma_alloc_pages() but are not used for the supporting
965 	 * internal allocations that follow.
966 	 */
967 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
968 
969 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
970 		goto out_free_iova;
971 
972 	if (!(ioprot & IOMMU_CACHE)) {
973 		struct scatterlist *sg;
974 		int i;
975 
976 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
977 			arch_dma_prep_coherent(sg_page(sg), sg->length);
978 	}
979 
980 	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
981 			   gfp);
982 	if (ret < 0 || ret < size)
983 		goto out_free_sg;
984 
985 	sgt->sgl->dma_address = iova;
986 	sgt->sgl->dma_length = size;
987 	return pages;
988 
989 out_free_sg:
990 	sg_free_table(sgt);
991 out_free_iova:
992 	iommu_dma_free_iova(domain, iova, size, NULL);
993 out_free_pages:
994 	__iommu_dma_free_pages(pages, count);
995 	return NULL;
996 }
997 
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)998 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
999 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
1000 {
1001 	struct page **pages;
1002 	struct sg_table sgt;
1003 	void *vaddr;
1004 	pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1005 
1006 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs);
1007 	if (!pages)
1008 		return NULL;
1009 	*dma_handle = sgt.sgl->dma_address;
1010 	sg_free_table(&sgt);
1011 	vaddr = dma_common_pages_remap(pages, size, prot,
1012 			__builtin_return_address(0));
1013 	if (!vaddr)
1014 		goto out_unmap;
1015 	return vaddr;
1016 
1017 out_unmap:
1018 	__iommu_dma_unmap(dev, *dma_handle, size);
1019 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1020 	return NULL;
1021 }
1022 
1023 /*
1024  * This is the actual return value from the iommu_dma_alloc_noncontiguous.
1025  *
1026  * The users of the DMA API should only care about the sg_table, but to make
1027  * the DMA-API internal vmaping and freeing easier we stash away the page
1028  * array as well (except for the fallback case).  This can go away any time,
1029  * e.g. when a vmap-variant that takes a scatterlist comes along.
1030  */
1031 struct dma_sgt_handle {
1032 	struct sg_table sgt;
1033 	struct page **pages;
1034 };
1035 #define sgt_handle(sgt) \
1036 	container_of((sgt), struct dma_sgt_handle, sgt)
1037 
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)1038 struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size,
1039 	       enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
1040 {
1041 	struct dma_sgt_handle *sh;
1042 
1043 	sh = kmalloc(sizeof(*sh), gfp);
1044 	if (!sh)
1045 		return NULL;
1046 
1047 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs);
1048 	if (!sh->pages) {
1049 		kfree(sh);
1050 		return NULL;
1051 	}
1052 	return &sh->sgt;
1053 }
1054 
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)1055 void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
1056 		struct sg_table *sgt, enum dma_data_direction dir)
1057 {
1058 	struct dma_sgt_handle *sh = sgt_handle(sgt);
1059 
1060 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
1061 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1062 	sg_free_table(&sh->sgt);
1063 	kfree(sh);
1064 }
1065 
iommu_dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)1066 void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size,
1067 		struct sg_table *sgt)
1068 {
1069 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1070 
1071 	return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
1072 }
1073 
iommu_dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)1074 int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
1075 		size_t size, struct sg_table *sgt)
1076 {
1077 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1078 
1079 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
1080 		return -ENXIO;
1081 	return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
1082 }
1083 
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)1084 void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
1085 		size_t size, enum dma_data_direction dir)
1086 {
1087 	phys_addr_t phys;
1088 
1089 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1090 		return;
1091 
1092 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1093 	if (!dev_is_dma_coherent(dev))
1094 		arch_sync_dma_for_cpu(phys, size, dir);
1095 
1096 	swiotlb_sync_single_for_cpu(dev, phys, size, dir);
1097 }
1098 
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)1099 void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
1100 		size_t size, enum dma_data_direction dir)
1101 {
1102 	phys_addr_t phys;
1103 
1104 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1105 		return;
1106 
1107 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1108 	swiotlb_sync_single_for_device(dev, phys, size, dir);
1109 
1110 	if (!dev_is_dma_coherent(dev))
1111 		arch_sync_dma_for_device(phys, size, dir);
1112 }
1113 
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1114 void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
1115 		int nelems, enum dma_data_direction dir)
1116 {
1117 	struct scatterlist *sg;
1118 	int i;
1119 
1120 	if (sg_dma_is_swiotlb(sgl))
1121 		for_each_sg(sgl, sg, nelems, i)
1122 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1123 						      sg->length, dir);
1124 	else if (!dev_is_dma_coherent(dev))
1125 		for_each_sg(sgl, sg, nelems, i)
1126 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
1127 }
1128 
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)1129 void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
1130 		int nelems, enum dma_data_direction dir)
1131 {
1132 	struct scatterlist *sg;
1133 	int i;
1134 
1135 	if (sg_dma_is_swiotlb(sgl))
1136 		for_each_sg(sgl, sg, nelems, i)
1137 			iommu_dma_sync_single_for_device(dev,
1138 							 sg_dma_address(sg),
1139 							 sg->length, dir);
1140 	else if (!dev_is_dma_coherent(dev))
1141 		for_each_sg(sgl, sg, nelems, i)
1142 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
1143 }
1144 
iommu_dma_map_swiotlb(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1145 static phys_addr_t iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
1146 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1147 {
1148 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1149 	struct iova_domain *iovad = &domain->iova_cookie->iovad;
1150 
1151 	if (!is_swiotlb_active(dev)) {
1152 		dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1153 		return (phys_addr_t)DMA_MAPPING_ERROR;
1154 	}
1155 
1156 	trace_swiotlb_bounced(dev, phys, size);
1157 
1158 	phys = swiotlb_tbl_map_single(dev, phys, size, iova_mask(iovad), dir,
1159 			attrs);
1160 
1161 	/*
1162 	 * Untrusted devices should not see padding areas with random leftover
1163 	 * kernel data, so zero the pre- and post-padding.
1164 	 * swiotlb_tbl_map_single() has initialized the bounce buffer proper to
1165 	 * the contents of the original memory buffer.
1166 	 */
1167 	if (phys != (phys_addr_t)DMA_MAPPING_ERROR && dev_is_untrusted(dev)) {
1168 		size_t start, virt = (size_t)phys_to_virt(phys);
1169 
1170 		/* Pre-padding */
1171 		start = iova_align_down(iovad, virt);
1172 		memset((void *)start, 0, virt - start);
1173 
1174 		/* Post-padding */
1175 		start = virt + size;
1176 		memset((void *)start, 0, iova_align(iovad, start) - start);
1177 	}
1178 
1179 	return phys;
1180 }
1181 
1182 /*
1183  * Checks if a physical buffer has unaligned boundaries with respect to
1184  * the IOMMU granule. Returns non-zero if either the start or end
1185  * address is not aligned to the granule boundary.
1186  */
iova_unaligned(struct iova_domain * iovad,phys_addr_t phys,size_t size)1187 static inline size_t iova_unaligned(struct iova_domain *iovad, phys_addr_t phys,
1188 				    size_t size)
1189 {
1190 	return iova_offset(iovad, phys | size);
1191 }
1192 
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1193 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1194 	      unsigned long offset, size_t size, enum dma_data_direction dir,
1195 	      unsigned long attrs)
1196 {
1197 	phys_addr_t phys = page_to_phys(page) + offset;
1198 	bool coherent = dev_is_dma_coherent(dev);
1199 	int prot = dma_info_to_prot(dir, coherent, attrs);
1200 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1201 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1202 	struct iova_domain *iovad = &cookie->iovad;
1203 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1204 
1205 	/*
1206 	 * If both the physical buffer start address and size are page aligned,
1207 	 * we don't need to use a bounce page.
1208 	 */
1209 	if (dev_use_swiotlb(dev, size, dir) &&
1210 	    iova_unaligned(iovad, phys, size)) {
1211 		phys = iommu_dma_map_swiotlb(dev, phys, size, dir, attrs);
1212 		if (phys == (phys_addr_t)DMA_MAPPING_ERROR)
1213 			return DMA_MAPPING_ERROR;
1214 	}
1215 
1216 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1217 		arch_sync_dma_for_device(phys, size, dir);
1218 
1219 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1220 	if (iova == DMA_MAPPING_ERROR)
1221 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1222 	return iova;
1223 }
1224 
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1225 void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1226 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1227 {
1228 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1229 	phys_addr_t phys;
1230 
1231 	phys = iommu_iova_to_phys(domain, dma_handle);
1232 	if (WARN_ON(!phys))
1233 		return;
1234 
1235 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1236 		arch_sync_dma_for_cpu(phys, size, dir);
1237 
1238 	__iommu_dma_unmap(dev, dma_handle, size);
1239 
1240 	swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1241 }
1242 
1243 /*
1244  * Prepare a successfully-mapped scatterlist to give back to the caller.
1245  *
1246  * At this point the segments are already laid out by iommu_dma_map_sg() to
1247  * avoid individually crossing any boundaries, so we merely need to check a
1248  * segment's start address to avoid concatenating across one.
1249  */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)1250 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1251 		dma_addr_t dma_addr)
1252 {
1253 	struct scatterlist *s, *cur = sg;
1254 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1255 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1256 	int i, count = 0;
1257 
1258 	for_each_sg(sg, s, nents, i) {
1259 		/* Restore this segment's original unaligned fields first */
1260 		dma_addr_t s_dma_addr = sg_dma_address(s);
1261 		unsigned int s_iova_off = sg_dma_address(s);
1262 		unsigned int s_length = sg_dma_len(s);
1263 		unsigned int s_iova_len = s->length;
1264 
1265 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1266 		sg_dma_len(s) = 0;
1267 
1268 		if (sg_dma_is_bus_address(s)) {
1269 			if (i > 0)
1270 				cur = sg_next(cur);
1271 
1272 			sg_dma_unmark_bus_address(s);
1273 			sg_dma_address(cur) = s_dma_addr;
1274 			sg_dma_len(cur) = s_length;
1275 			sg_dma_mark_bus_address(cur);
1276 			count++;
1277 			cur_len = 0;
1278 			continue;
1279 		}
1280 
1281 		s->offset += s_iova_off;
1282 		s->length = s_length;
1283 
1284 		/*
1285 		 * Now fill in the real DMA data. If...
1286 		 * - there is a valid output segment to append to
1287 		 * - and this segment starts on an IOVA page boundary
1288 		 * - but doesn't fall at a segment boundary
1289 		 * - and wouldn't make the resulting output segment too long
1290 		 */
1291 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1292 		    (max_len - cur_len >= s_length)) {
1293 			/* ...then concatenate it with the previous one */
1294 			cur_len += s_length;
1295 		} else {
1296 			/* Otherwise start the next output segment */
1297 			if (i > 0)
1298 				cur = sg_next(cur);
1299 			cur_len = s_length;
1300 			count++;
1301 
1302 			sg_dma_address(cur) = dma_addr + s_iova_off;
1303 		}
1304 
1305 		sg_dma_len(cur) = cur_len;
1306 		dma_addr += s_iova_len;
1307 
1308 		if (s_length + s_iova_off < s_iova_len)
1309 			cur_len = 0;
1310 	}
1311 	return count;
1312 }
1313 
1314 /*
1315  * If mapping failed, then just restore the original list,
1316  * but making sure the DMA fields are invalidated.
1317  */
__invalidate_sg(struct scatterlist * sg,int nents)1318 static void __invalidate_sg(struct scatterlist *sg, int nents)
1319 {
1320 	struct scatterlist *s;
1321 	int i;
1322 
1323 	for_each_sg(sg, s, nents, i) {
1324 		if (sg_dma_is_bus_address(s)) {
1325 			sg_dma_unmark_bus_address(s);
1326 		} else {
1327 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1328 				s->offset += sg_dma_address(s);
1329 			if (sg_dma_len(s))
1330 				s->length = sg_dma_len(s);
1331 		}
1332 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1333 		sg_dma_len(s) = 0;
1334 	}
1335 }
1336 
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1337 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1338 		int nents, enum dma_data_direction dir, unsigned long attrs)
1339 {
1340 	struct scatterlist *s;
1341 	int i;
1342 
1343 	for_each_sg(sg, s, nents, i)
1344 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1345 				sg_dma_len(s), dir, attrs);
1346 }
1347 
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1348 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1349 		int nents, enum dma_data_direction dir, unsigned long attrs)
1350 {
1351 	struct scatterlist *s;
1352 	int i;
1353 
1354 	sg_dma_mark_swiotlb(sg);
1355 
1356 	for_each_sg(sg, s, nents, i) {
1357 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1358 				s->offset, s->length, dir, attrs);
1359 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1360 			goto out_unmap;
1361 		sg_dma_len(s) = s->length;
1362 	}
1363 
1364 	return nents;
1365 
1366 out_unmap:
1367 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1368 	return -EIO;
1369 }
1370 
1371 /*
1372  * The DMA API client is passing in a scatterlist which could describe
1373  * any old buffer layout, but the IOMMU API requires everything to be
1374  * aligned to IOMMU pages. Hence the need for this complicated bit of
1375  * impedance-matching, to be able to hand off a suitably-aligned list,
1376  * but still preserve the original offsets and sizes for the caller.
1377  */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1378 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1379 		enum dma_data_direction dir, unsigned long attrs)
1380 {
1381 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1382 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1383 	struct iova_domain *iovad = &cookie->iovad;
1384 	struct scatterlist *s, *prev = NULL;
1385 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1386 	struct pci_p2pdma_map_state p2pdma_state = {};
1387 	dma_addr_t iova;
1388 	size_t iova_len = 0;
1389 	unsigned long mask = dma_get_seg_boundary(dev);
1390 	ssize_t ret;
1391 	int i;
1392 
1393 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1394 		ret = iommu_deferred_attach(dev, domain);
1395 		if (ret)
1396 			goto out;
1397 	}
1398 
1399 	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1400 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1401 
1402 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1403 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1404 
1405 	/*
1406 	 * Work out how much IOVA space we need, and align the segments to
1407 	 * IOVA granules for the IOMMU driver to handle. With some clever
1408 	 * trickery we can modify the list in-place, but reversibly, by
1409 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1410 	 */
1411 	for_each_sg(sg, s, nents, i) {
1412 		size_t s_iova_off = iova_offset(iovad, s->offset);
1413 		size_t s_length = s->length;
1414 		size_t pad_len = (mask - iova_len + 1) & mask;
1415 
1416 		switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(s))) {
1417 		case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1418 			/*
1419 			 * Mapping through host bridge should be mapped with
1420 			 * regular IOVAs, thus we do nothing here and continue
1421 			 * below.
1422 			 */
1423 			break;
1424 		case PCI_P2PDMA_MAP_NONE:
1425 			break;
1426 		case PCI_P2PDMA_MAP_BUS_ADDR:
1427 			/*
1428 			 * iommu_map_sg() will skip this segment as it is marked
1429 			 * as a bus address, __finalise_sg() will copy the dma
1430 			 * address into the output segment.
1431 			 */
1432 			s->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state,
1433 						sg_phys(s));
1434 			sg_dma_len(s) = sg->length;
1435 			sg_dma_mark_bus_address(s);
1436 			continue;
1437 		default:
1438 			ret = -EREMOTEIO;
1439 			goto out_restore_sg;
1440 		}
1441 
1442 		sg_dma_address(s) = s_iova_off;
1443 		sg_dma_len(s) = s_length;
1444 		s->offset -= s_iova_off;
1445 		s_length = iova_align(iovad, s_length + s_iova_off);
1446 		s->length = s_length;
1447 
1448 		/*
1449 		 * Due to the alignment of our single IOVA allocation, we can
1450 		 * depend on these assumptions about the segment boundary mask:
1451 		 * - If mask size >= IOVA size, then the IOVA range cannot
1452 		 *   possibly fall across a boundary, so we don't care.
1453 		 * - If mask size < IOVA size, then the IOVA range must start
1454 		 *   exactly on a boundary, therefore we can lay things out
1455 		 *   based purely on segment lengths without needing to know
1456 		 *   the actual addresses beforehand.
1457 		 * - The mask must be a power of 2, so pad_len == 0 if
1458 		 *   iova_len == 0, thus we cannot dereference prev the first
1459 		 *   time through here (i.e. before it has a meaningful value).
1460 		 */
1461 		if (pad_len && pad_len < s_length - 1) {
1462 			prev->length += pad_len;
1463 			iova_len += pad_len;
1464 		}
1465 
1466 		iova_len += s_length;
1467 		prev = s;
1468 	}
1469 
1470 	if (!iova_len)
1471 		return __finalise_sg(dev, sg, nents, 0);
1472 
1473 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1474 	if (!iova) {
1475 		ret = -ENOMEM;
1476 		goto out_restore_sg;
1477 	}
1478 
1479 	/*
1480 	 * We'll leave any physical concatenation to the IOMMU driver's
1481 	 * implementation - it knows better than we do.
1482 	 */
1483 	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1484 	if (ret < 0 || ret < iova_len)
1485 		goto out_free_iova;
1486 
1487 	return __finalise_sg(dev, sg, nents, iova);
1488 
1489 out_free_iova:
1490 	iommu_dma_free_iova(domain, iova, iova_len, NULL);
1491 out_restore_sg:
1492 	__invalidate_sg(sg, nents);
1493 out:
1494 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1495 		return -EINVAL;
1496 	return ret;
1497 }
1498 
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1499 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1500 		enum dma_data_direction dir, unsigned long attrs)
1501 {
1502 	dma_addr_t end = 0, start;
1503 	struct scatterlist *tmp;
1504 	int i;
1505 
1506 	if (sg_dma_is_swiotlb(sg)) {
1507 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1508 		return;
1509 	}
1510 
1511 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1512 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1513 
1514 	/*
1515 	 * The scatterlist segments are mapped into a single
1516 	 * contiguous IOVA allocation, the start and end points
1517 	 * just have to be determined.
1518 	 */
1519 	for_each_sg(sg, tmp, nents, i) {
1520 		if (sg_dma_is_bus_address(tmp)) {
1521 			sg_dma_unmark_bus_address(tmp);
1522 			continue;
1523 		}
1524 
1525 		if (sg_dma_len(tmp) == 0)
1526 			break;
1527 
1528 		start = sg_dma_address(tmp);
1529 		break;
1530 	}
1531 
1532 	nents -= i;
1533 	for_each_sg(tmp, tmp, nents, i) {
1534 		if (sg_dma_is_bus_address(tmp)) {
1535 			sg_dma_unmark_bus_address(tmp);
1536 			continue;
1537 		}
1538 
1539 		if (sg_dma_len(tmp) == 0)
1540 			break;
1541 
1542 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1543 	}
1544 
1545 	if (end)
1546 		__iommu_dma_unmap(dev, start, end - start);
1547 }
1548 
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1549 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1550 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1551 {
1552 	return __iommu_dma_map(dev, phys, size,
1553 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1554 			dma_get_mask(dev));
1555 }
1556 
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1557 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1558 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1559 {
1560 	__iommu_dma_unmap(dev, handle, size);
1561 }
1562 
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1563 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1564 {
1565 	size_t alloc_size = PAGE_ALIGN(size);
1566 	int count = alloc_size >> PAGE_SHIFT;
1567 	struct page *page = NULL, **pages = NULL;
1568 
1569 	/* Non-coherent atomic allocation? Easy */
1570 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1571 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1572 		return;
1573 
1574 	if (is_vmalloc_addr(cpu_addr)) {
1575 		/*
1576 		 * If it the address is remapped, then it's either non-coherent
1577 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1578 		 */
1579 		pages = dma_common_find_pages(cpu_addr);
1580 		if (!pages)
1581 			page = vmalloc_to_page(cpu_addr);
1582 		dma_common_free_remap(cpu_addr, alloc_size);
1583 	} else {
1584 		/* Lowmem means a coherent atomic or CMA allocation */
1585 		page = virt_to_page(cpu_addr);
1586 	}
1587 
1588 	if (pages)
1589 		__iommu_dma_free_pages(pages, count);
1590 	if (page)
1591 		dma_free_contiguous(dev, page, alloc_size);
1592 }
1593 
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1594 void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1595 		dma_addr_t handle, unsigned long attrs)
1596 {
1597 	__iommu_dma_unmap(dev, handle, size);
1598 	__iommu_dma_free(dev, size, cpu_addr);
1599 }
1600 
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1601 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1602 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1603 {
1604 	bool coherent = dev_is_dma_coherent(dev);
1605 	size_t alloc_size = PAGE_ALIGN(size);
1606 	int node = dev_to_node(dev);
1607 	struct page *page = NULL;
1608 	void *cpu_addr;
1609 
1610 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1611 	if (!page)
1612 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1613 	if (!page)
1614 		return NULL;
1615 
1616 	if (!coherent || PageHighMem(page)) {
1617 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1618 
1619 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1620 				prot, __builtin_return_address(0));
1621 		if (!cpu_addr)
1622 			goto out_free_pages;
1623 
1624 		if (!coherent)
1625 			arch_dma_prep_coherent(page, size);
1626 	} else {
1627 		cpu_addr = page_address(page);
1628 	}
1629 
1630 	*pagep = page;
1631 	memset(cpu_addr, 0, alloc_size);
1632 	return cpu_addr;
1633 out_free_pages:
1634 	dma_free_contiguous(dev, page, alloc_size);
1635 	return NULL;
1636 }
1637 
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1638 void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
1639 		gfp_t gfp, unsigned long attrs)
1640 {
1641 	bool coherent = dev_is_dma_coherent(dev);
1642 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1643 	struct page *page = NULL;
1644 	void *cpu_addr;
1645 
1646 	gfp |= __GFP_ZERO;
1647 
1648 	if (gfpflags_allow_blocking(gfp) &&
1649 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1650 		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1651 	}
1652 
1653 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1654 	    !gfpflags_allow_blocking(gfp) && !coherent)
1655 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1656 					       gfp, NULL);
1657 	else
1658 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1659 	if (!cpu_addr)
1660 		return NULL;
1661 
1662 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1663 			dev->coherent_dma_mask);
1664 	if (*handle == DMA_MAPPING_ERROR) {
1665 		__iommu_dma_free(dev, size, cpu_addr);
1666 		return NULL;
1667 	}
1668 
1669 	return cpu_addr;
1670 }
1671 
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1672 int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1673 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1674 		unsigned long attrs)
1675 {
1676 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1677 	unsigned long pfn, off = vma->vm_pgoff;
1678 	int ret;
1679 
1680 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1681 
1682 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1683 		return ret;
1684 
1685 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1686 		return -ENXIO;
1687 
1688 	if (is_vmalloc_addr(cpu_addr)) {
1689 		struct page **pages = dma_common_find_pages(cpu_addr);
1690 
1691 		if (pages)
1692 			return vm_map_pages(vma, pages, nr_pages);
1693 		pfn = vmalloc_to_pfn(cpu_addr);
1694 	} else {
1695 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1696 	}
1697 
1698 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1699 			       vma->vm_end - vma->vm_start,
1700 			       vma->vm_page_prot);
1701 }
1702 
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1703 int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1704 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1705 		unsigned long attrs)
1706 {
1707 	struct page *page;
1708 	int ret;
1709 
1710 	if (is_vmalloc_addr(cpu_addr)) {
1711 		struct page **pages = dma_common_find_pages(cpu_addr);
1712 
1713 		if (pages) {
1714 			return sg_alloc_table_from_pages(sgt, pages,
1715 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1716 					0, size, GFP_KERNEL);
1717 		}
1718 
1719 		page = vmalloc_to_page(cpu_addr);
1720 	} else {
1721 		page = virt_to_page(cpu_addr);
1722 	}
1723 
1724 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1725 	if (!ret)
1726 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1727 	return ret;
1728 }
1729 
iommu_dma_get_merge_boundary(struct device * dev)1730 unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1731 {
1732 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1733 
1734 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1735 }
1736 
iommu_dma_opt_mapping_size(void)1737 size_t iommu_dma_opt_mapping_size(void)
1738 {
1739 	return iova_rcache_range();
1740 }
1741 
iommu_dma_max_mapping_size(struct device * dev)1742 size_t iommu_dma_max_mapping_size(struct device *dev)
1743 {
1744 	if (dev_is_untrusted(dev))
1745 		return swiotlb_max_mapping_size(dev);
1746 
1747 	return SIZE_MAX;
1748 }
1749 
1750 /**
1751  * dma_iova_try_alloc - Try to allocate an IOVA space
1752  * @dev: Device to allocate the IOVA space for
1753  * @state: IOVA state
1754  * @phys: physical address
1755  * @size: IOVA size
1756  *
1757  * Check if @dev supports the IOVA-based DMA API, and if yes allocate IOVA space
1758  * for the given base address and size.
1759  *
1760  * Note: @phys is only used to calculate the IOVA alignment. Callers that always
1761  * do PAGE_SIZE aligned transfers can safely pass 0 here.
1762  *
1763  * Returns %true if the IOVA-based DMA API can be used and IOVA space has been
1764  * allocated, or %false if the regular DMA API should be used.
1765  */
dma_iova_try_alloc(struct device * dev,struct dma_iova_state * state,phys_addr_t phys,size_t size)1766 bool dma_iova_try_alloc(struct device *dev, struct dma_iova_state *state,
1767 		phys_addr_t phys, size_t size)
1768 {
1769 	struct iommu_dma_cookie *cookie;
1770 	struct iommu_domain *domain;
1771 	struct iova_domain *iovad;
1772 	size_t iova_off;
1773 	dma_addr_t addr;
1774 
1775 	memset(state, 0, sizeof(*state));
1776 	if (!use_dma_iommu(dev))
1777 		return false;
1778 
1779 	domain = iommu_get_dma_domain(dev);
1780 	cookie = domain->iova_cookie;
1781 	iovad = &cookie->iovad;
1782 	iova_off = iova_offset(iovad, phys);
1783 
1784 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
1785 	    iommu_deferred_attach(dev, iommu_get_domain_for_dev(dev)))
1786 		return false;
1787 
1788 	if (WARN_ON_ONCE(!size))
1789 		return false;
1790 
1791 	/*
1792 	 * DMA_IOVA_USE_SWIOTLB is flag which is set by dma-iommu
1793 	 * internals, make sure that caller didn't set it and/or
1794 	 * didn't use this interface to map SIZE_MAX.
1795 	 */
1796 	if (WARN_ON_ONCE((u64)size & DMA_IOVA_USE_SWIOTLB))
1797 		return false;
1798 
1799 	addr = iommu_dma_alloc_iova(domain,
1800 			iova_align(iovad, size + iova_off),
1801 			dma_get_mask(dev), dev);
1802 	if (!addr)
1803 		return false;
1804 
1805 	state->addr = addr + iova_off;
1806 	state->__size = size;
1807 	return true;
1808 }
1809 EXPORT_SYMBOL_GPL(dma_iova_try_alloc);
1810 
1811 /**
1812  * dma_iova_free - Free an IOVA space
1813  * @dev: Device to free the IOVA space for
1814  * @state: IOVA state
1815  *
1816  * Undoes a successful dma_try_iova_alloc().
1817  *
1818  * Note that all dma_iova_link() calls need to be undone first.  For callers
1819  * that never call dma_iova_unlink(), dma_iova_destroy() can be used instead
1820  * which unlinks all ranges and frees the IOVA space in a single efficient
1821  * operation.
1822  */
dma_iova_free(struct device * dev,struct dma_iova_state * state)1823 void dma_iova_free(struct device *dev, struct dma_iova_state *state)
1824 {
1825 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1826 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1827 	struct iova_domain *iovad = &cookie->iovad;
1828 	size_t iova_start_pad = iova_offset(iovad, state->addr);
1829 	size_t size = dma_iova_size(state);
1830 
1831 	iommu_dma_free_iova(domain, state->addr - iova_start_pad,
1832 			iova_align(iovad, size + iova_start_pad), NULL);
1833 }
1834 EXPORT_SYMBOL_GPL(dma_iova_free);
1835 
__dma_iova_link(struct device * dev,dma_addr_t addr,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1836 static int __dma_iova_link(struct device *dev, dma_addr_t addr,
1837 		phys_addr_t phys, size_t size, enum dma_data_direction dir,
1838 		unsigned long attrs)
1839 {
1840 	bool coherent = dev_is_dma_coherent(dev);
1841 
1842 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1843 		arch_sync_dma_for_device(phys, size, dir);
1844 
1845 	return iommu_map_nosync(iommu_get_dma_domain(dev), addr, phys, size,
1846 			dma_info_to_prot(dir, coherent, attrs), GFP_ATOMIC);
1847 }
1848 
iommu_dma_iova_bounce_and_link(struct device * dev,dma_addr_t addr,phys_addr_t phys,size_t bounce_len,enum dma_data_direction dir,unsigned long attrs,size_t iova_start_pad)1849 static int iommu_dma_iova_bounce_and_link(struct device *dev, dma_addr_t addr,
1850 		phys_addr_t phys, size_t bounce_len,
1851 		enum dma_data_direction dir, unsigned long attrs,
1852 		size_t iova_start_pad)
1853 {
1854 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1855 	struct iova_domain *iovad = &domain->iova_cookie->iovad;
1856 	phys_addr_t bounce_phys;
1857 	int error;
1858 
1859 	bounce_phys = iommu_dma_map_swiotlb(dev, phys, bounce_len, dir, attrs);
1860 	if (bounce_phys == DMA_MAPPING_ERROR)
1861 		return -ENOMEM;
1862 
1863 	error = __dma_iova_link(dev, addr - iova_start_pad,
1864 			bounce_phys - iova_start_pad,
1865 			iova_align(iovad, bounce_len), dir, attrs);
1866 	if (error)
1867 		swiotlb_tbl_unmap_single(dev, bounce_phys, bounce_len, dir,
1868 				attrs);
1869 	return error;
1870 }
1871 
iommu_dma_iova_link_swiotlb(struct device * dev,struct dma_iova_state * state,phys_addr_t phys,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1872 static int iommu_dma_iova_link_swiotlb(struct device *dev,
1873 		struct dma_iova_state *state, phys_addr_t phys, size_t offset,
1874 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1875 {
1876 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1877 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1878 	struct iova_domain *iovad = &cookie->iovad;
1879 	size_t iova_start_pad = iova_offset(iovad, phys);
1880 	size_t iova_end_pad = iova_offset(iovad, phys + size);
1881 	dma_addr_t addr = state->addr + offset;
1882 	size_t mapped = 0;
1883 	int error;
1884 
1885 	if (iova_start_pad) {
1886 		size_t bounce_len = min(size, iovad->granule - iova_start_pad);
1887 
1888 		error = iommu_dma_iova_bounce_and_link(dev, addr, phys,
1889 				bounce_len, dir, attrs, iova_start_pad);
1890 		if (error)
1891 			return error;
1892 		state->__size |= DMA_IOVA_USE_SWIOTLB;
1893 
1894 		mapped += bounce_len;
1895 		size -= bounce_len;
1896 		if (!size)
1897 			return 0;
1898 	}
1899 
1900 	size -= iova_end_pad;
1901 	error = __dma_iova_link(dev, addr + mapped, phys + mapped, size, dir,
1902 			attrs);
1903 	if (error)
1904 		goto out_unmap;
1905 	mapped += size;
1906 
1907 	if (iova_end_pad) {
1908 		error = iommu_dma_iova_bounce_and_link(dev, addr + mapped,
1909 				phys + mapped, iova_end_pad, dir, attrs, 0);
1910 		if (error)
1911 			goto out_unmap;
1912 		state->__size |= DMA_IOVA_USE_SWIOTLB;
1913 	}
1914 
1915 	return 0;
1916 
1917 out_unmap:
1918 	dma_iova_unlink(dev, state, 0, mapped, dir, attrs);
1919 	return error;
1920 }
1921 
1922 /**
1923  * dma_iova_link - Link a range of IOVA space
1924  * @dev: DMA device
1925  * @state: IOVA state
1926  * @phys: physical address to link
1927  * @offset: offset into the IOVA state to map into
1928  * @size: size of the buffer
1929  * @dir: DMA direction
1930  * @attrs: attributes of mapping properties
1931  *
1932  * Link a range of IOVA space for the given IOVA state without IOTLB sync.
1933  * This function is used to link multiple physical addresses in contiguous
1934  * IOVA space without performing costly IOTLB sync.
1935  *
1936  * The caller is responsible to call to dma_iova_sync() to sync IOTLB at
1937  * the end of linkage.
1938  */
dma_iova_link(struct device * dev,struct dma_iova_state * state,phys_addr_t phys,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)1939 int dma_iova_link(struct device *dev, struct dma_iova_state *state,
1940 		phys_addr_t phys, size_t offset, size_t size,
1941 		enum dma_data_direction dir, unsigned long attrs)
1942 {
1943 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1944 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1945 	struct iova_domain *iovad = &cookie->iovad;
1946 	size_t iova_start_pad = iova_offset(iovad, phys);
1947 
1948 	if (WARN_ON_ONCE(iova_start_pad && offset > 0))
1949 		return -EIO;
1950 
1951 	if (dev_use_swiotlb(dev, size, dir) &&
1952 	    iova_unaligned(iovad, phys, size))
1953 		return iommu_dma_iova_link_swiotlb(dev, state, phys, offset,
1954 				size, dir, attrs);
1955 
1956 	return __dma_iova_link(dev, state->addr + offset - iova_start_pad,
1957 			phys - iova_start_pad,
1958 			iova_align(iovad, size + iova_start_pad), dir, attrs);
1959 }
1960 EXPORT_SYMBOL_GPL(dma_iova_link);
1961 
1962 /**
1963  * dma_iova_sync - Sync IOTLB
1964  * @dev: DMA device
1965  * @state: IOVA state
1966  * @offset: offset into the IOVA state to sync
1967  * @size: size of the buffer
1968  *
1969  * Sync IOTLB for the given IOVA state. This function should be called on
1970  * the IOVA-contiguous range created by one ore more dma_iova_link() calls
1971  * to sync the IOTLB.
1972  */
dma_iova_sync(struct device * dev,struct dma_iova_state * state,size_t offset,size_t size)1973 int dma_iova_sync(struct device *dev, struct dma_iova_state *state,
1974 		size_t offset, size_t size)
1975 {
1976 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1977 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1978 	struct iova_domain *iovad = &cookie->iovad;
1979 	dma_addr_t addr = state->addr + offset;
1980 	size_t iova_start_pad = iova_offset(iovad, addr);
1981 
1982 	return iommu_sync_map(domain, addr - iova_start_pad,
1983 		      iova_align(iovad, size + iova_start_pad));
1984 }
1985 EXPORT_SYMBOL_GPL(dma_iova_sync);
1986 
iommu_dma_iova_unlink_range_slow(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)1987 static void iommu_dma_iova_unlink_range_slow(struct device *dev,
1988 		dma_addr_t addr, size_t size, enum dma_data_direction dir,
1989 		unsigned long attrs)
1990 {
1991 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1992 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1993 	struct iova_domain *iovad = &cookie->iovad;
1994 	size_t iova_start_pad = iova_offset(iovad, addr);
1995 	dma_addr_t end = addr + size;
1996 
1997 	do {
1998 		phys_addr_t phys;
1999 		size_t len;
2000 
2001 		phys = iommu_iova_to_phys(domain, addr);
2002 		if (WARN_ON(!phys))
2003 			/* Something very horrible happen here */
2004 			return;
2005 
2006 		len = min_t(size_t,
2007 			end - addr, iovad->granule - iova_start_pad);
2008 
2009 		if (!dev_is_dma_coherent(dev) &&
2010 		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
2011 			arch_sync_dma_for_cpu(phys, len, dir);
2012 
2013 		swiotlb_tbl_unmap_single(dev, phys, len, dir, attrs);
2014 
2015 		addr += len;
2016 		iova_start_pad = 0;
2017 	} while (addr < end);
2018 }
2019 
__iommu_dma_iova_unlink(struct device * dev,struct dma_iova_state * state,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs,bool free_iova)2020 static void __iommu_dma_iova_unlink(struct device *dev,
2021 		struct dma_iova_state *state, size_t offset, size_t size,
2022 		enum dma_data_direction dir, unsigned long attrs,
2023 		bool free_iova)
2024 {
2025 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
2026 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
2027 	struct iova_domain *iovad = &cookie->iovad;
2028 	dma_addr_t addr = state->addr + offset;
2029 	size_t iova_start_pad = iova_offset(iovad, addr);
2030 	struct iommu_iotlb_gather iotlb_gather;
2031 	size_t unmapped;
2032 
2033 	if ((state->__size & DMA_IOVA_USE_SWIOTLB) ||
2034 	    (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)))
2035 		iommu_dma_iova_unlink_range_slow(dev, addr, size, dir, attrs);
2036 
2037 	iommu_iotlb_gather_init(&iotlb_gather);
2038 	iotlb_gather.queued = free_iova && READ_ONCE(cookie->fq_domain);
2039 
2040 	size = iova_align(iovad, size + iova_start_pad);
2041 	addr -= iova_start_pad;
2042 	unmapped = iommu_unmap_fast(domain, addr, size, &iotlb_gather);
2043 	WARN_ON(unmapped != size);
2044 
2045 	if (!iotlb_gather.queued)
2046 		iommu_iotlb_sync(domain, &iotlb_gather);
2047 	if (free_iova)
2048 		iommu_dma_free_iova(domain, addr, size, &iotlb_gather);
2049 }
2050 
2051 /**
2052  * dma_iova_unlink - Unlink a range of IOVA space
2053  * @dev: DMA device
2054  * @state: IOVA state
2055  * @offset: offset into the IOVA state to unlink
2056  * @size: size of the buffer
2057  * @dir: DMA direction
2058  * @attrs: attributes of mapping properties
2059  *
2060  * Unlink a range of IOVA space for the given IOVA state.
2061  */
dma_iova_unlink(struct device * dev,struct dma_iova_state * state,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)2062 void dma_iova_unlink(struct device *dev, struct dma_iova_state *state,
2063 		size_t offset, size_t size, enum dma_data_direction dir,
2064 		unsigned long attrs)
2065 {
2066 	 __iommu_dma_iova_unlink(dev, state, offset, size, dir, attrs, false);
2067 }
2068 EXPORT_SYMBOL_GPL(dma_iova_unlink);
2069 
2070 /**
2071  * dma_iova_destroy - Finish a DMA mapping transaction
2072  * @dev: DMA device
2073  * @state: IOVA state
2074  * @mapped_len: number of bytes to unmap
2075  * @dir: DMA direction
2076  * @attrs: attributes of mapping properties
2077  *
2078  * Unlink the IOVA range up to @mapped_len and free the entire IOVA space. The
2079  * range of IOVA from dma_addr to @mapped_len must all be linked, and be the
2080  * only linked IOVA in state.
2081  */
dma_iova_destroy(struct device * dev,struct dma_iova_state * state,size_t mapped_len,enum dma_data_direction dir,unsigned long attrs)2082 void dma_iova_destroy(struct device *dev, struct dma_iova_state *state,
2083 		size_t mapped_len, enum dma_data_direction dir,
2084 		unsigned long attrs)
2085 {
2086 	if (mapped_len)
2087 		__iommu_dma_iova_unlink(dev, state, 0, mapped_len, dir, attrs,
2088 				true);
2089 	else
2090 		/*
2091 		 * We can be here if first call to dma_iova_link() failed and
2092 		 * there is nothing to unlink, so let's be more clear.
2093 		 */
2094 		dma_iova_free(dev, state);
2095 }
2096 EXPORT_SYMBOL_GPL(dma_iova_destroy);
2097 
iommu_setup_dma_ops(struct device * dev)2098 void iommu_setup_dma_ops(struct device *dev)
2099 {
2100 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
2101 
2102 	if (dev_is_pci(dev))
2103 		dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac;
2104 
2105 	dev->dma_iommu = iommu_is_dma_domain(domain);
2106 	if (dev->dma_iommu && iommu_dma_init_domain(domain, dev))
2107 		goto out_err;
2108 
2109 	return;
2110 out_err:
2111 	pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
2112 		dev_name(dev));
2113 	dev->dma_iommu = false;
2114 }
2115 
has_msi_cookie(const struct iommu_domain * domain)2116 static bool has_msi_cookie(const struct iommu_domain *domain)
2117 {
2118 	return domain && (domain->cookie_type == IOMMU_COOKIE_DMA_IOVA ||
2119 			  domain->cookie_type == IOMMU_COOKIE_DMA_MSI);
2120 }
2121 
cookie_msi_granule(const struct iommu_domain * domain)2122 static size_t cookie_msi_granule(const struct iommu_domain *domain)
2123 {
2124 	switch (domain->cookie_type) {
2125 	case IOMMU_COOKIE_DMA_IOVA:
2126 		return domain->iova_cookie->iovad.granule;
2127 	case IOMMU_COOKIE_DMA_MSI:
2128 		return PAGE_SIZE;
2129 	default:
2130 		BUG();
2131 	}
2132 }
2133 
cookie_msi_pages(const struct iommu_domain * domain)2134 static struct list_head *cookie_msi_pages(const struct iommu_domain *domain)
2135 {
2136 	switch (domain->cookie_type) {
2137 	case IOMMU_COOKIE_DMA_IOVA:
2138 		return &domain->iova_cookie->msi_page_list;
2139 	case IOMMU_COOKIE_DMA_MSI:
2140 		return &domain->msi_cookie->msi_page_list;
2141 	default:
2142 		BUG();
2143 	}
2144 }
2145 
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)2146 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
2147 		phys_addr_t msi_addr, struct iommu_domain *domain)
2148 {
2149 	struct list_head *msi_page_list = cookie_msi_pages(domain);
2150 	struct iommu_dma_msi_page *msi_page;
2151 	dma_addr_t iova;
2152 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
2153 	size_t size = cookie_msi_granule(domain);
2154 
2155 	msi_addr &= ~(phys_addr_t)(size - 1);
2156 	list_for_each_entry(msi_page, msi_page_list, list)
2157 		if (msi_page->phys == msi_addr)
2158 			return msi_page;
2159 
2160 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
2161 	if (!msi_page)
2162 		return NULL;
2163 
2164 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
2165 	if (!iova)
2166 		goto out_free_page;
2167 
2168 	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
2169 		goto out_free_iova;
2170 
2171 	INIT_LIST_HEAD(&msi_page->list);
2172 	msi_page->phys = msi_addr;
2173 	msi_page->iova = iova;
2174 	list_add(&msi_page->list, msi_page_list);
2175 	return msi_page;
2176 
2177 out_free_iova:
2178 	iommu_dma_free_iova(domain, iova, size, NULL);
2179 out_free_page:
2180 	kfree(msi_page);
2181 	return NULL;
2182 }
2183 
iommu_dma_sw_msi(struct iommu_domain * domain,struct msi_desc * desc,phys_addr_t msi_addr)2184 int iommu_dma_sw_msi(struct iommu_domain *domain, struct msi_desc *desc,
2185 		     phys_addr_t msi_addr)
2186 {
2187 	struct device *dev = msi_desc_to_dev(desc);
2188 	const struct iommu_dma_msi_page *msi_page;
2189 
2190 	if (!has_msi_cookie(domain)) {
2191 		msi_desc_set_iommu_msi_iova(desc, 0, 0);
2192 		return 0;
2193 	}
2194 
2195 	iommu_group_mutex_assert(dev);
2196 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
2197 	if (!msi_page)
2198 		return -ENOMEM;
2199 
2200 	msi_desc_set_iommu_msi_iova(desc, msi_page->iova,
2201 				    ilog2(cookie_msi_granule(domain)));
2202 	return 0;
2203 }
2204 
iommu_dma_init(void)2205 static int iommu_dma_init(void)
2206 {
2207 	if (is_kdump_kernel())
2208 		static_branch_enable(&iommu_deferred_attach_enabled);
2209 
2210 	return iova_cache_get();
2211 }
2212 arch_initcall(iommu_dma_init);
2213