1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CAAM/SEC 4.x QI transport/backend driver
4 * Queue Interface backend functionality
5 *
6 * Copyright 2013-2016 Freescale Semiconductor, Inc.
7 * Copyright 2016-2017, 2019-2020 NXP
8 */
9
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/kernel.h>
14 #include <linux/kthread.h>
15 #include <linux/netdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <soc/fsl/qman.h>
20
21 #include "debugfs.h"
22 #include "regs.h"
23 #include "qi.h"
24 #include "desc.h"
25 #include "intern.h"
26 #include "desc_constr.h"
27
28 #define PREHDR_RSLS_SHIFT 31
29 #define PREHDR_ABS BIT(25)
30
31 /*
32 * Use a reasonable backlog of frames (per CPU) as congestion threshold,
33 * so that resources used by the in-flight buffers do not become a memory hog.
34 */
35 #define MAX_RSP_FQ_BACKLOG_PER_CPU 256
36
37 #define CAAM_QI_ENQUEUE_RETRIES 10000
38
39 #define CAAM_NAPI_WEIGHT 63
40
41 /*
42 * caam_napi - struct holding CAAM NAPI-related params
43 * @irqtask: IRQ task for QI backend
44 * @p: QMan portal
45 */
46 struct caam_napi {
47 struct napi_struct irqtask;
48 struct qman_portal *p;
49 };
50
51 /*
52 * caam_qi_pcpu_priv - percpu private data structure to main list of pending
53 * responses expected on each cpu.
54 * @caam_napi: CAAM NAPI params
55 * @net_dev: netdev used by NAPI
56 * @rsp_fq: response FQ from CAAM
57 */
58 struct caam_qi_pcpu_priv {
59 struct caam_napi caam_napi;
60 struct net_device *net_dev;
61 struct qman_fq *rsp_fq;
62 } ____cacheline_aligned;
63
64 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
65 static DEFINE_PER_CPU(int, last_cpu);
66
67 /*
68 * caam_qi_priv - CAAM QI backend private params
69 * @cgr: QMan congestion group
70 */
71 struct caam_qi_priv {
72 struct qman_cgr cgr;
73 };
74
75 static struct caam_qi_priv qipriv ____cacheline_aligned;
76
77 /*
78 * This is written by only one core - the one that initialized the CGR - and
79 * read by multiple cores (all the others).
80 */
81 bool caam_congested __read_mostly;
82 EXPORT_SYMBOL(caam_congested);
83
84 /*
85 * This is a cache of buffers, from which the users of CAAM QI driver
86 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
87 * doing malloc on the hotpath.
88 * NOTE: A more elegant solution would be to have some headroom in the frames
89 * being processed. This could be added by the dpaa-ethernet driver.
90 * This would pose a problem for userspace application processing which
91 * cannot know of this limitation. So for now, this will work.
92 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
93 */
94 static struct kmem_cache *qi_cache;
95
caam_iova_to_virt(struct iommu_domain * domain,dma_addr_t iova_addr)96 static void *caam_iova_to_virt(struct iommu_domain *domain,
97 dma_addr_t iova_addr)
98 {
99 phys_addr_t phys_addr;
100
101 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
102
103 return phys_to_virt(phys_addr);
104 }
105
caam_qi_enqueue(struct device * qidev,struct caam_drv_req * req)106 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
107 {
108 struct qm_fd fd;
109 dma_addr_t addr;
110 int ret;
111 int num_retries = 0;
112
113 qm_fd_clear_fd(&fd);
114 qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
115
116 addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
117 DMA_BIDIRECTIONAL);
118 if (dma_mapping_error(qidev, addr)) {
119 dev_err(qidev, "DMA mapping error for QI enqueue request\n");
120 return -EIO;
121 }
122 qm_fd_addr_set64(&fd, addr);
123
124 do {
125 ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
126 if (likely(!ret)) {
127 refcount_inc(&req->drv_ctx->refcnt);
128 return 0;
129 }
130
131 if (ret != -EBUSY)
132 break;
133 num_retries++;
134 } while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
135
136 dev_err(qidev, "qman_enqueue failed: %d\n", ret);
137
138 return ret;
139 }
140 EXPORT_SYMBOL(caam_qi_enqueue);
141
caam_fq_ern_cb(struct qman_portal * qm,struct qman_fq * fq,const union qm_mr_entry * msg)142 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
143 const union qm_mr_entry *msg)
144 {
145 const struct qm_fd *fd;
146 struct caam_drv_req *drv_req;
147 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev->dev);
148 struct caam_drv_private *priv = dev_get_drvdata(qidev);
149
150 fd = &msg->ern.fd;
151
152 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
153 if (!drv_req) {
154 dev_err(qidev,
155 "Can't find original request for CAAM response\n");
156 return;
157 }
158
159 refcount_dec(&drv_req->drv_ctx->refcnt);
160
161 if (qm_fd_get_format(fd) != qm_fd_compound) {
162 dev_err(qidev, "Non-compound FD from CAAM\n");
163 return;
164 }
165
166 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
167 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
168
169 if (fd->status)
170 drv_req->cbk(drv_req, be32_to_cpu(fd->status));
171 else
172 drv_req->cbk(drv_req, JRSTA_SSRC_QI);
173 }
174
create_caam_req_fq(struct device * qidev,struct qman_fq * rsp_fq,dma_addr_t hwdesc,int fq_sched_flag)175 static struct qman_fq *create_caam_req_fq(struct device *qidev,
176 struct qman_fq *rsp_fq,
177 dma_addr_t hwdesc,
178 int fq_sched_flag)
179 {
180 int ret;
181 struct qman_fq *req_fq;
182 struct qm_mcc_initfq opts;
183
184 req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
185 if (!req_fq)
186 return ERR_PTR(-ENOMEM);
187
188 req_fq->cb.ern = caam_fq_ern_cb;
189 req_fq->cb.fqs = NULL;
190
191 ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
192 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
193 if (ret) {
194 dev_err(qidev, "Failed to create session req FQ\n");
195 goto create_req_fq_fail;
196 }
197
198 memset(&opts, 0, sizeof(opts));
199 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
200 QM_INITFQ_WE_CONTEXTB |
201 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
202 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
203 qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
204 opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
205 qm_fqd_context_a_set64(&opts.fqd, hwdesc);
206 opts.fqd.cgid = qipriv.cgr.cgrid;
207
208 ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
209 if (ret) {
210 dev_err(qidev, "Failed to init session req FQ\n");
211 goto init_req_fq_fail;
212 }
213
214 dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
215 smp_processor_id());
216 return req_fq;
217
218 init_req_fq_fail:
219 qman_destroy_fq(req_fq);
220 create_req_fq_fail:
221 kfree(req_fq);
222 return ERR_PTR(ret);
223 }
224
empty_retired_fq(struct device * qidev,struct qman_fq * fq)225 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
226 {
227 int ret;
228
229 ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
230 QMAN_VOLATILE_FLAG_FINISH,
231 QM_VDQCR_PRECEDENCE_VDQCR |
232 QM_VDQCR_NUMFRAMES_TILLEMPTY);
233 if (ret) {
234 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
235 return ret;
236 }
237
238 do {
239 struct qman_portal *p;
240
241 p = qman_get_affine_portal(smp_processor_id());
242 qman_p_poll_dqrr(p, 16);
243 } while (fq->flags & QMAN_FQ_STATE_NE);
244
245 return 0;
246 }
247
kill_fq(struct device * qidev,struct qman_fq * fq)248 static int kill_fq(struct device *qidev, struct qman_fq *fq)
249 {
250 u32 flags;
251 int ret;
252
253 ret = qman_retire_fq(fq, &flags);
254 if (ret < 0) {
255 dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
256 return ret;
257 }
258
259 if (!ret)
260 goto empty_fq;
261
262 /* Async FQ retirement condition */
263 if (ret == 1) {
264 /* Retry till FQ gets in retired state */
265 do {
266 msleep(20);
267 } while (fq->state != qman_fq_state_retired);
268
269 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
270 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
271 }
272
273 empty_fq:
274 if (fq->flags & QMAN_FQ_STATE_NE) {
275 ret = empty_retired_fq(qidev, fq);
276 if (ret) {
277 dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
278 fq->fqid);
279 return ret;
280 }
281 }
282
283 ret = qman_oos_fq(fq);
284 if (ret)
285 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
286
287 qman_destroy_fq(fq);
288 kfree(fq);
289
290 return ret;
291 }
292
empty_caam_fq(struct qman_fq * fq,struct caam_drv_ctx * drv_ctx)293 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
294 {
295 int ret;
296 int retries = 10;
297 struct qm_mcr_queryfq_np np;
298
299 /* Wait till the older CAAM FQ get empty */
300 do {
301 ret = qman_query_fq_np(fq, &np);
302 if (ret)
303 return ret;
304
305 if (!qm_mcr_np_get(&np, frm_cnt))
306 break;
307
308 msleep(20);
309 } while (1);
310
311 /* Wait until pending jobs from this FQ are processed by CAAM */
312 do {
313 if (refcount_read(&drv_ctx->refcnt) == 1)
314 break;
315
316 msleep(20);
317 } while (--retries);
318
319 if (!retries)
320 dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
321 refcount_read(&drv_ctx->refcnt), fq->fqid);
322
323 return 0;
324 }
325
caam_drv_ctx_update(struct caam_drv_ctx * drv_ctx,u32 * sh_desc)326 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
327 {
328 int ret;
329 u32 num_words;
330 struct qman_fq *new_fq, *old_fq;
331 struct device *qidev = drv_ctx->qidev;
332
333 num_words = desc_len(sh_desc);
334 if (num_words > MAX_SDLEN) {
335 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
336 return -EINVAL;
337 }
338
339 /* Note down older req FQ */
340 old_fq = drv_ctx->req_fq;
341
342 /* Create a new req FQ in parked state */
343 new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
344 drv_ctx->context_a, 0);
345 if (IS_ERR(new_fq)) {
346 dev_err(qidev, "FQ allocation for shdesc update failed\n");
347 return PTR_ERR(new_fq);
348 }
349
350 /* Hook up new FQ to context so that new requests keep queuing */
351 drv_ctx->req_fq = new_fq;
352
353 /* Empty and remove the older FQ */
354 ret = empty_caam_fq(old_fq, drv_ctx);
355 if (ret) {
356 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
357
358 /* We can revert to older FQ */
359 drv_ctx->req_fq = old_fq;
360
361 if (kill_fq(qidev, new_fq))
362 dev_warn(qidev, "New CAAM FQ kill failed\n");
363
364 return ret;
365 }
366
367 /*
368 * Re-initialise pre-header. Set RSLS and SDLEN.
369 * Update the shared descriptor for driver context.
370 */
371 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
372 num_words);
373 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
374 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
375 dma_sync_single_for_device(qidev, drv_ctx->context_a,
376 sizeof(drv_ctx->sh_desc) +
377 sizeof(drv_ctx->prehdr),
378 DMA_BIDIRECTIONAL);
379
380 /* Put the new FQ in scheduled state */
381 ret = qman_schedule_fq(new_fq);
382 if (ret) {
383 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
384
385 /*
386 * We can kill new FQ and revert to old FQ.
387 * Since the desc is already modified, it is success case
388 */
389
390 drv_ctx->req_fq = old_fq;
391
392 if (kill_fq(qidev, new_fq))
393 dev_warn(qidev, "New CAAM FQ kill failed\n");
394 } else if (kill_fq(qidev, old_fq)) {
395 dev_warn(qidev, "Old CAAM FQ kill failed\n");
396 }
397
398 return 0;
399 }
400 EXPORT_SYMBOL(caam_drv_ctx_update);
401
caam_drv_ctx_init(struct device * qidev,int * cpu,u32 * sh_desc)402 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
403 int *cpu,
404 u32 *sh_desc)
405 {
406 size_t size;
407 u32 num_words;
408 dma_addr_t hwdesc;
409 struct caam_drv_ctx *drv_ctx;
410 const cpumask_t *cpus = qman_affine_cpus();
411
412 num_words = desc_len(sh_desc);
413 if (num_words > MAX_SDLEN) {
414 dev_err(qidev, "Invalid descriptor len: %d words\n",
415 num_words);
416 return ERR_PTR(-EINVAL);
417 }
418
419 drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
420 if (!drv_ctx)
421 return ERR_PTR(-ENOMEM);
422
423 /*
424 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
425 * and dma-map them.
426 */
427 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
428 num_words);
429 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
430 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
431 size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
432 hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
433 DMA_BIDIRECTIONAL);
434 if (dma_mapping_error(qidev, hwdesc)) {
435 dev_err(qidev, "DMA map error for preheader + shdesc\n");
436 kfree(drv_ctx);
437 return ERR_PTR(-ENOMEM);
438 }
439 drv_ctx->context_a = hwdesc;
440
441 /* If given CPU does not own the portal, choose another one that does */
442 if (!cpumask_test_cpu(*cpu, cpus)) {
443 int *pcpu = &get_cpu_var(last_cpu);
444
445 *pcpu = cpumask_next(*pcpu, cpus);
446 if (*pcpu >= nr_cpu_ids)
447 *pcpu = cpumask_first(cpus);
448 *cpu = *pcpu;
449
450 put_cpu_var(last_cpu);
451 }
452 drv_ctx->cpu = *cpu;
453
454 /* Find response FQ hooked with this CPU */
455 drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
456
457 /* Attach request FQ */
458 drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
459 QMAN_INITFQ_FLAG_SCHED);
460 if (IS_ERR(drv_ctx->req_fq)) {
461 dev_err(qidev, "create_caam_req_fq failed\n");
462 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
463 kfree(drv_ctx);
464 return ERR_PTR(-ENOMEM);
465 }
466
467 /* init reference counter used to track references to request FQ */
468 refcount_set(&drv_ctx->refcnt, 1);
469
470 drv_ctx->qidev = qidev;
471 return drv_ctx;
472 }
473 EXPORT_SYMBOL(caam_drv_ctx_init);
474
qi_cache_alloc(gfp_t flags)475 void *qi_cache_alloc(gfp_t flags)
476 {
477 return kmem_cache_alloc(qi_cache, flags);
478 }
479 EXPORT_SYMBOL(qi_cache_alloc);
480
qi_cache_free(void * obj)481 void qi_cache_free(void *obj)
482 {
483 kmem_cache_free(qi_cache, obj);
484 }
485 EXPORT_SYMBOL(qi_cache_free);
486
caam_qi_poll(struct napi_struct * napi,int budget)487 static int caam_qi_poll(struct napi_struct *napi, int budget)
488 {
489 struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
490
491 int cleaned = qman_p_poll_dqrr(np->p, budget);
492
493 if (cleaned < budget) {
494 napi_complete(napi);
495 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
496 }
497
498 return cleaned;
499 }
500
caam_drv_ctx_rel(struct caam_drv_ctx * drv_ctx)501 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
502 {
503 if (IS_ERR_OR_NULL(drv_ctx))
504 return;
505
506 /* Remove request FQ */
507 if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
508 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
509
510 dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
511 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
512 DMA_BIDIRECTIONAL);
513 kfree(drv_ctx);
514 }
515 EXPORT_SYMBOL(caam_drv_ctx_rel);
516
caam_qi_shutdown(void * data)517 static void caam_qi_shutdown(void *data)
518 {
519 int i;
520 struct device *qidev = data;
521 struct caam_qi_priv *priv = &qipriv;
522 const cpumask_t *cpus = qman_affine_cpus();
523
524 for_each_cpu(i, cpus) {
525 struct napi_struct *irqtask;
526
527 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
528 napi_disable(irqtask);
529 netif_napi_del(irqtask);
530
531 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
532 dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
533 free_netdev(per_cpu(pcpu_qipriv.net_dev, i));
534 }
535
536 qman_delete_cgr_safe(&priv->cgr);
537 qman_release_cgrid(priv->cgr.cgrid);
538
539 kmem_cache_destroy(qi_cache);
540 }
541
cgr_cb(struct qman_portal * qm,struct qman_cgr * cgr,int congested)542 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
543 {
544 caam_congested = congested;
545
546 if (congested) {
547 caam_debugfs_qi_congested();
548
549 pr_debug_ratelimited("CAAM entered congestion\n");
550
551 } else {
552 pr_debug_ratelimited("CAAM exited congestion\n");
553 }
554 }
555
caam_qi_napi_schedule(struct qman_portal * p,struct caam_napi * np,bool sched_napi)556 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np,
557 bool sched_napi)
558 {
559 if (sched_napi) {
560 /* Disable QMan IRQ source and invoke NAPI */
561 qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
562 np->p = p;
563 napi_schedule(&np->irqtask);
564 return 1;
565 }
566 return 0;
567 }
568
caam_rsp_fq_dqrr_cb(struct qman_portal * p,struct qman_fq * rsp_fq,const struct qm_dqrr_entry * dqrr,bool sched_napi)569 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
570 struct qman_fq *rsp_fq,
571 const struct qm_dqrr_entry *dqrr,
572 bool sched_napi)
573 {
574 struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
575 struct caam_drv_req *drv_req;
576 const struct qm_fd *fd;
577 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev->dev);
578 struct caam_drv_private *priv = dev_get_drvdata(qidev);
579 u32 status;
580
581 if (caam_qi_napi_schedule(p, caam_napi, sched_napi))
582 return qman_cb_dqrr_stop;
583
584 fd = &dqrr->fd;
585
586 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
587 if (unlikely(!drv_req)) {
588 dev_err(qidev,
589 "Can't find original request for caam response\n");
590 return qman_cb_dqrr_consume;
591 }
592
593 refcount_dec(&drv_req->drv_ctx->refcnt);
594
595 status = be32_to_cpu(fd->status);
596 if (unlikely(status)) {
597 u32 ssrc = status & JRSTA_SSRC_MASK;
598 u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
599
600 if (ssrc != JRSTA_SSRC_CCB_ERROR ||
601 err_id != JRSTA_CCBERR_ERRID_ICVCHK)
602 dev_err_ratelimited(qidev,
603 "Error: %#x in CAAM response FD\n",
604 status);
605 }
606
607 if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
608 dev_err(qidev, "Non-compound FD from CAAM\n");
609 return qman_cb_dqrr_consume;
610 }
611
612 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
613 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
614
615 drv_req->cbk(drv_req, status);
616 return qman_cb_dqrr_consume;
617 }
618
alloc_rsp_fq_cpu(struct device * qidev,unsigned int cpu)619 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
620 {
621 struct qm_mcc_initfq opts;
622 struct qman_fq *fq;
623 int ret;
624
625 fq = kzalloc(sizeof(*fq), GFP_KERNEL);
626 if (!fq)
627 return -ENOMEM;
628
629 fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
630
631 ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
632 QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
633 if (ret) {
634 dev_err(qidev, "Rsp FQ create failed\n");
635 kfree(fq);
636 return -ENODEV;
637 }
638
639 memset(&opts, 0, sizeof(opts));
640 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
641 QM_INITFQ_WE_CONTEXTB |
642 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
643 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
644 QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
645 qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
646 opts.fqd.cgid = qipriv.cgr.cgrid;
647 opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX |
648 QM_STASHING_EXCL_DATA;
649 qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
650
651 ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
652 if (ret) {
653 dev_err(qidev, "Rsp FQ init failed\n");
654 kfree(fq);
655 return -ENODEV;
656 }
657
658 per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
659
660 dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
661 return 0;
662 }
663
init_cgr(struct device * qidev)664 static int init_cgr(struct device *qidev)
665 {
666 int ret;
667 struct qm_mcc_initcgr opts;
668 const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
669 MAX_RSP_FQ_BACKLOG_PER_CPU;
670
671 ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
672 if (ret) {
673 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
674 return ret;
675 }
676
677 qipriv.cgr.cb = cgr_cb;
678 memset(&opts, 0, sizeof(opts));
679 opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
680 QM_CGR_WE_MODE);
681 opts.cgr.cscn_en = QM_CGR_EN;
682 opts.cgr.mode = QMAN_CGR_MODE_FRAME;
683 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
684
685 ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
686 if (ret) {
687 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
688 qipriv.cgr.cgrid);
689 return ret;
690 }
691
692 dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
693 return 0;
694 }
695
alloc_rsp_fqs(struct device * qidev)696 static int alloc_rsp_fqs(struct device *qidev)
697 {
698 int ret, i;
699 const cpumask_t *cpus = qman_affine_cpus();
700
701 /*Now create response FQs*/
702 for_each_cpu(i, cpus) {
703 ret = alloc_rsp_fq_cpu(qidev, i);
704 if (ret) {
705 dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
706 return ret;
707 }
708 }
709
710 return 0;
711 }
712
free_rsp_fqs(void)713 static void free_rsp_fqs(void)
714 {
715 int i;
716 const cpumask_t *cpus = qman_affine_cpus();
717
718 for_each_cpu(i, cpus)
719 kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
720 }
721
free_caam_qi_pcpu_netdev(const cpumask_t * cpus)722 static void free_caam_qi_pcpu_netdev(const cpumask_t *cpus)
723 {
724 struct caam_qi_pcpu_priv *priv;
725 int i;
726
727 for_each_cpu(i, cpus) {
728 priv = per_cpu_ptr(&pcpu_qipriv, i);
729 free_netdev(priv->net_dev);
730 }
731 }
732
caam_qi_init(struct platform_device * caam_pdev)733 int caam_qi_init(struct platform_device *caam_pdev)
734 {
735 int err, i;
736 struct device *ctrldev = &caam_pdev->dev, *qidev;
737 struct caam_drv_private *ctrlpriv;
738 const cpumask_t *cpus = qman_affine_cpus();
739 cpumask_var_t clean_mask;
740
741 err = -ENOMEM;
742 if (!zalloc_cpumask_var(&clean_mask, GFP_KERNEL))
743 goto fail_cpumask;
744
745 ctrlpriv = dev_get_drvdata(ctrldev);
746 qidev = ctrldev;
747
748 /* Initialize the congestion detection */
749 err = init_cgr(qidev);
750 if (err) {
751 dev_err(qidev, "CGR initialization failed: %d\n", err);
752 goto fail_cgr;
753 }
754
755 /* Initialise response FQs */
756 err = alloc_rsp_fqs(qidev);
757 if (err) {
758 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
759 goto fail_fqs;
760 }
761
762 /*
763 * Enable the NAPI contexts on each of the core which has an affine
764 * portal.
765 */
766 for_each_cpu(i, cpus) {
767 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
768 struct caam_napi *caam_napi = &priv->caam_napi;
769 struct napi_struct *irqtask = &caam_napi->irqtask;
770 struct net_device *net_dev;
771
772 net_dev = alloc_netdev_dummy(0);
773 if (!net_dev) {
774 err = -ENOMEM;
775 goto fail;
776 }
777 cpumask_set_cpu(i, clean_mask);
778 priv->net_dev = net_dev;
779 net_dev->dev = *qidev;
780
781 netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll,
782 CAAM_NAPI_WEIGHT);
783
784 napi_enable(irqtask);
785 }
786
787 qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE,
788 dma_get_cache_alignment(), 0, NULL);
789 if (!qi_cache) {
790 dev_err(qidev, "Can't allocate CAAM cache\n");
791 err = -ENOMEM;
792 goto fail;
793 }
794
795 caam_debugfs_qi_init(ctrlpriv);
796
797 err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv);
798 if (err)
799 goto fail2;
800
801 dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
802 goto free_cpumask;
803
804 fail2:
805 kmem_cache_destroy(qi_cache);
806 fail:
807 free_caam_qi_pcpu_netdev(clean_mask);
808 fail_fqs:
809 free_rsp_fqs();
810 qman_delete_cgr_safe(&qipriv.cgr);
811 qman_release_cgrid(qipriv.cgr.cgrid);
812 fail_cgr:
813 free_cpumask:
814 free_cpumask_var(clean_mask);
815 fail_cpumask:
816 return err;
817 }
818