1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_ag.h"
14 #include "xfs_inode.h"
15 #include "xfs_errortag.h"
16 #include "xfs_error.h"
17 #include "xfs_icache.h"
18 #include "xfs_trans.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_dir2.h"
21 #include "xfs_health.h"
22 #include "xfs_metafile.h"
23
24 #include <linux/iversion.h>
25
26 /*
27 * If we are doing readahead on an inode buffer, we might be in log recovery
28 * reading an inode allocation buffer that hasn't yet been replayed, and hence
29 * has not had the inode cores stamped into it. Hence for readahead, the buffer
30 * may be potentially invalid.
31 *
32 * If the readahead buffer is invalid, we need to mark it with an error and
33 * clear the DONE status of the buffer so that a followup read will re-read it
34 * from disk. We don't report the error otherwise to avoid warnings during log
35 * recovery and we don't get unnecessary panics on debug kernels. We use EIO here
36 * because all we want to do is say readahead failed; there is no-one to report
37 * the error to, so this will distinguish it from a non-ra verifier failure.
38 * Changes to this readahead error behaviour also need to be reflected in
39 * xfs_dquot_buf_readahead_verify().
40 */
41 static void
xfs_inode_buf_verify(struct xfs_buf * bp,bool readahead)42 xfs_inode_buf_verify(
43 struct xfs_buf *bp,
44 bool readahead)
45 {
46 struct xfs_mount *mp = bp->b_mount;
47 int i;
48 int ni;
49
50 /*
51 * Validate the magic number and version of every inode in the buffer
52 */
53 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
54 for (i = 0; i < ni; i++) {
55 struct xfs_dinode *dip;
56 xfs_agino_t unlinked_ino;
57 int di_ok;
58
59 dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog));
60 unlinked_ino = be32_to_cpu(dip->di_next_unlinked);
61 di_ok = xfs_verify_magic16(bp, dip->di_magic) &&
62 xfs_dinode_good_version(mp, dip->di_version) &&
63 xfs_verify_agino_or_null(bp->b_pag, unlinked_ino);
64 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
65 XFS_ERRTAG_ITOBP_INOTOBP))) {
66 if (readahead) {
67 bp->b_flags &= ~XBF_DONE;
68 xfs_buf_ioerror(bp, -EIO);
69 return;
70 }
71
72 #ifdef DEBUG
73 xfs_alert(mp,
74 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
75 (unsigned long long)xfs_buf_daddr(bp), i,
76 be16_to_cpu(dip->di_magic));
77 #endif
78 xfs_buf_verifier_error(bp, -EFSCORRUPTED,
79 __func__, dip, sizeof(*dip),
80 NULL);
81 return;
82 }
83 }
84 }
85
86
87 static void
xfs_inode_buf_read_verify(struct xfs_buf * bp)88 xfs_inode_buf_read_verify(
89 struct xfs_buf *bp)
90 {
91 xfs_inode_buf_verify(bp, false);
92 }
93
94 static void
xfs_inode_buf_readahead_verify(struct xfs_buf * bp)95 xfs_inode_buf_readahead_verify(
96 struct xfs_buf *bp)
97 {
98 xfs_inode_buf_verify(bp, true);
99 }
100
101 static void
xfs_inode_buf_write_verify(struct xfs_buf * bp)102 xfs_inode_buf_write_verify(
103 struct xfs_buf *bp)
104 {
105 xfs_inode_buf_verify(bp, false);
106 }
107
108 const struct xfs_buf_ops xfs_inode_buf_ops = {
109 .name = "xfs_inode",
110 .magic16 = { cpu_to_be16(XFS_DINODE_MAGIC),
111 cpu_to_be16(XFS_DINODE_MAGIC) },
112 .verify_read = xfs_inode_buf_read_verify,
113 .verify_write = xfs_inode_buf_write_verify,
114 };
115
116 const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
117 .name = "xfs_inode_ra",
118 .magic16 = { cpu_to_be16(XFS_DINODE_MAGIC),
119 cpu_to_be16(XFS_DINODE_MAGIC) },
120 .verify_read = xfs_inode_buf_readahead_verify,
121 .verify_write = xfs_inode_buf_write_verify,
122 };
123
124
125 /*
126 * This routine is called to map an inode to the buffer containing the on-disk
127 * version of the inode. It returns a pointer to the buffer containing the
128 * on-disk inode in the bpp parameter.
129 */
130 int
xfs_imap_to_bp(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_imap * imap,struct xfs_buf ** bpp)131 xfs_imap_to_bp(
132 struct xfs_mount *mp,
133 struct xfs_trans *tp,
134 struct xfs_imap *imap,
135 struct xfs_buf **bpp)
136 {
137 int error;
138
139 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
140 imap->im_len, XBF_UNMAPPED, bpp, &xfs_inode_buf_ops);
141 if (xfs_metadata_is_sick(error))
142 xfs_agno_mark_sick(mp, xfs_daddr_to_agno(mp, imap->im_blkno),
143 XFS_SICK_AG_INODES);
144 return error;
145 }
146
xfs_inode_decode_bigtime(uint64_t ts)147 static inline struct timespec64 xfs_inode_decode_bigtime(uint64_t ts)
148 {
149 struct timespec64 tv;
150 uint32_t n;
151
152 tv.tv_sec = xfs_bigtime_to_unix(div_u64_rem(ts, NSEC_PER_SEC, &n));
153 tv.tv_nsec = n;
154
155 return tv;
156 }
157
158 /* Convert an ondisk timestamp to an incore timestamp. */
159 struct timespec64
xfs_inode_from_disk_ts(struct xfs_dinode * dip,const xfs_timestamp_t ts)160 xfs_inode_from_disk_ts(
161 struct xfs_dinode *dip,
162 const xfs_timestamp_t ts)
163 {
164 struct timespec64 tv;
165 struct xfs_legacy_timestamp *lts;
166
167 if (xfs_dinode_has_bigtime(dip))
168 return xfs_inode_decode_bigtime(be64_to_cpu(ts));
169
170 lts = (struct xfs_legacy_timestamp *)&ts;
171 tv.tv_sec = (int)be32_to_cpu(lts->t_sec);
172 tv.tv_nsec = (int)be32_to_cpu(lts->t_nsec);
173
174 return tv;
175 }
176
177 int
xfs_inode_from_disk(struct xfs_inode * ip,struct xfs_dinode * from)178 xfs_inode_from_disk(
179 struct xfs_inode *ip,
180 struct xfs_dinode *from)
181 {
182 struct inode *inode = VFS_I(ip);
183 int error;
184 xfs_failaddr_t fa;
185
186 ASSERT(ip->i_cowfp == NULL);
187
188 fa = xfs_dinode_verify(ip->i_mount, ip->i_ino, from);
189 if (fa) {
190 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "dinode", from,
191 sizeof(*from), fa);
192 return -EFSCORRUPTED;
193 }
194
195 /*
196 * First get the permanent information that is needed to allocate an
197 * inode. If the inode is unused, mode is zero and we shouldn't mess
198 * with the uninitialized part of it.
199 */
200 if (!xfs_has_v3inodes(ip->i_mount))
201 ip->i_flushiter = be16_to_cpu(from->di_flushiter);
202 inode->i_generation = be32_to_cpu(from->di_gen);
203 inode->i_mode = be16_to_cpu(from->di_mode);
204 if (!inode->i_mode)
205 return 0;
206
207 /*
208 * Convert v1 inodes immediately to v2 inode format as this is the
209 * minimum inode version format we support in the rest of the code.
210 * They will also be unconditionally written back to disk as v2 inodes.
211 */
212 if (unlikely(from->di_version == 1)) {
213 /* di_metatype used to be di_onlink */
214 set_nlink(inode, be16_to_cpu(from->di_metatype));
215 ip->i_projid = 0;
216 } else {
217 set_nlink(inode, be32_to_cpu(from->di_nlink));
218 ip->i_projid = (prid_t)be16_to_cpu(from->di_projid_hi) << 16 |
219 be16_to_cpu(from->di_projid_lo);
220 if (xfs_dinode_is_metadir(from))
221 ip->i_metatype = be16_to_cpu(from->di_metatype);
222 }
223
224 i_uid_write(inode, be32_to_cpu(from->di_uid));
225 i_gid_write(inode, be32_to_cpu(from->di_gid));
226
227 /*
228 * Time is signed, so need to convert to signed 32 bit before
229 * storing in inode timestamp which may be 64 bit. Otherwise
230 * a time before epoch is converted to a time long after epoch
231 * on 64 bit systems.
232 */
233 inode_set_atime_to_ts(inode,
234 xfs_inode_from_disk_ts(from, from->di_atime));
235 inode_set_mtime_to_ts(inode,
236 xfs_inode_from_disk_ts(from, from->di_mtime));
237 inode_set_ctime_to_ts(inode,
238 xfs_inode_from_disk_ts(from, from->di_ctime));
239
240 ip->i_disk_size = be64_to_cpu(from->di_size);
241 ip->i_nblocks = be64_to_cpu(from->di_nblocks);
242 ip->i_extsize = be32_to_cpu(from->di_extsize);
243 ip->i_forkoff = from->di_forkoff;
244 ip->i_diflags = be16_to_cpu(from->di_flags);
245 ip->i_next_unlinked = be32_to_cpu(from->di_next_unlinked);
246
247 if (from->di_dmevmask || from->di_dmstate)
248 xfs_iflags_set(ip, XFS_IPRESERVE_DM_FIELDS);
249
250 if (xfs_has_v3inodes(ip->i_mount)) {
251 inode_set_iversion_queried(inode,
252 be64_to_cpu(from->di_changecount));
253 ip->i_crtime = xfs_inode_from_disk_ts(from, from->di_crtime);
254 ip->i_diflags2 = be64_to_cpu(from->di_flags2);
255 ip->i_cowextsize = be32_to_cpu(from->di_cowextsize);
256 }
257
258 error = xfs_iformat_data_fork(ip, from);
259 if (error)
260 return error;
261 if (from->di_forkoff) {
262 error = xfs_iformat_attr_fork(ip, from);
263 if (error)
264 goto out_destroy_data_fork;
265 }
266 if (xfs_is_reflink_inode(ip))
267 xfs_ifork_init_cow(ip);
268 return 0;
269
270 out_destroy_data_fork:
271 xfs_idestroy_fork(&ip->i_df);
272 return error;
273 }
274
275 /* Convert an incore timestamp to an ondisk timestamp. */
276 static inline xfs_timestamp_t
xfs_inode_to_disk_ts(struct xfs_inode * ip,const struct timespec64 tv)277 xfs_inode_to_disk_ts(
278 struct xfs_inode *ip,
279 const struct timespec64 tv)
280 {
281 struct xfs_legacy_timestamp *lts;
282 xfs_timestamp_t ts;
283
284 if (xfs_inode_has_bigtime(ip))
285 return cpu_to_be64(xfs_inode_encode_bigtime(tv));
286
287 lts = (struct xfs_legacy_timestamp *)&ts;
288 lts->t_sec = cpu_to_be32(tv.tv_sec);
289 lts->t_nsec = cpu_to_be32(tv.tv_nsec);
290
291 return ts;
292 }
293
294 static inline void
xfs_inode_to_disk_iext_counters(struct xfs_inode * ip,struct xfs_dinode * to)295 xfs_inode_to_disk_iext_counters(
296 struct xfs_inode *ip,
297 struct xfs_dinode *to)
298 {
299 if (xfs_inode_has_large_extent_counts(ip)) {
300 to->di_big_nextents = cpu_to_be64(xfs_ifork_nextents(&ip->i_df));
301 to->di_big_anextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_af));
302 /*
303 * We might be upgrading the inode to use larger extent counters
304 * than was previously used. Hence zero the unused field.
305 */
306 to->di_nrext64_pad = cpu_to_be16(0);
307 } else {
308 to->di_nextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_df));
309 to->di_anextents = cpu_to_be16(xfs_ifork_nextents(&ip->i_af));
310 }
311 }
312
313 void
xfs_inode_to_disk(struct xfs_inode * ip,struct xfs_dinode * to,xfs_lsn_t lsn)314 xfs_inode_to_disk(
315 struct xfs_inode *ip,
316 struct xfs_dinode *to,
317 xfs_lsn_t lsn)
318 {
319 struct inode *inode = VFS_I(ip);
320
321 to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
322 if (xfs_is_metadir_inode(ip))
323 to->di_metatype = cpu_to_be16(ip->i_metatype);
324 else
325 to->di_metatype = 0;
326
327 to->di_format = xfs_ifork_format(&ip->i_df);
328 to->di_uid = cpu_to_be32(i_uid_read(inode));
329 to->di_gid = cpu_to_be32(i_gid_read(inode));
330 to->di_projid_lo = cpu_to_be16(ip->i_projid & 0xffff);
331 to->di_projid_hi = cpu_to_be16(ip->i_projid >> 16);
332
333 to->di_atime = xfs_inode_to_disk_ts(ip, inode_get_atime(inode));
334 to->di_mtime = xfs_inode_to_disk_ts(ip, inode_get_mtime(inode));
335 to->di_ctime = xfs_inode_to_disk_ts(ip, inode_get_ctime(inode));
336 to->di_nlink = cpu_to_be32(inode->i_nlink);
337 to->di_gen = cpu_to_be32(inode->i_generation);
338 to->di_mode = cpu_to_be16(inode->i_mode);
339
340 to->di_size = cpu_to_be64(ip->i_disk_size);
341 to->di_nblocks = cpu_to_be64(ip->i_nblocks);
342 to->di_extsize = cpu_to_be32(ip->i_extsize);
343 to->di_forkoff = ip->i_forkoff;
344 to->di_aformat = xfs_ifork_format(&ip->i_af);
345 to->di_flags = cpu_to_be16(ip->i_diflags);
346
347 if (xfs_has_v3inodes(ip->i_mount)) {
348 to->di_version = 3;
349 to->di_changecount = cpu_to_be64(inode_peek_iversion(inode));
350 to->di_crtime = xfs_inode_to_disk_ts(ip, ip->i_crtime);
351 to->di_flags2 = cpu_to_be64(ip->i_diflags2);
352 to->di_cowextsize = cpu_to_be32(ip->i_cowextsize);
353 to->di_ino = cpu_to_be64(ip->i_ino);
354 to->di_lsn = cpu_to_be64(lsn);
355 memset(to->di_pad2, 0, sizeof(to->di_pad2));
356 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
357 to->di_v3_pad = 0;
358 } else {
359 to->di_version = 2;
360 to->di_flushiter = cpu_to_be16(ip->i_flushiter);
361 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
362 }
363
364 xfs_inode_to_disk_iext_counters(ip, to);
365 }
366
367 static xfs_failaddr_t
xfs_dinode_verify_fork(struct xfs_dinode * dip,struct xfs_mount * mp,int whichfork)368 xfs_dinode_verify_fork(
369 struct xfs_dinode *dip,
370 struct xfs_mount *mp,
371 int whichfork)
372 {
373 xfs_extnum_t di_nextents;
374 xfs_extnum_t max_extents;
375 mode_t mode = be16_to_cpu(dip->di_mode);
376 uint32_t fork_size = XFS_DFORK_SIZE(dip, mp, whichfork);
377 uint32_t fork_format = XFS_DFORK_FORMAT(dip, whichfork);
378
379 di_nextents = xfs_dfork_nextents(dip, whichfork);
380
381 /*
382 * For fork types that can contain local data, check that the fork
383 * format matches the size of local data contained within the fork.
384 */
385 if (whichfork == XFS_DATA_FORK) {
386 /*
387 * A directory small enough to fit in the inode must be stored
388 * in local format. The directory sf <-> extents conversion
389 * code updates the directory size accordingly. Directories
390 * being truncated have zero size and are not subject to this
391 * check.
392 */
393 if (S_ISDIR(mode)) {
394 if (dip->di_size &&
395 be64_to_cpu(dip->di_size) <= fork_size &&
396 fork_format != XFS_DINODE_FMT_LOCAL)
397 return __this_address;
398 }
399
400 /*
401 * A symlink with a target small enough to fit in the inode can
402 * be stored in extents format if xattrs were added (thus
403 * converting the data fork from shortform to remote format)
404 * and then removed.
405 */
406 if (S_ISLNK(mode)) {
407 if (be64_to_cpu(dip->di_size) <= fork_size &&
408 fork_format != XFS_DINODE_FMT_EXTENTS &&
409 fork_format != XFS_DINODE_FMT_LOCAL)
410 return __this_address;
411 }
412
413 /*
414 * For all types, check that when the size says the fork should
415 * be in extent or btree format, the inode isn't claiming to be
416 * in local format.
417 */
418 if (be64_to_cpu(dip->di_size) > fork_size &&
419 fork_format == XFS_DINODE_FMT_LOCAL)
420 return __this_address;
421 }
422
423 switch (fork_format) {
424 case XFS_DINODE_FMT_LOCAL:
425 /*
426 * No local regular files yet.
427 */
428 if (S_ISREG(mode) && whichfork == XFS_DATA_FORK)
429 return __this_address;
430 if (di_nextents)
431 return __this_address;
432 break;
433 case XFS_DINODE_FMT_EXTENTS:
434 if (di_nextents > XFS_DFORK_MAXEXT(dip, mp, whichfork))
435 return __this_address;
436 break;
437 case XFS_DINODE_FMT_BTREE:
438 max_extents = xfs_iext_max_nextents(
439 xfs_dinode_has_large_extent_counts(dip),
440 whichfork);
441 if (di_nextents > max_extents)
442 return __this_address;
443 break;
444 case XFS_DINODE_FMT_META_BTREE:
445 if (!xfs_has_metadir(mp))
446 return __this_address;
447 if (!(dip->di_flags2 & cpu_to_be64(XFS_DIFLAG2_METADATA)))
448 return __this_address;
449 switch (be16_to_cpu(dip->di_metatype)) {
450 case XFS_METAFILE_RTRMAP:
451 /*
452 * growfs must create the rtrmap inodes before adding a
453 * realtime volume to the filesystem, so we cannot use
454 * the rtrmapbt predicate here.
455 */
456 if (!xfs_has_rmapbt(mp))
457 return __this_address;
458 break;
459 case XFS_METAFILE_RTREFCOUNT:
460 /* same comment about growfs and rmap inodes applies */
461 if (!xfs_has_reflink(mp))
462 return __this_address;
463 break;
464 default:
465 return __this_address;
466 }
467 break;
468 default:
469 return __this_address;
470 }
471 return NULL;
472 }
473
474 static xfs_failaddr_t
xfs_dinode_verify_forkoff(struct xfs_dinode * dip,struct xfs_mount * mp)475 xfs_dinode_verify_forkoff(
476 struct xfs_dinode *dip,
477 struct xfs_mount *mp)
478 {
479 if (!dip->di_forkoff)
480 return NULL;
481
482 switch (dip->di_format) {
483 case XFS_DINODE_FMT_DEV:
484 if (dip->di_forkoff != (roundup(sizeof(xfs_dev_t), 8) >> 3))
485 return __this_address;
486 break;
487 case XFS_DINODE_FMT_META_BTREE:
488 if (!xfs_has_metadir(mp) || !xfs_has_parent(mp))
489 return __this_address;
490 fallthrough;
491 case XFS_DINODE_FMT_LOCAL: /* fall through ... */
492 case XFS_DINODE_FMT_EXTENTS: /* fall through ... */
493 case XFS_DINODE_FMT_BTREE:
494 if (dip->di_forkoff >= (XFS_LITINO(mp) >> 3))
495 return __this_address;
496 break;
497 default:
498 return __this_address;
499 }
500 return NULL;
501 }
502
503 static xfs_failaddr_t
xfs_dinode_verify_nrext64(struct xfs_mount * mp,struct xfs_dinode * dip)504 xfs_dinode_verify_nrext64(
505 struct xfs_mount *mp,
506 struct xfs_dinode *dip)
507 {
508 if (xfs_dinode_has_large_extent_counts(dip)) {
509 if (!xfs_has_large_extent_counts(mp))
510 return __this_address;
511 if (dip->di_nrext64_pad != 0)
512 return __this_address;
513 } else if (dip->di_version >= 3) {
514 if (dip->di_v3_pad != 0)
515 return __this_address;
516 }
517
518 return NULL;
519 }
520
521 /*
522 * Validate all the picky requirements we have for a file that claims to be
523 * filesystem metadata.
524 */
525 xfs_failaddr_t
xfs_dinode_verify_metadir(struct xfs_mount * mp,struct xfs_dinode * dip,uint16_t mode,uint16_t flags,uint64_t flags2)526 xfs_dinode_verify_metadir(
527 struct xfs_mount *mp,
528 struct xfs_dinode *dip,
529 uint16_t mode,
530 uint16_t flags,
531 uint64_t flags2)
532 {
533 if (!xfs_has_metadir(mp))
534 return __this_address;
535
536 /* V5 filesystem only */
537 if (dip->di_version < 3)
538 return __this_address;
539
540 if (be16_to_cpu(dip->di_metatype) >= XFS_METAFILE_MAX)
541 return __this_address;
542
543 /* V3 inode fields that are always zero */
544 if ((flags2 & XFS_DIFLAG2_NREXT64) && dip->di_nrext64_pad)
545 return __this_address;
546 if (!(flags2 & XFS_DIFLAG2_NREXT64) && dip->di_flushiter)
547 return __this_address;
548
549 /* Metadata files can only be directories or regular files */
550 if (!S_ISDIR(mode) && !S_ISREG(mode))
551 return __this_address;
552
553 /* They must have zero access permissions */
554 if (mode & 0777)
555 return __this_address;
556
557 /* DMAPI event and state masks are zero */
558 if (dip->di_dmevmask || dip->di_dmstate)
559 return __this_address;
560
561 /*
562 * User and group IDs must be zero. The project ID is used for
563 * grouping inodes. Metadata inodes are never accounted to quotas.
564 */
565 if (dip->di_uid || dip->di_gid)
566 return __this_address;
567
568 /* Mandatory inode flags must be set */
569 if (S_ISDIR(mode)) {
570 if ((flags & XFS_METADIR_DIFLAGS) != XFS_METADIR_DIFLAGS)
571 return __this_address;
572 } else {
573 if ((flags & XFS_METAFILE_DIFLAGS) != XFS_METAFILE_DIFLAGS)
574 return __this_address;
575 }
576
577 /* dax flags2 must not be set */
578 if (flags2 & XFS_DIFLAG2_DAX)
579 return __this_address;
580
581 return NULL;
582 }
583
584 xfs_failaddr_t
xfs_dinode_verify(struct xfs_mount * mp,xfs_ino_t ino,struct xfs_dinode * dip)585 xfs_dinode_verify(
586 struct xfs_mount *mp,
587 xfs_ino_t ino,
588 struct xfs_dinode *dip)
589 {
590 xfs_failaddr_t fa;
591 uint16_t mode;
592 uint16_t flags;
593 uint64_t flags2;
594 uint64_t di_size;
595 xfs_extnum_t nextents;
596 xfs_extnum_t naextents;
597 xfs_filblks_t nblocks;
598
599 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
600 return __this_address;
601
602 /* Verify v3 integrity information first */
603 if (dip->di_version >= 3) {
604 if (!xfs_has_v3inodes(mp))
605 return __this_address;
606 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
607 XFS_DINODE_CRC_OFF))
608 return __this_address;
609 if (be64_to_cpu(dip->di_ino) != ino)
610 return __this_address;
611 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
612 return __this_address;
613 }
614
615 /*
616 * Historical note: xfsprogs in the 3.2 era set up its incore inodes to
617 * have di_nlink track the link count, even if the actual filesystem
618 * only supported V1 inodes (i.e. di_onlink). When writing out the
619 * ondisk inode, it would set both the ondisk di_nlink and di_onlink to
620 * the the incore di_nlink value, which is why we cannot check for
621 * di_nlink==0 on a V1 inode. V2/3 inodes would get written out with
622 * di_onlink==0, so we can check that.
623 */
624 if (dip->di_version == 2) {
625 if (dip->di_metatype)
626 return __this_address;
627 } else if (dip->di_version >= 3) {
628 if (!xfs_dinode_is_metadir(dip) && dip->di_metatype)
629 return __this_address;
630 }
631
632 /* don't allow invalid i_size */
633 di_size = be64_to_cpu(dip->di_size);
634 if (di_size & (1ULL << 63))
635 return __this_address;
636
637 mode = be16_to_cpu(dip->di_mode);
638 if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN)
639 return __this_address;
640
641 /*
642 * No zero-length symlinks/dirs unless they're unlinked and hence being
643 * inactivated.
644 */
645 if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0) {
646 if (dip->di_version > 1) {
647 if (dip->di_nlink)
648 return __this_address;
649 } else {
650 /* di_metatype used to be di_onlink */
651 if (dip->di_metatype)
652 return __this_address;
653 }
654 }
655
656 fa = xfs_dinode_verify_nrext64(mp, dip);
657 if (fa)
658 return fa;
659
660 nextents = xfs_dfork_data_extents(dip);
661 naextents = xfs_dfork_attr_extents(dip);
662 nblocks = be64_to_cpu(dip->di_nblocks);
663
664 /* Fork checks carried over from xfs_iformat_fork */
665 if (mode && nextents + naextents > nblocks)
666 return __this_address;
667
668 if (S_ISDIR(mode) && nextents > mp->m_dir_geo->max_extents)
669 return __this_address;
670
671 if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize)
672 return __this_address;
673
674 flags = be16_to_cpu(dip->di_flags);
675
676 if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp)
677 return __this_address;
678
679 /* check for illegal values of forkoff */
680 fa = xfs_dinode_verify_forkoff(dip, mp);
681 if (fa)
682 return fa;
683
684 /* Do we have appropriate data fork formats for the mode? */
685 switch (mode & S_IFMT) {
686 case S_IFIFO:
687 case S_IFCHR:
688 case S_IFBLK:
689 case S_IFSOCK:
690 if (dip->di_format != XFS_DINODE_FMT_DEV)
691 return __this_address;
692 break;
693 case S_IFREG:
694 case S_IFLNK:
695 case S_IFDIR:
696 fa = xfs_dinode_verify_fork(dip, mp, XFS_DATA_FORK);
697 if (fa)
698 return fa;
699 break;
700 case 0:
701 /* Uninitialized inode ok. */
702 break;
703 default:
704 return __this_address;
705 }
706
707 if (dip->di_forkoff) {
708 fa = xfs_dinode_verify_fork(dip, mp, XFS_ATTR_FORK);
709 if (fa)
710 return fa;
711 } else {
712 /*
713 * If there is no fork offset, this may be a freshly-made inode
714 * in a new disk cluster, in which case di_aformat is zeroed.
715 * Otherwise, such an inode must be in EXTENTS format; this goes
716 * for freed inodes as well.
717 */
718 switch (dip->di_aformat) {
719 case 0:
720 case XFS_DINODE_FMT_EXTENTS:
721 break;
722 default:
723 return __this_address;
724 }
725 if (naextents)
726 return __this_address;
727 }
728
729 /* extent size hint validation */
730 fa = xfs_inode_validate_extsize(mp, be32_to_cpu(dip->di_extsize),
731 mode, flags);
732 if (fa)
733 return fa;
734
735 /* only version 3 or greater inodes are extensively verified here */
736 if (dip->di_version < 3)
737 return NULL;
738
739 flags2 = be64_to_cpu(dip->di_flags2);
740
741 /* don't allow reflink/cowextsize if we don't have reflink */
742 if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) &&
743 !xfs_has_reflink(mp))
744 return __this_address;
745
746 /* only regular files get reflink */
747 if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG)
748 return __this_address;
749
750 /* don't let reflink and realtime mix */
751 if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME) &&
752 !xfs_has_rtreflink(mp))
753 return __this_address;
754
755 /* COW extent size hint validation */
756 fa = xfs_inode_validate_cowextsize(mp, be32_to_cpu(dip->di_cowextsize),
757 mode, flags, flags2);
758 if (fa)
759 return fa;
760
761 /* bigtime iflag can only happen on bigtime filesystems */
762 if (xfs_dinode_has_bigtime(dip) &&
763 !xfs_has_bigtime(mp))
764 return __this_address;
765
766 if (flags2 & XFS_DIFLAG2_METADATA) {
767 fa = xfs_dinode_verify_metadir(mp, dip, mode, flags, flags2);
768 if (fa)
769 return fa;
770 }
771
772 /* metadata inodes containing btrees always have zero extent count */
773 if (XFS_DFORK_FORMAT(dip, XFS_DATA_FORK) != XFS_DINODE_FMT_META_BTREE) {
774 if (nextents + naextents == 0 && nblocks != 0)
775 return __this_address;
776 }
777
778 return NULL;
779 }
780
781 void
xfs_dinode_calc_crc(struct xfs_mount * mp,struct xfs_dinode * dip)782 xfs_dinode_calc_crc(
783 struct xfs_mount *mp,
784 struct xfs_dinode *dip)
785 {
786 uint32_t crc;
787
788 if (dip->di_version < 3)
789 return;
790
791 ASSERT(xfs_has_crc(mp));
792 crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize,
793 XFS_DINODE_CRC_OFF);
794 dip->di_crc = xfs_end_cksum(crc);
795 }
796
797 /*
798 * Validate di_extsize hint.
799 *
800 * 1. Extent size hint is only valid for directories and regular files.
801 * 2. FS_XFLAG_EXTSIZE is only valid for regular files.
802 * 3. FS_XFLAG_EXTSZINHERIT is only valid for directories.
803 * 4. Hint cannot be larger than MAXTEXTLEN.
804 * 5. Can be changed on directories at any time.
805 * 6. Hint value of 0 turns off hints, clears inode flags.
806 * 7. Extent size must be a multiple of the appropriate block size.
807 * For realtime files, this is the rt extent size.
808 * 8. For non-realtime files, the extent size hint must be limited
809 * to half the AG size to avoid alignment extending the extent beyond the
810 * limits of the AG.
811 */
812 xfs_failaddr_t
xfs_inode_validate_extsize(struct xfs_mount * mp,uint32_t extsize,uint16_t mode,uint16_t flags)813 xfs_inode_validate_extsize(
814 struct xfs_mount *mp,
815 uint32_t extsize,
816 uint16_t mode,
817 uint16_t flags)
818 {
819 bool rt_flag;
820 bool hint_flag;
821 bool inherit_flag;
822 uint32_t extsize_bytes;
823 uint32_t blocksize_bytes;
824
825 rt_flag = (flags & XFS_DIFLAG_REALTIME);
826 hint_flag = (flags & XFS_DIFLAG_EXTSIZE);
827 inherit_flag = (flags & XFS_DIFLAG_EXTSZINHERIT);
828 extsize_bytes = XFS_FSB_TO_B(mp, extsize);
829
830 /*
831 * This comment describes a historic gap in this verifier function.
832 *
833 * For a directory with both RTINHERIT and EXTSZINHERIT flags set, this
834 * function has never checked that the extent size hint is an integer
835 * multiple of the realtime extent size. Since we allow users to set
836 * this combination on non-rt filesystems /and/ to change the rt
837 * extent size when adding a rt device to a filesystem, the net effect
838 * is that users can configure a filesystem anticipating one rt
839 * geometry and change their minds later. Directories do not use the
840 * extent size hint, so this is harmless for them.
841 *
842 * If a directory with a misaligned extent size hint is allowed to
843 * propagate that hint into a new regular realtime file, the result
844 * is that the inode cluster buffer verifier will trigger a corruption
845 * shutdown the next time it is run, because the verifier has always
846 * enforced the alignment rule for regular files.
847 *
848 * Because we allow administrators to set a new rt extent size when
849 * adding a rt section, we cannot add a check to this verifier because
850 * that will result a new source of directory corruption errors when
851 * reading an existing filesystem. Instead, we rely on callers to
852 * decide when alignment checks are appropriate, and fix things up as
853 * needed.
854 */
855
856 if (rt_flag)
857 blocksize_bytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
858 else
859 blocksize_bytes = mp->m_sb.sb_blocksize;
860
861 if ((hint_flag || inherit_flag) && !(S_ISDIR(mode) || S_ISREG(mode)))
862 return __this_address;
863
864 if (hint_flag && !S_ISREG(mode))
865 return __this_address;
866
867 if (inherit_flag && !S_ISDIR(mode))
868 return __this_address;
869
870 if ((hint_flag || inherit_flag) && extsize == 0)
871 return __this_address;
872
873 /* free inodes get flags set to zero but extsize remains */
874 if (mode && !(hint_flag || inherit_flag) && extsize != 0)
875 return __this_address;
876
877 if (extsize_bytes % blocksize_bytes)
878 return __this_address;
879
880 if (extsize > XFS_MAX_BMBT_EXTLEN)
881 return __this_address;
882
883 if (!rt_flag && extsize > mp->m_sb.sb_agblocks / 2)
884 return __this_address;
885
886 return NULL;
887 }
888
889 /*
890 * Validate di_cowextsize hint.
891 *
892 * 1. CoW extent size hint can only be set if reflink is enabled on the fs.
893 * The inode does not have to have any shared blocks, but it must be a v3.
894 * 2. FS_XFLAG_COWEXTSIZE is only valid for directories and regular files;
895 * for a directory, the hint is propagated to new files.
896 * 3. Can be changed on files & directories at any time.
897 * 4. Hint value of 0 turns off hints, clears inode flags.
898 * 5. Extent size must be a multiple of the appropriate block size.
899 * 6. The extent size hint must be limited to half the AG size to avoid
900 * alignment extending the extent beyond the limits of the AG.
901 */
902 xfs_failaddr_t
xfs_inode_validate_cowextsize(struct xfs_mount * mp,uint32_t cowextsize,uint16_t mode,uint16_t flags,uint64_t flags2)903 xfs_inode_validate_cowextsize(
904 struct xfs_mount *mp,
905 uint32_t cowextsize,
906 uint16_t mode,
907 uint16_t flags,
908 uint64_t flags2)
909 {
910 bool rt_flag;
911 bool hint_flag;
912 uint32_t cowextsize_bytes;
913 uint32_t blocksize_bytes;
914
915 rt_flag = (flags & XFS_DIFLAG_REALTIME);
916 hint_flag = (flags2 & XFS_DIFLAG2_COWEXTSIZE);
917 cowextsize_bytes = XFS_FSB_TO_B(mp, cowextsize);
918
919 /*
920 * Similar to extent size hints, a directory can be configured to
921 * propagate realtime status and a CoW extent size hint to newly
922 * created files even if there is no realtime device, and the hints on
923 * disk can become misaligned if the sysadmin changes the rt extent
924 * size while adding the realtime device.
925 *
926 * Therefore, we can only enforce the rextsize alignment check against
927 * regular realtime files, and rely on callers to decide when alignment
928 * checks are appropriate, and fix things up as needed.
929 */
930
931 if (rt_flag)
932 blocksize_bytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
933 else
934 blocksize_bytes = mp->m_sb.sb_blocksize;
935
936 if (hint_flag && !xfs_has_reflink(mp))
937 return __this_address;
938
939 if (hint_flag && !(S_ISDIR(mode) || S_ISREG(mode)))
940 return __this_address;
941
942 if (hint_flag && cowextsize == 0)
943 return __this_address;
944
945 /* free inodes get flags set to zero but cowextsize remains */
946 if (mode && !hint_flag && cowextsize != 0)
947 return __this_address;
948
949 if (cowextsize_bytes % blocksize_bytes)
950 return __this_address;
951
952 if (cowextsize > XFS_MAX_BMBT_EXTLEN)
953 return __this_address;
954
955 if (!rt_flag && cowextsize > mp->m_sb.sb_agblocks / 2)
956 return __this_address;
957
958 return NULL;
959 }
960