xref: /linux/sound/x86/intel_hdmi_audio.c (revision a9e6060bb2a6cae6d43a98ec0794844ad01273d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *   intel_hdmi_audio.c - Intel HDMI audio driver
4  *
5  *  Copyright (C) 2016 Intel Corp
6  *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7  *		Ramesh Babu K V	<ramesh.babu@intel.com>
8  *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9  *		Jerome Anand <jerome.anand@intel.com>
10  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  * ALSA driver for Intel HDMI audio
14  */
15 
16 #include <linux/types.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/delay.h>
25 #include <linux/string.h>
26 #include <sound/core.h>
27 #include <sound/asoundef.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/initval.h>
31 #include <sound/control.h>
32 #include <sound/jack.h>
33 #include <drm/drm_edid.h>
34 #include <drm/drm_eld.h>
35 #include <drm/intel/intel_lpe_audio.h>
36 #include "intel_hdmi_audio.h"
37 
38 #define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS  5000
39 
40 #define for_each_pipe(card_ctx, pipe) \
41 	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
42 #define for_each_port(card_ctx, port) \
43 	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
44 
45 /*standard module options for ALSA. This module supports only one card*/
46 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
47 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
48 static bool single_port;
49 
50 module_param_named(index, hdmi_card_index, int, 0444);
51 MODULE_PARM_DESC(index,
52 		"Index value for INTEL Intel HDMI Audio controller.");
53 module_param_named(id, hdmi_card_id, charp, 0444);
54 MODULE_PARM_DESC(id,
55 		"ID string for INTEL Intel HDMI Audio controller.");
56 module_param(single_port, bool, 0444);
57 MODULE_PARM_DESC(single_port,
58 		"Single-port mode (for compatibility)");
59 
60 /*
61  * ELD SA bits in the CEA Speaker Allocation data block
62  */
63 static const int eld_speaker_allocation_bits[] = {
64 	[0] = FL | FR,
65 	[1] = LFE,
66 	[2] = FC,
67 	[3] = RL | RR,
68 	[4] = RC,
69 	[5] = FLC | FRC,
70 	[6] = RLC | RRC,
71 	/* the following are not defined in ELD yet */
72 	[7] = 0,
73 };
74 
75 /*
76  * This is an ordered list!
77  *
78  * The preceding ones have better chances to be selected by
79  * hdmi_channel_allocation().
80  */
81 static struct cea_channel_speaker_allocation channel_allocations[] = {
82 /*                        channel:   7     6    5    4    3     2    1    0  */
83 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
84 				/* 2.1 */
85 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
86 				/* Dolby Surround */
87 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
88 				/* surround40 */
89 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
90 				/* surround41 */
91 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
92 				/* surround50 */
93 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
94 				/* surround51 */
95 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
96 				/* 6.1 */
97 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
98 				/* surround71 */
99 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
100 
101 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
102 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
103 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
104 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
105 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
106 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
107 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
108 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
109 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
110 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
111 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
112 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
113 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
114 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
115 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
116 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
117 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
118 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
119 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
120 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
121 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
122 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
123 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
124 };
125 
126 static const struct channel_map_table map_tables[] = {
127 	{ SNDRV_CHMAP_FL,       0x00,   FL },
128 	{ SNDRV_CHMAP_FR,       0x01,   FR },
129 	{ SNDRV_CHMAP_RL,       0x04,   RL },
130 	{ SNDRV_CHMAP_RR,       0x05,   RR },
131 	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
132 	{ SNDRV_CHMAP_FC,       0x03,   FC },
133 	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
134 	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
135 	{} /* terminator */
136 };
137 
138 /* hardware capability structure */
139 static const struct snd_pcm_hardware had_pcm_hardware = {
140 	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
141 		SNDRV_PCM_INFO_MMAP |
142 		SNDRV_PCM_INFO_MMAP_VALID |
143 		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
144 	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
145 		    SNDRV_PCM_FMTBIT_S24_LE |
146 		    SNDRV_PCM_FMTBIT_S32_LE),
147 	.rates = SNDRV_PCM_RATE_32000 |
148 		SNDRV_PCM_RATE_44100 |
149 		SNDRV_PCM_RATE_48000 |
150 		SNDRV_PCM_RATE_88200 |
151 		SNDRV_PCM_RATE_96000 |
152 		SNDRV_PCM_RATE_176400 |
153 		SNDRV_PCM_RATE_192000,
154 	.rate_min = HAD_MIN_RATE,
155 	.rate_max = HAD_MAX_RATE,
156 	.channels_min = HAD_MIN_CHANNEL,
157 	.channels_max = HAD_MAX_CHANNEL,
158 	.buffer_bytes_max = HAD_MAX_BUFFER,
159 	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
160 	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
161 	.periods_min = HAD_MIN_PERIODS,
162 	.periods_max = HAD_MAX_PERIODS,
163 	.fifo_size = HAD_FIFO_SIZE,
164 };
165 
166 /* Get the active PCM substream;
167  * Call had_substream_put() for unreferecing.
168  * Don't call this inside had_spinlock, as it takes by itself
169  */
170 static struct snd_pcm_substream *
had_substream_get(struct snd_intelhad * intelhaddata)171 had_substream_get(struct snd_intelhad *intelhaddata)
172 {
173 	struct snd_pcm_substream *substream;
174 	unsigned long flags;
175 
176 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
177 	substream = intelhaddata->stream_info.substream;
178 	if (substream)
179 		intelhaddata->stream_info.substream_refcount++;
180 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
181 	return substream;
182 }
183 
184 /* Unref the active PCM substream;
185  * Don't call this inside had_spinlock, as it takes by itself
186  */
had_substream_put(struct snd_intelhad * intelhaddata)187 static void had_substream_put(struct snd_intelhad *intelhaddata)
188 {
189 	unsigned long flags;
190 
191 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
192 	intelhaddata->stream_info.substream_refcount--;
193 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
194 }
195 
had_config_offset(int pipe)196 static u32 had_config_offset(int pipe)
197 {
198 	switch (pipe) {
199 	default:
200 	case 0:
201 		return AUDIO_HDMI_CONFIG_A;
202 	case 1:
203 		return AUDIO_HDMI_CONFIG_B;
204 	case 2:
205 		return AUDIO_HDMI_CONFIG_C;
206 	}
207 }
208 
209 /* Register access functions */
had_read_register_raw(struct snd_intelhad_card * card_ctx,int pipe,u32 reg)210 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
211 				 int pipe, u32 reg)
212 {
213 	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
214 }
215 
had_write_register_raw(struct snd_intelhad_card * card_ctx,int pipe,u32 reg,u32 val)216 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
217 				   int pipe, u32 reg, u32 val)
218 {
219 	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
220 }
221 
had_read_register(struct snd_intelhad * ctx,u32 reg,u32 * val)222 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
223 {
224 	if (!ctx->connected)
225 		*val = 0;
226 	else
227 		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
228 }
229 
had_write_register(struct snd_intelhad * ctx,u32 reg,u32 val)230 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
231 {
232 	if (ctx->connected)
233 		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
234 }
235 
236 /*
237  * enable / disable audio configuration
238  *
239  * The normal read/modify should not directly be used on VLV2 for
240  * updating AUD_CONFIG register.
241  * This is because:
242  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
243  * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
244  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
245  * register. This field should be 1xy binary for configuration with 6 or
246  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
247  * causes the "channels" field to be updated as 0xy binary resulting in
248  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
249  * appropriate value when doing read-modify of AUD_CONFIG register.
250  */
had_enable_audio(struct snd_intelhad * intelhaddata,bool enable)251 static void had_enable_audio(struct snd_intelhad *intelhaddata,
252 			     bool enable)
253 {
254 	/* update the cached value */
255 	intelhaddata->aud_config.regx.aud_en = enable;
256 	had_write_register(intelhaddata, AUD_CONFIG,
257 			   intelhaddata->aud_config.regval);
258 }
259 
260 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
had_ack_irqs(struct snd_intelhad * ctx)261 static void had_ack_irqs(struct snd_intelhad *ctx)
262 {
263 	u32 status_reg;
264 
265 	if (!ctx->connected)
266 		return;
267 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
268 	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
269 	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
270 	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
271 }
272 
273 /* Reset buffer pointers */
had_reset_audio(struct snd_intelhad * intelhaddata)274 static void had_reset_audio(struct snd_intelhad *intelhaddata)
275 {
276 	had_write_register(intelhaddata, AUD_HDMI_STATUS,
277 			   AUD_HDMI_STATUSG_MASK_FUNCRST);
278 	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
279 }
280 
281 /*
282  * initialize audio channel status registers
283  * This function is called in the prepare callback
284  */
had_prog_status_reg(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)285 static int had_prog_status_reg(struct snd_pcm_substream *substream,
286 			struct snd_intelhad *intelhaddata)
287 {
288 	union aud_ch_status_0 ch_stat0 = {.regval = 0};
289 	union aud_ch_status_1 ch_stat1 = {.regval = 0};
290 
291 	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
292 					  IEC958_AES0_NONAUDIO) >> 1;
293 	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
294 					  IEC958_AES3_CON_CLOCK) >> 4;
295 
296 	switch (substream->runtime->rate) {
297 	case AUD_SAMPLE_RATE_32:
298 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
299 		break;
300 
301 	case AUD_SAMPLE_RATE_44_1:
302 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
303 		break;
304 	case AUD_SAMPLE_RATE_48:
305 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
306 		break;
307 	case AUD_SAMPLE_RATE_88_2:
308 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
309 		break;
310 	case AUD_SAMPLE_RATE_96:
311 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
312 		break;
313 	case AUD_SAMPLE_RATE_176_4:
314 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
315 		break;
316 	case AUD_SAMPLE_RATE_192:
317 		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
318 		break;
319 
320 	default:
321 		/* control should never come here */
322 		return -EINVAL;
323 	}
324 
325 	had_write_register(intelhaddata,
326 			   AUD_CH_STATUS_0, ch_stat0.regval);
327 
328 	switch (substream->runtime->format) {
329 	case SNDRV_PCM_FORMAT_S16_LE:
330 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
331 		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
332 		break;
333 	case SNDRV_PCM_FORMAT_S24_LE:
334 	case SNDRV_PCM_FORMAT_S32_LE:
335 		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
336 		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
337 		break;
338 	default:
339 		return -EINVAL;
340 	}
341 
342 	had_write_register(intelhaddata,
343 			   AUD_CH_STATUS_1, ch_stat1.regval);
344 	return 0;
345 }
346 
347 /*
348  * function to initialize audio
349  * registers and buffer configuration registers
350  * This function is called in the prepare callback
351  */
had_init_audio_ctrl(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)352 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
353 			       struct snd_intelhad *intelhaddata)
354 {
355 	union aud_cfg cfg_val = {.regval = 0};
356 	union aud_buf_config buf_cfg = {.regval = 0};
357 	u8 channels;
358 
359 	had_prog_status_reg(substream, intelhaddata);
360 
361 	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
362 	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
363 	buf_cfg.regx.aud_delay = 0;
364 	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
365 
366 	channels = substream->runtime->channels;
367 	cfg_val.regx.num_ch = channels - 2;
368 	if (channels <= 2)
369 		cfg_val.regx.layout = LAYOUT0;
370 	else
371 		cfg_val.regx.layout = LAYOUT1;
372 
373 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
374 		cfg_val.regx.packet_mode = 1;
375 
376 	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
377 		cfg_val.regx.left_align = 1;
378 
379 	cfg_val.regx.val_bit = 1;
380 
381 	/* fix up the DP bits */
382 	if (intelhaddata->dp_output) {
383 		cfg_val.regx.dp_modei = 1;
384 		cfg_val.regx.set = 1;
385 	}
386 
387 	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
388 	intelhaddata->aud_config = cfg_val;
389 	return 0;
390 }
391 
392 /*
393  * Compute derived values in channel_allocations[].
394  */
init_channel_allocations(void)395 static void init_channel_allocations(void)
396 {
397 	int i, j;
398 	struct cea_channel_speaker_allocation *p;
399 
400 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
401 		p = channel_allocations + i;
402 		p->channels = 0;
403 		p->spk_mask = 0;
404 		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
405 			if (p->speakers[j]) {
406 				p->channels++;
407 				p->spk_mask |= p->speakers[j];
408 			}
409 	}
410 }
411 
412 /*
413  * The transformation takes two steps:
414  *
415  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
416  *            spk_mask => (channel_allocations[])         => ai->CA
417  *
418  * TODO: it could select the wrong CA from multiple candidates.
419  */
had_channel_allocation(struct snd_intelhad * intelhaddata,int channels)420 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
421 				  int channels)
422 {
423 	int i;
424 	int ca = 0;
425 	int spk_mask = 0;
426 
427 	/*
428 	 * CA defaults to 0 for basic stereo audio
429 	 */
430 	if (channels <= 2)
431 		return 0;
432 
433 	/*
434 	 * expand ELD's speaker allocation mask
435 	 *
436 	 * ELD tells the speaker mask in a compact(paired) form,
437 	 * expand ELD's notions to match the ones used by Audio InfoFrame.
438 	 */
439 
440 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
441 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
442 			spk_mask |= eld_speaker_allocation_bits[i];
443 	}
444 
445 	/* search for the first working match in the CA table */
446 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
447 		if (channels == channel_allocations[i].channels &&
448 		(spk_mask & channel_allocations[i].spk_mask) ==
449 				channel_allocations[i].spk_mask) {
450 			ca = channel_allocations[i].ca_index;
451 			break;
452 		}
453 	}
454 
455 	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
456 
457 	return ca;
458 }
459 
460 /* from speaker bit mask to ALSA API channel position */
spk_to_chmap(int spk)461 static int spk_to_chmap(int spk)
462 {
463 	const struct channel_map_table *t = map_tables;
464 
465 	for (; t->map; t++) {
466 		if (t->spk_mask == spk)
467 			return t->map;
468 	}
469 	return 0;
470 }
471 
had_build_channel_allocation_map(struct snd_intelhad * intelhaddata)472 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
473 {
474 	int i, c;
475 	int spk_mask = 0;
476 	struct snd_pcm_chmap_elem *chmap;
477 	u8 eld_high, eld_high_mask = 0xF0;
478 	u8 high_msb;
479 
480 	kfree(intelhaddata->chmap->chmap);
481 	intelhaddata->chmap->chmap = NULL;
482 
483 	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
484 	if (!chmap)
485 		return;
486 
487 	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
488 		intelhaddata->eld[DRM_ELD_SPEAKER]);
489 
490 	/* WA: Fix the max channel supported to 8 */
491 
492 	/*
493 	 * Sink may support more than 8 channels, if eld_high has more than
494 	 * one bit set. SOC supports max 8 channels.
495 	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
496 	 */
497 
498 	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
499 	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
500 	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
501 		/* eld_high & (eld_high-1): if more than 1 bit set */
502 		/* 0x1F: 7 channels */
503 		for (i = 1; i < 4; i++) {
504 			high_msb = eld_high & (0x80 >> i);
505 			if (high_msb) {
506 				intelhaddata->eld[DRM_ELD_SPEAKER] &=
507 					high_msb | 0xF;
508 				break;
509 			}
510 		}
511 	}
512 
513 	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
514 		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
515 			spk_mask |= eld_speaker_allocation_bits[i];
516 	}
517 
518 	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
519 		if (spk_mask == channel_allocations[i].spk_mask) {
520 			for (c = 0; c < channel_allocations[i].channels; c++) {
521 				chmap->map[c] = spk_to_chmap(
522 					channel_allocations[i].speakers[
523 						(MAX_SPEAKERS - 1) - c]);
524 			}
525 			chmap->channels = channel_allocations[i].channels;
526 			intelhaddata->chmap->chmap = chmap;
527 			break;
528 		}
529 	}
530 	if (i >= ARRAY_SIZE(channel_allocations))
531 		kfree(chmap);
532 }
533 
534 /*
535  * ALSA API channel-map control callbacks
536  */
had_chmap_ctl_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)537 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
538 				struct snd_ctl_elem_info *uinfo)
539 {
540 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
541 	uinfo->count = HAD_MAX_CHANNEL;
542 	uinfo->value.integer.min = 0;
543 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
544 	return 0;
545 }
546 
had_chmap_ctl_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)547 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
548 				struct snd_ctl_elem_value *ucontrol)
549 {
550 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
551 	struct snd_intelhad *intelhaddata = info->private_data;
552 	int i;
553 	const struct snd_pcm_chmap_elem *chmap;
554 
555 	memset(ucontrol->value.integer.value, 0,
556 	       sizeof(long) * HAD_MAX_CHANNEL);
557 	mutex_lock(&intelhaddata->mutex);
558 	if (!intelhaddata->chmap->chmap) {
559 		mutex_unlock(&intelhaddata->mutex);
560 		return 0;
561 	}
562 
563 	chmap = intelhaddata->chmap->chmap;
564 	for (i = 0; i < chmap->channels; i++)
565 		ucontrol->value.integer.value[i] = chmap->map[i];
566 	mutex_unlock(&intelhaddata->mutex);
567 
568 	return 0;
569 }
570 
had_register_chmap_ctls(struct snd_intelhad * intelhaddata,struct snd_pcm * pcm)571 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
572 						struct snd_pcm *pcm)
573 {
574 	int err;
575 
576 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
577 			NULL, 0, (unsigned long)intelhaddata,
578 			&intelhaddata->chmap);
579 	if (err < 0)
580 		return err;
581 
582 	intelhaddata->chmap->private_data = intelhaddata;
583 	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
584 	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
585 	intelhaddata->chmap->chmap = NULL;
586 	return 0;
587 }
588 
589 /*
590  * Initialize Data Island Packets registers
591  * This function is called in the prepare callback
592  */
had_prog_dip(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)593 static void had_prog_dip(struct snd_pcm_substream *substream,
594 			 struct snd_intelhad *intelhaddata)
595 {
596 	int i;
597 	union aud_ctrl_st ctrl_state = {.regval = 0};
598 	union aud_info_frame2 frame2 = {.regval = 0};
599 	union aud_info_frame3 frame3 = {.regval = 0};
600 	u8 checksum = 0;
601 	u32 info_frame;
602 	int channels;
603 	int ca;
604 
605 	channels = substream->runtime->channels;
606 
607 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
608 
609 	ca = had_channel_allocation(intelhaddata, channels);
610 	if (intelhaddata->dp_output) {
611 		info_frame = DP_INFO_FRAME_WORD1;
612 		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
613 	} else {
614 		info_frame = HDMI_INFO_FRAME_WORD1;
615 		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
616 		frame3.regx.chnl_alloc = ca;
617 
618 		/* Calculte the byte wide checksum for all valid DIP words */
619 		for (i = 0; i < BYTES_PER_WORD; i++)
620 			checksum += (info_frame >> (i * 8)) & 0xff;
621 		for (i = 0; i < BYTES_PER_WORD; i++)
622 			checksum += (frame2.regval >> (i * 8)) & 0xff;
623 		for (i = 0; i < BYTES_PER_WORD; i++)
624 			checksum += (frame3.regval >> (i * 8)) & 0xff;
625 
626 		frame2.regx.chksum = -(checksum);
627 	}
628 
629 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
630 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
631 	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
632 
633 	/* program remaining DIP words with zero */
634 	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
635 		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
636 
637 	ctrl_state.regx.dip_freq = 1;
638 	ctrl_state.regx.dip_en_sta = 1;
639 	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
640 }
641 
had_calculate_maud_value(u32 aud_samp_freq,u32 link_rate)642 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
643 {
644 	u32 maud_val;
645 
646 	/* Select maud according to DP 1.2 spec */
647 	if (link_rate == DP_2_7_GHZ) {
648 		switch (aud_samp_freq) {
649 		case AUD_SAMPLE_RATE_32:
650 			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
651 			break;
652 
653 		case AUD_SAMPLE_RATE_44_1:
654 			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
655 			break;
656 
657 		case AUD_SAMPLE_RATE_48:
658 			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
659 			break;
660 
661 		case AUD_SAMPLE_RATE_88_2:
662 			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
663 			break;
664 
665 		case AUD_SAMPLE_RATE_96:
666 			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
667 			break;
668 
669 		case AUD_SAMPLE_RATE_176_4:
670 			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
671 			break;
672 
673 		case HAD_MAX_RATE:
674 			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
675 			break;
676 
677 		default:
678 			maud_val = -EINVAL;
679 			break;
680 		}
681 	} else if (link_rate == DP_1_62_GHZ) {
682 		switch (aud_samp_freq) {
683 		case AUD_SAMPLE_RATE_32:
684 			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
685 			break;
686 
687 		case AUD_SAMPLE_RATE_44_1:
688 			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
689 			break;
690 
691 		case AUD_SAMPLE_RATE_48:
692 			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
693 			break;
694 
695 		case AUD_SAMPLE_RATE_88_2:
696 			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
697 			break;
698 
699 		case AUD_SAMPLE_RATE_96:
700 			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
701 			break;
702 
703 		case AUD_SAMPLE_RATE_176_4:
704 			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
705 			break;
706 
707 		case HAD_MAX_RATE:
708 			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
709 			break;
710 
711 		default:
712 			maud_val = -EINVAL;
713 			break;
714 		}
715 	} else
716 		maud_val = -EINVAL;
717 
718 	return maud_val;
719 }
720 
721 /*
722  * Program HDMI audio CTS value
723  *
724  * @aud_samp_freq: sampling frequency of audio data
725  * @tmds: sampling frequency of the display data
726  * @link_rate: DP link rate
727  * @n_param: N value, depends on aud_samp_freq
728  * @intelhaddata: substream private data
729  *
730  * Program CTS register based on the audio and display sampling frequency
731  */
had_prog_cts(u32 aud_samp_freq,u32 tmds,u32 link_rate,u32 n_param,struct snd_intelhad * intelhaddata)732 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
733 			 u32 n_param, struct snd_intelhad *intelhaddata)
734 {
735 	u32 cts_val;
736 	u64 dividend, divisor;
737 
738 	if (intelhaddata->dp_output) {
739 		/* Substitute cts_val with Maud according to DP 1.2 spec*/
740 		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
741 	} else {
742 		/* Calculate CTS according to HDMI 1.3a spec*/
743 		dividend = (u64)tmds * n_param*1000;
744 		divisor = 128 * aud_samp_freq;
745 		cts_val = div64_u64(dividend, divisor);
746 	}
747 	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
748 		 tmds, n_param, cts_val);
749 	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
750 }
751 
had_calculate_n_value(u32 aud_samp_freq)752 static int had_calculate_n_value(u32 aud_samp_freq)
753 {
754 	int n_val;
755 
756 	/* Select N according to HDMI 1.3a spec*/
757 	switch (aud_samp_freq) {
758 	case AUD_SAMPLE_RATE_32:
759 		n_val = 4096;
760 		break;
761 
762 	case AUD_SAMPLE_RATE_44_1:
763 		n_val = 6272;
764 		break;
765 
766 	case AUD_SAMPLE_RATE_48:
767 		n_val = 6144;
768 		break;
769 
770 	case AUD_SAMPLE_RATE_88_2:
771 		n_val = 12544;
772 		break;
773 
774 	case AUD_SAMPLE_RATE_96:
775 		n_val = 12288;
776 		break;
777 
778 	case AUD_SAMPLE_RATE_176_4:
779 		n_val = 25088;
780 		break;
781 
782 	case HAD_MAX_RATE:
783 		n_val = 24576;
784 		break;
785 
786 	default:
787 		n_val = -EINVAL;
788 		break;
789 	}
790 	return n_val;
791 }
792 
793 /*
794  * Program HDMI audio N value
795  *
796  * @aud_samp_freq: sampling frequency of audio data
797  * @n_param: N value, depends on aud_samp_freq
798  * @intelhaddata: substream private data
799  *
800  * This function is called in the prepare callback.
801  * It programs based on the audio and display sampling frequency
802  */
had_prog_n(u32 aud_samp_freq,u32 * n_param,struct snd_intelhad * intelhaddata)803 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
804 		      struct snd_intelhad *intelhaddata)
805 {
806 	int n_val;
807 
808 	if (intelhaddata->dp_output) {
809 		/*
810 		 * According to DP specs, Maud and Naud values hold
811 		 * a relationship, which is stated as:
812 		 * Maud/Naud = 512 * fs / f_LS_Clk
813 		 * where, fs is the sampling frequency of the audio stream
814 		 * and Naud is 32768 for Async clock.
815 		 */
816 
817 		n_val = DP_NAUD_VAL;
818 	} else
819 		n_val =	had_calculate_n_value(aud_samp_freq);
820 
821 	if (n_val < 0)
822 		return n_val;
823 
824 	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
825 	*n_param = n_val;
826 	return 0;
827 }
828 
829 /*
830  * PCM ring buffer handling
831  *
832  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
833  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
834  * moves at each period elapsed.  The below illustrates how it works:
835  *
836  * At time=0
837  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
838  *  BD  | 0 | 1 | 2 | 3 |
839  *
840  * At time=1 (period elapsed)
841  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
842  *  BD      | 1 | 2 | 3 | 0 |
843  *
844  * At time=2 (second period elapsed)
845  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
846  *  BD          | 2 | 3 | 0 | 1 |
847  *
848  * The bd_head field points to the index of the BD to be read.  It's also the
849  * position to be filled at next.  The pcm_head and the pcm_filled fields
850  * point to the indices of the current position and of the next position to
851  * be filled, respectively.  For PCM buffer there are both _head and _filled
852  * because they may be difference when nperiods > 4.  For example, in the
853  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
854  *
855  * pcm_head (=1) --v               v-- pcm_filled (=5)
856  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
857  *       BD      | 1 | 2 | 3 | 0 |
858  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
859  *
860  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
861  * the hardware skips those BDs in the loop.
862  *
863  * An exceptional setup is the case with nperiods=1.  Since we have to update
864  * BDs after finishing one BD processing, we'd need at least two BDs, where
865  * both BDs point to the same content, the same address, the same size of the
866  * whole PCM buffer.
867  */
868 
869 #define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
870 #define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
871 
872 /* Set up a buffer descriptor at the "filled" position */
had_prog_bd(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)873 static void had_prog_bd(struct snd_pcm_substream *substream,
874 			struct snd_intelhad *intelhaddata)
875 {
876 	int idx = intelhaddata->bd_head;
877 	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
878 	u32 addr = substream->runtime->dma_addr + ofs;
879 
880 	addr |= AUD_BUF_VALID;
881 	if (!substream->runtime->no_period_wakeup)
882 		addr |= AUD_BUF_INTR_EN;
883 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
884 	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
885 			   intelhaddata->period_bytes);
886 
887 	/* advance the indices to the next */
888 	intelhaddata->bd_head++;
889 	intelhaddata->bd_head %= intelhaddata->num_bds;
890 	intelhaddata->pcmbuf_filled++;
891 	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
892 }
893 
894 /* invalidate a buffer descriptor with the given index */
had_invalidate_bd(struct snd_intelhad * intelhaddata,int idx)895 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
896 			      int idx)
897 {
898 	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
899 	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
900 }
901 
902 /* Initial programming of ring buffer */
had_init_ringbuf(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)903 static void had_init_ringbuf(struct snd_pcm_substream *substream,
904 			     struct snd_intelhad *intelhaddata)
905 {
906 	struct snd_pcm_runtime *runtime = substream->runtime;
907 	int i, num_periods;
908 
909 	num_periods = runtime->periods;
910 	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
911 	/* set the minimum 2 BDs for num_periods=1 */
912 	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
913 	intelhaddata->period_bytes =
914 		frames_to_bytes(runtime, runtime->period_size);
915 	WARN_ON(intelhaddata->period_bytes & 0x3f);
916 
917 	intelhaddata->bd_head = 0;
918 	intelhaddata->pcmbuf_head = 0;
919 	intelhaddata->pcmbuf_filled = 0;
920 
921 	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
922 		if (i < intelhaddata->num_bds)
923 			had_prog_bd(substream, intelhaddata);
924 		else /* invalidate the rest */
925 			had_invalidate_bd(intelhaddata, i);
926 	}
927 
928 	intelhaddata->bd_head = 0; /* reset at head again before starting */
929 }
930 
931 /* process a bd, advance to the next */
had_advance_ringbuf(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)932 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
933 				struct snd_intelhad *intelhaddata)
934 {
935 	int num_periods = substream->runtime->periods;
936 
937 	/* reprogram the next buffer */
938 	had_prog_bd(substream, intelhaddata);
939 
940 	/* proceed to next */
941 	intelhaddata->pcmbuf_head++;
942 	intelhaddata->pcmbuf_head %= num_periods;
943 }
944 
945 /* process the current BD(s);
946  * returns the current PCM buffer byte position, or -EPIPE for underrun.
947  */
had_process_ringbuf(struct snd_pcm_substream * substream,struct snd_intelhad * intelhaddata)948 static int had_process_ringbuf(struct snd_pcm_substream *substream,
949 			       struct snd_intelhad *intelhaddata)
950 {
951 	int len, processed;
952 	unsigned long flags;
953 
954 	processed = 0;
955 	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
956 	for (;;) {
957 		/* get the remaining bytes on the buffer */
958 		had_read_register(intelhaddata,
959 				  AUD_BUF_LEN(intelhaddata->bd_head),
960 				  &len);
961 		if (len < 0 || len > intelhaddata->period_bytes) {
962 			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
963 				len);
964 			len = -EPIPE;
965 			goto out;
966 		}
967 
968 		if (len > 0) /* OK, this is the current buffer */
969 			break;
970 
971 		/* len=0 => already empty, check the next buffer */
972 		if (++processed >= intelhaddata->num_bds) {
973 			len = -EPIPE; /* all empty? - report underrun */
974 			goto out;
975 		}
976 		had_advance_ringbuf(substream, intelhaddata);
977 	}
978 
979 	len = intelhaddata->period_bytes - len;
980 	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
981  out:
982 	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
983 	return len;
984 }
985 
986 /* called from irq handler */
had_process_buffer_done(struct snd_intelhad * intelhaddata)987 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
988 {
989 	struct snd_pcm_substream *substream;
990 
991 	substream = had_substream_get(intelhaddata);
992 	if (!substream)
993 		return; /* no stream? - bail out */
994 
995 	if (!intelhaddata->connected) {
996 		snd_pcm_stop_xrun(substream);
997 		goto out; /* disconnected? - bail out */
998 	}
999 
1000 	/* process or stop the stream */
1001 	if (had_process_ringbuf(substream, intelhaddata) < 0)
1002 		snd_pcm_stop_xrun(substream);
1003 	else
1004 		snd_pcm_period_elapsed(substream);
1005 
1006  out:
1007 	had_substream_put(intelhaddata);
1008 }
1009 
1010 /*
1011  * The interrupt status 'sticky' bits might not be cleared by
1012  * setting '1' to that bit once...
1013  */
wait_clear_underrun_bit(struct snd_intelhad * intelhaddata)1014 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1015 {
1016 	int i;
1017 	u32 val;
1018 
1019 	for (i = 0; i < 100; i++) {
1020 		/* clear bit30, 31 AUD_HDMI_STATUS */
1021 		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1022 		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1023 			return;
1024 		udelay(100);
1025 		cond_resched();
1026 		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1027 	}
1028 	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1029 }
1030 
1031 /* Perform some reset procedure after stopping the stream;
1032  * this is called from prepare or hw_free callbacks once after trigger STOP
1033  * or underrun has been processed in order to settle down the h/w state.
1034  */
had_pcm_sync_stop(struct snd_pcm_substream * substream)1035 static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1036 {
1037 	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1038 
1039 	if (!intelhaddata->connected)
1040 		return 0;
1041 
1042 	/* Reset buffer pointers */
1043 	had_reset_audio(intelhaddata);
1044 	wait_clear_underrun_bit(intelhaddata);
1045 	return 0;
1046 }
1047 
1048 /* called from irq handler */
had_process_buffer_underrun(struct snd_intelhad * intelhaddata)1049 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1050 {
1051 	struct snd_pcm_substream *substream;
1052 
1053 	/* Report UNDERRUN error to above layers */
1054 	substream = had_substream_get(intelhaddata);
1055 	if (substream) {
1056 		snd_pcm_stop_xrun(substream);
1057 		had_substream_put(intelhaddata);
1058 	}
1059 }
1060 
1061 /*
1062  * ALSA PCM open callback
1063  */
had_pcm_open(struct snd_pcm_substream * substream)1064 static int had_pcm_open(struct snd_pcm_substream *substream)
1065 {
1066 	struct snd_intelhad *intelhaddata;
1067 	struct snd_pcm_runtime *runtime;
1068 	int retval;
1069 
1070 	intelhaddata = snd_pcm_substream_chip(substream);
1071 	runtime = substream->runtime;
1072 
1073 	retval = pm_runtime_resume_and_get(intelhaddata->dev);
1074 	if (retval < 0)
1075 		return retval;
1076 
1077 	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1078 	runtime->hw = had_pcm_hardware;
1079 
1080 	retval = snd_pcm_hw_constraint_integer(runtime,
1081 			 SNDRV_PCM_HW_PARAM_PERIODS);
1082 	if (retval < 0)
1083 		goto error;
1084 
1085 	/* Make sure, that the period size is always aligned
1086 	 * 64byte boundary
1087 	 */
1088 	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1089 			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1090 	if (retval < 0)
1091 		goto error;
1092 
1093 	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1094 	if (retval < 0)
1095 		goto error;
1096 
1097 	/* expose PCM substream */
1098 	spin_lock_irq(&intelhaddata->had_spinlock);
1099 	intelhaddata->stream_info.substream = substream;
1100 	intelhaddata->stream_info.substream_refcount++;
1101 	spin_unlock_irq(&intelhaddata->had_spinlock);
1102 
1103 	return retval;
1104  error:
1105 	pm_runtime_mark_last_busy(intelhaddata->dev);
1106 	pm_runtime_put_autosuspend(intelhaddata->dev);
1107 	return retval;
1108 }
1109 
1110 /*
1111  * ALSA PCM close callback
1112  */
had_pcm_close(struct snd_pcm_substream * substream)1113 static int had_pcm_close(struct snd_pcm_substream *substream)
1114 {
1115 	struct snd_intelhad *intelhaddata;
1116 
1117 	intelhaddata = snd_pcm_substream_chip(substream);
1118 
1119 	/* unreference and sync with the pending PCM accesses */
1120 	spin_lock_irq(&intelhaddata->had_spinlock);
1121 	intelhaddata->stream_info.substream = NULL;
1122 	intelhaddata->stream_info.substream_refcount--;
1123 	while (intelhaddata->stream_info.substream_refcount > 0) {
1124 		spin_unlock_irq(&intelhaddata->had_spinlock);
1125 		cpu_relax();
1126 		spin_lock_irq(&intelhaddata->had_spinlock);
1127 	}
1128 	spin_unlock_irq(&intelhaddata->had_spinlock);
1129 
1130 	pm_runtime_mark_last_busy(intelhaddata->dev);
1131 	pm_runtime_put_autosuspend(intelhaddata->dev);
1132 	return 0;
1133 }
1134 
1135 /*
1136  * ALSA PCM hw_params callback
1137  */
had_pcm_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)1138 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1139 			     struct snd_pcm_hw_params *hw_params)
1140 {
1141 	struct snd_intelhad *intelhaddata;
1142 	int buf_size;
1143 
1144 	intelhaddata = snd_pcm_substream_chip(substream);
1145 	buf_size = params_buffer_bytes(hw_params);
1146 	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1147 		__func__, buf_size);
1148 	return 0;
1149 }
1150 
1151 /*
1152  * ALSA PCM trigger callback
1153  */
had_pcm_trigger(struct snd_pcm_substream * substream,int cmd)1154 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1155 {
1156 	int retval = 0;
1157 	struct snd_intelhad *intelhaddata;
1158 
1159 	intelhaddata = snd_pcm_substream_chip(substream);
1160 
1161 	spin_lock(&intelhaddata->had_spinlock);
1162 	switch (cmd) {
1163 	case SNDRV_PCM_TRIGGER_START:
1164 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1165 	case SNDRV_PCM_TRIGGER_RESUME:
1166 		/* Enable Audio */
1167 		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1168 		had_enable_audio(intelhaddata, true);
1169 		break;
1170 
1171 	case SNDRV_PCM_TRIGGER_STOP:
1172 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1173 		/* Disable Audio */
1174 		had_enable_audio(intelhaddata, false);
1175 		break;
1176 
1177 	default:
1178 		retval = -EINVAL;
1179 	}
1180 	spin_unlock(&intelhaddata->had_spinlock);
1181 	return retval;
1182 }
1183 
1184 /*
1185  * ALSA PCM prepare callback
1186  */
had_pcm_prepare(struct snd_pcm_substream * substream)1187 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1188 {
1189 	int retval;
1190 	u32 disp_samp_freq, n_param;
1191 	u32 link_rate = 0;
1192 	struct snd_intelhad *intelhaddata;
1193 	struct snd_pcm_runtime *runtime;
1194 
1195 	intelhaddata = snd_pcm_substream_chip(substream);
1196 	runtime = substream->runtime;
1197 
1198 	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1199 		(int)frames_to_bytes(runtime, runtime->period_size));
1200 	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1201 	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1202 		(int)snd_pcm_lib_buffer_bytes(substream));
1203 	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1204 	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1205 
1206 	/* Get N value in KHz */
1207 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1208 
1209 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1210 	if (retval) {
1211 		dev_err(intelhaddata->dev,
1212 			"programming N value failed %#x\n", retval);
1213 		goto prep_end;
1214 	}
1215 
1216 	if (intelhaddata->dp_output)
1217 		link_rate = intelhaddata->link_rate;
1218 
1219 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1220 		     n_param, intelhaddata);
1221 
1222 	had_prog_dip(substream, intelhaddata);
1223 
1224 	retval = had_init_audio_ctrl(substream, intelhaddata);
1225 
1226 	/* Prog buffer address */
1227 	had_init_ringbuf(substream, intelhaddata);
1228 
1229 	/*
1230 	 * Program channel mapping in following order:
1231 	 * FL, FR, C, LFE, RL, RR
1232 	 */
1233 
1234 	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1235 
1236 prep_end:
1237 	return retval;
1238 }
1239 
1240 /*
1241  * ALSA PCM pointer callback
1242  */
had_pcm_pointer(struct snd_pcm_substream * substream)1243 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1244 {
1245 	struct snd_intelhad *intelhaddata;
1246 	int len;
1247 
1248 	intelhaddata = snd_pcm_substream_chip(substream);
1249 
1250 	if (!intelhaddata->connected)
1251 		return SNDRV_PCM_POS_XRUN;
1252 
1253 	len = had_process_ringbuf(substream, intelhaddata);
1254 	if (len < 0)
1255 		return SNDRV_PCM_POS_XRUN;
1256 	len = bytes_to_frames(substream->runtime, len);
1257 	/* wrapping may happen when periods=1 */
1258 	len %= substream->runtime->buffer_size;
1259 	return len;
1260 }
1261 
1262 /*
1263  * ALSA PCM ops
1264  */
1265 static const struct snd_pcm_ops had_pcm_ops = {
1266 	.open =		had_pcm_open,
1267 	.close =	had_pcm_close,
1268 	.hw_params =	had_pcm_hw_params,
1269 	.prepare =	had_pcm_prepare,
1270 	.trigger =	had_pcm_trigger,
1271 	.sync_stop =	had_pcm_sync_stop,
1272 	.pointer =	had_pcm_pointer,
1273 };
1274 
1275 /* process mode change of the running stream; called in mutex */
had_process_mode_change(struct snd_intelhad * intelhaddata)1276 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1277 {
1278 	struct snd_pcm_substream *substream;
1279 	int retval = 0;
1280 	u32 disp_samp_freq, n_param;
1281 	u32 link_rate = 0;
1282 
1283 	substream = had_substream_get(intelhaddata);
1284 	if (!substream)
1285 		return 0;
1286 
1287 	/* Disable Audio */
1288 	had_enable_audio(intelhaddata, false);
1289 
1290 	/* Update CTS value */
1291 	disp_samp_freq = intelhaddata->tmds_clock_speed;
1292 
1293 	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1294 	if (retval) {
1295 		dev_err(intelhaddata->dev,
1296 			"programming N value failed %#x\n", retval);
1297 		goto out;
1298 	}
1299 
1300 	if (intelhaddata->dp_output)
1301 		link_rate = intelhaddata->link_rate;
1302 
1303 	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1304 		     n_param, intelhaddata);
1305 
1306 	/* Enable Audio */
1307 	had_enable_audio(intelhaddata, true);
1308 
1309 out:
1310 	had_substream_put(intelhaddata);
1311 	return retval;
1312 }
1313 
1314 /* process hot plug, called from wq with mutex locked */
had_process_hot_plug(struct snd_intelhad * intelhaddata)1315 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1316 {
1317 	struct snd_pcm_substream *substream;
1318 
1319 	spin_lock_irq(&intelhaddata->had_spinlock);
1320 	if (intelhaddata->connected) {
1321 		dev_dbg(intelhaddata->dev, "Device already connected\n");
1322 		spin_unlock_irq(&intelhaddata->had_spinlock);
1323 		return;
1324 	}
1325 
1326 	/* Disable Audio */
1327 	had_enable_audio(intelhaddata, false);
1328 
1329 	intelhaddata->connected = true;
1330 	dev_dbg(intelhaddata->dev,
1331 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1332 			__func__, __LINE__);
1333 	spin_unlock_irq(&intelhaddata->had_spinlock);
1334 
1335 	had_build_channel_allocation_map(intelhaddata);
1336 
1337 	/* Report to above ALSA layer */
1338 	substream = had_substream_get(intelhaddata);
1339 	if (substream) {
1340 		snd_pcm_stop_xrun(substream);
1341 		had_substream_put(intelhaddata);
1342 	}
1343 
1344 	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1345 }
1346 
1347 /* process hot unplug, called from wq with mutex locked */
had_process_hot_unplug(struct snd_intelhad * intelhaddata)1348 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1349 {
1350 	struct snd_pcm_substream *substream;
1351 
1352 	spin_lock_irq(&intelhaddata->had_spinlock);
1353 	if (!intelhaddata->connected) {
1354 		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1355 		spin_unlock_irq(&intelhaddata->had_spinlock);
1356 		return;
1357 
1358 	}
1359 
1360 	/* Disable Audio */
1361 	had_enable_audio(intelhaddata, false);
1362 
1363 	intelhaddata->connected = false;
1364 	dev_dbg(intelhaddata->dev,
1365 		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1366 			__func__, __LINE__);
1367 	spin_unlock_irq(&intelhaddata->had_spinlock);
1368 
1369 	kfree(intelhaddata->chmap->chmap);
1370 	intelhaddata->chmap->chmap = NULL;
1371 
1372 	/* Report to above ALSA layer */
1373 	substream = had_substream_get(intelhaddata);
1374 	if (substream) {
1375 		snd_pcm_stop_xrun(substream);
1376 		had_substream_put(intelhaddata);
1377 	}
1378 
1379 	snd_jack_report(intelhaddata->jack, 0);
1380 }
1381 
1382 /*
1383  * ALSA iec958 and ELD controls
1384  */
1385 
had_iec958_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1386 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1387 				struct snd_ctl_elem_info *uinfo)
1388 {
1389 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1390 	uinfo->count = 1;
1391 	return 0;
1392 }
1393 
had_iec958_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1394 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1395 				struct snd_ctl_elem_value *ucontrol)
1396 {
1397 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1398 
1399 	mutex_lock(&intelhaddata->mutex);
1400 	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1401 	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1402 	ucontrol->value.iec958.status[2] =
1403 					(intelhaddata->aes_bits >> 16) & 0xff;
1404 	ucontrol->value.iec958.status[3] =
1405 					(intelhaddata->aes_bits >> 24) & 0xff;
1406 	mutex_unlock(&intelhaddata->mutex);
1407 	return 0;
1408 }
1409 
had_iec958_mask_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1410 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1411 				struct snd_ctl_elem_value *ucontrol)
1412 {
1413 	ucontrol->value.iec958.status[0] = 0xff;
1414 	ucontrol->value.iec958.status[1] = 0xff;
1415 	ucontrol->value.iec958.status[2] = 0xff;
1416 	ucontrol->value.iec958.status[3] = 0xff;
1417 	return 0;
1418 }
1419 
had_iec958_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1420 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1421 				struct snd_ctl_elem_value *ucontrol)
1422 {
1423 	unsigned int val;
1424 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1425 	int changed = 0;
1426 
1427 	val = (ucontrol->value.iec958.status[0] << 0) |
1428 		(ucontrol->value.iec958.status[1] << 8) |
1429 		(ucontrol->value.iec958.status[2] << 16) |
1430 		(ucontrol->value.iec958.status[3] << 24);
1431 	mutex_lock(&intelhaddata->mutex);
1432 	if (intelhaddata->aes_bits != val) {
1433 		intelhaddata->aes_bits = val;
1434 		changed = 1;
1435 	}
1436 	mutex_unlock(&intelhaddata->mutex);
1437 	return changed;
1438 }
1439 
had_ctl_eld_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1440 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1441 			    struct snd_ctl_elem_info *uinfo)
1442 {
1443 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1444 	uinfo->count = HDMI_MAX_ELD_BYTES;
1445 	return 0;
1446 }
1447 
had_ctl_eld_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1448 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1449 			   struct snd_ctl_elem_value *ucontrol)
1450 {
1451 	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1452 
1453 	mutex_lock(&intelhaddata->mutex);
1454 	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1455 	       HDMI_MAX_ELD_BYTES);
1456 	mutex_unlock(&intelhaddata->mutex);
1457 	return 0;
1458 }
1459 
1460 static const struct snd_kcontrol_new had_controls[] = {
1461 	{
1462 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1463 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1464 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1465 		.info = had_iec958_info, /* shared */
1466 		.get = had_iec958_mask_get,
1467 	},
1468 	{
1469 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1470 		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1471 		.info = had_iec958_info,
1472 		.get = had_iec958_get,
1473 		.put = had_iec958_put,
1474 	},
1475 	{
1476 		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1477 			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1478 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1479 		.name = "ELD",
1480 		.info = had_ctl_eld_info,
1481 		.get = had_ctl_eld_get,
1482 	},
1483 };
1484 
1485 /*
1486  * audio interrupt handler
1487  */
display_pipe_interrupt_handler(int irq,void * dev_id)1488 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1489 {
1490 	struct snd_intelhad_card *card_ctx = dev_id;
1491 	u32 audio_stat[3] = {};
1492 	int pipe, port;
1493 
1494 	for_each_pipe(card_ctx, pipe) {
1495 		/* use raw register access to ack IRQs even while disconnected */
1496 		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1497 							 AUD_HDMI_STATUS) &
1498 			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1499 
1500 		if (audio_stat[pipe])
1501 			had_write_register_raw(card_ctx, pipe,
1502 					       AUD_HDMI_STATUS, audio_stat[pipe]);
1503 	}
1504 
1505 	for_each_port(card_ctx, port) {
1506 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1507 		int pipe = ctx->pipe;
1508 
1509 		if (pipe < 0)
1510 			continue;
1511 
1512 		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1513 			had_process_buffer_done(ctx);
1514 		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1515 			had_process_buffer_underrun(ctx);
1516 	}
1517 
1518 	return IRQ_HANDLED;
1519 }
1520 
1521 /*
1522  * monitor plug/unplug notification from i915; just kick off the work
1523  */
notify_audio_lpe(struct platform_device * pdev,int port)1524 static void notify_audio_lpe(struct platform_device *pdev, int port)
1525 {
1526 	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1527 	struct snd_intelhad *ctx;
1528 
1529 	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1530 	if (single_port)
1531 		ctx->port = port;
1532 
1533 	schedule_work(&ctx->hdmi_audio_wq);
1534 }
1535 
1536 /* the work to handle monitor hot plug/unplug */
had_audio_wq(struct work_struct * work)1537 static void had_audio_wq(struct work_struct *work)
1538 {
1539 	struct snd_intelhad *ctx =
1540 		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1541 	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1542 	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1543 	int ret;
1544 
1545 	ret = pm_runtime_resume_and_get(ctx->dev);
1546 	if (ret < 0)
1547 		return;
1548 
1549 	mutex_lock(&ctx->mutex);
1550 	if (ppdata->pipe < 0) {
1551 		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1552 			__func__, ctx->port);
1553 
1554 		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1555 
1556 		ctx->dp_output = false;
1557 		ctx->tmds_clock_speed = 0;
1558 		ctx->link_rate = 0;
1559 
1560 		/* Shut down the stream */
1561 		had_process_hot_unplug(ctx);
1562 
1563 		ctx->pipe = -1;
1564 	} else {
1565 		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1566 			__func__, ctx->port, ppdata->ls_clock);
1567 
1568 		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1569 
1570 		ctx->dp_output = ppdata->dp_output;
1571 		if (ctx->dp_output) {
1572 			ctx->tmds_clock_speed = 0;
1573 			ctx->link_rate = ppdata->ls_clock;
1574 		} else {
1575 			ctx->tmds_clock_speed = ppdata->ls_clock;
1576 			ctx->link_rate = 0;
1577 		}
1578 
1579 		/*
1580 		 * Shut down the stream before we change
1581 		 * the pipe assignment for this pcm device
1582 		 */
1583 		had_process_hot_plug(ctx);
1584 
1585 		ctx->pipe = ppdata->pipe;
1586 
1587 		/* Restart the stream if necessary */
1588 		had_process_mode_change(ctx);
1589 	}
1590 
1591 	mutex_unlock(&ctx->mutex);
1592 	pm_runtime_mark_last_busy(ctx->dev);
1593 	pm_runtime_put_autosuspend(ctx->dev);
1594 }
1595 
1596 /*
1597  * Jack interface
1598  */
had_create_jack(struct snd_intelhad * ctx,struct snd_pcm * pcm)1599 static int had_create_jack(struct snd_intelhad *ctx,
1600 			   struct snd_pcm *pcm)
1601 {
1602 	char hdmi_str[32];
1603 	int err;
1604 
1605 	snprintf(hdmi_str, sizeof(hdmi_str),
1606 		 "HDMI/DP,pcm=%d", pcm->device);
1607 
1608 	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1609 			   SND_JACK_AVOUT, &ctx->jack,
1610 			   true, false);
1611 	if (err < 0)
1612 		return err;
1613 	ctx->jack->private_data = ctx;
1614 	return 0;
1615 }
1616 
1617 /*
1618  * PM callbacks
1619  */
1620 
hdmi_lpe_audio_suspend(struct device * dev)1621 static int hdmi_lpe_audio_suspend(struct device *dev)
1622 {
1623 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1624 
1625 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1626 
1627 	return 0;
1628 }
1629 
hdmi_lpe_audio_resume(struct device * dev)1630 static int hdmi_lpe_audio_resume(struct device *dev)
1631 {
1632 	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1633 
1634 	pm_runtime_mark_last_busy(dev);
1635 
1636 	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1637 
1638 	return 0;
1639 }
1640 
1641 /* release resources */
hdmi_lpe_audio_free(struct snd_card * card)1642 static void hdmi_lpe_audio_free(struct snd_card *card)
1643 {
1644 	struct snd_intelhad_card *card_ctx = card->private_data;
1645 	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1646 	int port;
1647 
1648 	spin_lock_irq(&pdata->lpe_audio_slock);
1649 	pdata->notify_audio_lpe = NULL;
1650 	spin_unlock_irq(&pdata->lpe_audio_slock);
1651 
1652 	for_each_port(card_ctx, port) {
1653 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1654 
1655 		cancel_work_sync(&ctx->hdmi_audio_wq);
1656 	}
1657 }
1658 
1659 /*
1660  * hdmi_lpe_audio_probe - start bridge with i915
1661  *
1662  * This function is called when the i915 driver creates the
1663  * hdmi-lpe-audio platform device.
1664  */
__hdmi_lpe_audio_probe(struct platform_device * pdev)1665 static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1666 {
1667 	struct snd_card *card;
1668 	struct snd_intelhad_card *card_ctx;
1669 	struct snd_intelhad *ctx;
1670 	struct snd_pcm *pcm;
1671 	struct intel_hdmi_lpe_audio_pdata *pdata;
1672 	int irq;
1673 	struct resource *res_mmio;
1674 	int port, ret;
1675 
1676 	pdata = pdev->dev.platform_data;
1677 	if (!pdata) {
1678 		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1679 		return -EINVAL;
1680 	}
1681 
1682 	/* get resources */
1683 	irq = platform_get_irq(pdev, 0);
1684 	if (irq < 0)
1685 		return irq;
1686 
1687 	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1688 	if (!res_mmio) {
1689 		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1690 		return -ENXIO;
1691 	}
1692 
1693 	/* create a card instance with ALSA framework */
1694 	ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1695 				THIS_MODULE, sizeof(*card_ctx), &card);
1696 	if (ret)
1697 		return ret;
1698 
1699 	card_ctx = card->private_data;
1700 	card_ctx->dev = &pdev->dev;
1701 	card_ctx->card = card;
1702 	strscpy(card->driver, INTEL_HAD);
1703 	strscpy(card->shortname, "Intel HDMI/DP LPE Audio");
1704 	strscpy(card->longname, "Intel HDMI/DP LPE Audio");
1705 
1706 	card_ctx->irq = -1;
1707 
1708 	card->private_free = hdmi_lpe_audio_free;
1709 
1710 	platform_set_drvdata(pdev, card_ctx);
1711 
1712 	card_ctx->num_pipes = pdata->num_pipes;
1713 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1714 
1715 	for_each_port(card_ctx, port) {
1716 		ctx = &card_ctx->pcm_ctx[port];
1717 		ctx->card_ctx = card_ctx;
1718 		ctx->dev = card_ctx->dev;
1719 		ctx->port = single_port ? -1 : port;
1720 		ctx->pipe = -1;
1721 
1722 		spin_lock_init(&ctx->had_spinlock);
1723 		mutex_init(&ctx->mutex);
1724 		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1725 	}
1726 
1727 	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1728 		__func__, (unsigned int)res_mmio->start,
1729 		(unsigned int)res_mmio->end);
1730 
1731 	card_ctx->mmio_start =
1732 		devm_ioremap(&pdev->dev, res_mmio->start,
1733 			     (size_t)(resource_size(res_mmio)));
1734 	if (!card_ctx->mmio_start) {
1735 		dev_err(&pdev->dev, "Could not get ioremap\n");
1736 		return -EACCES;
1737 	}
1738 
1739 	/* setup interrupt handler */
1740 	ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1741 			       0, pdev->name, card_ctx);
1742 	if (ret < 0) {
1743 		dev_err(&pdev->dev, "request_irq failed\n");
1744 		return ret;
1745 	}
1746 
1747 	card_ctx->irq = irq;
1748 
1749 	/* only 32bit addressable */
1750 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1751 	if (ret)
1752 		return ret;
1753 
1754 	init_channel_allocations();
1755 
1756 	card_ctx->num_pipes = pdata->num_pipes;
1757 	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1758 
1759 	for_each_port(card_ctx, port) {
1760 		int i;
1761 
1762 		ctx = &card_ctx->pcm_ctx[port];
1763 		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1764 				  MAX_CAP_STREAMS, &pcm);
1765 		if (ret)
1766 			return ret;
1767 
1768 		/* setup private data which can be retrieved when required */
1769 		pcm->private_data = ctx;
1770 		pcm->info_flags = 0;
1771 		strscpy(pcm->name, card->shortname, strlen(card->shortname));
1772 		/* setup the ops for playback */
1773 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1774 
1775 		/* allocate dma pages;
1776 		 * try to allocate 600k buffer as default which is large enough
1777 		 */
1778 		snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1779 					       card->dev, HAD_DEFAULT_BUFFER,
1780 					       HAD_MAX_BUFFER);
1781 
1782 		/* create controls */
1783 		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1784 			struct snd_kcontrol *kctl;
1785 
1786 			kctl = snd_ctl_new1(&had_controls[i], ctx);
1787 			if (!kctl)
1788 				return -ENOMEM;
1789 
1790 			kctl->id.device = pcm->device;
1791 
1792 			ret = snd_ctl_add(card, kctl);
1793 			if (ret < 0)
1794 				return ret;
1795 		}
1796 
1797 		/* Register channel map controls */
1798 		ret = had_register_chmap_ctls(ctx, pcm);
1799 		if (ret < 0)
1800 			return ret;
1801 
1802 		ret = had_create_jack(ctx, pcm);
1803 		if (ret < 0)
1804 			return ret;
1805 	}
1806 
1807 	ret = snd_card_register(card);
1808 	if (ret)
1809 		return ret;
1810 
1811 	spin_lock_irq(&pdata->lpe_audio_slock);
1812 	pdata->notify_audio_lpe = notify_audio_lpe;
1813 	spin_unlock_irq(&pdata->lpe_audio_slock);
1814 
1815 	pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1816 	pm_runtime_use_autosuspend(&pdev->dev);
1817 	pm_runtime_enable(&pdev->dev);
1818 	pm_runtime_mark_last_busy(&pdev->dev);
1819 	pm_runtime_idle(&pdev->dev);
1820 
1821 	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1822 	for_each_port(card_ctx, port) {
1823 		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1824 
1825 		schedule_work(&ctx->hdmi_audio_wq);
1826 	}
1827 
1828 	return 0;
1829 }
1830 
hdmi_lpe_audio_probe(struct platform_device * pdev)1831 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1832 {
1833 	return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1834 }
1835 
1836 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1837 	SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1838 };
1839 
1840 static struct platform_driver hdmi_lpe_audio_driver = {
1841 	.driver		= {
1842 		.name  = "hdmi-lpe-audio",
1843 		.pm = pm_ptr(&hdmi_lpe_audio_pm),
1844 	},
1845 	.probe          = hdmi_lpe_audio_probe,
1846 };
1847 
1848 module_platform_driver(hdmi_lpe_audio_driver);
1849 MODULE_ALIAS("platform:hdmi_lpe_audio");
1850 
1851 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1852 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1853 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1854 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1855 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1856 MODULE_LICENSE("GPL v2");
1857