xref: /linux/include/linux/highmem.h (revision 4aa748dd1abf337426b4c941ae1b606ed0e2a5aa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HIGHMEM_H
3 #define _LINUX_HIGHMEM_H
4 
5 #include <linux/fs.h>
6 #include <linux/kernel.h>
7 #include <linux/bug.h>
8 #include <linux/cacheflush.h>
9 #include <linux/kmsan.h>
10 #include <linux/mm.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 
14 #include "highmem-internal.h"
15 
16 /**
17  * kmap - Map a page for long term usage
18  * @page:	Pointer to the page to be mapped
19  *
20  * Returns: The virtual address of the mapping
21  *
22  * Can only be invoked from preemptible task context because on 32bit
23  * systems with CONFIG_HIGHMEM enabled this function might sleep.
24  *
25  * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
26  * this returns the virtual address of the direct kernel mapping.
27  *
28  * The returned virtual address is globally visible and valid up to the
29  * point where it is unmapped via kunmap(). The pointer can be handed to
30  * other contexts.
31  *
32  * For highmem pages on 32bit systems this can be slow as the mapping space
33  * is limited and protected by a global lock. In case that there is no
34  * mapping slot available the function blocks until a slot is released via
35  * kunmap().
36  */
37 static inline void *kmap(struct page *page);
38 
39 /**
40  * kunmap - Unmap the virtual address mapped by kmap()
41  * @page:	Pointer to the page which was mapped by kmap()
42  *
43  * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
44  * pages in the low memory area.
45  */
46 static inline void kunmap(struct page *page);
47 
48 /**
49  * kmap_to_page - Get the page for a kmap'ed address
50  * @addr:	The address to look up
51  *
52  * Returns: The page which is mapped to @addr.
53  */
54 static inline struct page *kmap_to_page(void *addr);
55 
56 /**
57  * kmap_flush_unused - Flush all unused kmap mappings in order to
58  *		       remove stray mappings
59  */
60 static inline void kmap_flush_unused(void);
61 
62 /**
63  * kmap_local_page - Map a page for temporary usage
64  * @page: Pointer to the page to be mapped
65  *
66  * Returns: The virtual address of the mapping
67  *
68  * Can be invoked from any context, including interrupts.
69  *
70  * Requires careful handling when nesting multiple mappings because the map
71  * management is stack based. The unmap has to be in the reverse order of
72  * the map operation:
73  *
74  * addr1 = kmap_local_page(page1);
75  * addr2 = kmap_local_page(page2);
76  * ...
77  * kunmap_local(addr2);
78  * kunmap_local(addr1);
79  *
80  * Unmapping addr1 before addr2 is invalid and causes malfunction.
81  *
82  * Contrary to kmap() mappings the mapping is only valid in the context of
83  * the caller and cannot be handed to other contexts.
84  *
85  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
86  * virtual address of the direct mapping. Only real highmem pages are
87  * temporarily mapped.
88  *
89  * While kmap_local_page() is significantly faster than kmap() for the highmem
90  * case it comes with restrictions about the pointer validity.
91  *
92  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93  * disabling migration in order to keep the virtual address stable across
94  * preemption. No caller of kmap_local_page() can rely on this side effect.
95  */
96 static inline void *kmap_local_page(struct page *page);
97 
98 /**
99  * kmap_local_folio - Map a page in this folio for temporary usage
100  * @folio: The folio containing the page.
101  * @offset: The byte offset within the folio which identifies the page.
102  *
103  * Requires careful handling when nesting multiple mappings because the map
104  * management is stack based. The unmap has to be in the reverse order of
105  * the map operation::
106  *
107  *   addr1 = kmap_local_folio(folio1, offset1);
108  *   addr2 = kmap_local_folio(folio2, offset2);
109  *   ...
110  *   kunmap_local(addr2);
111  *   kunmap_local(addr1);
112  *
113  * Unmapping addr1 before addr2 is invalid and causes malfunction.
114  *
115  * Contrary to kmap() mappings the mapping is only valid in the context of
116  * the caller and cannot be handed to other contexts.
117  *
118  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119  * virtual address of the direct mapping. Only real highmem pages are
120  * temporarily mapped.
121  *
122  * While it is significantly faster than kmap() for the highmem case it
123  * comes with restrictions about the pointer validity.
124  *
125  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
126  * disabling migration in order to keep the virtual address stable across
127  * preemption. No caller of kmap_local_folio() can rely on this side effect.
128  *
129  * Context: Can be invoked from any context.
130  * Return: The virtual address of @offset.
131  */
132 static inline void *kmap_local_folio(struct folio *folio, size_t offset);
133 
134 /**
135  * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
136  * @page:	Pointer to the page to be mapped
137  *
138  * Returns: The virtual address of the mapping
139  *
140  * In fact a wrapper around kmap_local_page() which also disables pagefaults
141  * and, depending on PREEMPT_RT configuration, also CPU migration and
142  * preemption. Therefore users should not count on the latter two side effects.
143  *
144  * Mappings should always be released by kunmap_atomic().
145  *
146  * Do not use in new code. Use kmap_local_page() instead.
147  *
148  * It is used in atomic context when code wants to access the contents of a
149  * page that might be allocated from high memory (see __GFP_HIGHMEM), for
150  * example a page in the pagecache.  The API has two functions, and they
151  * can be used in a manner similar to the following::
152  *
153  *   // Find the page of interest.
154  *   struct page *page = find_get_page(mapping, offset);
155  *
156  *   // Gain access to the contents of that page.
157  *   void *vaddr = kmap_atomic(page);
158  *
159  *   // Do something to the contents of that page.
160  *   memset(vaddr, 0, PAGE_SIZE);
161  *
162  *   // Unmap that page.
163  *   kunmap_atomic(vaddr);
164  *
165  * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
166  * call, not the argument.
167  *
168  * If you need to map two pages because you want to copy from one page to
169  * another you need to keep the kmap_atomic calls strictly nested, like:
170  *
171  * vaddr1 = kmap_atomic(page1);
172  * vaddr2 = kmap_atomic(page2);
173  *
174  * memcpy(vaddr1, vaddr2, PAGE_SIZE);
175  *
176  * kunmap_atomic(vaddr2);
177  * kunmap_atomic(vaddr1);
178  */
179 static inline void *kmap_atomic(struct page *page);
180 
181 /* Highmem related interfaces for management code */
182 static inline unsigned long nr_free_highpages(void);
183 static inline unsigned long totalhigh_pages(void);
184 
185 #ifndef ARCH_HAS_FLUSH_ANON_PAGE
flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)186 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
187 {
188 }
189 #endif
190 
191 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
flush_kernel_vmap_range(void * vaddr,int size)192 static inline void flush_kernel_vmap_range(void *vaddr, int size)
193 {
194 }
invalidate_kernel_vmap_range(void * vaddr,int size)195 static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
196 {
197 }
198 #endif
199 
200 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
201 #ifndef clear_user_highpage
clear_user_highpage(struct page * page,unsigned long vaddr)202 static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
203 {
204 	void *addr = kmap_local_page(page);
205 	clear_user_page(addr, vaddr, page);
206 	kunmap_local(addr);
207 }
208 #endif
209 
210 #ifndef vma_alloc_zeroed_movable_folio
211 /**
212  * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA.
213  * @vma: The VMA the page is to be allocated for.
214  * @vaddr: The virtual address the page will be inserted into.
215  *
216  * This function will allocate a page suitable for inserting into this
217  * VMA at this virtual address.  It may be allocated from highmem or
218  * the movable zone.  An architecture may provide its own implementation.
219  *
220  * Return: A folio containing one allocated and zeroed page or NULL if
221  * we are out of memory.
222  */
223 static inline
vma_alloc_zeroed_movable_folio(struct vm_area_struct * vma,unsigned long vaddr)224 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
225 				   unsigned long vaddr)
226 {
227 	struct folio *folio;
228 
229 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr);
230 	if (folio && user_alloc_needs_zeroing())
231 		clear_user_highpage(&folio->page, vaddr);
232 
233 	return folio;
234 }
235 #endif
236 
clear_highpage(struct page * page)237 static inline void clear_highpage(struct page *page)
238 {
239 	void *kaddr = kmap_local_page(page);
240 	clear_page(kaddr);
241 	kunmap_local(kaddr);
242 }
243 
clear_highpage_kasan_tagged(struct page * page)244 static inline void clear_highpage_kasan_tagged(struct page *page)
245 {
246 	void *kaddr = kmap_local_page(page);
247 
248 	clear_page(kasan_reset_tag(kaddr));
249 	kunmap_local(kaddr);
250 }
251 
252 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
253 
tag_clear_highpage(struct page * page)254 static inline void tag_clear_highpage(struct page *page)
255 {
256 }
257 
258 #endif
259 
260 /*
261  * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
262  * If we pass in a head page, we can zero up to the size of the compound page.
263  */
264 #ifdef CONFIG_HIGHMEM
265 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
266 		unsigned start2, unsigned end2);
267 #else
zero_user_segments(struct page * page,unsigned start1,unsigned end1,unsigned start2,unsigned end2)268 static inline void zero_user_segments(struct page *page,
269 		unsigned start1, unsigned end1,
270 		unsigned start2, unsigned end2)
271 {
272 	void *kaddr = kmap_local_page(page);
273 	unsigned int i;
274 
275 	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
276 
277 	if (end1 > start1)
278 		memset(kaddr + start1, 0, end1 - start1);
279 
280 	if (end2 > start2)
281 		memset(kaddr + start2, 0, end2 - start2);
282 
283 	kunmap_local(kaddr);
284 	for (i = 0; i < compound_nr(page); i++)
285 		flush_dcache_page(page + i);
286 }
287 #endif
288 
zero_user_segment(struct page * page,unsigned start,unsigned end)289 static inline void zero_user_segment(struct page *page,
290 	unsigned start, unsigned end)
291 {
292 	zero_user_segments(page, start, end, 0, 0);
293 }
294 
zero_user(struct page * page,unsigned start,unsigned size)295 static inline void zero_user(struct page *page,
296 	unsigned start, unsigned size)
297 {
298 	zero_user_segments(page, start, start + size, 0, 0);
299 }
300 
301 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
302 
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)303 static inline void copy_user_highpage(struct page *to, struct page *from,
304 	unsigned long vaddr, struct vm_area_struct *vma)
305 {
306 	char *vfrom, *vto;
307 
308 	vfrom = kmap_local_page(from);
309 	vto = kmap_local_page(to);
310 	copy_user_page(vto, vfrom, vaddr, to);
311 	kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
312 	kunmap_local(vto);
313 	kunmap_local(vfrom);
314 }
315 
316 #endif
317 
318 #ifndef __HAVE_ARCH_COPY_HIGHPAGE
319 
copy_highpage(struct page * to,struct page * from)320 static inline void copy_highpage(struct page *to, struct page *from)
321 {
322 	char *vfrom, *vto;
323 
324 	vfrom = kmap_local_page(from);
325 	vto = kmap_local_page(to);
326 	copy_page(vto, vfrom);
327 	kmsan_copy_page_meta(to, from);
328 	kunmap_local(vto);
329 	kunmap_local(vfrom);
330 }
331 
332 #endif
333 
334 #ifdef copy_mc_to_kernel
335 /*
336  * If architecture supports machine check exception handling, define the
337  * #MC versions of copy_user_highpage and copy_highpage. They copy a memory
338  * page with #MC in source page (@from) handled, and return the number
339  * of bytes not copied if there was a #MC, otherwise 0 for success.
340  */
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)341 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
342 					unsigned long vaddr, struct vm_area_struct *vma)
343 {
344 	unsigned long ret;
345 	char *vfrom, *vto;
346 
347 	vfrom = kmap_local_page(from);
348 	vto = kmap_local_page(to);
349 	ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
350 	if (!ret)
351 		kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
352 	kunmap_local(vto);
353 	kunmap_local(vfrom);
354 
355 	if (ret)
356 		memory_failure_queue(page_to_pfn(from), 0);
357 
358 	return ret;
359 }
360 
copy_mc_highpage(struct page * to,struct page * from)361 static inline int copy_mc_highpage(struct page *to, struct page *from)
362 {
363 	unsigned long ret;
364 	char *vfrom, *vto;
365 
366 	vfrom = kmap_local_page(from);
367 	vto = kmap_local_page(to);
368 	ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
369 	if (!ret)
370 		kmsan_copy_page_meta(to, from);
371 	kunmap_local(vto);
372 	kunmap_local(vfrom);
373 
374 	if (ret)
375 		memory_failure_queue(page_to_pfn(from), 0);
376 
377 	return ret;
378 }
379 #else
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)380 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
381 					unsigned long vaddr, struct vm_area_struct *vma)
382 {
383 	copy_user_highpage(to, from, vaddr, vma);
384 	return 0;
385 }
386 
copy_mc_highpage(struct page * to,struct page * from)387 static inline int copy_mc_highpage(struct page *to, struct page *from)
388 {
389 	copy_highpage(to, from);
390 	return 0;
391 }
392 #endif
393 
memcpy_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)394 static inline void memcpy_page(struct page *dst_page, size_t dst_off,
395 			       struct page *src_page, size_t src_off,
396 			       size_t len)
397 {
398 	char *dst = kmap_local_page(dst_page);
399 	char *src = kmap_local_page(src_page);
400 
401 	VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
402 	memcpy(dst + dst_off, src + src_off, len);
403 	kunmap_local(src);
404 	kunmap_local(dst);
405 }
406 
memset_page(struct page * page,size_t offset,int val,size_t len)407 static inline void memset_page(struct page *page, size_t offset, int val,
408 			       size_t len)
409 {
410 	char *addr = kmap_local_page(page);
411 
412 	VM_BUG_ON(offset + len > PAGE_SIZE);
413 	memset(addr + offset, val, len);
414 	kunmap_local(addr);
415 }
416 
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)417 static inline void memcpy_from_page(char *to, struct page *page,
418 				    size_t offset, size_t len)
419 {
420 	char *from = kmap_local_page(page);
421 
422 	VM_BUG_ON(offset + len > PAGE_SIZE);
423 	memcpy(to, from + offset, len);
424 	kunmap_local(from);
425 }
426 
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)427 static inline void memcpy_to_page(struct page *page, size_t offset,
428 				  const char *from, size_t len)
429 {
430 	char *to = kmap_local_page(page);
431 
432 	VM_BUG_ON(offset + len > PAGE_SIZE);
433 	memcpy(to + offset, from, len);
434 	flush_dcache_page(page);
435 	kunmap_local(to);
436 }
437 
memzero_page(struct page * page,size_t offset,size_t len)438 static inline void memzero_page(struct page *page, size_t offset, size_t len)
439 {
440 	char *addr = kmap_local_page(page);
441 
442 	VM_BUG_ON(offset + len > PAGE_SIZE);
443 	memset(addr + offset, 0, len);
444 	flush_dcache_page(page);
445 	kunmap_local(addr);
446 }
447 
448 /**
449  * memcpy_from_folio - Copy a range of bytes from a folio.
450  * @to: The memory to copy to.
451  * @folio: The folio to read from.
452  * @offset: The first byte in the folio to read.
453  * @len: The number of bytes to copy.
454  */
memcpy_from_folio(char * to,struct folio * folio,size_t offset,size_t len)455 static inline void memcpy_from_folio(char *to, struct folio *folio,
456 		size_t offset, size_t len)
457 {
458 	VM_BUG_ON(offset + len > folio_size(folio));
459 
460 	do {
461 		const char *from = kmap_local_folio(folio, offset);
462 		size_t chunk = len;
463 
464 		if (folio_test_highmem(folio) &&
465 		    chunk > PAGE_SIZE - offset_in_page(offset))
466 			chunk = PAGE_SIZE - offset_in_page(offset);
467 		memcpy(to, from, chunk);
468 		kunmap_local(from);
469 
470 		to += chunk;
471 		offset += chunk;
472 		len -= chunk;
473 	} while (len > 0);
474 }
475 
476 /**
477  * memcpy_to_folio - Copy a range of bytes to a folio.
478  * @folio: The folio to write to.
479  * @offset: The first byte in the folio to store to.
480  * @from: The memory to copy from.
481  * @len: The number of bytes to copy.
482  */
memcpy_to_folio(struct folio * folio,size_t offset,const char * from,size_t len)483 static inline void memcpy_to_folio(struct folio *folio, size_t offset,
484 		const char *from, size_t len)
485 {
486 	VM_BUG_ON(offset + len > folio_size(folio));
487 
488 	do {
489 		char *to = kmap_local_folio(folio, offset);
490 		size_t chunk = len;
491 
492 		if (folio_test_highmem(folio) &&
493 		    chunk > PAGE_SIZE - offset_in_page(offset))
494 			chunk = PAGE_SIZE - offset_in_page(offset);
495 		memcpy(to, from, chunk);
496 		kunmap_local(to);
497 
498 		from += chunk;
499 		offset += chunk;
500 		len -= chunk;
501 	} while (len > 0);
502 
503 	flush_dcache_folio(folio);
504 }
505 
506 /**
507  * folio_zero_tail - Zero the tail of a folio.
508  * @folio: The folio to zero.
509  * @offset: The byte offset in the folio to start zeroing at.
510  * @kaddr: The address the folio is currently mapped to.
511  *
512  * If you have already used kmap_local_folio() to map a folio, written
513  * some data to it and now need to zero the end of the folio (and flush
514  * the dcache), you can use this function.  If you do not have the
515  * folio kmapped (eg the folio has been partially populated by DMA),
516  * use folio_zero_range() or folio_zero_segment() instead.
517  *
518  * Return: An address which can be passed to kunmap_local().
519  */
folio_zero_tail(struct folio * folio,size_t offset,void * kaddr)520 static inline __must_check void *folio_zero_tail(struct folio *folio,
521 		size_t offset, void *kaddr)
522 {
523 	size_t len = folio_size(folio) - offset;
524 
525 	if (folio_test_highmem(folio)) {
526 		size_t max = PAGE_SIZE - offset_in_page(offset);
527 
528 		while (len > max) {
529 			memset(kaddr, 0, max);
530 			kunmap_local(kaddr);
531 			len -= max;
532 			offset += max;
533 			max = PAGE_SIZE;
534 			kaddr = kmap_local_folio(folio, offset);
535 		}
536 	}
537 
538 	memset(kaddr, 0, len);
539 	flush_dcache_folio(folio);
540 
541 	return kaddr;
542 }
543 
544 /**
545  * folio_fill_tail - Copy some data to a folio and pad with zeroes.
546  * @folio: The destination folio.
547  * @offset: The offset into @folio at which to start copying.
548  * @from: The data to copy.
549  * @len: How many bytes of data to copy.
550  *
551  * This function is most useful for filesystems which support inline data.
552  * When they want to copy data from the inode into the page cache, this
553  * function does everything for them.  It supports large folios even on
554  * HIGHMEM configurations.
555  */
folio_fill_tail(struct folio * folio,size_t offset,const char * from,size_t len)556 static inline void folio_fill_tail(struct folio *folio, size_t offset,
557 		const char *from, size_t len)
558 {
559 	char *to = kmap_local_folio(folio, offset);
560 
561 	VM_BUG_ON(offset + len > folio_size(folio));
562 
563 	if (folio_test_highmem(folio)) {
564 		size_t max = PAGE_SIZE - offset_in_page(offset);
565 
566 		while (len > max) {
567 			memcpy(to, from, max);
568 			kunmap_local(to);
569 			len -= max;
570 			from += max;
571 			offset += max;
572 			max = PAGE_SIZE;
573 			to = kmap_local_folio(folio, offset);
574 		}
575 	}
576 
577 	memcpy(to, from, len);
578 	to = folio_zero_tail(folio, offset + len, to + len);
579 	kunmap_local(to);
580 }
581 
582 /**
583  * memcpy_from_file_folio - Copy some bytes from a file folio.
584  * @to: The destination buffer.
585  * @folio: The folio to copy from.
586  * @pos: The position in the file.
587  * @len: The maximum number of bytes to copy.
588  *
589  * Copy up to @len bytes from this folio.  This may be limited by PAGE_SIZE
590  * if the folio comes from HIGHMEM, and by the size of the folio.
591  *
592  * Return: The number of bytes copied from the folio.
593  */
memcpy_from_file_folio(char * to,struct folio * folio,loff_t pos,size_t len)594 static inline size_t memcpy_from_file_folio(char *to, struct folio *folio,
595 		loff_t pos, size_t len)
596 {
597 	size_t offset = offset_in_folio(folio, pos);
598 	char *from = kmap_local_folio(folio, offset);
599 
600 	if (folio_test_highmem(folio)) {
601 		offset = offset_in_page(offset);
602 		len = min_t(size_t, len, PAGE_SIZE - offset);
603 	} else
604 		len = min(len, folio_size(folio) - offset);
605 
606 	memcpy(to, from, len);
607 	kunmap_local(from);
608 
609 	return len;
610 }
611 
612 /**
613  * folio_zero_segments() - Zero two byte ranges in a folio.
614  * @folio: The folio to write to.
615  * @start1: The first byte to zero.
616  * @xend1: One more than the last byte in the first range.
617  * @start2: The first byte to zero in the second range.
618  * @xend2: One more than the last byte in the second range.
619  */
folio_zero_segments(struct folio * folio,size_t start1,size_t xend1,size_t start2,size_t xend2)620 static inline void folio_zero_segments(struct folio *folio,
621 		size_t start1, size_t xend1, size_t start2, size_t xend2)
622 {
623 	zero_user_segments(&folio->page, start1, xend1, start2, xend2);
624 }
625 
626 /**
627  * folio_zero_segment() - Zero a byte range in a folio.
628  * @folio: The folio to write to.
629  * @start: The first byte to zero.
630  * @xend: One more than the last byte to zero.
631  */
folio_zero_segment(struct folio * folio,size_t start,size_t xend)632 static inline void folio_zero_segment(struct folio *folio,
633 		size_t start, size_t xend)
634 {
635 	zero_user_segments(&folio->page, start, xend, 0, 0);
636 }
637 
638 /**
639  * folio_zero_range() - Zero a byte range in a folio.
640  * @folio: The folio to write to.
641  * @start: The first byte to zero.
642  * @length: The number of bytes to zero.
643  */
folio_zero_range(struct folio * folio,size_t start,size_t length)644 static inline void folio_zero_range(struct folio *folio,
645 		size_t start, size_t length)
646 {
647 	zero_user_segments(&folio->page, start, start + length, 0, 0);
648 }
649 
650 /**
651  * folio_release_kmap - Unmap a folio and drop a refcount.
652  * @folio: The folio to release.
653  * @addr: The address previously returned by a call to kmap_local_folio().
654  *
655  * It is common, eg in directory handling to kmap a folio.  This function
656  * unmaps the folio and drops the refcount that was being held to keep the
657  * folio alive while we accessed it.
658  */
folio_release_kmap(struct folio * folio,void * addr)659 static inline void folio_release_kmap(struct folio *folio, void *addr)
660 {
661 	kunmap_local(addr);
662 	folio_put(folio);
663 }
664 
unmap_and_put_page(struct page * page,void * addr)665 static inline void unmap_and_put_page(struct page *page, void *addr)
666 {
667 	folio_release_kmap(page_folio(page), addr);
668 }
669 
670 #endif /* _LINUX_HIGHMEM_H */
671