xref: /freebsd/libexec/rtld-elf/rtld.c (revision 1c8cdd807a9487aac532ef44f78bf53fe8ec4ce2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/ktrace.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "libmap.h"
62 #include "notes.h"
63 #include "rtld.h"
64 #include "rtld_libc.h"
65 #include "rtld_malloc.h"
66 #include "rtld_paths.h"
67 #include "rtld_printf.h"
68 #include "rtld_tls.h"
69 #include "rtld_utrace.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void *(*path_enum_proc)(const char *path, size_t len, void *arg);
74 
75 /* Variables that cannot be static: */
76 extern struct r_debug r_debug; /* For GDB */
77 extern int _thread_autoinit_dummy_decl;
78 extern void (*__cleanup)(void);
79 
80 struct dlerror_save {
81 	int seen;
82 	char *msg;
83 };
84 
85 /*
86  * Function declarations.
87  */
88 static const char *basename(const char *);
89 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
90     const Elf_Dyn **, const Elf_Dyn **);
91 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
92     const Elf_Dyn *);
93 static bool digest_dynamic(Obj_Entry *, int);
94 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
95 static void distribute_static_tls(Objlist *, RtldLockState *);
96 static Obj_Entry *dlcheck(void *);
97 static int dlclose_locked(void *, RtldLockState *);
98 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
99     int lo_flags, int mode, RtldLockState *lockstate);
100 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
101 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
102 static bool donelist_check(DoneList *, const Obj_Entry *);
103 static void dump_auxv(Elf_Auxinfo **aux_info);
104 static void errmsg_restore(struct dlerror_save *);
105 static struct dlerror_save *errmsg_save(void);
106 static void *fill_search_info(const char *, size_t, void *);
107 static char *find_library(const char *, const Obj_Entry *, int *);
108 static const char *gethints(bool);
109 static void hold_object(Obj_Entry *);
110 static void unhold_object(Obj_Entry *);
111 static void init_dag(Obj_Entry *);
112 static void init_marker(Obj_Entry *);
113 static void init_pagesizes(Elf_Auxinfo **aux_info);
114 static void init_rtld(caddr_t, Elf_Auxinfo **);
115 static void initlist_add_neededs(Needed_Entry *, Objlist *);
116 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
117 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
118 static void linkmap_add(Obj_Entry *);
119 static void linkmap_delete(Obj_Entry *);
120 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
121 static void unload_filtees(Obj_Entry *, RtldLockState *);
122 static int load_needed_objects(Obj_Entry *, int);
123 static int load_preload_objects(const char *, bool);
124 static int load_kpreload(const void *addr);
125 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
126 static void map_stacks_exec(RtldLockState *);
127 static int obj_disable_relro(Obj_Entry *);
128 static int obj_enforce_relro(Obj_Entry *);
129 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
130 static void objlist_call_init(Objlist *, RtldLockState *);
131 static void objlist_clear(Objlist *);
132 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
133 static void objlist_init(Objlist *);
134 static void objlist_push_head(Objlist *, Obj_Entry *);
135 static void objlist_push_tail(Objlist *, Obj_Entry *);
136 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
137 static void objlist_remove(Objlist *, Obj_Entry *);
138 static int open_binary_fd(const char *argv0, bool search_in_path,
139     const char **binpath_res);
140 static int parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
141     const char **argv0, bool *dir_ignore);
142 static int parse_integer(const char *);
143 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
144 static void print_usage(const char *argv0);
145 static void release_object(Obj_Entry *);
146 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
147     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
148 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
149     int flags, RtldLockState *lockstate);
150 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
151     RtldLockState *);
152 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
153 static int rtld_dirname(const char *, char *);
154 static int rtld_dirname_abs(const char *, char *);
155 static void *rtld_dlopen(const char *name, int fd, int mode);
156 static void rtld_exit(void);
157 static void rtld_nop_exit(void);
158 static char *search_library_path(const char *, const char *, const char *,
159     int *);
160 static char *search_library_pathfds(const char *, const char *, int *);
161 static const void **get_program_var_addr(const char *, RtldLockState *);
162 static void set_program_var(const char *, const void *);
163 static int symlook_default(SymLook *, const Obj_Entry *refobj);
164 static int symlook_global(SymLook *, DoneList *);
165 static void symlook_init_from_req(SymLook *, const SymLook *);
166 static int symlook_list(SymLook *, const Objlist *, DoneList *);
167 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
168 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
169 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
170 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
171 static void trace_loaded_objects(Obj_Entry *, bool);
172 static void unlink_object(Obj_Entry *);
173 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
174 static void unref_dag(Obj_Entry *);
175 static void ref_dag(Obj_Entry *);
176 static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *,
177     bool);
178 static char *origin_subst(Obj_Entry *, const char *);
179 static bool obj_resolve_origin(Obj_Entry *obj);
180 static void preinit_main(void);
181 static int rtld_verify_versions(const Objlist *);
182 static int rtld_verify_object_versions(Obj_Entry *);
183 static void object_add_name(Obj_Entry *, const char *);
184 static int object_match_name(const Obj_Entry *, const char *);
185 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
186 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
187     struct dl_phdr_info *phdr_info);
188 static uint32_t gnu_hash(const char *);
189 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
190     const unsigned long);
191 
192 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
193 void _r_debug_postinit(struct link_map *) __noinline __exported;
194 
195 int __sys_openat(int, const char *, int, ...);
196 
197 /*
198  * Data declarations.
199  */
200 struct r_debug r_debug __exported;  /* for GDB; */
201 static bool libmap_disable;	    /* Disable libmap */
202 static bool ld_loadfltr;	    /* Immediate filters processing */
203 static const char *libmap_override; /* Maps to use in addition to libmap.conf */
204 static bool trust;		    /* False for setuid and setgid programs */
205 static bool dangerous_ld_env;	    /* True if environment variables have been
206 				       used to affect the libraries loaded */
207 bool ld_bind_not;		    /* Disable PLT update */
208 static const char *ld_bind_now; /* Environment variable for immediate binding */
209 static const char *ld_debug;	/* Environment variable for debugging */
210 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
211 				       weak definition */
212 static const char *ld_library_path; /* Environment variable for search path */
213 static const char
214     *ld_library_dirs; /* Environment variable for library descriptors */
215 static const char *ld_preload;	   /* Environment variable for libraries to
216 				      load first */
217 static const char *ld_preload_fds; /* Environment variable for libraries
218 				    represented by descriptors */
219 static const char
220     *ld_elf_hints_path; /* Environment variable for alternative hints path */
221 static const char *ld_tracing;	    /* Called from ldd to print libs */
222 static const char *ld_utrace;	    /* Use utrace() to log events. */
223 static struct obj_entry_q obj_list; /* Queue of all loaded objects */
224 static Obj_Entry *obj_main;	    /* The main program shared object */
225 static Obj_Entry obj_rtld;	    /* The dynamic linker shared object */
226 static unsigned int obj_count;	    /* Number of objects in obj_list */
227 static unsigned int obj_loads;	    /* Number of loads of objects (gen count) */
228 size_t ld_static_tls_extra =	    /* Static TLS extra space (bytes) */
229     RTLD_STATIC_TLS_EXTRA;
230 
231 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
232     STAILQ_HEAD_INITIALIZER(list_global);
233 static Objlist list_main = /* Objects loaded at program startup */
234     STAILQ_HEAD_INITIALIZER(list_main);
235 static Objlist list_fini = /* Objects needing fini() calls */
236     STAILQ_HEAD_INITIALIZER(list_fini);
237 
238 Elf_Sym sym_zero; /* For resolving undefined weak refs. */
239 
240 #define GDB_STATE(s, m)      \
241 	r_debug.r_state = s; \
242 	r_debug_state(&r_debug, m);
243 
244 extern Elf_Dyn _DYNAMIC;
245 #pragma weak _DYNAMIC
246 
247 int dlclose(void *) __exported;
248 char *dlerror(void) __exported;
249 void *dlopen(const char *, int) __exported;
250 void *fdlopen(int, int) __exported;
251 void *dlsym(void *, const char *) __exported;
252 dlfunc_t dlfunc(void *, const char *) __exported;
253 void *dlvsym(void *, const char *, const char *) __exported;
254 int dladdr(const void *, Dl_info *) __exported;
255 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
256     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
257 int dlinfo(void *, int, void *) __exported;
258 int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
259 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
260 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
261 int _rtld_get_stack_prot(void) __exported;
262 int _rtld_is_dlopened(void *) __exported;
263 void _rtld_error(const char *, ...) __exported;
264 const char *rtld_get_var(const char *name) __exported;
265 int rtld_set_var(const char *name, const char *val) __exported;
266 
267 /* Only here to fix -Wmissing-prototypes warnings */
268 int __getosreldate(void);
269 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
270 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
271 
272 int npagesizes;
273 static int osreldate;
274 size_t *pagesizes;
275 size_t page_size;
276 
277 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
278 static int max_stack_flags;
279 
280 /*
281  * Global declarations normally provided by crt1.  The dynamic linker is
282  * not built with crt1, so we have to provide them ourselves.
283  */
284 char *__progname;
285 char **environ;
286 
287 /*
288  * Used to pass argc, argv to init functions.
289  */
290 int main_argc;
291 char **main_argv;
292 
293 /*
294  * Globals to control TLS allocation.
295  */
296 size_t tls_last_offset;	 /* Static TLS offset of last module */
297 size_t tls_last_size;	 /* Static TLS size of last module */
298 size_t tls_static_space; /* Static TLS space allocated */
299 static size_t tls_static_max_align;
300 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
301 int tls_max_index = 1;		 /* Largest module index allocated */
302 
303 static bool ld_library_path_rpath = false;
304 bool ld_fast_sigblock = false;
305 
306 /*
307  * Globals for path names, and such
308  */
309 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
310 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
311 const char *ld_path_rtld = _PATH_RTLD;
312 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
313 const char *ld_env_prefix = LD_;
314 
315 static void (*rtld_exit_ptr)(void);
316 
317 /*
318  * Fill in a DoneList with an allocation large enough to hold all of
319  * the currently-loaded objects.  Keep this as a macro since it calls
320  * alloca and we want that to occur within the scope of the caller.
321  */
322 #define donelist_init(dlp)                                             \
323 	((dlp)->objs = alloca(obj_count * sizeof(dlp)->objs[0]),       \
324 	    assert((dlp)->objs != NULL), (dlp)->num_alloc = obj_count, \
325 	    (dlp)->num_used = 0)
326 
327 #define LD_UTRACE(e, h, mb, ms, r, n)                      \
328 	do {                                               \
329 		if (ld_utrace != NULL)                     \
330 			ld_utrace_log(e, h, mb, ms, r, n); \
331 	} while (0)
332 
333 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)334 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
335     int refcnt, const char *name)
336 {
337 	struct utrace_rtld ut;
338 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
339 
340 	memset(&ut, 0, sizeof(ut));	/* clear holes */
341 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
342 	ut.event = event;
343 	ut.handle = handle;
344 	ut.mapbase = mapbase;
345 	ut.mapsize = mapsize;
346 	ut.refcnt = refcnt;
347 	if (name != NULL)
348 		strlcpy(ut.name, name, sizeof(ut.name));
349 	utrace(&ut, sizeof(ut));
350 }
351 
352 struct ld_env_var_desc {
353 	const char *const n;
354 	const char *val;
355 	const bool unsecure : 1;
356 	const bool can_update : 1;
357 	const bool debug : 1;
358 	bool owned : 1;
359 };
360 #define LD_ENV_DESC(var, unsec, ...) \
361 	[LD_##var] = { .n = #var, .unsecure = unsec, __VA_ARGS__ }
362 
363 static struct ld_env_var_desc ld_env_vars[] = {
364 	LD_ENV_DESC(BIND_NOW, false),
365 	LD_ENV_DESC(PRELOAD, true),
366 	LD_ENV_DESC(LIBMAP, true),
367 	LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
368 	LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
369 	LD_ENV_DESC(LIBMAP_DISABLE, true),
370 	LD_ENV_DESC(BIND_NOT, true),
371 	LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
372 	LD_ENV_DESC(ELF_HINTS_PATH, true),
373 	LD_ENV_DESC(LOADFLTR, true),
374 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
375 	LD_ENV_DESC(PRELOAD_FDS, true),
376 	LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
377 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
378 	LD_ENV_DESC(UTRACE, false, .can_update = true),
379 	LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
380 	LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
381 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
382 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
383 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
384 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
385 	LD_ENV_DESC(SHOW_AUXV, false),
386 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
387 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
388 };
389 
390 const char *
ld_get_env_var(int idx)391 ld_get_env_var(int idx)
392 {
393 	return (ld_env_vars[idx].val);
394 }
395 
396 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)397 rtld_get_env_val(char **env, const char *name, size_t name_len)
398 {
399 	char **m, *n, *v;
400 
401 	for (m = env; *m != NULL; m++) {
402 		n = *m;
403 		v = strchr(n, '=');
404 		if (v == NULL) {
405 			/* corrupt environment? */
406 			continue;
407 		}
408 		if (v - n == (ptrdiff_t)name_len &&
409 		    strncmp(name, n, name_len) == 0)
410 			return (v + 1);
411 	}
412 	return (NULL);
413 }
414 
415 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)416 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
417 {
418 	struct ld_env_var_desc *lvd;
419 	size_t prefix_len, nlen;
420 	char **m, *n, *v;
421 	int i;
422 
423 	prefix_len = strlen(env_prefix);
424 	for (m = env; *m != NULL; m++) {
425 		n = *m;
426 		if (strncmp(env_prefix, n, prefix_len) != 0) {
427 			/* Not a rtld environment variable. */
428 			continue;
429 		}
430 		n += prefix_len;
431 		v = strchr(n, '=');
432 		if (v == NULL) {
433 			/* corrupt environment? */
434 			continue;
435 		}
436 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
437 			lvd = &ld_env_vars[i];
438 			if (lvd->val != NULL) {
439 				/* Saw higher-priority variable name already. */
440 				continue;
441 			}
442 			nlen = strlen(lvd->n);
443 			if (v - n == (ptrdiff_t)nlen &&
444 			    strncmp(lvd->n, n, nlen) == 0) {
445 				lvd->val = v + 1;
446 				break;
447 			}
448 		}
449 	}
450 }
451 
452 static void
rtld_init_env_vars(char ** env)453 rtld_init_env_vars(char **env)
454 {
455 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
456 }
457 
458 static void
set_ld_elf_hints_path(void)459 set_ld_elf_hints_path(void)
460 {
461 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
462 		ld_elf_hints_path = ld_elf_hints_default;
463 }
464 
465 uintptr_t
rtld_round_page(uintptr_t x)466 rtld_round_page(uintptr_t x)
467 {
468 	return (roundup2(x, page_size));
469 }
470 
471 uintptr_t
rtld_trunc_page(uintptr_t x)472 rtld_trunc_page(uintptr_t x)
473 {
474 	return (rounddown2(x, page_size));
475 }
476 
477 /*
478  * Main entry point for dynamic linking.  The first argument is the
479  * stack pointer.  The stack is expected to be laid out as described
480  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
481  * Specifically, the stack pointer points to a word containing
482  * ARGC.  Following that in the stack is a null-terminated sequence
483  * of pointers to argument strings.  Then comes a null-terminated
484  * sequence of pointers to environment strings.  Finally, there is a
485  * sequence of "auxiliary vector" entries.
486  *
487  * The second argument points to a place to store the dynamic linker's
488  * exit procedure pointer and the third to a place to store the main
489  * program's object.
490  *
491  * The return value is the main program's entry point.
492  */
493 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)494 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
495 {
496 	Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
497 	Objlist_Entry *entry;
498 	Obj_Entry *last_interposer, *obj, *preload_tail;
499 	const Elf_Phdr *phdr;
500 	Objlist initlist;
501 	RtldLockState lockstate;
502 	struct stat st;
503 	Elf_Addr *argcp;
504 	char **argv, **env, **envp, *kexecpath;
505 	const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
506 	struct ld_env_var_desc *lvd;
507 	caddr_t imgentry;
508 	char buf[MAXPATHLEN];
509 	int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
510 	size_t sz;
511 #ifdef __powerpc__
512 	int old_auxv_format = 1;
513 #endif
514 	bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
515 
516 	/*
517 	 * On entry, the dynamic linker itself has not been relocated yet.
518 	 * Be very careful not to reference any global data until after
519 	 * init_rtld has returned.  It is OK to reference file-scope statics
520 	 * and string constants, and to call static and global functions.
521 	 */
522 
523 	/* Find the auxiliary vector on the stack. */
524 	argcp = sp;
525 	argc = *sp++;
526 	argv = (char **)sp;
527 	sp += argc + 1; /* Skip over arguments and NULL terminator */
528 	env = (char **)sp;
529 	while (*sp++ != 0) /* Skip over environment, and NULL terminator */
530 		;
531 	aux = (Elf_Auxinfo *)sp;
532 
533 	/* Digest the auxiliary vector. */
534 	for (i = 0; i < AT_COUNT; i++)
535 		aux_info[i] = NULL;
536 	for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
537 		if (auxp->a_type < AT_COUNT)
538 			aux_info[auxp->a_type] = auxp;
539 #ifdef __powerpc__
540 		if (auxp->a_type == 23) /* AT_STACKPROT */
541 			old_auxv_format = 0;
542 #endif
543 	}
544 
545 #ifdef __powerpc__
546 	if (old_auxv_format) {
547 		/* Remap from old-style auxv numbers. */
548 		aux_info[23] = aux_info[21]; /* AT_STACKPROT */
549 		aux_info[21] = aux_info[19]; /* AT_PAGESIZESLEN */
550 		aux_info[19] = aux_info[17]; /* AT_NCPUS */
551 		aux_info[17] = aux_info[15]; /* AT_CANARYLEN */
552 		aux_info[15] = aux_info[13]; /* AT_EXECPATH */
553 		aux_info[13] = NULL;	     /* AT_GID */
554 
555 		aux_info[20] = aux_info[18]; /* AT_PAGESIZES */
556 		aux_info[18] = aux_info[16]; /* AT_OSRELDATE */
557 		aux_info[16] = aux_info[14]; /* AT_CANARY */
558 		aux_info[14] = NULL;	     /* AT_EGID */
559 	}
560 #endif
561 
562 	/* Initialize and relocate ourselves. */
563 	assert(aux_info[AT_BASE] != NULL);
564 	init_rtld((caddr_t)aux_info[AT_BASE]->a_un.a_ptr, aux_info);
565 
566 	dlerror_dflt_init();
567 
568 	__progname = obj_rtld.path;
569 	argv0 = argv[0] != NULL ? argv[0] : "(null)";
570 	environ = env;
571 	main_argc = argc;
572 	main_argv = argv;
573 
574 	if (aux_info[AT_BSDFLAGS] != NULL &&
575 	    (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
576 		ld_fast_sigblock = true;
577 
578 	trust = !issetugid();
579 	direct_exec = false;
580 
581 	md_abi_variant_hook(aux_info);
582 	rtld_init_env_vars(env);
583 
584 	fd = -1;
585 	if (aux_info[AT_EXECFD] != NULL) {
586 		fd = aux_info[AT_EXECFD]->a_un.a_val;
587 	} else {
588 		assert(aux_info[AT_PHDR] != NULL);
589 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
590 		if (phdr == obj_rtld.phdr) {
591 			if (!trust) {
592 				_rtld_error(
593 				    "Tainted process refusing to run binary %s",
594 				    argv0);
595 				rtld_die();
596 			}
597 			direct_exec = true;
598 
599 			dbg("opening main program in direct exec mode");
600 			if (argc >= 2) {
601 				rtld_argc = parse_args(argv, argc,
602 				    &search_in_path, &fd, &argv0, &dir_ignore);
603 				explicit_fd = (fd != -1);
604 				binpath = NULL;
605 				if (!explicit_fd)
606 					fd = open_binary_fd(argv0,
607 					    search_in_path, &binpath);
608 				if (fstat(fd, &st) == -1) {
609 					_rtld_error(
610 					    "Failed to fstat FD %d (%s): %s",
611 					    fd,
612 					    explicit_fd ?
613 						"user-provided descriptor" :
614 						argv0,
615 					    rtld_strerror(errno));
616 					rtld_die();
617 				}
618 
619 				/*
620 				 * Rough emulation of the permission checks done
621 				 * by execve(2), only Unix DACs are checked,
622 				 * ACLs are ignored.  Preserve the semantic of
623 				 * disabling owner to execute if owner x bit is
624 				 * cleared, even if others x bit is enabled.
625 				 * mmap(2) does not allow to mmap with PROT_EXEC
626 				 * if binary' file comes from noexec mount.  We
627 				 * cannot set a text reference on the binary.
628 				 */
629 				dir_enable = false;
630 				if (st.st_uid == geteuid()) {
631 					if ((st.st_mode & S_IXUSR) != 0)
632 						dir_enable = true;
633 				} else if (st.st_gid == getegid()) {
634 					if ((st.st_mode & S_IXGRP) != 0)
635 						dir_enable = true;
636 				} else if ((st.st_mode & S_IXOTH) != 0) {
637 					dir_enable = true;
638 				}
639 				if (!dir_enable && !dir_ignore) {
640 					_rtld_error(
641 				    "No execute permission for binary %s",
642 					    argv0);
643 					rtld_die();
644 				}
645 
646 				/*
647 				 * For direct exec mode, argv[0] is the
648 				 * interpreter name, we must remove it and shift
649 				 * arguments left before invoking binary main.
650 				 * Since stack layout places environment
651 				 * pointers and aux vectors right after the
652 				 * terminating NULL, we must shift environment
653 				 * and aux as well.
654 				 */
655 				main_argc = argc - rtld_argc;
656 				for (i = 0; i <= main_argc; i++)
657 					argv[i] = argv[i + rtld_argc];
658 				*argcp -= rtld_argc;
659 				environ = env = envp = argv + main_argc + 1;
660 				dbg("move env from %p to %p", envp + rtld_argc,
661 				    envp);
662 				do {
663 					*envp = *(envp + rtld_argc);
664 				} while (*envp++ != NULL);
665 				aux = auxp = (Elf_Auxinfo *)envp;
666 				auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
667 				dbg("move aux from %p to %p", auxpf, aux);
668 				/*
669 				 * XXXKIB insert place for AT_EXECPATH if not
670 				 * present
671 				 */
672 				for (;; auxp++, auxpf++) {
673 					*auxp = *auxpf;
674 					if (auxp->a_type == AT_NULL)
675 						break;
676 				}
677 				/*
678 				 * Since the auxiliary vector has moved,
679 				 * redigest it.
680 				 */
681 				for (i = 0; i < AT_COUNT; i++)
682 					aux_info[i] = NULL;
683 				for (auxp = aux; auxp->a_type != AT_NULL;
684 				    auxp++) {
685 					if (auxp->a_type < AT_COUNT)
686 						aux_info[auxp->a_type] = auxp;
687 				}
688 
689 				/*
690 				 * Point AT_EXECPATH auxv and aux_info to the
691 				 * binary path.
692 				 */
693 				if (binpath == NULL) {
694 					aux_info[AT_EXECPATH] = NULL;
695 				} else {
696 					if (aux_info[AT_EXECPATH] == NULL) {
697 						aux_info[AT_EXECPATH] = xmalloc(
698 						    sizeof(Elf_Auxinfo));
699 						aux_info[AT_EXECPATH]->a_type =
700 						    AT_EXECPATH;
701 					}
702 					aux_info[AT_EXECPATH]->a_un.a_ptr =
703 					    __DECONST(void *, binpath);
704 				}
705 			} else {
706 				_rtld_error("No binary");
707 				rtld_die();
708 			}
709 		}
710 	}
711 
712 	ld_bind_now = ld_get_env_var(LD_BIND_NOW);
713 
714 	/*
715 	 * If the process is tainted, then we un-set the dangerous environment
716 	 * variables.  The process will be marked as tainted until setuid(2)
717 	 * is called.  If any child process calls setuid(2) we do not want any
718 	 * future processes to honor the potentially un-safe variables.
719 	 */
720 	if (!trust) {
721 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
722 			lvd = &ld_env_vars[i];
723 			if (lvd->unsecure)
724 				lvd->val = NULL;
725 		}
726 	}
727 
728 	ld_debug = ld_get_env_var(LD_DEBUG);
729 	if (ld_bind_now == NULL)
730 		ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
731 	ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
732 	libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
733 	libmap_override = ld_get_env_var(LD_LIBMAP);
734 	ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
735 	ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
736 	ld_preload = ld_get_env_var(LD_PRELOAD);
737 	ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
738 	ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
739 	ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
740 	library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
741 	if (library_path_rpath != NULL) {
742 		if (library_path_rpath[0] == 'y' ||
743 		    library_path_rpath[0] == 'Y' ||
744 		    library_path_rpath[0] == '1')
745 			ld_library_path_rpath = true;
746 		else
747 			ld_library_path_rpath = false;
748 	}
749 	static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
750 	if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
751 		sz = parse_integer(static_tls_extra);
752 		if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
753 			ld_static_tls_extra = sz;
754 	}
755 	dangerous_ld_env = libmap_disable || libmap_override != NULL ||
756 	    ld_library_path != NULL || ld_preload != NULL ||
757 	    ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
758 	    static_tls_extra != NULL;
759 	ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
760 	ld_utrace = ld_get_env_var(LD_UTRACE);
761 
762 	set_ld_elf_hints_path();
763 	if (ld_debug != NULL && *ld_debug != '\0')
764 		debug = 1;
765 	dbg("%s is initialized, base address = %p", __progname,
766 	    (caddr_t)aux_info[AT_BASE]->a_un.a_ptr);
767 	dbg("RTLD dynamic = %p", obj_rtld.dynamic);
768 	dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
769 
770 	dbg("initializing thread locks");
771 	lockdflt_init();
772 
773 	/*
774 	 * Load the main program, or process its program header if it is
775 	 * already loaded.
776 	 */
777 	if (fd != -1) { /* Load the main program. */
778 		dbg("loading main program");
779 		obj_main = map_object(fd, argv0, NULL);
780 		close(fd);
781 		if (obj_main == NULL)
782 			rtld_die();
783 		max_stack_flags = obj_main->stack_flags;
784 	} else { /* Main program already loaded. */
785 		dbg("processing main program's program header");
786 		assert(aux_info[AT_PHDR] != NULL);
787 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
788 		assert(aux_info[AT_PHNUM] != NULL);
789 		phnum = aux_info[AT_PHNUM]->a_un.a_val;
790 		assert(aux_info[AT_PHENT] != NULL);
791 		assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
792 		assert(aux_info[AT_ENTRY] != NULL);
793 		imgentry = (caddr_t)aux_info[AT_ENTRY]->a_un.a_ptr;
794 		if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) ==
795 		    NULL)
796 			rtld_die();
797 	}
798 
799 	if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
800 		kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
801 		dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
802 		if (kexecpath[0] == '/')
803 			obj_main->path = kexecpath;
804 		else if (getcwd(buf, sizeof(buf)) == NULL ||
805 		    strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
806 		    strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
807 			obj_main->path = xstrdup(argv0);
808 		else
809 			obj_main->path = xstrdup(buf);
810 	} else {
811 		dbg("No AT_EXECPATH or direct exec");
812 		obj_main->path = xstrdup(argv0);
813 	}
814 	dbg("obj_main path %s", obj_main->path);
815 	obj_main->mainprog = true;
816 
817 	if (aux_info[AT_STACKPROT] != NULL &&
818 	    aux_info[AT_STACKPROT]->a_un.a_val != 0)
819 		stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
820 
821 #ifndef COMPAT_libcompat
822 	/*
823 	 * Get the actual dynamic linker pathname from the executable if
824 	 * possible.  (It should always be possible.)  That ensures that
825 	 * gdb will find the right dynamic linker even if a non-standard
826 	 * one is being used.
827 	 */
828 	if (obj_main->interp != NULL &&
829 	    strcmp(obj_main->interp, obj_rtld.path) != 0) {
830 		free(obj_rtld.path);
831 		obj_rtld.path = xstrdup(obj_main->interp);
832 		__progname = obj_rtld.path;
833 	}
834 #endif
835 
836 	if (!digest_dynamic(obj_main, 0))
837 		rtld_die();
838 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
839 	    obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
840 	    obj_main->dynsymcount);
841 
842 	linkmap_add(obj_main);
843 	linkmap_add(&obj_rtld);
844 
845 	/* Link the main program into the list of objects. */
846 	TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
847 	obj_count++;
848 	obj_loads++;
849 
850 	/* Initialize a fake symbol for resolving undefined weak references. */
851 	sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
852 	sym_zero.st_shndx = SHN_UNDEF;
853 	sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
854 
855 	if (!libmap_disable)
856 		libmap_disable = (bool)lm_init(libmap_override);
857 
858 	if (aux_info[AT_KPRELOAD] != NULL &&
859 	    aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
860 		dbg("loading kernel vdso");
861 		if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
862 			rtld_die();
863 	}
864 
865 	dbg("loading LD_PRELOAD_FDS libraries");
866 	if (load_preload_objects(ld_preload_fds, true) == -1)
867 		rtld_die();
868 
869 	dbg("loading LD_PRELOAD libraries");
870 	if (load_preload_objects(ld_preload, false) == -1)
871 		rtld_die();
872 	preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
873 
874 	dbg("loading needed objects");
875 	if (load_needed_objects(obj_main,
876 		ld_tracing != NULL ? RTLD_LO_TRACE : 0) == -1)
877 		rtld_die();
878 
879 	/* Make a list of all objects loaded at startup. */
880 	last_interposer = obj_main;
881 	TAILQ_FOREACH(obj, &obj_list, next) {
882 		if (obj->marker)
883 			continue;
884 		if (obj->z_interpose && obj != obj_main) {
885 			objlist_put_after(&list_main, last_interposer, obj);
886 			last_interposer = obj;
887 		} else {
888 			objlist_push_tail(&list_main, obj);
889 		}
890 		obj->refcount++;
891 	}
892 
893 	dbg("checking for required versions");
894 	if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
895 		rtld_die();
896 
897 	if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
898 		dump_auxv(aux_info);
899 
900 	if (ld_tracing) { /* We're done */
901 		trace_loaded_objects(obj_main, true);
902 		exit(0);
903 	}
904 
905 	if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
906 		dump_relocations(obj_main);
907 		exit(0);
908 	}
909 
910 	/*
911 	 * Processing tls relocations requires having the tls offsets
912 	 * initialized.  Prepare offsets before starting initial
913 	 * relocation processing.
914 	 */
915 	dbg("initializing initial thread local storage offsets");
916 	STAILQ_FOREACH(entry, &list_main, link) {
917 		/*
918 		 * Allocate all the initial objects out of the static TLS
919 		 * block even if they didn't ask for it.
920 		 */
921 		allocate_tls_offset(entry->obj);
922 	}
923 
924 	if (relocate_objects(obj_main,
925 		ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld,
926 		SYMLOOK_EARLY, NULL) == -1)
927 		rtld_die();
928 
929 	dbg("doing copy relocations");
930 	if (do_copy_relocations(obj_main) == -1)
931 		rtld_die();
932 
933 	if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
934 		dump_relocations(obj_main);
935 		exit(0);
936 	}
937 
938 	ifunc_init(aux_info);
939 
940 	/*
941 	 * Setup TLS for main thread.  This must be done after the
942 	 * relocations are processed, since tls initialization section
943 	 * might be the subject for relocations.
944 	 */
945 	dbg("initializing initial thread local storage");
946 	allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
947 
948 	dbg("initializing key program variables");
949 	set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
950 	set_program_var("environ", env);
951 	set_program_var("__elf_aux_vector", aux);
952 
953 	/* Make a list of init functions to call. */
954 	objlist_init(&initlist);
955 	initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
956 	    preload_tail, &initlist);
957 
958 	r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
959 
960 	map_stacks_exec(NULL);
961 
962 	if (!obj_main->crt_no_init) {
963 		/*
964 		 * Make sure we don't call the main program's init and fini
965 		 * functions for binaries linked with old crt1 which calls
966 		 * _init itself.
967 		 */
968 		obj_main->init = obj_main->fini = (Elf_Addr)NULL;
969 		obj_main->preinit_array = obj_main->init_array =
970 		    obj_main->fini_array = (Elf_Addr)NULL;
971 	}
972 
973 	if (direct_exec) {
974 		/* Set osrel for direct-execed binary */
975 		mib[0] = CTL_KERN;
976 		mib[1] = KERN_PROC;
977 		mib[2] = KERN_PROC_OSREL;
978 		mib[3] = getpid();
979 		osrel = obj_main->osrel;
980 		sz = sizeof(old_osrel);
981 		dbg("setting osrel to %d", osrel);
982 		(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
983 	}
984 
985 	wlock_acquire(rtld_bind_lock, &lockstate);
986 
987 	dbg("resolving ifuncs");
988 	if (initlist_objects_ifunc(&initlist,
989 		ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
990 		&lockstate) == -1)
991 		rtld_die();
992 
993 	rtld_exit_ptr = rtld_exit;
994 	if (obj_main->crt_no_init)
995 		preinit_main();
996 	objlist_call_init(&initlist, &lockstate);
997 	_r_debug_postinit(&obj_main->linkmap);
998 	objlist_clear(&initlist);
999 	dbg("loading filtees");
1000 	TAILQ_FOREACH(obj, &obj_list, next) {
1001 		if (obj->marker)
1002 			continue;
1003 		if (ld_loadfltr || obj->z_loadfltr)
1004 			load_filtees(obj, 0, &lockstate);
1005 	}
1006 
1007 	dbg("enforcing main obj relro");
1008 	if (obj_enforce_relro(obj_main) == -1)
1009 		rtld_die();
1010 
1011 	lock_release(rtld_bind_lock, &lockstate);
1012 
1013 	dbg("transferring control to program entry point = %p",
1014 	    obj_main->entry);
1015 
1016 	/* Return the exit procedure and the program entry point. */
1017 	*exit_proc = rtld_exit_ptr;
1018 	*objp = obj_main;
1019 	return ((func_ptr_type)obj_main->entry);
1020 }
1021 
1022 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)1023 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1024 {
1025 	void *ptr;
1026 	Elf_Addr target;
1027 
1028 	ptr = (void *)make_function_pointer(def, obj);
1029 	target = call_ifunc_resolver(ptr);
1030 	return ((void *)target);
1031 }
1032 
1033 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1034 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1035 {
1036 	const Elf_Rel *rel;
1037 	const Elf_Sym *def;
1038 	const Obj_Entry *defobj;
1039 	Elf_Addr *where;
1040 	Elf_Addr target;
1041 	RtldLockState lockstate;
1042 
1043 	rlock_acquire(rtld_bind_lock, &lockstate);
1044 	if (sigsetjmp(lockstate.env, 0) != 0)
1045 		lock_upgrade(rtld_bind_lock, &lockstate);
1046 	if (obj->pltrel)
1047 		rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1048 	else
1049 		rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1050 
1051 	where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1052 	def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1053 	    NULL, &lockstate);
1054 	if (def == NULL)
1055 		rtld_die();
1056 	if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1057 		target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1058 	else
1059 		target = (Elf_Addr)(defobj->relocbase + def->st_value);
1060 
1061 	dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name,
1062 	    obj->path == NULL ? NULL : basename(obj->path), (void *)target,
1063 	    defobj->path == NULL ? NULL : basename(defobj->path));
1064 
1065 	/*
1066 	 * Write the new contents for the jmpslot. Note that depending on
1067 	 * architecture, the value which we need to return back to the
1068 	 * lazy binding trampoline may or may not be the target
1069 	 * address. The value returned from reloc_jmpslot() is the value
1070 	 * that the trampoline needs.
1071 	 */
1072 	target = reloc_jmpslot(where, target, defobj, obj, rel);
1073 	lock_release(rtld_bind_lock, &lockstate);
1074 	return (target);
1075 }
1076 
1077 /*
1078  * Error reporting function.  Use it like printf.  If formats the message
1079  * into a buffer, and sets things up so that the next call to dlerror()
1080  * will return the message.
1081  */
1082 void
_rtld_error(const char * fmt,...)1083 _rtld_error(const char *fmt, ...)
1084 {
1085 	va_list ap;
1086 
1087 	va_start(ap, fmt);
1088 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz, fmt,
1089 	    ap);
1090 	va_end(ap);
1091 	*lockinfo.dlerror_seen() = 0;
1092 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1093 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1094 }
1095 
1096 /*
1097  * Return a dynamically-allocated copy of the current error message, if any.
1098  */
1099 static struct dlerror_save *
errmsg_save(void)1100 errmsg_save(void)
1101 {
1102 	struct dlerror_save *res;
1103 
1104 	res = xmalloc(sizeof(*res));
1105 	res->seen = *lockinfo.dlerror_seen();
1106 	if (res->seen == 0)
1107 		res->msg = xstrdup(lockinfo.dlerror_loc());
1108 	return (res);
1109 }
1110 
1111 /*
1112  * Restore the current error message from a copy which was previously saved
1113  * by errmsg_save().  The copy is freed.
1114  */
1115 static void
errmsg_restore(struct dlerror_save * saved_msg)1116 errmsg_restore(struct dlerror_save *saved_msg)
1117 {
1118 	if (saved_msg == NULL || saved_msg->seen == 1) {
1119 		*lockinfo.dlerror_seen() = 1;
1120 	} else {
1121 		*lockinfo.dlerror_seen() = 0;
1122 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1123 		    lockinfo.dlerror_loc_sz);
1124 		free(saved_msg->msg);
1125 	}
1126 	free(saved_msg);
1127 }
1128 
1129 static const char *
basename(const char * name)1130 basename(const char *name)
1131 {
1132 	const char *p;
1133 
1134 	p = strrchr(name, '/');
1135 	return (p != NULL ? p + 1 : name);
1136 }
1137 
1138 static struct utsname uts;
1139 
1140 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1141 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst,
1142     bool may_free)
1143 {
1144 	char *p, *p1, *res, *resp;
1145 	int subst_len, kw_len, subst_count, old_len, new_len;
1146 
1147 	kw_len = strlen(kw);
1148 
1149 	/*
1150 	 * First, count the number of the keyword occurrences, to
1151 	 * preallocate the final string.
1152 	 */
1153 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1154 		p1 = strstr(p, kw);
1155 		if (p1 == NULL)
1156 			break;
1157 	}
1158 
1159 	/*
1160 	 * If the keyword is not found, just return.
1161 	 *
1162 	 * Return non-substituted string if resolution failed.  We
1163 	 * cannot do anything more reasonable, the failure mode of the
1164 	 * caller is unresolved library anyway.
1165 	 */
1166 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1167 		return (may_free ? real : xstrdup(real));
1168 	if (obj != NULL)
1169 		subst = obj->origin_path;
1170 
1171 	/*
1172 	 * There is indeed something to substitute.  Calculate the
1173 	 * length of the resulting string, and allocate it.
1174 	 */
1175 	subst_len = strlen(subst);
1176 	old_len = strlen(real);
1177 	new_len = old_len + (subst_len - kw_len) * subst_count;
1178 	res = xmalloc(new_len + 1);
1179 
1180 	/*
1181 	 * Now, execute the substitution loop.
1182 	 */
1183 	for (p = real, resp = res, *resp = '\0';;) {
1184 		p1 = strstr(p, kw);
1185 		if (p1 != NULL) {
1186 			/* Copy the prefix before keyword. */
1187 			memcpy(resp, p, p1 - p);
1188 			resp += p1 - p;
1189 			/* Keyword replacement. */
1190 			memcpy(resp, subst, subst_len);
1191 			resp += subst_len;
1192 			*resp = '\0';
1193 			p = p1 + kw_len;
1194 		} else
1195 			break;
1196 	}
1197 
1198 	/* Copy to the end of string and finish. */
1199 	strcat(resp, p);
1200 	if (may_free)
1201 		free(real);
1202 	return (res);
1203 }
1204 
1205 static const struct {
1206 	const char *kw;
1207 	bool pass_obj;
1208 	const char *subst;
1209 } tokens[] = {
1210 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1211 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1212 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1213 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1214 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1215 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1216 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1217 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1218 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1219 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1220 };
1221 
1222 static char *
origin_subst(Obj_Entry * obj,const char * real)1223 origin_subst(Obj_Entry *obj, const char *real)
1224 {
1225 	char *res;
1226 	int i;
1227 
1228 	if (obj == NULL || !trust)
1229 		return (xstrdup(real));
1230 	if (uts.sysname[0] == '\0') {
1231 		if (uname(&uts) != 0) {
1232 			_rtld_error("utsname failed: %d", errno);
1233 			return (NULL);
1234 		}
1235 	}
1236 
1237 	/* __DECONST is safe here since without may_free real is unchanged */
1238 	res = __DECONST(char *, real);
1239 	for (i = 0; i < (int)nitems(tokens); i++) {
1240 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL, res,
1241 		    tokens[i].kw, tokens[i].subst, i != 0);
1242 	}
1243 	return (res);
1244 }
1245 
1246 void
rtld_die(void)1247 rtld_die(void)
1248 {
1249 	const char *msg = dlerror();
1250 
1251 	if (msg == NULL)
1252 		msg = "Fatal error";
1253 	rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1254 	rtld_fdputstr(STDERR_FILENO, msg);
1255 	rtld_fdputchar(STDERR_FILENO, '\n');
1256 	_exit(1);
1257 }
1258 
1259 /*
1260  * Process a shared object's DYNAMIC section, and save the important
1261  * information in its Obj_Entry structure.
1262  */
1263 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1264 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1265     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1266 {
1267 	const Elf_Dyn *dynp;
1268 	Needed_Entry **needed_tail = &obj->needed;
1269 	Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1270 	Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1271 	const Elf_Hashelt *hashtab;
1272 	const Elf32_Word *hashval;
1273 	Elf32_Word bkt, nmaskwords;
1274 	int bloom_size32;
1275 	int plttype = DT_REL;
1276 
1277 	*dyn_rpath = NULL;
1278 	*dyn_soname = NULL;
1279 	*dyn_runpath = NULL;
1280 
1281 	obj->bind_now = false;
1282 	dynp = obj->dynamic;
1283 	if (dynp == NULL)
1284 		return;
1285 	for (; dynp->d_tag != DT_NULL; dynp++) {
1286 		switch (dynp->d_tag) {
1287 		case DT_REL:
1288 			obj->rel = (const Elf_Rel *)(obj->relocbase +
1289 			    dynp->d_un.d_ptr);
1290 			break;
1291 
1292 		case DT_RELSZ:
1293 			obj->relsize = dynp->d_un.d_val;
1294 			break;
1295 
1296 		case DT_RELENT:
1297 			assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1298 			break;
1299 
1300 		case DT_JMPREL:
1301 			obj->pltrel = (const Elf_Rel *)(obj->relocbase +
1302 			    dynp->d_un.d_ptr);
1303 			break;
1304 
1305 		case DT_PLTRELSZ:
1306 			obj->pltrelsize = dynp->d_un.d_val;
1307 			break;
1308 
1309 		case DT_RELA:
1310 			obj->rela = (const Elf_Rela *)(obj->relocbase +
1311 			    dynp->d_un.d_ptr);
1312 			break;
1313 
1314 		case DT_RELASZ:
1315 			obj->relasize = dynp->d_un.d_val;
1316 			break;
1317 
1318 		case DT_RELAENT:
1319 			assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1320 			break;
1321 
1322 		case DT_RELR:
1323 			obj->relr = (const Elf_Relr *)(obj->relocbase +
1324 			    dynp->d_un.d_ptr);
1325 			break;
1326 
1327 		case DT_RELRSZ:
1328 			obj->relrsize = dynp->d_un.d_val;
1329 			break;
1330 
1331 		case DT_RELRENT:
1332 			assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1333 			break;
1334 
1335 		case DT_PLTREL:
1336 			plttype = dynp->d_un.d_val;
1337 			assert(
1338 			    dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1339 			break;
1340 
1341 		case DT_SYMTAB:
1342 			obj->symtab = (const Elf_Sym *)(obj->relocbase +
1343 			    dynp->d_un.d_ptr);
1344 			break;
1345 
1346 		case DT_SYMENT:
1347 			assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1348 			break;
1349 
1350 		case DT_STRTAB:
1351 			obj->strtab = (const char *)(obj->relocbase +
1352 			    dynp->d_un.d_ptr);
1353 			break;
1354 
1355 		case DT_STRSZ:
1356 			obj->strsize = dynp->d_un.d_val;
1357 			break;
1358 
1359 		case DT_VERNEED:
1360 			obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1361 			    dynp->d_un.d_val);
1362 			break;
1363 
1364 		case DT_VERNEEDNUM:
1365 			obj->verneednum = dynp->d_un.d_val;
1366 			break;
1367 
1368 		case DT_VERDEF:
1369 			obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1370 			    dynp->d_un.d_val);
1371 			break;
1372 
1373 		case DT_VERDEFNUM:
1374 			obj->verdefnum = dynp->d_un.d_val;
1375 			break;
1376 
1377 		case DT_VERSYM:
1378 			obj->versyms = (const Elf_Versym *)(obj->relocbase +
1379 			    dynp->d_un.d_val);
1380 			break;
1381 
1382 		case DT_HASH: {
1383 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1384 			    dynp->d_un.d_ptr);
1385 			obj->nbuckets = hashtab[0];
1386 			obj->nchains = hashtab[1];
1387 			obj->buckets = hashtab + 2;
1388 			obj->chains = obj->buckets + obj->nbuckets;
1389 			obj->valid_hash_sysv = obj->nbuckets > 0 &&
1390 			    obj->nchains > 0 && obj->buckets != NULL;
1391 		} break;
1392 
1393 		case DT_GNU_HASH: {
1394 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1395 			    dynp->d_un.d_ptr);
1396 			obj->nbuckets_gnu = hashtab[0];
1397 			obj->symndx_gnu = hashtab[1];
1398 			nmaskwords = hashtab[2];
1399 			bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1400 			obj->maskwords_bm_gnu = nmaskwords - 1;
1401 			obj->shift2_gnu = hashtab[3];
1402 			obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1403 			obj->buckets_gnu = hashtab + 4 + bloom_size32;
1404 			obj->chain_zero_gnu = obj->buckets_gnu +
1405 			    obj->nbuckets_gnu - obj->symndx_gnu;
1406 			/* Number of bitmask words is required to be power of 2
1407 			 */
1408 			obj->valid_hash_gnu = powerof2(nmaskwords) &&
1409 			    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1410 		} break;
1411 
1412 		case DT_NEEDED:
1413 			if (!obj->rtld) {
1414 				Needed_Entry *nep = NEW(Needed_Entry);
1415 				nep->name = dynp->d_un.d_val;
1416 				nep->obj = NULL;
1417 				nep->next = NULL;
1418 
1419 				*needed_tail = nep;
1420 				needed_tail = &nep->next;
1421 			}
1422 			break;
1423 
1424 		case DT_FILTER:
1425 			if (!obj->rtld) {
1426 				Needed_Entry *nep = NEW(Needed_Entry);
1427 				nep->name = dynp->d_un.d_val;
1428 				nep->obj = NULL;
1429 				nep->next = NULL;
1430 
1431 				*needed_filtees_tail = nep;
1432 				needed_filtees_tail = &nep->next;
1433 
1434 				if (obj->linkmap.l_refname == NULL)
1435 					obj->linkmap.l_refname =
1436 					    (char *)dynp->d_un.d_val;
1437 			}
1438 			break;
1439 
1440 		case DT_AUXILIARY:
1441 			if (!obj->rtld) {
1442 				Needed_Entry *nep = NEW(Needed_Entry);
1443 				nep->name = dynp->d_un.d_val;
1444 				nep->obj = NULL;
1445 				nep->next = NULL;
1446 
1447 				*needed_aux_filtees_tail = nep;
1448 				needed_aux_filtees_tail = &nep->next;
1449 			}
1450 			break;
1451 
1452 		case DT_PLTGOT:
1453 			obj->pltgot = (Elf_Addr *)(obj->relocbase +
1454 			    dynp->d_un.d_ptr);
1455 			break;
1456 
1457 		case DT_TEXTREL:
1458 			obj->textrel = true;
1459 			break;
1460 
1461 		case DT_SYMBOLIC:
1462 			obj->symbolic = true;
1463 			break;
1464 
1465 		case DT_RPATH:
1466 			/*
1467 			 * We have to wait until later to process this, because
1468 			 * we might not have gotten the address of the string
1469 			 * table yet.
1470 			 */
1471 			*dyn_rpath = dynp;
1472 			break;
1473 
1474 		case DT_SONAME:
1475 			*dyn_soname = dynp;
1476 			break;
1477 
1478 		case DT_RUNPATH:
1479 			*dyn_runpath = dynp;
1480 			break;
1481 
1482 		case DT_INIT:
1483 			obj->init = (Elf_Addr)(obj->relocbase +
1484 			    dynp->d_un.d_ptr);
1485 			break;
1486 
1487 		case DT_PREINIT_ARRAY:
1488 			obj->preinit_array = (Elf_Addr)(obj->relocbase +
1489 			    dynp->d_un.d_ptr);
1490 			break;
1491 
1492 		case DT_PREINIT_ARRAYSZ:
1493 			obj->preinit_array_num = dynp->d_un.d_val /
1494 			    sizeof(Elf_Addr);
1495 			break;
1496 
1497 		case DT_INIT_ARRAY:
1498 			obj->init_array = (Elf_Addr)(obj->relocbase +
1499 			    dynp->d_un.d_ptr);
1500 			break;
1501 
1502 		case DT_INIT_ARRAYSZ:
1503 			obj->init_array_num = dynp->d_un.d_val /
1504 			    sizeof(Elf_Addr);
1505 			break;
1506 
1507 		case DT_FINI:
1508 			obj->fini = (Elf_Addr)(obj->relocbase +
1509 			    dynp->d_un.d_ptr);
1510 			break;
1511 
1512 		case DT_FINI_ARRAY:
1513 			obj->fini_array = (Elf_Addr)(obj->relocbase +
1514 			    dynp->d_un.d_ptr);
1515 			break;
1516 
1517 		case DT_FINI_ARRAYSZ:
1518 			obj->fini_array_num = dynp->d_un.d_val /
1519 			    sizeof(Elf_Addr);
1520 			break;
1521 
1522 		case DT_DEBUG:
1523 			if (!early)
1524 				dbg("Filling in DT_DEBUG entry");
1525 			(__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr =
1526 			    (Elf_Addr)&r_debug;
1527 			break;
1528 
1529 		case DT_FLAGS:
1530 			if (dynp->d_un.d_val & DF_ORIGIN)
1531 				obj->z_origin = true;
1532 			if (dynp->d_un.d_val & DF_SYMBOLIC)
1533 				obj->symbolic = true;
1534 			if (dynp->d_un.d_val & DF_TEXTREL)
1535 				obj->textrel = true;
1536 			if (dynp->d_un.d_val & DF_BIND_NOW)
1537 				obj->bind_now = true;
1538 			if (dynp->d_un.d_val & DF_STATIC_TLS)
1539 				obj->static_tls = true;
1540 			break;
1541 
1542 		case DT_FLAGS_1:
1543 			if (dynp->d_un.d_val & DF_1_NOOPEN)
1544 				obj->z_noopen = true;
1545 			if (dynp->d_un.d_val & DF_1_ORIGIN)
1546 				obj->z_origin = true;
1547 			if (dynp->d_un.d_val & DF_1_GLOBAL)
1548 				obj->z_global = true;
1549 			if (dynp->d_un.d_val & DF_1_BIND_NOW)
1550 				obj->bind_now = true;
1551 			if (dynp->d_un.d_val & DF_1_NODELETE)
1552 				obj->z_nodelete = true;
1553 			if (dynp->d_un.d_val & DF_1_LOADFLTR)
1554 				obj->z_loadfltr = true;
1555 			if (dynp->d_un.d_val & DF_1_INTERPOSE)
1556 				obj->z_interpose = true;
1557 			if (dynp->d_un.d_val & DF_1_NODEFLIB)
1558 				obj->z_nodeflib = true;
1559 			if (dynp->d_un.d_val & DF_1_PIE)
1560 				obj->z_pie = true;
1561 			break;
1562 
1563 		default:
1564 			if (arch_digest_dynamic(obj, dynp))
1565 				break;
1566 
1567 			if (!early) {
1568 				dbg("Ignoring d_tag %ld = %#lx",
1569 				    (long)dynp->d_tag, (long)dynp->d_tag);
1570 			}
1571 			break;
1572 		}
1573 	}
1574 
1575 	obj->traced = false;
1576 
1577 	if (plttype == DT_RELA) {
1578 		obj->pltrela = (const Elf_Rela *)obj->pltrel;
1579 		obj->pltrel = NULL;
1580 		obj->pltrelasize = obj->pltrelsize;
1581 		obj->pltrelsize = 0;
1582 	}
1583 
1584 	/* Determine size of dynsym table (equal to nchains of sysv hash) */
1585 	if (obj->valid_hash_sysv)
1586 		obj->dynsymcount = obj->nchains;
1587 	else if (obj->valid_hash_gnu) {
1588 		obj->dynsymcount = 0;
1589 		for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1590 			if (obj->buckets_gnu[bkt] == 0)
1591 				continue;
1592 			hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1593 			do
1594 				obj->dynsymcount++;
1595 			while ((*hashval++ & 1u) == 0);
1596 		}
1597 		obj->dynsymcount += obj->symndx_gnu;
1598 	}
1599 
1600 	if (obj->linkmap.l_refname != NULL)
1601 		obj->linkmap.l_refname = obj->strtab +
1602 		    (unsigned long)obj->linkmap.l_refname;
1603 }
1604 
1605 static bool
obj_resolve_origin(Obj_Entry * obj)1606 obj_resolve_origin(Obj_Entry *obj)
1607 {
1608 	if (obj->origin_path != NULL)
1609 		return (true);
1610 	obj->origin_path = xmalloc(PATH_MAX);
1611 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1612 }
1613 
1614 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1615 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1616     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1617 {
1618 	if (obj->z_origin && !obj_resolve_origin(obj))
1619 		return (false);
1620 
1621 	if (dyn_runpath != NULL) {
1622 		obj->runpath = (const char *)obj->strtab +
1623 		    dyn_runpath->d_un.d_val;
1624 		obj->runpath = origin_subst(obj, obj->runpath);
1625 	} else if (dyn_rpath != NULL) {
1626 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1627 		obj->rpath = origin_subst(obj, obj->rpath);
1628 	}
1629 	if (dyn_soname != NULL)
1630 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1631 	return (true);
1632 }
1633 
1634 static bool
digest_dynamic(Obj_Entry * obj,int early)1635 digest_dynamic(Obj_Entry *obj, int early)
1636 {
1637 	const Elf_Dyn *dyn_rpath;
1638 	const Elf_Dyn *dyn_soname;
1639 	const Elf_Dyn *dyn_runpath;
1640 
1641 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1642 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1643 }
1644 
1645 /*
1646  * Process a shared object's program header.  This is used only for the
1647  * main program, when the kernel has already loaded the main program
1648  * into memory before calling the dynamic linker.  It creates and
1649  * returns an Obj_Entry structure.
1650  */
1651 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1652 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1653 {
1654 	Obj_Entry *obj;
1655 	const Elf_Phdr *phlimit = phdr + phnum;
1656 	const Elf_Phdr *ph;
1657 	Elf_Addr note_start, note_end;
1658 	int nsegs = 0;
1659 
1660 	obj = obj_new();
1661 	for (ph = phdr; ph < phlimit; ph++) {
1662 		if (ph->p_type != PT_PHDR)
1663 			continue;
1664 
1665 		obj->phdr = phdr;
1666 		obj->phsize = ph->p_memsz;
1667 		obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1668 		break;
1669 	}
1670 
1671 	obj->stack_flags = PF_X | PF_R | PF_W;
1672 
1673 	for (ph = phdr; ph < phlimit; ph++) {
1674 		switch (ph->p_type) {
1675 		case PT_INTERP:
1676 			obj->interp = (const char *)(ph->p_vaddr +
1677 			    obj->relocbase);
1678 			break;
1679 
1680 		case PT_LOAD:
1681 			if (nsegs == 0) { /* First load segment */
1682 				obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1683 				obj->mapbase = obj->vaddrbase + obj->relocbase;
1684 			} else { /* Last load segment */
1685 				obj->mapsize = rtld_round_page(
1686 				    ph->p_vaddr + ph->p_memsz) -
1687 				    obj->vaddrbase;
1688 			}
1689 			nsegs++;
1690 			break;
1691 
1692 		case PT_DYNAMIC:
1693 			obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr +
1694 			    obj->relocbase);
1695 			break;
1696 
1697 		case PT_TLS:
1698 			obj->tlsindex = 1;
1699 			obj->tlssize = ph->p_memsz;
1700 			obj->tlsalign = ph->p_align;
1701 			obj->tlsinitsize = ph->p_filesz;
1702 			obj->tlsinit = (void *)(ph->p_vaddr + obj->relocbase);
1703 			obj->tlspoffset = ph->p_offset;
1704 			break;
1705 
1706 		case PT_GNU_STACK:
1707 			obj->stack_flags = ph->p_flags;
1708 			break;
1709 
1710 		case PT_NOTE:
1711 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1712 			note_end = note_start + ph->p_filesz;
1713 			digest_notes(obj, note_start, note_end);
1714 			break;
1715 		}
1716 	}
1717 	if (nsegs < 1) {
1718 		_rtld_error("%s: too few PT_LOAD segments", path);
1719 		return (NULL);
1720 	}
1721 
1722 	obj->entry = entry;
1723 	return (obj);
1724 }
1725 
1726 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1727 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1728 {
1729 	const Elf_Note *note;
1730 	const char *note_name;
1731 	uintptr_t p;
1732 
1733 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1734 	    note = (const Elf_Note *)((const char *)(note + 1) +
1735 		roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1736 		roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1737 		if (arch_digest_note(obj, note))
1738 			continue;
1739 
1740 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1741 		    note->n_descsz != sizeof(int32_t))
1742 			continue;
1743 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1744 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1745 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1746 			continue;
1747 		note_name = (const char *)(note + 1);
1748 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1749 			sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1750 			continue;
1751 		switch (note->n_type) {
1752 		case NT_FREEBSD_ABI_TAG:
1753 			/* FreeBSD osrel note */
1754 			p = (uintptr_t)(note + 1);
1755 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1756 			obj->osrel = *(const int32_t *)(p);
1757 			dbg("note osrel %d", obj->osrel);
1758 			break;
1759 		case NT_FREEBSD_FEATURE_CTL:
1760 			/* FreeBSD ABI feature control note */
1761 			p = (uintptr_t)(note + 1);
1762 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1763 			obj->fctl0 = *(const uint32_t *)(p);
1764 			dbg("note fctl0 %#x", obj->fctl0);
1765 			break;
1766 		case NT_FREEBSD_NOINIT_TAG:
1767 			/* FreeBSD 'crt does not call init' note */
1768 			obj->crt_no_init = true;
1769 			dbg("note crt_no_init");
1770 			break;
1771 		}
1772 	}
1773 }
1774 
1775 static Obj_Entry *
dlcheck(void * handle)1776 dlcheck(void *handle)
1777 {
1778 	Obj_Entry *obj;
1779 
1780 	TAILQ_FOREACH(obj, &obj_list, next) {
1781 		if (obj == (Obj_Entry *)handle)
1782 			break;
1783 	}
1784 
1785 	if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1786 		_rtld_error("Invalid shared object handle %p", handle);
1787 		return (NULL);
1788 	}
1789 	return (obj);
1790 }
1791 
1792 /*
1793  * If the given object is already in the donelist, return true.  Otherwise
1794  * add the object to the list and return false.
1795  */
1796 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1797 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1798 {
1799 	unsigned int i;
1800 
1801 	for (i = 0; i < dlp->num_used; i++)
1802 		if (dlp->objs[i] == obj)
1803 			return (true);
1804 	/*
1805 	 * Our donelist allocation should always be sufficient.  But if
1806 	 * our threads locking isn't working properly, more shared objects
1807 	 * could have been loaded since we allocated the list.  That should
1808 	 * never happen, but we'll handle it properly just in case it does.
1809 	 */
1810 	if (dlp->num_used < dlp->num_alloc)
1811 		dlp->objs[dlp->num_used++] = obj;
1812 	return (false);
1813 }
1814 
1815 /*
1816  * SysV hash function for symbol table lookup.  It is a slightly optimized
1817  * version of the hash specified by the System V ABI.
1818  */
1819 Elf32_Word
elf_hash(const char * name)1820 elf_hash(const char *name)
1821 {
1822 	const unsigned char *p = (const unsigned char *)name;
1823 	Elf32_Word h = 0;
1824 
1825 	while (*p != '\0') {
1826 		h = (h << 4) + *p++;
1827 		h ^= (h >> 24) & 0xf0;
1828 	}
1829 	return (h & 0x0fffffff);
1830 }
1831 
1832 /*
1833  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1834  * unsigned in case it's implemented with a wider type.
1835  */
1836 static uint32_t
gnu_hash(const char * s)1837 gnu_hash(const char *s)
1838 {
1839 	uint32_t h;
1840 	unsigned char c;
1841 
1842 	h = 5381;
1843 	for (c = *s; c != '\0'; c = *++s)
1844 		h = h * 33 + c;
1845 	return (h & 0xffffffff);
1846 }
1847 
1848 /*
1849  * Find the library with the given name, and return its full pathname.
1850  * The returned string is dynamically allocated.  Generates an error
1851  * message and returns NULL if the library cannot be found.
1852  *
1853  * If the second argument is non-NULL, then it refers to an already-
1854  * loaded shared object, whose library search path will be searched.
1855  *
1856  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1857  * descriptor (which is close-on-exec) will be passed out via the third
1858  * argument.
1859  *
1860  * The search order is:
1861  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1862  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1863  *   LD_LIBRARY_PATH
1864  *   DT_RUNPATH in the referencing file
1865  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1866  *	 from list)
1867  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1868  *
1869  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1870  */
1871 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1872 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1873 {
1874 	char *pathname, *refobj_path;
1875 	const char *name;
1876 	bool nodeflib, objgiven;
1877 
1878 	objgiven = refobj != NULL;
1879 
1880 	if (libmap_disable || !objgiven ||
1881 	    (name = lm_find(refobj->path, xname)) == NULL)
1882 		name = xname;
1883 
1884 	if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1885 		if (name[0] != '/' && !trust) {
1886 			_rtld_error(
1887 		    "Absolute pathname required for shared object \"%s\"",
1888 			    name);
1889 			return (NULL);
1890 		}
1891 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1892 		    __DECONST(char *, name)));
1893 	}
1894 
1895 	dbg(" Searching for \"%s\"", name);
1896 	refobj_path = objgiven ? refobj->path : NULL;
1897 
1898 	/*
1899 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1900 	 * back to pre-conforming behaviour if user requested so with
1901 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1902 	 * nodeflib.
1903 	 */
1904 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1905 		pathname = search_library_path(name, ld_library_path,
1906 		    refobj_path, fdp);
1907 		if (pathname != NULL)
1908 			return (pathname);
1909 		if (refobj != NULL) {
1910 			pathname = search_library_path(name, refobj->rpath,
1911 			    refobj_path, fdp);
1912 			if (pathname != NULL)
1913 				return (pathname);
1914 		}
1915 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1916 		if (pathname != NULL)
1917 			return (pathname);
1918 		pathname = search_library_path(name, gethints(false),
1919 		    refobj_path, fdp);
1920 		if (pathname != NULL)
1921 			return (pathname);
1922 		pathname = search_library_path(name, ld_standard_library_path,
1923 		    refobj_path, fdp);
1924 		if (pathname != NULL)
1925 			return (pathname);
1926 	} else {
1927 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1928 		if (objgiven) {
1929 			pathname = search_library_path(name, refobj->rpath,
1930 			    refobj->path, fdp);
1931 			if (pathname != NULL)
1932 				return (pathname);
1933 		}
1934 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1935 			pathname = search_library_path(name, obj_main->rpath,
1936 			    refobj_path, fdp);
1937 			if (pathname != NULL)
1938 				return (pathname);
1939 		}
1940 		pathname = search_library_path(name, ld_library_path,
1941 		    refobj_path, fdp);
1942 		if (pathname != NULL)
1943 			return (pathname);
1944 		if (objgiven) {
1945 			pathname = search_library_path(name, refobj->runpath,
1946 			    refobj_path, fdp);
1947 			if (pathname != NULL)
1948 				return (pathname);
1949 		}
1950 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1951 		if (pathname != NULL)
1952 			return (pathname);
1953 		pathname = search_library_path(name, gethints(nodeflib),
1954 		    refobj_path, fdp);
1955 		if (pathname != NULL)
1956 			return (pathname);
1957 		if (objgiven && !nodeflib) {
1958 			pathname = search_library_path(name,
1959 			    ld_standard_library_path, refobj_path, fdp);
1960 			if (pathname != NULL)
1961 				return (pathname);
1962 		}
1963 	}
1964 
1965 	if (objgiven && refobj->path != NULL) {
1966 		_rtld_error(
1967 	    "Shared object \"%s\" not found, required by \"%s\"",
1968 		    name, basename(refobj->path));
1969 	} else {
1970 		_rtld_error("Shared object \"%s\" not found", name);
1971 	}
1972 	return (NULL);
1973 }
1974 
1975 /*
1976  * Given a symbol number in a referencing object, find the corresponding
1977  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1978  * no definition was found.  Returns a pointer to the Obj_Entry of the
1979  * defining object via the reference parameter DEFOBJ_OUT.
1980  */
1981 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1982 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1983     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1984     RtldLockState *lockstate)
1985 {
1986 	const Elf_Sym *ref;
1987 	const Elf_Sym *def;
1988 	const Obj_Entry *defobj;
1989 	const Ver_Entry *ve;
1990 	SymLook req;
1991 	const char *name;
1992 	int res;
1993 
1994 	/*
1995 	 * If we have already found this symbol, get the information from
1996 	 * the cache.
1997 	 */
1998 	if (symnum >= refobj->dynsymcount)
1999 		return (NULL); /* Bad object */
2000 	if (cache != NULL && cache[symnum].sym != NULL) {
2001 		*defobj_out = cache[symnum].obj;
2002 		return (cache[symnum].sym);
2003 	}
2004 
2005 	ref = refobj->symtab + symnum;
2006 	name = refobj->strtab + ref->st_name;
2007 	def = NULL;
2008 	defobj = NULL;
2009 	ve = NULL;
2010 
2011 	/*
2012 	 * We don't have to do a full scale lookup if the symbol is local.
2013 	 * We know it will bind to the instance in this load module; to
2014 	 * which we already have a pointer (ie ref). By not doing a lookup,
2015 	 * we not only improve performance, but it also avoids unresolvable
2016 	 * symbols when local symbols are not in the hash table. This has
2017 	 * been seen with the ia64 toolchain.
2018 	 */
2019 	if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2020 		if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2021 			_rtld_error("%s: Bogus symbol table entry %lu",
2022 			    refobj->path, symnum);
2023 		}
2024 		symlook_init(&req, name);
2025 		req.flags = flags;
2026 		ve = req.ventry = fetch_ventry(refobj, symnum);
2027 		req.lockstate = lockstate;
2028 		res = symlook_default(&req, refobj);
2029 		if (res == 0) {
2030 			def = req.sym_out;
2031 			defobj = req.defobj_out;
2032 		}
2033 	} else {
2034 		def = ref;
2035 		defobj = refobj;
2036 	}
2037 
2038 	/*
2039 	 * If we found no definition and the reference is weak, treat the
2040 	 * symbol as having the value zero.
2041 	 */
2042 	if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2043 		def = &sym_zero;
2044 		defobj = obj_main;
2045 	}
2046 
2047 	if (def != NULL) {
2048 		*defobj_out = defobj;
2049 		/*
2050 		 * Record the information in the cache to avoid subsequent
2051 		 * lookups.
2052 		 */
2053 		if (cache != NULL) {
2054 			cache[symnum].sym = def;
2055 			cache[symnum].obj = defobj;
2056 		}
2057 	} else {
2058 		if (refobj != &obj_rtld)
2059 			_rtld_error("%s: Undefined symbol \"%s%s%s\"",
2060 			    refobj->path, name, ve != NULL ? "@" : "",
2061 			    ve != NULL ? ve->name : "");
2062 	}
2063 	return (def);
2064 }
2065 
2066 /* Convert between native byte order and forced little resp. big endian. */
2067 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2068 
2069 /*
2070  * Return the search path from the ldconfig hints file, reading it if
2071  * necessary.  If nostdlib is true, then the default search paths are
2072  * not added to result.
2073  *
2074  * Returns NULL if there are problems with the hints file,
2075  * or if the search path there is empty.
2076  */
2077 static const char *
gethints(bool nostdlib)2078 gethints(bool nostdlib)
2079 {
2080 	static char *filtered_path;
2081 	static const char *hints;
2082 	static struct elfhints_hdr hdr;
2083 	struct fill_search_info_args sargs, hargs;
2084 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2085 	struct dl_serpath *SLPpath, *hintpath;
2086 	char *p;
2087 	struct stat hint_stat;
2088 	unsigned int SLPndx, hintndx, fndx, fcount;
2089 	int fd;
2090 	size_t flen;
2091 	uint32_t dl;
2092 	uint32_t magic;	     /* Magic number */
2093 	uint32_t version;    /* File version (1) */
2094 	uint32_t strtab;     /* Offset of string table in file */
2095 	uint32_t dirlist;    /* Offset of directory list in string table */
2096 	uint32_t dirlistlen; /* strlen(dirlist) */
2097 	bool is_le;	     /* Does the hints file use little endian */
2098 	bool skip;
2099 
2100 	/* First call, read the hints file */
2101 	if (hints == NULL) {
2102 		/* Keep from trying again in case the hints file is bad. */
2103 		hints = "";
2104 
2105 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) ==
2106 		    -1) {
2107 			dbg("failed to open hints file \"%s\"",
2108 			    ld_elf_hints_path);
2109 			return (NULL);
2110 		}
2111 
2112 		/*
2113 		 * Check of hdr.dirlistlen value against type limit
2114 		 * intends to pacify static analyzers.  Further
2115 		 * paranoia leads to checks that dirlist is fully
2116 		 * contained in the file range.
2117 		 */
2118 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2119 			dbg("failed to read %lu bytes from hints file \"%s\"",
2120 			    (u_long)sizeof hdr, ld_elf_hints_path);
2121 cleanup1:
2122 			close(fd);
2123 			hdr.dirlistlen = 0;
2124 			return (NULL);
2125 		}
2126 		dbg("host byte-order: %s-endian",
2127 		    le32toh(1) == 1 ? "little" : "big");
2128 		dbg("hints file byte-order: %s-endian",
2129 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2130 		is_le = /*htole32(1) == 1 || */ hdr.magic ==
2131 		    htole32(ELFHINTS_MAGIC);
2132 		magic = COND_SWAP(hdr.magic);
2133 		version = COND_SWAP(hdr.version);
2134 		strtab = COND_SWAP(hdr.strtab);
2135 		dirlist = COND_SWAP(hdr.dirlist);
2136 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2137 		if (magic != ELFHINTS_MAGIC) {
2138 			dbg("invalid magic number %#08x (expected: %#08x)",
2139 			    magic, ELFHINTS_MAGIC);
2140 			goto cleanup1;
2141 		}
2142 		if (version != 1) {
2143 			dbg("hints file version %d (expected: 1)", version);
2144 			goto cleanup1;
2145 		}
2146 		if (dirlistlen > UINT_MAX / 2) {
2147 			dbg("directory list is to long: %d > %d", dirlistlen,
2148 			    UINT_MAX / 2);
2149 			goto cleanup1;
2150 		}
2151 		if (fstat(fd, &hint_stat) == -1) {
2152 			dbg("failed to find length of hints file \"%s\"",
2153 			    ld_elf_hints_path);
2154 			goto cleanup1;
2155 		}
2156 		dl = strtab;
2157 		if (dl + dirlist < dl) {
2158 			dbg("invalid string table position %d", dl);
2159 			goto cleanup1;
2160 		}
2161 		dl += dirlist;
2162 		if (dl + dirlistlen < dl) {
2163 			dbg("invalid directory list offset %d", dirlist);
2164 			goto cleanup1;
2165 		}
2166 		dl += dirlistlen;
2167 		if (dl > hint_stat.st_size) {
2168 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2169 			    ld_elf_hints_path, dl,
2170 			    (uintmax_t)hint_stat.st_size);
2171 			goto cleanup1;
2172 		}
2173 		p = xmalloc(dirlistlen + 1);
2174 		if (pread(fd, p, dirlistlen + 1, strtab + dirlist) !=
2175 		    (ssize_t)dirlistlen + 1 || p[dirlistlen] != '\0') {
2176 			free(p);
2177 			dbg(
2178 	    "failed to read %d bytes starting at %d from hints file \"%s\"",
2179 			    dirlistlen + 1, strtab + dirlist,
2180 			    ld_elf_hints_path);
2181 			goto cleanup1;
2182 		}
2183 		hints = p;
2184 		close(fd);
2185 	}
2186 
2187 	/*
2188 	 * If caller agreed to receive list which includes the default
2189 	 * paths, we are done. Otherwise, if we still did not
2190 	 * calculated filtered result, do it now.
2191 	 */
2192 	if (!nostdlib)
2193 		return (hints[0] != '\0' ? hints : NULL);
2194 	if (filtered_path != NULL)
2195 		goto filt_ret;
2196 
2197 	/*
2198 	 * Obtain the list of all configured search paths, and the
2199 	 * list of the default paths.
2200 	 *
2201 	 * First estimate the size of the results.
2202 	 */
2203 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2204 	smeta.dls_cnt = 0;
2205 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2206 	hmeta.dls_cnt = 0;
2207 
2208 	sargs.request = RTLD_DI_SERINFOSIZE;
2209 	sargs.serinfo = &smeta;
2210 	hargs.request = RTLD_DI_SERINFOSIZE;
2211 	hargs.serinfo = &hmeta;
2212 
2213 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2214 	    &sargs);
2215 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2216 
2217 	SLPinfo = xmalloc(smeta.dls_size);
2218 	hintinfo = xmalloc(hmeta.dls_size);
2219 
2220 	/*
2221 	 * Next fetch both sets of paths.
2222 	 */
2223 	sargs.request = RTLD_DI_SERINFO;
2224 	sargs.serinfo = SLPinfo;
2225 	sargs.serpath = &SLPinfo->dls_serpath[0];
2226 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2227 
2228 	hargs.request = RTLD_DI_SERINFO;
2229 	hargs.serinfo = hintinfo;
2230 	hargs.serpath = &hintinfo->dls_serpath[0];
2231 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2232 
2233 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2234 	    &sargs);
2235 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2236 
2237 	/*
2238 	 * Now calculate the difference between two sets, by excluding
2239 	 * standard paths from the full set.
2240 	 */
2241 	fndx = 0;
2242 	fcount = 0;
2243 	filtered_path = xmalloc(dirlistlen + 1);
2244 	hintpath = &hintinfo->dls_serpath[0];
2245 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2246 		skip = false;
2247 		SLPpath = &SLPinfo->dls_serpath[0];
2248 		/*
2249 		 * Check each standard path against current.
2250 		 */
2251 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2252 			/* matched, skip the path */
2253 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2254 				skip = true;
2255 				break;
2256 			}
2257 		}
2258 		if (skip)
2259 			continue;
2260 		/*
2261 		 * Not matched against any standard path, add the path
2262 		 * to result. Separate consequtive paths with ':'.
2263 		 */
2264 		if (fcount > 0) {
2265 			filtered_path[fndx] = ':';
2266 			fndx++;
2267 		}
2268 		fcount++;
2269 		flen = strlen(hintpath->dls_name);
2270 		strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2271 		fndx += flen;
2272 	}
2273 	filtered_path[fndx] = '\0';
2274 
2275 	free(SLPinfo);
2276 	free(hintinfo);
2277 
2278 filt_ret:
2279 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2280 }
2281 
2282 static void
init_dag(Obj_Entry * root)2283 init_dag(Obj_Entry *root)
2284 {
2285 	const Needed_Entry *needed;
2286 	const Objlist_Entry *elm;
2287 	DoneList donelist;
2288 
2289 	if (root->dag_inited)
2290 		return;
2291 	donelist_init(&donelist);
2292 
2293 	/* Root object belongs to own DAG. */
2294 	objlist_push_tail(&root->dldags, root);
2295 	objlist_push_tail(&root->dagmembers, root);
2296 	donelist_check(&donelist, root);
2297 
2298 	/*
2299 	 * Add dependencies of root object to DAG in breadth order
2300 	 * by exploiting the fact that each new object get added
2301 	 * to the tail of the dagmembers list.
2302 	 */
2303 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2304 		for (needed = elm->obj->needed; needed != NULL;
2305 		    needed = needed->next) {
2306 			if (needed->obj == NULL ||
2307 			    donelist_check(&donelist, needed->obj))
2308 				continue;
2309 			objlist_push_tail(&needed->obj->dldags, root);
2310 			objlist_push_tail(&root->dagmembers, needed->obj);
2311 		}
2312 	}
2313 	root->dag_inited = true;
2314 }
2315 
2316 static void
init_marker(Obj_Entry * marker)2317 init_marker(Obj_Entry *marker)
2318 {
2319 	bzero(marker, sizeof(*marker));
2320 	marker->marker = true;
2321 }
2322 
2323 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2324 globallist_curr(const Obj_Entry *obj)
2325 {
2326 	for (;;) {
2327 		if (obj == NULL)
2328 			return (NULL);
2329 		if (!obj->marker)
2330 			return (__DECONST(Obj_Entry *, obj));
2331 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2332 	}
2333 }
2334 
2335 Obj_Entry *
globallist_next(const Obj_Entry * obj)2336 globallist_next(const Obj_Entry *obj)
2337 {
2338 	for (;;) {
2339 		obj = TAILQ_NEXT(obj, next);
2340 		if (obj == NULL)
2341 			return (NULL);
2342 		if (!obj->marker)
2343 			return (__DECONST(Obj_Entry *, obj));
2344 	}
2345 }
2346 
2347 /* Prevent the object from being unmapped while the bind lock is dropped. */
2348 static void
hold_object(Obj_Entry * obj)2349 hold_object(Obj_Entry *obj)
2350 {
2351 	obj->holdcount++;
2352 }
2353 
2354 static void
unhold_object(Obj_Entry * obj)2355 unhold_object(Obj_Entry *obj)
2356 {
2357 	assert(obj->holdcount > 0);
2358 	if (--obj->holdcount == 0 && obj->unholdfree)
2359 		release_object(obj);
2360 }
2361 
2362 static void
process_z(Obj_Entry * root)2363 process_z(Obj_Entry *root)
2364 {
2365 	const Objlist_Entry *elm;
2366 	Obj_Entry *obj;
2367 
2368 	/*
2369 	 * Walk over object DAG and process every dependent object
2370 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2371 	 * to grow their own DAG.
2372 	 *
2373 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2374 	 * symlook_global() to work.
2375 	 *
2376 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2377 	 */
2378 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2379 		obj = elm->obj;
2380 		if (obj == NULL)
2381 			continue;
2382 		if (obj->z_nodelete && !obj->ref_nodel) {
2383 			dbg("obj %s -z nodelete", obj->path);
2384 			init_dag(obj);
2385 			ref_dag(obj);
2386 			obj->ref_nodel = true;
2387 		}
2388 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2389 			dbg("obj %s -z global", obj->path);
2390 			objlist_push_tail(&list_global, obj);
2391 			init_dag(obj);
2392 		}
2393 	}
2394 }
2395 
2396 static void
parse_rtld_phdr(Obj_Entry * obj)2397 parse_rtld_phdr(Obj_Entry *obj)
2398 {
2399 	const Elf_Phdr *ph;
2400 	Elf_Addr note_start, note_end;
2401 
2402 	obj->stack_flags = PF_X | PF_R | PF_W;
2403 	for (ph = obj->phdr;
2404 	    (const char *)ph < (const char *)obj->phdr + obj->phsize; ph++) {
2405 		switch (ph->p_type) {
2406 		case PT_GNU_STACK:
2407 			obj->stack_flags = ph->p_flags;
2408 			break;
2409 		case PT_NOTE:
2410 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2411 			note_end = note_start + ph->p_filesz;
2412 			digest_notes(obj, note_start, note_end);
2413 			break;
2414 		}
2415 	}
2416 }
2417 
2418 /*
2419  * Initialize the dynamic linker.  The argument is the address at which
2420  * the dynamic linker has been mapped into memory.  The primary task of
2421  * this function is to relocate the dynamic linker.
2422  */
2423 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2424 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2425 {
2426 	Obj_Entry objtmp; /* Temporary rtld object */
2427 	const Elf_Ehdr *ehdr;
2428 	const Elf_Dyn *dyn_rpath;
2429 	const Elf_Dyn *dyn_soname;
2430 	const Elf_Dyn *dyn_runpath;
2431 
2432 	/*
2433 	 * Conjure up an Obj_Entry structure for the dynamic linker.
2434 	 *
2435 	 * The "path" member can't be initialized yet because string constants
2436 	 * cannot yet be accessed. Below we will set it correctly.
2437 	 */
2438 	memset(&objtmp, 0, sizeof(objtmp));
2439 	objtmp.path = NULL;
2440 	objtmp.rtld = true;
2441 	objtmp.mapbase = mapbase;
2442 #ifdef PIC
2443 	objtmp.relocbase = mapbase;
2444 #endif
2445 
2446 	objtmp.dynamic = rtld_dynamic(&objtmp);
2447 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2448 	assert(objtmp.needed == NULL);
2449 	assert(!objtmp.textrel);
2450 	/*
2451 	 * Temporarily put the dynamic linker entry into the object list, so
2452 	 * that symbols can be found.
2453 	 */
2454 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2455 
2456 	ehdr = (Elf_Ehdr *)mapbase;
2457 	objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2458 	objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2459 
2460 	/* Initialize the object list. */
2461 	TAILQ_INIT(&obj_list);
2462 
2463 	/* Now that non-local variables can be accesses, copy out obj_rtld. */
2464 	memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2465 
2466 	/* The page size is required by the dynamic memory allocator. */
2467 	init_pagesizes(aux_info);
2468 
2469 	if (aux_info[AT_OSRELDATE] != NULL)
2470 		osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2471 
2472 	digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2473 
2474 	/* Replace the path with a dynamically allocated copy. */
2475 	obj_rtld.path = xstrdup(ld_path_rtld);
2476 
2477 	parse_rtld_phdr(&obj_rtld);
2478 	if (obj_enforce_relro(&obj_rtld) == -1)
2479 		rtld_die();
2480 
2481 	r_debug.r_version = R_DEBUG_VERSION;
2482 	r_debug.r_brk = r_debug_state;
2483 	r_debug.r_state = RT_CONSISTENT;
2484 	r_debug.r_ldbase = obj_rtld.relocbase;
2485 }
2486 
2487 /*
2488  * Retrieve the array of supported page sizes.  The kernel provides the page
2489  * sizes in increasing order.
2490  */
2491 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2492 init_pagesizes(Elf_Auxinfo **aux_info)
2493 {
2494 	static size_t psa[MAXPAGESIZES];
2495 	int mib[2];
2496 	size_t len, size;
2497 
2498 	if (aux_info[AT_PAGESIZES] != NULL &&
2499 	    aux_info[AT_PAGESIZESLEN] != NULL) {
2500 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2501 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2502 	} else {
2503 		len = 2;
2504 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2505 			size = sizeof(psa);
2506 		else {
2507 			/* As a fallback, retrieve the base page size. */
2508 			size = sizeof(psa[0]);
2509 			if (aux_info[AT_PAGESZ] != NULL) {
2510 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2511 				goto psa_filled;
2512 			} else {
2513 				mib[0] = CTL_HW;
2514 				mib[1] = HW_PAGESIZE;
2515 				len = 2;
2516 			}
2517 		}
2518 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2519 			_rtld_error("sysctl for hw.pagesize(s) failed");
2520 			rtld_die();
2521 		}
2522 	psa_filled:
2523 		pagesizes = psa;
2524 	}
2525 	npagesizes = size / sizeof(pagesizes[0]);
2526 	/* Discard any invalid entries at the end of the array. */
2527 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2528 		npagesizes--;
2529 
2530 	page_size = pagesizes[0];
2531 }
2532 
2533 /*
2534  * Add the init functions from a needed object list (and its recursive
2535  * needed objects) to "list".  This is not used directly; it is a helper
2536  * function for initlist_add_objects().  The write lock must be held
2537  * when this function is called.
2538  */
2539 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list)2540 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2541 {
2542 	/* Recursively process the successor needed objects. */
2543 	if (needed->next != NULL)
2544 		initlist_add_neededs(needed->next, list);
2545 
2546 	/* Process the current needed object. */
2547 	if (needed->obj != NULL)
2548 		initlist_add_objects(needed->obj, needed->obj, list);
2549 }
2550 
2551 /*
2552  * Scan all of the DAGs rooted in the range of objects from "obj" to
2553  * "tail" and add their init functions to "list".  This recurses over
2554  * the DAGs and ensure the proper init ordering such that each object's
2555  * needed libraries are initialized before the object itself.  At the
2556  * same time, this function adds the objects to the global finalization
2557  * list "list_fini" in the opposite order.  The write lock must be
2558  * held when this function is called.
2559  */
2560 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2561 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2562 {
2563 	Obj_Entry *nobj;
2564 
2565 	if (obj->init_scanned || obj->init_done)
2566 		return;
2567 	obj->init_scanned = true;
2568 
2569 	/* Recursively process the successor objects. */
2570 	nobj = globallist_next(obj);
2571 	if (nobj != NULL && obj != tail)
2572 		initlist_add_objects(nobj, tail, list);
2573 
2574 	/* Recursively process the needed objects. */
2575 	if (obj->needed != NULL)
2576 		initlist_add_neededs(obj->needed, list);
2577 	if (obj->needed_filtees != NULL)
2578 		initlist_add_neededs(obj->needed_filtees, list);
2579 	if (obj->needed_aux_filtees != NULL)
2580 		initlist_add_neededs(obj->needed_aux_filtees, list);
2581 
2582 	/* Add the object to the init list. */
2583 	objlist_push_tail(list, obj);
2584 
2585 	/* Add the object to the global fini list in the reverse order. */
2586 	if ((obj->fini != (Elf_Addr)NULL ||
2587 		obj->fini_array != (Elf_Addr)NULL) &&
2588 	    !obj->on_fini_list) {
2589 		objlist_push_head(&list_fini, obj);
2590 		obj->on_fini_list = true;
2591 	}
2592 }
2593 
2594 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2595 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2596 {
2597 	Needed_Entry *needed, *needed1;
2598 
2599 	for (needed = n; needed != NULL; needed = needed->next) {
2600 		if (needed->obj != NULL) {
2601 			dlclose_locked(needed->obj, lockstate);
2602 			needed->obj = NULL;
2603 		}
2604 	}
2605 	for (needed = n; needed != NULL; needed = needed1) {
2606 		needed1 = needed->next;
2607 		free(needed);
2608 	}
2609 }
2610 
2611 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2612 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2613 {
2614 	free_needed_filtees(obj->needed_filtees, lockstate);
2615 	obj->needed_filtees = NULL;
2616 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2617 	obj->needed_aux_filtees = NULL;
2618 	obj->filtees_loaded = false;
2619 }
2620 
2621 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2622 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2623     RtldLockState *lockstate)
2624 {
2625 	for (; needed != NULL; needed = needed->next) {
2626 		needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2627 		    flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW :
2628 		    RTLD_LAZY) | RTLD_LOCAL, lockstate);
2629 	}
2630 }
2631 
2632 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2633 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2634 {
2635 	if (obj->filtees_loaded || obj->filtees_loading)
2636 		return;
2637 	lock_restart_for_upgrade(lockstate);
2638 	obj->filtees_loading = true;
2639 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2640 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2641 	obj->filtees_loaded = true;
2642 	obj->filtees_loading = false;
2643 }
2644 
2645 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2646 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2647 {
2648 	Obj_Entry *obj1;
2649 
2650 	for (; needed != NULL; needed = needed->next) {
2651 		obj1 = needed->obj = load_object(obj->strtab + needed->name, -1,
2652 		    obj, flags & ~RTLD_LO_NOLOAD);
2653 		if (obj1 == NULL && !ld_tracing &&
2654 		    (flags & RTLD_LO_FILTEES) == 0)
2655 			return (-1);
2656 	}
2657 	return (0);
2658 }
2659 
2660 /*
2661  * Given a shared object, traverse its list of needed objects, and load
2662  * each of them.  Returns 0 on success.  Generates an error message and
2663  * returns -1 on failure.
2664  */
2665 static int
load_needed_objects(Obj_Entry * first,int flags)2666 load_needed_objects(Obj_Entry *first, int flags)
2667 {
2668 	Obj_Entry *obj;
2669 
2670 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2671 		if (obj->marker)
2672 			continue;
2673 		if (process_needed(obj, obj->needed, flags) == -1)
2674 			return (-1);
2675 	}
2676 	return (0);
2677 }
2678 
2679 static int
load_preload_objects(const char * penv,bool isfd)2680 load_preload_objects(const char *penv, bool isfd)
2681 {
2682 	Obj_Entry *obj;
2683 	const char *name;
2684 	size_t len;
2685 	char savech, *p, *psave;
2686 	int fd;
2687 	static const char delim[] = " \t:;";
2688 
2689 	if (penv == NULL)
2690 		return (0);
2691 
2692 	p = psave = xstrdup(penv);
2693 	p += strspn(p, delim);
2694 	while (*p != '\0') {
2695 		len = strcspn(p, delim);
2696 
2697 		savech = p[len];
2698 		p[len] = '\0';
2699 		if (isfd) {
2700 			name = NULL;
2701 			fd = parse_integer(p);
2702 			if (fd == -1) {
2703 				free(psave);
2704 				return (-1);
2705 			}
2706 		} else {
2707 			name = p;
2708 			fd = -1;
2709 		}
2710 
2711 		obj = load_object(name, fd, NULL, 0);
2712 		if (obj == NULL) {
2713 			free(psave);
2714 			return (-1); /* XXX - cleanup */
2715 		}
2716 		obj->z_interpose = true;
2717 		p[len] = savech;
2718 		p += len;
2719 		p += strspn(p, delim);
2720 	}
2721 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2722 
2723 	free(psave);
2724 	return (0);
2725 }
2726 
2727 static const char *
printable_path(const char * path)2728 printable_path(const char *path)
2729 {
2730 	return (path == NULL ? "<unknown>" : path);
2731 }
2732 
2733 /*
2734  * Load a shared object into memory, if it is not already loaded.  The
2735  * object may be specified by name or by user-supplied file descriptor
2736  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2737  * duplicate is.
2738  *
2739  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2740  * on failure.
2741  */
2742 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2743 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2744 {
2745 	Obj_Entry *obj;
2746 	int fd;
2747 	struct stat sb;
2748 	char *path;
2749 
2750 	fd = -1;
2751 	if (name != NULL) {
2752 		TAILQ_FOREACH(obj, &obj_list, next) {
2753 			if (obj->marker || obj->doomed)
2754 				continue;
2755 			if (object_match_name(obj, name))
2756 				return (obj);
2757 		}
2758 
2759 		path = find_library(name, refobj, &fd);
2760 		if (path == NULL)
2761 			return (NULL);
2762 	} else
2763 		path = NULL;
2764 
2765 	if (fd >= 0) {
2766 		/*
2767 		 * search_library_pathfds() opens a fresh file descriptor for
2768 		 * the library, so there is no need to dup().
2769 		 */
2770 	} else if (fd_u == -1) {
2771 		/*
2772 		 * If we didn't find a match by pathname, or the name is not
2773 		 * supplied, open the file and check again by device and inode.
2774 		 * This avoids false mismatches caused by multiple links or ".."
2775 		 * in pathnames.
2776 		 *
2777 		 * To avoid a race, we open the file and use fstat() rather than
2778 		 * using stat().
2779 		 */
2780 		if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2781 			_rtld_error("Cannot open \"%s\"", path);
2782 			free(path);
2783 			return (NULL);
2784 		}
2785 	} else {
2786 		fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2787 		if (fd == -1) {
2788 			_rtld_error("Cannot dup fd");
2789 			free(path);
2790 			return (NULL);
2791 		}
2792 	}
2793 	if (fstat(fd, &sb) == -1) {
2794 		_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2795 		close(fd);
2796 		free(path);
2797 		return (NULL);
2798 	}
2799 	TAILQ_FOREACH(obj, &obj_list, next) {
2800 		if (obj->marker || obj->doomed)
2801 			continue;
2802 		if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2803 			break;
2804 	}
2805 	if (obj != NULL) {
2806 		if (name != NULL)
2807 			object_add_name(obj, name);
2808 		free(path);
2809 		close(fd);
2810 		return (obj);
2811 	}
2812 	if (flags & RTLD_LO_NOLOAD) {
2813 		free(path);
2814 		close(fd);
2815 		return (NULL);
2816 	}
2817 
2818 	/* First use of this object, so we must map it in */
2819 	obj = do_load_object(fd, name, path, &sb, flags);
2820 	if (obj == NULL)
2821 		free(path);
2822 	close(fd);
2823 
2824 	return (obj);
2825 }
2826 
2827 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2828 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2829     int flags)
2830 {
2831 	Obj_Entry *obj;
2832 	struct statfs fs;
2833 
2834 	/*
2835 	 * First, make sure that environment variables haven't been
2836 	 * used to circumvent the noexec flag on a filesystem.
2837 	 * We ignore fstatfs(2) failures, since fd might reference
2838 	 * not a file, e.g. shmfd.
2839 	 */
2840 	if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2841 	    (fs.f_flags & MNT_NOEXEC) != 0) {
2842 		_rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2843 		return (NULL);
2844 	}
2845 
2846 	dbg("loading \"%s\"", printable_path(path));
2847 	obj = map_object(fd, printable_path(path), sbp);
2848 	if (obj == NULL)
2849 		return (NULL);
2850 
2851 	/*
2852 	 * If DT_SONAME is present in the object, digest_dynamic2 already
2853 	 * added it to the object names.
2854 	 */
2855 	if (name != NULL)
2856 		object_add_name(obj, name);
2857 	obj->path = path;
2858 	if (!digest_dynamic(obj, 0))
2859 		goto errp;
2860 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2861 	    obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2862 	if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2863 		dbg("refusing to load PIE executable \"%s\"", obj->path);
2864 		_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2865 		goto errp;
2866 	}
2867 	if (obj->z_noopen &&
2868 	    (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) {
2869 		dbg("refusing to load non-loadable \"%s\"", obj->path);
2870 		_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2871 		goto errp;
2872 	}
2873 
2874 	obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2875 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2876 	obj_count++;
2877 	obj_loads++;
2878 	linkmap_add(obj); /* for GDB & dlinfo() */
2879 	max_stack_flags |= obj->stack_flags;
2880 
2881 	dbg("  %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
2882 	    obj->path);
2883 	if (obj->textrel)
2884 		dbg("  WARNING: %s has impure text", obj->path);
2885 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2886 	    obj->path);
2887 
2888 	return (obj);
2889 
2890 errp:
2891 	munmap(obj->mapbase, obj->mapsize);
2892 	obj_free(obj);
2893 	return (NULL);
2894 }
2895 
2896 static int
load_kpreload(const void * addr)2897 load_kpreload(const void *addr)
2898 {
2899 	Obj_Entry *obj;
2900 	const Elf_Ehdr *ehdr;
2901 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2902 	static const char kname[] = "[vdso]";
2903 
2904 	ehdr = addr;
2905 	if (!check_elf_headers(ehdr, "kpreload"))
2906 		return (-1);
2907 	obj = obj_new();
2908 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2909 	obj->phdr = phdr;
2910 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2911 	phlimit = phdr + ehdr->e_phnum;
2912 	seg0 = segn = NULL;
2913 
2914 	for (; phdr < phlimit; phdr++) {
2915 		switch (phdr->p_type) {
2916 		case PT_DYNAMIC:
2917 			phdyn = phdr;
2918 			break;
2919 		case PT_GNU_STACK:
2920 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2921 			obj->stack_flags = phdr->p_flags;
2922 			break;
2923 		case PT_LOAD:
2924 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2925 				seg0 = phdr;
2926 			if (segn == NULL ||
2927 			    segn->p_vaddr + segn->p_memsz <
2928 				phdr->p_vaddr + phdr->p_memsz)
2929 				segn = phdr;
2930 			break;
2931 		}
2932 	}
2933 
2934 	obj->mapbase = __DECONST(caddr_t, addr);
2935 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2936 	obj->vaddrbase = 0;
2937 	obj->relocbase = obj->mapbase;
2938 
2939 	object_add_name(obj, kname);
2940 	obj->path = xstrdup(kname);
2941 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2942 
2943 	if (!digest_dynamic(obj, 0)) {
2944 		obj_free(obj);
2945 		return (-1);
2946 	}
2947 
2948 	/*
2949 	 * We assume that kernel-preloaded object does not need
2950 	 * relocation.  It is currently written into read-only page,
2951 	 * handling relocations would mean we need to allocate at
2952 	 * least one additional page per AS.
2953 	 */
2954 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2955 	    obj->path, obj->mapbase, obj->phdr, seg0,
2956 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2957 
2958 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2959 	obj_count++;
2960 	obj_loads++;
2961 	linkmap_add(obj); /* for GDB & dlinfo() */
2962 	max_stack_flags |= obj->stack_flags;
2963 
2964 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2965 	return (0);
2966 }
2967 
2968 Obj_Entry *
obj_from_addr(const void * addr)2969 obj_from_addr(const void *addr)
2970 {
2971 	Obj_Entry *obj;
2972 
2973 	TAILQ_FOREACH(obj, &obj_list, next) {
2974 		if (obj->marker)
2975 			continue;
2976 		if (addr < (void *)obj->mapbase)
2977 			continue;
2978 		if (addr < (void *)(obj->mapbase + obj->mapsize))
2979 			return obj;
2980 	}
2981 	return (NULL);
2982 }
2983 
2984 static void
preinit_main(void)2985 preinit_main(void)
2986 {
2987 	Elf_Addr *preinit_addr;
2988 	int index;
2989 
2990 	preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2991 	if (preinit_addr == NULL)
2992 		return;
2993 
2994 	for (index = 0; index < obj_main->preinit_array_num; index++) {
2995 		if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2996 			dbg("calling preinit function for %s at %p",
2997 			    obj_main->path, (void *)preinit_addr[index]);
2998 			LD_UTRACE(UTRACE_INIT_CALL, obj_main,
2999 			    (void *)preinit_addr[index], 0, 0, obj_main->path);
3000 			call_init_pointer(obj_main, preinit_addr[index]);
3001 		}
3002 	}
3003 }
3004 
3005 /*
3006  * Call the finalization functions for each of the objects in "list"
3007  * belonging to the DAG of "root" and referenced once. If NULL "root"
3008  * is specified, every finalization function will be called regardless
3009  * of the reference count and the list elements won't be freed. All of
3010  * the objects are expected to have non-NULL fini functions.
3011  */
3012 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)3013 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3014 {
3015 	Objlist_Entry *elm;
3016 	struct dlerror_save *saved_msg;
3017 	Elf_Addr *fini_addr;
3018 	int index;
3019 
3020 	assert(root == NULL || root->refcount == 1);
3021 
3022 	if (root != NULL)
3023 		root->doomed = true;
3024 
3025 	/*
3026 	 * Preserve the current error message since a fini function might
3027 	 * call into the dynamic linker and overwrite it.
3028 	 */
3029 	saved_msg = errmsg_save();
3030 	do {
3031 		STAILQ_FOREACH(elm, list, link) {
3032 			if (root != NULL &&
3033 			    (elm->obj->refcount != 1 ||
3034 				objlist_find(&root->dagmembers, elm->obj) ==
3035 				    NULL))
3036 				continue;
3037 			/* Remove object from fini list to prevent recursive
3038 			 * invocation. */
3039 			STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3040 			/* Ensure that new references cannot be acquired. */
3041 			elm->obj->doomed = true;
3042 
3043 			hold_object(elm->obj);
3044 			lock_release(rtld_bind_lock, lockstate);
3045 			/*
3046 			 * It is legal to have both DT_FINI and DT_FINI_ARRAY
3047 			 * defined. When this happens, DT_FINI_ARRAY is
3048 			 * processed first.
3049 			 */
3050 			fini_addr = (Elf_Addr *)elm->obj->fini_array;
3051 			if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3052 				for (index = elm->obj->fini_array_num - 1;
3053 				    index >= 0; index--) {
3054 					if (fini_addr[index] != 0 &&
3055 					    fini_addr[index] != 1) {
3056 				dbg("calling fini function for %s at %p",
3057 						    elm->obj->path,
3058 						    (void *)fini_addr[index]);
3059 						LD_UTRACE(UTRACE_FINI_CALL,
3060 						    elm->obj,
3061 						    (void *)fini_addr[index], 0,
3062 						    0, elm->obj->path);
3063 						call_initfini_pointer(elm->obj,
3064 						    fini_addr[index]);
3065 					}
3066 				}
3067 			}
3068 			if (elm->obj->fini != (Elf_Addr)NULL) {
3069 				dbg("calling fini function for %s at %p",
3070 				    elm->obj->path, (void *)elm->obj->fini);
3071 				LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3072 				    (void *)elm->obj->fini, 0, 0,
3073 				    elm->obj->path);
3074 				call_initfini_pointer(elm->obj, elm->obj->fini);
3075 			}
3076 			wlock_acquire(rtld_bind_lock, lockstate);
3077 			unhold_object(elm->obj);
3078 			/* No need to free anything if process is going down. */
3079 			if (root != NULL)
3080 				free(elm);
3081 			/*
3082 			 * We must restart the list traversal after every fini
3083 			 * call because a dlclose() call from the fini function
3084 			 * or from another thread might have modified the
3085 			 * reference counts.
3086 			 */
3087 			break;
3088 		}
3089 	} while (elm != NULL);
3090 	errmsg_restore(saved_msg);
3091 }
3092 
3093 /*
3094  * Call the initialization functions for each of the objects in
3095  * "list".  All of the objects are expected to have non-NULL init
3096  * functions.
3097  */
3098 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3099 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3100 {
3101 	Objlist_Entry *elm;
3102 	Obj_Entry *obj;
3103 	struct dlerror_save *saved_msg;
3104 	Elf_Addr *init_addr;
3105 	void (*reg)(void (*)(void));
3106 	int index;
3107 
3108 	/*
3109 	 * Clean init_scanned flag so that objects can be rechecked and
3110 	 * possibly initialized earlier if any of vectors called below
3111 	 * cause the change by using dlopen.
3112 	 */
3113 	TAILQ_FOREACH(obj, &obj_list, next) {
3114 		if (obj->marker)
3115 			continue;
3116 		obj->init_scanned = false;
3117 	}
3118 
3119 	/*
3120 	 * Preserve the current error message since an init function might
3121 	 * call into the dynamic linker and overwrite it.
3122 	 */
3123 	saved_msg = errmsg_save();
3124 	STAILQ_FOREACH(elm, list, link) {
3125 		if (elm->obj->init_done) /* Initialized early. */
3126 			continue;
3127 		/*
3128 		 * Race: other thread might try to use this object before
3129 		 * current one completes the initialization. Not much can be
3130 		 * done here without better locking.
3131 		 */
3132 		elm->obj->init_done = true;
3133 		hold_object(elm->obj);
3134 		reg = NULL;
3135 		if (elm->obj == obj_main && obj_main->crt_no_init) {
3136 			reg = (void (*)(void (*)(void)))
3137 			    get_program_var_addr("__libc_atexit", lockstate);
3138 		}
3139 		lock_release(rtld_bind_lock, lockstate);
3140 		if (reg != NULL) {
3141 			reg(rtld_exit);
3142 			rtld_exit_ptr = rtld_nop_exit;
3143 		}
3144 
3145 		/*
3146 		 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3147 		 * When this happens, DT_INIT is processed first.
3148 		 */
3149 		if (elm->obj->init != (Elf_Addr)NULL) {
3150 			dbg("calling init function for %s at %p",
3151 			    elm->obj->path, (void *)elm->obj->init);
3152 			LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3153 			    (void *)elm->obj->init, 0, 0, elm->obj->path);
3154 			call_init_pointer(elm->obj, elm->obj->init);
3155 		}
3156 		init_addr = (Elf_Addr *)elm->obj->init_array;
3157 		if (init_addr != NULL) {
3158 			for (index = 0; index < elm->obj->init_array_num;
3159 			    index++) {
3160 				if (init_addr[index] != 0 &&
3161 				    init_addr[index] != 1) {
3162 				dbg("calling init function for %s at %p",
3163 					    elm->obj->path,
3164 					    (void *)init_addr[index]);
3165 					LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3166 					    (void *)init_addr[index], 0, 0,
3167 					    elm->obj->path);
3168 					call_init_pointer(elm->obj,
3169 					    init_addr[index]);
3170 				}
3171 			}
3172 		}
3173 		wlock_acquire(rtld_bind_lock, lockstate);
3174 		unhold_object(elm->obj);
3175 	}
3176 	errmsg_restore(saved_msg);
3177 }
3178 
3179 static void
objlist_clear(Objlist * list)3180 objlist_clear(Objlist *list)
3181 {
3182 	Objlist_Entry *elm;
3183 
3184 	while (!STAILQ_EMPTY(list)) {
3185 		elm = STAILQ_FIRST(list);
3186 		STAILQ_REMOVE_HEAD(list, link);
3187 		free(elm);
3188 	}
3189 }
3190 
3191 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3192 objlist_find(Objlist *list, const Obj_Entry *obj)
3193 {
3194 	Objlist_Entry *elm;
3195 
3196 	STAILQ_FOREACH(elm, list, link)
3197 		if (elm->obj == obj)
3198 			return elm;
3199 	return (NULL);
3200 }
3201 
3202 static void
objlist_init(Objlist * list)3203 objlist_init(Objlist *list)
3204 {
3205 	STAILQ_INIT(list);
3206 }
3207 
3208 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3209 objlist_push_head(Objlist *list, Obj_Entry *obj)
3210 {
3211 	Objlist_Entry *elm;
3212 
3213 	elm = NEW(Objlist_Entry);
3214 	elm->obj = obj;
3215 	STAILQ_INSERT_HEAD(list, elm, link);
3216 }
3217 
3218 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3219 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3220 {
3221 	Objlist_Entry *elm;
3222 
3223 	elm = NEW(Objlist_Entry);
3224 	elm->obj = obj;
3225 	STAILQ_INSERT_TAIL(list, elm, link);
3226 }
3227 
3228 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3229 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3230 {
3231 	Objlist_Entry *elm, *listelm;
3232 
3233 	STAILQ_FOREACH(listelm, list, link) {
3234 		if (listelm->obj == listobj)
3235 			break;
3236 	}
3237 	elm = NEW(Objlist_Entry);
3238 	elm->obj = obj;
3239 	if (listelm != NULL)
3240 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3241 	else
3242 		STAILQ_INSERT_TAIL(list, elm, link);
3243 }
3244 
3245 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3246 objlist_remove(Objlist *list, Obj_Entry *obj)
3247 {
3248 	Objlist_Entry *elm;
3249 
3250 	if ((elm = objlist_find(list, obj)) != NULL) {
3251 		STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3252 		free(elm);
3253 	}
3254 }
3255 
3256 /*
3257  * Relocate dag rooted in the specified object.
3258  * Returns 0 on success, or -1 on failure.
3259  */
3260 
3261 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3262 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3263     int flags, RtldLockState *lockstate)
3264 {
3265 	Objlist_Entry *elm;
3266 	int error;
3267 
3268 	error = 0;
3269 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3270 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3271 		    lockstate);
3272 		if (error == -1)
3273 			break;
3274 	}
3275 	return (error);
3276 }
3277 
3278 /*
3279  * Prepare for, or clean after, relocating an object marked with
3280  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3281  * segments are remapped read-write.  After relocations are done, the
3282  * segment's permissions are returned back to the modes specified in
3283  * the phdrs.  If any relocation happened, or always for wired
3284  * program, COW is triggered.
3285  */
3286 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3287 reloc_textrel_prot(Obj_Entry *obj, bool before)
3288 {
3289 	const Elf_Phdr *ph;
3290 	void *base;
3291 	size_t l, sz;
3292 	int prot;
3293 
3294 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; l--, ph++) {
3295 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3296 			continue;
3297 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3298 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3299 		    rtld_trunc_page(ph->p_vaddr);
3300 		prot = before ? (PROT_READ | PROT_WRITE) :
3301 		    convert_prot(ph->p_flags);
3302 		if (mprotect(base, sz, prot) == -1) {
3303 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3304 			    obj->path, before ? "en" : "dis",
3305 			    rtld_strerror(errno));
3306 			return (-1);
3307 		}
3308 	}
3309 	return (0);
3310 }
3311 
3312 /* Process RELR relative relocations. */
3313 static void
reloc_relr(Obj_Entry * obj)3314 reloc_relr(Obj_Entry *obj)
3315 {
3316 	const Elf_Relr *relr, *relrlim;
3317 	Elf_Addr *where;
3318 
3319 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3320 	for (relr = obj->relr; relr < relrlim; relr++) {
3321 		Elf_Relr entry = *relr;
3322 
3323 		if ((entry & 1) == 0) {
3324 			where = (Elf_Addr *)(obj->relocbase + entry);
3325 			*where++ += (Elf_Addr)obj->relocbase;
3326 		} else {
3327 			for (long i = 0; (entry >>= 1) != 0; i++)
3328 				if ((entry & 1) != 0)
3329 					where[i] += (Elf_Addr)obj->relocbase;
3330 			where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3331 		}
3332 	}
3333 }
3334 
3335 /*
3336  * Relocate single object.
3337  * Returns 0 on success, or -1 on failure.
3338  */
3339 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3340 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags,
3341     RtldLockState *lockstate)
3342 {
3343 	if (obj->relocated)
3344 		return (0);
3345 	obj->relocated = true;
3346 	if (obj != rtldobj)
3347 		dbg("relocating \"%s\"", obj->path);
3348 
3349 	if (obj->symtab == NULL || obj->strtab == NULL ||
3350 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3351 		dbg("object %s has no run-time symbol table", obj->path);
3352 
3353 	/* There are relocations to the write-protected text segment. */
3354 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3355 		return (-1);
3356 
3357 	/* Process the non-PLT non-IFUNC relocations. */
3358 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3359 		return (-1);
3360 	reloc_relr(obj);
3361 
3362 	/* Re-protected the text segment. */
3363 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3364 		return (-1);
3365 
3366 	/* Set the special PLT or GOT entries. */
3367 	init_pltgot(obj);
3368 
3369 	/* Process the PLT relocations. */
3370 	if (reloc_plt(obj, flags, lockstate) == -1)
3371 		return (-1);
3372 	/* Relocate the jump slots if we are doing immediate binding. */
3373 	if ((obj->bind_now || bind_now) &&
3374 	    reloc_jmpslots(obj, flags, lockstate) == -1)
3375 		return (-1);
3376 
3377 	if (obj != rtldobj && !obj->mainprog && obj_enforce_relro(obj) == -1)
3378 		return (-1);
3379 
3380 	/*
3381 	 * Set up the magic number and version in the Obj_Entry.  These
3382 	 * were checked in the crt1.o from the original ElfKit, so we
3383 	 * set them for backward compatibility.
3384 	 */
3385 	obj->magic = RTLD_MAGIC;
3386 	obj->version = RTLD_VERSION;
3387 
3388 	return (0);
3389 }
3390 
3391 /*
3392  * Relocate newly-loaded shared objects.  The argument is a pointer to
3393  * the Obj_Entry for the first such object.  All objects from the first
3394  * to the end of the list of objects are relocated.  Returns 0 on success,
3395  * or -1 on failure.
3396  */
3397 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3398 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags,
3399     RtldLockState *lockstate)
3400 {
3401 	Obj_Entry *obj;
3402 	int error;
3403 
3404 	for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3405 		if (obj->marker)
3406 			continue;
3407 		error = relocate_object(obj, bind_now, rtldobj, flags,
3408 		    lockstate);
3409 		if (error == -1)
3410 			break;
3411 	}
3412 	return (error);
3413 }
3414 
3415 /*
3416  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3417  * referencing STT_GNU_IFUNC symbols is postponed till the other
3418  * relocations are done.  The indirect functions specified as
3419  * ifunc are allowed to call other symbols, so we need to have
3420  * objects relocated before asking for resolution from indirects.
3421  *
3422  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3423  * instead of the usual lazy handling of PLT slots.  It is
3424  * consistent with how GNU does it.
3425  */
3426 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3427 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3428     RtldLockState *lockstate)
3429 {
3430 	if (obj->ifuncs_resolved)
3431 		return (0);
3432 	obj->ifuncs_resolved = true;
3433 	if (!obj->irelative && !obj->irelative_nonplt &&
3434 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3435 	    !obj->non_plt_gnu_ifunc)
3436 		return (0);
3437 	if (obj_disable_relro(obj) == -1 ||
3438 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3439 	    (obj->irelative_nonplt &&
3440 		reloc_iresolve_nonplt(obj, lockstate) == -1) ||
3441 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3442 		reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3443 	    (obj->non_plt_gnu_ifunc &&
3444 		reloc_non_plt(obj, &obj_rtld, flags | SYMLOOK_IFUNC,
3445 		    lockstate) == -1) ||
3446 	    obj_enforce_relro(obj) == -1)
3447 		return (-1);
3448 	return (0);
3449 }
3450 
3451 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3452 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3453     RtldLockState *lockstate)
3454 {
3455 	Objlist_Entry *elm;
3456 	Obj_Entry *obj;
3457 
3458 	STAILQ_FOREACH(elm, list, link) {
3459 		obj = elm->obj;
3460 		if (obj->marker)
3461 			continue;
3462 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
3463 			return (-1);
3464 	}
3465 	return (0);
3466 }
3467 
3468 /*
3469  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3470  * before the process exits.
3471  */
3472 static void
rtld_exit(void)3473 rtld_exit(void)
3474 {
3475 	RtldLockState lockstate;
3476 
3477 	wlock_acquire(rtld_bind_lock, &lockstate);
3478 	dbg("rtld_exit()");
3479 	objlist_call_fini(&list_fini, NULL, &lockstate);
3480 	/* No need to remove the items from the list, since we are exiting. */
3481 	if (!libmap_disable)
3482 		lm_fini();
3483 	lock_release(rtld_bind_lock, &lockstate);
3484 }
3485 
3486 static void
rtld_nop_exit(void)3487 rtld_nop_exit(void)
3488 {
3489 }
3490 
3491 /*
3492  * Iterate over a search path, translate each element, and invoke the
3493  * callback on the result.
3494  */
3495 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3496 path_enumerate(const char *path, path_enum_proc callback,
3497     const char *refobj_path, void *arg)
3498 {
3499 	const char *trans;
3500 	if (path == NULL)
3501 		return (NULL);
3502 
3503 	path += strspn(path, ":;");
3504 	while (*path != '\0') {
3505 		size_t len;
3506 		char *res;
3507 
3508 		len = strcspn(path, ":;");
3509 		trans = lm_findn(refobj_path, path, len);
3510 		if (trans)
3511 			res = callback(trans, strlen(trans), arg);
3512 		else
3513 			res = callback(path, len, arg);
3514 
3515 		if (res != NULL)
3516 			return (res);
3517 
3518 		path += len;
3519 		path += strspn(path, ":;");
3520 	}
3521 
3522 	return (NULL);
3523 }
3524 
3525 struct try_library_args {
3526 	const char *name;
3527 	size_t namelen;
3528 	char *buffer;
3529 	size_t buflen;
3530 	int fd;
3531 };
3532 
3533 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3534 try_library_path(const char *dir, size_t dirlen, void *param)
3535 {
3536 	struct try_library_args *arg;
3537 	int fd;
3538 
3539 	arg = param;
3540 	if (*dir == '/' || trust) {
3541 		char *pathname;
3542 
3543 		if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3544 			return (NULL);
3545 
3546 		pathname = arg->buffer;
3547 		strncpy(pathname, dir, dirlen);
3548 		pathname[dirlen] = '/';
3549 		strcpy(pathname + dirlen + 1, arg->name);
3550 
3551 		dbg("  Trying \"%s\"", pathname);
3552 		fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3553 		if (fd >= 0) {
3554 			dbg("  Opened \"%s\", fd %d", pathname, fd);
3555 			pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3556 			strcpy(pathname, arg->buffer);
3557 			arg->fd = fd;
3558 			return (pathname);
3559 		} else {
3560 			dbg("  Failed to open \"%s\": %s", pathname,
3561 			    rtld_strerror(errno));
3562 		}
3563 	}
3564 	return (NULL);
3565 }
3566 
3567 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3568 search_library_path(const char *name, const char *path, const char *refobj_path,
3569     int *fdp)
3570 {
3571 	char *p;
3572 	struct try_library_args arg;
3573 
3574 	if (path == NULL)
3575 		return (NULL);
3576 
3577 	arg.name = name;
3578 	arg.namelen = strlen(name);
3579 	arg.buffer = xmalloc(PATH_MAX);
3580 	arg.buflen = PATH_MAX;
3581 	arg.fd = -1;
3582 
3583 	p = path_enumerate(path, try_library_path, refobj_path, &arg);
3584 	*fdp = arg.fd;
3585 
3586 	free(arg.buffer);
3587 
3588 	return (p);
3589 }
3590 
3591 /*
3592  * Finds the library with the given name using the directory descriptors
3593  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3594  *
3595  * Returns a freshly-opened close-on-exec file descriptor for the library,
3596  * or -1 if the library cannot be found.
3597  */
3598 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3599 search_library_pathfds(const char *name, const char *path, int *fdp)
3600 {
3601 	char *envcopy, *fdstr, *found, *last_token;
3602 	size_t len;
3603 	int dirfd, fd;
3604 
3605 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3606 
3607 	/* Don't load from user-specified libdirs into setuid binaries. */
3608 	if (!trust)
3609 		return (NULL);
3610 
3611 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3612 	if (path == NULL)
3613 		return (NULL);
3614 
3615 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3616 	if (name[0] == '/') {
3617 		dbg("Absolute path (%s) passed to %s", name, __func__);
3618 		return (NULL);
3619 	}
3620 
3621 	/*
3622 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3623 	 * copy of the path, as strtok_r rewrites separator tokens
3624 	 * with '\0'.
3625 	 */
3626 	found = NULL;
3627 	envcopy = xstrdup(path);
3628 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3629 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3630 		dirfd = parse_integer(fdstr);
3631 		if (dirfd < 0) {
3632 			_rtld_error("failed to parse directory FD: '%s'",
3633 			    fdstr);
3634 			break;
3635 		}
3636 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3637 		if (fd >= 0) {
3638 			*fdp = fd;
3639 			len = strlen(fdstr) + strlen(name) + 3;
3640 			found = xmalloc(len);
3641 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) <
3642 			    0) {
3643 				_rtld_error("error generating '%d/%s'", dirfd,
3644 				    name);
3645 				rtld_die();
3646 			}
3647 			dbg("open('%s') => %d", found, fd);
3648 			break;
3649 		}
3650 	}
3651 	free(envcopy);
3652 
3653 	return (found);
3654 }
3655 
3656 int
dlclose(void * handle)3657 dlclose(void *handle)
3658 {
3659 	RtldLockState lockstate;
3660 	int error;
3661 
3662 	wlock_acquire(rtld_bind_lock, &lockstate);
3663 	error = dlclose_locked(handle, &lockstate);
3664 	lock_release(rtld_bind_lock, &lockstate);
3665 	return (error);
3666 }
3667 
3668 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3669 dlclose_locked(void *handle, RtldLockState *lockstate)
3670 {
3671 	Obj_Entry *root;
3672 
3673 	root = dlcheck(handle);
3674 	if (root == NULL)
3675 		return (-1);
3676 	LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3677 	    root->path);
3678 
3679 	/* Unreference the object and its dependencies. */
3680 	root->dl_refcount--;
3681 
3682 	if (root->refcount == 1) {
3683 		/*
3684 		 * The object will be no longer referenced, so we must unload
3685 		 * it. First, call the fini functions.
3686 		 */
3687 		objlist_call_fini(&list_fini, root, lockstate);
3688 
3689 		unref_dag(root);
3690 
3691 		/* Finish cleaning up the newly-unreferenced objects. */
3692 		GDB_STATE(RT_DELETE, &root->linkmap);
3693 		unload_object(root, lockstate);
3694 		GDB_STATE(RT_CONSISTENT, NULL);
3695 	} else
3696 		unref_dag(root);
3697 
3698 	LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3699 	return (0);
3700 }
3701 
3702 char *
dlerror(void)3703 dlerror(void)
3704 {
3705 	if (*(lockinfo.dlerror_seen()) != 0)
3706 		return (NULL);
3707 	*lockinfo.dlerror_seen() = 1;
3708 	return (lockinfo.dlerror_loc());
3709 }
3710 
3711 /*
3712  * This function is deprecated and has no effect.
3713  */
3714 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3715 dllockinit(void *context, void *(*_lock_create)(void *context)__unused,
3716     void (*_rlock_acquire)(void *lock) __unused,
3717     void (*_wlock_acquire)(void *lock) __unused,
3718     void (*_lock_release)(void *lock) __unused,
3719     void (*_lock_destroy)(void *lock) __unused,
3720     void (*context_destroy)(void *context))
3721 {
3722 	static void *cur_context;
3723 	static void (*cur_context_destroy)(void *);
3724 
3725 	/* Just destroy the context from the previous call, if necessary. */
3726 	if (cur_context_destroy != NULL)
3727 		cur_context_destroy(cur_context);
3728 	cur_context = context;
3729 	cur_context_destroy = context_destroy;
3730 }
3731 
3732 void *
dlopen(const char * name,int mode)3733 dlopen(const char *name, int mode)
3734 {
3735 	return (rtld_dlopen(name, -1, mode));
3736 }
3737 
3738 void *
fdlopen(int fd,int mode)3739 fdlopen(int fd, int mode)
3740 {
3741 	return (rtld_dlopen(NULL, fd, mode));
3742 }
3743 
3744 static void *
rtld_dlopen(const char * name,int fd,int mode)3745 rtld_dlopen(const char *name, int fd, int mode)
3746 {
3747 	RtldLockState lockstate;
3748 	int lo_flags;
3749 
3750 	LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3751 	ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3752 	if (ld_tracing != NULL) {
3753 		rlock_acquire(rtld_bind_lock, &lockstate);
3754 		if (sigsetjmp(lockstate.env, 0) != 0)
3755 			lock_upgrade(rtld_bind_lock, &lockstate);
3756 		environ = __DECONST(char **,
3757 		    *get_program_var_addr("environ", &lockstate));
3758 		lock_release(rtld_bind_lock, &lockstate);
3759 	}
3760 	lo_flags = RTLD_LO_DLOPEN;
3761 	if (mode & RTLD_NODELETE)
3762 		lo_flags |= RTLD_LO_NODELETE;
3763 	if (mode & RTLD_NOLOAD)
3764 		lo_flags |= RTLD_LO_NOLOAD;
3765 	if (mode & RTLD_DEEPBIND)
3766 		lo_flags |= RTLD_LO_DEEPBIND;
3767 	if (ld_tracing != NULL)
3768 		lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3769 
3770 	return (dlopen_object(name, fd, obj_main, lo_flags,
3771 	    mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3772 }
3773 
3774 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3775 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3776 {
3777 	obj->dl_refcount--;
3778 	unref_dag(obj);
3779 	if (obj->refcount == 0)
3780 		unload_object(obj, lockstate);
3781 }
3782 
3783 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3784 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3785     int mode, RtldLockState *lockstate)
3786 {
3787 	Obj_Entry *obj;
3788 	Objlist initlist;
3789 	RtldLockState mlockstate;
3790 	int result;
3791 
3792 	dbg(
3793     "dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3794 	    name != NULL ? name : "<null>", fd,
3795 	    refobj == NULL ? "<null>" : refobj->path, lo_flags, mode);
3796 	objlist_init(&initlist);
3797 
3798 	if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3799 		wlock_acquire(rtld_bind_lock, &mlockstate);
3800 		lockstate = &mlockstate;
3801 	}
3802 	GDB_STATE(RT_ADD, NULL);
3803 
3804 	obj = NULL;
3805 	if (name == NULL && fd == -1) {
3806 		obj = obj_main;
3807 		obj->refcount++;
3808 	} else {
3809 		obj = load_object(name, fd, refobj, lo_flags);
3810 	}
3811 
3812 	if (obj) {
3813 		obj->dl_refcount++;
3814 		if (mode & RTLD_GLOBAL &&
3815 		    objlist_find(&list_global, obj) == NULL)
3816 			objlist_push_tail(&list_global, obj);
3817 
3818 		if (!obj->init_done) {
3819 			/* We loaded something new and have to init something.
3820 			 */
3821 			if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3822 				obj->deepbind = true;
3823 			result = 0;
3824 			if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) ==
3825 				0 &&
3826 			    obj->static_tls && !allocate_tls_offset(obj)) {
3827 				_rtld_error("%s: No space available "
3828 					    "for static Thread Local Storage",
3829 				    obj->path);
3830 				result = -1;
3831 			}
3832 			if (result != -1)
3833 				result = load_needed_objects(obj,
3834 				    lo_flags &
3835 					(RTLD_LO_DLOPEN | RTLD_LO_EARLY |
3836 					    RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3837 			init_dag(obj);
3838 			ref_dag(obj);
3839 			if (result != -1)
3840 				result = rtld_verify_versions(&obj->dagmembers);
3841 			if (result != -1 && ld_tracing)
3842 				goto trace;
3843 			if (result == -1 ||
3844 			    relocate_object_dag(obj,
3845 				(mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3846 				(lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3847 				lockstate) == -1) {
3848 				dlopen_cleanup(obj, lockstate);
3849 				obj = NULL;
3850 			} else if (lo_flags & RTLD_LO_EARLY) {
3851 				/*
3852 				 * Do not call the init functions for early
3853 				 * loaded filtees.  The image is still not
3854 				 * initialized enough for them to work.
3855 				 *
3856 				 * Our object is found by the global object list
3857 				 * and will be ordered among all init calls done
3858 				 * right before transferring control to main.
3859 				 */
3860 			} else {
3861 				/* Make list of init functions to call. */
3862 				initlist_add_objects(obj, obj, &initlist);
3863 			}
3864 			/*
3865 			 * Process all no_delete or global objects here, given
3866 			 * them own DAGs to prevent their dependencies from
3867 			 * being unloaded.  This has to be done after we have
3868 			 * loaded all of the dependencies, so that we do not
3869 			 * miss any.
3870 			 */
3871 			if (obj != NULL)
3872 				process_z(obj);
3873 		} else {
3874 			/*
3875 			 * Bump the reference counts for objects on this DAG. If
3876 			 * this is the first dlopen() call for the object that
3877 			 * was already loaded as a dependency, initialize the
3878 			 * dag starting at it.
3879 			 */
3880 			init_dag(obj);
3881 			ref_dag(obj);
3882 
3883 			if ((lo_flags & RTLD_LO_TRACE) != 0)
3884 				goto trace;
3885 		}
3886 		if (obj != NULL &&
3887 		    ((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) &&
3888 		    !obj->ref_nodel) {
3889 			dbg("obj %s nodelete", obj->path);
3890 			ref_dag(obj);
3891 			obj->z_nodelete = obj->ref_nodel = true;
3892 		}
3893 	}
3894 
3895 	LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3896 	    name);
3897 	GDB_STATE(RT_CONSISTENT, obj ? &obj->linkmap : NULL);
3898 
3899 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
3900 		map_stacks_exec(lockstate);
3901 		if (obj != NULL)
3902 			distribute_static_tls(&initlist, lockstate);
3903 	}
3904 
3905 	if (initlist_objects_ifunc(&initlist,
3906 		(mode & RTLD_MODEMASK) == RTLD_NOW,
3907 		(lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3908 		lockstate) == -1) {
3909 		objlist_clear(&initlist);
3910 		dlopen_cleanup(obj, lockstate);
3911 		if (lockstate == &mlockstate)
3912 			lock_release(rtld_bind_lock, lockstate);
3913 		return (NULL);
3914 	}
3915 
3916 	if (!(lo_flags & RTLD_LO_EARLY)) {
3917 		/* Call the init functions. */
3918 		objlist_call_init(&initlist, lockstate);
3919 	}
3920 	objlist_clear(&initlist);
3921 	if (lockstate == &mlockstate)
3922 		lock_release(rtld_bind_lock, lockstate);
3923 	return (obj);
3924 trace:
3925 	trace_loaded_objects(obj, false);
3926 	if (lockstate == &mlockstate)
3927 		lock_release(rtld_bind_lock, lockstate);
3928 	exit(0);
3929 }
3930 
3931 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)3932 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3933     int flags)
3934 {
3935 	DoneList donelist;
3936 	const Obj_Entry *obj, *defobj;
3937 	const Elf_Sym *def;
3938 	SymLook req;
3939 	RtldLockState lockstate;
3940 	tls_index ti;
3941 	void *sym;
3942 	int res;
3943 
3944 	def = NULL;
3945 	defobj = NULL;
3946 	symlook_init(&req, name);
3947 	req.ventry = ve;
3948 	req.flags = flags | SYMLOOK_IN_PLT;
3949 	req.lockstate = &lockstate;
3950 
3951 	LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3952 	rlock_acquire(rtld_bind_lock, &lockstate);
3953 	if (sigsetjmp(lockstate.env, 0) != 0)
3954 		lock_upgrade(rtld_bind_lock, &lockstate);
3955 	if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT ||
3956 	    handle == RTLD_SELF) {
3957 		if ((obj = obj_from_addr(retaddr)) == NULL) {
3958 			_rtld_error("Cannot determine caller's shared object");
3959 			lock_release(rtld_bind_lock, &lockstate);
3960 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3961 			return (NULL);
3962 		}
3963 		if (handle == NULL) { /* Just the caller's shared object. */
3964 			res = symlook_obj(&req, obj);
3965 			if (res == 0) {
3966 				def = req.sym_out;
3967 				defobj = req.defobj_out;
3968 			}
3969 		} else if (handle == RTLD_NEXT || /* Objects after caller's */
3970 		    handle == RTLD_SELF) {	  /* ... caller included */
3971 			if (handle == RTLD_NEXT)
3972 				obj = globallist_next(obj);
3973 			for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3974 				if (obj->marker)
3975 					continue;
3976 				res = symlook_obj(&req, obj);
3977 				if (res == 0) {
3978 					if (def == NULL ||
3979 					    (ld_dynamic_weak &&
3980 						ELF_ST_BIND(
3981 						    req.sym_out->st_info) !=
3982 						    STB_WEAK)) {
3983 						def = req.sym_out;
3984 						defobj = req.defobj_out;
3985 						if (!ld_dynamic_weak ||
3986 						    ELF_ST_BIND(def->st_info) !=
3987 							STB_WEAK)
3988 							break;
3989 					}
3990 				}
3991 			}
3992 			/*
3993 			 * Search the dynamic linker itself, and possibly
3994 			 * resolve the symbol from there.  This is how the
3995 			 * application links to dynamic linker services such as
3996 			 * dlopen. Note that we ignore ld_dynamic_weak == false
3997 			 * case, always overriding weak symbols by rtld
3998 			 * definitions.
3999 			 */
4000 			if (def == NULL ||
4001 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4002 				res = symlook_obj(&req, &obj_rtld);
4003 				if (res == 0) {
4004 					def = req.sym_out;
4005 					defobj = req.defobj_out;
4006 				}
4007 			}
4008 		} else {
4009 			assert(handle == RTLD_DEFAULT);
4010 			res = symlook_default(&req, obj);
4011 			if (res == 0) {
4012 				defobj = req.defobj_out;
4013 				def = req.sym_out;
4014 			}
4015 		}
4016 	} else {
4017 		if ((obj = dlcheck(handle)) == NULL) {
4018 			lock_release(rtld_bind_lock, &lockstate);
4019 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4020 			return (NULL);
4021 		}
4022 
4023 		donelist_init(&donelist);
4024 		if (obj->mainprog) {
4025 			/* Handle obtained by dlopen(NULL, ...) implies global
4026 			 * scope. */
4027 			res = symlook_global(&req, &donelist);
4028 			if (res == 0) {
4029 				def = req.sym_out;
4030 				defobj = req.defobj_out;
4031 			}
4032 			/*
4033 			 * Search the dynamic linker itself, and possibly
4034 			 * resolve the symbol from there.  This is how the
4035 			 * application links to dynamic linker services such as
4036 			 * dlopen.
4037 			 */
4038 			if (def == NULL ||
4039 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4040 				res = symlook_obj(&req, &obj_rtld);
4041 				if (res == 0) {
4042 					def = req.sym_out;
4043 					defobj = req.defobj_out;
4044 				}
4045 			}
4046 		} else {
4047 			/* Search the whole DAG rooted at the given object. */
4048 			res = symlook_list(&req, &obj->dagmembers, &donelist);
4049 			if (res == 0) {
4050 				def = req.sym_out;
4051 				defobj = req.defobj_out;
4052 			}
4053 		}
4054 	}
4055 
4056 	if (def != NULL) {
4057 		lock_release(rtld_bind_lock, &lockstate);
4058 
4059 		/*
4060 		 * The value required by the caller is derived from the value
4061 		 * of the symbol. this is simply the relocated value of the
4062 		 * symbol.
4063 		 */
4064 		if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4065 			sym = make_function_pointer(def, defobj);
4066 		else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4067 			sym = rtld_resolve_ifunc(defobj, def);
4068 		else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4069 			ti.ti_module = defobj->tlsindex;
4070 			ti.ti_offset = def->st_value;
4071 			sym = __tls_get_addr(&ti);
4072 		} else
4073 			sym = defobj->relocbase + def->st_value;
4074 		LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4075 		return (sym);
4076 	}
4077 
4078 	_rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4079 	    ve != NULL ? ve->name : "");
4080 	lock_release(rtld_bind_lock, &lockstate);
4081 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4082 	return (NULL);
4083 }
4084 
4085 void *
dlsym(void * handle,const char * name)4086 dlsym(void *handle, const char *name)
4087 {
4088 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4089 	    SYMLOOK_DLSYM));
4090 }
4091 
4092 dlfunc_t
dlfunc(void * handle,const char * name)4093 dlfunc(void *handle, const char *name)
4094 {
4095 	union {
4096 		void *d;
4097 		dlfunc_t f;
4098 	} rv;
4099 
4100 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4101 	    SYMLOOK_DLSYM);
4102 	return (rv.f);
4103 }
4104 
4105 void *
dlvsym(void * handle,const char * name,const char * version)4106 dlvsym(void *handle, const char *name, const char *version)
4107 {
4108 	Ver_Entry ventry;
4109 
4110 	ventry.name = version;
4111 	ventry.file = NULL;
4112 	ventry.hash = elf_hash(version);
4113 	ventry.flags = 0;
4114 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4115 	    SYMLOOK_DLSYM));
4116 }
4117 
4118 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4119 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4120 {
4121 	const Obj_Entry *obj;
4122 	RtldLockState lockstate;
4123 
4124 	rlock_acquire(rtld_bind_lock, &lockstate);
4125 	obj = obj_from_addr(addr);
4126 	if (obj == NULL) {
4127 		_rtld_error("No shared object contains address");
4128 		lock_release(rtld_bind_lock, &lockstate);
4129 		return (0);
4130 	}
4131 	rtld_fill_dl_phdr_info(obj, phdr_info);
4132 	lock_release(rtld_bind_lock, &lockstate);
4133 	return (1);
4134 }
4135 
4136 int
dladdr(const void * addr,Dl_info * info)4137 dladdr(const void *addr, Dl_info *info)
4138 {
4139 	const Obj_Entry *obj;
4140 	const Elf_Sym *def;
4141 	void *symbol_addr;
4142 	unsigned long symoffset;
4143 	RtldLockState lockstate;
4144 
4145 	rlock_acquire(rtld_bind_lock, &lockstate);
4146 	obj = obj_from_addr(addr);
4147 	if (obj == NULL) {
4148 		_rtld_error("No shared object contains address");
4149 		lock_release(rtld_bind_lock, &lockstate);
4150 		return (0);
4151 	}
4152 	info->dli_fname = obj->path;
4153 	info->dli_fbase = obj->mapbase;
4154 	info->dli_saddr = (void *)0;
4155 	info->dli_sname = NULL;
4156 
4157 	/*
4158 	 * Walk the symbol list looking for the symbol whose address is
4159 	 * closest to the address sent in.
4160 	 */
4161 	for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4162 		def = obj->symtab + symoffset;
4163 
4164 		/*
4165 		 * For skip the symbol if st_shndx is either SHN_UNDEF or
4166 		 * SHN_COMMON.
4167 		 */
4168 		if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4169 			continue;
4170 
4171 		/*
4172 		 * If the symbol is greater than the specified address, or if it
4173 		 * is further away from addr than the current nearest symbol,
4174 		 * then reject it.
4175 		 */
4176 		symbol_addr = obj->relocbase + def->st_value;
4177 		if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4178 			continue;
4179 
4180 		/* Update our idea of the nearest symbol. */
4181 		info->dli_sname = obj->strtab + def->st_name;
4182 		info->dli_saddr = symbol_addr;
4183 
4184 		/* Exact match? */
4185 		if (info->dli_saddr == addr)
4186 			break;
4187 	}
4188 	lock_release(rtld_bind_lock, &lockstate);
4189 	return (1);
4190 }
4191 
4192 int
dlinfo(void * handle,int request,void * p)4193 dlinfo(void *handle, int request, void *p)
4194 {
4195 	const Obj_Entry *obj;
4196 	RtldLockState lockstate;
4197 	int error;
4198 
4199 	rlock_acquire(rtld_bind_lock, &lockstate);
4200 
4201 	if (handle == NULL || handle == RTLD_SELF) {
4202 		void *retaddr;
4203 
4204 		retaddr = __builtin_return_address(0); /* __GNUC__ only */
4205 		if ((obj = obj_from_addr(retaddr)) == NULL)
4206 			_rtld_error("Cannot determine caller's shared object");
4207 	} else
4208 		obj = dlcheck(handle);
4209 
4210 	if (obj == NULL) {
4211 		lock_release(rtld_bind_lock, &lockstate);
4212 		return (-1);
4213 	}
4214 
4215 	error = 0;
4216 	switch (request) {
4217 	case RTLD_DI_LINKMAP:
4218 		*((struct link_map const **)p) = &obj->linkmap;
4219 		break;
4220 	case RTLD_DI_ORIGIN:
4221 		error = rtld_dirname(obj->path, p);
4222 		break;
4223 
4224 	case RTLD_DI_SERINFOSIZE:
4225 	case RTLD_DI_SERINFO:
4226 		error = do_search_info(obj, request, (struct dl_serinfo *)p);
4227 		break;
4228 
4229 	default:
4230 		_rtld_error("Invalid request %d passed to dlinfo()", request);
4231 		error = -1;
4232 	}
4233 
4234 	lock_release(rtld_bind_lock, &lockstate);
4235 
4236 	return (error);
4237 }
4238 
4239 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4240 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4241 {
4242 	uintptr_t **dtvp;
4243 
4244 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4245 	phdr_info->dlpi_name = obj->path;
4246 	phdr_info->dlpi_phdr = obj->phdr;
4247 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4248 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4249 	dtvp = &_tcb_get()->tcb_dtv;
4250 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4251 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4252 	phdr_info->dlpi_adds = obj_loads;
4253 	phdr_info->dlpi_subs = obj_loads - obj_count;
4254 }
4255 
4256 /*
4257  * It's completely UB to actually use this, so extreme caution is advised.  It's
4258  * probably not what you want.
4259  */
4260 int
_dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback,void * param)4261 _dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4262 {
4263 	struct dl_phdr_info phdr_info;
4264 	Obj_Entry *obj;
4265 	int error;
4266 
4267 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4268 	    obj = globallist_next(obj)) {
4269 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4270 		error = callback(&phdr_info, sizeof(phdr_info), param);
4271 		if (error != 0)
4272 			return (error);
4273 	}
4274 
4275 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4276 	return (callback(&phdr_info, sizeof(phdr_info), param));
4277 }
4278 
4279 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4280 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4281 {
4282 	struct dl_phdr_info phdr_info;
4283 	Obj_Entry *obj, marker;
4284 	RtldLockState bind_lockstate, phdr_lockstate;
4285 	int error;
4286 
4287 	init_marker(&marker);
4288 	error = 0;
4289 
4290 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4291 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4292 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4293 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4294 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4295 		hold_object(obj);
4296 		lock_release(rtld_bind_lock, &bind_lockstate);
4297 
4298 		error = callback(&phdr_info, sizeof phdr_info, param);
4299 
4300 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4301 		unhold_object(obj);
4302 		obj = globallist_next(&marker);
4303 		TAILQ_REMOVE(&obj_list, &marker, next);
4304 		if (error != 0) {
4305 			lock_release(rtld_bind_lock, &bind_lockstate);
4306 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4307 			return (error);
4308 		}
4309 	}
4310 
4311 	if (error == 0) {
4312 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4313 		lock_release(rtld_bind_lock, &bind_lockstate);
4314 		error = callback(&phdr_info, sizeof(phdr_info), param);
4315 	}
4316 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4317 	return (error);
4318 }
4319 
4320 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4321 fill_search_info(const char *dir, size_t dirlen, void *param)
4322 {
4323 	struct fill_search_info_args *arg;
4324 
4325 	arg = param;
4326 
4327 	if (arg->request == RTLD_DI_SERINFOSIZE) {
4328 		arg->serinfo->dls_cnt++;
4329 		arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen +
4330 		    1;
4331 	} else {
4332 		struct dl_serpath *s_entry;
4333 
4334 		s_entry = arg->serpath;
4335 		s_entry->dls_name = arg->strspace;
4336 		s_entry->dls_flags = arg->flags;
4337 
4338 		strncpy(arg->strspace, dir, dirlen);
4339 		arg->strspace[dirlen] = '\0';
4340 
4341 		arg->strspace += dirlen + 1;
4342 		arg->serpath++;
4343 	}
4344 
4345 	return (NULL);
4346 }
4347 
4348 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4349 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4350 {
4351 	struct dl_serinfo _info;
4352 	struct fill_search_info_args args;
4353 
4354 	args.request = RTLD_DI_SERINFOSIZE;
4355 	args.serinfo = &_info;
4356 
4357 	_info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4358 	_info.dls_cnt = 0;
4359 
4360 	path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4361 	path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4362 	path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4363 	path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4364 	    &args);
4365 	if (!obj->z_nodeflib)
4366 		path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4367 		    &args);
4368 
4369 	if (request == RTLD_DI_SERINFOSIZE) {
4370 		info->dls_size = _info.dls_size;
4371 		info->dls_cnt = _info.dls_cnt;
4372 		return (0);
4373 	}
4374 
4375 	if (info->dls_cnt != _info.dls_cnt ||
4376 	    info->dls_size != _info.dls_size) {
4377 		_rtld_error(
4378 		    "Uninitialized Dl_serinfo struct passed to dlinfo()");
4379 		return (-1);
4380 	}
4381 
4382 	args.request = RTLD_DI_SERINFO;
4383 	args.serinfo = info;
4384 	args.serpath = &info->dls_serpath[0];
4385 	args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4386 
4387 	args.flags = LA_SER_RUNPATH;
4388 	if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4389 		return (-1);
4390 
4391 	args.flags = LA_SER_LIBPATH;
4392 	if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) !=
4393 	    NULL)
4394 		return (-1);
4395 
4396 	args.flags = LA_SER_RUNPATH;
4397 	if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4398 		return (-1);
4399 
4400 	args.flags = LA_SER_CONFIG;
4401 	if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4402 		&args) != NULL)
4403 		return (-1);
4404 
4405 	args.flags = LA_SER_DEFAULT;
4406 	if (!obj->z_nodeflib &&
4407 	    path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4408 		&args) != NULL)
4409 		return (-1);
4410 	return (0);
4411 }
4412 
4413 static int
rtld_dirname(const char * path,char * bname)4414 rtld_dirname(const char *path, char *bname)
4415 {
4416 	const char *endp;
4417 
4418 	/* Empty or NULL string gets treated as "." */
4419 	if (path == NULL || *path == '\0') {
4420 		bname[0] = '.';
4421 		bname[1] = '\0';
4422 		return (0);
4423 	}
4424 
4425 	/* Strip trailing slashes */
4426 	endp = path + strlen(path) - 1;
4427 	while (endp > path && *endp == '/')
4428 		endp--;
4429 
4430 	/* Find the start of the dir */
4431 	while (endp > path && *endp != '/')
4432 		endp--;
4433 
4434 	/* Either the dir is "/" or there are no slashes */
4435 	if (endp == path) {
4436 		bname[0] = *endp == '/' ? '/' : '.';
4437 		bname[1] = '\0';
4438 		return (0);
4439 	} else {
4440 		do {
4441 			endp--;
4442 		} while (endp > path && *endp == '/');
4443 	}
4444 
4445 	if (endp - path + 2 > PATH_MAX) {
4446 		_rtld_error("Filename is too long: %s", path);
4447 		return (-1);
4448 	}
4449 
4450 	strncpy(bname, path, endp - path + 1);
4451 	bname[endp - path + 1] = '\0';
4452 	return (0);
4453 }
4454 
4455 static int
rtld_dirname_abs(const char * path,char * base)4456 rtld_dirname_abs(const char *path, char *base)
4457 {
4458 	char *last;
4459 
4460 	if (realpath(path, base) == NULL) {
4461 		_rtld_error("realpath \"%s\" failed (%s)", path,
4462 		    rtld_strerror(errno));
4463 		return (-1);
4464 	}
4465 	dbg("%s -> %s", path, base);
4466 	last = strrchr(base, '/');
4467 	if (last == NULL) {
4468 		_rtld_error("non-abs result from realpath \"%s\"", path);
4469 		return (-1);
4470 	}
4471 	if (last != base)
4472 		*last = '\0';
4473 	return (0);
4474 }
4475 
4476 static void
linkmap_add(Obj_Entry * obj)4477 linkmap_add(Obj_Entry *obj)
4478 {
4479 	struct link_map *l, *prev;
4480 
4481 	l = &obj->linkmap;
4482 	l->l_name = obj->path;
4483 	l->l_base = obj->mapbase;
4484 	l->l_ld = obj->dynamic;
4485 	l->l_addr = obj->relocbase;
4486 
4487 	if (r_debug.r_map == NULL) {
4488 		r_debug.r_map = l;
4489 		return;
4490 	}
4491 
4492 	/*
4493 	 * Scan to the end of the list, but not past the entry for the
4494 	 * dynamic linker, which we want to keep at the very end.
4495 	 */
4496 	for (prev = r_debug.r_map;
4497 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4498 	    prev = prev->l_next)
4499 		;
4500 
4501 	/* Link in the new entry. */
4502 	l->l_prev = prev;
4503 	l->l_next = prev->l_next;
4504 	if (l->l_next != NULL)
4505 		l->l_next->l_prev = l;
4506 	prev->l_next = l;
4507 }
4508 
4509 static void
linkmap_delete(Obj_Entry * obj)4510 linkmap_delete(Obj_Entry *obj)
4511 {
4512 	struct link_map *l;
4513 
4514 	l = &obj->linkmap;
4515 	if (l->l_prev == NULL) {
4516 		if ((r_debug.r_map = l->l_next) != NULL)
4517 			l->l_next->l_prev = NULL;
4518 		return;
4519 	}
4520 
4521 	if ((l->l_prev->l_next = l->l_next) != NULL)
4522 		l->l_next->l_prev = l->l_prev;
4523 }
4524 
4525 /*
4526  * Function for the debugger to set a breakpoint on to gain control.
4527  *
4528  * The two parameters allow the debugger to easily find and determine
4529  * what the runtime loader is doing and to whom it is doing it.
4530  *
4531  * When the loadhook trap is hit (r_debug_state, set at program
4532  * initialization), the arguments can be found on the stack:
4533  *
4534  *  +8   struct link_map *m
4535  *  +4   struct r_debug  *rd
4536  *  +0   RetAddr
4537  */
4538 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4539 r_debug_state(struct r_debug *rd __unused, struct link_map *m __unused)
4540 {
4541 	/*
4542 	 * The following is a hack to force the compiler to emit calls to
4543 	 * this function, even when optimizing.  If the function is empty,
4544 	 * the compiler is not obliged to emit any code for calls to it,
4545 	 * even when marked __noinline.  However, gdb depends on those
4546 	 * calls being made.
4547 	 */
4548 	__compiler_membar();
4549 }
4550 
4551 /*
4552  * A function called after init routines have completed. This can be used to
4553  * break before a program's entry routine is called, and can be used when
4554  * main is not available in the symbol table.
4555  */
4556 void
_r_debug_postinit(struct link_map * m __unused)4557 _r_debug_postinit(struct link_map *m __unused)
4558 {
4559 	/* See r_debug_state(). */
4560 	__compiler_membar();
4561 }
4562 
4563 static void
release_object(Obj_Entry * obj)4564 release_object(Obj_Entry *obj)
4565 {
4566 	if (obj->holdcount > 0) {
4567 		obj->unholdfree = true;
4568 		return;
4569 	}
4570 	munmap(obj->mapbase, obj->mapsize);
4571 	linkmap_delete(obj);
4572 	obj_free(obj);
4573 }
4574 
4575 /*
4576  * Get address of the pointer variable in the main program.
4577  * Prefer non-weak symbol over the weak one.
4578  */
4579 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4580 get_program_var_addr(const char *name, RtldLockState *lockstate)
4581 {
4582 	SymLook req;
4583 	DoneList donelist;
4584 
4585 	symlook_init(&req, name);
4586 	req.lockstate = lockstate;
4587 	donelist_init(&donelist);
4588 	if (symlook_global(&req, &donelist) != 0)
4589 		return (NULL);
4590 	if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4591 		return ((const void **)make_function_pointer(req.sym_out,
4592 		    req.defobj_out));
4593 	else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4594 		return ((const void **)rtld_resolve_ifunc(req.defobj_out,
4595 		    req.sym_out));
4596 	else
4597 		return ((const void **)(req.defobj_out->relocbase +
4598 		    req.sym_out->st_value));
4599 }
4600 
4601 /*
4602  * Set a pointer variable in the main program to the given value.  This
4603  * is used to set key variables such as "environ" before any of the
4604  * init functions are called.
4605  */
4606 static void
set_program_var(const char * name,const void * value)4607 set_program_var(const char *name, const void *value)
4608 {
4609 	const void **addr;
4610 
4611 	if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4612 		dbg("\"%s\": *%p <-- %p", name, addr, value);
4613 		*addr = value;
4614 	}
4615 }
4616 
4617 /*
4618  * Search the global objects, including dependencies and main object,
4619  * for the given symbol.
4620  */
4621 static int
symlook_global(SymLook * req,DoneList * donelist)4622 symlook_global(SymLook *req, DoneList *donelist)
4623 {
4624 	SymLook req1;
4625 	const Objlist_Entry *elm;
4626 	int res;
4627 
4628 	symlook_init_from_req(&req1, req);
4629 
4630 	/* Search all objects loaded at program start up. */
4631 	if (req->defobj_out == NULL || (ld_dynamic_weak &&
4632 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4633 		res = symlook_list(&req1, &list_main, donelist);
4634 		if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4635 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4636 			req->sym_out = req1.sym_out;
4637 			req->defobj_out = req1.defobj_out;
4638 			assert(req->defobj_out != NULL);
4639 		}
4640 	}
4641 
4642 	/* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4643 	STAILQ_FOREACH(elm, &list_global, link) {
4644 		if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4645 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4646 			break;
4647 		res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4648 		if (res == 0 && (req->defobj_out == NULL ||
4649 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4650 			req->sym_out = req1.sym_out;
4651 			req->defobj_out = req1.defobj_out;
4652 			assert(req->defobj_out != NULL);
4653 		}
4654 	}
4655 
4656 	return (req->sym_out != NULL ? 0 : ESRCH);
4657 }
4658 
4659 /*
4660  * Given a symbol name in a referencing object, find the corresponding
4661  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4662  * no definition was found.  Returns a pointer to the Obj_Entry of the
4663  * defining object via the reference parameter DEFOBJ_OUT.
4664  */
4665 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4666 symlook_default(SymLook *req, const Obj_Entry *refobj)
4667 {
4668 	DoneList donelist;
4669 	const Objlist_Entry *elm;
4670 	SymLook req1;
4671 	int res;
4672 
4673 	donelist_init(&donelist);
4674 	symlook_init_from_req(&req1, req);
4675 
4676 	/*
4677 	 * Look first in the referencing object if linked symbolically,
4678 	 * and similarly handle protected symbols.
4679 	 */
4680 	res = symlook_obj(&req1, refobj);
4681 	if (res == 0 && (refobj->symbolic ||
4682 	    ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4683 		req->sym_out = req1.sym_out;
4684 		req->defobj_out = req1.defobj_out;
4685 		assert(req->defobj_out != NULL);
4686 	}
4687 	if (refobj->symbolic || req->defobj_out != NULL)
4688 		donelist_check(&donelist, refobj);
4689 
4690 	if (!refobj->deepbind)
4691 		symlook_global(req, &donelist);
4692 
4693 	/* Search all dlopened DAGs containing the referencing object. */
4694 	STAILQ_FOREACH(elm, &refobj->dldags, link) {
4695 		if (req->sym_out != NULL && (!ld_dynamic_weak ||
4696 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4697 			break;
4698 		res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4699 		if (res == 0 && (req->sym_out == NULL ||
4700 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4701 			req->sym_out = req1.sym_out;
4702 			req->defobj_out = req1.defobj_out;
4703 			assert(req->defobj_out != NULL);
4704 		}
4705 	}
4706 
4707 	if (refobj->deepbind)
4708 		symlook_global(req, &donelist);
4709 
4710 	/*
4711 	 * Search the dynamic linker itself, and possibly resolve the
4712 	 * symbol from there.  This is how the application links to
4713 	 * dynamic linker services such as dlopen.
4714 	 */
4715 	if (req->sym_out == NULL ||
4716 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4717 		res = symlook_obj(&req1, &obj_rtld);
4718 		if (res == 0) {
4719 			req->sym_out = req1.sym_out;
4720 			req->defobj_out = req1.defobj_out;
4721 			assert(req->defobj_out != NULL);
4722 		}
4723 	}
4724 
4725 	return (req->sym_out != NULL ? 0 : ESRCH);
4726 }
4727 
4728 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4729 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4730 {
4731 	const Elf_Sym *def;
4732 	const Obj_Entry *defobj;
4733 	const Objlist_Entry *elm;
4734 	SymLook req1;
4735 	int res;
4736 
4737 	def = NULL;
4738 	defobj = NULL;
4739 	STAILQ_FOREACH(elm, objlist, link) {
4740 		if (donelist_check(dlp, elm->obj))
4741 			continue;
4742 		symlook_init_from_req(&req1, req);
4743 		if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4744 			if (def == NULL || (ld_dynamic_weak &&
4745 			    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4746 				def = req1.sym_out;
4747 				defobj = req1.defobj_out;
4748 				if (!ld_dynamic_weak ||
4749 				    ELF_ST_BIND(def->st_info) != STB_WEAK)
4750 					break;
4751 			}
4752 		}
4753 	}
4754 	if (def != NULL) {
4755 		req->sym_out = def;
4756 		req->defobj_out = defobj;
4757 		return (0);
4758 	}
4759 	return (ESRCH);
4760 }
4761 
4762 /*
4763  * Search the chain of DAGS cointed to by the given Needed_Entry
4764  * for a symbol of the given name.  Each DAG is scanned completely
4765  * before advancing to the next one.  Returns a pointer to the symbol,
4766  * or NULL if no definition was found.
4767  */
4768 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4769 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4770 {
4771 	const Elf_Sym *def;
4772 	const Needed_Entry *n;
4773 	const Obj_Entry *defobj;
4774 	SymLook req1;
4775 	int res;
4776 
4777 	def = NULL;
4778 	defobj = NULL;
4779 	symlook_init_from_req(&req1, req);
4780 	for (n = needed; n != NULL; n = n->next) {
4781 		if (n->obj == NULL || (res = symlook_list(&req1,
4782 		    &n->obj->dagmembers, dlp)) != 0)
4783 			continue;
4784 		if (def == NULL || (ld_dynamic_weak &&
4785 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4786 			def = req1.sym_out;
4787 			defobj = req1.defobj_out;
4788 			if (!ld_dynamic_weak ||
4789 			    ELF_ST_BIND(def->st_info) != STB_WEAK)
4790 				break;
4791 		}
4792 	}
4793 	if (def != NULL) {
4794 		req->sym_out = def;
4795 		req->defobj_out = defobj;
4796 		return (0);
4797 	}
4798 	return (ESRCH);
4799 }
4800 
4801 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4802 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4803     Needed_Entry *needed)
4804 {
4805 	DoneList donelist;
4806 	int flags;
4807 
4808 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4809 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4810 	donelist_init(&donelist);
4811 	symlook_init_from_req(req1, req);
4812 	return (symlook_needed(req1, needed, &donelist));
4813 }
4814 
4815 /*
4816  * Search the symbol table of a single shared object for a symbol of
4817  * the given name and version, if requested.  Returns a pointer to the
4818  * symbol, or NULL if no definition was found.  If the object is
4819  * filter, return filtered symbol from filtee.
4820  *
4821  * The symbol's hash value is passed in for efficiency reasons; that
4822  * eliminates many recomputations of the hash value.
4823  */
4824 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4825 symlook_obj(SymLook *req, const Obj_Entry *obj)
4826 {
4827 	SymLook req1;
4828 	int res, mres;
4829 
4830 	/*
4831 	 * If there is at least one valid hash at this point, we prefer to
4832 	 * use the faster GNU version if available.
4833 	 */
4834 	if (obj->valid_hash_gnu)
4835 		mres = symlook_obj1_gnu(req, obj);
4836 	else if (obj->valid_hash_sysv)
4837 		mres = symlook_obj1_sysv(req, obj);
4838 	else
4839 		return (EINVAL);
4840 
4841 	if (mres == 0) {
4842 		if (obj->needed_filtees != NULL) {
4843 			res = symlook_obj_load_filtees(req, &req1, obj,
4844 			    obj->needed_filtees);
4845 			if (res == 0) {
4846 				req->sym_out = req1.sym_out;
4847 				req->defobj_out = req1.defobj_out;
4848 			}
4849 			return (res);
4850 		}
4851 		if (obj->needed_aux_filtees != NULL) {
4852 			res = symlook_obj_load_filtees(req, &req1, obj,
4853 			    obj->needed_aux_filtees);
4854 			if (res == 0) {
4855 				req->sym_out = req1.sym_out;
4856 				req->defobj_out = req1.defobj_out;
4857 				return (res);
4858 			}
4859 		}
4860 	}
4861 	return (mres);
4862 }
4863 
4864 /* Symbol match routine common to both hash functions */
4865 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4866 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4867     const unsigned long symnum)
4868 {
4869 	Elf_Versym verndx;
4870 	const Elf_Sym *symp;
4871 	const char *strp;
4872 
4873 	symp = obj->symtab + symnum;
4874 	strp = obj->strtab + symp->st_name;
4875 
4876 	switch (ELF_ST_TYPE(symp->st_info)) {
4877 	case STT_FUNC:
4878 	case STT_NOTYPE:
4879 	case STT_OBJECT:
4880 	case STT_COMMON:
4881 	case STT_GNU_IFUNC:
4882 		if (symp->st_value == 0)
4883 			return (false);
4884 		/* fallthrough */
4885 	case STT_TLS:
4886 		if (symp->st_shndx != SHN_UNDEF)
4887 			break;
4888 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4889 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4890 			break;
4891 		/* fallthrough */
4892 	default:
4893 		return (false);
4894 	}
4895 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4896 		return (false);
4897 
4898 	if (req->ventry == NULL) {
4899 		if (obj->versyms != NULL) {
4900 			verndx = VER_NDX(obj->versyms[symnum]);
4901 			if (verndx > obj->vernum) {
4902 				_rtld_error(
4903 				    "%s: symbol %s references wrong version %d",
4904 				    obj->path, obj->strtab + symnum, verndx);
4905 				return (false);
4906 			}
4907 			/*
4908 			 * If we are not called from dlsym (i.e. this
4909 			 * is a normal relocation from unversioned
4910 			 * binary), accept the symbol immediately if
4911 			 * it happens to have first version after this
4912 			 * shared object became versioned.  Otherwise,
4913 			 * if symbol is versioned and not hidden,
4914 			 * remember it. If it is the only symbol with
4915 			 * this name exported by the shared object, it
4916 			 * will be returned as a match by the calling
4917 			 * function. If symbol is global (verndx < 2)
4918 			 * accept it unconditionally.
4919 			 */
4920 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4921 			    verndx == VER_NDX_GIVEN) {
4922 				result->sym_out = symp;
4923 				return (true);
4924 			} else if (verndx >= VER_NDX_GIVEN) {
4925 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN) ==
4926 				    0) {
4927 					if (result->vsymp == NULL)
4928 						result->vsymp = symp;
4929 					result->vcount++;
4930 				}
4931 				return (false);
4932 			}
4933 		}
4934 		result->sym_out = symp;
4935 		return (true);
4936 	}
4937 	if (obj->versyms == NULL) {
4938 		if (object_match_name(obj, req->ventry->name)) {
4939 			_rtld_error(
4940 		    "%s: object %s should provide version %s for symbol %s",
4941 			    obj_rtld.path, obj->path, req->ventry->name,
4942 			    obj->strtab + symnum);
4943 			return (false);
4944 		}
4945 	} else {
4946 		verndx = VER_NDX(obj->versyms[symnum]);
4947 		if (verndx > obj->vernum) {
4948 			_rtld_error("%s: symbol %s references wrong version %d",
4949 			    obj->path, obj->strtab + symnum, verndx);
4950 			return (false);
4951 		}
4952 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4953 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4954 			/*
4955 			 * Version does not match. Look if this is a
4956 			 * global symbol and if it is not hidden. If
4957 			 * global symbol (verndx < 2) is available,
4958 			 * use it. Do not return symbol if we are
4959 			 * called by dlvsym, because dlvsym looks for
4960 			 * a specific version and default one is not
4961 			 * what dlvsym wants.
4962 			 */
4963 			if ((req->flags & SYMLOOK_DLSYM) ||
4964 			    (verndx >= VER_NDX_GIVEN) ||
4965 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4966 				return (false);
4967 		}
4968 	}
4969 	result->sym_out = symp;
4970 	return (true);
4971 }
4972 
4973 /*
4974  * Search for symbol using SysV hash function.
4975  * obj->buckets is known not to be NULL at this point; the test for this was
4976  * performed with the obj->valid_hash_sysv assignment.
4977  */
4978 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)4979 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4980 {
4981 	unsigned long symnum;
4982 	Sym_Match_Result matchres;
4983 
4984 	matchres.sym_out = NULL;
4985 	matchres.vsymp = NULL;
4986 	matchres.vcount = 0;
4987 
4988 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4989 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4990 		if (symnum >= obj->nchains)
4991 			return (ESRCH); /* Bad object */
4992 
4993 		if (matched_symbol(req, obj, &matchres, symnum)) {
4994 			req->sym_out = matchres.sym_out;
4995 			req->defobj_out = obj;
4996 			return (0);
4997 		}
4998 	}
4999 	if (matchres.vcount == 1) {
5000 		req->sym_out = matchres.vsymp;
5001 		req->defobj_out = obj;
5002 		return (0);
5003 	}
5004 	return (ESRCH);
5005 }
5006 
5007 /* Search for symbol using GNU hash function */
5008 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)5009 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
5010 {
5011 	Elf_Addr bloom_word;
5012 	const Elf32_Word *hashval;
5013 	Elf32_Word bucket;
5014 	Sym_Match_Result matchres;
5015 	unsigned int h1, h2;
5016 	unsigned long symnum;
5017 
5018 	matchres.sym_out = NULL;
5019 	matchres.vsymp = NULL;
5020 	matchres.vcount = 0;
5021 
5022 	/* Pick right bitmask word from Bloom filter array */
5023 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
5024 	    obj->maskwords_bm_gnu];
5025 
5026 	/* Calculate modulus word size of gnu hash and its derivative */
5027 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
5028 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
5029 
5030 	/* Filter out the "definitely not in set" queries */
5031 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
5032 		return (ESRCH);
5033 
5034 	/* Locate hash chain and corresponding value element*/
5035 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
5036 	if (bucket == 0)
5037 		return (ESRCH);
5038 	hashval = &obj->chain_zero_gnu[bucket];
5039 	do {
5040 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
5041 			symnum = hashval - obj->chain_zero_gnu;
5042 			if (matched_symbol(req, obj, &matchres, symnum)) {
5043 				req->sym_out = matchres.sym_out;
5044 				req->defobj_out = obj;
5045 				return (0);
5046 			}
5047 		}
5048 	} while ((*hashval++ & 1) == 0);
5049 	if (matchres.vcount == 1) {
5050 		req->sym_out = matchres.vsymp;
5051 		req->defobj_out = obj;
5052 		return (0);
5053 	}
5054 	return (ESRCH);
5055 }
5056 
5057 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)5058 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
5059 {
5060 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
5061 	if (*main_local == NULL)
5062 		*main_local = "";
5063 
5064 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5065 	if (*fmt1 == NULL)
5066 		*fmt1 = "\t%o => %p (%x)\n";
5067 
5068 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5069 	if (*fmt2 == NULL)
5070 		*fmt2 = "\t%o (%x)\n";
5071 }
5072 
5073 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)5074 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5075     const char *main_local, const char *fmt1, const char *fmt2)
5076 {
5077 	const char *fmt;
5078 	int c;
5079 
5080 	if (fmt1 == NULL)
5081 		fmt = fmt2;
5082 	else
5083 		/* XXX bogus */
5084 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5085 
5086 	while ((c = *fmt++) != '\0') {
5087 		switch (c) {
5088 		default:
5089 			rtld_putchar(c);
5090 			continue;
5091 		case '\\':
5092 			switch (c = *fmt) {
5093 			case '\0':
5094 				continue;
5095 			case 'n':
5096 				rtld_putchar('\n');
5097 				break;
5098 			case 't':
5099 				rtld_putchar('\t');
5100 				break;
5101 			}
5102 			break;
5103 		case '%':
5104 			switch (c = *fmt) {
5105 			case '\0':
5106 				continue;
5107 			case '%':
5108 			default:
5109 				rtld_putchar(c);
5110 				break;
5111 			case 'A':
5112 				rtld_putstr(main_local);
5113 				break;
5114 			case 'a':
5115 				rtld_putstr(obj_main->path);
5116 				break;
5117 			case 'o':
5118 				rtld_putstr(name);
5119 				break;
5120 			case 'p':
5121 				rtld_putstr(path);
5122 				break;
5123 			case 'x':
5124 				rtld_printf("%p",
5125 				    obj != NULL ? obj->mapbase : NULL);
5126 				break;
5127 			}
5128 			break;
5129 		}
5130 		++fmt;
5131 	}
5132 }
5133 
5134 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5135 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5136 {
5137 	const char *fmt1, *fmt2, *main_local;
5138 	const char *name, *path;
5139 	bool first_spurious, list_containers;
5140 
5141 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5142 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5143 
5144 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5145 		Needed_Entry *needed;
5146 
5147 		if (obj->marker)
5148 			continue;
5149 		if (list_containers && obj->needed != NULL)
5150 			rtld_printf("%s:\n", obj->path);
5151 		for (needed = obj->needed; needed; needed = needed->next) {
5152 			if (needed->obj != NULL) {
5153 				if (needed->obj->traced && !list_containers)
5154 					continue;
5155 				needed->obj->traced = true;
5156 				path = needed->obj->path;
5157 			} else
5158 				path = "not found";
5159 
5160 			name = obj->strtab + needed->name;
5161 			trace_print_obj(needed->obj, name, path, main_local,
5162 			    fmt1, fmt2);
5163 		}
5164 	}
5165 
5166 	if (show_preload) {
5167 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5168 			fmt2 = "\t%p (%x)\n";
5169 		first_spurious = true;
5170 
5171 		TAILQ_FOREACH(obj, &obj_list, next) {
5172 			if (obj->marker || obj == obj_main || obj->traced)
5173 				continue;
5174 
5175 			if (list_containers && first_spurious) {
5176 				rtld_printf("[preloaded]\n");
5177 				first_spurious = false;
5178 			}
5179 
5180 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5181 			name = fname == NULL ? "<unknown>" : fname->name;
5182 			trace_print_obj(obj, name, obj->path, main_local, NULL,
5183 			    fmt2);
5184 		}
5185 	}
5186 }
5187 
5188 /*
5189  * Unload a dlopened object and its dependencies from memory and from
5190  * our data structures.  It is assumed that the DAG rooted in the
5191  * object has already been unreferenced, and that the object has a
5192  * reference count of 0.
5193  */
5194 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5195 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5196 {
5197 	Obj_Entry marker, *obj, *next;
5198 
5199 	assert(root->refcount == 0);
5200 
5201 	/*
5202 	 * Pass over the DAG removing unreferenced objects from
5203 	 * appropriate lists.
5204 	 */
5205 	unlink_object(root);
5206 
5207 	/* Unmap all objects that are no longer referenced. */
5208 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5209 		next = TAILQ_NEXT(obj, next);
5210 		if (obj->marker || obj->refcount != 0)
5211 			continue;
5212 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize,
5213 		    0, obj->path);
5214 		dbg("unloading \"%s\"", obj->path);
5215 		/*
5216 		 * Unlink the object now to prevent new references from
5217 		 * being acquired while the bind lock is dropped in
5218 		 * recursive dlclose() invocations.
5219 		 */
5220 		TAILQ_REMOVE(&obj_list, obj, next);
5221 		obj_count--;
5222 
5223 		if (obj->filtees_loaded) {
5224 			if (next != NULL) {
5225 				init_marker(&marker);
5226 				TAILQ_INSERT_BEFORE(next, &marker, next);
5227 				unload_filtees(obj, lockstate);
5228 				next = TAILQ_NEXT(&marker, next);
5229 				TAILQ_REMOVE(&obj_list, &marker, next);
5230 			} else
5231 				unload_filtees(obj, lockstate);
5232 		}
5233 		release_object(obj);
5234 	}
5235 }
5236 
5237 static void
unlink_object(Obj_Entry * root)5238 unlink_object(Obj_Entry *root)
5239 {
5240 	Objlist_Entry *elm;
5241 
5242 	if (root->refcount == 0) {
5243 		/* Remove the object from the RTLD_GLOBAL list. */
5244 		objlist_remove(&list_global, root);
5245 
5246 		/* Remove the object from all objects' DAG lists. */
5247 		STAILQ_FOREACH(elm, &root->dagmembers, link) {
5248 			objlist_remove(&elm->obj->dldags, root);
5249 			if (elm->obj != root)
5250 				unlink_object(elm->obj);
5251 		}
5252 	}
5253 }
5254 
5255 static void
ref_dag(Obj_Entry * root)5256 ref_dag(Obj_Entry *root)
5257 {
5258 	Objlist_Entry *elm;
5259 
5260 	assert(root->dag_inited);
5261 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5262 		elm->obj->refcount++;
5263 }
5264 
5265 static void
unref_dag(Obj_Entry * root)5266 unref_dag(Obj_Entry *root)
5267 {
5268 	Objlist_Entry *elm;
5269 
5270 	assert(root->dag_inited);
5271 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5272 		elm->obj->refcount--;
5273 }
5274 
5275 /*
5276  * Common code for MD __tls_get_addr().
5277  */
5278 static void *
tls_get_addr_slow(Elf_Addr ** dtvp,int index,size_t offset,bool locked)5279 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5280 {
5281 	Elf_Addr *newdtv, *dtv;
5282 	RtldLockState lockstate;
5283 	int to_copy;
5284 
5285 	dtv = *dtvp;
5286 	/* Check dtv generation in case new modules have arrived */
5287 	if (dtv[0] != tls_dtv_generation) {
5288 		if (!locked)
5289 			wlock_acquire(rtld_bind_lock, &lockstate);
5290 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5291 		to_copy = dtv[1];
5292 		if (to_copy > tls_max_index)
5293 			to_copy = tls_max_index;
5294 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5295 		newdtv[0] = tls_dtv_generation;
5296 		newdtv[1] = tls_max_index;
5297 		free(dtv);
5298 		if (!locked)
5299 			lock_release(rtld_bind_lock, &lockstate);
5300 		dtv = *dtvp = newdtv;
5301 	}
5302 
5303 	/* Dynamically allocate module TLS if necessary */
5304 	if (dtv[index + 1] == 0) {
5305 		/* Signal safe, wlock will block out signals. */
5306 		if (!locked)
5307 			wlock_acquire(rtld_bind_lock, &lockstate);
5308 		if (!dtv[index + 1])
5309 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5310 		if (!locked)
5311 			lock_release(rtld_bind_lock, &lockstate);
5312 	}
5313 	return ((void *)(dtv[index + 1] + offset));
5314 }
5315 
5316 void *
tls_get_addr_common(uintptr_t ** dtvp,int index,size_t offset)5317 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5318 {
5319 	uintptr_t *dtv;
5320 
5321 	dtv = *dtvp;
5322 	/* Check dtv generation in case new modules have arrived */
5323 	if (__predict_true(dtv[0] == tls_dtv_generation && dtv[index + 1] != 0))
5324 		return ((void *)(dtv[index + 1] + offset));
5325 	return (tls_get_addr_slow(dtvp, index, offset, false));
5326 }
5327 
5328 #ifdef TLS_VARIANT_I
5329 
5330 /*
5331  * Return pointer to allocated TLS block
5332  */
5333 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5334 get_tls_block_ptr(void *tcb, size_t tcbsize)
5335 {
5336 	size_t extra_size, post_size, pre_size, tls_block_size;
5337 	size_t tls_init_align;
5338 
5339 	tls_init_align = MAX(obj_main->tlsalign, 1);
5340 
5341 	/* Compute fragments sizes. */
5342 	extra_size = tcbsize - TLS_TCB_SIZE;
5343 	post_size = calculate_tls_post_size(tls_init_align);
5344 	tls_block_size = tcbsize + post_size;
5345 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5346 
5347 	return ((char *)tcb - pre_size - extra_size);
5348 }
5349 
5350 /*
5351  * Allocate Static TLS using the Variant I method.
5352  *
5353  * For details on the layout, see lib/libc/gen/tls.c.
5354  *
5355  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5356  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5357  *     offsets, whereas libc's tls_static_space is just the executable's static
5358  *     TLS segment.
5359  */
5360 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5361 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5362 {
5363 	Obj_Entry *obj;
5364 	char *tls_block;
5365 	Elf_Addr *dtv, **tcb;
5366 	Elf_Addr addr;
5367 	Elf_Addr i;
5368 	size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5369 	size_t tls_init_align, tls_init_offset;
5370 
5371 	if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5372 		return (oldtcb);
5373 
5374 	assert(tcbsize >= TLS_TCB_SIZE);
5375 	maxalign = MAX(tcbalign, tls_static_max_align);
5376 	tls_init_align = MAX(obj_main->tlsalign, 1);
5377 
5378 	/* Compute fragments sizes. */
5379 	extra_size = tcbsize - TLS_TCB_SIZE;
5380 	post_size = calculate_tls_post_size(tls_init_align);
5381 	tls_block_size = tcbsize + post_size;
5382 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5383 	tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE -
5384 	    post_size;
5385 
5386 	/* Allocate whole TLS block */
5387 	tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5388 	tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5389 
5390 	if (oldtcb != NULL) {
5391 		memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5392 		    tls_static_space);
5393 		free(get_tls_block_ptr(oldtcb, tcbsize));
5394 
5395 		/* Adjust the DTV. */
5396 		dtv = tcb[0];
5397 		for (i = 0; i < dtv[1]; i++) {
5398 			if (dtv[i + 2] >= (Elf_Addr)oldtcb &&
5399 			    dtv[i + 2] < (Elf_Addr)oldtcb + tls_static_space) {
5400 				dtv[i + 2] = dtv[i + 2] - (Elf_Addr)oldtcb +
5401 				    (Elf_Addr)tcb;
5402 			}
5403 		}
5404 	} else {
5405 		dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5406 		tcb[0] = dtv;
5407 		dtv[0] = tls_dtv_generation;
5408 		dtv[1] = tls_max_index;
5409 
5410 		for (obj = globallist_curr(objs); obj != NULL;
5411 		    obj = globallist_next(obj)) {
5412 			if (obj->tlsoffset == 0)
5413 				continue;
5414 			tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5415 			addr = (Elf_Addr)tcb + obj->tlsoffset;
5416 			if (tls_init_offset > 0)
5417 				memset((void *)addr, 0, tls_init_offset);
5418 			if (obj->tlsinitsize > 0) {
5419 				memcpy((void *)(addr + tls_init_offset),
5420 				    obj->tlsinit, obj->tlsinitsize);
5421 			}
5422 			if (obj->tlssize > obj->tlsinitsize) {
5423 				memset((void *)(addr + tls_init_offset +
5424 					   obj->tlsinitsize),
5425 				    0,
5426 				    obj->tlssize - obj->tlsinitsize -
5427 					tls_init_offset);
5428 			}
5429 			dtv[obj->tlsindex + 1] = addr;
5430 		}
5431 	}
5432 
5433 	return (tcb);
5434 }
5435 
5436 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5437 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5438 {
5439 	Elf_Addr *dtv;
5440 	Elf_Addr tlsstart, tlsend;
5441 	size_t post_size;
5442 	size_t dtvsize, i, tls_init_align __unused;
5443 
5444 	assert(tcbsize >= TLS_TCB_SIZE);
5445 	tls_init_align = MAX(obj_main->tlsalign, 1);
5446 
5447 	/* Compute fragments sizes. */
5448 	post_size = calculate_tls_post_size(tls_init_align);
5449 
5450 	tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5451 	tlsend = (Elf_Addr)tcb + tls_static_space;
5452 
5453 	dtv = *(Elf_Addr **)tcb;
5454 	dtvsize = dtv[1];
5455 	for (i = 0; i < dtvsize; i++) {
5456 		if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5457 		    dtv[i + 2] >= tlsend)) {
5458 			free((void *)dtv[i + 2]);
5459 		}
5460 	}
5461 	free(dtv);
5462 	free(get_tls_block_ptr(tcb, tcbsize));
5463 }
5464 
5465 #endif /* TLS_VARIANT_I */
5466 
5467 #ifdef TLS_VARIANT_II
5468 
5469 /*
5470  * Allocate Static TLS using the Variant II method.
5471  */
5472 void *
allocate_tls(Obj_Entry * objs,void * oldtls,size_t tcbsize,size_t tcbalign)5473 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5474 {
5475 	Obj_Entry *obj;
5476 	size_t size, ralign;
5477 	char *tls;
5478 	Elf_Addr *dtv, *olddtv;
5479 	Elf_Addr segbase, oldsegbase, addr;
5480 	size_t i;
5481 
5482 	ralign = tcbalign;
5483 	if (tls_static_max_align > ralign)
5484 		ralign = tls_static_max_align;
5485 	size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5486 
5487 	assert(tcbsize >= 2 * sizeof(Elf_Addr));
5488 	tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5489 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5490 
5491 	segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5492 	((Elf_Addr *)segbase)[0] = segbase;
5493 	((Elf_Addr *)segbase)[1] = (Elf_Addr)dtv;
5494 
5495 	dtv[0] = tls_dtv_generation;
5496 	dtv[1] = tls_max_index;
5497 
5498 	if (oldtls != NULL) {
5499 		/*
5500 		 * Copy the static TLS block over whole.
5501 		 */
5502 		oldsegbase = (Elf_Addr)oldtls;
5503 		memcpy((void *)(segbase - tls_static_space),
5504 		    (const void *)(oldsegbase - tls_static_space),
5505 		    tls_static_space);
5506 
5507 		/*
5508 		 * If any dynamic TLS blocks have been created tls_get_addr(),
5509 		 * move them over.
5510 		 */
5511 		olddtv = ((Elf_Addr **)oldsegbase)[1];
5512 		for (i = 0; i < olddtv[1]; i++) {
5513 			if (olddtv[i + 2] < oldsegbase - size ||
5514 			    olddtv[i + 2] > oldsegbase) {
5515 				dtv[i + 2] = olddtv[i + 2];
5516 				olddtv[i + 2] = 0;
5517 			}
5518 		}
5519 
5520 		/*
5521 		 * We assume that this block was the one we created with
5522 		 * allocate_initial_tls().
5523 		 */
5524 		free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5525 	} else {
5526 		for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5527 			if (obj->marker || obj->tlsoffset == 0)
5528 				continue;
5529 			addr = segbase - obj->tlsoffset;
5530 			memset((void *)(addr + obj->tlsinitsize), 0,
5531 			    obj->tlssize - obj->tlsinitsize);
5532 			if (obj->tlsinit) {
5533 				memcpy((void *)addr, obj->tlsinit,
5534 				    obj->tlsinitsize);
5535 				obj->static_tls_copied = true;
5536 			}
5537 			dtv[obj->tlsindex + 1] = addr;
5538 		}
5539 	}
5540 
5541 	return ((void *)segbase);
5542 }
5543 
5544 void
free_tls(void * tls,size_t tcbsize __unused,size_t tcbalign)5545 free_tls(void *tls, size_t tcbsize __unused, size_t tcbalign)
5546 {
5547 	Elf_Addr *dtv;
5548 	size_t size, ralign;
5549 	int dtvsize, i;
5550 	Elf_Addr tlsstart, tlsend;
5551 
5552 	/*
5553 	 * Figure out the size of the initial TLS block so that we can
5554 	 * find stuff which ___tls_get_addr() allocated dynamically.
5555 	 */
5556 	ralign = tcbalign;
5557 	if (tls_static_max_align > ralign)
5558 		ralign = tls_static_max_align;
5559 	size = roundup(tls_static_space, ralign);
5560 
5561 	dtv = ((Elf_Addr **)tls)[1];
5562 	dtvsize = dtv[1];
5563 	tlsend = (Elf_Addr)tls;
5564 	tlsstart = tlsend - size;
5565 	for (i = 0; i < dtvsize; i++) {
5566 		if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5567 		    dtv[i + 2] > tlsend)) {
5568 			free((void *)dtv[i + 2]);
5569 		}
5570 	}
5571 
5572 	free((void *)tlsstart);
5573 	free((void *)dtv);
5574 }
5575 
5576 #endif /* TLS_VARIANT_II */
5577 
5578 /*
5579  * Allocate TLS block for module with given index.
5580  */
5581 void *
allocate_module_tls(int index)5582 allocate_module_tls(int index)
5583 {
5584 	Obj_Entry *obj;
5585 	char *p;
5586 
5587 	TAILQ_FOREACH(obj, &obj_list, next) {
5588 		if (obj->marker)
5589 			continue;
5590 		if (obj->tlsindex == index)
5591 			break;
5592 	}
5593 	if (obj == NULL) {
5594 		_rtld_error("Can't find module with TLS index %d", index);
5595 		rtld_die();
5596 	}
5597 
5598 	if (obj->tls_static) {
5599 #ifdef TLS_VARIANT_I
5600 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5601 #else
5602 		p = (char *)_tcb_get() - obj->tlsoffset;
5603 #endif
5604 		return (p);
5605 	}
5606 
5607 	obj->tls_dynamic = true;
5608 
5609 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5610 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5611 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5612 	return (p);
5613 }
5614 
5615 bool
allocate_tls_offset(Obj_Entry * obj)5616 allocate_tls_offset(Obj_Entry *obj)
5617 {
5618 	size_t off;
5619 
5620 	if (obj->tls_dynamic)
5621 		return (false);
5622 
5623 	if (obj->tls_static)
5624 		return (true);
5625 
5626 	if (obj->tlssize == 0) {
5627 		obj->tls_static = true;
5628 		return (true);
5629 	}
5630 
5631 	if (tls_last_offset == 0)
5632 		off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5633 		    obj->tlspoffset);
5634 	else
5635 		off = calculate_tls_offset(tls_last_offset, tls_last_size,
5636 		    obj->tlssize, obj->tlsalign, obj->tlspoffset);
5637 
5638 	obj->tlsoffset = off;
5639 #ifdef TLS_VARIANT_I
5640 	off += obj->tlssize;
5641 #endif
5642 
5643 	/*
5644 	 * If we have already fixed the size of the static TLS block, we
5645 	 * must stay within that size. When allocating the static TLS, we
5646 	 * leave a small amount of space spare to be used for dynamically
5647 	 * loading modules which use static TLS.
5648 	 */
5649 	if (tls_static_space != 0) {
5650 		if (off > tls_static_space)
5651 			return (false);
5652 	} else if (obj->tlsalign > tls_static_max_align) {
5653 		tls_static_max_align = obj->tlsalign;
5654 	}
5655 
5656 	tls_last_offset = off;
5657 	tls_last_size = obj->tlssize;
5658 	obj->tls_static = true;
5659 
5660 	return (true);
5661 }
5662 
5663 void
free_tls_offset(Obj_Entry * obj)5664 free_tls_offset(Obj_Entry *obj)
5665 {
5666 	/*
5667 	 * If we were the last thing to allocate out of the static TLS
5668 	 * block, we give our space back to the 'allocator'. This is a
5669 	 * simplistic workaround to allow libGL.so.1 to be loaded and
5670 	 * unloaded multiple times.
5671 	 */
5672 	size_t off = obj->tlsoffset;
5673 
5674 #ifdef TLS_VARIANT_I
5675 	off += obj->tlssize;
5676 #endif
5677 	if (off == tls_last_offset) {
5678 		tls_last_offset -= obj->tlssize;
5679 		tls_last_size = 0;
5680 	}
5681 }
5682 
5683 void *
_rtld_allocate_tls(void * oldtls,size_t tcbsize,size_t tcbalign)5684 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5685 {
5686 	void *ret;
5687 	RtldLockState lockstate;
5688 
5689 	wlock_acquire(rtld_bind_lock, &lockstate);
5690 	ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5691 	    tcbsize, tcbalign);
5692 	lock_release(rtld_bind_lock, &lockstate);
5693 	return (ret);
5694 }
5695 
5696 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5697 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5698 {
5699 	RtldLockState lockstate;
5700 
5701 	wlock_acquire(rtld_bind_lock, &lockstate);
5702 	free_tls(tcb, tcbsize, tcbalign);
5703 	lock_release(rtld_bind_lock, &lockstate);
5704 }
5705 
5706 static void
object_add_name(Obj_Entry * obj,const char * name)5707 object_add_name(Obj_Entry *obj, const char *name)
5708 {
5709 	Name_Entry *entry;
5710 	size_t len;
5711 
5712 	len = strlen(name);
5713 	entry = malloc(sizeof(Name_Entry) + len);
5714 
5715 	if (entry != NULL) {
5716 		strcpy(entry->name, name);
5717 		STAILQ_INSERT_TAIL(&obj->names, entry, link);
5718 	}
5719 }
5720 
5721 static int
object_match_name(const Obj_Entry * obj,const char * name)5722 object_match_name(const Obj_Entry *obj, const char *name)
5723 {
5724 	Name_Entry *entry;
5725 
5726 	STAILQ_FOREACH(entry, &obj->names, link) {
5727 		if (strcmp(name, entry->name) == 0)
5728 			return (1);
5729 	}
5730 	return (0);
5731 }
5732 
5733 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5734 locate_dependency(const Obj_Entry *obj, const char *name)
5735 {
5736 	const Objlist_Entry *entry;
5737 	const Needed_Entry *needed;
5738 
5739 	STAILQ_FOREACH(entry, &list_main, link) {
5740 		if (object_match_name(entry->obj, name))
5741 			return (entry->obj);
5742 	}
5743 
5744 	for (needed = obj->needed; needed != NULL; needed = needed->next) {
5745 		if (strcmp(obj->strtab + needed->name, name) == 0 ||
5746 		    (needed->obj != NULL && object_match_name(needed->obj,
5747 		    name))) {
5748 			/*
5749 			 * If there is DT_NEEDED for the name we are looking
5750 			 * for, we are all set.  Note that object might not be
5751 			 * found if dependency was not loaded yet, so the
5752 			 * function can return NULL here.  This is expected and
5753 			 * handled properly by the caller.
5754 			 */
5755 			return (needed->obj);
5756 		}
5757 	}
5758 	_rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5759 	    obj->path, name);
5760 	rtld_die();
5761 }
5762 
5763 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5764 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5765     const Elf_Vernaux *vna)
5766 {
5767 	const Elf_Verdef *vd;
5768 	const char *vername;
5769 
5770 	vername = refobj->strtab + vna->vna_name;
5771 	vd = depobj->verdef;
5772 	if (vd == NULL) {
5773 		_rtld_error("%s: version %s required by %s not defined",
5774 		    depobj->path, vername, refobj->path);
5775 		return (-1);
5776 	}
5777 	for (;;) {
5778 		if (vd->vd_version != VER_DEF_CURRENT) {
5779 			_rtld_error(
5780 			    "%s: Unsupported version %d of Elf_Verdef entry",
5781 			    depobj->path, vd->vd_version);
5782 			return (-1);
5783 		}
5784 		if (vna->vna_hash == vd->vd_hash) {
5785 			const Elf_Verdaux *aux =
5786 			    (const Elf_Verdaux *)((const char *)vd +
5787 				vd->vd_aux);
5788 			if (strcmp(vername, depobj->strtab + aux->vda_name) ==
5789 			    0)
5790 				return (0);
5791 		}
5792 		if (vd->vd_next == 0)
5793 			break;
5794 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5795 	}
5796 	if (vna->vna_flags & VER_FLG_WEAK)
5797 		return (0);
5798 	_rtld_error("%s: version %s required by %s not found", depobj->path,
5799 	    vername, refobj->path);
5800 	return (-1);
5801 }
5802 
5803 static int
rtld_verify_object_versions(Obj_Entry * obj)5804 rtld_verify_object_versions(Obj_Entry *obj)
5805 {
5806 	const Elf_Verneed *vn;
5807 	const Elf_Verdef *vd;
5808 	const Elf_Verdaux *vda;
5809 	const Elf_Vernaux *vna;
5810 	const Obj_Entry *depobj;
5811 	int maxvernum, vernum;
5812 
5813 	if (obj->ver_checked)
5814 		return (0);
5815 	obj->ver_checked = true;
5816 
5817 	maxvernum = 0;
5818 	/*
5819 	 * Walk over defined and required version records and figure out
5820 	 * max index used by any of them. Do very basic sanity checking
5821 	 * while there.
5822 	 */
5823 	vn = obj->verneed;
5824 	while (vn != NULL) {
5825 		if (vn->vn_version != VER_NEED_CURRENT) {
5826 			_rtld_error(
5827 			    "%s: Unsupported version %d of Elf_Verneed entry",
5828 			    obj->path, vn->vn_version);
5829 			return (-1);
5830 		}
5831 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5832 		for (;;) {
5833 			vernum = VER_NEED_IDX(vna->vna_other);
5834 			if (vernum > maxvernum)
5835 				maxvernum = vernum;
5836 			if (vna->vna_next == 0)
5837 				break;
5838 			vna = (const Elf_Vernaux *)((const char *)vna +
5839 			    vna->vna_next);
5840 		}
5841 		if (vn->vn_next == 0)
5842 			break;
5843 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5844 	}
5845 
5846 	vd = obj->verdef;
5847 	while (vd != NULL) {
5848 		if (vd->vd_version != VER_DEF_CURRENT) {
5849 			_rtld_error(
5850 			    "%s: Unsupported version %d of Elf_Verdef entry",
5851 			    obj->path, vd->vd_version);
5852 			return (-1);
5853 		}
5854 		vernum = VER_DEF_IDX(vd->vd_ndx);
5855 		if (vernum > maxvernum)
5856 			maxvernum = vernum;
5857 		if (vd->vd_next == 0)
5858 			break;
5859 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5860 	}
5861 
5862 	if (maxvernum == 0)
5863 		return (0);
5864 
5865 	/*
5866 	 * Store version information in array indexable by version index.
5867 	 * Verify that object version requirements are satisfied along the
5868 	 * way.
5869 	 */
5870 	obj->vernum = maxvernum + 1;
5871 	obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5872 
5873 	vd = obj->verdef;
5874 	while (vd != NULL) {
5875 		if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5876 			vernum = VER_DEF_IDX(vd->vd_ndx);
5877 			assert(vernum <= maxvernum);
5878 			vda = (const Elf_Verdaux *)((const char *)vd +
5879 			    vd->vd_aux);
5880 			obj->vertab[vernum].hash = vd->vd_hash;
5881 			obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5882 			obj->vertab[vernum].file = NULL;
5883 			obj->vertab[vernum].flags = 0;
5884 		}
5885 		if (vd->vd_next == 0)
5886 			break;
5887 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5888 	}
5889 
5890 	vn = obj->verneed;
5891 	while (vn != NULL) {
5892 		depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5893 		if (depobj == NULL)
5894 			return (-1);
5895 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5896 		for (;;) {
5897 			if (check_object_provided_version(obj, depobj, vna))
5898 				return (-1);
5899 			vernum = VER_NEED_IDX(vna->vna_other);
5900 			assert(vernum <= maxvernum);
5901 			obj->vertab[vernum].hash = vna->vna_hash;
5902 			obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5903 			obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5904 			obj->vertab[vernum].flags = (vna->vna_other &
5905 			    VER_NEED_HIDDEN) != 0 ? VER_INFO_HIDDEN : 0;
5906 			if (vna->vna_next == 0)
5907 				break;
5908 			vna = (const Elf_Vernaux *)((const char *)vna +
5909 			    vna->vna_next);
5910 		}
5911 		if (vn->vn_next == 0)
5912 			break;
5913 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5914 	}
5915 	return (0);
5916 }
5917 
5918 static int
rtld_verify_versions(const Objlist * objlist)5919 rtld_verify_versions(const Objlist *objlist)
5920 {
5921 	Objlist_Entry *entry;
5922 	int rc;
5923 
5924 	rc = 0;
5925 	STAILQ_FOREACH(entry, objlist, link) {
5926 		/*
5927 		 * Skip dummy objects or objects that have their version
5928 		 * requirements already checked.
5929 		 */
5930 		if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5931 			continue;
5932 		if (rtld_verify_object_versions(entry->obj) == -1) {
5933 			rc = -1;
5934 			if (ld_tracing == NULL)
5935 				break;
5936 		}
5937 	}
5938 	if (rc == 0 || ld_tracing != NULL)
5939 		rc = rtld_verify_object_versions(&obj_rtld);
5940 	return (rc);
5941 }
5942 
5943 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)5944 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5945 {
5946 	Elf_Versym vernum;
5947 
5948 	if (obj->vertab) {
5949 		vernum = VER_NDX(obj->versyms[symnum]);
5950 		if (vernum >= obj->vernum) {
5951 			_rtld_error("%s: symbol %s has wrong verneed value %d",
5952 			    obj->path, obj->strtab + symnum, vernum);
5953 		} else if (obj->vertab[vernum].hash != 0) {
5954 			return (&obj->vertab[vernum]);
5955 		}
5956 	}
5957 	return (NULL);
5958 }
5959 
5960 int
_rtld_get_stack_prot(void)5961 _rtld_get_stack_prot(void)
5962 {
5963 	return (stack_prot);
5964 }
5965 
5966 int
_rtld_is_dlopened(void * arg)5967 _rtld_is_dlopened(void *arg)
5968 {
5969 	Obj_Entry *obj;
5970 	RtldLockState lockstate;
5971 	int res;
5972 
5973 	rlock_acquire(rtld_bind_lock, &lockstate);
5974 	obj = dlcheck(arg);
5975 	if (obj == NULL)
5976 		obj = obj_from_addr(arg);
5977 	if (obj == NULL) {
5978 		_rtld_error("No shared object contains address");
5979 		lock_release(rtld_bind_lock, &lockstate);
5980 		return (-1);
5981 	}
5982 	res = obj->dlopened ? 1 : 0;
5983 	lock_release(rtld_bind_lock, &lockstate);
5984 	return (res);
5985 }
5986 
5987 static int
obj_remap_relro(Obj_Entry * obj,int prot)5988 obj_remap_relro(Obj_Entry *obj, int prot)
5989 {
5990 	const Elf_Phdr *ph;
5991 	caddr_t relro_page;
5992 	size_t relro_size;
5993 
5994 	for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr +
5995 	    obj->phsize; ph++) {
5996 		if (ph->p_type != PT_GNU_RELRO)
5997 			continue;
5998 		relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
5999 		relro_size = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
6000 		    rtld_trunc_page(ph->p_vaddr);
6001 		if (mprotect(relro_page, relro_size, prot) == -1) {
6002 			_rtld_error(
6003 			    "%s: Cannot set relro protection to %#x: %s",
6004 			    obj->path, prot, rtld_strerror(errno));
6005 			return (-1);
6006 		}
6007 		break;
6008 	}
6009 	return (0);
6010 }
6011 
6012 static int
obj_disable_relro(Obj_Entry * obj)6013 obj_disable_relro(Obj_Entry *obj)
6014 {
6015 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
6016 }
6017 
6018 static int
obj_enforce_relro(Obj_Entry * obj)6019 obj_enforce_relro(Obj_Entry *obj)
6020 {
6021 	return (obj_remap_relro(obj, PROT_READ));
6022 }
6023 
6024 static void
map_stacks_exec(RtldLockState * lockstate)6025 map_stacks_exec(RtldLockState *lockstate)
6026 {
6027 	void (*thr_map_stacks_exec)(void);
6028 
6029 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
6030 		return;
6031 	thr_map_stacks_exec = (void (*)(void))(
6032 	    uintptr_t)get_program_var_addr("__pthread_map_stacks_exec",
6033 	    lockstate);
6034 	if (thr_map_stacks_exec != NULL) {
6035 		stack_prot |= PROT_EXEC;
6036 		thr_map_stacks_exec();
6037 	}
6038 }
6039 
6040 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)6041 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
6042 {
6043 	Objlist_Entry *elm;
6044 	Obj_Entry *obj;
6045 	void (*distrib)(size_t, void *, size_t, size_t);
6046 
6047 	distrib = (void (*)(size_t, void *, size_t, size_t))(
6048 	    uintptr_t)get_program_var_addr("__pthread_distribute_static_tls",
6049 	    lockstate);
6050 	if (distrib == NULL)
6051 		return;
6052 	STAILQ_FOREACH(elm, list, link) {
6053 		obj = elm->obj;
6054 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
6055 			continue;
6056 		lock_release(rtld_bind_lock, lockstate);
6057 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
6058 		    obj->tlssize);
6059 		wlock_acquire(rtld_bind_lock, lockstate);
6060 		obj->static_tls_copied = true;
6061 	}
6062 }
6063 
6064 void
symlook_init(SymLook * dst,const char * name)6065 symlook_init(SymLook *dst, const char *name)
6066 {
6067 	bzero(dst, sizeof(*dst));
6068 	dst->name = name;
6069 	dst->hash = elf_hash(name);
6070 	dst->hash_gnu = gnu_hash(name);
6071 }
6072 
6073 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)6074 symlook_init_from_req(SymLook *dst, const SymLook *src)
6075 {
6076 	dst->name = src->name;
6077 	dst->hash = src->hash;
6078 	dst->hash_gnu = src->hash_gnu;
6079 	dst->ventry = src->ventry;
6080 	dst->flags = src->flags;
6081 	dst->defobj_out = NULL;
6082 	dst->sym_out = NULL;
6083 	dst->lockstate = src->lockstate;
6084 }
6085 
6086 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)6087 open_binary_fd(const char *argv0, bool search_in_path, const char **binpath_res)
6088 {
6089 	char *binpath, *pathenv, *pe, *res1;
6090 	const char *res;
6091 	int fd;
6092 
6093 	binpath = NULL;
6094 	res = NULL;
6095 	if (search_in_path && strchr(argv0, '/') == NULL) {
6096 		binpath = xmalloc(PATH_MAX);
6097 		pathenv = getenv("PATH");
6098 		if (pathenv == NULL) {
6099 			_rtld_error("-p and no PATH environment variable");
6100 			rtld_die();
6101 		}
6102 		pathenv = strdup(pathenv);
6103 		if (pathenv == NULL) {
6104 			_rtld_error("Cannot allocate memory");
6105 			rtld_die();
6106 		}
6107 		fd = -1;
6108 		errno = ENOENT;
6109 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6110 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6111 				continue;
6112 			if (binpath[0] != '\0' &&
6113 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6114 				continue;
6115 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6116 				continue;
6117 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6118 			if (fd != -1 || errno != ENOENT) {
6119 				res = binpath;
6120 				break;
6121 			}
6122 		}
6123 		free(pathenv);
6124 	} else {
6125 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6126 		res = argv0;
6127 	}
6128 
6129 	if (fd == -1) {
6130 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6131 		rtld_die();
6132 	}
6133 	if (res != NULL && res[0] != '/') {
6134 		res1 = xmalloc(PATH_MAX);
6135 		if (realpath(res, res1) != NULL) {
6136 			if (res != argv0)
6137 				free(__DECONST(char *, res));
6138 			res = res1;
6139 		} else {
6140 			free(res1);
6141 		}
6142 	}
6143 	*binpath_res = res;
6144 	return (fd);
6145 }
6146 
6147 /*
6148  * Parse a set of command-line arguments.
6149  */
6150 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6151 parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
6152     const char **argv0, bool *dir_ignore)
6153 {
6154 	const char *arg;
6155 	char machine[64];
6156 	size_t sz;
6157 	int arglen, fd, i, j, mib[2];
6158 	char opt;
6159 	bool seen_b, seen_f;
6160 
6161 	dbg("Parsing command-line arguments");
6162 	*use_pathp = false;
6163 	*fdp = -1;
6164 	*dir_ignore = false;
6165 	seen_b = seen_f = false;
6166 
6167 	for (i = 1; i < argc; i++) {
6168 		arg = argv[i];
6169 		dbg("argv[%d]: '%s'", i, arg);
6170 
6171 		/*
6172 		 * rtld arguments end with an explicit "--" or with the first
6173 		 * non-prefixed argument.
6174 		 */
6175 		if (strcmp(arg, "--") == 0) {
6176 			i++;
6177 			break;
6178 		}
6179 		if (arg[0] != '-')
6180 			break;
6181 
6182 		/*
6183 		 * All other arguments are single-character options that can
6184 		 * be combined, so we need to search through `arg` for them.
6185 		 */
6186 		arglen = strlen(arg);
6187 		for (j = 1; j < arglen; j++) {
6188 			opt = arg[j];
6189 			if (opt == 'h') {
6190 				print_usage(argv[0]);
6191 				_exit(0);
6192 			} else if (opt == 'b') {
6193 				if (seen_f) {
6194 					_rtld_error("Both -b and -f specified");
6195 					rtld_die();
6196 				}
6197 				if (j != arglen - 1) {
6198 					_rtld_error("Invalid options: %s", arg);
6199 					rtld_die();
6200 				}
6201 				i++;
6202 				*argv0 = argv[i];
6203 				seen_b = true;
6204 				break;
6205 			} else if (opt == 'd') {
6206 				*dir_ignore = true;
6207 			} else if (opt == 'f') {
6208 				if (seen_b) {
6209 					_rtld_error("Both -b and -f specified");
6210 					rtld_die();
6211 				}
6212 
6213 				/*
6214 				 * -f XX can be used to specify a
6215 				 * descriptor for the binary named at
6216 				 * the command line (i.e., the later
6217 				 * argument will specify the process
6218 				 * name but the descriptor is what
6219 				 * will actually be executed).
6220 				 *
6221 				 * -f must be the last option in the
6222 				 * group, e.g., -abcf <fd>.
6223 				 */
6224 				if (j != arglen - 1) {
6225 					_rtld_error("Invalid options: %s", arg);
6226 					rtld_die();
6227 				}
6228 				i++;
6229 				fd = parse_integer(argv[i]);
6230 				if (fd == -1) {
6231 					_rtld_error(
6232 					    "Invalid file descriptor: '%s'",
6233 					    argv[i]);
6234 					rtld_die();
6235 				}
6236 				*fdp = fd;
6237 				seen_f = true;
6238 				break;
6239 			} else if (opt == 'o') {
6240 				struct ld_env_var_desc *l;
6241 				char *n, *v;
6242 				u_int ll;
6243 
6244 				if (j != arglen - 1) {
6245 					_rtld_error("Invalid options: %s", arg);
6246 					rtld_die();
6247 				}
6248 				i++;
6249 				n = argv[i];
6250 				v = strchr(n, '=');
6251 				if (v == NULL) {
6252 					_rtld_error("No '=' in -o parameter");
6253 					rtld_die();
6254 				}
6255 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6256 					l = &ld_env_vars[ll];
6257 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6258 					    strncmp(n, l->n, v - n) == 0) {
6259 						l->val = v + 1;
6260 						break;
6261 					}
6262 				}
6263 				if (ll == nitems(ld_env_vars)) {
6264 					_rtld_error("Unknown LD_ option %s", n);
6265 					rtld_die();
6266 				}
6267 			} else if (opt == 'p') {
6268 				*use_pathp = true;
6269 			} else if (opt == 'u') {
6270 				u_int ll;
6271 
6272 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6273 					ld_env_vars[ll].val = NULL;
6274 			} else if (opt == 'v') {
6275 				machine[0] = '\0';
6276 				mib[0] = CTL_HW;
6277 				mib[1] = HW_MACHINE;
6278 				sz = sizeof(machine);
6279 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6280 				ld_elf_hints_path = ld_get_env_var(
6281 				    LD_ELF_HINTS_PATH);
6282 				set_ld_elf_hints_path();
6283 				rtld_printf(
6284 				    "FreeBSD ld-elf.so.1 %s\n"
6285 				    "FreeBSD_version %d\n"
6286 				    "Default lib path %s\n"
6287 				    "Hints lib path %s\n"
6288 				    "Env prefix %s\n"
6289 				    "Default hint file %s\n"
6290 				    "Hint file %s\n"
6291 				    "libmap file %s\n"
6292 				    "Optional static TLS size %zd bytes\n",
6293 				    machine, __FreeBSD_version,
6294 				    ld_standard_library_path, gethints(false),
6295 				    ld_env_prefix, ld_elf_hints_default,
6296 				    ld_elf_hints_path, ld_path_libmap_conf,
6297 				    ld_static_tls_extra);
6298 				_exit(0);
6299 			} else {
6300 				_rtld_error("Invalid argument: '%s'", arg);
6301 				print_usage(argv[0]);
6302 				rtld_die();
6303 			}
6304 		}
6305 	}
6306 
6307 	if (!seen_b)
6308 		*argv0 = argv[i];
6309 	return (i);
6310 }
6311 
6312 /*
6313  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6314  */
6315 static int
parse_integer(const char * str)6316 parse_integer(const char *str)
6317 {
6318 	static const int RADIX = 10; /* XXXJA: possibly support hex? */
6319 	const char *orig;
6320 	int n;
6321 	char c;
6322 
6323 	orig = str;
6324 	n = 0;
6325 	for (c = *str; c != '\0'; c = *++str) {
6326 		if (c < '0' || c > '9')
6327 			return (-1);
6328 
6329 		n *= RADIX;
6330 		n += c - '0';
6331 	}
6332 
6333 	/* Make sure we actually parsed something. */
6334 	if (str == orig)
6335 		return (-1);
6336 	return (n);
6337 }
6338 
6339 static void
print_usage(const char * argv0)6340 print_usage(const char *argv0)
6341 {
6342 	rtld_printf(
6343 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6344 	    "\n"
6345 	    "Options:\n"
6346 	    "  -h        Display this help message\n"
6347 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6348 	    "  -d        Ignore lack of exec permissions for the binary\n"
6349 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6350 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6351 	    "  -p        Search in PATH for named binary\n"
6352 	    "  -u        Ignore LD_ environment variables\n"
6353 	    "  -v        Display identification information\n"
6354 	    "  --        End of RTLD options\n"
6355 	    "  <binary>  Name of process to execute\n"
6356 	    "  <args>    Arguments to the executed process\n",
6357 	    argv0);
6358 }
6359 
6360 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6361 static const struct auxfmt {
6362 	const char *name;
6363 	const char *fmt;
6364 } auxfmts[] = {
6365 	AUXFMT(AT_NULL, NULL),
6366 	AUXFMT(AT_IGNORE, NULL),
6367 	AUXFMT(AT_EXECFD, "%ld"),
6368 	AUXFMT(AT_PHDR, "%p"),
6369 	AUXFMT(AT_PHENT, "%lu"),
6370 	AUXFMT(AT_PHNUM, "%lu"),
6371 	AUXFMT(AT_PAGESZ, "%lu"),
6372 	AUXFMT(AT_BASE, "%#lx"),
6373 	AUXFMT(AT_FLAGS, "%#lx"),
6374 	AUXFMT(AT_ENTRY, "%p"),
6375 	AUXFMT(AT_NOTELF, NULL),
6376 	AUXFMT(AT_UID, "%ld"),
6377 	AUXFMT(AT_EUID, "%ld"),
6378 	AUXFMT(AT_GID, "%ld"),
6379 	AUXFMT(AT_EGID, "%ld"),
6380 	AUXFMT(AT_EXECPATH, "%s"),
6381 	AUXFMT(AT_CANARY, "%p"),
6382 	AUXFMT(AT_CANARYLEN, "%lu"),
6383 	AUXFMT(AT_OSRELDATE, "%lu"),
6384 	AUXFMT(AT_NCPUS, "%lu"),
6385 	AUXFMT(AT_PAGESIZES, "%p"),
6386 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6387 	AUXFMT(AT_TIMEKEEP, "%p"),
6388 	AUXFMT(AT_STACKPROT, "%#lx"),
6389 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6390 	AUXFMT(AT_HWCAP, "%#lx"),
6391 	AUXFMT(AT_HWCAP2, "%#lx"),
6392 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6393 	AUXFMT(AT_ARGC, "%lu"),
6394 	AUXFMT(AT_ARGV, "%p"),
6395 	AUXFMT(AT_ENVC, "%p"),
6396 	AUXFMT(AT_ENVV, "%p"),
6397 	AUXFMT(AT_PS_STRINGS, "%p"),
6398 	AUXFMT(AT_FXRNG, "%p"),
6399 	AUXFMT(AT_KPRELOAD, "%p"),
6400 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6401 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6402 };
6403 
6404 static bool
is_ptr_fmt(const char * fmt)6405 is_ptr_fmt(const char *fmt)
6406 {
6407 	char last;
6408 
6409 	last = fmt[strlen(fmt) - 1];
6410 	return (last == 'p' || last == 's');
6411 }
6412 
6413 static void
dump_auxv(Elf_Auxinfo ** aux_info)6414 dump_auxv(Elf_Auxinfo **aux_info)
6415 {
6416 	Elf_Auxinfo *auxp;
6417 	const struct auxfmt *fmt;
6418 	int i;
6419 
6420 	for (i = 0; i < AT_COUNT; i++) {
6421 		auxp = aux_info[i];
6422 		if (auxp == NULL)
6423 			continue;
6424 		fmt = &auxfmts[i];
6425 		if (fmt->fmt == NULL)
6426 			continue;
6427 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6428 		if (is_ptr_fmt(fmt->fmt)) {
6429 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6430 			    auxp->a_un.a_ptr);
6431 		} else {
6432 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6433 			    auxp->a_un.a_val);
6434 		}
6435 		rtld_fdprintf(STDOUT_FILENO, "\n");
6436 	}
6437 }
6438 
6439 const char *
rtld_get_var(const char * name)6440 rtld_get_var(const char *name)
6441 {
6442 	const struct ld_env_var_desc *lvd;
6443 	u_int i;
6444 
6445 	for (i = 0; i < nitems(ld_env_vars); i++) {
6446 		lvd = &ld_env_vars[i];
6447 		if (strcmp(lvd->n, name) == 0)
6448 			return (lvd->val);
6449 	}
6450 	return (NULL);
6451 }
6452 
6453 int
rtld_set_var(const char * name,const char * val)6454 rtld_set_var(const char *name, const char *val)
6455 {
6456 	struct ld_env_var_desc *lvd;
6457 	u_int i;
6458 
6459 	for (i = 0; i < nitems(ld_env_vars); i++) {
6460 		lvd = &ld_env_vars[i];
6461 		if (strcmp(lvd->n, name) != 0)
6462 			continue;
6463 		if (!lvd->can_update || (lvd->unsecure && !trust))
6464 			return (EPERM);
6465 		if (lvd->owned)
6466 			free(__DECONST(char *, lvd->val));
6467 		if (val != NULL)
6468 			lvd->val = xstrdup(val);
6469 		else
6470 			lvd->val = NULL;
6471 		lvd->owned = true;
6472 		if (lvd->debug)
6473 			debug = lvd->val != NULL && *lvd->val != '\0';
6474 		return (0);
6475 	}
6476 	return (ENOENT);
6477 }
6478 
6479 /*
6480  * Overrides for libc_pic-provided functions.
6481  */
6482 
6483 int
__getosreldate(void)6484 __getosreldate(void)
6485 {
6486 	size_t len;
6487 	int oid[2];
6488 	int error, osrel;
6489 
6490 	if (osreldate != 0)
6491 		return (osreldate);
6492 
6493 	oid[0] = CTL_KERN;
6494 	oid[1] = KERN_OSRELDATE;
6495 	osrel = 0;
6496 	len = sizeof(osrel);
6497 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6498 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6499 		osreldate = osrel;
6500 	return (osreldate);
6501 }
6502 const char *
rtld_strerror(int errnum)6503 rtld_strerror(int errnum)
6504 {
6505 	if (errnum < 0 || errnum >= sys_nerr)
6506 		return ("Unknown error");
6507 	return (sys_errlist[errnum]);
6508 }
6509 
6510 char *
getenv(const char * name)6511 getenv(const char *name)
6512 {
6513 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6514 	    strlen(name))));
6515 }
6516 
6517 /* malloc */
6518 void *
malloc(size_t nbytes)6519 malloc(size_t nbytes)
6520 {
6521 	return (__crt_malloc(nbytes));
6522 }
6523 
6524 void *
calloc(size_t num,size_t size)6525 calloc(size_t num, size_t size)
6526 {
6527 	return (__crt_calloc(num, size));
6528 }
6529 
6530 void
free(void * cp)6531 free(void *cp)
6532 {
6533 	__crt_free(cp);
6534 }
6535 
6536 void *
realloc(void * cp,size_t nbytes)6537 realloc(void *cp, size_t nbytes)
6538 {
6539 	return (__crt_realloc(cp, nbytes));
6540 }
6541 
6542 extern int _rtld_version__FreeBSD_version __exported;
6543 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6544 
6545 extern char _rtld_version_laddr_offset __exported;
6546 char _rtld_version_laddr_offset;
6547 
6548 extern char _rtld_version_dlpi_tls_data __exported;
6549 char _rtld_version_dlpi_tls_data;
6550