xref: /titanic_50/usr/src/uts/common/sys/ib/adapters/hermon/hermon_misc.h (revision 6a634c9dca3093f3922e4b7ab826d7bdf17bf78e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #ifndef	_SYS_IB_ADAPTERS_HERMON_MISC_H
27 #define	_SYS_IB_ADAPTERS_HERMON_MISC_H
28 
29 /*
30  * hermon_misc.h
31  *    Contains all of the prototypes, #defines, and structures necessary
32  *    for the Hermon Miscellaneous routines - Address Handle, Multicast,
33  *    Protection Domain, port-related, statistics (kstat) routines, and
34  *    extra VTS related routines.
35  *    Many of these functions are called by other parts of the Hermon driver
36  *    (and several routines are directly exposed through the IBTF CI
37  *    interface and/or kstat interface).
38  */
39 
40 #include <sys/types.h>
41 #include <sys/conf.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 
45 #include <sys/ib/adapters/hermon/hermon_typedef.h>
46 #include <sys/ib/adapters/hermon/hermon_ioctl.h>
47 #include <sys/ib/adapters/hermon/hermon_rsrc.h>
48 #include <sys/ib/adapters/hermon/hermon_hw.h>
49 
50 
51 #ifdef __cplusplus
52 extern "C" {
53 #endif
54 
55 /*
56  * The following defines specify the default number of Address Handles (AH)
57  * and their size (in the hardware).  By default the maximum number of address
58  * handles is set to 32K.  This value is controllable through the
59  * "hermon_log_num_ah" configuration variable.  Note:  Hermon Address Handles
60  * are also referred to as UD Address Vectors (UDAV).
61  */
62 #define	HERMON_NUM_AH_SHIFT		0xF
63 #define	HERMON_NUM_AH			(1 << HERMON_NUM_AH_SHIFT)
64 #define	HERMON_UDAV_SIZE_SHIFT		0x5
65 #define	HERMON_UDAV_SIZE			(1 << HERMON_UDAV_SIZE_SHIFT)
66 
67 /*
68  * The following macro determines whether the contents of a UDAV need to be
69  * sync'd (with ddi_dma_sync()).  This decision is based on whether the
70  * UDAV is in DDR memory (no sync) or system memory (sync required).
71  */
72 
73 #define	HERMON_UDAV_IS_SYNC_REQ(state)					\
74 	(((&((state)->ts_rsrc_hdl[HERMON_UDAV]))->rsrc_loc ==		\
75 	HERMON_IN_DDR) ? 0 : 1)
76 
77 /*
78  * These defines are used by hermon_get_addr_path() and hermon_set_addr_path()
79  * below.  They indicate the type of hardware context being passed in the
80  * "path" argument.  Because the Hermon hardware formats for the QP address
81  * path and UDAV address path structures is so similar, but not exactly the
82  * same, we use these flags to indicate which type of structure is being
83  * read from or written to.
84  */
85 #define	HERMON_ADDRPATH_QP		0x0
86 #define	HERMON_ADDRPATH_UDAV		0x1
87 
88 /*
89  * The following defines specify the default number of Multicast Groups (MCG)
90  * and the maximum number of QP which can be associated with each.  By default
91  * the maximum number of multicast groups is set to 256, and the maximum number
92  * of QP per multicast group is set to 248 (256 4-byte slots minus the 8 slots
93  * in the header).  The first of these values is controllable through the
94  * "hermon_log_num_mcg" configuration variable.  "hermon_num_qp_per_mcg" is
95  * also available if the customer needs such a large capability.
96  */
97 #define	HERMON_NUM_MCG_SHIFT		0x8
98 #define	HERMON_NUM_QP_PER_MCG_MIN	0x8
99 #define	HERMON_NUM_QP_PER_MCG		0xf8
100 
101 #define	HERMON_MCGMEM_SZ(state)						\
102 	((((state)->hs_cfg_profile->cp_num_qp_per_mcg) + 8) << 2)
103 
104 /*
105  * Macro to compute the offset of the QP list in a given MCG entry.
106  */
107 #define	HERMON_MCG_GET_QPLIST_PTR(mcg)					\
108 	((hermon_hw_mcg_qp_list_t *)((uintptr_t)(mcg) +			\
109 	sizeof (hermon_hw_mcg_t)))
110 
111 /*
112  * The following defines specify the characteristics of the Hermon multicast
113  * group hash table.  The HERMON_NUM_MCG_HASH_SHIFT defines the size of the
114  * hash table (as a power-of-2), which is set to 16 by default.  This value
115  * is controllable through the "hermon_log_num_mcg_hash" configuration variable,
116  * but serious consideration should be taken before changing this value.  Note:
117  * its appropriate size should be a function of the entire table size (as
118  * defined by "hermon_log_num_mcg" and HERMON_NUM_MCG_SHIFT above).
119  */
120 #define	HERMON_NUM_MCG_HASH_SHIFT	0x4
121 
122 /*
123  * The following defines are used by the multicast routines to determine
124  * if a given "multicast GID" is valid or not (see hermon_mcg_is_mgid_valid
125  * for more details.  These values are pulled from the IBA specification,
126  * rev. 1.1
127  */
128 #define	HERMON_MCG_TOPBITS_SHIFT	56
129 #define	HERMON_MCG_TOPBITS_MASK		0xFF
130 #define	HERMON_MCG_TOPBITS		0xFF
131 
132 #define	HERMON_MCG_FLAGS_SHIFT		52
133 #define	HERMON_MCG_FLAGS_MASK		0xF
134 #define	HERMON_MCG_FLAGS_PERM		0x0
135 #define	HERMON_MCG_FLAGS_NONPERM	0x1
136 
137 #define	HERMON_MCG_SCOPE_SHIFT		48
138 #define	HERMON_MCG_SCOPE_MASK		0xF
139 #define	HERMON_MCG_SCOPE_LINKLOC	0x2
140 #define	HERMON_MCG_SCOPE_SITELOC	0x5
141 #define	HERMON_MCG_SCOPE_ORGLOC		0x8
142 #define	HERMON_MCG_SCOPE_GLOBAL		0xE
143 
144 
145 /*
146  * The following defines specify the default number of Protection Domains (PD).
147  * By default the maximum number of protection domains is set to 64K.  This
148  * value is controllable through the "hermon_log_num_pd" configuration variable.
149  */
150 #define	HERMON_NUM_PD_SHIFT		0x10
151 
152 /*
153  * The following defines specify the default number of Partition Keys (PKey)
154  * per port.  By default the maximum number of PKeys is set to 32 per port, for
155  * a total of 64 (assuming two ports) .  This value is controllable through the
156  * "hermon_log_max_pkeytbl" configuration variable.
157  */
158 #define	HERMON_NUM_PKEYTBL_SHIFT		0x5
159 #define	HERMON_NUM_PKEYTBL		(1 << HERMON_NUM_PKEYTBL_SHIFT)
160 
161 /*
162  * The following defines specify the default number of SGIDs per port.  By
163  * default the maximum number of GIDS per port is set to 16.  This value
164  * is controllable through the "hermon_log_max_gidtbl" configuration variable.
165  */
166 #define	HERMON_NUM_GIDTBL_SHIFT		0x4
167 #define	HERMON_NUM_GIDTBL		(1 << HERMON_NUM_GIDTBL_SHIFT)
168 
169 /*
170  * Below is a define which is the default number of UAR pages.  By default, the
171  * maximum number of UAR pages is set to 1024 for hermon.  Note that
172  * BlueFlame (if enabled) will  take 1/2 the space behind BAR1 (the UAR BAR)
173  * and therefore we must limit this even further.  This value is controllable
174  * through the "hermon_log_num_uar" configuration variable. NOTE: This value
175  * should not be set larger than 15 (0xF) because the UAR index number is
176  * used as part of the minor number calculation (see hermon_open() for details)
177  * and the minor numbers should not be larger than eighteen bits (i.e. 15 bits
178  * of UAR index, 3 bits of driver instance number).  This is especially true
179  * for 32-bit kernels.
180  */
181 #define	HERMON_NUM_UAR_SHIFT		0xA
182 
183 /*
184  * A DoorBell record (DBr) will be handled uniquely.  They are not in ICM now,
185  * so they don't need the mapping.  And they just need to be accessible to the
186  * HCA as an address, so we don't need to register the memory.  AND, since
187  * user level (uDAPL, OPEN verbs) won't ever do the unmapping of them we don't
188  * really need to worry about that either.  And the DBrs will have to live in
189  * user mappable memory.  So, we can shortcut a lot of things given these
190  * assumptions.
191  *
192  * Other facts:  the DBrs for Hermon are only two per qp - one for the Receive
193  * side (RQ or SRQ) and one for the CQ.  If a QP is associated with an SRQ, we
194  * only need the ONE for the SRQ.  Also, although the RQ/SRQ DBr is only 4-bytes
195  * while the CQ DBr is 8-bytes, all DBrs will be 8-bytes (see the union below).
196  * Though it may lead to minor wastage, it also means that reuse is easier since
197  * any DBr can be used for either, and we don't have to play allocation games.
198  *
199  * The state structure will hold the pointer to the start of a list of struct
200  * hermon_dbr_info_s, each one containing the necessary information to manage
201  * a page of DBr's.
202  */
203 
204 typedef uint64_t hermon_dbr_t;
205 
206 typedef struct hermon_dbr_info_s {
207 	struct hermon_dbr_info_s *dbr_link;
208 	hermon_dbr_t		*dbr_page;	/* virtual addr of page */
209 	uint64_t		dbr_paddr;	/* physical addr of page */
210 	ddi_acc_handle_t	dbr_acchdl;
211 	ddi_dma_handle_t	dbr_dmahdl;
212 	uint32_t		dbr_nfree;	/* #free DBrs in this page */
213 	uint32_t		dbr_firstfree;	/* idx of first free DBr */
214 } hermon_dbr_info_t;
215 
216 #define	HERMON_NUM_DBR_PER_PAGE	(PAGESIZE / sizeof (hermon_dbr_t))
217 
218 
219 /*
220  * These defines specify some miscellaneous port-related configuration
221  * information.  Specifically, HERMON_MAX_MTU is used to define the maximum
222  * MTU supported for each Hermon port, HERMON_MAX_PORT_WIDTH is used to define
223  * the maximum supported port width, and the HERMON_MAX_VLCAP define is used
224  * to specify the maximum number of VLs supported, excluding VL15.  Both
225  * of these values are controllable and get be set using the "hermon_max_mtu"
226  * and "hermon_max_vlcap" configuration variables.  Note: as with many of the
227  * configurable variables, caution should be exercised when changing these
228  * values.  These values, specifically, should not be set any larger than
229  * they are defined here as these are set to the current Hermon device
230  * maximums.
231  *
232  * Note that:  with Hermon, these capabilities that were formerly retrieved
233  * 	as part of QUERY_DEV_LIM/CAP must now be retrieved with QUERY_PORT.
234  *	The init sequence will have to be altered vis-a-vis the older HCAs to
235  *	accommodate this change.
236  *
237  *	Also, the maximums will be changed here for now.
238  */
239 #define	HERMON_MAX_MTU		0x5 /* was 0x4, 2048 but moved to 4096 */
240 #define	HERMON_MAX_PORT_WIDTH	0x7 /* was 0x3 (1x/4x) but now 1/4/8x */
241 #define	HERMON_MAX_VLCAP	0x8 /* remain the same for now */
242 
243 /*
244  * These last defines are used by the statistics counting routines (kstats)
245  * for initialization of the structures associated with the IB statistics
246  * access routines.  The HERMON_CNTR_MASK and HERMON_CNTR_SIZE defines are
247  * used to divide the "pcr" register into two 32-bit counters (one for "pic0"
248  * and the other for "pic1")
249  */
250 #define	HERMON_CNTR_MASK		0xFFFFFFFF
251 #define	HERMON_CNTR_SIZE		32
252 #define	HERMON_CNTR_NUMENTRIES	17
253 
254 
255 
256 #define	HERMON_QUEUE_LOCATION_NORMAL	0x1
257 #define	HERMON_QUEUE_LOCATION_USERLAND	0x2
258 
259 /*
260  * Minimum number of ticks to delay between successive polls of the CQ in
261  * VTS ioctl loopback test
262  */
263 #define	HERMON_VTS_LOOPBACK_MIN_WAIT_DUR	50
264 
265 /*
266  * UAR software table, layout and associated structures
267  */
268 
269 /*
270  * Doorbell record table bitmap macros
271  */
272 #define	HERMON_IND_BYTE(ind)		((ind) >> 3)
273 #define	HERMON_IND_BIT(ind)		(1 << ((ind) & 0x7))
274 
275 #define	HERMON_BMAP_BIT_SET(bmap, ind)	\
276 	((bmap)[HERMON_IND_BYTE(ind)] |= HERMON_IND_BIT(ind))
277 #define	HERMON_BMAP_BIT_CLR(bmap, ind)	\
278 	((bmap)[HERMON_IND_BYTE(ind)] &= ~HERMON_IND_BIT(ind))
279 #define	HERMON_BMAP_BIT_ISSET(bmap, ind)	\
280 	((bmap)[HERMON_IND_BYTE(ind)] & HERMON_IND_BIT(ind))
281 
282 
283 /*
284  * User doorbell record page tracking
285  */
286 typedef struct hermon_udbr_page_s hermon_udbr_page_t;
287 
288 struct hermon_udbr_page_s {
289 	hermon_udbr_page_t	*upg_link;
290 	uint_t			upg_index;
291 	uint_t			upg_nfree;
292 	uint64_t		*upg_free;
293 	caddr_t			upg_kvaddr;
294 	struct buf		*upg_buf;
295 	ddi_umem_cookie_t	upg_umemcookie;
296 	ddi_dma_handle_t	upg_dmahdl;
297 	ddi_dma_cookie_t 	upg_dmacookie;
298 };
299 
300 typedef struct hermon_udbr_mgmt_s hermon_user_dbr_t;
301 
302 struct hermon_udbr_mgmt_s {
303 	hermon_user_dbr_t	*udbr_link;
304 	uint_t			udbr_index;	/* same as uarpg */
305 	hermon_udbr_page_t	*udbr_pagep;
306 };
307 
308 
309 /*
310  * doorbell tracking end
311  */
312 
313 /*
314  * The hermon_sw_ah_s structure is also referred to using the "hermon_ahhdl_t"
315  * typedef (see hermon_typedef.h).  It encodes all the information necessary
316  * to track the various resources needed to allocate, query, modify, and
317  * free an address handle.
318  *
319  * In specific, it has a lock to ensure single-threaded access. It stores a
320  * pointer to the associated PD handle, and also contains a copy of the
321  * GUID stored into the address handle.  The reason for this extra copy of
322  * the GUID info has to do with Hermon PRM compliance and is fully explained
323  * in hermon_misc.c
324  *
325  * To serve in it's primary function, it also contains a UDAV, which contains
326  * all of the data associated with the UD address vector that is being
327  * utilized by the holder of the address handle. The hardware-specific format
328  * of the UDAV is defined in the hermon_hw.h file.
329  *
330  * It also has the always necessary backpointer to the resource for the AH
331  * handle structure itself.
332  */
333 struct hermon_sw_ah_s {
334 	kmutex_t	ah_lock;
335 	hermon_pdhdl_t	ah_pdhdl;
336 	hermon_hw_udav_t *ah_udav;
337 	hermon_rsrc_t	*ah_rsrcp;
338 	uint64_t	ah_save_guid;
339 };
340 _NOTE(READ_ONLY_DATA(hermon_sw_ah_s::ah_udav))
341 _NOTE(MUTEX_PROTECTS_DATA(hermon_sw_ah_s::ah_lock,
342     hermon_sw_ah_s::ah_pdhdl
343     hermon_sw_ah_s::ah_rsrcp
344     hermon_sw_ah_s::ah_save_guid))
345 
346 /*
347  * The hermon_sw_mcg_list_s structure is also referred to using the
348  * "hermon_mcghdl_t" typedef (see hermon_typedef.h).  It encodes all the
349  * information necessary to track the various resources needed to for attaching
350  * and detaching QP from multicast groups.
351  *
352  * The Hermon driver keeps an array of these and uses them as a shadow for
353  * the real HW-based MCG table.  They hold all the necessary information
354  * to track the resources and to allow fast access to the MCG table.  First,
355  * it had a 128-bit multicast GID (stored in "mcg_mgid_h" and "mcg_mgid_l".
356  * next if has a field to indicate the index of the next hermon_mcghdl_t in
357  * the current hash chain (zero is the end of the chain).  Note: this very
358  * closely mimics what the hardware MCG entry has. Then it has a field to
359  * indicate how many QP are currently attached to the given MCG.  And, lastly,
360  * it has the obligatory backpointer to the resource for the MCH handle
361  * structure itself.
362  */
363 struct hermon_sw_mcg_list_s {
364 	uint64_t	mcg_mgid_h;
365 	uint64_t	mcg_mgid_l;
366 	uint_t		mcg_next_indx;
367 	uint_t		mcg_num_qps;
368 	hermon_rsrc_t	*mcg_rsrcp;
369 };
370 
371 /*
372  * The hermon_sw_pd_s structure is also referred to using the "hermon_pdhdl_t"
373  * typedef (see hermon_typedef.h).  It encodes all the information necessary
374  * to track the various resources needed to allocate and free protection
375  * domains
376  *
377  * Specifically, it has reference count and a lock to ensure single threaded
378  * access to it.  It has a field for the protection domain number ("pd_pdnum").
379  * And it also has the obligatory backpointer to the resource for the PD
380  * handle structure itself.
381  */
382 struct hermon_sw_pd_s {
383 	kmutex_t	pd_lock;
384 	uint32_t	pd_pdnum;
385 	uint32_t	pd_refcnt;
386 	hermon_rsrc_t	*pd_rsrcp;
387 };
388 _NOTE(READ_ONLY_DATA(hermon_sw_pd_s::pd_pdnum
389     hermon_sw_pd_s::pd_rsrcp))
390 _NOTE(MUTEX_PROTECTS_DATA(hermon_sw_pd_s::pd_lock,
391     hermon_sw_pd_s::pd_refcnt))
392 
393 /*
394  * The hermon_qalloc_info_s structure is also referred to using the
395  * "hermon_qalloc_info_t" typedef (see hermon_typedef.h).  It holds all the
396  * information necessary to track the resources for each of the various Hermon
397  * queue types (i.e. Event Queue, Completion Queue, Work Queue).
398  *
399  * Specifically, it has the size, alignment restrictions, and location (in DDR
400  * or in system memory).  And depending on the location, it also has the
401  * ddi_dma_handle_t, ddi_acc_handle_t, and pointers used for reading/writing to
402  * the queue's memory.
403  */
404 struct hermon_qalloc_info_s {
405 	uint64_t		qa_size;
406 	uint64_t		qa_alloc_align;
407 	uint64_t		qa_bind_align;
408 	uint32_t		*qa_buf_real;
409 	uint32_t		*qa_buf_aligned;
410 	uint64_t		qa_buf_realsz;
411 	uint_t			qa_pgoffs;
412 	uint_t			qa_location;
413 	ddi_dma_handle_t	qa_dmahdl;
414 	ddi_acc_handle_t	qa_acchdl;
415 	ddi_umem_cookie_t	qa_umemcookie;
416 };
417 
418 /*
419  * The hermon_ks_mask_t structure encodes all the information necessary for
420  * the individual kstat entries.  The "ks_reg_offset" field contains the
421  * hardware offset for the corresponding counter, and "ks_reg_shift" and
422  * "ks_reg_mask" contain shift and mask registers used by the access routines.
423  * Also the "ks_old_pic0" and "ks_old_pic1" fields contain the most recently
424  * read value for the corresponding port ("pic").  Note:  An array of these
425  * structures is part of the "hermon_ks_info_t" structure below.
426  */
427 typedef struct hermon_ks_mask_s {
428 	char		*ks_evt_name;
429 	uint32_t	ks_old_pic0;
430 	uint32_t	ks_old_pic1;
431 } hermon_ks_mask_t;
432 
433 /*
434  * Index into the named data components of 64 bit "perf_counters" kstat.
435  */
436 enum {
437 	HERMON_PERFCNTR64_ENABLE_IDX = 0,
438 	HERMON_PERFCNTR64_XMIT_DATA_IDX,
439 	HERMON_PERFCNTR64_RECV_DATA_IDX,
440 	HERMON_PERFCNTR64_XMIT_PKTS_IDX,
441 	HERMON_PERFCNTR64_RECV_PKTS_IDX,
442 	HERMON_PERFCNTR64_NUM_COUNTERS
443 };
444 
445 /*
446  * Data associated with the 64 bit "perf_counters" kstat. One for each port.
447  */
448 typedef struct hermon_perfcntr64_ks_info_s {
449 	struct kstat	*hki64_ksp;
450 	int		hki64_ext_port_counters_supported;
451 	int		hki64_enabled;
452 	uint64_t	hki64_counters[HERMON_PERFCNTR64_NUM_COUNTERS];
453 	uint32_t	hki64_last_read[HERMON_PERFCNTR64_NUM_COUNTERS];
454 	uint_t		hki64_port_num;
455 	hermon_state_t	*hki64_state;
456 } hermon_perfcntr64_ks_info_t;
457 
458 /*
459  * The hermon_ks_info_t structure stores all the information necessary for
460  * tracking the resources associated with each of the various kstats.  In
461  * addition to containing pointers to each of the counter and pic kstats,
462  * this structure also contains "hki_pcr" which is the control register that
463  * determines which of the countable entries (from the "hki_ib_perfcnt[]"
464  * array) is being currently accessed.
465  */
466 typedef struct hermon_ks_info_s {
467 	struct kstat	*hki_cntr_ksp;
468 	struct kstat	*hki_picN_ksp[HERMON_MAX_PORTS];
469 	uint64_t	hki_pcr;
470 	uint64_t	hki_pic0;
471 	uint64_t	hki_pic1;
472 	hermon_ks_mask_t	hki_ib_perfcnt[HERMON_CNTR_NUMENTRIES];
473 	kt_did_t	hki_perfcntr64_thread_id;
474 	kmutex_t	hki_perfcntr64_lock;
475 	kcondvar_t	hki_perfcntr64_cv;
476 	uint_t		hki_perfcntr64_flags;	/* see below */
477 	hermon_perfcntr64_ks_info_t	hki_perfcntr64[HERMON_MAX_PORTS];
478 } hermon_ks_info_t;
479 
480 /* hki_perfcntr64_flags */
481 #define	HERMON_PERFCNTR64_THREAD_CREATED	0x0001
482 #define	HERMON_PERFCNTR64_THREAD_EXIT		0x0002
483 
484 /*
485  * The hermon_ports_ioctl32_t, hermon_loopback_ioctl32_t, and
486  * hermon_flash_ioctl32_s structures are used internally by the Hermon
487  * driver to accomodate 32-bit applications which need to access the
488  * Hermon ioctls.  They are 32-bit versions of externally available
489  * structures defined in hermon_ioctl.h
490  */
491 typedef struct hermon_ports_ioctl32_s {
492 	uint_t			ap_revision;
493 	caddr32_t		ap_ports;
494 	uint8_t			ap_num_ports;
495 } hermon_ports_ioctl32_t;
496 
497 typedef struct hermon_loopback_ioctl32_s {
498 	uint_t			alb_revision;
499 	caddr32_t		alb_send_buf;
500 	caddr32_t		alb_fail_buf;
501 	uint_t			alb_buf_sz;
502 	uint_t			alb_num_iter;
503 	uint_t			alb_pass_done;
504 	uint_t			alb_timeout;
505 	hermon_loopback_error_t	alb_error_type;
506 	uint8_t			alb_port_num;
507 	uint8_t			alb_num_retry;
508 } hermon_loopback_ioctl32_t;
509 
510 typedef struct hermon_flash_ioctl32_s {
511 	uint32_t	af_type;
512 	caddr32_t	af_sector;
513 	uint32_t	af_sector_num;
514 	uint32_t	af_addr;
515 	uint32_t	af_quadlet;
516 	uint8_t		af_byte;
517 } hermon_flash_ioctl32_t;
518 
519 /*
520  * The hermon_loopback_comm_t and hermon_loopback_state_t structures below
521  * are used to store all of the relevant state information needed to keep
522  * track of a single VTS ioctl loopback test run.
523  */
524 typedef struct hermon_loopback_comm_s {
525 	uint8_t			*hlc_buf;
526 	size_t			hlc_buf_sz;
527 	ibt_mr_desc_t		hlc_mrdesc;
528 
529 	hermon_mrhdl_t		hlc_mrhdl;
530 	hermon_cqhdl_t		hlc_cqhdl[2];
531 	hermon_qphdl_t		hlc_qp_hdl;
532 
533 	ibt_mr_attr_t		hlc_memattr;
534 	uint_t			hlc_qp_num;
535 	ibt_cq_attr_t		hlc_cq_attr;
536 	ibt_qp_alloc_attr_t	hlc_qp_attr;
537 	ibt_chan_sizes_t	hlc_chan_sizes;
538 	ibt_qp_info_t		hlc_qp_info;
539 	ibt_queue_sizes_t	hlc_queue_sizes;
540 	ibt_send_wr_t		hlc_wr;
541 	ibt_wr_ds_t		hlc_sgl;
542 	ibt_wc_t		hlc_wc;
543 	uint_t			hlc_num_polled;
544 	ibt_status_t		hlc_status;
545 	int			hlc_complete;
546 	int			hlc_wrid;
547 } hermon_loopback_comm_t;
548 
549 typedef struct hermon_loopback_state_s {
550 	uint8_t			hls_port;
551 	uint_t			hls_lid;
552 	uint8_t			hls_retry;
553 	hermon_state_t		*hls_state;
554 	ibc_hca_hdl_t		hls_hca_hdl;
555 	hermon_pdhdl_t		hls_pd_hdl;
556 	hermon_loopback_comm_t	hls_tx;
557 	hermon_loopback_comm_t	hls_rx;
558 	ibt_status_t		hls_status;
559 	int			hls_err;
560 	int			hls_pkey_ix;
561 	int			hls_timeout;
562 } hermon_loopback_state_t;
563 
564 /*
565  * Mellanox FMR
566  */
567 typedef struct hermon_fmr_list_s {
568 	struct hermon_fmr_list_s		*fmr_next;
569 
570 	hermon_mrhdl_t			fmr;
571 	hermon_fmrhdl_t			fmr_pool;
572 	uint_t				fmr_remaps;
573 	uint_t				fmr_remap_gen; /* generation */
574 } hermon_fmr_list_t;
575 
576 struct hermon_sw_fmr_s {
577 	hermon_state_t			*fmr_state;
578 
579 	kmutex_t			fmr_lock;
580 	hermon_fmr_list_t		*fmr_free_list;
581 	hermon_fmr_list_t		**fmr_free_list_tail;
582 	int				fmr_free_len;
583 	int				fmr_pool_size;
584 	int				fmr_max_pages;
585 	int				fmr_flags;
586 	int				fmr_stat_register;
587 
588 	ibt_fmr_flush_handler_t		fmr_flush_function;
589 	void				*fmr_flush_arg;
590 
591 	int				fmr_max_remaps;
592 	uint_t				fmr_remap_gen; /* generation */
593 	int				fmr_page_sz;
594 
595 	kmutex_t			remap_lock;
596 	hermon_fmr_list_t		*fmr_remap_list;
597 	hermon_fmr_list_t		**fmr_remap_list_tail;
598 	int				fmr_remap_watermark;
599 	int				fmr_remap_len;
600 
601 	kmutex_t			dirty_lock;
602 	hermon_fmr_list_t		*fmr_dirty_list;
603 	hermon_fmr_list_t		**fmr_dirty_list_tail;
604 	int				fmr_dirty_watermark;
605 	int				fmr_dirty_len;
606 };
607 _NOTE(MUTEX_PROTECTS_DATA(hermon_sw_fmr_s::fmr_lock,
608     hermon_sw_fmr_s::fmr_pool_size
609     hermon_sw_fmr_s::fmr_page_sz
610     hermon_sw_fmr_s::fmr_flags
611     hermon_sw_fmr_s::fmr_free_list))
612 _NOTE(MUTEX_PROTECTS_DATA(hermon_sw_fmr_s::dirty_lock,
613     hermon_sw_fmr_s::fmr_dirty_watermark
614     hermon_sw_fmr_s::fmr_dirty_len
615     hermon_sw_fmr_s::fmr_dirty_list))
616 _NOTE(DATA_READABLE_WITHOUT_LOCK(hermon_sw_fmr_s::fmr_remap_gen
617     hermon_sw_fmr_s::fmr_state
618     hermon_sw_fmr_s::fmr_max_pages
619     hermon_sw_fmr_s::fmr_max_remaps))
620 
621 /* FRWR guarantees 8 bits of key; avoid corner cases by using "-2" */
622 #define	HERMON_FMR_MAX_REMAPS		(256 - 2)
623 
624 /* Hermon doorbell record routines */
625 
626 int hermon_dbr_page_alloc(hermon_state_t *state, hermon_dbr_info_t **info);
627 int hermon_dbr_alloc(hermon_state_t *state, uint_t index,
628     ddi_acc_handle_t *acchdl, hermon_dbr_t **vdbr, uint64_t *pdbr,
629     uint64_t *mapoffset);
630 void hermon_dbr_free(hermon_state_t *state, uint_t indx, hermon_dbr_t *record);
631 void hermon_dbr_kern_free(hermon_state_t *state);
632 
633 /* Hermon Fast Memory Registration Routines */
634 int hermon_create_fmr_pool(hermon_state_t *state, hermon_pdhdl_t pdhdl,
635     ibt_fmr_pool_attr_t *params, hermon_fmrhdl_t *fmrhdl);
636 int hermon_destroy_fmr_pool(hermon_state_t *state, hermon_fmrhdl_t fmrhdl);
637 int hermon_flush_fmr_pool(hermon_state_t *state, hermon_fmrhdl_t fmrhdl);
638 int hermon_register_physical_fmr(hermon_state_t *state, hermon_fmrhdl_t fmrhdl,
639     ibt_pmr_attr_t *mem_pattr_p, hermon_mrhdl_t *mrhdl,
640     ibt_pmr_desc_t *mem_desc_p);
641 int hermon_deregister_fmr(hermon_state_t *state, hermon_mrhdl_t mr);
642 
643 
644 /* Hermon Address Handle routines */
645 int hermon_ah_alloc(hermon_state_t *state, hermon_pdhdl_t pd,
646     ibt_adds_vect_t *attr_p, hermon_ahhdl_t *ahhdl, uint_t sleepflag);
647 int hermon_ah_free(hermon_state_t *state, hermon_ahhdl_t *ahhdl,
648     uint_t sleepflag);
649 int hermon_ah_query(hermon_state_t *state, hermon_ahhdl_t ahhdl,
650     hermon_pdhdl_t *pdhdl, ibt_adds_vect_t *attr_p);
651 int hermon_ah_modify(hermon_state_t *state, hermon_ahhdl_t ahhdl,
652     ibt_adds_vect_t *attr_p);
653 
654 /* Hermon Multicast Group routines */
655 int hermon_mcg_attach(hermon_state_t *state, hermon_qphdl_t qphdl, ib_gid_t gid,
656     ib_lid_t lid);
657 int hermon_mcg_detach(hermon_state_t *state, hermon_qphdl_t qphdl, ib_gid_t gid,
658     ib_lid_t lid);
659 
660 /* Hermon Protection Domain routines */
661 int hermon_pd_alloc(hermon_state_t *state, hermon_pdhdl_t *pdhdl,
662     uint_t sleepflag);
663 int hermon_pd_free(hermon_state_t *state, hermon_pdhdl_t *pdhdl);
664 void hermon_pd_refcnt_inc(hermon_pdhdl_t pd);
665 void hermon_pd_refcnt_dec(hermon_pdhdl_t pd);
666 
667 /* Hermon port-related routines */
668 int hermon_port_query(hermon_state_t *state, uint_t port,
669     ibt_hca_portinfo_t *pi);
670 int hermon_port_modify(hermon_state_t *state, uint8_t port,
671     ibt_port_modify_flags_t flags, uint8_t init_type);
672 
673 /* Hermon statistics (kstat) routines */
674 int hermon_kstat_init(hermon_state_t *state);
675 void hermon_kstat_fini(hermon_state_t *state);
676 
677 /* Miscellaneous routines */
678 int hermon_set_addr_path(hermon_state_t *state, ibt_adds_vect_t *av,
679     hermon_hw_addr_path_t *path, uint_t type);
680 void hermon_get_addr_path(hermon_state_t *state, hermon_hw_addr_path_t *path,
681     ibt_adds_vect_t *av, uint_t type);
682 int hermon_portnum_is_valid(hermon_state_t *state, uint_t portnum);
683 int hermon_pkeyindex_is_valid(hermon_state_t *state, uint_t pkeyindx);
684 int hermon_queue_alloc(hermon_state_t *state, hermon_qalloc_info_t *qa_info,
685     uint_t sleepflag);
686 void hermon_queue_free(hermon_qalloc_info_t *qa_info);
687 
688 #ifdef __cplusplus
689 }
690 #endif
691 
692 #endif	/* _SYS_IB_ADAPTERS_HERMON_MISC_H */
693