1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
25 */
26
27 /*
28 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
29 * All Rights Reserved
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/cred.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/pathname.h>
40 #include <sys/sysmacros.h>
41 #include <sys/kmem.h>
42 #include <sys/mkdev.h>
43 #include <sys/mount.h>
44 #include <sys/statvfs.h>
45 #include <sys/errno.h>
46 #include <sys/debug.h>
47 #include <sys/cmn_err.h>
48 #include <sys/utsname.h>
49 #include <sys/bootconf.h>
50 #include <sys/modctl.h>
51 #include <sys/acl.h>
52 #include <sys/flock.h>
53 #include <sys/time.h>
54 #include <sys/disp.h>
55 #include <sys/policy.h>
56 #include <sys/socket.h>
57 #include <sys/netconfig.h>
58 #include <sys/dnlc.h>
59 #include <sys/list.h>
60 #include <sys/mntent.h>
61 #include <sys/tsol/label.h>
62
63 #include <rpc/types.h>
64 #include <rpc/auth.h>
65 #include <rpc/rpcsec_gss.h>
66 #include <rpc/clnt.h>
67
68 #include <nfs/nfs.h>
69 #include <nfs/nfs_clnt.h>
70 #include <nfs/mount.h>
71 #include <nfs/nfs_acl.h>
72
73 #include <fs/fs_subr.h>
74
75 #include <nfs/nfs4.h>
76 #include <nfs/rnode4.h>
77 #include <nfs/nfs4_clnt.h>
78 #include <sys/fs/autofs.h>
79
80 #include <sys/sdt.h>
81
82
83 /*
84 * Arguments passed to thread to free data structures from forced unmount.
85 */
86
87 typedef struct {
88 vfs_t *fm_vfsp;
89 int fm_flag;
90 cred_t *fm_cr;
91 } freemountargs_t;
92
93 static void async_free_mount(vfs_t *, int, cred_t *);
94 static void nfs4_free_mount(vfs_t *, int, cred_t *);
95 static void nfs4_free_mount_thread(freemountargs_t *);
96 static int nfs4_chkdup_servinfo4(servinfo4_t *, servinfo4_t *);
97
98 /*
99 * From rpcsec module (common/rpcsec).
100 */
101 extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t);
102 extern void sec_clnt_freeinfo(struct sec_data *);
103
104 /*
105 * The order and contents of this structure must be kept in sync with that of
106 * rfsreqcnt_v4_tmpl in nfs_stats.c
107 */
108 static char *rfsnames_v4[] = {
109 "null", "compound", "reserved", "access", "close", "commit", "create",
110 "delegpurge", "delegreturn", "getattr", "getfh", "link", "lock",
111 "lockt", "locku", "lookup", "lookupp", "nverify", "open", "openattr",
112 "open_confirm", "open_downgrade", "putfh", "putpubfh", "putrootfh",
113 "read", "readdir", "readlink", "remove", "rename", "renew",
114 "restorefh", "savefh", "secinfo", "setattr", "setclientid",
115 "setclientid_confirm", "verify", "write"
116 };
117
118 /*
119 * nfs4_max_mount_retry is the number of times the client will redrive
120 * a mount compound before giving up and returning failure. The intent
121 * is to redrive mount compounds which fail NFS4ERR_STALE so that
122 * if a component of the server path being mounted goes stale, it can
123 * "recover" by redriving the mount compund (LOOKUP ops). This recovery
124 * code is needed outside of the recovery framework because mount is a
125 * special case. The client doesn't create vnodes/rnodes for components
126 * of the server path being mounted. The recovery code recovers real
127 * client objects, not STALE FHs which map to components of the server
128 * path being mounted.
129 *
130 * We could just fail the mount on the first time, but that would
131 * instantly trigger failover (from nfs4_mount), and the client should
132 * try to re-lookup the STALE FH before doing failover. The easiest
133 * way to "re-lookup" is to simply redrive the mount compound.
134 */
135 static int nfs4_max_mount_retry = 2;
136
137 /*
138 * nfs4 vfs operations.
139 */
140 int nfs4_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *);
141 static int nfs4_unmount(vfs_t *, int, cred_t *);
142 static int nfs4_root(vfs_t *, vnode_t **);
143 static int nfs4_statvfs(vfs_t *, struct statvfs64 *);
144 static int nfs4_sync(vfs_t *, short, cred_t *);
145 static int nfs4_vget(vfs_t *, vnode_t **, fid_t *);
146 static int nfs4_mountroot(vfs_t *, whymountroot_t);
147 static void nfs4_freevfs(vfs_t *);
148
149 static int nfs4rootvp(vnode_t **, vfs_t *, struct servinfo4 *,
150 int, cred_t *, zone_t *);
151
152 vfsops_t *nfs4_vfsops;
153
154 int nfs4_vfsinit(void);
155 void nfs4_vfsfini(void);
156 static void nfs4setclientid_init(void);
157 static void nfs4setclientid_fini(void);
158 static void nfs4setclientid_otw(mntinfo4_t *, servinfo4_t *, cred_t *,
159 struct nfs4_server *, nfs4_error_t *, int *);
160 static void destroy_nfs4_server(nfs4_server_t *);
161 static void remove_mi(nfs4_server_t *, mntinfo4_t *);
162
163 extern void nfs4_ephemeral_init(void);
164 extern void nfs4_ephemeral_fini(void);
165
166 /* referral related routines */
167 static servinfo4_t *copy_svp(servinfo4_t *);
168 static void free_knconf_contents(struct knetconfig *k);
169 static char *extract_referral_point(const char *, int);
170 static void setup_newsvpath(servinfo4_t *, int);
171 static void update_servinfo4(servinfo4_t *, fs_location4 *,
172 struct nfs_fsl_info *, char *, int);
173
174 /*
175 * Initialize the vfs structure
176 */
177
178 static int nfs4fstyp;
179
180
181 /*
182 * Debug variable to check for rdma based
183 * transport startup and cleanup. Controlled
184 * through /etc/system. Off by default.
185 */
186 extern int rdma_debug;
187
188 int
nfs4init(int fstyp,char * name)189 nfs4init(int fstyp, char *name)
190 {
191 static const fs_operation_def_t nfs4_vfsops_template[] = {
192 VFSNAME_MOUNT, { .vfs_mount = nfs4_mount },
193 VFSNAME_UNMOUNT, { .vfs_unmount = nfs4_unmount },
194 VFSNAME_ROOT, { .vfs_root = nfs4_root },
195 VFSNAME_STATVFS, { .vfs_statvfs = nfs4_statvfs },
196 VFSNAME_SYNC, { .vfs_sync = nfs4_sync },
197 VFSNAME_VGET, { .vfs_vget = nfs4_vget },
198 VFSNAME_MOUNTROOT, { .vfs_mountroot = nfs4_mountroot },
199 VFSNAME_FREEVFS, { .vfs_freevfs = nfs4_freevfs },
200 NULL, NULL
201 };
202 int error;
203
204 nfs4_vfsops = NULL;
205 nfs4_vnodeops = NULL;
206 nfs4_trigger_vnodeops = NULL;
207
208 error = vfs_setfsops(fstyp, nfs4_vfsops_template, &nfs4_vfsops);
209 if (error != 0) {
210 zcmn_err(GLOBAL_ZONEID, CE_WARN,
211 "nfs4init: bad vfs ops template");
212 goto out;
213 }
214
215 error = vn_make_ops(name, nfs4_vnodeops_template, &nfs4_vnodeops);
216 if (error != 0) {
217 zcmn_err(GLOBAL_ZONEID, CE_WARN,
218 "nfs4init: bad vnode ops template");
219 goto out;
220 }
221
222 error = vn_make_ops("nfs4_trigger", nfs4_trigger_vnodeops_template,
223 &nfs4_trigger_vnodeops);
224 if (error != 0) {
225 zcmn_err(GLOBAL_ZONEID, CE_WARN,
226 "nfs4init: bad trigger vnode ops template");
227 goto out;
228 }
229
230 nfs4fstyp = fstyp;
231 (void) nfs4_vfsinit();
232 (void) nfs4_init_dot_entries();
233
234 out:
235 if (error) {
236 if (nfs4_trigger_vnodeops != NULL)
237 vn_freevnodeops(nfs4_trigger_vnodeops);
238
239 if (nfs4_vnodeops != NULL)
240 vn_freevnodeops(nfs4_vnodeops);
241
242 (void) vfs_freevfsops_by_type(fstyp);
243 }
244
245 return (error);
246 }
247
248 void
nfs4fini(void)249 nfs4fini(void)
250 {
251 (void) nfs4_destroy_dot_entries();
252 nfs4_vfsfini();
253 }
254
255 /*
256 * Create a new sec_data structure to store AUTH_DH related data:
257 * netname, syncaddr, knetconfig. There is no AUTH_F_RPCTIMESYNC
258 * flag set for NFS V4 since we are avoiding to contact the rpcbind
259 * daemon and is using the IP time service (IPPORT_TIMESERVER).
260 *
261 * sec_data can be freed by sec_clnt_freeinfo().
262 */
263 static struct sec_data *
create_authdh_data(char * netname,int nlen,struct netbuf * syncaddr,struct knetconfig * knconf)264 create_authdh_data(char *netname, int nlen, struct netbuf *syncaddr,
265 struct knetconfig *knconf)
266 {
267 struct sec_data *secdata;
268 dh_k4_clntdata_t *data;
269 char *pf, *p;
270
271 if (syncaddr == NULL || syncaddr->buf == NULL || nlen == 0)
272 return (NULL);
273
274 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
275 secdata->flags = 0;
276
277 data = kmem_alloc(sizeof (*data), KM_SLEEP);
278
279 data->syncaddr.maxlen = syncaddr->maxlen;
280 data->syncaddr.len = syncaddr->len;
281 data->syncaddr.buf = (char *)kmem_alloc(syncaddr->len, KM_SLEEP);
282 bcopy(syncaddr->buf, data->syncaddr.buf, syncaddr->len);
283
284 /*
285 * duplicate the knconf information for the
286 * new opaque data.
287 */
288 data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP);
289 *data->knconf = *knconf;
290 pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
291 p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
292 bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE);
293 bcopy(knconf->knc_proto, p, KNC_STRSIZE);
294 data->knconf->knc_protofmly = pf;
295 data->knconf->knc_proto = p;
296
297 /* move server netname to the sec_data structure */
298 data->netname = kmem_alloc(nlen, KM_SLEEP);
299 bcopy(netname, data->netname, nlen);
300 data->netnamelen = (int)nlen;
301
302 secdata->secmod = AUTH_DH;
303 secdata->rpcflavor = AUTH_DH;
304 secdata->data = (caddr_t)data;
305
306 return (secdata);
307 }
308
309 /*
310 * Returns (deep) copy of sec_data_t. Allocates all memory required; caller
311 * is responsible for freeing.
312 */
313 sec_data_t *
copy_sec_data(sec_data_t * fsecdata)314 copy_sec_data(sec_data_t *fsecdata)
315 {
316 sec_data_t *tsecdata;
317
318 if (fsecdata == NULL)
319 return (NULL);
320
321 if (fsecdata->rpcflavor == AUTH_DH) {
322 dh_k4_clntdata_t *fdata = (dh_k4_clntdata_t *)fsecdata->data;
323
324 if (fdata == NULL)
325 return (NULL);
326
327 tsecdata = (sec_data_t *)create_authdh_data(fdata->netname,
328 fdata->netnamelen, &fdata->syncaddr, fdata->knconf);
329
330 return (tsecdata);
331 }
332
333 tsecdata = kmem_zalloc(sizeof (sec_data_t), KM_SLEEP);
334
335 tsecdata->secmod = fsecdata->secmod;
336 tsecdata->rpcflavor = fsecdata->rpcflavor;
337 tsecdata->flags = fsecdata->flags;
338 tsecdata->uid = fsecdata->uid;
339
340 if (fsecdata->rpcflavor == RPCSEC_GSS) {
341 gss_clntdata_t *gcd = (gss_clntdata_t *)fsecdata->data;
342
343 tsecdata->data = (caddr_t)copy_sec_data_gss(gcd);
344 } else {
345 tsecdata->data = NULL;
346 }
347
348 return (tsecdata);
349 }
350
351 gss_clntdata_t *
copy_sec_data_gss(gss_clntdata_t * fdata)352 copy_sec_data_gss(gss_clntdata_t *fdata)
353 {
354 gss_clntdata_t *tdata;
355
356 if (fdata == NULL)
357 return (NULL);
358
359 tdata = kmem_zalloc(sizeof (gss_clntdata_t), KM_SLEEP);
360
361 tdata->mechanism.length = fdata->mechanism.length;
362 tdata->mechanism.elements = kmem_zalloc(fdata->mechanism.length,
363 KM_SLEEP);
364 bcopy(fdata->mechanism.elements, tdata->mechanism.elements,
365 fdata->mechanism.length);
366
367 tdata->service = fdata->service;
368
369 (void) strcpy(tdata->uname, fdata->uname);
370 (void) strcpy(tdata->inst, fdata->inst);
371 (void) strcpy(tdata->realm, fdata->realm);
372
373 tdata->qop = fdata->qop;
374
375 return (tdata);
376 }
377
378 static int
nfs4_chkdup_servinfo4(servinfo4_t * svp_head,servinfo4_t * svp)379 nfs4_chkdup_servinfo4(servinfo4_t *svp_head, servinfo4_t *svp)
380 {
381 servinfo4_t *si;
382
383 /*
384 * Iterate over the servinfo4 list to make sure
385 * we do not have a duplicate. Skip any servinfo4
386 * that has been marked "NOT IN USE"
387 */
388 for (si = svp_head; si; si = si->sv_next) {
389 (void) nfs_rw_enter_sig(&si->sv_lock, RW_READER, 0);
390 if (si->sv_flags & SV4_NOTINUSE) {
391 nfs_rw_exit(&si->sv_lock);
392 continue;
393 }
394 nfs_rw_exit(&si->sv_lock);
395 if (si == svp)
396 continue;
397 if (si->sv_addr.len == svp->sv_addr.len &&
398 strcmp(si->sv_knconf->knc_protofmly,
399 svp->sv_knconf->knc_protofmly) == 0 &&
400 bcmp(si->sv_addr.buf, svp->sv_addr.buf,
401 si->sv_addr.len) == 0) {
402 /* it's a duplicate */
403 return (1);
404 }
405 }
406 /* it's not a duplicate */
407 return (0);
408 }
409
410 void
nfs4_free_args(struct nfs_args * nargs)411 nfs4_free_args(struct nfs_args *nargs)
412 {
413 if (nargs->knconf) {
414 if (nargs->knconf->knc_protofmly)
415 kmem_free(nargs->knconf->knc_protofmly,
416 KNC_STRSIZE);
417 if (nargs->knconf->knc_proto)
418 kmem_free(nargs->knconf->knc_proto, KNC_STRSIZE);
419 kmem_free(nargs->knconf, sizeof (*nargs->knconf));
420 nargs->knconf = NULL;
421 }
422
423 if (nargs->fh) {
424 kmem_free(nargs->fh, strlen(nargs->fh) + 1);
425 nargs->fh = NULL;
426 }
427
428 if (nargs->hostname) {
429 kmem_free(nargs->hostname, strlen(nargs->hostname) + 1);
430 nargs->hostname = NULL;
431 }
432
433 if (nargs->addr) {
434 if (nargs->addr->buf) {
435 ASSERT(nargs->addr->len);
436 kmem_free(nargs->addr->buf, nargs->addr->len);
437 }
438 kmem_free(nargs->addr, sizeof (struct netbuf));
439 nargs->addr = NULL;
440 }
441
442 if (nargs->syncaddr) {
443 ASSERT(nargs->syncaddr->len);
444 if (nargs->syncaddr->buf) {
445 ASSERT(nargs->syncaddr->len);
446 kmem_free(nargs->syncaddr->buf, nargs->syncaddr->len);
447 }
448 kmem_free(nargs->syncaddr, sizeof (struct netbuf));
449 nargs->syncaddr = NULL;
450 }
451
452 if (nargs->netname) {
453 kmem_free(nargs->netname, strlen(nargs->netname) + 1);
454 nargs->netname = NULL;
455 }
456
457 if (nargs->nfs_ext_u.nfs_extA.secdata) {
458 sec_clnt_freeinfo(
459 nargs->nfs_ext_u.nfs_extA.secdata);
460 nargs->nfs_ext_u.nfs_extA.secdata = NULL;
461 }
462 }
463
464
465 int
nfs4_copyin(char * data,int datalen,struct nfs_args * nargs)466 nfs4_copyin(char *data, int datalen, struct nfs_args *nargs)
467 {
468
469 int error;
470 size_t hlen; /* length of hostname */
471 size_t nlen; /* length of netname */
472 char netname[MAXNETNAMELEN+1]; /* server's netname */
473 struct netbuf addr; /* server's address */
474 struct netbuf syncaddr; /* AUTH_DES time sync addr */
475 struct knetconfig *knconf; /* transport structure */
476 struct sec_data *secdata = NULL; /* security data */
477 STRUCT_DECL(nfs_args, args); /* nfs mount arguments */
478 STRUCT_DECL(knetconfig, knconf_tmp);
479 STRUCT_DECL(netbuf, addr_tmp);
480 int flags;
481 char *p, *pf;
482 struct pathname pn;
483 char *userbufptr;
484
485
486 bzero(nargs, sizeof (*nargs));
487
488 STRUCT_INIT(args, get_udatamodel());
489 bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE));
490 if (copyin(data, STRUCT_BUF(args), MIN(datalen,
491 STRUCT_SIZE(args))))
492 return (EFAULT);
493
494 nargs->wsize = STRUCT_FGET(args, wsize);
495 nargs->rsize = STRUCT_FGET(args, rsize);
496 nargs->timeo = STRUCT_FGET(args, timeo);
497 nargs->retrans = STRUCT_FGET(args, retrans);
498 nargs->acregmin = STRUCT_FGET(args, acregmin);
499 nargs->acregmax = STRUCT_FGET(args, acregmax);
500 nargs->acdirmin = STRUCT_FGET(args, acdirmin);
501 nargs->acdirmax = STRUCT_FGET(args, acdirmax);
502
503 flags = STRUCT_FGET(args, flags);
504 nargs->flags = flags;
505
506 addr.buf = NULL;
507 syncaddr.buf = NULL;
508
509
510 /*
511 * Allocate space for a knetconfig structure and
512 * its strings and copy in from user-land.
513 */
514 knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP);
515 STRUCT_INIT(knconf_tmp, get_udatamodel());
516 if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp),
517 STRUCT_SIZE(knconf_tmp))) {
518 kmem_free(knconf, sizeof (*knconf));
519 return (EFAULT);
520 }
521
522 knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics);
523 knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly);
524 knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto);
525 if (get_udatamodel() != DATAMODEL_LP64) {
526 knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev));
527 } else {
528 knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev);
529 }
530
531 pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
532 p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
533 error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL);
534 if (error) {
535 kmem_free(pf, KNC_STRSIZE);
536 kmem_free(p, KNC_STRSIZE);
537 kmem_free(knconf, sizeof (*knconf));
538 return (error);
539 }
540
541 error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL);
542 if (error) {
543 kmem_free(pf, KNC_STRSIZE);
544 kmem_free(p, KNC_STRSIZE);
545 kmem_free(knconf, sizeof (*knconf));
546 return (error);
547 }
548
549
550 knconf->knc_protofmly = pf;
551 knconf->knc_proto = p;
552
553 nargs->knconf = knconf;
554
555 /*
556 * Get server address
557 */
558 STRUCT_INIT(addr_tmp, get_udatamodel());
559 if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp),
560 STRUCT_SIZE(addr_tmp))) {
561 error = EFAULT;
562 goto errout;
563 }
564
565 nargs->addr = kmem_zalloc(sizeof (struct netbuf), KM_SLEEP);
566 userbufptr = STRUCT_FGETP(addr_tmp, buf);
567 addr.len = STRUCT_FGET(addr_tmp, len);
568 addr.buf = kmem_alloc(addr.len, KM_SLEEP);
569 addr.maxlen = addr.len;
570 if (copyin(userbufptr, addr.buf, addr.len)) {
571 kmem_free(addr.buf, addr.len);
572 error = EFAULT;
573 goto errout;
574 }
575 bcopy(&addr, nargs->addr, sizeof (struct netbuf));
576
577 /*
578 * Get the root fhandle
579 */
580 error = pn_get(STRUCT_FGETP(args, fh), UIO_USERSPACE, &pn);
581 if (error)
582 goto errout;
583
584 /* Volatile fh: keep server paths, so use actual-size strings */
585 nargs->fh = kmem_alloc(pn.pn_pathlen + 1, KM_SLEEP);
586 bcopy(pn.pn_path, nargs->fh, pn.pn_pathlen);
587 nargs->fh[pn.pn_pathlen] = '\0';
588 pn_free(&pn);
589
590
591 /*
592 * Get server's hostname
593 */
594 if (flags & NFSMNT_HOSTNAME) {
595 error = copyinstr(STRUCT_FGETP(args, hostname),
596 netname, sizeof (netname), &hlen);
597 if (error)
598 goto errout;
599 nargs->hostname = kmem_zalloc(hlen, KM_SLEEP);
600 (void) strcpy(nargs->hostname, netname);
601
602 } else {
603 nargs->hostname = NULL;
604 }
605
606
607 /*
608 * If there are syncaddr and netname data, load them in. This is
609 * to support data needed for NFSV4 when AUTH_DH is the negotiated
610 * flavor via SECINFO. (instead of using MOUNT protocol in V3).
611 */
612 netname[0] = '\0';
613 if (flags & NFSMNT_SECURE) {
614
615 /* get syncaddr */
616 STRUCT_INIT(addr_tmp, get_udatamodel());
617 if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp),
618 STRUCT_SIZE(addr_tmp))) {
619 error = EINVAL;
620 goto errout;
621 }
622 userbufptr = STRUCT_FGETP(addr_tmp, buf);
623 syncaddr.len = STRUCT_FGET(addr_tmp, len);
624 syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP);
625 syncaddr.maxlen = syncaddr.len;
626 if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) {
627 kmem_free(syncaddr.buf, syncaddr.len);
628 error = EFAULT;
629 goto errout;
630 }
631
632 nargs->syncaddr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP);
633 bcopy(&syncaddr, nargs->syncaddr, sizeof (struct netbuf));
634
635 /* get server's netname */
636 if (copyinstr(STRUCT_FGETP(args, netname), netname,
637 sizeof (netname), &nlen)) {
638 error = EFAULT;
639 goto errout;
640 }
641
642 netname[nlen] = '\0';
643 nargs->netname = kmem_zalloc(nlen, KM_SLEEP);
644 (void) strcpy(nargs->netname, netname);
645 }
646
647 /*
648 * Get the extention data which has the security data structure.
649 * This includes data for AUTH_SYS as well.
650 */
651 if (flags & NFSMNT_NEWARGS) {
652 nargs->nfs_args_ext = STRUCT_FGET(args, nfs_args_ext);
653 if (nargs->nfs_args_ext == NFS_ARGS_EXTA ||
654 nargs->nfs_args_ext == NFS_ARGS_EXTB) {
655 /*
656 * Indicating the application is using the new
657 * sec_data structure to pass in the security
658 * data.
659 */
660 if (STRUCT_FGETP(args,
661 nfs_ext_u.nfs_extA.secdata) != NULL) {
662 error = sec_clnt_loadinfo(
663 (struct sec_data *)STRUCT_FGETP(args,
664 nfs_ext_u.nfs_extA.secdata),
665 &secdata, get_udatamodel());
666 }
667 nargs->nfs_ext_u.nfs_extA.secdata = secdata;
668 }
669 }
670
671 if (error)
672 goto errout;
673
674 /*
675 * Failover support:
676 *
677 * We may have a linked list of nfs_args structures,
678 * which means the user is looking for failover. If
679 * the mount is either not "read-only" or "soft",
680 * we want to bail out with EINVAL.
681 */
682 if (nargs->nfs_args_ext == NFS_ARGS_EXTB)
683 nargs->nfs_ext_u.nfs_extB.next =
684 STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next);
685
686 errout:
687 if (error)
688 nfs4_free_args(nargs);
689
690 return (error);
691 }
692
693
694 /*
695 * nfs mount vfsop
696 * Set up mount info record and attach it to vfs struct.
697 */
698 int
nfs4_mount(vfs_t * vfsp,vnode_t * mvp,struct mounta * uap,cred_t * cr)699 nfs4_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
700 {
701 char *data = uap->dataptr;
702 int error;
703 vnode_t *rtvp; /* the server's root */
704 mntinfo4_t *mi; /* mount info, pointed at by vfs */
705 struct knetconfig *rdma_knconf; /* rdma transport structure */
706 rnode4_t *rp;
707 struct servinfo4 *svp; /* nfs server info */
708 struct servinfo4 *svp_tail = NULL; /* previous nfs server info */
709 struct servinfo4 *svp_head; /* first nfs server info */
710 struct servinfo4 *svp_2ndlast; /* 2nd last in server info list */
711 struct sec_data *secdata; /* security data */
712 struct nfs_args *args = NULL;
713 int flags, addr_type, removed;
714 zone_t *zone = nfs_zone();
715 nfs4_error_t n4e;
716 zone_t *mntzone = NULL;
717
718 if (secpolicy_fs_mount(cr, mvp, vfsp) != 0)
719 return (EPERM);
720 if (mvp->v_type != VDIR)
721 return (ENOTDIR);
722
723 /*
724 * get arguments
725 *
726 * nfs_args is now versioned and is extensible, so
727 * uap->datalen might be different from sizeof (args)
728 * in a compatible situation.
729 */
730 more:
731 if (!(uap->flags & MS_SYSSPACE)) {
732 if (args == NULL)
733 args = kmem_zalloc(sizeof (struct nfs_args), KM_SLEEP);
734 else
735 nfs4_free_args(args);
736 error = nfs4_copyin(data, uap->datalen, args);
737 if (error) {
738 if (args) {
739 kmem_free(args, sizeof (*args));
740 }
741 return (error);
742 }
743 } else {
744 args = (struct nfs_args *)data;
745 }
746
747 flags = args->flags;
748
749 /*
750 * If the request changes the locking type, disallow the remount,
751 * because it's questionable whether we can transfer the
752 * locking state correctly.
753 */
754 if (uap->flags & MS_REMOUNT) {
755 if (!(uap->flags & MS_SYSSPACE)) {
756 nfs4_free_args(args);
757 kmem_free(args, sizeof (*args));
758 }
759 if ((mi = VFTOMI4(vfsp)) != NULL) {
760 uint_t new_mi_llock;
761 uint_t old_mi_llock;
762 new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0;
763 old_mi_llock = (mi->mi_flags & MI4_LLOCK) ? 1 : 0;
764 if (old_mi_llock != new_mi_llock)
765 return (EBUSY);
766 }
767 return (0);
768 }
769
770 /*
771 * For ephemeral mount trigger stub vnodes, we have two problems
772 * to solve: racing threads will likely fail the v_count check, and
773 * we want only one to proceed with the mount.
774 *
775 * For stubs, if the mount has already occurred (via a racing thread),
776 * just return success. If not, skip the v_count check and proceed.
777 * Note that we are already serialised at this point.
778 */
779 mutex_enter(&mvp->v_lock);
780 if (vn_matchops(mvp, nfs4_trigger_vnodeops)) {
781 /* mntpt is a v4 stub vnode */
782 ASSERT(RP_ISSTUB(VTOR4(mvp)));
783 ASSERT(!(uap->flags & MS_OVERLAY));
784 ASSERT(!(mvp->v_flag & VROOT));
785 if (vn_mountedvfs(mvp) != NULL) {
786 /* ephemeral mount has already occurred */
787 ASSERT(uap->flags & MS_SYSSPACE);
788 mutex_exit(&mvp->v_lock);
789 return (0);
790 }
791 } else {
792 /* mntpt is a non-v4 or v4 non-stub vnode */
793 if (!(uap->flags & MS_OVERLAY) &&
794 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
795 mutex_exit(&mvp->v_lock);
796 if (!(uap->flags & MS_SYSSPACE)) {
797 nfs4_free_args(args);
798 kmem_free(args, sizeof (*args));
799 }
800 return (EBUSY);
801 }
802 }
803 mutex_exit(&mvp->v_lock);
804
805 /* make sure things are zeroed for errout: */
806 rtvp = NULL;
807 mi = NULL;
808 secdata = NULL;
809
810 /*
811 * A valid knetconfig structure is required.
812 */
813 if (!(flags & NFSMNT_KNCONF) ||
814 args->knconf == NULL || args->knconf->knc_protofmly == NULL ||
815 args->knconf->knc_proto == NULL ||
816 (strcmp(args->knconf->knc_proto, NC_UDP) == 0)) {
817 if (!(uap->flags & MS_SYSSPACE)) {
818 nfs4_free_args(args);
819 kmem_free(args, sizeof (*args));
820 }
821 return (EINVAL);
822 }
823
824 if ((strlen(args->knconf->knc_protofmly) >= KNC_STRSIZE) ||
825 (strlen(args->knconf->knc_proto) >= KNC_STRSIZE)) {
826 if (!(uap->flags & MS_SYSSPACE)) {
827 nfs4_free_args(args);
828 kmem_free(args, sizeof (*args));
829 }
830 return (EINVAL);
831 }
832
833 /*
834 * Allocate a servinfo4 struct.
835 */
836 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
837 nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
838 if (svp_tail) {
839 svp_2ndlast = svp_tail;
840 svp_tail->sv_next = svp;
841 } else {
842 svp_head = svp;
843 svp_2ndlast = svp;
844 }
845
846 svp_tail = svp;
847 svp->sv_knconf = args->knconf;
848 args->knconf = NULL;
849
850 /*
851 * Get server address
852 */
853 if (args->addr == NULL || args->addr->buf == NULL) {
854 error = EINVAL;
855 goto errout;
856 }
857
858 svp->sv_addr.maxlen = args->addr->maxlen;
859 svp->sv_addr.len = args->addr->len;
860 svp->sv_addr.buf = args->addr->buf;
861 args->addr->buf = NULL;
862
863 /*
864 * Get the root fhandle
865 */
866 if (args->fh == NULL || (strlen(args->fh) >= MAXPATHLEN)) {
867 error = EINVAL;
868 goto errout;
869 }
870
871 svp->sv_path = args->fh;
872 svp->sv_pathlen = strlen(args->fh) + 1;
873 args->fh = NULL;
874
875 /*
876 * Get server's hostname
877 */
878 if (flags & NFSMNT_HOSTNAME) {
879 if (args->hostname == NULL || (strlen(args->hostname) >
880 MAXNETNAMELEN)) {
881 error = EINVAL;
882 goto errout;
883 }
884 svp->sv_hostnamelen = strlen(args->hostname) + 1;
885 svp->sv_hostname = args->hostname;
886 args->hostname = NULL;
887 } else {
888 char *p = "unknown-host";
889 svp->sv_hostnamelen = strlen(p) + 1;
890 svp->sv_hostname = kmem_zalloc(svp->sv_hostnamelen, KM_SLEEP);
891 (void) strcpy(svp->sv_hostname, p);
892 }
893
894 /*
895 * RDMA MOUNT SUPPORT FOR NFS v4.
896 * Establish, is it possible to use RDMA, if so overload the
897 * knconf with rdma specific knconf and free the orignal knconf.
898 */
899 if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) {
900 /*
901 * Determine the addr type for RDMA, IPv4 or v6.
902 */
903 if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0)
904 addr_type = AF_INET;
905 else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0)
906 addr_type = AF_INET6;
907
908 if (rdma_reachable(addr_type, &svp->sv_addr,
909 &rdma_knconf) == 0) {
910 /*
911 * If successful, hijack the orignal knconf and
912 * replace with the new one, depending on the flags.
913 */
914 svp->sv_origknconf = svp->sv_knconf;
915 svp->sv_knconf = rdma_knconf;
916 } else {
917 if (flags & NFSMNT_TRYRDMA) {
918 #ifdef DEBUG
919 if (rdma_debug)
920 zcmn_err(getzoneid(), CE_WARN,
921 "no RDMA onboard, revert\n");
922 #endif
923 }
924
925 if (flags & NFSMNT_DORDMA) {
926 /*
927 * If proto=rdma is specified and no RDMA
928 * path to this server is avialable then
929 * ditch this server.
930 * This is not included in the mountable
931 * server list or the replica list.
932 * Check if more servers are specified;
933 * Failover case, otherwise bail out of mount.
934 */
935 if (args->nfs_args_ext == NFS_ARGS_EXTB &&
936 args->nfs_ext_u.nfs_extB.next != NULL) {
937 data = (char *)
938 args->nfs_ext_u.nfs_extB.next;
939 if (uap->flags & MS_RDONLY &&
940 !(flags & NFSMNT_SOFT)) {
941 if (svp_head->sv_next == NULL) {
942 svp_tail = NULL;
943 svp_2ndlast = NULL;
944 sv4_free(svp_head);
945 goto more;
946 } else {
947 svp_tail = svp_2ndlast;
948 svp_2ndlast->sv_next =
949 NULL;
950 sv4_free(svp);
951 goto more;
952 }
953 }
954 } else {
955 /*
956 * This is the last server specified
957 * in the nfs_args list passed down
958 * and its not rdma capable.
959 */
960 if (svp_head->sv_next == NULL) {
961 /*
962 * Is this the only one
963 */
964 error = EINVAL;
965 #ifdef DEBUG
966 if (rdma_debug)
967 zcmn_err(getzoneid(),
968 CE_WARN,
969 "No RDMA srv");
970 #endif
971 goto errout;
972 } else {
973 /*
974 * There is list, since some
975 * servers specified before
976 * this passed all requirements
977 */
978 svp_tail = svp_2ndlast;
979 svp_2ndlast->sv_next = NULL;
980 sv4_free(svp);
981 goto proceed;
982 }
983 }
984 }
985 }
986 }
987
988 /*
989 * If there are syncaddr and netname data, load them in. This is
990 * to support data needed for NFSV4 when AUTH_DH is the negotiated
991 * flavor via SECINFO. (instead of using MOUNT protocol in V3).
992 */
993 if (args->flags & NFSMNT_SECURE) {
994 svp->sv_dhsec = create_authdh_data(args->netname,
995 strlen(args->netname),
996 args->syncaddr, svp->sv_knconf);
997 }
998
999 /*
1000 * Get the extention data which has the security data structure.
1001 * This includes data for AUTH_SYS as well.
1002 */
1003 if (flags & NFSMNT_NEWARGS) {
1004 switch (args->nfs_args_ext) {
1005 case NFS_ARGS_EXTA:
1006 case NFS_ARGS_EXTB:
1007 /*
1008 * Indicating the application is using the new
1009 * sec_data structure to pass in the security
1010 * data.
1011 */
1012 secdata = args->nfs_ext_u.nfs_extA.secdata;
1013 if (secdata == NULL) {
1014 error = EINVAL;
1015 } else if (uap->flags & MS_SYSSPACE) {
1016 /*
1017 * Need to validate the flavor here if
1018 * sysspace, userspace was already
1019 * validate from the nfs_copyin function.
1020 */
1021 switch (secdata->rpcflavor) {
1022 case AUTH_NONE:
1023 case AUTH_UNIX:
1024 case AUTH_LOOPBACK:
1025 case AUTH_DES:
1026 case RPCSEC_GSS:
1027 break;
1028 default:
1029 error = EINVAL;
1030 goto errout;
1031 }
1032 }
1033 args->nfs_ext_u.nfs_extA.secdata = NULL;
1034 break;
1035
1036 default:
1037 error = EINVAL;
1038 break;
1039 }
1040
1041 } else if (flags & NFSMNT_SECURE) {
1042 /*
1043 * NFSMNT_SECURE is deprecated but we keep it
1044 * to support the rogue user-generated application
1045 * that may use this undocumented interface to do
1046 * AUTH_DH security, e.g. our own rexd.
1047 *
1048 * Also note that NFSMNT_SECURE is used for passing
1049 * AUTH_DH info to be used in negotiation.
1050 */
1051 secdata = create_authdh_data(args->netname,
1052 strlen(args->netname), args->syncaddr, svp->sv_knconf);
1053
1054 } else {
1055 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
1056 secdata->secmod = secdata->rpcflavor = AUTH_SYS;
1057 secdata->data = NULL;
1058 }
1059
1060 svp->sv_secdata = secdata;
1061
1062 /*
1063 * User does not explictly specify a flavor, and a user
1064 * defined default flavor is passed down.
1065 */
1066 if (flags & NFSMNT_SECDEFAULT) {
1067 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1068 svp->sv_flags |= SV4_TRYSECDEFAULT;
1069 nfs_rw_exit(&svp->sv_lock);
1070 }
1071
1072 /*
1073 * Failover support:
1074 *
1075 * We may have a linked list of nfs_args structures,
1076 * which means the user is looking for failover. If
1077 * the mount is either not "read-only" or "soft",
1078 * we want to bail out with EINVAL.
1079 */
1080 if (args->nfs_args_ext == NFS_ARGS_EXTB &&
1081 args->nfs_ext_u.nfs_extB.next != NULL) {
1082 if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) {
1083 data = (char *)args->nfs_ext_u.nfs_extB.next;
1084 goto more;
1085 }
1086 error = EINVAL;
1087 goto errout;
1088 }
1089
1090 /*
1091 * Determine the zone we're being mounted into.
1092 */
1093 zone_hold(mntzone = zone); /* start with this assumption */
1094 if (getzoneid() == GLOBAL_ZONEID) {
1095 zone_rele(mntzone);
1096 mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
1097 ASSERT(mntzone != NULL);
1098 if (mntzone != zone) {
1099 error = EBUSY;
1100 goto errout;
1101 }
1102 }
1103
1104 if (is_system_labeled()) {
1105 error = nfs_mount_label_policy(vfsp, &svp->sv_addr,
1106 svp->sv_knconf, cr);
1107
1108 if (error > 0)
1109 goto errout;
1110
1111 if (error == -1) {
1112 /* change mount to read-only to prevent write-down */
1113 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1114 }
1115 }
1116
1117 /*
1118 * Stop the mount from going any further if the zone is going away.
1119 */
1120 if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) {
1121 error = EBUSY;
1122 goto errout;
1123 }
1124
1125 /*
1126 * Get root vnode.
1127 */
1128 proceed:
1129 error = nfs4rootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone);
1130 if (error) {
1131 /* if nfs4rootvp failed, it will free svp_head */
1132 svp_head = NULL;
1133 goto errout;
1134 }
1135
1136 mi = VTOMI4(rtvp);
1137
1138 /*
1139 * Send client id to the server, if necessary
1140 */
1141 nfs4_error_zinit(&n4e);
1142 nfs4setclientid(mi, cr, FALSE, &n4e);
1143
1144 error = n4e.error;
1145
1146 if (error)
1147 goto errout;
1148
1149 /*
1150 * Set option fields in the mount info record
1151 */
1152
1153 if (svp_head->sv_next) {
1154 mutex_enter(&mi->mi_lock);
1155 mi->mi_flags |= MI4_LLOCK;
1156 mutex_exit(&mi->mi_lock);
1157 }
1158 error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, args);
1159 if (error)
1160 goto errout;
1161
1162 /*
1163 * Time to tie in the mirror mount info at last!
1164 */
1165 if (flags & NFSMNT_EPHEMERAL)
1166 error = nfs4_record_ephemeral_mount(mi, mvp);
1167
1168 errout:
1169 if (error) {
1170 if (rtvp != NULL) {
1171 rp = VTOR4(rtvp);
1172 if (rp->r_flags & R4HASHED)
1173 rp4_rmhash(rp);
1174 }
1175 if (mi != NULL) {
1176 nfs4_async_stop(vfsp);
1177 nfs4_async_manager_stop(vfsp);
1178 nfs4_remove_mi_from_server(mi, NULL);
1179 if (rtvp != NULL)
1180 VN_RELE(rtvp);
1181 if (mntzone != NULL)
1182 zone_rele(mntzone);
1183 /* need to remove it from the zone */
1184 removed = nfs4_mi_zonelist_remove(mi);
1185 if (removed)
1186 zone_rele_ref(&mi->mi_zone_ref,
1187 ZONE_REF_NFSV4);
1188 MI4_RELE(mi);
1189 if (!(uap->flags & MS_SYSSPACE) && args) {
1190 nfs4_free_args(args);
1191 kmem_free(args, sizeof (*args));
1192 }
1193 return (error);
1194 }
1195 if (svp_head)
1196 sv4_free(svp_head);
1197 }
1198
1199 if (!(uap->flags & MS_SYSSPACE) && args) {
1200 nfs4_free_args(args);
1201 kmem_free(args, sizeof (*args));
1202 }
1203 if (rtvp != NULL)
1204 VN_RELE(rtvp);
1205
1206 if (mntzone != NULL)
1207 zone_rele(mntzone);
1208
1209 return (error);
1210 }
1211
1212 #ifdef DEBUG
1213 #define VERS_MSG "NFS4 server "
1214 #else
1215 #define VERS_MSG "NFS server "
1216 #endif
1217
1218 #define READ_MSG \
1219 VERS_MSG "%s returned 0 for read transfer size"
1220 #define WRITE_MSG \
1221 VERS_MSG "%s returned 0 for write transfer size"
1222 #define SIZE_MSG \
1223 VERS_MSG "%s returned 0 for maximum file size"
1224
1225 /*
1226 * Get the symbolic link text from the server for a given filehandle
1227 * of that symlink.
1228 *
1229 * (get symlink text) PUTFH READLINK
1230 */
1231 static int
getlinktext_otw(mntinfo4_t * mi,nfs_fh4 * fh,char ** linktextp,cred_t * cr,int flags)1232 getlinktext_otw(mntinfo4_t *mi, nfs_fh4 *fh, char **linktextp, cred_t *cr,
1233 int flags)
1234 {
1235 COMPOUND4args_clnt args;
1236 COMPOUND4res_clnt res;
1237 int doqueue;
1238 nfs_argop4 argop[2];
1239 nfs_resop4 *resop;
1240 READLINK4res *lr_res;
1241 uint_t len;
1242 bool_t needrecov = FALSE;
1243 nfs4_recov_state_t recov_state;
1244 nfs4_sharedfh_t *sfh;
1245 nfs4_error_t e;
1246 int num_retry = nfs4_max_mount_retry;
1247 int recovery = !(flags & NFS4_GETFH_NEEDSOP);
1248
1249 sfh = sfh4_get(fh, mi);
1250 recov_state.rs_flags = 0;
1251 recov_state.rs_num_retry_despite_err = 0;
1252
1253 recov_retry:
1254 nfs4_error_zinit(&e);
1255
1256 args.array_len = 2;
1257 args.array = argop;
1258 args.ctag = TAG_GET_SYMLINK;
1259
1260 if (! recovery) {
1261 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
1262 if (e.error) {
1263 sfh4_rele(&sfh);
1264 return (e.error);
1265 }
1266 }
1267
1268 /* 0. putfh symlink fh */
1269 argop[0].argop = OP_CPUTFH;
1270 argop[0].nfs_argop4_u.opcputfh.sfh = sfh;
1271
1272 /* 1. readlink */
1273 argop[1].argop = OP_READLINK;
1274
1275 doqueue = 1;
1276
1277 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
1278
1279 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
1280
1281 if (needrecov && !recovery && num_retry-- > 0) {
1282
1283 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1284 "getlinktext_otw: initiating recovery\n"));
1285
1286 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
1287 OP_READLINK, NULL, NULL, NULL) == FALSE) {
1288 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
1289 if (!e.error)
1290 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1291 goto recov_retry;
1292 }
1293 }
1294
1295 /*
1296 * If non-NFS4 pcol error and/or we weren't able to recover.
1297 */
1298 if (e.error != 0) {
1299 if (! recovery)
1300 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
1301 sfh4_rele(&sfh);
1302 return (e.error);
1303 }
1304
1305 if (res.status) {
1306 e.error = geterrno4(res.status);
1307 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1308 if (! recovery)
1309 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
1310 sfh4_rele(&sfh);
1311 return (e.error);
1312 }
1313
1314 /* res.status == NFS4_OK */
1315 ASSERT(res.status == NFS4_OK);
1316
1317 resop = &res.array[1]; /* readlink res */
1318 lr_res = &resop->nfs_resop4_u.opreadlink;
1319
1320 /* treat symlink name as data */
1321 *linktextp = utf8_to_str((utf8string *)&lr_res->link, &len, NULL);
1322
1323 if (! recovery)
1324 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
1325 sfh4_rele(&sfh);
1326 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1327 return (0);
1328 }
1329
1330 /*
1331 * Skip over consecutive slashes and "/./" in a pathname.
1332 */
1333 void
pathname_skipslashdot(struct pathname * pnp)1334 pathname_skipslashdot(struct pathname *pnp)
1335 {
1336 char *c1, *c2;
1337
1338 while (pnp->pn_pathlen > 0 && *pnp->pn_path == '/') {
1339
1340 c1 = pnp->pn_path + 1;
1341 c2 = pnp->pn_path + 2;
1342
1343 if (*c1 == '.' && (*c2 == '/' || *c2 == '\0')) {
1344 pnp->pn_path = pnp->pn_path + 2; /* skip "/." */
1345 pnp->pn_pathlen = pnp->pn_pathlen - 2;
1346 } else {
1347 pnp->pn_path++;
1348 pnp->pn_pathlen--;
1349 }
1350 }
1351 }
1352
1353 /*
1354 * Resolve a symbolic link path. The symlink is in the nth component of
1355 * svp->sv_path and has an nfs4 file handle "fh".
1356 * Upon return, the sv_path will point to the new path that has the nth
1357 * component resolved to its symlink text.
1358 */
1359 int
resolve_sympath(mntinfo4_t * mi,servinfo4_t * svp,int nth,nfs_fh4 * fh,cred_t * cr,int flags)1360 resolve_sympath(mntinfo4_t *mi, servinfo4_t *svp, int nth, nfs_fh4 *fh,
1361 cred_t *cr, int flags)
1362 {
1363 char *oldpath;
1364 char *symlink, *newpath;
1365 struct pathname oldpn, newpn;
1366 char component[MAXNAMELEN];
1367 int i, addlen, error = 0;
1368 int oldpathlen;
1369
1370 /* Get the symbolic link text over the wire. */
1371 error = getlinktext_otw(mi, fh, &symlink, cr, flags);
1372
1373 if (error || symlink == NULL || strlen(symlink) == 0)
1374 return (error);
1375
1376 /*
1377 * Compose the new pathname.
1378 * Note:
1379 * - only the nth component is resolved for the pathname.
1380 * - pathname.pn_pathlen does not count the ending null byte.
1381 */
1382 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1383 oldpath = svp->sv_path;
1384 oldpathlen = svp->sv_pathlen;
1385 if (error = pn_get(oldpath, UIO_SYSSPACE, &oldpn)) {
1386 nfs_rw_exit(&svp->sv_lock);
1387 kmem_free(symlink, strlen(symlink) + 1);
1388 return (error);
1389 }
1390 nfs_rw_exit(&svp->sv_lock);
1391 pn_alloc(&newpn);
1392
1393 /*
1394 * Skip over previous components from the oldpath so that the
1395 * oldpn.pn_path will point to the symlink component. Skip
1396 * leading slashes and "/./" (no OP_LOOKUP on ".") so that
1397 * pn_getcompnent can get the component.
1398 */
1399 for (i = 1; i < nth; i++) {
1400 pathname_skipslashdot(&oldpn);
1401 error = pn_getcomponent(&oldpn, component);
1402 if (error)
1403 goto out;
1404 }
1405
1406 /*
1407 * Copy the old path upto the component right before the symlink
1408 * if the symlink is not an absolute path.
1409 */
1410 if (symlink[0] != '/') {
1411 addlen = oldpn.pn_path - oldpn.pn_buf;
1412 bcopy(oldpn.pn_buf, newpn.pn_path, addlen);
1413 newpn.pn_pathlen += addlen;
1414 newpn.pn_path += addlen;
1415 newpn.pn_buf[newpn.pn_pathlen] = '/';
1416 newpn.pn_pathlen++;
1417 newpn.pn_path++;
1418 }
1419
1420 /* copy the resolved symbolic link text */
1421 addlen = strlen(symlink);
1422 if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) {
1423 error = ENAMETOOLONG;
1424 goto out;
1425 }
1426 bcopy(symlink, newpn.pn_path, addlen);
1427 newpn.pn_pathlen += addlen;
1428 newpn.pn_path += addlen;
1429
1430 /*
1431 * Check if there is any remaining path after the symlink component.
1432 * First, skip the symlink component.
1433 */
1434 pathname_skipslashdot(&oldpn);
1435 if (error = pn_getcomponent(&oldpn, component))
1436 goto out;
1437
1438 addlen = pn_pathleft(&oldpn); /* includes counting the slash */
1439
1440 /*
1441 * Copy the remaining path to the new pathname if there is any.
1442 */
1443 if (addlen > 0) {
1444 if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) {
1445 error = ENAMETOOLONG;
1446 goto out;
1447 }
1448 bcopy(oldpn.pn_path, newpn.pn_path, addlen);
1449 newpn.pn_pathlen += addlen;
1450 }
1451 newpn.pn_buf[newpn.pn_pathlen] = '\0';
1452
1453 /* get the newpath and store it in the servinfo4_t */
1454 newpath = kmem_alloc(newpn.pn_pathlen + 1, KM_SLEEP);
1455 bcopy(newpn.pn_buf, newpath, newpn.pn_pathlen);
1456 newpath[newpn.pn_pathlen] = '\0';
1457
1458 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1459 svp->sv_path = newpath;
1460 svp->sv_pathlen = strlen(newpath) + 1;
1461 nfs_rw_exit(&svp->sv_lock);
1462
1463 kmem_free(oldpath, oldpathlen);
1464 out:
1465 kmem_free(symlink, strlen(symlink) + 1);
1466 pn_free(&newpn);
1467 pn_free(&oldpn);
1468
1469 return (error);
1470 }
1471
1472 /*
1473 * This routine updates servinfo4 structure with the new referred server
1474 * info.
1475 * nfsfsloc has the location related information
1476 * fsp has the hostname and pathname info.
1477 * new path = pathname from referral + part of orig pathname(based on nth).
1478 */
1479 static void
update_servinfo4(servinfo4_t * svp,fs_location4 * fsp,struct nfs_fsl_info * nfsfsloc,char * orig_path,int nth)1480 update_servinfo4(servinfo4_t *svp, fs_location4 *fsp,
1481 struct nfs_fsl_info *nfsfsloc, char *orig_path, int nth)
1482 {
1483 struct knetconfig *knconf, *svknconf;
1484 struct netbuf *saddr;
1485 sec_data_t *secdata;
1486 utf8string *host;
1487 int i = 0, num_slashes = 0;
1488 char *p, *spath, *op, *new_path;
1489
1490 /* Update knconf */
1491 knconf = svp->sv_knconf;
1492 free_knconf_contents(knconf);
1493 bzero(knconf, sizeof (struct knetconfig));
1494 svknconf = nfsfsloc->knconf;
1495 knconf->knc_semantics = svknconf->knc_semantics;
1496 knconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
1497 knconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
1498 knconf->knc_rdev = svknconf->knc_rdev;
1499 bcopy(svknconf->knc_protofmly, knconf->knc_protofmly, KNC_STRSIZE);
1500 bcopy(svknconf->knc_proto, knconf->knc_proto, KNC_STRSIZE);
1501
1502 /* Update server address */
1503 saddr = &svp->sv_addr;
1504 if (saddr->buf != NULL)
1505 kmem_free(saddr->buf, saddr->maxlen);
1506 saddr->buf = kmem_alloc(nfsfsloc->addr->maxlen, KM_SLEEP);
1507 saddr->len = nfsfsloc->addr->len;
1508 saddr->maxlen = nfsfsloc->addr->maxlen;
1509 bcopy(nfsfsloc->addr->buf, saddr->buf, nfsfsloc->addr->len);
1510
1511 /* Update server name */
1512 host = fsp->server_val;
1513 kmem_free(svp->sv_hostname, svp->sv_hostnamelen);
1514 svp->sv_hostname = kmem_zalloc(host->utf8string_len + 1, KM_SLEEP);
1515 bcopy(host->utf8string_val, svp->sv_hostname, host->utf8string_len);
1516 svp->sv_hostname[host->utf8string_len] = '\0';
1517 svp->sv_hostnamelen = host->utf8string_len + 1;
1518
1519 /*
1520 * Update server path.
1521 * We need to setup proper path here.
1522 * For ex., If we got a path name serv1:/rp/aaa/bbb
1523 * where aaa is a referral and points to serv2:/rpool/aa
1524 * we need to set the path to serv2:/rpool/aa/bbb
1525 * The first part of this below code generates /rpool/aa
1526 * and the second part appends /bbb to the server path.
1527 */
1528 spath = p = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1529 *p++ = '/';
1530 for (i = 0; i < fsp->rootpath.pathname4_len; i++) {
1531 component4 *comp;
1532
1533 comp = &fsp->rootpath.pathname4_val[i];
1534 /* If no space, null the string and bail */
1535 if ((p - spath) + comp->utf8string_len + 1 > MAXPATHLEN) {
1536 p = spath + MAXPATHLEN - 1;
1537 spath[0] = '\0';
1538 break;
1539 }
1540 bcopy(comp->utf8string_val, p, comp->utf8string_len);
1541 p += comp->utf8string_len;
1542 *p++ = '/';
1543 }
1544 if (fsp->rootpath.pathname4_len != 0)
1545 *(p - 1) = '\0';
1546 else
1547 *p = '\0';
1548 p = spath;
1549
1550 new_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1551 (void) strlcpy(new_path, p, MAXPATHLEN);
1552 kmem_free(p, MAXPATHLEN);
1553 i = strlen(new_path);
1554
1555 for (op = orig_path; *op; op++) {
1556 if (*op == '/')
1557 num_slashes++;
1558 if (num_slashes == nth + 2) {
1559 while (*op != '\0') {
1560 new_path[i] = *op;
1561 i++;
1562 op++;
1563 }
1564 break;
1565 }
1566 }
1567 new_path[i] = '\0';
1568
1569 kmem_free(svp->sv_path, svp->sv_pathlen);
1570 svp->sv_pathlen = strlen(new_path) + 1;
1571 svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP);
1572 bcopy(new_path, svp->sv_path, svp->sv_pathlen);
1573 kmem_free(new_path, MAXPATHLEN);
1574
1575 /*
1576 * All the security data is specific to old server.
1577 * Clean it up except secdata which deals with mount options.
1578 * We need to inherit that data. Copy secdata into our new servinfo4.
1579 */
1580 if (svp->sv_dhsec) {
1581 sec_clnt_freeinfo(svp->sv_dhsec);
1582 svp->sv_dhsec = NULL;
1583 }
1584 if (svp->sv_save_secinfo &&
1585 svp->sv_save_secinfo != svp->sv_secinfo) {
1586 secinfo_free(svp->sv_save_secinfo);
1587 svp->sv_save_secinfo = NULL;
1588 }
1589 if (svp->sv_secinfo) {
1590 secinfo_free(svp->sv_secinfo);
1591 svp->sv_secinfo = NULL;
1592 }
1593 svp->sv_currsec = NULL;
1594
1595 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
1596 *secdata = *svp->sv_secdata;
1597 secdata->data = NULL;
1598 if (svp->sv_secdata) {
1599 sec_clnt_freeinfo(svp->sv_secdata);
1600 svp->sv_secdata = NULL;
1601 }
1602 svp->sv_secdata = secdata;
1603 }
1604
1605 /*
1606 * Resolve a referral. The referral is in the n+1th component of
1607 * svp->sv_path and has a parent nfs4 file handle "fh".
1608 * Upon return, the sv_path will point to the new path that has referral
1609 * component resolved to its referred path and part of original path.
1610 * Hostname and other address information is also updated.
1611 */
1612 int
resolve_referral(mntinfo4_t * mi,servinfo4_t * svp,cred_t * cr,int nth,nfs_fh4 * fh)1613 resolve_referral(mntinfo4_t *mi, servinfo4_t *svp, cred_t *cr, int nth,
1614 nfs_fh4 *fh)
1615 {
1616 nfs4_sharedfh_t *sfh;
1617 struct nfs_fsl_info nfsfsloc;
1618 nfs4_ga_res_t garp;
1619 COMPOUND4res_clnt callres;
1620 fs_location4 *fsp;
1621 char *nm, *orig_path;
1622 int orig_pathlen = 0, ret = -1, index;
1623
1624 if (svp->sv_pathlen <= 0)
1625 return (ret);
1626
1627 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1628 orig_pathlen = svp->sv_pathlen;
1629 orig_path = kmem_alloc(orig_pathlen, KM_SLEEP);
1630 bcopy(svp->sv_path, orig_path, orig_pathlen);
1631 nm = extract_referral_point(svp->sv_path, nth);
1632 setup_newsvpath(svp, nth);
1633 nfs_rw_exit(&svp->sv_lock);
1634
1635 sfh = sfh4_get(fh, mi);
1636 index = nfs4_process_referral(mi, sfh, nm, cr,
1637 &garp, &callres, &nfsfsloc);
1638 sfh4_rele(&sfh);
1639 kmem_free(nm, MAXPATHLEN);
1640 if (index < 0) {
1641 kmem_free(orig_path, orig_pathlen);
1642 return (index);
1643 }
1644
1645 fsp = &garp.n4g_ext_res->n4g_fslocations.locations_val[index];
1646 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
1647 update_servinfo4(svp, fsp, &nfsfsloc, orig_path, nth);
1648 nfs_rw_exit(&svp->sv_lock);
1649
1650 mutex_enter(&mi->mi_lock);
1651 mi->mi_vfs_referral_loop_cnt++;
1652 mutex_exit(&mi->mi_lock);
1653
1654 ret = 0;
1655 bad:
1656 /* Free up XDR memory allocated in nfs4_process_referral() */
1657 xdr_free(xdr_nfs_fsl_info, (char *)&nfsfsloc);
1658 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&callres);
1659 kmem_free(orig_path, orig_pathlen);
1660
1661 return (ret);
1662 }
1663
1664 /*
1665 * Get the root filehandle for the given filesystem and server, and update
1666 * svp.
1667 *
1668 * If NFS4_GETFH_NEEDSOP is set, then use nfs4_start_fop and nfs4_end_fop
1669 * to coordinate with recovery. Otherwise, the caller is assumed to be
1670 * the recovery thread or have already done a start_fop.
1671 *
1672 * Errors are returned by the nfs4_error_t parameter.
1673 */
1674 static void
nfs4getfh_otw(struct mntinfo4 * mi,servinfo4_t * svp,vtype_t * vtp,int flags,cred_t * cr,nfs4_error_t * ep)1675 nfs4getfh_otw(struct mntinfo4 *mi, servinfo4_t *svp, vtype_t *vtp,
1676 int flags, cred_t *cr, nfs4_error_t *ep)
1677 {
1678 COMPOUND4args_clnt args;
1679 COMPOUND4res_clnt res;
1680 int doqueue = 1;
1681 nfs_argop4 *argop;
1682 nfs_resop4 *resop;
1683 nfs4_ga_res_t *garp;
1684 int num_argops;
1685 lookup4_param_t lookuparg;
1686 nfs_fh4 *tmpfhp;
1687 nfs_fh4 *resfhp;
1688 bool_t needrecov = FALSE;
1689 nfs4_recov_state_t recov_state;
1690 int llndx;
1691 int nthcomp;
1692 int recovery = !(flags & NFS4_GETFH_NEEDSOP);
1693
1694 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1695 ASSERT(svp->sv_path != NULL);
1696 if (svp->sv_path[0] == '\0') {
1697 nfs_rw_exit(&svp->sv_lock);
1698 nfs4_error_init(ep, EINVAL);
1699 return;
1700 }
1701 nfs_rw_exit(&svp->sv_lock);
1702
1703 recov_state.rs_flags = 0;
1704 recov_state.rs_num_retry_despite_err = 0;
1705
1706 recov_retry:
1707 if (mi->mi_vfs_referral_loop_cnt >= NFS4_REFERRAL_LOOP_MAX) {
1708 DTRACE_PROBE3(nfs4clnt__debug__referral__loop, mntinfo4 *,
1709 mi, servinfo4_t *, svp, char *, "nfs4getfh_otw");
1710 nfs4_error_init(ep, EINVAL);
1711 return;
1712 }
1713 nfs4_error_zinit(ep);
1714
1715 if (!recovery) {
1716 ep->error = nfs4_start_fop(mi, NULL, NULL, OH_MOUNT,
1717 &recov_state, NULL);
1718
1719 /*
1720 * If recovery has been started and this request as
1721 * initiated by a mount, then we must wait for recovery
1722 * to finish before proceeding, otherwise, the error
1723 * cleanup would remove data structures needed by the
1724 * recovery thread.
1725 */
1726 if (ep->error) {
1727 mutex_enter(&mi->mi_lock);
1728 if (mi->mi_flags & MI4_MOUNTING) {
1729 mi->mi_flags |= MI4_RECOV_FAIL;
1730 mi->mi_error = EIO;
1731
1732 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1733 "nfs4getfh_otw: waiting 4 recovery\n"));
1734
1735 while (mi->mi_flags & MI4_RECOV_ACTIV)
1736 cv_wait(&mi->mi_failover_cv,
1737 &mi->mi_lock);
1738 }
1739 mutex_exit(&mi->mi_lock);
1740 return;
1741 }
1742
1743 /*
1744 * If the client does not specify a specific flavor to use
1745 * and has not gotten a secinfo list from the server yet,
1746 * retrieve the secinfo list from the server and use a
1747 * flavor from the list to mount.
1748 *
1749 * If fail to get the secinfo list from the server, then
1750 * try the default flavor.
1751 */
1752 if ((svp->sv_flags & SV4_TRYSECDEFAULT) &&
1753 svp->sv_secinfo == NULL) {
1754 (void) nfs4_secinfo_path(mi, cr, FALSE);
1755 }
1756 }
1757
1758 if (recovery)
1759 args.ctag = TAG_REMAP_MOUNT;
1760 else
1761 args.ctag = TAG_MOUNT;
1762
1763 lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES;
1764 lookuparg.argsp = &args;
1765 lookuparg.resp = &res;
1766 lookuparg.header_len = 2; /* Putrootfh, getfh */
1767 lookuparg.trailer_len = 0;
1768 lookuparg.ga_bits = FATTR4_FSINFO_MASK;
1769 lookuparg.mi = mi;
1770
1771 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1772 ASSERT(svp->sv_path != NULL);
1773 llndx = nfs4lookup_setup(svp->sv_path, &lookuparg, 0);
1774 nfs_rw_exit(&svp->sv_lock);
1775
1776 argop = args.array;
1777 num_argops = args.array_len;
1778
1779 /* choose public or root filehandle */
1780 if (flags & NFS4_GETFH_PUBLIC)
1781 argop[0].argop = OP_PUTPUBFH;
1782 else
1783 argop[0].argop = OP_PUTROOTFH;
1784
1785 /* get fh */
1786 argop[1].argop = OP_GETFH;
1787
1788 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1789 "nfs4getfh_otw: %s call, mi 0x%p",
1790 needrecov ? "recov" : "first", (void *)mi));
1791
1792 rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep);
1793
1794 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
1795
1796 if (needrecov) {
1797 bool_t abort;
1798
1799 if (recovery) {
1800 nfs4args_lookup_free(argop, num_argops);
1801 kmem_free(argop,
1802 lookuparg.arglen * sizeof (nfs_argop4));
1803 if (!ep->error)
1804 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1805 return;
1806 }
1807
1808 NFS4_DEBUG(nfs4_client_recov_debug,
1809 (CE_NOTE, "nfs4getfh_otw: initiating recovery\n"));
1810
1811 abort = nfs4_start_recovery(ep, mi, NULL,
1812 NULL, NULL, NULL, OP_GETFH, NULL, NULL, NULL);
1813 if (!ep->error) {
1814 ep->error = geterrno4(res.status);
1815 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1816 }
1817 nfs4args_lookup_free(argop, num_argops);
1818 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1819 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov);
1820 /* have another go? */
1821 if (abort == FALSE)
1822 goto recov_retry;
1823 return;
1824 }
1825
1826 /*
1827 * No recovery, but check if error is set.
1828 */
1829 if (ep->error) {
1830 nfs4args_lookup_free(argop, num_argops);
1831 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1832 if (!recovery)
1833 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1834 needrecov);
1835 return;
1836 }
1837
1838 is_link_err:
1839
1840 /* for non-recovery errors */
1841 if (res.status && res.status != NFS4ERR_SYMLINK &&
1842 res.status != NFS4ERR_MOVED) {
1843 if (!recovery) {
1844 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1845 needrecov);
1846 }
1847 nfs4args_lookup_free(argop, num_argops);
1848 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1849 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1850 return;
1851 }
1852
1853 /*
1854 * If any intermediate component in the path is a symbolic link,
1855 * resolve the symlink, then try mount again using the new path.
1856 */
1857 if (res.status == NFS4ERR_SYMLINK || res.status == NFS4ERR_MOVED) {
1858 int where;
1859
1860 /*
1861 * Need to call nfs4_end_op before resolve_sympath to avoid
1862 * potential nfs4_start_op deadlock.
1863 */
1864 if (!recovery)
1865 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1866 needrecov);
1867
1868 /*
1869 * This must be from OP_LOOKUP failure. The (cfh) for this
1870 * OP_LOOKUP is a symlink node. Found out where the
1871 * OP_GETFH is for the (cfh) that is a symlink node.
1872 *
1873 * Example:
1874 * (mount) PUTROOTFH, GETFH, LOOKUP comp1, GETFH, GETATTR,
1875 * LOOKUP comp2, GETFH, GETATTR, LOOKUP comp3, GETFH, GETATTR
1876 *
1877 * LOOKUP comp3 fails with SYMLINK because comp2 is a symlink.
1878 * In this case, where = 7, nthcomp = 2.
1879 */
1880 where = res.array_len - 2;
1881 ASSERT(where > 0);
1882
1883 if (res.status == NFS4ERR_SYMLINK) {
1884
1885 resop = &res.array[where - 1];
1886 ASSERT(resop->resop == OP_GETFH);
1887 tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1888 nthcomp = res.array_len/3 - 1;
1889 ep->error = resolve_sympath(mi, svp, nthcomp,
1890 tmpfhp, cr, flags);
1891
1892 } else if (res.status == NFS4ERR_MOVED) {
1893
1894 resop = &res.array[where - 2];
1895 ASSERT(resop->resop == OP_GETFH);
1896 tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1897 nthcomp = res.array_len/3 - 1;
1898 ep->error = resolve_referral(mi, svp, cr, nthcomp,
1899 tmpfhp);
1900 }
1901
1902 nfs4args_lookup_free(argop, num_argops);
1903 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1904 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1905
1906 if (ep->error)
1907 return;
1908
1909 goto recov_retry;
1910 }
1911
1912 /* getfh */
1913 resop = &res.array[res.array_len - 2];
1914 ASSERT(resop->resop == OP_GETFH);
1915 resfhp = &resop->nfs_resop4_u.opgetfh.object;
1916
1917 /* getattr fsinfo res */
1918 resop++;
1919 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
1920
1921 *vtp = garp->n4g_va.va_type;
1922
1923 mi->mi_fh_expire_type = garp->n4g_ext_res->n4g_fet;
1924
1925 mutex_enter(&mi->mi_lock);
1926 if (garp->n4g_ext_res->n4g_pc4.pc4_link_support)
1927 mi->mi_flags |= MI4_LINK;
1928 if (garp->n4g_ext_res->n4g_pc4.pc4_symlink_support)
1929 mi->mi_flags |= MI4_SYMLINK;
1930 if (garp->n4g_ext_res->n4g_suppattrs & FATTR4_ACL_MASK)
1931 mi->mi_flags |= MI4_ACL;
1932 mutex_exit(&mi->mi_lock);
1933
1934 if (garp->n4g_ext_res->n4g_maxread == 0)
1935 mi->mi_tsize =
1936 MIN(MAXBSIZE, mi->mi_tsize);
1937 else
1938 mi->mi_tsize =
1939 MIN(garp->n4g_ext_res->n4g_maxread,
1940 mi->mi_tsize);
1941
1942 if (garp->n4g_ext_res->n4g_maxwrite == 0)
1943 mi->mi_stsize =
1944 MIN(MAXBSIZE, mi->mi_stsize);
1945 else
1946 mi->mi_stsize =
1947 MIN(garp->n4g_ext_res->n4g_maxwrite,
1948 mi->mi_stsize);
1949
1950 if (garp->n4g_ext_res->n4g_maxfilesize != 0)
1951 mi->mi_maxfilesize =
1952 MIN(garp->n4g_ext_res->n4g_maxfilesize,
1953 mi->mi_maxfilesize);
1954
1955 /*
1956 * If the final component is a a symbolic link, resolve the symlink,
1957 * then try mount again using the new path.
1958 *
1959 * Assume no symbolic link for root filesysm "/".
1960 */
1961 if (*vtp == VLNK) {
1962 /*
1963 * nthcomp is the total result length minus
1964 * the 1st 2 OPs (PUTROOTFH, GETFH),
1965 * then divided by 3 (LOOKUP,GETFH,GETATTR)
1966 *
1967 * e.g. PUTROOTFH GETFH LOOKUP 1st-comp GETFH GETATTR
1968 * LOOKUP 2nd-comp GETFH GETATTR
1969 *
1970 * (8 - 2)/3 = 2
1971 */
1972 nthcomp = (res.array_len - 2)/3;
1973
1974 /*
1975 * Need to call nfs4_end_op before resolve_sympath to avoid
1976 * potential nfs4_start_op deadlock. See RFE 4777612.
1977 */
1978 if (!recovery)
1979 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state,
1980 needrecov);
1981
1982 ep->error = resolve_sympath(mi, svp, nthcomp, resfhp, cr,
1983 flags);
1984
1985 nfs4args_lookup_free(argop, num_argops);
1986 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1987 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1988
1989 if (ep->error)
1990 return;
1991
1992 goto recov_retry;
1993 }
1994
1995 /*
1996 * We need to figure out where in the compound the getfh
1997 * for the parent directory is. If the object to be mounted is
1998 * the root, then there is no lookup at all:
1999 * PUTROOTFH, GETFH.
2000 * If the object to be mounted is in the root, then the compound is:
2001 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR.
2002 * In either of these cases, the index of the GETFH is 1.
2003 * If it is not at the root, then it's something like:
2004 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR,
2005 * LOOKUP, GETFH, GETATTR
2006 * In this case, the index is llndx (last lookup index) - 2.
2007 */
2008 if (llndx == -1 || llndx == 2)
2009 resop = &res.array[1];
2010 else {
2011 ASSERT(llndx > 2);
2012 resop = &res.array[llndx-2];
2013 }
2014
2015 ASSERT(resop->resop == OP_GETFH);
2016 tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
2017
2018 /* save the filehandles for the replica */
2019 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2020 ASSERT(tmpfhp->nfs_fh4_len <= NFS4_FHSIZE);
2021 svp->sv_pfhandle.fh_len = tmpfhp->nfs_fh4_len;
2022 bcopy(tmpfhp->nfs_fh4_val, svp->sv_pfhandle.fh_buf,
2023 tmpfhp->nfs_fh4_len);
2024 ASSERT(resfhp->nfs_fh4_len <= NFS4_FHSIZE);
2025 svp->sv_fhandle.fh_len = resfhp->nfs_fh4_len;
2026 bcopy(resfhp->nfs_fh4_val, svp->sv_fhandle.fh_buf, resfhp->nfs_fh4_len);
2027
2028 /* initialize fsid and supp_attrs for server fs */
2029 svp->sv_fsid = garp->n4g_fsid;
2030 svp->sv_supp_attrs =
2031 garp->n4g_ext_res->n4g_suppattrs | FATTR4_MANDATTR_MASK;
2032
2033 nfs_rw_exit(&svp->sv_lock);
2034 nfs4args_lookup_free(argop, num_argops);
2035 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
2036 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2037 if (!recovery)
2038 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov);
2039 }
2040
2041 /*
2042 * Save a copy of Servinfo4_t structure.
2043 * We might need when there is a failure in getting file handle
2044 * in case of a referral to replace servinfo4 struct and try again.
2045 */
2046 static struct servinfo4 *
copy_svp(servinfo4_t * nsvp)2047 copy_svp(servinfo4_t *nsvp)
2048 {
2049 servinfo4_t *svp = NULL;
2050 struct knetconfig *sknconf, *tknconf;
2051 struct netbuf *saddr, *taddr;
2052
2053 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
2054 nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
2055 svp->sv_flags = nsvp->sv_flags;
2056 svp->sv_fsid = nsvp->sv_fsid;
2057 svp->sv_hostnamelen = nsvp->sv_hostnamelen;
2058 svp->sv_pathlen = nsvp->sv_pathlen;
2059 svp->sv_supp_attrs = nsvp->sv_supp_attrs;
2060
2061 svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP);
2062 svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
2063 bcopy(nsvp->sv_hostname, svp->sv_hostname, svp->sv_hostnamelen);
2064 bcopy(nsvp->sv_path, svp->sv_path, svp->sv_pathlen);
2065
2066 saddr = &nsvp->sv_addr;
2067 taddr = &svp->sv_addr;
2068 taddr->maxlen = saddr->maxlen;
2069 taddr->len = saddr->len;
2070 if (saddr->len > 0) {
2071 taddr->buf = kmem_zalloc(saddr->maxlen, KM_SLEEP);
2072 bcopy(saddr->buf, taddr->buf, saddr->len);
2073 }
2074
2075 svp->sv_knconf = kmem_zalloc(sizeof (struct knetconfig), KM_SLEEP);
2076 sknconf = nsvp->sv_knconf;
2077 tknconf = svp->sv_knconf;
2078 tknconf->knc_semantics = sknconf->knc_semantics;
2079 tknconf->knc_rdev = sknconf->knc_rdev;
2080 if (sknconf->knc_proto != NULL) {
2081 tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
2082 bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto,
2083 KNC_STRSIZE);
2084 }
2085 if (sknconf->knc_protofmly != NULL) {
2086 tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
2087 bcopy(sknconf->knc_protofmly, (char *)tknconf->knc_protofmly,
2088 KNC_STRSIZE);
2089 }
2090
2091 if (nsvp->sv_origknconf != NULL) {
2092 svp->sv_origknconf = kmem_zalloc(sizeof (struct knetconfig),
2093 KM_SLEEP);
2094 sknconf = nsvp->sv_origknconf;
2095 tknconf = svp->sv_origknconf;
2096 tknconf->knc_semantics = sknconf->knc_semantics;
2097 tknconf->knc_rdev = sknconf->knc_rdev;
2098 if (sknconf->knc_proto != NULL) {
2099 tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP);
2100 bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto,
2101 KNC_STRSIZE);
2102 }
2103 if (sknconf->knc_protofmly != NULL) {
2104 tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE,
2105 KM_SLEEP);
2106 bcopy(sknconf->knc_protofmly,
2107 (char *)tknconf->knc_protofmly, KNC_STRSIZE);
2108 }
2109 }
2110
2111 svp->sv_secdata = copy_sec_data(nsvp->sv_secdata);
2112 svp->sv_dhsec = copy_sec_data(svp->sv_dhsec);
2113 /*
2114 * Rest of the security information is not copied as they are built
2115 * with the information available from secdata and dhsec.
2116 */
2117 svp->sv_next = NULL;
2118
2119 return (svp);
2120 }
2121
2122 servinfo4_t *
restore_svp(mntinfo4_t * mi,servinfo4_t * svp,servinfo4_t * origsvp)2123 restore_svp(mntinfo4_t *mi, servinfo4_t *svp, servinfo4_t *origsvp)
2124 {
2125 servinfo4_t *srvnext, *tmpsrv;
2126
2127 if (strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) {
2128 /*
2129 * Since the hostname changed, we must be dealing
2130 * with a referral, and the lookup failed. We will
2131 * restore the whole servinfo4_t to what it was before.
2132 */
2133 srvnext = svp->sv_next;
2134 svp->sv_next = NULL;
2135 tmpsrv = copy_svp(origsvp);
2136 sv4_free(svp);
2137 svp = tmpsrv;
2138 svp->sv_next = srvnext;
2139 mutex_enter(&mi->mi_lock);
2140 mi->mi_servers = svp;
2141 mi->mi_curr_serv = svp;
2142 mutex_exit(&mi->mi_lock);
2143
2144 } else if (origsvp->sv_pathlen != svp->sv_pathlen) {
2145
2146 /*
2147 * For symlink case: restore original path because
2148 * it might have contained symlinks that were
2149 * expanded by nfsgetfh_otw before the failure occurred.
2150 */
2151 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2152 kmem_free(svp->sv_path, svp->sv_pathlen);
2153 svp->sv_path =
2154 kmem_alloc(origsvp->sv_pathlen, KM_SLEEP);
2155 svp->sv_pathlen = origsvp->sv_pathlen;
2156 bcopy(origsvp->sv_path, svp->sv_path,
2157 origsvp->sv_pathlen);
2158 nfs_rw_exit(&svp->sv_lock);
2159 }
2160 return (svp);
2161 }
2162
2163 static ushort_t nfs4_max_threads = 8; /* max number of active async threads */
2164 uint_t nfs4_bsize = 32 * 1024; /* client `block' size */
2165 static uint_t nfs4_async_clusters = 1; /* # of reqs from each async queue */
2166 static uint_t nfs4_cots_timeo = NFS_COTS_TIMEO;
2167
2168 /*
2169 * Remap the root filehandle for the given filesystem.
2170 *
2171 * results returned via the nfs4_error_t parameter.
2172 */
2173 void
nfs4_remap_root(mntinfo4_t * mi,nfs4_error_t * ep,int flags)2174 nfs4_remap_root(mntinfo4_t *mi, nfs4_error_t *ep, int flags)
2175 {
2176 struct servinfo4 *svp, *origsvp;
2177 vtype_t vtype;
2178 nfs_fh4 rootfh;
2179 int getfh_flags;
2180 int num_retry;
2181
2182 mutex_enter(&mi->mi_lock);
2183
2184 remap_retry:
2185 svp = mi->mi_curr_serv;
2186 getfh_flags =
2187 (flags & NFS4_REMAP_NEEDSOP) ? NFS4_GETFH_NEEDSOP : 0;
2188 getfh_flags |=
2189 (mi->mi_flags & MI4_PUBLIC) ? NFS4_GETFH_PUBLIC : 0;
2190 mutex_exit(&mi->mi_lock);
2191
2192 /*
2193 * Just in case server path being mounted contains
2194 * symlinks and fails w/STALE, save the initial sv_path
2195 * so we can redrive the initial mount compound with the
2196 * initial sv_path -- not a symlink-expanded version.
2197 *
2198 * This could only happen if a symlink was expanded
2199 * and the expanded mount compound failed stale. Because
2200 * it could be the case that the symlink was removed at
2201 * the server (and replaced with another symlink/dir,
2202 * we need to use the initial sv_path when attempting
2203 * to re-lookup everything and recover.
2204 */
2205 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2206 origsvp = copy_svp(svp);
2207 nfs_rw_exit(&svp->sv_lock);
2208
2209 num_retry = nfs4_max_mount_retry;
2210
2211 do {
2212 /*
2213 * Get the root fh from the server. Retry nfs4_max_mount_retry
2214 * (2) times if it fails with STALE since the recovery
2215 * infrastructure doesn't do STALE recovery for components
2216 * of the server path to the object being mounted.
2217 */
2218 nfs4getfh_otw(mi, svp, &vtype, getfh_flags, CRED(), ep);
2219
2220 if (ep->error == 0 && ep->stat == NFS4_OK)
2221 break;
2222
2223 /*
2224 * For some reason, the mount compound failed. Before
2225 * retrying, we need to restore original conditions.
2226 */
2227 svp = restore_svp(mi, svp, origsvp);
2228
2229 } while (num_retry-- > 0);
2230
2231 sv4_free(origsvp);
2232
2233 if (ep->error != 0 || ep->stat != 0) {
2234 return;
2235 }
2236
2237 if (vtype != VNON && vtype != mi->mi_type) {
2238 /* shouldn't happen */
2239 zcmn_err(mi->mi_zone->zone_id, CE_WARN,
2240 "nfs4_remap_root: server root vnode type (%d) doesn't "
2241 "match mount info (%d)", vtype, mi->mi_type);
2242 }
2243
2244 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2245 rootfh.nfs_fh4_val = svp->sv_fhandle.fh_buf;
2246 rootfh.nfs_fh4_len = svp->sv_fhandle.fh_len;
2247 nfs_rw_exit(&svp->sv_lock);
2248 sfh4_update(mi->mi_rootfh, &rootfh);
2249
2250 /*
2251 * It's possible that recovery took place on the filesystem
2252 * and the server has been updated between the time we did
2253 * the nfs4getfh_otw and now. Re-drive the otw operation
2254 * to make sure we have a good fh.
2255 */
2256 mutex_enter(&mi->mi_lock);
2257 if (mi->mi_curr_serv != svp)
2258 goto remap_retry;
2259
2260 mutex_exit(&mi->mi_lock);
2261 }
2262
2263 static int
nfs4rootvp(vnode_t ** rtvpp,vfs_t * vfsp,struct servinfo4 * svp_head,int flags,cred_t * cr,zone_t * zone)2264 nfs4rootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo4 *svp_head,
2265 int flags, cred_t *cr, zone_t *zone)
2266 {
2267 vnode_t *rtvp = NULL;
2268 mntinfo4_t *mi;
2269 dev_t nfs_dev;
2270 int error = 0;
2271 rnode4_t *rp;
2272 int i, len;
2273 struct vattr va;
2274 vtype_t vtype = VNON;
2275 vtype_t tmp_vtype = VNON;
2276 struct servinfo4 *firstsvp = NULL, *svp = svp_head;
2277 nfs4_oo_hash_bucket_t *bucketp;
2278 nfs_fh4 fh;
2279 char *droptext = "";
2280 struct nfs_stats *nfsstatsp;
2281 nfs4_fname_t *mfname;
2282 nfs4_error_t e;
2283 int num_retry, removed;
2284 cred_t *lcr = NULL, *tcr = cr;
2285 struct servinfo4 *origsvp;
2286 char *resource;
2287
2288 nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone());
2289 ASSERT(nfsstatsp != NULL);
2290
2291 ASSERT(nfs_zone() == zone);
2292 ASSERT(crgetref(cr));
2293
2294 /*
2295 * Create a mount record and link it to the vfs struct.
2296 */
2297 mi = kmem_zalloc(sizeof (*mi), KM_SLEEP);
2298 mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL);
2299 nfs_rw_init(&mi->mi_recovlock, NULL, RW_DEFAULT, NULL);
2300 nfs_rw_init(&mi->mi_rename_lock, NULL, RW_DEFAULT, NULL);
2301 nfs_rw_init(&mi->mi_fh_lock, NULL, RW_DEFAULT, NULL);
2302
2303 if (!(flags & NFSMNT_SOFT))
2304 mi->mi_flags |= MI4_HARD;
2305 if ((flags & NFSMNT_NOPRINT))
2306 mi->mi_flags |= MI4_NOPRINT;
2307 if (flags & NFSMNT_INT)
2308 mi->mi_flags |= MI4_INT;
2309 if (flags & NFSMNT_PUBLIC)
2310 mi->mi_flags |= MI4_PUBLIC;
2311 if (flags & NFSMNT_MIRRORMOUNT)
2312 mi->mi_flags |= MI4_MIRRORMOUNT;
2313 if (flags & NFSMNT_REFERRAL)
2314 mi->mi_flags |= MI4_REFERRAL;
2315 mi->mi_retrans = NFS_RETRIES;
2316 if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD ||
2317 svp->sv_knconf->knc_semantics == NC_TPI_COTS)
2318 mi->mi_timeo = nfs4_cots_timeo;
2319 else
2320 mi->mi_timeo = NFS_TIMEO;
2321 mi->mi_prog = NFS_PROGRAM;
2322 mi->mi_vers = NFS_V4;
2323 mi->mi_rfsnames = rfsnames_v4;
2324 mi->mi_reqs = nfsstatsp->nfs_stats_v4.rfsreqcnt_ptr;
2325 cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL);
2326 mi->mi_servers = svp;
2327 mi->mi_curr_serv = svp;
2328 mi->mi_acregmin = SEC2HR(ACREGMIN);
2329 mi->mi_acregmax = SEC2HR(ACREGMAX);
2330 mi->mi_acdirmin = SEC2HR(ACDIRMIN);
2331 mi->mi_acdirmax = SEC2HR(ACDIRMAX);
2332 mi->mi_fh_expire_type = FH4_PERSISTENT;
2333 mi->mi_clientid_next = NULL;
2334 mi->mi_clientid_prev = NULL;
2335 mi->mi_srv = NULL;
2336 mi->mi_grace_wait = 0;
2337 mi->mi_error = 0;
2338 mi->mi_srvsettime = 0;
2339 mi->mi_srvset_cnt = 0;
2340
2341 mi->mi_count = 1;
2342
2343 mi->mi_tsize = nfs4_tsize(svp->sv_knconf);
2344 mi->mi_stsize = mi->mi_tsize;
2345
2346 if (flags & NFSMNT_DIRECTIO)
2347 mi->mi_flags |= MI4_DIRECTIO;
2348
2349 mi->mi_flags |= MI4_MOUNTING;
2350
2351 mutex_init(&mi->mi_rnodes_lock, NULL, MUTEX_DEFAULT, NULL);
2352 list_create(&mi->mi_rnodes, sizeof (rnode4_t),
2353 offsetof(rnode4_t, r_mi_link));
2354
2355 /*
2356 * Make a vfs struct for nfs. We do this here instead of below
2357 * because rtvp needs a vfs before we can do a getattr on it.
2358 *
2359 * Assign a unique device id to the mount
2360 */
2361 mutex_enter(&nfs_minor_lock);
2362 do {
2363 nfs_minor = (nfs_minor + 1) & MAXMIN32;
2364 nfs_dev = makedevice(nfs_major, nfs_minor);
2365 } while (vfs_devismounted(nfs_dev));
2366 mutex_exit(&nfs_minor_lock);
2367
2368 vfsp->vfs_dev = nfs_dev;
2369 vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfs4fstyp);
2370 vfsp->vfs_data = (caddr_t)mi;
2371 vfsp->vfs_fstype = nfsfstyp;
2372 vfsp->vfs_bsize = nfs4_bsize;
2373
2374 /*
2375 * Initialize fields used to support async putpage operations.
2376 */
2377 for (i = 0; i < NFS4_ASYNC_TYPES; i++)
2378 mi->mi_async_clusters[i] = nfs4_async_clusters;
2379 mi->mi_async_init_clusters = nfs4_async_clusters;
2380 mi->mi_async_curr[NFS4_ASYNC_QUEUE] =
2381 mi->mi_async_curr[NFS4_ASYNC_PGOPS_QUEUE] = &mi->mi_async_reqs[0];
2382 mi->mi_max_threads = nfs4_max_threads;
2383 mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL);
2384 cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL);
2385 cv_init(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE], NULL, CV_DEFAULT,
2386 NULL);
2387 cv_init(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE], NULL,
2388 CV_DEFAULT, NULL);
2389 cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL);
2390 cv_init(&mi->mi_inact_req_cv, NULL, CV_DEFAULT, NULL);
2391
2392 mi->mi_vfsp = vfsp;
2393 mi->mi_zone = zone;
2394 zone_init_ref(&mi->mi_zone_ref);
2395 zone_hold_ref(zone, &mi->mi_zone_ref, ZONE_REF_NFSV4);
2396 nfs4_mi_zonelist_add(mi);
2397
2398 /*
2399 * Initialize the <open owner/cred> hash table.
2400 */
2401 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
2402 bucketp = &(mi->mi_oo_list[i]);
2403 mutex_init(&bucketp->b_lock, NULL, MUTEX_DEFAULT, NULL);
2404 list_create(&bucketp->b_oo_hash_list,
2405 sizeof (nfs4_open_owner_t),
2406 offsetof(nfs4_open_owner_t, oo_hash_node));
2407 }
2408
2409 /*
2410 * Initialize the freed open owner list.
2411 */
2412 mi->mi_foo_num = 0;
2413 mi->mi_foo_max = NFS4_NUM_FREED_OPEN_OWNERS;
2414 list_create(&mi->mi_foo_list, sizeof (nfs4_open_owner_t),
2415 offsetof(nfs4_open_owner_t, oo_foo_node));
2416
2417 list_create(&mi->mi_lost_state, sizeof (nfs4_lost_rqst_t),
2418 offsetof(nfs4_lost_rqst_t, lr_node));
2419
2420 list_create(&mi->mi_bseqid_list, sizeof (nfs4_bseqid_entry_t),
2421 offsetof(nfs4_bseqid_entry_t, bs_node));
2422
2423 /*
2424 * Initialize the msg buffer.
2425 */
2426 list_create(&mi->mi_msg_list, sizeof (nfs4_debug_msg_t),
2427 offsetof(nfs4_debug_msg_t, msg_node));
2428 mi->mi_msg_count = 0;
2429 mutex_init(&mi->mi_msg_list_lock, NULL, MUTEX_DEFAULT, NULL);
2430
2431 /*
2432 * Initialize kstats
2433 */
2434 nfs4_mnt_kstat_init(vfsp);
2435
2436 /*
2437 * Initialize the shared filehandle pool.
2438 */
2439 sfh4_createtab(&mi->mi_filehandles);
2440
2441 /*
2442 * Save server path we're attempting to mount.
2443 */
2444 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2445 origsvp = copy_svp(svp);
2446 nfs_rw_exit(&svp->sv_lock);
2447
2448 /*
2449 * Make the GETFH call to get root fh for each replica.
2450 */
2451 if (svp_head->sv_next)
2452 droptext = ", dropping replica";
2453
2454 /*
2455 * If the uid is set then set the creds for secure mounts
2456 * by proxy processes such as automountd.
2457 */
2458 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2459 if (svp->sv_secdata->uid != 0 &&
2460 svp->sv_secdata->rpcflavor == RPCSEC_GSS) {
2461 lcr = crdup(cr);
2462 (void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr));
2463 tcr = lcr;
2464 }
2465 nfs_rw_exit(&svp->sv_lock);
2466 for (svp = svp_head; svp; svp = svp->sv_next) {
2467 if (nfs4_chkdup_servinfo4(svp_head, svp)) {
2468 nfs_cmn_err(error, CE_WARN,
2469 VERS_MSG "Host %s is a duplicate%s",
2470 svp->sv_hostname, droptext);
2471 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2472 svp->sv_flags |= SV4_NOTINUSE;
2473 nfs_rw_exit(&svp->sv_lock);
2474 continue;
2475 }
2476 mi->mi_curr_serv = svp;
2477
2478 /*
2479 * Just in case server path being mounted contains
2480 * symlinks and fails w/STALE, save the initial sv_path
2481 * so we can redrive the initial mount compound with the
2482 * initial sv_path -- not a symlink-expanded version.
2483 *
2484 * This could only happen if a symlink was expanded
2485 * and the expanded mount compound failed stale. Because
2486 * it could be the case that the symlink was removed at
2487 * the server (and replaced with another symlink/dir,
2488 * we need to use the initial sv_path when attempting
2489 * to re-lookup everything and recover.
2490 *
2491 * Other mount errors should evenutally be handled here also
2492 * (NFS4ERR_DELAY, NFS4ERR_RESOURCE). For now, all mount
2493 * failures will result in mount being redriven a few times.
2494 */
2495 num_retry = nfs4_max_mount_retry;
2496 do {
2497 nfs4getfh_otw(mi, svp, &tmp_vtype,
2498 ((flags & NFSMNT_PUBLIC) ? NFS4_GETFH_PUBLIC : 0) |
2499 NFS4_GETFH_NEEDSOP, tcr, &e);
2500
2501 if (e.error == 0 && e.stat == NFS4_OK)
2502 break;
2503
2504 /*
2505 * For some reason, the mount compound failed. Before
2506 * retrying, we need to restore original conditions.
2507 */
2508 svp = restore_svp(mi, svp, origsvp);
2509 svp_head = svp;
2510
2511 } while (num_retry-- > 0);
2512 error = e.error ? e.error : geterrno4(e.stat);
2513 if (error) {
2514 nfs_cmn_err(error, CE_WARN,
2515 VERS_MSG "initial call to %s failed%s: %m",
2516 svp->sv_hostname, droptext);
2517 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2518 svp->sv_flags |= SV4_NOTINUSE;
2519 nfs_rw_exit(&svp->sv_lock);
2520 mi->mi_flags &= ~MI4_RECOV_FAIL;
2521 mi->mi_error = 0;
2522 continue;
2523 }
2524
2525 if (tmp_vtype == VBAD) {
2526 zcmn_err(mi->mi_zone->zone_id, CE_WARN,
2527 VERS_MSG "%s returned a bad file type for "
2528 "root%s", svp->sv_hostname, droptext);
2529 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2530 svp->sv_flags |= SV4_NOTINUSE;
2531 nfs_rw_exit(&svp->sv_lock);
2532 continue;
2533 }
2534
2535 if (vtype == VNON) {
2536 vtype = tmp_vtype;
2537 } else if (vtype != tmp_vtype) {
2538 zcmn_err(mi->mi_zone->zone_id, CE_WARN,
2539 VERS_MSG "%s returned a different file type "
2540 "for root%s", svp->sv_hostname, droptext);
2541 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2542 svp->sv_flags |= SV4_NOTINUSE;
2543 nfs_rw_exit(&svp->sv_lock);
2544 continue;
2545 }
2546 if (firstsvp == NULL)
2547 firstsvp = svp;
2548 }
2549
2550 if (firstsvp == NULL) {
2551 if (error == 0)
2552 error = ENOENT;
2553 goto bad;
2554 }
2555
2556 mi->mi_curr_serv = svp = firstsvp;
2557 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2558 ASSERT((mi->mi_curr_serv->sv_flags & SV4_NOTINUSE) == 0);
2559 fh.nfs_fh4_len = svp->sv_fhandle.fh_len;
2560 fh.nfs_fh4_val = svp->sv_fhandle.fh_buf;
2561 mi->mi_rootfh = sfh4_get(&fh, mi);
2562 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
2563 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
2564 mi->mi_srvparentfh = sfh4_get(&fh, mi);
2565 nfs_rw_exit(&svp->sv_lock);
2566
2567 /*
2568 * Get the fname for filesystem root.
2569 */
2570 mi->mi_fname = fn_get(NULL, ".", mi->mi_rootfh);
2571 mfname = mi->mi_fname;
2572 fn_hold(mfname);
2573
2574 /*
2575 * Make the root vnode without attributes.
2576 */
2577 rtvp = makenfs4node_by_fh(mi->mi_rootfh, NULL,
2578 &mfname, NULL, mi, cr, gethrtime());
2579 rtvp->v_type = vtype;
2580
2581 mi->mi_curread = mi->mi_tsize;
2582 mi->mi_curwrite = mi->mi_stsize;
2583
2584 /*
2585 * Start the manager thread responsible for handling async worker
2586 * threads.
2587 */
2588 MI4_HOLD(mi);
2589 VFS_HOLD(vfsp); /* add reference for thread */
2590 mi->mi_manager_thread = zthread_create(NULL, 0, nfs4_async_manager,
2591 vfsp, 0, minclsyspri);
2592 ASSERT(mi->mi_manager_thread != NULL);
2593
2594 /*
2595 * Create the thread that handles over-the-wire calls for
2596 * VOP_INACTIVE.
2597 * This needs to happen after the manager thread is created.
2598 */
2599 MI4_HOLD(mi);
2600 mi->mi_inactive_thread = zthread_create(NULL, 0, nfs4_inactive_thread,
2601 mi, 0, minclsyspri);
2602 ASSERT(mi->mi_inactive_thread != NULL);
2603
2604 /* If we didn't get a type, get one now */
2605 if (rtvp->v_type == VNON) {
2606 va.va_mask = AT_TYPE;
2607 error = nfs4getattr(rtvp, &va, tcr);
2608 if (error)
2609 goto bad;
2610 rtvp->v_type = va.va_type;
2611 }
2612
2613 mi->mi_type = rtvp->v_type;
2614
2615 mutex_enter(&mi->mi_lock);
2616 mi->mi_flags &= ~MI4_MOUNTING;
2617 mutex_exit(&mi->mi_lock);
2618
2619 /* Update VFS with new server and path info */
2620 if ((strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) ||
2621 (strcmp(svp->sv_path, origsvp->sv_path) != 0)) {
2622 len = svp->sv_hostnamelen + svp->sv_pathlen;
2623 resource = kmem_zalloc(len, KM_SLEEP);
2624 (void) strcat(resource, svp->sv_hostname);
2625 (void) strcat(resource, ":");
2626 (void) strcat(resource, svp->sv_path);
2627 vfs_setresource(vfsp, resource, 0);
2628 kmem_free(resource, len);
2629 }
2630
2631 sv4_free(origsvp);
2632 *rtvpp = rtvp;
2633 if (lcr != NULL)
2634 crfree(lcr);
2635
2636 return (0);
2637 bad:
2638 /*
2639 * An error occurred somewhere, need to clean up...
2640 */
2641 if (lcr != NULL)
2642 crfree(lcr);
2643
2644 if (rtvp != NULL) {
2645 /*
2646 * We need to release our reference to the root vnode and
2647 * destroy the mntinfo4 struct that we just created.
2648 */
2649 rp = VTOR4(rtvp);
2650 if (rp->r_flags & R4HASHED)
2651 rp4_rmhash(rp);
2652 VN_RELE(rtvp);
2653 }
2654 nfs4_async_stop(vfsp);
2655 nfs4_async_manager_stop(vfsp);
2656 removed = nfs4_mi_zonelist_remove(mi);
2657 if (removed)
2658 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
2659
2660 /*
2661 * This releases the initial "hold" of the mi since it will never
2662 * be referenced by the vfsp. Also, when mount returns to vfs.c
2663 * with an error, the vfsp will be destroyed, not rele'd.
2664 */
2665 MI4_RELE(mi);
2666
2667 if (origsvp != NULL)
2668 sv4_free(origsvp);
2669
2670 *rtvpp = NULL;
2671 return (error);
2672 }
2673
2674 /*
2675 * vfs operations
2676 */
2677 static int
nfs4_unmount(vfs_t * vfsp,int flag,cred_t * cr)2678 nfs4_unmount(vfs_t *vfsp, int flag, cred_t *cr)
2679 {
2680 mntinfo4_t *mi;
2681 ushort_t omax;
2682 int removed;
2683
2684 bool_t must_unlock;
2685
2686 nfs4_ephemeral_tree_t *eph_tree;
2687
2688 if (secpolicy_fs_unmount(cr, vfsp) != 0)
2689 return (EPERM);
2690
2691 mi = VFTOMI4(vfsp);
2692
2693 if (flag & MS_FORCE) {
2694 vfsp->vfs_flag |= VFS_UNMOUNTED;
2695 if (nfs_zone() != mi->mi_zone) {
2696 /*
2697 * If the request is coming from the wrong zone,
2698 * we don't want to create any new threads, and
2699 * performance is not a concern. Do everything
2700 * inline.
2701 */
2702 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2703 "nfs4_unmount x-zone forced unmount of vfs %p\n",
2704 (void *)vfsp));
2705 nfs4_free_mount(vfsp, flag, cr);
2706 } else {
2707 /*
2708 * Free data structures asynchronously, to avoid
2709 * blocking the current thread (for performance
2710 * reasons only).
2711 */
2712 async_free_mount(vfsp, flag, cr);
2713 }
2714
2715 return (0);
2716 }
2717
2718 /*
2719 * Wait until all asynchronous putpage operations on
2720 * this file system are complete before flushing rnodes
2721 * from the cache.
2722 */
2723 omax = mi->mi_max_threads;
2724 if (nfs4_async_stop_sig(vfsp))
2725 return (EINTR);
2726
2727 r4flush(vfsp, cr);
2728
2729 /*
2730 * About the only reason that this would fail would be
2731 * that the harvester is already busy tearing down this
2732 * node. So we fail back to the caller and let them try
2733 * again when needed.
2734 */
2735 if (nfs4_ephemeral_umount(mi, flag, cr,
2736 &must_unlock, &eph_tree)) {
2737 ASSERT(must_unlock == FALSE);
2738 mutex_enter(&mi->mi_async_lock);
2739 mi->mi_max_threads = omax;
2740 mutex_exit(&mi->mi_async_lock);
2741
2742 return (EBUSY);
2743 }
2744
2745 /*
2746 * If there are any active vnodes on this file system,
2747 * then the file system is busy and can't be unmounted.
2748 */
2749 if (check_rtable4(vfsp)) {
2750 nfs4_ephemeral_umount_unlock(&must_unlock, &eph_tree);
2751
2752 mutex_enter(&mi->mi_async_lock);
2753 mi->mi_max_threads = omax;
2754 mutex_exit(&mi->mi_async_lock);
2755
2756 return (EBUSY);
2757 }
2758
2759 /*
2760 * The unmount can't fail from now on, so record any
2761 * ephemeral changes.
2762 */
2763 nfs4_ephemeral_umount_activate(mi, &must_unlock, &eph_tree);
2764
2765 /*
2766 * There are no active files that could require over-the-wire
2767 * calls to the server, so stop the async manager and the
2768 * inactive thread.
2769 */
2770 nfs4_async_manager_stop(vfsp);
2771
2772 /*
2773 * Destroy all rnodes belonging to this file system from the
2774 * rnode hash queues and purge any resources allocated to
2775 * them.
2776 */
2777 destroy_rtable4(vfsp, cr);
2778 vfsp->vfs_flag |= VFS_UNMOUNTED;
2779
2780 nfs4_remove_mi_from_server(mi, NULL);
2781 removed = nfs4_mi_zonelist_remove(mi);
2782 if (removed)
2783 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
2784
2785 return (0);
2786 }
2787
2788 /*
2789 * find root of nfs
2790 */
2791 static int
nfs4_root(vfs_t * vfsp,vnode_t ** vpp)2792 nfs4_root(vfs_t *vfsp, vnode_t **vpp)
2793 {
2794 mntinfo4_t *mi;
2795 vnode_t *vp;
2796 nfs4_fname_t *mfname;
2797 servinfo4_t *svp;
2798
2799 mi = VFTOMI4(vfsp);
2800
2801 if (nfs_zone() != mi->mi_zone)
2802 return (EPERM);
2803
2804 svp = mi->mi_curr_serv;
2805 if (svp) {
2806 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
2807 if (svp->sv_flags & SV4_ROOT_STALE) {
2808 nfs_rw_exit(&svp->sv_lock);
2809
2810 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
2811 if (svp->sv_flags & SV4_ROOT_STALE) {
2812 svp->sv_flags &= ~SV4_ROOT_STALE;
2813 nfs_rw_exit(&svp->sv_lock);
2814 return (ENOENT);
2815 }
2816 nfs_rw_exit(&svp->sv_lock);
2817 } else
2818 nfs_rw_exit(&svp->sv_lock);
2819 }
2820
2821 mfname = mi->mi_fname;
2822 fn_hold(mfname);
2823 vp = makenfs4node_by_fh(mi->mi_rootfh, NULL, &mfname, NULL,
2824 VFTOMI4(vfsp), CRED(), gethrtime());
2825
2826 if (VTOR4(vp)->r_flags & R4STALE) {
2827 VN_RELE(vp);
2828 return (ENOENT);
2829 }
2830
2831 ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type);
2832
2833 vp->v_type = mi->mi_type;
2834
2835 *vpp = vp;
2836
2837 return (0);
2838 }
2839
2840 static int
nfs4_statfs_otw(vnode_t * vp,struct statvfs64 * sbp,cred_t * cr)2841 nfs4_statfs_otw(vnode_t *vp, struct statvfs64 *sbp, cred_t *cr)
2842 {
2843 int error;
2844 nfs4_ga_res_t gar;
2845 nfs4_ga_ext_res_t ger;
2846
2847 gar.n4g_ext_res = &ger;
2848
2849 if (error = nfs4_attr_otw(vp, TAG_FSINFO, &gar,
2850 NFS4_STATFS_ATTR_MASK, cr))
2851 return (error);
2852
2853 *sbp = gar.n4g_ext_res->n4g_sb;
2854
2855 return (0);
2856 }
2857
2858 /*
2859 * Get file system statistics.
2860 */
2861 static int
nfs4_statvfs(vfs_t * vfsp,struct statvfs64 * sbp)2862 nfs4_statvfs(vfs_t *vfsp, struct statvfs64 *sbp)
2863 {
2864 int error;
2865 vnode_t *vp;
2866 cred_t *cr;
2867
2868 error = nfs4_root(vfsp, &vp);
2869 if (error)
2870 return (error);
2871
2872 cr = CRED();
2873
2874 error = nfs4_statfs_otw(vp, sbp, cr);
2875 if (!error) {
2876 (void) strncpy(sbp->f_basetype,
2877 vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ);
2878 sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
2879 } else {
2880 nfs4_purge_stale_fh(error, vp, cr);
2881 }
2882
2883 VN_RELE(vp);
2884
2885 return (error);
2886 }
2887
2888 static kmutex_t nfs4_syncbusy;
2889
2890 /*
2891 * Flush dirty nfs files for file system vfsp.
2892 * If vfsp == NULL, all nfs files are flushed.
2893 *
2894 * SYNC_CLOSE in flag is passed to us to
2895 * indicate that we are shutting down and or
2896 * rebooting.
2897 */
2898 static int
nfs4_sync(vfs_t * vfsp,short flag,cred_t * cr)2899 nfs4_sync(vfs_t *vfsp, short flag, cred_t *cr)
2900 {
2901 /*
2902 * Cross-zone calls are OK here, since this translates to a
2903 * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone.
2904 */
2905 if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs4_syncbusy) != 0) {
2906 r4flush(vfsp, cr);
2907 mutex_exit(&nfs4_syncbusy);
2908 }
2909
2910 /*
2911 * if SYNC_CLOSE is set then we know that
2912 * the system is rebooting, mark the mntinfo
2913 * for later examination.
2914 */
2915 if (vfsp && (flag & SYNC_CLOSE)) {
2916 mntinfo4_t *mi;
2917
2918 mi = VFTOMI4(vfsp);
2919 if (!(mi->mi_flags & MI4_SHUTDOWN)) {
2920 mutex_enter(&mi->mi_lock);
2921 mi->mi_flags |= MI4_SHUTDOWN;
2922 mutex_exit(&mi->mi_lock);
2923 }
2924 }
2925 return (0);
2926 }
2927
2928 /*
2929 * vget is difficult, if not impossible, to support in v4 because we don't
2930 * know the parent directory or name, which makes it impossible to create a
2931 * useful shadow vnode. And we need the shadow vnode for things like
2932 * OPEN.
2933 */
2934
2935 /* ARGSUSED */
2936 /*
2937 * XXX Check nfs4_vget_pseudo() for dependency.
2938 */
2939 static int
nfs4_vget(vfs_t * vfsp,vnode_t ** vpp,fid_t * fidp)2940 nfs4_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
2941 {
2942 return (EREMOTE);
2943 }
2944
2945 /*
2946 * nfs4_mountroot get called in the case where we are diskless booting. All
2947 * we need from here is the ability to get the server info and from there we
2948 * can simply call nfs4_rootvp.
2949 */
2950 /* ARGSUSED */
2951 static int
nfs4_mountroot(vfs_t * vfsp,whymountroot_t why)2952 nfs4_mountroot(vfs_t *vfsp, whymountroot_t why)
2953 {
2954 vnode_t *rtvp;
2955 char root_hostname[SYS_NMLN+1];
2956 struct servinfo4 *svp;
2957 int error;
2958 int vfsflags;
2959 size_t size;
2960 char *root_path;
2961 struct pathname pn;
2962 char *name;
2963 cred_t *cr;
2964 mntinfo4_t *mi;
2965 struct nfs_args args; /* nfs mount arguments */
2966 static char token[10];
2967 nfs4_error_t n4e;
2968
2969 bzero(&args, sizeof (args));
2970
2971 /* do this BEFORE getfile which causes xid stamps to be initialized */
2972 clkset(-1L); /* hack for now - until we get time svc? */
2973
2974 if (why == ROOT_REMOUNT) {
2975 /*
2976 * Shouldn't happen.
2977 */
2978 panic("nfs4_mountroot: why == ROOT_REMOUNT");
2979 }
2980
2981 if (why == ROOT_UNMOUNT) {
2982 /*
2983 * Nothing to do for NFS.
2984 */
2985 return (0);
2986 }
2987
2988 /*
2989 * why == ROOT_INIT
2990 */
2991
2992 name = token;
2993 *name = 0;
2994 (void) getfsname("root", name, sizeof (token));
2995
2996 pn_alloc(&pn);
2997 root_path = pn.pn_path;
2998
2999 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
3000 nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL);
3001 svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP);
3002 svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
3003 svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
3004
3005 /*
3006 * Get server address
3007 * Get the root path
3008 * Get server's transport
3009 * Get server's hostname
3010 * Get options
3011 */
3012 args.addr = &svp->sv_addr;
3013 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3014 args.fh = (char *)&svp->sv_fhandle;
3015 args.knconf = svp->sv_knconf;
3016 args.hostname = root_hostname;
3017 vfsflags = 0;
3018 if (error = mount_root(*name ? name : "root", root_path, NFS_V4,
3019 &args, &vfsflags)) {
3020 if (error == EPROTONOSUPPORT)
3021 nfs_cmn_err(error, CE_WARN, "nfs4_mountroot: "
3022 "mount_root failed: server doesn't support NFS V4");
3023 else
3024 nfs_cmn_err(error, CE_WARN,
3025 "nfs4_mountroot: mount_root failed: %m");
3026 nfs_rw_exit(&svp->sv_lock);
3027 sv4_free(svp);
3028 pn_free(&pn);
3029 return (error);
3030 }
3031 nfs_rw_exit(&svp->sv_lock);
3032 svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1);
3033 svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
3034 (void) strcpy(svp->sv_hostname, root_hostname);
3035
3036 svp->sv_pathlen = (int)(strlen(root_path) + 1);
3037 svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP);
3038 (void) strcpy(svp->sv_path, root_path);
3039
3040 /*
3041 * Force root partition to always be mounted with AUTH_UNIX for now
3042 */
3043 svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP);
3044 svp->sv_secdata->secmod = AUTH_UNIX;
3045 svp->sv_secdata->rpcflavor = AUTH_UNIX;
3046 svp->sv_secdata->data = NULL;
3047
3048 cr = crgetcred();
3049 rtvp = NULL;
3050
3051 error = nfs4rootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone);
3052
3053 if (error) {
3054 crfree(cr);
3055 pn_free(&pn);
3056 sv4_free(svp);
3057 return (error);
3058 }
3059
3060 mi = VTOMI4(rtvp);
3061
3062 /*
3063 * Send client id to the server, if necessary
3064 */
3065 nfs4_error_zinit(&n4e);
3066 nfs4setclientid(mi, cr, FALSE, &n4e);
3067 error = n4e.error;
3068
3069 crfree(cr);
3070
3071 if (error) {
3072 pn_free(&pn);
3073 goto errout;
3074 }
3075
3076 error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, &args);
3077 if (error) {
3078 nfs_cmn_err(error, CE_WARN,
3079 "nfs4_mountroot: invalid root mount options");
3080 pn_free(&pn);
3081 goto errout;
3082 }
3083
3084 (void) vfs_lock_wait(vfsp);
3085 vfs_add(NULL, vfsp, vfsflags);
3086 vfs_unlock(vfsp);
3087
3088 size = strlen(svp->sv_hostname);
3089 (void) strcpy(rootfs.bo_name, svp->sv_hostname);
3090 rootfs.bo_name[size] = ':';
3091 (void) strcpy(&rootfs.bo_name[size + 1], root_path);
3092
3093 pn_free(&pn);
3094
3095 errout:
3096 if (error) {
3097 sv4_free(svp);
3098 nfs4_async_stop(vfsp);
3099 nfs4_async_manager_stop(vfsp);
3100 }
3101
3102 if (rtvp != NULL)
3103 VN_RELE(rtvp);
3104
3105 return (error);
3106 }
3107
3108 /*
3109 * Initialization routine for VFS routines. Should only be called once
3110 */
3111 int
nfs4_vfsinit(void)3112 nfs4_vfsinit(void)
3113 {
3114 mutex_init(&nfs4_syncbusy, NULL, MUTEX_DEFAULT, NULL);
3115 nfs4setclientid_init();
3116 nfs4_ephemeral_init();
3117 return (0);
3118 }
3119
3120 void
nfs4_vfsfini(void)3121 nfs4_vfsfini(void)
3122 {
3123 nfs4_ephemeral_fini();
3124 nfs4setclientid_fini();
3125 mutex_destroy(&nfs4_syncbusy);
3126 }
3127
3128 void
nfs4_freevfs(vfs_t * vfsp)3129 nfs4_freevfs(vfs_t *vfsp)
3130 {
3131 mntinfo4_t *mi;
3132
3133 /* need to release the initial hold */
3134 mi = VFTOMI4(vfsp);
3135
3136 /*
3137 * At this point, we can no longer reference the vfs
3138 * and need to inform other holders of the reference
3139 * to the mntinfo4_t.
3140 */
3141 mi->mi_vfsp = NULL;
3142
3143 MI4_RELE(mi);
3144 }
3145
3146 /*
3147 * Client side SETCLIENTID and SETCLIENTID_CONFIRM
3148 */
3149 struct nfs4_server nfs4_server_lst =
3150 { &nfs4_server_lst, &nfs4_server_lst };
3151
3152 kmutex_t nfs4_server_lst_lock;
3153
3154 static void
nfs4setclientid_init(void)3155 nfs4setclientid_init(void)
3156 {
3157 mutex_init(&nfs4_server_lst_lock, NULL, MUTEX_DEFAULT, NULL);
3158 }
3159
3160 static void
nfs4setclientid_fini(void)3161 nfs4setclientid_fini(void)
3162 {
3163 mutex_destroy(&nfs4_server_lst_lock);
3164 }
3165
3166 int nfs4_retry_sclid_delay = NFS4_RETRY_SCLID_DELAY;
3167 int nfs4_num_sclid_retries = NFS4_NUM_SCLID_RETRIES;
3168
3169 /*
3170 * Set the clientid for the server for "mi". No-op if the clientid is
3171 * already set.
3172 *
3173 * The recovery boolean should be set to TRUE if this function was called
3174 * by the recovery code, and FALSE otherwise. This is used to determine
3175 * if we need to call nfs4_start/end_op as well as grab the mi_recovlock
3176 * for adding a mntinfo4_t to a nfs4_server_t.
3177 *
3178 * Error is returned via 'n4ep'. If there was a 'n4ep->stat' error, then
3179 * 'n4ep->error' is set to geterrno4(n4ep->stat).
3180 */
3181 void
nfs4setclientid(mntinfo4_t * mi,cred_t * cr,bool_t recovery,nfs4_error_t * n4ep)3182 nfs4setclientid(mntinfo4_t *mi, cred_t *cr, bool_t recovery, nfs4_error_t *n4ep)
3183 {
3184 struct nfs4_server *np;
3185 struct servinfo4 *svp = mi->mi_curr_serv;
3186 nfs4_recov_state_t recov_state;
3187 int num_retries = 0;
3188 bool_t retry;
3189 cred_t *lcr = NULL;
3190 int retry_inuse = 1; /* only retry once on NFS4ERR_CLID_INUSE */
3191 time_t lease_time = 0;
3192
3193 recov_state.rs_flags = 0;
3194 recov_state.rs_num_retry_despite_err = 0;
3195 ASSERT(n4ep != NULL);
3196
3197 recov_retry:
3198 retry = FALSE;
3199 nfs4_error_zinit(n4ep);
3200 if (!recovery)
3201 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
3202
3203 mutex_enter(&nfs4_server_lst_lock);
3204 np = servinfo4_to_nfs4_server(svp); /* This locks np if it is found */
3205 mutex_exit(&nfs4_server_lst_lock);
3206 if (!np) {
3207 struct nfs4_server *tnp;
3208 np = new_nfs4_server(svp, cr);
3209 mutex_enter(&np->s_lock);
3210
3211 mutex_enter(&nfs4_server_lst_lock);
3212 tnp = servinfo4_to_nfs4_server(svp);
3213 if (tnp) {
3214 /*
3215 * another thread snuck in and put server on list.
3216 * since we aren't adding it to the nfs4_server_list
3217 * we need to set the ref count to 0 and destroy it.
3218 */
3219 np->s_refcnt = 0;
3220 destroy_nfs4_server(np);
3221 np = tnp;
3222 } else {
3223 /*
3224 * do not give list a reference until everything
3225 * succeeds
3226 */
3227 insque(np, &nfs4_server_lst);
3228 }
3229 mutex_exit(&nfs4_server_lst_lock);
3230 }
3231 ASSERT(MUTEX_HELD(&np->s_lock));
3232 /*
3233 * If we find the server already has N4S_CLIENTID_SET, then
3234 * just return, we've already done SETCLIENTID to that server
3235 */
3236 if (np->s_flags & N4S_CLIENTID_SET) {
3237 /* add mi to np's mntinfo4_list */
3238 nfs4_add_mi_to_server(np, mi);
3239 if (!recovery)
3240 nfs_rw_exit(&mi->mi_recovlock);
3241 mutex_exit(&np->s_lock);
3242 nfs4_server_rele(np);
3243 return;
3244 }
3245 mutex_exit(&np->s_lock);
3246
3247
3248 /*
3249 * Drop the mi_recovlock since nfs4_start_op will
3250 * acquire it again for us.
3251 */
3252 if (!recovery) {
3253 nfs_rw_exit(&mi->mi_recovlock);
3254
3255 n4ep->error = nfs4_start_op(mi, NULL, NULL, &recov_state);
3256 if (n4ep->error) {
3257 nfs4_server_rele(np);
3258 return;
3259 }
3260 }
3261
3262 mutex_enter(&np->s_lock);
3263 while (np->s_flags & N4S_CLIENTID_PEND) {
3264 if (!cv_wait_sig(&np->s_clientid_pend, &np->s_lock)) {
3265 mutex_exit(&np->s_lock);
3266 nfs4_server_rele(np);
3267 if (!recovery)
3268 nfs4_end_op(mi, NULL, NULL, &recov_state,
3269 recovery);
3270 n4ep->error = EINTR;
3271 return;
3272 }
3273 }
3274
3275 if (np->s_flags & N4S_CLIENTID_SET) {
3276 /* XXX copied/pasted from above */
3277 /* add mi to np's mntinfo4_list */
3278 nfs4_add_mi_to_server(np, mi);
3279 mutex_exit(&np->s_lock);
3280 nfs4_server_rele(np);
3281 if (!recovery)
3282 nfs4_end_op(mi, NULL, NULL, &recov_state, recovery);
3283 return;
3284 }
3285
3286 /*
3287 * Reset the N4S_CB_PINGED flag. This is used to
3288 * indicate if we have received a CB_NULL from the
3289 * server. Also we reset the waiter flag.
3290 */
3291 np->s_flags &= ~(N4S_CB_PINGED | N4S_CB_WAITER);
3292 /* any failure must now clear this flag */
3293 np->s_flags |= N4S_CLIENTID_PEND;
3294 mutex_exit(&np->s_lock);
3295 nfs4setclientid_otw(mi, svp, cr, np, n4ep, &retry_inuse);
3296
3297 if (n4ep->error == EACCES) {
3298 /*
3299 * If the uid is set then set the creds for secure mounts
3300 * by proxy processes such as automountd.
3301 */
3302 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3303 if (svp->sv_secdata->uid != 0) {
3304 lcr = crdup(cr);
3305 (void) crsetugid(lcr, svp->sv_secdata->uid,
3306 crgetgid(cr));
3307 }
3308 nfs_rw_exit(&svp->sv_lock);
3309
3310 if (lcr != NULL) {
3311 mutex_enter(&np->s_lock);
3312 crfree(np->s_cred);
3313 np->s_cred = lcr;
3314 mutex_exit(&np->s_lock);
3315 nfs4setclientid_otw(mi, svp, lcr, np, n4ep,
3316 &retry_inuse);
3317 }
3318 }
3319 mutex_enter(&np->s_lock);
3320 lease_time = np->s_lease_time;
3321 np->s_flags &= ~N4S_CLIENTID_PEND;
3322 mutex_exit(&np->s_lock);
3323
3324 if (n4ep->error != 0 || n4ep->stat != NFS4_OK) {
3325 /*
3326 * Start recovery if failover is a possibility. If
3327 * invoked by the recovery thread itself, then just
3328 * return and let it handle the failover first. NB:
3329 * recovery is not allowed if the mount is in progress
3330 * since the infrastructure is not sufficiently setup
3331 * to allow it. Just return the error (after suitable
3332 * retries).
3333 */
3334 if (FAILOVER_MOUNT4(mi) && nfs4_try_failover(n4ep)) {
3335 (void) nfs4_start_recovery(n4ep, mi, NULL,
3336 NULL, NULL, NULL, OP_SETCLIENTID, NULL, NULL, NULL);
3337 /*
3338 * Don't retry here, just return and let
3339 * recovery take over.
3340 */
3341 if (recovery)
3342 retry = FALSE;
3343 } else if (nfs4_rpc_retry_error(n4ep->error) ||
3344 n4ep->stat == NFS4ERR_RESOURCE ||
3345 n4ep->stat == NFS4ERR_STALE_CLIENTID) {
3346
3347 retry = TRUE;
3348 /*
3349 * Always retry if in recovery or once had
3350 * contact with the server (but now it's
3351 * overloaded).
3352 */
3353 if (recovery == TRUE ||
3354 n4ep->error == ETIMEDOUT ||
3355 n4ep->error == ECONNRESET)
3356 num_retries = 0;
3357 } else if (retry_inuse && n4ep->error == 0 &&
3358 n4ep->stat == NFS4ERR_CLID_INUSE) {
3359 retry = TRUE;
3360 num_retries = 0;
3361 }
3362 } else {
3363 /*
3364 * Since everything succeeded give the list a reference count if
3365 * it hasn't been given one by add_new_nfs4_server() or if this
3366 * is not a recovery situation in which case it is already on
3367 * the list.
3368 */
3369 mutex_enter(&np->s_lock);
3370 if ((np->s_flags & N4S_INSERTED) == 0) {
3371 np->s_refcnt++;
3372 np->s_flags |= N4S_INSERTED;
3373 }
3374 mutex_exit(&np->s_lock);
3375 }
3376
3377 if (!recovery)
3378 nfs4_end_op(mi, NULL, NULL, &recov_state, recovery);
3379
3380
3381 if (retry && num_retries++ < nfs4_num_sclid_retries) {
3382 if (retry_inuse) {
3383 delay(SEC_TO_TICK(lease_time + nfs4_retry_sclid_delay));
3384 retry_inuse = 0;
3385 } else
3386 delay(SEC_TO_TICK(nfs4_retry_sclid_delay));
3387
3388 nfs4_server_rele(np);
3389 goto recov_retry;
3390 }
3391
3392
3393 if (n4ep->error == 0)
3394 n4ep->error = geterrno4(n4ep->stat);
3395
3396 /* broadcast before release in case no other threads are waiting */
3397 cv_broadcast(&np->s_clientid_pend);
3398 nfs4_server_rele(np);
3399 }
3400
3401 int nfs4setclientid_otw_debug = 0;
3402
3403 /*
3404 * This function handles the recovery of STALE_CLIENTID for SETCLIENTID_CONFRIM,
3405 * but nothing else; the calling function must be designed to handle those
3406 * other errors.
3407 */
3408 static void
nfs4setclientid_otw(mntinfo4_t * mi,struct servinfo4 * svp,cred_t * cr,struct nfs4_server * np,nfs4_error_t * ep,int * retry_inusep)3409 nfs4setclientid_otw(mntinfo4_t *mi, struct servinfo4 *svp, cred_t *cr,
3410 struct nfs4_server *np, nfs4_error_t *ep, int *retry_inusep)
3411 {
3412 COMPOUND4args_clnt args;
3413 COMPOUND4res_clnt res;
3414 nfs_argop4 argop[3];
3415 SETCLIENTID4args *s_args;
3416 SETCLIENTID4resok *s_resok;
3417 int doqueue = 1;
3418 nfs4_ga_res_t *garp = NULL;
3419 timespec_t prop_time, after_time;
3420 verifier4 verf;
3421 clientid4 tmp_clientid;
3422
3423 ASSERT(!MUTEX_HELD(&np->s_lock));
3424
3425 args.ctag = TAG_SETCLIENTID;
3426
3427 args.array = argop;
3428 args.array_len = 3;
3429
3430 /* PUTROOTFH */
3431 argop[0].argop = OP_PUTROOTFH;
3432
3433 /* GETATTR */
3434 argop[1].argop = OP_GETATTR;
3435 argop[1].nfs_argop4_u.opgetattr.attr_request = FATTR4_LEASE_TIME_MASK;
3436 argop[1].nfs_argop4_u.opgetattr.mi = mi;
3437
3438 /* SETCLIENTID */
3439 argop[2].argop = OP_SETCLIENTID;
3440
3441 s_args = &argop[2].nfs_argop4_u.opsetclientid;
3442
3443 mutex_enter(&np->s_lock);
3444
3445 s_args->client.verifier = np->clidtosend.verifier;
3446 s_args->client.id_len = np->clidtosend.id_len;
3447 ASSERT(s_args->client.id_len <= NFS4_OPAQUE_LIMIT);
3448 s_args->client.id_val = np->clidtosend.id_val;
3449
3450 /*
3451 * Callback needs to happen on non-RDMA transport
3452 * Check if we have saved the original knetconfig
3453 * if so, use that instead.
3454 */
3455 if (svp->sv_origknconf != NULL)
3456 nfs4_cb_args(np, svp->sv_origknconf, s_args);
3457 else
3458 nfs4_cb_args(np, svp->sv_knconf, s_args);
3459
3460 mutex_exit(&np->s_lock);
3461
3462 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
3463
3464 if (ep->error)
3465 return;
3466
3467 /* getattr lease_time res */
3468 if ((res.array_len >= 2) &&
3469 (res.array[1].nfs_resop4_u.opgetattr.status == NFS4_OK)) {
3470 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
3471
3472 #ifndef _LP64
3473 /*
3474 * The 32 bit client cannot handle a lease time greater than
3475 * (INT32_MAX/1000000). This is due to the use of the
3476 * lease_time in calls to drv_usectohz() in
3477 * nfs4_renew_lease_thread(). The problem is that
3478 * drv_usectohz() takes a time_t (which is just a long = 4
3479 * bytes) as its parameter. The lease_time is multiplied by
3480 * 1000000 to convert seconds to usecs for the parameter. If
3481 * a number bigger than (INT32_MAX/1000000) is used then we
3482 * overflow on the 32bit client.
3483 */
3484 if (garp->n4g_ext_res->n4g_leasetime > (INT32_MAX/1000000)) {
3485 garp->n4g_ext_res->n4g_leasetime = INT32_MAX/1000000;
3486 }
3487 #endif
3488
3489 mutex_enter(&np->s_lock);
3490 np->s_lease_time = garp->n4g_ext_res->n4g_leasetime;
3491
3492 /*
3493 * Keep track of the lease period for the mi's
3494 * mi_msg_list. We need an appropiate time
3495 * bound to associate past facts with a current
3496 * event. The lease period is perfect for this.
3497 */
3498 mutex_enter(&mi->mi_msg_list_lock);
3499 mi->mi_lease_period = np->s_lease_time;
3500 mutex_exit(&mi->mi_msg_list_lock);
3501 mutex_exit(&np->s_lock);
3502 }
3503
3504
3505 if (res.status == NFS4ERR_CLID_INUSE) {
3506 clientaddr4 *clid_inuse;
3507
3508 if (!(*retry_inusep)) {
3509 clid_inuse = &res.array->nfs_resop4_u.
3510 opsetclientid.SETCLIENTID4res_u.client_using;
3511
3512 zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
3513 "NFS4 mount (SETCLIENTID failed)."
3514 " nfs4_client_id.id is in"
3515 "use already by: r_netid<%s> r_addr<%s>",
3516 clid_inuse->r_netid, clid_inuse->r_addr);
3517 }
3518
3519 /*
3520 * XXX - The client should be more robust in its
3521 * handling of clientid in use errors (regen another
3522 * clientid and try again?)
3523 */
3524 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3525 return;
3526 }
3527
3528 if (res.status) {
3529 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3530 return;
3531 }
3532
3533 s_resok = &res.array[2].nfs_resop4_u.
3534 opsetclientid.SETCLIENTID4res_u.resok4;
3535
3536 tmp_clientid = s_resok->clientid;
3537
3538 verf = s_resok->setclientid_confirm;
3539
3540 #ifdef DEBUG
3541 if (nfs4setclientid_otw_debug) {
3542 union {
3543 clientid4 clientid;
3544 int foo[2];
3545 } cid;
3546
3547 cid.clientid = s_resok->clientid;
3548
3549 zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
3550 "nfs4setclientid_otw: OK, clientid = %x,%x, "
3551 "verifier = %" PRIx64 "\n", cid.foo[0], cid.foo[1], verf);
3552 }
3553 #endif
3554
3555 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3556
3557 /* Confirm the client id and get the lease_time attribute */
3558
3559 args.ctag = TAG_SETCLIENTID_CF;
3560
3561 args.array = argop;
3562 args.array_len = 1;
3563
3564 argop[0].argop = OP_SETCLIENTID_CONFIRM;
3565
3566 argop[0].nfs_argop4_u.opsetclientid_confirm.clientid = tmp_clientid;
3567 argop[0].nfs_argop4_u.opsetclientid_confirm.setclientid_confirm = verf;
3568
3569 /* used to figure out RTT for np */
3570 gethrestime(&prop_time);
3571
3572 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlientid_otw: "
3573 "start time: %ld sec %ld nsec", prop_time.tv_sec,
3574 prop_time.tv_nsec));
3575
3576 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
3577
3578 gethrestime(&after_time);
3579 mutex_enter(&np->s_lock);
3580 np->propagation_delay.tv_sec =
3581 MAX(1, after_time.tv_sec - prop_time.tv_sec);
3582 mutex_exit(&np->s_lock);
3583
3584 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlcientid_otw: "
3585 "finish time: %ld sec ", after_time.tv_sec));
3586
3587 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setclientid_otw: "
3588 "propagation delay set to %ld sec",
3589 np->propagation_delay.tv_sec));
3590
3591 if (ep->error)
3592 return;
3593
3594 if (res.status == NFS4ERR_CLID_INUSE) {
3595 clientaddr4 *clid_inuse;
3596
3597 if (!(*retry_inusep)) {
3598 clid_inuse = &res.array->nfs_resop4_u.
3599 opsetclientid.SETCLIENTID4res_u.client_using;
3600
3601 zcmn_err(mi->mi_zone->zone_id, CE_NOTE,
3602 "SETCLIENTID_CONFIRM failed. "
3603 "nfs4_client_id.id is in use already by: "
3604 "r_netid<%s> r_addr<%s>",
3605 clid_inuse->r_netid, clid_inuse->r_addr);
3606 }
3607
3608 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3609 return;
3610 }
3611
3612 if (res.status) {
3613 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3614 return;
3615 }
3616
3617 mutex_enter(&np->s_lock);
3618 np->clientid = tmp_clientid;
3619 np->s_flags |= N4S_CLIENTID_SET;
3620
3621 /* Add mi to np's mntinfo4 list */
3622 nfs4_add_mi_to_server(np, mi);
3623
3624 if (np->lease_valid == NFS4_LEASE_NOT_STARTED) {
3625 /*
3626 * Start lease management thread.
3627 * Keep trying until we succeed.
3628 */
3629
3630 np->s_refcnt++; /* pass reference to thread */
3631 (void) zthread_create(NULL, 0, nfs4_renew_lease_thread, np, 0,
3632 minclsyspri);
3633 }
3634 mutex_exit(&np->s_lock);
3635
3636 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3637 }
3638
3639 /*
3640 * Add mi to sp's mntinfo4_list if it isn't already in the list. Makes
3641 * mi's clientid the same as sp's.
3642 * Assumes sp is locked down.
3643 */
3644 void
nfs4_add_mi_to_server(nfs4_server_t * sp,mntinfo4_t * mi)3645 nfs4_add_mi_to_server(nfs4_server_t *sp, mntinfo4_t *mi)
3646 {
3647 mntinfo4_t *tmi;
3648 int in_list = 0;
3649
3650 ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
3651 nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
3652 ASSERT(sp != &nfs4_server_lst);
3653 ASSERT(MUTEX_HELD(&sp->s_lock));
3654
3655 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3656 "nfs4_add_mi_to_server: add mi %p to sp %p",
3657 (void*)mi, (void*)sp));
3658
3659 for (tmi = sp->mntinfo4_list;
3660 tmi != NULL;
3661 tmi = tmi->mi_clientid_next) {
3662 if (tmi == mi) {
3663 NFS4_DEBUG(nfs4_client_lease_debug,
3664 (CE_NOTE,
3665 "nfs4_add_mi_to_server: mi in list"));
3666 in_list = 1;
3667 }
3668 }
3669
3670 /*
3671 * First put a hold on the mntinfo4's vfsp so that references via
3672 * mntinfo4_list will be valid.
3673 */
3674 if (!in_list)
3675 VFS_HOLD(mi->mi_vfsp);
3676
3677 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_add_mi_to_server: "
3678 "hold vfs %p for mi: %p", (void*)mi->mi_vfsp, (void*)mi));
3679
3680 if (!in_list) {
3681 if (sp->mntinfo4_list)
3682 sp->mntinfo4_list->mi_clientid_prev = mi;
3683 mi->mi_clientid_next = sp->mntinfo4_list;
3684 mi->mi_srv = sp;
3685 sp->mntinfo4_list = mi;
3686 mi->mi_srvsettime = gethrestime_sec();
3687 mi->mi_srvset_cnt++;
3688 }
3689
3690 /* set mi's clientid to that of sp's for later matching */
3691 mi->mi_clientid = sp->clientid;
3692
3693 /*
3694 * Update the clientid for any other mi's belonging to sp. This
3695 * must be done here while we hold sp->s_lock, so that
3696 * find_nfs4_server() continues to work.
3697 */
3698
3699 for (tmi = sp->mntinfo4_list;
3700 tmi != NULL;
3701 tmi = tmi->mi_clientid_next) {
3702 if (tmi != mi) {
3703 tmi->mi_clientid = sp->clientid;
3704 }
3705 }
3706 }
3707
3708 /*
3709 * Remove the mi from sp's mntinfo4_list and release its reference.
3710 * Exception: if mi still has open files, flag it for later removal (when
3711 * all the files are closed).
3712 *
3713 * If this is the last mntinfo4 in sp's list then tell the lease renewal
3714 * thread to exit.
3715 */
3716 static void
nfs4_remove_mi_from_server_nolock(mntinfo4_t * mi,nfs4_server_t * sp)3717 nfs4_remove_mi_from_server_nolock(mntinfo4_t *mi, nfs4_server_t *sp)
3718 {
3719 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3720 "nfs4_remove_mi_from_server_nolock: remove mi %p from sp %p",
3721 (void*)mi, (void*)sp));
3722
3723 ASSERT(sp != NULL);
3724 ASSERT(MUTEX_HELD(&sp->s_lock));
3725 ASSERT(mi->mi_open_files >= 0);
3726
3727 /*
3728 * First make sure this mntinfo4 can be taken off of the list,
3729 * ie: it doesn't have any open files remaining.
3730 */
3731 if (mi->mi_open_files > 0) {
3732 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3733 "nfs4_remove_mi_from_server_nolock: don't "
3734 "remove mi since it still has files open"));
3735
3736 mutex_enter(&mi->mi_lock);
3737 mi->mi_flags |= MI4_REMOVE_ON_LAST_CLOSE;
3738 mutex_exit(&mi->mi_lock);
3739 return;
3740 }
3741
3742 VFS_HOLD(mi->mi_vfsp);
3743 remove_mi(sp, mi);
3744 VFS_RELE(mi->mi_vfsp);
3745
3746 if (sp->mntinfo4_list == NULL) {
3747 /* last fs unmounted, kill the thread */
3748 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3749 "remove_mi_from_nfs4_server_nolock: kill the thread"));
3750 nfs4_mark_srv_dead(sp);
3751 }
3752 }
3753
3754 /*
3755 * Remove mi from sp's mntinfo4_list and release the vfs reference.
3756 */
3757 static void
remove_mi(nfs4_server_t * sp,mntinfo4_t * mi)3758 remove_mi(nfs4_server_t *sp, mntinfo4_t *mi)
3759 {
3760 ASSERT(MUTEX_HELD(&sp->s_lock));
3761
3762 /*
3763 * We release a reference, and the caller must still have a
3764 * reference.
3765 */
3766 ASSERT(mi->mi_vfsp->vfs_count >= 2);
3767
3768 if (mi->mi_clientid_prev) {
3769 mi->mi_clientid_prev->mi_clientid_next = mi->mi_clientid_next;
3770 } else {
3771 /* This is the first mi in sp's mntinfo4_list */
3772 /*
3773 * Make sure the first mntinfo4 in the list is the actual
3774 * mntinfo4 passed in.
3775 */
3776 ASSERT(sp->mntinfo4_list == mi);
3777
3778 sp->mntinfo4_list = mi->mi_clientid_next;
3779 }
3780 if (mi->mi_clientid_next)
3781 mi->mi_clientid_next->mi_clientid_prev = mi->mi_clientid_prev;
3782
3783 /* Now mark the mntinfo4's links as being removed */
3784 mi->mi_clientid_prev = mi->mi_clientid_next = NULL;
3785 mi->mi_srv = NULL;
3786 mi->mi_srvset_cnt++;
3787
3788 VFS_RELE(mi->mi_vfsp);
3789 }
3790
3791 /*
3792 * Free all the entries in sp's mntinfo4_list.
3793 */
3794 static void
remove_all_mi(nfs4_server_t * sp)3795 remove_all_mi(nfs4_server_t *sp)
3796 {
3797 mntinfo4_t *mi;
3798
3799 ASSERT(MUTEX_HELD(&sp->s_lock));
3800
3801 while (sp->mntinfo4_list != NULL) {
3802 mi = sp->mntinfo4_list;
3803 /*
3804 * Grab a reference in case there is only one left (which
3805 * remove_mi() frees).
3806 */
3807 VFS_HOLD(mi->mi_vfsp);
3808 remove_mi(sp, mi);
3809 VFS_RELE(mi->mi_vfsp);
3810 }
3811 }
3812
3813 /*
3814 * Remove the mi from sp's mntinfo4_list as above, and rele the vfs.
3815 *
3816 * This version can be called with a null nfs4_server_t arg,
3817 * and will either find the right one and handle locking, or
3818 * do nothing because the mi wasn't added to an sp's mntinfo4_list.
3819 */
3820 void
nfs4_remove_mi_from_server(mntinfo4_t * mi,nfs4_server_t * esp)3821 nfs4_remove_mi_from_server(mntinfo4_t *mi, nfs4_server_t *esp)
3822 {
3823 nfs4_server_t *sp;
3824
3825 if (esp) {
3826 nfs4_remove_mi_from_server_nolock(mi, esp);
3827 return;
3828 }
3829
3830 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0);
3831 if (sp = find_nfs4_server_all(mi, 1)) {
3832 nfs4_remove_mi_from_server_nolock(mi, sp);
3833 mutex_exit(&sp->s_lock);
3834 nfs4_server_rele(sp);
3835 }
3836 nfs_rw_exit(&mi->mi_recovlock);
3837 }
3838
3839 /*
3840 * Return TRUE if the given server has any non-unmounted filesystems.
3841 */
3842
3843 bool_t
nfs4_fs_active(nfs4_server_t * sp)3844 nfs4_fs_active(nfs4_server_t *sp)
3845 {
3846 mntinfo4_t *mi;
3847
3848 ASSERT(MUTEX_HELD(&sp->s_lock));
3849
3850 for (mi = sp->mntinfo4_list; mi != NULL; mi = mi->mi_clientid_next) {
3851 if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
3852 return (TRUE);
3853 }
3854
3855 return (FALSE);
3856 }
3857
3858 /*
3859 * Mark sp as finished and notify any waiters.
3860 */
3861
3862 void
nfs4_mark_srv_dead(nfs4_server_t * sp)3863 nfs4_mark_srv_dead(nfs4_server_t *sp)
3864 {
3865 ASSERT(MUTEX_HELD(&sp->s_lock));
3866
3867 sp->s_thread_exit = NFS4_THREAD_EXIT;
3868 cv_broadcast(&sp->cv_thread_exit);
3869 }
3870
3871 /*
3872 * Create a new nfs4_server_t structure.
3873 * Returns new node unlocked and not in list, but with a reference count of
3874 * 1.
3875 */
3876 struct nfs4_server *
new_nfs4_server(struct servinfo4 * svp,cred_t * cr)3877 new_nfs4_server(struct servinfo4 *svp, cred_t *cr)
3878 {
3879 struct nfs4_server *np;
3880 timespec_t tt;
3881 union {
3882 struct {
3883 uint32_t sec;
3884 uint32_t subsec;
3885 } un_curtime;
3886 verifier4 un_verifier;
3887 } nfs4clientid_verifier;
3888 /*
3889 * We change this ID string carefully and with the Solaris
3890 * NFS server behaviour in mind. "+referrals" indicates
3891 * a client that can handle an NFSv4 referral.
3892 */
3893 char id_val[] = "Solaris: %s, NFSv4 kernel client +referrals";
3894 int len;
3895
3896 np = kmem_zalloc(sizeof (struct nfs4_server), KM_SLEEP);
3897 np->saddr.len = svp->sv_addr.len;
3898 np->saddr.maxlen = svp->sv_addr.maxlen;
3899 np->saddr.buf = kmem_alloc(svp->sv_addr.maxlen, KM_SLEEP);
3900 bcopy(svp->sv_addr.buf, np->saddr.buf, svp->sv_addr.len);
3901 np->s_refcnt = 1;
3902
3903 /*
3904 * Build the nfs_client_id4 for this server mount. Ensure
3905 * the verifier is useful and that the identification is
3906 * somehow based on the server's address for the case of
3907 * multi-homed servers.
3908 */
3909 nfs4clientid_verifier.un_verifier = 0;
3910 gethrestime(&tt);
3911 nfs4clientid_verifier.un_curtime.sec = (uint32_t)tt.tv_sec;
3912 nfs4clientid_verifier.un_curtime.subsec = (uint32_t)tt.tv_nsec;
3913 np->clidtosend.verifier = nfs4clientid_verifier.un_verifier;
3914
3915 /*
3916 * calculate the length of the opaque identifier. Subtract 2
3917 * for the "%s" and add the traditional +1 for null
3918 * termination.
3919 */
3920 len = strlen(id_val) - 2 + strlen(uts_nodename()) + 1;
3921 np->clidtosend.id_len = len + np->saddr.maxlen;
3922
3923 np->clidtosend.id_val = kmem_alloc(np->clidtosend.id_len, KM_SLEEP);
3924 (void) sprintf(np->clidtosend.id_val, id_val, uts_nodename());
3925 bcopy(np->saddr.buf, &np->clidtosend.id_val[len], np->saddr.len);
3926
3927 np->s_flags = 0;
3928 np->mntinfo4_list = NULL;
3929 /* save cred for issuing rfs4calls inside the renew thread */
3930 crhold(cr);
3931 np->s_cred = cr;
3932 cv_init(&np->cv_thread_exit, NULL, CV_DEFAULT, NULL);
3933 mutex_init(&np->s_lock, NULL, MUTEX_DEFAULT, NULL);
3934 nfs_rw_init(&np->s_recovlock, NULL, RW_DEFAULT, NULL);
3935 list_create(&np->s_deleg_list, sizeof (rnode4_t),
3936 offsetof(rnode4_t, r_deleg_link));
3937 np->s_thread_exit = 0;
3938 np->state_ref_count = 0;
3939 np->lease_valid = NFS4_LEASE_NOT_STARTED;
3940 cv_init(&np->s_cv_otw_count, NULL, CV_DEFAULT, NULL);
3941 cv_init(&np->s_clientid_pend, NULL, CV_DEFAULT, NULL);
3942 np->s_otw_call_count = 0;
3943 cv_init(&np->wait_cb_null, NULL, CV_DEFAULT, NULL);
3944 np->zoneid = getzoneid();
3945 np->zone_globals = nfs4_get_callback_globals();
3946 ASSERT(np->zone_globals != NULL);
3947 return (np);
3948 }
3949
3950 /*
3951 * Create a new nfs4_server_t structure and add it to the list.
3952 * Returns new node locked; reference must eventually be freed.
3953 */
3954 static struct nfs4_server *
add_new_nfs4_server(struct servinfo4 * svp,cred_t * cr)3955 add_new_nfs4_server(struct servinfo4 *svp, cred_t *cr)
3956 {
3957 nfs4_server_t *sp;
3958
3959 ASSERT(MUTEX_HELD(&nfs4_server_lst_lock));
3960 sp = new_nfs4_server(svp, cr);
3961 mutex_enter(&sp->s_lock);
3962 insque(sp, &nfs4_server_lst);
3963 sp->s_refcnt++; /* list gets a reference */
3964 sp->s_flags |= N4S_INSERTED;
3965 sp->clientid = 0;
3966 return (sp);
3967 }
3968
3969 int nfs4_server_t_debug = 0;
3970
3971 #ifdef lint
3972 extern void
3973 dumpnfs4slist(char *, mntinfo4_t *, clientid4, servinfo4_t *);
3974 #endif
3975
3976 #ifndef lint
3977 #ifdef DEBUG
3978 void
dumpnfs4slist(char * txt,mntinfo4_t * mi,clientid4 clientid,servinfo4_t * srv_p)3979 dumpnfs4slist(char *txt, mntinfo4_t *mi, clientid4 clientid, servinfo4_t *srv_p)
3980 {
3981 int hash16(void *p, int len);
3982 nfs4_server_t *np;
3983
3984 NFS4_DEBUG(nfs4_server_t_debug, (CE_NOTE,
3985 "dumping nfs4_server_t list in %s", txt));
3986 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3987 "mi 0x%p, want clientid %llx, addr %d/%04X",
3988 mi, (longlong_t)clientid, srv_p->sv_addr.len,
3989 hash16((void *)srv_p->sv_addr.buf, srv_p->sv_addr.len)));
3990 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst;
3991 np = np->forw) {
3992 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
3993 "node 0x%p, clientid %llx, addr %d/%04X, cnt %d",
3994 np, (longlong_t)np->clientid, np->saddr.len,
3995 hash16((void *)np->saddr.buf, np->saddr.len),
3996 np->state_ref_count));
3997 if (np->saddr.len == srv_p->sv_addr.len &&
3998 bcmp(np->saddr.buf, srv_p->sv_addr.buf,
3999 np->saddr.len) == 0)
4000 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
4001 " - address matches"));
4002 if (np->clientid == clientid || np->clientid == 0)
4003 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
4004 " - clientid matches"));
4005 if (np->s_thread_exit != NFS4_THREAD_EXIT)
4006 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT,
4007 " - thread not exiting"));
4008 }
4009 delay(hz);
4010 }
4011 #endif
4012 #endif
4013
4014
4015 /*
4016 * Move a mntinfo4_t from one server list to another.
4017 * Locking of the two nfs4_server_t nodes will be done in list order.
4018 *
4019 * Returns NULL if the current nfs4_server_t for the filesystem could not
4020 * be found (e.g., due to forced unmount). Otherwise returns a reference
4021 * to the new nfs4_server_t, which must eventually be freed.
4022 */
4023 nfs4_server_t *
nfs4_move_mi(mntinfo4_t * mi,servinfo4_t * old,servinfo4_t * new)4024 nfs4_move_mi(mntinfo4_t *mi, servinfo4_t *old, servinfo4_t *new)
4025 {
4026 nfs4_server_t *p, *op = NULL, *np = NULL;
4027 int num_open;
4028 zoneid_t zoneid = nfs_zoneid();
4029
4030 ASSERT(nfs_zone() == mi->mi_zone);
4031
4032 mutex_enter(&nfs4_server_lst_lock);
4033 #ifdef DEBUG
4034 if (nfs4_server_t_debug)
4035 dumpnfs4slist("nfs4_move_mi", mi, (clientid4)0, new);
4036 #endif
4037 for (p = nfs4_server_lst.forw; p != &nfs4_server_lst; p = p->forw) {
4038 if (p->zoneid != zoneid)
4039 continue;
4040 if (p->saddr.len == old->sv_addr.len &&
4041 bcmp(p->saddr.buf, old->sv_addr.buf, p->saddr.len) == 0 &&
4042 p->s_thread_exit != NFS4_THREAD_EXIT) {
4043 op = p;
4044 mutex_enter(&op->s_lock);
4045 op->s_refcnt++;
4046 }
4047 if (p->saddr.len == new->sv_addr.len &&
4048 bcmp(p->saddr.buf, new->sv_addr.buf, p->saddr.len) == 0 &&
4049 p->s_thread_exit != NFS4_THREAD_EXIT) {
4050 np = p;
4051 mutex_enter(&np->s_lock);
4052 }
4053 if (op != NULL && np != NULL)
4054 break;
4055 }
4056 if (op == NULL) {
4057 /*
4058 * Filesystem has been forcibly unmounted. Bail out.
4059 */
4060 if (np != NULL)
4061 mutex_exit(&np->s_lock);
4062 mutex_exit(&nfs4_server_lst_lock);
4063 return (NULL);
4064 }
4065 if (np != NULL) {
4066 np->s_refcnt++;
4067 } else {
4068 #ifdef DEBUG
4069 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
4070 "nfs4_move_mi: no target nfs4_server, will create."));
4071 #endif
4072 np = add_new_nfs4_server(new, kcred);
4073 }
4074 mutex_exit(&nfs4_server_lst_lock);
4075
4076 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
4077 "nfs4_move_mi: for mi 0x%p, "
4078 "old servinfo4 0x%p, new servinfo4 0x%p, "
4079 "old nfs4_server 0x%p, new nfs4_server 0x%p, ",
4080 (void*)mi, (void*)old, (void*)new,
4081 (void*)op, (void*)np));
4082 ASSERT(op != NULL && np != NULL);
4083
4084 /* discard any delegations */
4085 nfs4_deleg_discard(mi, op);
4086
4087 num_open = mi->mi_open_files;
4088 mi->mi_open_files = 0;
4089 op->state_ref_count -= num_open;
4090 ASSERT(op->state_ref_count >= 0);
4091 np->state_ref_count += num_open;
4092 nfs4_remove_mi_from_server_nolock(mi, op);
4093 mi->mi_open_files = num_open;
4094 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
4095 "nfs4_move_mi: mi_open_files %d, op->cnt %d, np->cnt %d",
4096 mi->mi_open_files, op->state_ref_count, np->state_ref_count));
4097
4098 nfs4_add_mi_to_server(np, mi);
4099
4100 mutex_exit(&op->s_lock);
4101 mutex_exit(&np->s_lock);
4102 nfs4_server_rele(op);
4103
4104 return (np);
4105 }
4106
4107 /*
4108 * Need to have the nfs4_server_lst_lock.
4109 * Search the nfs4_server list to find a match on this servinfo4
4110 * based on its address.
4111 *
4112 * Returns NULL if no match is found. Otherwise returns a reference (which
4113 * must eventually be freed) to a locked nfs4_server.
4114 */
4115 nfs4_server_t *
servinfo4_to_nfs4_server(servinfo4_t * srv_p)4116 servinfo4_to_nfs4_server(servinfo4_t *srv_p)
4117 {
4118 nfs4_server_t *np;
4119 zoneid_t zoneid = nfs_zoneid();
4120
4121 ASSERT(MUTEX_HELD(&nfs4_server_lst_lock));
4122 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
4123 if (np->zoneid == zoneid &&
4124 np->saddr.len == srv_p->sv_addr.len &&
4125 bcmp(np->saddr.buf, srv_p->sv_addr.buf,
4126 np->saddr.len) == 0 &&
4127 np->s_thread_exit != NFS4_THREAD_EXIT) {
4128 mutex_enter(&np->s_lock);
4129 np->s_refcnt++;
4130 return (np);
4131 }
4132 }
4133 return (NULL);
4134 }
4135
4136 /*
4137 * Locks the nfs4_server down if it is found and returns a reference that
4138 * must eventually be freed.
4139 */
4140 static nfs4_server_t *
lookup_nfs4_server(nfs4_server_t * sp,int any_state)4141 lookup_nfs4_server(nfs4_server_t *sp, int any_state)
4142 {
4143 nfs4_server_t *np;
4144
4145 mutex_enter(&nfs4_server_lst_lock);
4146 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
4147 mutex_enter(&np->s_lock);
4148 if (np == sp && np->s_refcnt > 0 &&
4149 (np->s_thread_exit != NFS4_THREAD_EXIT || any_state)) {
4150 mutex_exit(&nfs4_server_lst_lock);
4151 np->s_refcnt++;
4152 return (np);
4153 }
4154 mutex_exit(&np->s_lock);
4155 }
4156 mutex_exit(&nfs4_server_lst_lock);
4157
4158 return (NULL);
4159 }
4160
4161 /*
4162 * The caller should be holding mi->mi_recovlock, and it should continue to
4163 * hold the lock until done with the returned nfs4_server_t. Once
4164 * mi->mi_recovlock is released, there is no guarantee that the returned
4165 * mi->nfs4_server_t will continue to correspond to mi.
4166 */
4167 nfs4_server_t *
find_nfs4_server(mntinfo4_t * mi)4168 find_nfs4_server(mntinfo4_t *mi)
4169 {
4170 ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
4171 nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
4172
4173 return (lookup_nfs4_server(mi->mi_srv, 0));
4174 }
4175
4176 /*
4177 * Same as above, but takes an "any_state" parameter which can be
4178 * set to 1 if the caller wishes to find nfs4_server_t's which
4179 * have been marked for termination by the exit of the renew
4180 * thread. This should only be used by operations which are
4181 * cleaning up and will not cause an OTW op.
4182 */
4183 nfs4_server_t *
find_nfs4_server_all(mntinfo4_t * mi,int any_state)4184 find_nfs4_server_all(mntinfo4_t *mi, int any_state)
4185 {
4186 ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) ||
4187 nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER));
4188
4189 return (lookup_nfs4_server(mi->mi_srv, any_state));
4190 }
4191
4192 /*
4193 * Lock sp, but only if it's still active (in the list and hasn't been
4194 * flagged as exiting) or 'any_state' is non-zero.
4195 * Returns TRUE if sp got locked and adds a reference to sp.
4196 */
4197 bool_t
nfs4_server_vlock(nfs4_server_t * sp,int any_state)4198 nfs4_server_vlock(nfs4_server_t *sp, int any_state)
4199 {
4200 return (lookup_nfs4_server(sp, any_state) != NULL);
4201 }
4202
4203 /*
4204 * Release the reference to sp and destroy it if that's the last one.
4205 */
4206
4207 void
nfs4_server_rele(nfs4_server_t * sp)4208 nfs4_server_rele(nfs4_server_t *sp)
4209 {
4210 mutex_enter(&sp->s_lock);
4211 ASSERT(sp->s_refcnt > 0);
4212 sp->s_refcnt--;
4213 if (sp->s_refcnt > 0) {
4214 mutex_exit(&sp->s_lock);
4215 return;
4216 }
4217 mutex_exit(&sp->s_lock);
4218
4219 mutex_enter(&nfs4_server_lst_lock);
4220 mutex_enter(&sp->s_lock);
4221 if (sp->s_refcnt > 0) {
4222 mutex_exit(&sp->s_lock);
4223 mutex_exit(&nfs4_server_lst_lock);
4224 return;
4225 }
4226 remque(sp);
4227 sp->forw = sp->back = NULL;
4228 mutex_exit(&nfs4_server_lst_lock);
4229 destroy_nfs4_server(sp);
4230 }
4231
4232 static void
destroy_nfs4_server(nfs4_server_t * sp)4233 destroy_nfs4_server(nfs4_server_t *sp)
4234 {
4235 ASSERT(MUTEX_HELD(&sp->s_lock));
4236 ASSERT(sp->s_refcnt == 0);
4237 ASSERT(sp->s_otw_call_count == 0);
4238
4239 remove_all_mi(sp);
4240
4241 crfree(sp->s_cred);
4242 kmem_free(sp->saddr.buf, sp->saddr.maxlen);
4243 kmem_free(sp->clidtosend.id_val, sp->clidtosend.id_len);
4244 mutex_exit(&sp->s_lock);
4245
4246 /* destroy the nfs4_server */
4247 nfs4callback_destroy(sp);
4248 list_destroy(&sp->s_deleg_list);
4249 mutex_destroy(&sp->s_lock);
4250 cv_destroy(&sp->cv_thread_exit);
4251 cv_destroy(&sp->s_cv_otw_count);
4252 cv_destroy(&sp->s_clientid_pend);
4253 cv_destroy(&sp->wait_cb_null);
4254 nfs_rw_destroy(&sp->s_recovlock);
4255 kmem_free(sp, sizeof (*sp));
4256 }
4257
4258 /*
4259 * Fork off a thread to free the data structures for a mount.
4260 */
4261
4262 static void
async_free_mount(vfs_t * vfsp,int flag,cred_t * cr)4263 async_free_mount(vfs_t *vfsp, int flag, cred_t *cr)
4264 {
4265 freemountargs_t *args;
4266 args = kmem_alloc(sizeof (freemountargs_t), KM_SLEEP);
4267 args->fm_vfsp = vfsp;
4268 VFS_HOLD(vfsp);
4269 MI4_HOLD(VFTOMI4(vfsp));
4270 args->fm_flag = flag;
4271 args->fm_cr = cr;
4272 crhold(cr);
4273 (void) zthread_create(NULL, 0, nfs4_free_mount_thread, args, 0,
4274 minclsyspri);
4275 }
4276
4277 static void
nfs4_free_mount_thread(freemountargs_t * args)4278 nfs4_free_mount_thread(freemountargs_t *args)
4279 {
4280 mntinfo4_t *mi;
4281 nfs4_free_mount(args->fm_vfsp, args->fm_flag, args->fm_cr);
4282 mi = VFTOMI4(args->fm_vfsp);
4283 crfree(args->fm_cr);
4284 VFS_RELE(args->fm_vfsp);
4285 MI4_RELE(mi);
4286 kmem_free(args, sizeof (freemountargs_t));
4287 zthread_exit();
4288 /* NOTREACHED */
4289 }
4290
4291 /*
4292 * Thread to free the data structures for a given filesystem.
4293 */
4294 static void
nfs4_free_mount(vfs_t * vfsp,int flag,cred_t * cr)4295 nfs4_free_mount(vfs_t *vfsp, int flag, cred_t *cr)
4296 {
4297 mntinfo4_t *mi = VFTOMI4(vfsp);
4298 nfs4_server_t *sp;
4299 callb_cpr_t cpr_info;
4300 kmutex_t cpr_lock;
4301 boolean_t async_thread;
4302 int removed;
4303
4304 bool_t must_unlock;
4305 nfs4_ephemeral_tree_t *eph_tree;
4306
4307 /*
4308 * We need to participate in the CPR framework if this is a kernel
4309 * thread.
4310 */
4311 async_thread = (curproc == nfs_zone()->zone_zsched);
4312 if (async_thread) {
4313 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
4314 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr,
4315 "nfsv4AsyncUnmount");
4316 }
4317
4318 /*
4319 * We need to wait for all outstanding OTW calls
4320 * and recovery to finish before we remove the mi
4321 * from the nfs4_server_t, as current pending
4322 * calls might still need this linkage (in order
4323 * to find a nfs4_server_t from a mntinfo4_t).
4324 */
4325 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, FALSE);
4326 sp = find_nfs4_server(mi);
4327 nfs_rw_exit(&mi->mi_recovlock);
4328
4329 if (sp) {
4330 while (sp->s_otw_call_count != 0) {
4331 if (async_thread) {
4332 mutex_enter(&cpr_lock);
4333 CALLB_CPR_SAFE_BEGIN(&cpr_info);
4334 mutex_exit(&cpr_lock);
4335 }
4336 cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
4337 if (async_thread) {
4338 mutex_enter(&cpr_lock);
4339 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
4340 mutex_exit(&cpr_lock);
4341 }
4342 }
4343 mutex_exit(&sp->s_lock);
4344 nfs4_server_rele(sp);
4345 sp = NULL;
4346 }
4347
4348 mutex_enter(&mi->mi_lock);
4349 while (mi->mi_in_recovery != 0) {
4350 if (async_thread) {
4351 mutex_enter(&cpr_lock);
4352 CALLB_CPR_SAFE_BEGIN(&cpr_info);
4353 mutex_exit(&cpr_lock);
4354 }
4355 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
4356 if (async_thread) {
4357 mutex_enter(&cpr_lock);
4358 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
4359 mutex_exit(&cpr_lock);
4360 }
4361 }
4362 mutex_exit(&mi->mi_lock);
4363
4364 /*
4365 * If we got an error, then do not nuke the
4366 * tree. Either the harvester is busy reclaiming
4367 * this node or we ran into some busy condition.
4368 *
4369 * The harvester will eventually come along and cleanup.
4370 * The only problem would be the root mount point.
4371 *
4372 * Since the busy node can occur for a variety
4373 * of reasons and can result in an entry staying
4374 * in df output but no longer accessible from the
4375 * directory tree, we are okay.
4376 */
4377 if (!nfs4_ephemeral_umount(mi, flag, cr,
4378 &must_unlock, &eph_tree))
4379 nfs4_ephemeral_umount_activate(mi, &must_unlock,
4380 &eph_tree);
4381
4382 /*
4383 * The original purge of the dnlc via 'dounmount'
4384 * doesn't guarantee that another dnlc entry was not
4385 * added while we waitied for all outstanding OTW
4386 * and recovery calls to finish. So re-purge the
4387 * dnlc now.
4388 */
4389 (void) dnlc_purge_vfsp(vfsp, 0);
4390
4391 /*
4392 * We need to explicitly stop the manager thread; the asyc worker
4393 * threads can timeout and exit on their own.
4394 */
4395 mutex_enter(&mi->mi_async_lock);
4396 mi->mi_max_threads = 0;
4397 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
4398 mutex_exit(&mi->mi_async_lock);
4399 if (mi->mi_manager_thread)
4400 nfs4_async_manager_stop(vfsp);
4401
4402 destroy_rtable4(vfsp, cr);
4403
4404 nfs4_remove_mi_from_server(mi, NULL);
4405
4406 if (async_thread) {
4407 mutex_enter(&cpr_lock);
4408 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */
4409 mutex_destroy(&cpr_lock);
4410 }
4411
4412 removed = nfs4_mi_zonelist_remove(mi);
4413 if (removed)
4414 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
4415 }
4416
4417 /* Referral related sub-routines */
4418
4419 /* Freeup knetconfig */
4420 static void
free_knconf_contents(struct knetconfig * k)4421 free_knconf_contents(struct knetconfig *k)
4422 {
4423 if (k == NULL)
4424 return;
4425 if (k->knc_protofmly)
4426 kmem_free(k->knc_protofmly, KNC_STRSIZE);
4427 if (k->knc_proto)
4428 kmem_free(k->knc_proto, KNC_STRSIZE);
4429 }
4430
4431 /*
4432 * This updates newpath variable with exact name component from the
4433 * path which gave us a NFS4ERR_MOVED error.
4434 * If the path is /rp/aaa/bbb and nth value is 1, aaa is returned.
4435 */
4436 static char *
extract_referral_point(const char * svp,int nth)4437 extract_referral_point(const char *svp, int nth)
4438 {
4439 int num_slashes = 0;
4440 const char *p;
4441 char *newpath = NULL;
4442 int i = 0;
4443
4444 newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4445 for (p = svp; *p; p++) {
4446 if (*p == '/')
4447 num_slashes++;
4448 if (num_slashes == nth + 1) {
4449 p++;
4450 while (*p != '/') {
4451 if (*p == '\0')
4452 break;
4453 newpath[i] = *p;
4454 i++;
4455 p++;
4456 }
4457 newpath[i++] = '\0';
4458 break;
4459 }
4460 }
4461 return (newpath);
4462 }
4463
4464 /*
4465 * This sets up a new path in sv_path to do a lookup of the referral point.
4466 * If the path is /rp/aaa/bbb and the referral point is aaa,
4467 * this updates /rp/aaa. This path will be used to get referral
4468 * location.
4469 */
4470 static void
setup_newsvpath(servinfo4_t * svp,int nth)4471 setup_newsvpath(servinfo4_t *svp, int nth)
4472 {
4473 int num_slashes = 0, pathlen, i = 0;
4474 char *newpath, *p;
4475
4476 newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4477 for (p = svp->sv_path; *p; p++) {
4478 newpath[i] = *p;
4479 if (*p == '/')
4480 num_slashes++;
4481 if (num_slashes == nth + 1) {
4482 newpath[i] = '\0';
4483 pathlen = strlen(newpath) + 1;
4484 kmem_free(svp->sv_path, svp->sv_pathlen);
4485 svp->sv_path = kmem_alloc(pathlen, KM_SLEEP);
4486 svp->sv_pathlen = pathlen;
4487 bcopy(newpath, svp->sv_path, pathlen);
4488 break;
4489 }
4490 i++;
4491 }
4492 kmem_free(newpath, MAXPATHLEN);
4493 }
4494