1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /*
26 * Fault Management Architecture (FMA) Resource and Protocol Support
27 *
28 * The routines contained herein provide services to support kernel subsystems
29 * in publishing fault management telemetry (see PSARC 2002/412 and 2003/089).
30 *
31 * Name-Value Pair Lists
32 *
33 * The embodiment of an FMA protocol element (event, fmri or authority) is a
34 * name-value pair list (nvlist_t). FMA-specific nvlist construtor and
35 * destructor functions, fm_nvlist_create() and fm_nvlist_destroy(), are used
36 * to create an nvpair list using custom allocators. Callers may choose to
37 * allocate either from the kernel memory allocator, or from a preallocated
38 * buffer, useful in constrained contexts like high-level interrupt routines.
39 *
40 * Protocol Event and FMRI Construction
41 *
42 * Convenience routines are provided to construct nvlist events according to
43 * the FMA Event Protocol and Naming Schema specification for ereports and
44 * FMRIs for the dev, cpu, hc, mem, legacy hc and de schemes.
45 *
46 * ENA Manipulation
47 *
48 * Routines to generate ENA formats 0, 1 and 2 are available as well as
49 * routines to increment formats 1 and 2. Individual fields within the
50 * ENA are extractable via fm_ena_time_get(), fm_ena_id_get(),
51 * fm_ena_format_get() and fm_ena_gen_get().
52 */
53
54 #include <sys/types.h>
55 #include <sys/time.h>
56 #include <sys/sysevent.h>
57 #include <sys/sysevent_impl.h>
58 #include <sys/nvpair.h>
59 #include <sys/cmn_err.h>
60 #include <sys/cpuvar.h>
61 #include <sys/sysmacros.h>
62 #include <sys/systm.h>
63 #include <sys/ddifm.h>
64 #include <sys/ddifm_impl.h>
65 #include <sys/spl.h>
66 #include <sys/dumphdr.h>
67 #include <sys/compress.h>
68 #include <sys/cpuvar.h>
69 #include <sys/console.h>
70 #include <sys/panic.h>
71 #include <sys/kobj.h>
72 #include <sys/sunddi.h>
73 #include <sys/systeminfo.h>
74 #include <sys/sysevent/eventdefs.h>
75 #include <sys/fm/util.h>
76 #include <sys/fm/protocol.h>
77
78 /*
79 * URL and SUNW-MSG-ID value to display for fm_panic(), defined below. These
80 * values must be kept in sync with the FMA source code in usr/src/cmd/fm.
81 */
82 static const char *fm_url = "http://illumos.org/msg";
83 static const char *fm_msgid = "SUNOS-8000-0G";
84 static char *volatile fm_panicstr = NULL;
85
86 errorq_t *ereport_errorq;
87 void *ereport_dumpbuf;
88 size_t ereport_dumplen;
89
90 static uint_t ereport_chanlen = ERPT_EVCH_MAX;
91 static evchan_t *ereport_chan = NULL;
92 static ulong_t ereport_qlen = 0;
93 static size_t ereport_size = 0;
94 static int ereport_cols = 80;
95
96 extern void fastreboot_disable_highpil(void);
97
98 /*
99 * Common fault management kstats to record ereport generation
100 * failures
101 */
102
103 struct erpt_kstat {
104 kstat_named_t erpt_dropped; /* num erpts dropped on post */
105 kstat_named_t erpt_set_failed; /* num erpt set failures */
106 kstat_named_t fmri_set_failed; /* num fmri set failures */
107 kstat_named_t payload_set_failed; /* num payload set failures */
108 };
109
110 static struct erpt_kstat erpt_kstat_data = {
111 { "erpt-dropped", KSTAT_DATA_UINT64 },
112 { "erpt-set-failed", KSTAT_DATA_UINT64 },
113 { "fmri-set-failed", KSTAT_DATA_UINT64 },
114 { "payload-set-failed", KSTAT_DATA_UINT64 }
115 };
116
117 /*ARGSUSED*/
118 static void
fm_drain(void * private,void * data,errorq_elem_t * eep)119 fm_drain(void *private, void *data, errorq_elem_t *eep)
120 {
121 nvlist_t *nvl = errorq_elem_nvl(ereport_errorq, eep);
122
123 if (!panicstr)
124 (void) fm_ereport_post(nvl, EVCH_TRYHARD);
125 else
126 fm_nvprint(nvl);
127 }
128
129 void
fm_init(void)130 fm_init(void)
131 {
132 kstat_t *ksp;
133
134 (void) sysevent_evc_bind(FM_ERROR_CHAN,
135 &ereport_chan, EVCH_CREAT | EVCH_HOLD_PEND);
136
137 (void) sysevent_evc_control(ereport_chan,
138 EVCH_SET_CHAN_LEN, &ereport_chanlen);
139
140 if (ereport_qlen == 0)
141 ereport_qlen = ERPT_MAX_ERRS * MAX(max_ncpus, 4);
142
143 if (ereport_size == 0)
144 ereport_size = ERPT_DATA_SZ;
145
146 ereport_errorq = errorq_nvcreate("fm_ereport_queue",
147 (errorq_func_t)fm_drain, NULL, ereport_qlen, ereport_size,
148 FM_ERR_PIL, ERRORQ_VITAL);
149 if (ereport_errorq == NULL)
150 panic("failed to create required ereport error queue");
151
152 ereport_dumpbuf = kmem_alloc(ereport_size, KM_SLEEP);
153 ereport_dumplen = ereport_size;
154
155 /* Initialize ereport allocation and generation kstats */
156 ksp = kstat_create("unix", 0, "fm", "misc", KSTAT_TYPE_NAMED,
157 sizeof (struct erpt_kstat) / sizeof (kstat_named_t),
158 KSTAT_FLAG_VIRTUAL);
159
160 if (ksp != NULL) {
161 ksp->ks_data = &erpt_kstat_data;
162 kstat_install(ksp);
163 } else {
164 cmn_err(CE_NOTE, "failed to create fm/misc kstat\n");
165
166 }
167 }
168
169 /*
170 * Formatting utility function for fm_nvprintr. We attempt to wrap chunks of
171 * output so they aren't split across console lines, and return the end column.
172 */
173 /*PRINTFLIKE4*/
174 static int
fm_printf(int depth,int c,int cols,const char * format,...)175 fm_printf(int depth, int c, int cols, const char *format, ...)
176 {
177 va_list ap;
178 int width;
179 char c1;
180
181 va_start(ap, format);
182 width = vsnprintf(&c1, sizeof (c1), format, ap);
183 va_end(ap);
184
185 if (c + width >= cols) {
186 console_printf("\n\r");
187 c = 0;
188 if (format[0] != ' ' && depth > 0) {
189 console_printf(" ");
190 c++;
191 }
192 }
193
194 va_start(ap, format);
195 console_vprintf(format, ap);
196 va_end(ap);
197
198 return ((c + width) % cols);
199 }
200
201 /*
202 * Recursively print a nvlist in the specified column width and return the
203 * column we end up in. This function is called recursively by fm_nvprint(),
204 * below. We generically format the entire nvpair using hexadecimal
205 * integers and strings, and elide any integer arrays. Arrays are basically
206 * used for cache dumps right now, so we suppress them so as not to overwhelm
207 * the amount of console output we produce at panic time. This can be further
208 * enhanced as FMA technology grows based upon the needs of consumers. All
209 * FMA telemetry is logged using the dump device transport, so the console
210 * output serves only as a fallback in case this procedure is unsuccessful.
211 */
212 static int
fm_nvprintr(nvlist_t * nvl,int d,int c,int cols)213 fm_nvprintr(nvlist_t *nvl, int d, int c, int cols)
214 {
215 nvpair_t *nvp;
216
217 for (nvp = nvlist_next_nvpair(nvl, NULL);
218 nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) {
219
220 data_type_t type = nvpair_type(nvp);
221 const char *name = nvpair_name(nvp);
222
223 boolean_t b;
224 uint8_t i8;
225 uint16_t i16;
226 uint32_t i32;
227 uint64_t i64;
228 char *str;
229 nvlist_t *cnv;
230
231 if (strcmp(name, FM_CLASS) == 0)
232 continue; /* already printed by caller */
233
234 c = fm_printf(d, c, cols, " %s=", name);
235
236 switch (type) {
237 case DATA_TYPE_BOOLEAN:
238 c = fm_printf(d + 1, c, cols, " 1");
239 break;
240
241 case DATA_TYPE_BOOLEAN_VALUE:
242 (void) nvpair_value_boolean_value(nvp, &b);
243 c = fm_printf(d + 1, c, cols, b ? "1" : "0");
244 break;
245
246 case DATA_TYPE_BYTE:
247 (void) nvpair_value_byte(nvp, &i8);
248 c = fm_printf(d + 1, c, cols, "%x", i8);
249 break;
250
251 case DATA_TYPE_INT8:
252 (void) nvpair_value_int8(nvp, (void *)&i8);
253 c = fm_printf(d + 1, c, cols, "%x", i8);
254 break;
255
256 case DATA_TYPE_UINT8:
257 (void) nvpair_value_uint8(nvp, &i8);
258 c = fm_printf(d + 1, c, cols, "%x", i8);
259 break;
260
261 case DATA_TYPE_INT16:
262 (void) nvpair_value_int16(nvp, (void *)&i16);
263 c = fm_printf(d + 1, c, cols, "%x", i16);
264 break;
265
266 case DATA_TYPE_UINT16:
267 (void) nvpair_value_uint16(nvp, &i16);
268 c = fm_printf(d + 1, c, cols, "%x", i16);
269 break;
270
271 case DATA_TYPE_INT32:
272 (void) nvpair_value_int32(nvp, (void *)&i32);
273 c = fm_printf(d + 1, c, cols, "%x", i32);
274 break;
275
276 case DATA_TYPE_UINT32:
277 (void) nvpair_value_uint32(nvp, &i32);
278 c = fm_printf(d + 1, c, cols, "%x", i32);
279 break;
280
281 case DATA_TYPE_INT64:
282 (void) nvpair_value_int64(nvp, (void *)&i64);
283 c = fm_printf(d + 1, c, cols, "%llx",
284 (u_longlong_t)i64);
285 break;
286
287 case DATA_TYPE_UINT64:
288 (void) nvpair_value_uint64(nvp, &i64);
289 c = fm_printf(d + 1, c, cols, "%llx",
290 (u_longlong_t)i64);
291 break;
292
293 case DATA_TYPE_HRTIME:
294 (void) nvpair_value_hrtime(nvp, (void *)&i64);
295 c = fm_printf(d + 1, c, cols, "%llx",
296 (u_longlong_t)i64);
297 break;
298
299 case DATA_TYPE_STRING:
300 (void) nvpair_value_string(nvp, &str);
301 c = fm_printf(d + 1, c, cols, "\"%s\"",
302 str ? str : "<NULL>");
303 break;
304
305 case DATA_TYPE_NVLIST:
306 c = fm_printf(d + 1, c, cols, "[");
307 (void) nvpair_value_nvlist(nvp, &cnv);
308 c = fm_nvprintr(cnv, d + 1, c, cols);
309 c = fm_printf(d + 1, c, cols, " ]");
310 break;
311
312 case DATA_TYPE_NVLIST_ARRAY: {
313 nvlist_t **val;
314 uint_t i, nelem;
315
316 c = fm_printf(d + 1, c, cols, "[");
317 (void) nvpair_value_nvlist_array(nvp, &val, &nelem);
318 for (i = 0; i < nelem; i++) {
319 c = fm_nvprintr(val[i], d + 1, c, cols);
320 }
321 c = fm_printf(d + 1, c, cols, " ]");
322 }
323 break;
324
325 case DATA_TYPE_BOOLEAN_ARRAY:
326 case DATA_TYPE_BYTE_ARRAY:
327 case DATA_TYPE_INT8_ARRAY:
328 case DATA_TYPE_UINT8_ARRAY:
329 case DATA_TYPE_INT16_ARRAY:
330 case DATA_TYPE_UINT16_ARRAY:
331 case DATA_TYPE_INT32_ARRAY:
332 case DATA_TYPE_UINT32_ARRAY:
333 case DATA_TYPE_INT64_ARRAY:
334 case DATA_TYPE_UINT64_ARRAY:
335 case DATA_TYPE_STRING_ARRAY:
336 c = fm_printf(d + 1, c, cols, "[...]");
337 break;
338 case DATA_TYPE_UNKNOWN:
339 case DATA_TYPE_DONTCARE:
340 c = fm_printf(d + 1, c, cols, "<unknown>");
341 break;
342 }
343 }
344
345 return (c);
346 }
347
348 void
fm_nvprint(nvlist_t * nvl)349 fm_nvprint(nvlist_t *nvl)
350 {
351 char *class;
352 int c = 0;
353
354 console_printf("\r");
355
356 if (nvlist_lookup_string(nvl, FM_CLASS, &class) == 0)
357 c = fm_printf(0, c, ereport_cols, "%s", class);
358
359 if (fm_nvprintr(nvl, 0, c, ereport_cols) != 0)
360 console_printf("\n");
361
362 console_printf("\n");
363 }
364
365 /*
366 * Wrapper for panic() that first produces an FMA-style message for admins.
367 * Normally such messages are generated by fmd(8)'s syslog-msgs agent: this
368 * is the one exception to that rule and the only error that gets messaged.
369 * This function is intended for use by subsystems that have detected a fatal
370 * error and enqueued appropriate ereports and wish to then force a panic.
371 */
372 /*PRINTFLIKE1*/
373 void
fm_panic(const char * format,...)374 fm_panic(const char *format, ...)
375 {
376 va_list ap;
377
378 (void) atomic_cas_ptr((void *)&fm_panicstr, NULL, (void *)format);
379 #if defined(__x86)
380 fastreboot_disable_highpil();
381 #endif /* __x86 */
382 va_start(ap, format);
383 vpanic(format, ap);
384 va_end(ap);
385 }
386
387 /*
388 * Simply tell the caller if fm_panicstr is set, ie. an fma event has
389 * caused the panic. If so, something other than the default panic
390 * diagnosis method will diagnose the cause of the panic.
391 */
392 int
is_fm_panic()393 is_fm_panic()
394 {
395 if (fm_panicstr)
396 return (1);
397 else
398 return (0);
399 }
400
401 /*
402 * Print any appropriate FMA banner message before the panic message. This
403 * function is called by panicsys() and prints the message for fm_panic().
404 * We print the message here so that it comes after the system is quiesced.
405 * A one-line summary is recorded in the log only (cmn_err(9F) with "!" prefix).
406 * The rest of the message is for the console only and not needed in the log,
407 * so it is printed using console_printf(). We break it up into multiple
408 * chunks so as to avoid overflowing any small legacy prom_printf() buffers.
409 */
410 void
fm_banner(void)411 fm_banner(void)
412 {
413 timespec_t tod;
414 hrtime_t now;
415
416 if (!fm_panicstr)
417 return; /* panic was not initiated by fm_panic(); do nothing */
418
419 if (panicstr) {
420 tod = panic_hrestime;
421 now = panic_hrtime;
422 } else {
423 gethrestime(&tod);
424 now = gethrtime_waitfree();
425 }
426
427 cmn_err(CE_NOTE, "!SUNW-MSG-ID: %s, "
428 "TYPE: Error, VER: 1, SEVERITY: Major\n", fm_msgid);
429
430 console_printf(
431 "\n\rSUNW-MSG-ID: %s, TYPE: Error, VER: 1, SEVERITY: Major\n"
432 "EVENT-TIME: 0x%lx.0x%lx (0x%llx)\n",
433 fm_msgid, tod.tv_sec, tod.tv_nsec, (u_longlong_t)now);
434
435 console_printf(
436 "PLATFORM: %s, CSN: -, HOSTNAME: %s\n"
437 "SOURCE: %s, REV: %s %s\n",
438 platform, utsname.nodename, utsname.sysname,
439 utsname.release, utsname.version);
440
441 console_printf(
442 "DESC: Errors have been detected that require a reboot to ensure system\n"
443 "integrity. See %s/%s for more information.\n",
444 fm_url, fm_msgid);
445
446 console_printf(
447 "AUTO-RESPONSE: Solaris will attempt to save and diagnose the error telemetry\n"
448 "IMPACT: The system will sync files, save a crash dump if needed, and reboot\n"
449 "REC-ACTION: Save the error summary below in case telemetry cannot be saved\n");
450
451 console_printf("\n");
452 }
453
454 /*
455 * Utility function to write all of the pending ereports to the dump device.
456 * This function is called at either normal reboot or panic time, and simply
457 * iterates over the in-transit messages in the ereport sysevent channel.
458 */
459 void
fm_ereport_dump(void)460 fm_ereport_dump(void)
461 {
462 evchanq_t *chq;
463 sysevent_t *sep;
464 erpt_dump_t ed;
465
466 timespec_t tod;
467 hrtime_t now;
468 char *buf;
469 size_t len;
470
471 if (panicstr) {
472 tod = panic_hrestime;
473 now = panic_hrtime;
474 } else {
475 if (ereport_errorq != NULL)
476 errorq_drain(ereport_errorq);
477 gethrestime(&tod);
478 now = gethrtime_waitfree();
479 }
480
481 /*
482 * In the panic case, sysevent_evc_walk_init() will return NULL.
483 */
484 if ((chq = sysevent_evc_walk_init(ereport_chan, NULL)) == NULL &&
485 !panicstr)
486 return; /* event channel isn't initialized yet */
487
488 while ((sep = sysevent_evc_walk_step(chq)) != NULL) {
489 if ((buf = sysevent_evc_event_attr(sep, &len)) == NULL)
490 break;
491
492 ed.ed_magic = ERPT_MAGIC;
493 ed.ed_chksum = checksum32(buf, len);
494 ed.ed_size = (uint32_t)len;
495 ed.ed_pad = 0;
496 ed.ed_hrt_nsec = SE_TIME(sep);
497 ed.ed_hrt_base = now;
498 ed.ed_tod_base.sec = tod.tv_sec;
499 ed.ed_tod_base.nsec = tod.tv_nsec;
500
501 dumpvp_write(&ed, sizeof (ed));
502 dumpvp_write(buf, len);
503 }
504
505 sysevent_evc_walk_fini(chq);
506 }
507
508 /*
509 * Post an error report (ereport) to the sysevent error channel. The error
510 * channel must be established with a prior call to sysevent_evc_create()
511 * before publication may occur.
512 */
513 void
fm_ereport_post(nvlist_t * ereport,int evc_flag)514 fm_ereport_post(nvlist_t *ereport, int evc_flag)
515 {
516 size_t nvl_size = 0;
517 evchan_t *error_chan;
518
519 (void) nvlist_size(ereport, &nvl_size, NV_ENCODE_NATIVE);
520 if (nvl_size > ERPT_DATA_SZ || nvl_size == 0) {
521 atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64);
522 return;
523 }
524
525 if (sysevent_evc_bind(FM_ERROR_CHAN, &error_chan,
526 EVCH_CREAT|EVCH_HOLD_PEND) != 0) {
527 atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64);
528 return;
529 }
530
531 if (sysevent_evc_publish(error_chan, EC_FM, ESC_FM_ERROR,
532 SUNW_VENDOR, FM_PUB, ereport, evc_flag) != 0) {
533 atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64);
534 (void) sysevent_evc_unbind(error_chan);
535 return;
536 }
537 (void) sysevent_evc_unbind(error_chan);
538 }
539
540 /*
541 * Wrapppers for FM nvlist allocators
542 */
543 /* ARGSUSED */
544 static void *
i_fm_alloc(nv_alloc_t * nva,size_t size)545 i_fm_alloc(nv_alloc_t *nva, size_t size)
546 {
547 return (kmem_zalloc(size, KM_SLEEP));
548 }
549
550 /* ARGSUSED */
551 static void
i_fm_free(nv_alloc_t * nva,void * buf,size_t size)552 i_fm_free(nv_alloc_t *nva, void *buf, size_t size)
553 {
554 kmem_free(buf, size);
555 }
556
557 const nv_alloc_ops_t fm_mem_alloc_ops = {
558 NULL,
559 NULL,
560 i_fm_alloc,
561 i_fm_free,
562 NULL
563 };
564
565 /*
566 * Create and initialize a new nv_alloc_t for a fixed buffer, buf. A pointer
567 * to the newly allocated nv_alloc_t structure is returned upon success or NULL
568 * is returned to indicate that the nv_alloc structure could not be created.
569 */
570 nv_alloc_t *
fm_nva_xcreate(char * buf,size_t bufsz)571 fm_nva_xcreate(char *buf, size_t bufsz)
572 {
573 nv_alloc_t *nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
574
575 if (bufsz == 0 || nv_alloc_init(nvhdl, nv_fixed_ops, buf, bufsz) != 0) {
576 kmem_free(nvhdl, sizeof (nv_alloc_t));
577 return (NULL);
578 }
579
580 return (nvhdl);
581 }
582
583 /*
584 * Destroy a previously allocated nv_alloc structure. The fixed buffer
585 * associated with nva must be freed by the caller.
586 */
587 void
fm_nva_xdestroy(nv_alloc_t * nva)588 fm_nva_xdestroy(nv_alloc_t *nva)
589 {
590 nv_alloc_fini(nva);
591 kmem_free(nva, sizeof (nv_alloc_t));
592 }
593
594 /*
595 * Create a new nv list. A pointer to a new nv list structure is returned
596 * upon success or NULL is returned to indicate that the structure could
597 * not be created. The newly created nv list is created and managed by the
598 * operations installed in nva. If nva is NULL, the default FMA nva
599 * operations are installed and used.
600 *
601 * When called from the kernel and nva == NULL, this function must be called
602 * from passive kernel context with no locks held that can prevent a
603 * sleeping memory allocation from occurring. Otherwise, this function may
604 * be called from other kernel contexts as long a valid nva created via
605 * fm_nva_create() is supplied.
606 */
607 nvlist_t *
fm_nvlist_create(nv_alloc_t * nva)608 fm_nvlist_create(nv_alloc_t *nva)
609 {
610 int hdl_alloced = 0;
611 nvlist_t *nvl;
612 nv_alloc_t *nvhdl;
613
614 if (nva == NULL) {
615 nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
616
617 if (nv_alloc_init(nvhdl, &fm_mem_alloc_ops, NULL, 0) != 0) {
618 kmem_free(nvhdl, sizeof (nv_alloc_t));
619 return (NULL);
620 }
621 hdl_alloced = 1;
622 } else {
623 nvhdl = nva;
624 }
625
626 if (nvlist_xalloc(&nvl, NV_UNIQUE_NAME, nvhdl) != 0) {
627 if (hdl_alloced) {
628 nv_alloc_fini(nvhdl);
629 kmem_free(nvhdl, sizeof (nv_alloc_t));
630 }
631 return (NULL);
632 }
633
634 return (nvl);
635 }
636
637 /*
638 * Destroy a previously allocated nvlist structure. flag indicates whether
639 * or not the associated nva structure should be freed (FM_NVA_FREE) or
640 * retained (FM_NVA_RETAIN). Retaining the nv alloc structure allows
641 * it to be re-used for future nvlist creation operations.
642 */
643 void
fm_nvlist_destroy(nvlist_t * nvl,int flag)644 fm_nvlist_destroy(nvlist_t *nvl, int flag)
645 {
646 nv_alloc_t *nva = nvlist_lookup_nv_alloc(nvl);
647
648 nvlist_free(nvl);
649
650 if (nva != NULL) {
651 if (flag == FM_NVA_FREE)
652 fm_nva_xdestroy(nva);
653 }
654 }
655
656 int
i_fm_payload_set(nvlist_t * payload,const char * name,va_list ap)657 i_fm_payload_set(nvlist_t *payload, const char *name, va_list ap)
658 {
659 int nelem, ret = 0;
660 data_type_t type;
661
662 while (ret == 0 && name != NULL) {
663 type = va_arg(ap, data_type_t);
664 switch (type) {
665 case DATA_TYPE_BYTE:
666 ret = nvlist_add_byte(payload, name,
667 va_arg(ap, uint_t));
668 break;
669 case DATA_TYPE_BYTE_ARRAY:
670 nelem = va_arg(ap, int);
671 ret = nvlist_add_byte_array(payload, name,
672 va_arg(ap, uchar_t *), nelem);
673 break;
674 case DATA_TYPE_BOOLEAN_VALUE:
675 ret = nvlist_add_boolean_value(payload, name,
676 va_arg(ap, boolean_t));
677 break;
678 case DATA_TYPE_BOOLEAN_ARRAY:
679 nelem = va_arg(ap, int);
680 ret = nvlist_add_boolean_array(payload, name,
681 va_arg(ap, boolean_t *), nelem);
682 break;
683 case DATA_TYPE_INT8:
684 ret = nvlist_add_int8(payload, name,
685 va_arg(ap, int));
686 break;
687 case DATA_TYPE_INT8_ARRAY:
688 nelem = va_arg(ap, int);
689 ret = nvlist_add_int8_array(payload, name,
690 va_arg(ap, int8_t *), nelem);
691 break;
692 case DATA_TYPE_UINT8:
693 ret = nvlist_add_uint8(payload, name,
694 va_arg(ap, uint_t));
695 break;
696 case DATA_TYPE_UINT8_ARRAY:
697 nelem = va_arg(ap, int);
698 ret = nvlist_add_uint8_array(payload, name,
699 va_arg(ap, uint8_t *), nelem);
700 break;
701 case DATA_TYPE_INT16:
702 ret = nvlist_add_int16(payload, name,
703 va_arg(ap, int));
704 break;
705 case DATA_TYPE_INT16_ARRAY:
706 nelem = va_arg(ap, int);
707 ret = nvlist_add_int16_array(payload, name,
708 va_arg(ap, int16_t *), nelem);
709 break;
710 case DATA_TYPE_UINT16:
711 ret = nvlist_add_uint16(payload, name,
712 va_arg(ap, uint_t));
713 break;
714 case DATA_TYPE_UINT16_ARRAY:
715 nelem = va_arg(ap, int);
716 ret = nvlist_add_uint16_array(payload, name,
717 va_arg(ap, uint16_t *), nelem);
718 break;
719 case DATA_TYPE_INT32:
720 ret = nvlist_add_int32(payload, name,
721 va_arg(ap, int32_t));
722 break;
723 case DATA_TYPE_INT32_ARRAY:
724 nelem = va_arg(ap, int);
725 ret = nvlist_add_int32_array(payload, name,
726 va_arg(ap, int32_t *), nelem);
727 break;
728 case DATA_TYPE_UINT32:
729 ret = nvlist_add_uint32(payload, name,
730 va_arg(ap, uint32_t));
731 break;
732 case DATA_TYPE_UINT32_ARRAY:
733 nelem = va_arg(ap, int);
734 ret = nvlist_add_uint32_array(payload, name,
735 va_arg(ap, uint32_t *), nelem);
736 break;
737 case DATA_TYPE_INT64:
738 ret = nvlist_add_int64(payload, name,
739 va_arg(ap, int64_t));
740 break;
741 case DATA_TYPE_INT64_ARRAY:
742 nelem = va_arg(ap, int);
743 ret = nvlist_add_int64_array(payload, name,
744 va_arg(ap, int64_t *), nelem);
745 break;
746 case DATA_TYPE_UINT64:
747 ret = nvlist_add_uint64(payload, name,
748 va_arg(ap, uint64_t));
749 break;
750 case DATA_TYPE_UINT64_ARRAY:
751 nelem = va_arg(ap, int);
752 ret = nvlist_add_uint64_array(payload, name,
753 va_arg(ap, uint64_t *), nelem);
754 break;
755 case DATA_TYPE_STRING:
756 ret = nvlist_add_string(payload, name,
757 va_arg(ap, char *));
758 break;
759 case DATA_TYPE_STRING_ARRAY:
760 nelem = va_arg(ap, int);
761 ret = nvlist_add_string_array(payload, name,
762 va_arg(ap, char **), nelem);
763 break;
764 case DATA_TYPE_NVLIST:
765 ret = nvlist_add_nvlist(payload, name,
766 va_arg(ap, nvlist_t *));
767 break;
768 case DATA_TYPE_NVLIST_ARRAY:
769 nelem = va_arg(ap, int);
770 ret = nvlist_add_nvlist_array(payload, name,
771 va_arg(ap, nvlist_t **), nelem);
772 break;
773 default:
774 ret = EINVAL;
775 }
776
777 name = va_arg(ap, char *);
778 }
779 return (ret);
780 }
781
782 void
fm_payload_set(nvlist_t * payload,...)783 fm_payload_set(nvlist_t *payload, ...)
784 {
785 int ret;
786 const char *name;
787 va_list ap;
788
789 va_start(ap, payload);
790 name = va_arg(ap, char *);
791 ret = i_fm_payload_set(payload, name, ap);
792 va_end(ap);
793
794 if (ret)
795 atomic_inc_64(&erpt_kstat_data.payload_set_failed.value.ui64);
796 }
797
798 /*
799 * Set-up and validate the members of an ereport event according to:
800 *
801 * Member name Type Value
802 * ====================================================
803 * class string ereport
804 * version uint8_t 0
805 * ena uint64_t <ena>
806 * detector nvlist_t <detector>
807 * ereport-payload nvlist_t <var args>
808 *
809 * We don't actually add a 'version' member to the payload. Really,
810 * the version quoted to us by our caller is that of the category 1
811 * "ereport" event class (and we require FM_EREPORT_VERS0) but
812 * the payload version of the actual leaf class event under construction
813 * may be something else. Callers should supply a version in the varargs,
814 * or (better) we could take two version arguments - one for the
815 * ereport category 1 classification (expect FM_EREPORT_VERS0) and one
816 * for the leaf class.
817 */
818 void
fm_ereport_set(nvlist_t * ereport,int version,const char * erpt_class,uint64_t ena,const nvlist_t * detector,...)819 fm_ereport_set(nvlist_t *ereport, int version, const char *erpt_class,
820 uint64_t ena, const nvlist_t *detector, ...)
821 {
822 char ereport_class[FM_MAX_CLASS];
823 const char *name;
824 va_list ap;
825 int ret;
826
827 if (version != FM_EREPORT_VERS0) {
828 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
829 return;
830 }
831
832 (void) snprintf(ereport_class, FM_MAX_CLASS, "%s.%s",
833 FM_EREPORT_CLASS, erpt_class);
834 if (nvlist_add_string(ereport, FM_CLASS, ereport_class) != 0) {
835 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
836 return;
837 }
838
839 if (nvlist_add_uint64(ereport, FM_EREPORT_ENA, ena)) {
840 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
841 }
842
843 if (nvlist_add_nvlist(ereport, FM_EREPORT_DETECTOR,
844 (nvlist_t *)detector) != 0) {
845 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
846 }
847
848 va_start(ap, detector);
849 name = va_arg(ap, const char *);
850 ret = i_fm_payload_set(ereport, name, ap);
851 va_end(ap);
852
853 if (ret)
854 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
855 }
856
857 /*
858 * Set-up and validate the members of an hc fmri according to;
859 *
860 * Member name Type Value
861 * ===================================================
862 * version uint8_t 0
863 * auth nvlist_t <auth>
864 * hc-name string <name>
865 * hc-id string <id>
866 *
867 * Note that auth and hc-id are optional members.
868 */
869
870 #define HC_MAXPAIRS 20
871 #define HC_MAXNAMELEN 50
872
873 static int
fm_fmri_hc_set_common(nvlist_t * fmri,int version,const nvlist_t * auth)874 fm_fmri_hc_set_common(nvlist_t *fmri, int version, const nvlist_t *auth)
875 {
876 if (version != FM_HC_SCHEME_VERSION) {
877 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
878 return (0);
879 }
880
881 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0 ||
882 nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC) != 0) {
883 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
884 return (0);
885 }
886
887 if (auth != NULL && nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY,
888 (nvlist_t *)auth) != 0) {
889 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
890 return (0);
891 }
892
893 return (1);
894 }
895
896 void
fm_fmri_hc_set(nvlist_t * fmri,int version,const nvlist_t * auth,nvlist_t * snvl,int npairs,...)897 fm_fmri_hc_set(nvlist_t *fmri, int version, const nvlist_t *auth,
898 nvlist_t *snvl, int npairs, ...)
899 {
900 nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri);
901 nvlist_t *pairs[HC_MAXPAIRS];
902 va_list ap;
903 int i;
904
905 if (!fm_fmri_hc_set_common(fmri, version, auth))
906 return;
907
908 npairs = MIN(npairs, HC_MAXPAIRS);
909
910 va_start(ap, npairs);
911 for (i = 0; i < npairs; i++) {
912 const char *name = va_arg(ap, const char *);
913 uint32_t id = va_arg(ap, uint32_t);
914 char idstr[11];
915
916 (void) snprintf(idstr, sizeof (idstr), "%u", id);
917
918 pairs[i] = fm_nvlist_create(nva);
919 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 ||
920 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) {
921 atomic_inc_64(
922 &erpt_kstat_data.fmri_set_failed.value.ui64);
923 }
924 }
925 va_end(ap);
926
927 if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs, npairs) != 0)
928 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
929
930 for (i = 0; i < npairs; i++)
931 fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN);
932
933 if (snvl != NULL) {
934 if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) {
935 atomic_inc_64(
936 &erpt_kstat_data.fmri_set_failed.value.ui64);
937 }
938 }
939 }
940
941 /*
942 * Set-up and validate the members of an dev fmri according to:
943 *
944 * Member name Type Value
945 * ====================================================
946 * version uint8_t 0
947 * auth nvlist_t <auth>
948 * devpath string <devpath>
949 * [devid] string <devid>
950 * [target-port-l0id] string <target-port-lun0-id>
951 *
952 * Note that auth and devid are optional members.
953 */
954 void
fm_fmri_dev_set(nvlist_t * fmri_dev,int version,const nvlist_t * auth,const char * devpath,const char * devid,const char * tpl0)955 fm_fmri_dev_set(nvlist_t *fmri_dev, int version, const nvlist_t *auth,
956 const char *devpath, const char *devid, const char *tpl0)
957 {
958 int err = 0;
959
960 if (version != DEV_SCHEME_VERSION0) {
961 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
962 return;
963 }
964
965 err |= nvlist_add_uint8(fmri_dev, FM_VERSION, version);
966 err |= nvlist_add_string(fmri_dev, FM_FMRI_SCHEME, FM_FMRI_SCHEME_DEV);
967
968 if (auth != NULL) {
969 err |= nvlist_add_nvlist(fmri_dev, FM_FMRI_AUTHORITY,
970 (nvlist_t *)auth);
971 }
972
973 err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_PATH, devpath);
974
975 if (devid != NULL)
976 err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_ID, devid);
977
978 if (tpl0 != NULL)
979 err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_TGTPTLUN0, tpl0);
980
981 if (err)
982 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
983
984 }
985
986 /*
987 * Set-up and validate the members of an cpu fmri according to:
988 *
989 * Member name Type Value
990 * ====================================================
991 * version uint8_t 0
992 * auth nvlist_t <auth>
993 * cpuid uint32_t <cpu_id>
994 * cpumask uint8_t <cpu_mask>
995 * serial uint64_t <serial_id>
996 *
997 * Note that auth, cpumask, serial are optional members.
998 *
999 */
1000 void
fm_fmri_cpu_set(nvlist_t * fmri_cpu,int version,const nvlist_t * auth,uint32_t cpu_id,uint8_t * cpu_maskp,const char * serial_idp)1001 fm_fmri_cpu_set(nvlist_t *fmri_cpu, int version, const nvlist_t *auth,
1002 uint32_t cpu_id, uint8_t *cpu_maskp, const char *serial_idp)
1003 {
1004 uint64_t *failedp = &erpt_kstat_data.fmri_set_failed.value.ui64;
1005
1006 if (version < CPU_SCHEME_VERSION1) {
1007 atomic_inc_64(failedp);
1008 return;
1009 }
1010
1011 if (nvlist_add_uint8(fmri_cpu, FM_VERSION, version) != 0) {
1012 atomic_inc_64(failedp);
1013 return;
1014 }
1015
1016 if (nvlist_add_string(fmri_cpu, FM_FMRI_SCHEME,
1017 FM_FMRI_SCHEME_CPU) != 0) {
1018 atomic_inc_64(failedp);
1019 return;
1020 }
1021
1022 if (auth != NULL && nvlist_add_nvlist(fmri_cpu, FM_FMRI_AUTHORITY,
1023 (nvlist_t *)auth) != 0)
1024 atomic_inc_64(failedp);
1025
1026 if (nvlist_add_uint32(fmri_cpu, FM_FMRI_CPU_ID, cpu_id) != 0)
1027 atomic_inc_64(failedp);
1028
1029 if (cpu_maskp != NULL && nvlist_add_uint8(fmri_cpu, FM_FMRI_CPU_MASK,
1030 *cpu_maskp) != 0)
1031 atomic_inc_64(failedp);
1032
1033 if (serial_idp == NULL || nvlist_add_string(fmri_cpu,
1034 FM_FMRI_CPU_SERIAL_ID, (char *)serial_idp) != 0)
1035 atomic_inc_64(failedp);
1036 }
1037
1038 /*
1039 * Set-up and validate the members of a mem according to:
1040 *
1041 * Member name Type Value
1042 * ====================================================
1043 * version uint8_t 0
1044 * auth nvlist_t <auth> [optional]
1045 * unum string <unum>
1046 * serial string <serial> [optional*]
1047 * offset uint64_t <offset> [optional]
1048 *
1049 * * serial is required if offset is present
1050 */
1051 void
fm_fmri_mem_set(nvlist_t * fmri,int version,const nvlist_t * auth,const char * unum,const char * serial,uint64_t offset)1052 fm_fmri_mem_set(nvlist_t *fmri, int version, const nvlist_t *auth,
1053 const char *unum, const char *serial, uint64_t offset)
1054 {
1055 if (version != MEM_SCHEME_VERSION0) {
1056 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1057 return;
1058 }
1059
1060 if (!serial && (offset != (uint64_t)-1)) {
1061 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1062 return;
1063 }
1064
1065 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) {
1066 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1067 return;
1068 }
1069
1070 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_MEM) != 0) {
1071 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1072 return;
1073 }
1074
1075 if (auth != NULL) {
1076 if (nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY,
1077 (nvlist_t *)auth) != 0) {
1078 atomic_inc_64(
1079 &erpt_kstat_data.fmri_set_failed.value.ui64);
1080 }
1081 }
1082
1083 if (nvlist_add_string(fmri, FM_FMRI_MEM_UNUM, unum) != 0) {
1084 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1085 }
1086
1087 if (serial != NULL) {
1088 if (nvlist_add_string_array(fmri, FM_FMRI_MEM_SERIAL_ID,
1089 (char **)&serial, 1) != 0) {
1090 atomic_inc_64(
1091 &erpt_kstat_data.fmri_set_failed.value.ui64);
1092 }
1093 if (offset != (uint64_t)-1 && nvlist_add_uint64(fmri,
1094 FM_FMRI_MEM_OFFSET, offset) != 0) {
1095 atomic_inc_64(
1096 &erpt_kstat_data.fmri_set_failed.value.ui64);
1097 }
1098 }
1099 }
1100
1101 void
fm_fmri_zfs_set(nvlist_t * fmri,int version,uint64_t pool_guid,uint64_t vdev_guid)1102 fm_fmri_zfs_set(nvlist_t *fmri, int version, uint64_t pool_guid,
1103 uint64_t vdev_guid)
1104 {
1105 if (version != ZFS_SCHEME_VERSION0) {
1106 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1107 return;
1108 }
1109
1110 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) {
1111 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1112 return;
1113 }
1114
1115 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS) != 0) {
1116 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1117 return;
1118 }
1119
1120 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_POOL, pool_guid) != 0) {
1121 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1122 }
1123
1124 if (vdev_guid != 0) {
1125 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_VDEV, vdev_guid) != 0) {
1126 atomic_inc_64(
1127 &erpt_kstat_data.fmri_set_failed.value.ui64);
1128 }
1129 }
1130 }
1131
1132 uint64_t
fm_ena_increment(uint64_t ena)1133 fm_ena_increment(uint64_t ena)
1134 {
1135 uint64_t new_ena;
1136
1137 switch (ENA_FORMAT(ena)) {
1138 case FM_ENA_FMT1:
1139 new_ena = ena + (1 << ENA_FMT1_GEN_SHFT);
1140 break;
1141 case FM_ENA_FMT2:
1142 new_ena = ena + (1 << ENA_FMT2_GEN_SHFT);
1143 break;
1144 default:
1145 new_ena = 0;
1146 }
1147
1148 return (new_ena);
1149 }
1150
1151 uint64_t
fm_ena_generate_cpu(uint64_t timestamp,processorid_t cpuid,uchar_t format)1152 fm_ena_generate_cpu(uint64_t timestamp, processorid_t cpuid, uchar_t format)
1153 {
1154 uint64_t ena = 0;
1155
1156 switch (format) {
1157 case FM_ENA_FMT1:
1158 if (timestamp) {
1159 ena = (uint64_t)((format & ENA_FORMAT_MASK) |
1160 ((cpuid << ENA_FMT1_CPUID_SHFT) &
1161 ENA_FMT1_CPUID_MASK) |
1162 ((timestamp << ENA_FMT1_TIME_SHFT) &
1163 ENA_FMT1_TIME_MASK));
1164 } else {
1165 ena = (uint64_t)((format & ENA_FORMAT_MASK) |
1166 ((cpuid << ENA_FMT1_CPUID_SHFT) &
1167 ENA_FMT1_CPUID_MASK) |
1168 ((gethrtime_waitfree() << ENA_FMT1_TIME_SHFT) &
1169 ENA_FMT1_TIME_MASK));
1170 }
1171 break;
1172 case FM_ENA_FMT2:
1173 ena = (uint64_t)((format & ENA_FORMAT_MASK) |
1174 ((timestamp << ENA_FMT2_TIME_SHFT) & ENA_FMT2_TIME_MASK));
1175 break;
1176 default:
1177 break;
1178 }
1179
1180 return (ena);
1181 }
1182
1183 uint64_t
fm_ena_generate(uint64_t timestamp,uchar_t format)1184 fm_ena_generate(uint64_t timestamp, uchar_t format)
1185 {
1186 return (fm_ena_generate_cpu(timestamp, CPU->cpu_id, format));
1187 }
1188
1189 uint64_t
fm_ena_generation_get(uint64_t ena)1190 fm_ena_generation_get(uint64_t ena)
1191 {
1192 uint64_t gen;
1193
1194 switch (ENA_FORMAT(ena)) {
1195 case FM_ENA_FMT1:
1196 gen = (ena & ENA_FMT1_GEN_MASK) >> ENA_FMT1_GEN_SHFT;
1197 break;
1198 case FM_ENA_FMT2:
1199 gen = (ena & ENA_FMT2_GEN_MASK) >> ENA_FMT2_GEN_SHFT;
1200 break;
1201 default:
1202 gen = 0;
1203 break;
1204 }
1205
1206 return (gen);
1207 }
1208
1209 uchar_t
fm_ena_format_get(uint64_t ena)1210 fm_ena_format_get(uint64_t ena)
1211 {
1212
1213 return (ENA_FORMAT(ena));
1214 }
1215
1216 uint64_t
fm_ena_id_get(uint64_t ena)1217 fm_ena_id_get(uint64_t ena)
1218 {
1219 uint64_t id;
1220
1221 switch (ENA_FORMAT(ena)) {
1222 case FM_ENA_FMT1:
1223 id = (ena & ENA_FMT1_ID_MASK) >> ENA_FMT1_ID_SHFT;
1224 break;
1225 case FM_ENA_FMT2:
1226 id = (ena & ENA_FMT2_ID_MASK) >> ENA_FMT2_ID_SHFT;
1227 break;
1228 default:
1229 id = 0;
1230 }
1231
1232 return (id);
1233 }
1234
1235 uint64_t
fm_ena_time_get(uint64_t ena)1236 fm_ena_time_get(uint64_t ena)
1237 {
1238 uint64_t time;
1239
1240 switch (ENA_FORMAT(ena)) {
1241 case FM_ENA_FMT1:
1242 time = (ena & ENA_FMT1_TIME_MASK) >> ENA_FMT1_TIME_SHFT;
1243 break;
1244 case FM_ENA_FMT2:
1245 time = (ena & ENA_FMT2_TIME_MASK) >> ENA_FMT2_TIME_SHFT;
1246 break;
1247 default:
1248 time = 0;
1249 }
1250
1251 return (time);
1252 }
1253
1254 /*
1255 * Convert a getpcstack() trace to symbolic name+offset, and add the resulting
1256 * string array to a Fault Management ereport as FM_EREPORT_PAYLOAD_NAME_STACK.
1257 */
1258 void
fm_payload_stack_add(nvlist_t * payload,const pc_t * stack,int depth)1259 fm_payload_stack_add(nvlist_t *payload, const pc_t *stack, int depth)
1260 {
1261 int i;
1262 char *sym;
1263 ulong_t off;
1264 char *stkpp[FM_STK_DEPTH];
1265 char buf[FM_STK_DEPTH * FM_SYM_SZ];
1266 char *stkp = buf;
1267
1268 for (i = 0; i < depth && i != FM_STK_DEPTH; i++, stkp += FM_SYM_SZ) {
1269 if ((sym = kobj_getsymname(stack[i], &off)) != NULL)
1270 (void) snprintf(stkp, FM_SYM_SZ, "%s+%lx", sym, off);
1271 else
1272 (void) snprintf(stkp, FM_SYM_SZ, "%lx", (long)stack[i]);
1273 stkpp[i] = stkp;
1274 }
1275
1276 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_STACK,
1277 DATA_TYPE_STRING_ARRAY, depth, stkpp, NULL);
1278 }
1279
1280 void
print_msg_hwerr(ctid_t ct_id,proc_t * p)1281 print_msg_hwerr(ctid_t ct_id, proc_t *p)
1282 {
1283 uprintf("Killed process %d (%s) in contract id %d "
1284 "due to hardware error\n", p->p_pid, p->p_user.u_comm, ct_id);
1285 }
1286
1287 void
fm_fmri_hc_create(nvlist_t * fmri,int version,const nvlist_t * auth,nvlist_t * snvl,nvlist_t * bboard,int npairs,...)1288 fm_fmri_hc_create(nvlist_t *fmri, int version, const nvlist_t *auth,
1289 nvlist_t *snvl, nvlist_t *bboard, int npairs, ...)
1290 {
1291 nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri);
1292 nvlist_t *pairs[HC_MAXPAIRS];
1293 nvlist_t **hcl;
1294 uint_t n;
1295 int i, j;
1296 va_list ap;
1297 char *hcname, *hcid;
1298
1299 if (!fm_fmri_hc_set_common(fmri, version, auth))
1300 return;
1301
1302 /*
1303 * copy the bboard nvpairs to the pairs array
1304 */
1305 if (nvlist_lookup_nvlist_array(bboard, FM_FMRI_HC_LIST, &hcl, &n)
1306 != 0) {
1307 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1308 return;
1309 }
1310
1311 for (i = 0; i < n; i++) {
1312 if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_NAME,
1313 &hcname) != 0) {
1314 atomic_inc_64(
1315 &erpt_kstat_data.fmri_set_failed.value.ui64);
1316 return;
1317 }
1318 if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_ID, &hcid) != 0) {
1319 atomic_inc_64(
1320 &erpt_kstat_data.fmri_set_failed.value.ui64);
1321 return;
1322 }
1323
1324 pairs[i] = fm_nvlist_create(nva);
1325 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, hcname) != 0 ||
1326 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, hcid) != 0) {
1327 for (j = 0; j <= i; j++) {
1328 if (pairs[j] != NULL)
1329 fm_nvlist_destroy(pairs[j],
1330 FM_NVA_RETAIN);
1331 }
1332 atomic_inc_64(
1333 &erpt_kstat_data.fmri_set_failed.value.ui64);
1334 return;
1335 }
1336 }
1337
1338 /*
1339 * create the pairs from passed in pairs
1340 */
1341 npairs = MIN(npairs, HC_MAXPAIRS);
1342
1343 va_start(ap, npairs);
1344 for (i = n; i < npairs + n; i++) {
1345 const char *name = va_arg(ap, const char *);
1346 uint32_t id = va_arg(ap, uint32_t);
1347 char idstr[11];
1348 (void) snprintf(idstr, sizeof (idstr), "%u", id);
1349 pairs[i] = fm_nvlist_create(nva);
1350 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 ||
1351 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) {
1352 for (j = 0; j <= i; j++) {
1353 if (pairs[j] != NULL)
1354 fm_nvlist_destroy(pairs[j],
1355 FM_NVA_RETAIN);
1356 }
1357 atomic_inc_64(
1358 &erpt_kstat_data.fmri_set_failed.value.ui64);
1359 return;
1360 }
1361 }
1362 va_end(ap);
1363
1364 /*
1365 * Create the fmri hc list
1366 */
1367 if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs,
1368 npairs + n) != 0) {
1369 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1370 return;
1371 }
1372
1373 for (i = 0; i < npairs + n; i++) {
1374 fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN);
1375 }
1376
1377 if (snvl != NULL) {
1378 if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) {
1379 atomic_inc_64(
1380 &erpt_kstat_data.fmri_set_failed.value.ui64);
1381 return;
1382 }
1383 }
1384 }
1385