1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4
5 #include <linux/bio-integrity.h>
6 #include <linux/blk-crypto.h>
7 #include <linux/lockdep.h>
8 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
9 #include <linux/sched/sysctl.h>
10 #include <linux/timekeeping.h>
11 #include <xen/xen.h>
12 #include "blk-crypto-internal.h"
13
14 struct elevator_type;
15
16 /* Max future timer expiry for timeouts */
17 #define BLK_MAX_TIMEOUT (5 * HZ)
18
19 extern struct dentry *blk_debugfs_root;
20
21 struct blk_flush_queue {
22 spinlock_t mq_flush_lock;
23 unsigned int flush_pending_idx:1;
24 unsigned int flush_running_idx:1;
25 blk_status_t rq_status;
26 unsigned long flush_pending_since;
27 struct list_head flush_queue[2];
28 unsigned long flush_data_in_flight;
29 struct request *flush_rq;
30 };
31
32 bool is_flush_rq(struct request *req);
33
34 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
35 gfp_t flags);
36 void blk_free_flush_queue(struct blk_flush_queue *q);
37
38 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
39 bool blk_queue_start_drain(struct request_queue *q);
40 bool __blk_freeze_queue_start(struct request_queue *q,
41 struct task_struct *owner);
42 int __bio_queue_enter(struct request_queue *q, struct bio *bio);
43 void submit_bio_noacct_nocheck(struct bio *bio);
44 void bio_await_chain(struct bio *bio);
45
blk_try_enter_queue(struct request_queue * q,bool pm)46 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
47 {
48 rcu_read_lock();
49 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
50 goto fail;
51
52 /*
53 * The code that increments the pm_only counter must ensure that the
54 * counter is globally visible before the queue is unfrozen.
55 */
56 if (blk_queue_pm_only(q) &&
57 (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
58 goto fail_put;
59
60 rcu_read_unlock();
61 return true;
62
63 fail_put:
64 blk_queue_exit(q);
65 fail:
66 rcu_read_unlock();
67 return false;
68 }
69
bio_queue_enter(struct bio * bio)70 static inline int bio_queue_enter(struct bio *bio)
71 {
72 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
73
74 if (blk_try_enter_queue(q, false)) {
75 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
76 rwsem_release(&q->io_lockdep_map, _RET_IP_);
77 return 0;
78 }
79 return __bio_queue_enter(q, bio);
80 }
81
blk_wait_io(struct completion * done)82 static inline void blk_wait_io(struct completion *done)
83 {
84 /* Prevent hang_check timer from firing at us during very long I/O */
85 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
86
87 if (timeout)
88 while (!wait_for_completion_io_timeout(done, timeout))
89 ;
90 else
91 wait_for_completion_io(done);
92 }
93
94 #define BIO_INLINE_VECS 4
95 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
96 gfp_t gfp_mask);
97 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
98
99 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
100 struct page *page, unsigned len, unsigned offset,
101 bool *same_page);
102
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)103 static inline bool biovec_phys_mergeable(struct request_queue *q,
104 struct bio_vec *vec1, struct bio_vec *vec2)
105 {
106 unsigned long mask = queue_segment_boundary(q);
107 phys_addr_t addr1 = bvec_phys(vec1);
108 phys_addr_t addr2 = bvec_phys(vec2);
109
110 /*
111 * Merging adjacent physical pages may not work correctly under KMSAN
112 * if their metadata pages aren't adjacent. Just disable merging.
113 */
114 if (IS_ENABLED(CONFIG_KMSAN))
115 return false;
116
117 if (addr1 + vec1->bv_len != addr2)
118 return false;
119 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
120 return false;
121 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
122 return false;
123 return true;
124 }
125
__bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)126 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
127 struct bio_vec *bprv, unsigned int offset)
128 {
129 return (offset & lim->virt_boundary_mask) ||
130 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
131 }
132
133 /*
134 * Check if adding a bio_vec after bprv with offset would create a gap in
135 * the SG list. Most drivers don't care about this, but some do.
136 */
bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)137 static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
138 struct bio_vec *bprv, unsigned int offset)
139 {
140 if (!lim->virt_boundary_mask)
141 return false;
142 return __bvec_gap_to_prev(lim, bprv, offset);
143 }
144
rq_mergeable(struct request * rq)145 static inline bool rq_mergeable(struct request *rq)
146 {
147 if (blk_rq_is_passthrough(rq))
148 return false;
149
150 if (req_op(rq) == REQ_OP_FLUSH)
151 return false;
152
153 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
154 return false;
155
156 if (req_op(rq) == REQ_OP_ZONE_APPEND)
157 return false;
158
159 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
160 return false;
161 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
162 return false;
163
164 return true;
165 }
166
167 /*
168 * There are two different ways to handle DISCARD merges:
169 * 1) If max_discard_segments > 1, the driver treats every bio as a range and
170 * send the bios to controller together. The ranges don't need to be
171 * contiguous.
172 * 2) Otherwise, the request will be normal read/write requests. The ranges
173 * need to be contiguous.
174 */
blk_discard_mergable(struct request * req)175 static inline bool blk_discard_mergable(struct request *req)
176 {
177 if (req_op(req) == REQ_OP_DISCARD &&
178 queue_max_discard_segments(req->q) > 1)
179 return true;
180 return false;
181 }
182
blk_rq_get_max_segments(struct request * rq)183 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
184 {
185 if (req_op(rq) == REQ_OP_DISCARD)
186 return queue_max_discard_segments(rq->q);
187 return queue_max_segments(rq->q);
188 }
189
blk_queue_get_max_sectors(struct request * rq)190 static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
191 {
192 struct request_queue *q = rq->q;
193 enum req_op op = req_op(rq);
194
195 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
196 return min(q->limits.max_discard_sectors,
197 UINT_MAX >> SECTOR_SHIFT);
198
199 if (unlikely(op == REQ_OP_WRITE_ZEROES))
200 return q->limits.max_write_zeroes_sectors;
201
202 if (rq->cmd_flags & REQ_ATOMIC)
203 return q->limits.atomic_write_max_sectors;
204
205 return q->limits.max_sectors;
206 }
207
208 #ifdef CONFIG_BLK_DEV_INTEGRITY
209 void blk_flush_integrity(void);
210 void bio_integrity_free(struct bio *bio);
211
212 /*
213 * Integrity payloads can either be owned by the submitter, in which case
214 * bio_uninit will free them, or owned and generated by the block layer,
215 * in which case we'll verify them here (for reads) and free them before
216 * the bio is handed back to the submitted.
217 */
218 bool __bio_integrity_endio(struct bio *bio);
bio_integrity_endio(struct bio * bio)219 static inline bool bio_integrity_endio(struct bio *bio)
220 {
221 struct bio_integrity_payload *bip = bio_integrity(bio);
222
223 if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
224 return __bio_integrity_endio(bio);
225 return true;
226 }
227
228 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
229 struct request *);
230 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
231 struct bio *);
232
integrity_req_gap_back_merge(struct request * req,struct bio * next)233 static inline bool integrity_req_gap_back_merge(struct request *req,
234 struct bio *next)
235 {
236 struct bio_integrity_payload *bip = bio_integrity(req->bio);
237 struct bio_integrity_payload *bip_next = bio_integrity(next);
238
239 return bvec_gap_to_prev(&req->q->limits,
240 &bip->bip_vec[bip->bip_vcnt - 1],
241 bip_next->bip_vec[0].bv_offset);
242 }
243
integrity_req_gap_front_merge(struct request * req,struct bio * bio)244 static inline bool integrity_req_gap_front_merge(struct request *req,
245 struct bio *bio)
246 {
247 struct bio_integrity_payload *bip = bio_integrity(bio);
248 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
249
250 return bvec_gap_to_prev(&req->q->limits,
251 &bip->bip_vec[bip->bip_vcnt - 1],
252 bip_next->bip_vec[0].bv_offset);
253 }
254
255 extern const struct attribute_group blk_integrity_attr_group;
256 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)257 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
258 struct request *r1, struct request *r2)
259 {
260 return true;
261 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)262 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
263 struct request *r, struct bio *b)
264 {
265 return true;
266 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)267 static inline bool integrity_req_gap_back_merge(struct request *req,
268 struct bio *next)
269 {
270 return false;
271 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)272 static inline bool integrity_req_gap_front_merge(struct request *req,
273 struct bio *bio)
274 {
275 return false;
276 }
277
blk_flush_integrity(void)278 static inline void blk_flush_integrity(void)
279 {
280 }
bio_integrity_endio(struct bio * bio)281 static inline bool bio_integrity_endio(struct bio *bio)
282 {
283 return true;
284 }
bio_integrity_free(struct bio * bio)285 static inline void bio_integrity_free(struct bio *bio)
286 {
287 }
288 #endif /* CONFIG_BLK_DEV_INTEGRITY */
289
290 unsigned long blk_rq_timeout(unsigned long timeout);
291 void blk_add_timer(struct request *req);
292
293 enum bio_merge_status {
294 BIO_MERGE_OK,
295 BIO_MERGE_NONE,
296 BIO_MERGE_FAILED,
297 };
298
299 enum bio_merge_status bio_attempt_back_merge(struct request *req,
300 struct bio *bio, unsigned int nr_segs);
301 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
302 unsigned int nr_segs);
303 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
304 struct bio *bio, unsigned int nr_segs);
305
306 /*
307 * Plug flush limits
308 */
309 #define BLK_MAX_REQUEST_COUNT 32
310 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
311
312 /*
313 * Internal elevator interface
314 */
315 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
316
317 bool blk_insert_flush(struct request *rq);
318
319 int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
320 void elevator_disable(struct request_queue *q);
321 void elevator_exit(struct request_queue *q);
322 int elv_register_queue(struct request_queue *q, bool uevent);
323 void elv_unregister_queue(struct request_queue *q);
324
325 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
326 char *buf);
327 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
328 char *buf);
329 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
330 char *buf);
331 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
332 char *buf);
333 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
334 const char *buf, size_t count);
335 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
336 ssize_t part_timeout_store(struct device *, struct device_attribute *,
337 const char *, size_t);
338
339 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
340 unsigned *nsegs);
341 struct bio *bio_split_write_zeroes(struct bio *bio,
342 const struct queue_limits *lim, unsigned *nsegs);
343 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
344 unsigned *nr_segs);
345 struct bio *bio_split_zone_append(struct bio *bio,
346 const struct queue_limits *lim, unsigned *nr_segs);
347
348 /*
349 * All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
350 *
351 * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
352 * always valid if a bio has data. The check might lead to occasional false
353 * positives when bios are cloned, but compared to the performance impact of
354 * cloned bios themselves the loop below doesn't matter anyway.
355 */
bio_may_need_split(struct bio * bio,const struct queue_limits * lim)356 static inline bool bio_may_need_split(struct bio *bio,
357 const struct queue_limits *lim)
358 {
359 return lim->chunk_sectors || bio->bi_vcnt != 1 ||
360 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
361 }
362
363 /**
364 * __bio_split_to_limits - split a bio to fit the queue limits
365 * @bio: bio to be split
366 * @lim: queue limits to split based on
367 * @nr_segs: returns the number of segments in the returned bio
368 *
369 * Check if @bio needs splitting based on the queue limits, and if so split off
370 * a bio fitting the limits from the beginning of @bio and return it. @bio is
371 * shortened to the remainder and re-submitted.
372 *
373 * The split bio is allocated from @q->bio_split, which is provided by the
374 * block layer.
375 */
__bio_split_to_limits(struct bio * bio,const struct queue_limits * lim,unsigned int * nr_segs)376 static inline struct bio *__bio_split_to_limits(struct bio *bio,
377 const struct queue_limits *lim, unsigned int *nr_segs)
378 {
379 switch (bio_op(bio)) {
380 case REQ_OP_READ:
381 case REQ_OP_WRITE:
382 if (bio_may_need_split(bio, lim))
383 return bio_split_rw(bio, lim, nr_segs);
384 *nr_segs = 1;
385 return bio;
386 case REQ_OP_ZONE_APPEND:
387 return bio_split_zone_append(bio, lim, nr_segs);
388 case REQ_OP_DISCARD:
389 case REQ_OP_SECURE_ERASE:
390 return bio_split_discard(bio, lim, nr_segs);
391 case REQ_OP_WRITE_ZEROES:
392 return bio_split_write_zeroes(bio, lim, nr_segs);
393 default:
394 /* other operations can't be split */
395 *nr_segs = 0;
396 return bio;
397 }
398 }
399
400 int ll_back_merge_fn(struct request *req, struct bio *bio,
401 unsigned int nr_segs);
402 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
403 struct request *next);
404 unsigned int blk_recalc_rq_segments(struct request *rq);
405 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
406 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
407
408 int blk_set_default_limits(struct queue_limits *lim);
409 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
410 struct queue_limits *lim);
411 int blk_dev_init(void);
412
413 void update_io_ticks(struct block_device *part, unsigned long now, bool end);
414 unsigned int part_in_flight(struct block_device *part);
415
req_set_nomerge(struct request_queue * q,struct request * req)416 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
417 {
418 req->cmd_flags |= REQ_NOMERGE;
419 if (req == q->last_merge)
420 q->last_merge = NULL;
421 }
422
423 /*
424 * Internal io_context interface
425 */
426 struct io_cq *ioc_find_get_icq(struct request_queue *q);
427 struct io_cq *ioc_lookup_icq(struct request_queue *q);
428 #ifdef CONFIG_BLK_ICQ
429 void ioc_clear_queue(struct request_queue *q);
430 #else
ioc_clear_queue(struct request_queue * q)431 static inline void ioc_clear_queue(struct request_queue *q)
432 {
433 }
434 #endif /* CONFIG_BLK_ICQ */
435
436 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
437
blk_queue_may_bounce(struct request_queue * q)438 static inline bool blk_queue_may_bounce(struct request_queue *q)
439 {
440 return IS_ENABLED(CONFIG_BOUNCE) &&
441 (q->limits.features & BLK_FEAT_BOUNCE_HIGH) &&
442 max_low_pfn >= max_pfn;
443 }
444
blk_queue_bounce(struct bio * bio,struct request_queue * q)445 static inline struct bio *blk_queue_bounce(struct bio *bio,
446 struct request_queue *q)
447 {
448 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
449 return __blk_queue_bounce(bio, q);
450 return bio;
451 }
452
453 #ifdef CONFIG_BLK_DEV_ZONED
454 void disk_init_zone_resources(struct gendisk *disk);
455 void disk_free_zone_resources(struct gendisk *disk);
bio_zone_write_plugging(struct bio * bio)456 static inline bool bio_zone_write_plugging(struct bio *bio)
457 {
458 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
459 }
460 void blk_zone_write_plug_bio_merged(struct bio *bio);
461 void blk_zone_write_plug_init_request(struct request *rq);
blk_zone_update_request_bio(struct request * rq,struct bio * bio)462 static inline void blk_zone_update_request_bio(struct request *rq,
463 struct bio *bio)
464 {
465 /*
466 * For zone append requests, the request sector indicates the location
467 * at which the BIO data was written. Return this value to the BIO
468 * issuer through the BIO iter sector.
469 * For plugged zone writes, which include emulated zone append, we need
470 * the original BIO sector so that blk_zone_write_plug_bio_endio() can
471 * lookup the zone write plug.
472 */
473 if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio))
474 bio->bi_iter.bi_sector = rq->__sector;
475 }
476 void blk_zone_write_plug_bio_endio(struct bio *bio);
blk_zone_bio_endio(struct bio * bio)477 static inline void blk_zone_bio_endio(struct bio *bio)
478 {
479 /*
480 * For write BIOs to zoned devices, signal the completion of the BIO so
481 * that the next write BIO can be submitted by zone write plugging.
482 */
483 if (bio_zone_write_plugging(bio))
484 blk_zone_write_plug_bio_endio(bio);
485 }
486
487 void blk_zone_write_plug_finish_request(struct request *rq);
blk_zone_finish_request(struct request * rq)488 static inline void blk_zone_finish_request(struct request *rq)
489 {
490 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
491 blk_zone_write_plug_finish_request(rq);
492 }
493 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
494 unsigned long arg);
495 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
496 unsigned int cmd, unsigned long arg);
497 #else /* CONFIG_BLK_DEV_ZONED */
disk_init_zone_resources(struct gendisk * disk)498 static inline void disk_init_zone_resources(struct gendisk *disk)
499 {
500 }
disk_free_zone_resources(struct gendisk * disk)501 static inline void disk_free_zone_resources(struct gendisk *disk)
502 {
503 }
bio_zone_write_plugging(struct bio * bio)504 static inline bool bio_zone_write_plugging(struct bio *bio)
505 {
506 return false;
507 }
blk_zone_write_plug_bio_merged(struct bio * bio)508 static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
509 {
510 }
blk_zone_write_plug_init_request(struct request * rq)511 static inline void blk_zone_write_plug_init_request(struct request *rq)
512 {
513 }
blk_zone_update_request_bio(struct request * rq,struct bio * bio)514 static inline void blk_zone_update_request_bio(struct request *rq,
515 struct bio *bio)
516 {
517 }
blk_zone_bio_endio(struct bio * bio)518 static inline void blk_zone_bio_endio(struct bio *bio)
519 {
520 }
blk_zone_finish_request(struct request * rq)521 static inline void blk_zone_finish_request(struct request *rq)
522 {
523 }
blkdev_report_zones_ioctl(struct block_device * bdev,unsigned int cmd,unsigned long arg)524 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
525 unsigned int cmd, unsigned long arg)
526 {
527 return -ENOTTY;
528 }
blkdev_zone_mgmt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)529 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
530 blk_mode_t mode, unsigned int cmd, unsigned long arg)
531 {
532 return -ENOTTY;
533 }
534 #endif /* CONFIG_BLK_DEV_ZONED */
535
536 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
537 void bdev_add(struct block_device *bdev, dev_t dev);
538 void bdev_unhash(struct block_device *bdev);
539 void bdev_drop(struct block_device *bdev);
540
541 int blk_alloc_ext_minor(void);
542 void blk_free_ext_minor(unsigned int minor);
543 #define ADDPART_FLAG_NONE 0
544 #define ADDPART_FLAG_RAID 1
545 #define ADDPART_FLAG_WHOLEDISK 2
546 #define ADDPART_FLAG_READONLY 4
547 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
548 sector_t length);
549 int bdev_del_partition(struct gendisk *disk, int partno);
550 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
551 sector_t length);
552 void drop_partition(struct block_device *part);
553
554 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
555
556 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
557 struct lock_class_key *lkclass);
558
559 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
560 struct page *page, unsigned int len, unsigned int offset,
561 unsigned int max_sectors, bool *same_page);
562
563 int bio_add_hw_folio(struct request_queue *q, struct bio *bio,
564 struct folio *folio, size_t len, size_t offset,
565 unsigned int max_sectors, bool *same_page);
566
567 /*
568 * Clean up a page appropriately, where the page may be pinned, may have a
569 * ref taken on it or neither.
570 */
bio_release_page(struct bio * bio,struct page * page)571 static inline void bio_release_page(struct bio *bio, struct page *page)
572 {
573 if (bio_flagged(bio, BIO_PAGE_PINNED))
574 unpin_user_page(page);
575 }
576
577 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
578
579 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
580
581 int disk_alloc_events(struct gendisk *disk);
582 void disk_add_events(struct gendisk *disk);
583 void disk_del_events(struct gendisk *disk);
584 void disk_release_events(struct gendisk *disk);
585 void disk_block_events(struct gendisk *disk);
586 void disk_unblock_events(struct gendisk *disk);
587 void disk_flush_events(struct gendisk *disk, unsigned int mask);
588 extern struct device_attribute dev_attr_events;
589 extern struct device_attribute dev_attr_events_async;
590 extern struct device_attribute dev_attr_events_poll_msecs;
591
592 extern struct attribute_group blk_trace_attr_group;
593
594 blk_mode_t file_to_blk_mode(struct file *file);
595 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
596 loff_t lstart, loff_t lend);
597 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
598 int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags);
599 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
600
601 extern const struct address_space_operations def_blk_aops;
602
603 int disk_register_independent_access_ranges(struct gendisk *disk);
604 void disk_unregister_independent_access_ranges(struct gendisk *disk);
605
606 #ifdef CONFIG_FAIL_MAKE_REQUEST
607 bool should_fail_request(struct block_device *part, unsigned int bytes);
608 #else /* CONFIG_FAIL_MAKE_REQUEST */
should_fail_request(struct block_device * part,unsigned int bytes)609 static inline bool should_fail_request(struct block_device *part,
610 unsigned int bytes)
611 {
612 return false;
613 }
614 #endif /* CONFIG_FAIL_MAKE_REQUEST */
615
616 /*
617 * Optimized request reference counting. Ideally we'd make timeouts be more
618 * clever, as that's the only reason we need references at all... But until
619 * this happens, this is faster than using refcount_t. Also see:
620 *
621 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
622 */
623 #define req_ref_zero_or_close_to_overflow(req) \
624 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
625
req_ref_inc_not_zero(struct request * req)626 static inline bool req_ref_inc_not_zero(struct request *req)
627 {
628 return atomic_inc_not_zero(&req->ref);
629 }
630
req_ref_put_and_test(struct request * req)631 static inline bool req_ref_put_and_test(struct request *req)
632 {
633 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
634 return atomic_dec_and_test(&req->ref);
635 }
636
req_ref_set(struct request * req,int value)637 static inline void req_ref_set(struct request *req, int value)
638 {
639 atomic_set(&req->ref, value);
640 }
641
req_ref_read(struct request * req)642 static inline int req_ref_read(struct request *req)
643 {
644 return atomic_read(&req->ref);
645 }
646
blk_time_get_ns(void)647 static inline u64 blk_time_get_ns(void)
648 {
649 struct blk_plug *plug = current->plug;
650
651 if (!plug || !in_task())
652 return ktime_get_ns();
653
654 /*
655 * 0 could very well be a valid time, but rather than flag "this is
656 * a valid timestamp" separately, just accept that we'll do an extra
657 * ktime_get_ns() if we just happen to get 0 as the current time.
658 */
659 if (!plug->cur_ktime) {
660 plug->cur_ktime = ktime_get_ns();
661 current->flags |= PF_BLOCK_TS;
662 }
663 return plug->cur_ktime;
664 }
665
blk_time_get(void)666 static inline ktime_t blk_time_get(void)
667 {
668 return ns_to_ktime(blk_time_get_ns());
669 }
670
671 /*
672 * From most significant bit:
673 * 1 bit: reserved for other usage, see below
674 * 12 bits: original size of bio
675 * 51 bits: issue time of bio
676 */
677 #define BIO_ISSUE_RES_BITS 1
678 #define BIO_ISSUE_SIZE_BITS 12
679 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
680 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
681 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
682 #define BIO_ISSUE_SIZE_MASK \
683 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
684 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
685
686 /* Reserved bit for blk-throtl */
687 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
688
__bio_issue_time(u64 time)689 static inline u64 __bio_issue_time(u64 time)
690 {
691 return time & BIO_ISSUE_TIME_MASK;
692 }
693
bio_issue_time(struct bio_issue * issue)694 static inline u64 bio_issue_time(struct bio_issue *issue)
695 {
696 return __bio_issue_time(issue->value);
697 }
698
bio_issue_size(struct bio_issue * issue)699 static inline sector_t bio_issue_size(struct bio_issue *issue)
700 {
701 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
702 }
703
bio_issue_init(struct bio_issue * issue,sector_t size)704 static inline void bio_issue_init(struct bio_issue *issue,
705 sector_t size)
706 {
707 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
708 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
709 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
710 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
711 }
712
713 void bdev_release(struct file *bdev_file);
714 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
715 const struct blk_holder_ops *hops, struct file *bdev_file);
716 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
717
718 void blk_integrity_generate(struct bio *bio);
719 void blk_integrity_verify(struct bio *bio);
720 void blk_integrity_prepare(struct request *rq);
721 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
722
blk_freeze_acquire_lock(struct request_queue * q,bool disk_dead,bool queue_dying)723 static inline void blk_freeze_acquire_lock(struct request_queue *q, bool
724 disk_dead, bool queue_dying)
725 {
726 if (!disk_dead)
727 rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_);
728 if (!queue_dying)
729 rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_);
730 }
731
blk_unfreeze_release_lock(struct request_queue * q,bool disk_dead,bool queue_dying)732 static inline void blk_unfreeze_release_lock(struct request_queue *q, bool
733 disk_dead, bool queue_dying)
734 {
735 if (!queue_dying)
736 rwsem_release(&q->q_lockdep_map, _RET_IP_);
737 if (!disk_dead)
738 rwsem_release(&q->io_lockdep_map, _RET_IP_);
739 }
740
741 #endif /* BLK_INTERNAL_H */
742