1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4
5 #include <linux/bio-integrity.h>
6 #include <linux/blk-crypto.h>
7 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
8 #include <linux/sched/sysctl.h>
9 #include <linux/timekeeping.h>
10 #include <xen/xen.h>
11 #include "blk-crypto-internal.h"
12
13 struct elevator_type;
14
15 /* Max future timer expiry for timeouts */
16 #define BLK_MAX_TIMEOUT (5 * HZ)
17
18 extern struct dentry *blk_debugfs_root;
19
20 struct blk_flush_queue {
21 spinlock_t mq_flush_lock;
22 unsigned int flush_pending_idx:1;
23 unsigned int flush_running_idx:1;
24 blk_status_t rq_status;
25 unsigned long flush_pending_since;
26 struct list_head flush_queue[2];
27 unsigned long flush_data_in_flight;
28 struct request *flush_rq;
29 };
30
31 bool is_flush_rq(struct request *req);
32
33 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
34 gfp_t flags);
35 void blk_free_flush_queue(struct blk_flush_queue *q);
36
37 void blk_freeze_queue(struct request_queue *q);
38 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
39 void blk_queue_start_drain(struct request_queue *q);
40 int __bio_queue_enter(struct request_queue *q, struct bio *bio);
41 void submit_bio_noacct_nocheck(struct bio *bio);
42 void bio_await_chain(struct bio *bio);
43
blk_try_enter_queue(struct request_queue * q,bool pm)44 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
45 {
46 rcu_read_lock();
47 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
48 goto fail;
49
50 /*
51 * The code that increments the pm_only counter must ensure that the
52 * counter is globally visible before the queue is unfrozen.
53 */
54 if (blk_queue_pm_only(q) &&
55 (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
56 goto fail_put;
57
58 rcu_read_unlock();
59 return true;
60
61 fail_put:
62 blk_queue_exit(q);
63 fail:
64 rcu_read_unlock();
65 return false;
66 }
67
bio_queue_enter(struct bio * bio)68 static inline int bio_queue_enter(struct bio *bio)
69 {
70 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
71
72 if (blk_try_enter_queue(q, false))
73 return 0;
74 return __bio_queue_enter(q, bio);
75 }
76
blk_wait_io(struct completion * done)77 static inline void blk_wait_io(struct completion *done)
78 {
79 /* Prevent hang_check timer from firing at us during very long I/O */
80 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
81
82 if (timeout)
83 while (!wait_for_completion_io_timeout(done, timeout))
84 ;
85 else
86 wait_for_completion_io(done);
87 }
88
89 #define BIO_INLINE_VECS 4
90 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
91 gfp_t gfp_mask);
92 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
93
94 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
95 struct page *page, unsigned len, unsigned offset,
96 bool *same_page);
97
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)98 static inline bool biovec_phys_mergeable(struct request_queue *q,
99 struct bio_vec *vec1, struct bio_vec *vec2)
100 {
101 unsigned long mask = queue_segment_boundary(q);
102 phys_addr_t addr1 = bvec_phys(vec1);
103 phys_addr_t addr2 = bvec_phys(vec2);
104
105 /*
106 * Merging adjacent physical pages may not work correctly under KMSAN
107 * if their metadata pages aren't adjacent. Just disable merging.
108 */
109 if (IS_ENABLED(CONFIG_KMSAN))
110 return false;
111
112 if (addr1 + vec1->bv_len != addr2)
113 return false;
114 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
115 return false;
116 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
117 return false;
118 return true;
119 }
120
__bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)121 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
122 struct bio_vec *bprv, unsigned int offset)
123 {
124 return (offset & lim->virt_boundary_mask) ||
125 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
126 }
127
128 /*
129 * Check if adding a bio_vec after bprv with offset would create a gap in
130 * the SG list. Most drivers don't care about this, but some do.
131 */
bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)132 static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
133 struct bio_vec *bprv, unsigned int offset)
134 {
135 if (!lim->virt_boundary_mask)
136 return false;
137 return __bvec_gap_to_prev(lim, bprv, offset);
138 }
139
rq_mergeable(struct request * rq)140 static inline bool rq_mergeable(struct request *rq)
141 {
142 if (blk_rq_is_passthrough(rq))
143 return false;
144
145 if (req_op(rq) == REQ_OP_FLUSH)
146 return false;
147
148 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
149 return false;
150
151 if (req_op(rq) == REQ_OP_ZONE_APPEND)
152 return false;
153
154 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
155 return false;
156 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
157 return false;
158
159 return true;
160 }
161
162 /*
163 * There are two different ways to handle DISCARD merges:
164 * 1) If max_discard_segments > 1, the driver treats every bio as a range and
165 * send the bios to controller together. The ranges don't need to be
166 * contiguous.
167 * 2) Otherwise, the request will be normal read/write requests. The ranges
168 * need to be contiguous.
169 */
blk_discard_mergable(struct request * req)170 static inline bool blk_discard_mergable(struct request *req)
171 {
172 if (req_op(req) == REQ_OP_DISCARD &&
173 queue_max_discard_segments(req->q) > 1)
174 return true;
175 return false;
176 }
177
blk_rq_get_max_segments(struct request * rq)178 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
179 {
180 if (req_op(rq) == REQ_OP_DISCARD)
181 return queue_max_discard_segments(rq->q);
182 return queue_max_segments(rq->q);
183 }
184
blk_queue_get_max_sectors(struct request * rq)185 static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
186 {
187 struct request_queue *q = rq->q;
188 enum req_op op = req_op(rq);
189
190 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
191 return min(q->limits.max_discard_sectors,
192 UINT_MAX >> SECTOR_SHIFT);
193
194 if (unlikely(op == REQ_OP_WRITE_ZEROES))
195 return q->limits.max_write_zeroes_sectors;
196
197 if (rq->cmd_flags & REQ_ATOMIC)
198 return q->limits.atomic_write_max_sectors;
199
200 return q->limits.max_sectors;
201 }
202
203 #ifdef CONFIG_BLK_DEV_INTEGRITY
204 void blk_flush_integrity(void);
205 void bio_integrity_free(struct bio *bio);
206
207 /*
208 * Integrity payloads can either be owned by the submitter, in which case
209 * bio_uninit will free them, or owned and generated by the block layer,
210 * in which case we'll verify them here (for reads) and free them before
211 * the bio is handed back to the submitted.
212 */
213 bool __bio_integrity_endio(struct bio *bio);
bio_integrity_endio(struct bio * bio)214 static inline bool bio_integrity_endio(struct bio *bio)
215 {
216 struct bio_integrity_payload *bip = bio_integrity(bio);
217
218 if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
219 return __bio_integrity_endio(bio);
220 return true;
221 }
222
223 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
224 struct request *);
225 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
226 struct bio *);
227
integrity_req_gap_back_merge(struct request * req,struct bio * next)228 static inline bool integrity_req_gap_back_merge(struct request *req,
229 struct bio *next)
230 {
231 struct bio_integrity_payload *bip = bio_integrity(req->bio);
232 struct bio_integrity_payload *bip_next = bio_integrity(next);
233
234 return bvec_gap_to_prev(&req->q->limits,
235 &bip->bip_vec[bip->bip_vcnt - 1],
236 bip_next->bip_vec[0].bv_offset);
237 }
238
integrity_req_gap_front_merge(struct request * req,struct bio * bio)239 static inline bool integrity_req_gap_front_merge(struct request *req,
240 struct bio *bio)
241 {
242 struct bio_integrity_payload *bip = bio_integrity(bio);
243 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
244
245 return bvec_gap_to_prev(&req->q->limits,
246 &bip->bip_vec[bip->bip_vcnt - 1],
247 bip_next->bip_vec[0].bv_offset);
248 }
249
250 extern const struct attribute_group blk_integrity_attr_group;
251 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)252 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
253 struct request *r1, struct request *r2)
254 {
255 return true;
256 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)257 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
258 struct request *r, struct bio *b)
259 {
260 return true;
261 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)262 static inline bool integrity_req_gap_back_merge(struct request *req,
263 struct bio *next)
264 {
265 return false;
266 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)267 static inline bool integrity_req_gap_front_merge(struct request *req,
268 struct bio *bio)
269 {
270 return false;
271 }
272
blk_flush_integrity(void)273 static inline void blk_flush_integrity(void)
274 {
275 }
bio_integrity_endio(struct bio * bio)276 static inline bool bio_integrity_endio(struct bio *bio)
277 {
278 return true;
279 }
bio_integrity_free(struct bio * bio)280 static inline void bio_integrity_free(struct bio *bio)
281 {
282 }
283 #endif /* CONFIG_BLK_DEV_INTEGRITY */
284
285 unsigned long blk_rq_timeout(unsigned long timeout);
286 void blk_add_timer(struct request *req);
287
288 enum bio_merge_status {
289 BIO_MERGE_OK,
290 BIO_MERGE_NONE,
291 BIO_MERGE_FAILED,
292 };
293
294 enum bio_merge_status bio_attempt_back_merge(struct request *req,
295 struct bio *bio, unsigned int nr_segs);
296 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
297 unsigned int nr_segs);
298 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
299 struct bio *bio, unsigned int nr_segs);
300
301 /*
302 * Plug flush limits
303 */
304 #define BLK_MAX_REQUEST_COUNT 32
305 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
306
307 /*
308 * Internal elevator interface
309 */
310 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
311
312 bool blk_insert_flush(struct request *rq);
313
314 int elevator_switch(struct request_queue *q, struct elevator_type *new_e);
315 void elevator_disable(struct request_queue *q);
316 void elevator_exit(struct request_queue *q);
317 int elv_register_queue(struct request_queue *q, bool uevent);
318 void elv_unregister_queue(struct request_queue *q);
319
320 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
321 char *buf);
322 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
323 char *buf);
324 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
325 char *buf);
326 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
327 char *buf);
328 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
329 const char *buf, size_t count);
330 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
331 ssize_t part_timeout_store(struct device *, struct device_attribute *,
332 const char *, size_t);
333
334 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
335 unsigned *nsegs);
336 struct bio *bio_split_write_zeroes(struct bio *bio,
337 const struct queue_limits *lim, unsigned *nsegs);
338 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
339 unsigned *nr_segs);
340 struct bio *bio_split_zone_append(struct bio *bio,
341 const struct queue_limits *lim, unsigned *nr_segs);
342
343 /*
344 * All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
345 *
346 * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
347 * always valid if a bio has data. The check might lead to occasional false
348 * positives when bios are cloned, but compared to the performance impact of
349 * cloned bios themselves the loop below doesn't matter anyway.
350 */
bio_may_need_split(struct bio * bio,const struct queue_limits * lim)351 static inline bool bio_may_need_split(struct bio *bio,
352 const struct queue_limits *lim)
353 {
354 return lim->chunk_sectors || bio->bi_vcnt != 1 ||
355 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE;
356 }
357
358 /**
359 * __bio_split_to_limits - split a bio to fit the queue limits
360 * @bio: bio to be split
361 * @lim: queue limits to split based on
362 * @nr_segs: returns the number of segments in the returned bio
363 *
364 * Check if @bio needs splitting based on the queue limits, and if so split off
365 * a bio fitting the limits from the beginning of @bio and return it. @bio is
366 * shortened to the remainder and re-submitted.
367 *
368 * The split bio is allocated from @q->bio_split, which is provided by the
369 * block layer.
370 */
__bio_split_to_limits(struct bio * bio,const struct queue_limits * lim,unsigned int * nr_segs)371 static inline struct bio *__bio_split_to_limits(struct bio *bio,
372 const struct queue_limits *lim, unsigned int *nr_segs)
373 {
374 switch (bio_op(bio)) {
375 case REQ_OP_READ:
376 case REQ_OP_WRITE:
377 if (bio_may_need_split(bio, lim))
378 return bio_split_rw(bio, lim, nr_segs);
379 *nr_segs = 1;
380 return bio;
381 case REQ_OP_ZONE_APPEND:
382 return bio_split_zone_append(bio, lim, nr_segs);
383 case REQ_OP_DISCARD:
384 case REQ_OP_SECURE_ERASE:
385 return bio_split_discard(bio, lim, nr_segs);
386 case REQ_OP_WRITE_ZEROES:
387 return bio_split_write_zeroes(bio, lim, nr_segs);
388 default:
389 /* other operations can't be split */
390 *nr_segs = 0;
391 return bio;
392 }
393 }
394
395 int ll_back_merge_fn(struct request *req, struct bio *bio,
396 unsigned int nr_segs);
397 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
398 struct request *next);
399 unsigned int blk_recalc_rq_segments(struct request *rq);
400 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
401 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
402
403 int blk_set_default_limits(struct queue_limits *lim);
404 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
405 struct queue_limits *lim);
406 int blk_dev_init(void);
407
408 /*
409 * Contribute to IO statistics IFF:
410 *
411 * a) it's attached to a gendisk, and
412 * b) the queue had IO stats enabled when this request was started
413 */
blk_do_io_stat(struct request * rq)414 static inline bool blk_do_io_stat(struct request *rq)
415 {
416 return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq);
417 }
418
419 void update_io_ticks(struct block_device *part, unsigned long now, bool end);
420 unsigned int part_in_flight(struct block_device *part);
421
req_set_nomerge(struct request_queue * q,struct request * req)422 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
423 {
424 req->cmd_flags |= REQ_NOMERGE;
425 if (req == q->last_merge)
426 q->last_merge = NULL;
427 }
428
429 /*
430 * Internal io_context interface
431 */
432 struct io_cq *ioc_find_get_icq(struct request_queue *q);
433 struct io_cq *ioc_lookup_icq(struct request_queue *q);
434 #ifdef CONFIG_BLK_ICQ
435 void ioc_clear_queue(struct request_queue *q);
436 #else
ioc_clear_queue(struct request_queue * q)437 static inline void ioc_clear_queue(struct request_queue *q)
438 {
439 }
440 #endif /* CONFIG_BLK_ICQ */
441
442 struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q);
443
blk_queue_may_bounce(struct request_queue * q)444 static inline bool blk_queue_may_bounce(struct request_queue *q)
445 {
446 return IS_ENABLED(CONFIG_BOUNCE) &&
447 (q->limits.features & BLK_FEAT_BOUNCE_HIGH) &&
448 max_low_pfn >= max_pfn;
449 }
450
blk_queue_bounce(struct bio * bio,struct request_queue * q)451 static inline struct bio *blk_queue_bounce(struct bio *bio,
452 struct request_queue *q)
453 {
454 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio)))
455 return __blk_queue_bounce(bio, q);
456 return bio;
457 }
458
459 #ifdef CONFIG_BLK_DEV_ZONED
460 void disk_init_zone_resources(struct gendisk *disk);
461 void disk_free_zone_resources(struct gendisk *disk);
bio_zone_write_plugging(struct bio * bio)462 static inline bool bio_zone_write_plugging(struct bio *bio)
463 {
464 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
465 }
bio_is_zone_append(struct bio * bio)466 static inline bool bio_is_zone_append(struct bio *bio)
467 {
468 return bio_op(bio) == REQ_OP_ZONE_APPEND ||
469 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
470 }
471 void blk_zone_write_plug_bio_merged(struct bio *bio);
472 void blk_zone_write_plug_init_request(struct request *rq);
blk_zone_update_request_bio(struct request * rq,struct bio * bio)473 static inline void blk_zone_update_request_bio(struct request *rq,
474 struct bio *bio)
475 {
476 /*
477 * For zone append requests, the request sector indicates the location
478 * at which the BIO data was written. Return this value to the BIO
479 * issuer through the BIO iter sector.
480 * For plugged zone writes, which include emulated zone append, we need
481 * the original BIO sector so that blk_zone_write_plug_bio_endio() can
482 * lookup the zone write plug.
483 */
484 if (req_op(rq) == REQ_OP_ZONE_APPEND || bio_zone_write_plugging(bio))
485 bio->bi_iter.bi_sector = rq->__sector;
486 }
487 void blk_zone_write_plug_bio_endio(struct bio *bio);
blk_zone_bio_endio(struct bio * bio)488 static inline void blk_zone_bio_endio(struct bio *bio)
489 {
490 /*
491 * For write BIOs to zoned devices, signal the completion of the BIO so
492 * that the next write BIO can be submitted by zone write plugging.
493 */
494 if (bio_zone_write_plugging(bio))
495 blk_zone_write_plug_bio_endio(bio);
496 }
497
498 void blk_zone_write_plug_finish_request(struct request *rq);
blk_zone_finish_request(struct request * rq)499 static inline void blk_zone_finish_request(struct request *rq)
500 {
501 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
502 blk_zone_write_plug_finish_request(rq);
503 }
504 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
505 unsigned long arg);
506 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
507 unsigned int cmd, unsigned long arg);
508 #else /* CONFIG_BLK_DEV_ZONED */
disk_init_zone_resources(struct gendisk * disk)509 static inline void disk_init_zone_resources(struct gendisk *disk)
510 {
511 }
disk_free_zone_resources(struct gendisk * disk)512 static inline void disk_free_zone_resources(struct gendisk *disk)
513 {
514 }
bio_zone_write_plugging(struct bio * bio)515 static inline bool bio_zone_write_plugging(struct bio *bio)
516 {
517 return false;
518 }
bio_is_zone_append(struct bio * bio)519 static inline bool bio_is_zone_append(struct bio *bio)
520 {
521 return false;
522 }
blk_zone_write_plug_bio_merged(struct bio * bio)523 static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
524 {
525 }
blk_zone_write_plug_init_request(struct request * rq)526 static inline void blk_zone_write_plug_init_request(struct request *rq)
527 {
528 }
blk_zone_update_request_bio(struct request * rq,struct bio * bio)529 static inline void blk_zone_update_request_bio(struct request *rq,
530 struct bio *bio)
531 {
532 }
blk_zone_bio_endio(struct bio * bio)533 static inline void blk_zone_bio_endio(struct bio *bio)
534 {
535 }
blk_zone_finish_request(struct request * rq)536 static inline void blk_zone_finish_request(struct request *rq)
537 {
538 }
blkdev_report_zones_ioctl(struct block_device * bdev,unsigned int cmd,unsigned long arg)539 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
540 unsigned int cmd, unsigned long arg)
541 {
542 return -ENOTTY;
543 }
blkdev_zone_mgmt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)544 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
545 blk_mode_t mode, unsigned int cmd, unsigned long arg)
546 {
547 return -ENOTTY;
548 }
549 #endif /* CONFIG_BLK_DEV_ZONED */
550
551 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
552 void bdev_add(struct block_device *bdev, dev_t dev);
553 void bdev_unhash(struct block_device *bdev);
554 void bdev_drop(struct block_device *bdev);
555
556 int blk_alloc_ext_minor(void);
557 void blk_free_ext_minor(unsigned int minor);
558 #define ADDPART_FLAG_NONE 0
559 #define ADDPART_FLAG_RAID 1
560 #define ADDPART_FLAG_WHOLEDISK 2
561 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
562 sector_t length);
563 int bdev_del_partition(struct gendisk *disk, int partno);
564 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
565 sector_t length);
566 void drop_partition(struct block_device *part);
567
568 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
569
570 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
571 struct lock_class_key *lkclass);
572
573 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
574 struct page *page, unsigned int len, unsigned int offset,
575 unsigned int max_sectors, bool *same_page);
576
577 int bio_add_hw_folio(struct request_queue *q, struct bio *bio,
578 struct folio *folio, size_t len, size_t offset,
579 unsigned int max_sectors, bool *same_page);
580
581 /*
582 * Clean up a page appropriately, where the page may be pinned, may have a
583 * ref taken on it or neither.
584 */
bio_release_page(struct bio * bio,struct page * page)585 static inline void bio_release_page(struct bio *bio, struct page *page)
586 {
587 if (bio_flagged(bio, BIO_PAGE_PINNED))
588 unpin_user_page(page);
589 }
590
591 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
592
593 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
594
595 int disk_alloc_events(struct gendisk *disk);
596 void disk_add_events(struct gendisk *disk);
597 void disk_del_events(struct gendisk *disk);
598 void disk_release_events(struct gendisk *disk);
599 void disk_block_events(struct gendisk *disk);
600 void disk_unblock_events(struct gendisk *disk);
601 void disk_flush_events(struct gendisk *disk, unsigned int mask);
602 extern struct device_attribute dev_attr_events;
603 extern struct device_attribute dev_attr_events_async;
604 extern struct device_attribute dev_attr_events_poll_msecs;
605
606 extern struct attribute_group blk_trace_attr_group;
607
608 blk_mode_t file_to_blk_mode(struct file *file);
609 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
610 loff_t lstart, loff_t lend);
611 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
612 int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags);
613 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
614
615 extern const struct address_space_operations def_blk_aops;
616
617 int disk_register_independent_access_ranges(struct gendisk *disk);
618 void disk_unregister_independent_access_ranges(struct gendisk *disk);
619
620 #ifdef CONFIG_FAIL_MAKE_REQUEST
621 bool should_fail_request(struct block_device *part, unsigned int bytes);
622 #else /* CONFIG_FAIL_MAKE_REQUEST */
should_fail_request(struct block_device * part,unsigned int bytes)623 static inline bool should_fail_request(struct block_device *part,
624 unsigned int bytes)
625 {
626 return false;
627 }
628 #endif /* CONFIG_FAIL_MAKE_REQUEST */
629
630 /*
631 * Optimized request reference counting. Ideally we'd make timeouts be more
632 * clever, as that's the only reason we need references at all... But until
633 * this happens, this is faster than using refcount_t. Also see:
634 *
635 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
636 */
637 #define req_ref_zero_or_close_to_overflow(req) \
638 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
639
req_ref_inc_not_zero(struct request * req)640 static inline bool req_ref_inc_not_zero(struct request *req)
641 {
642 return atomic_inc_not_zero(&req->ref);
643 }
644
req_ref_put_and_test(struct request * req)645 static inline bool req_ref_put_and_test(struct request *req)
646 {
647 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
648 return atomic_dec_and_test(&req->ref);
649 }
650
req_ref_set(struct request * req,int value)651 static inline void req_ref_set(struct request *req, int value)
652 {
653 atomic_set(&req->ref, value);
654 }
655
req_ref_read(struct request * req)656 static inline int req_ref_read(struct request *req)
657 {
658 return atomic_read(&req->ref);
659 }
660
blk_time_get_ns(void)661 static inline u64 blk_time_get_ns(void)
662 {
663 struct blk_plug *plug = current->plug;
664
665 if (!plug || !in_task())
666 return ktime_get_ns();
667
668 /*
669 * 0 could very well be a valid time, but rather than flag "this is
670 * a valid timestamp" separately, just accept that we'll do an extra
671 * ktime_get_ns() if we just happen to get 0 as the current time.
672 */
673 if (!plug->cur_ktime) {
674 plug->cur_ktime = ktime_get_ns();
675 current->flags |= PF_BLOCK_TS;
676 }
677 return plug->cur_ktime;
678 }
679
blk_time_get(void)680 static inline ktime_t blk_time_get(void)
681 {
682 return ns_to_ktime(blk_time_get_ns());
683 }
684
685 /*
686 * From most significant bit:
687 * 1 bit: reserved for other usage, see below
688 * 12 bits: original size of bio
689 * 51 bits: issue time of bio
690 */
691 #define BIO_ISSUE_RES_BITS 1
692 #define BIO_ISSUE_SIZE_BITS 12
693 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
694 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
695 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
696 #define BIO_ISSUE_SIZE_MASK \
697 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
698 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
699
700 /* Reserved bit for blk-throtl */
701 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
702
__bio_issue_time(u64 time)703 static inline u64 __bio_issue_time(u64 time)
704 {
705 return time & BIO_ISSUE_TIME_MASK;
706 }
707
bio_issue_time(struct bio_issue * issue)708 static inline u64 bio_issue_time(struct bio_issue *issue)
709 {
710 return __bio_issue_time(issue->value);
711 }
712
bio_issue_size(struct bio_issue * issue)713 static inline sector_t bio_issue_size(struct bio_issue *issue)
714 {
715 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
716 }
717
bio_issue_init(struct bio_issue * issue,sector_t size)718 static inline void bio_issue_init(struct bio_issue *issue,
719 sector_t size)
720 {
721 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
722 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
723 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
724 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
725 }
726
727 void bdev_release(struct file *bdev_file);
728 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
729 const struct blk_holder_ops *hops, struct file *bdev_file);
730 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
731
732 void blk_integrity_generate(struct bio *bio);
733 void blk_integrity_verify(struct bio *bio);
734 void blk_integrity_prepare(struct request *rq);
735 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
736
737 #endif /* BLK_INTERNAL_H */
738