xref: /linux/mm/slub.c (revision b687034b1a4d85333ced0fe07f67b17276cccdc8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/node.h>
27 #include <linux/kmsan.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/mempolicy.h>
31 #include <linux/ctype.h>
32 #include <linux/stackdepot.h>
33 #include <linux/debugobjects.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kfence.h>
36 #include <linux/memory.h>
37 #include <linux/math64.h>
38 #include <linux/fault-inject.h>
39 #include <linux/kmemleak.h>
40 #include <linux/stacktrace.h>
41 #include <linux/prefetch.h>
42 #include <linux/memcontrol.h>
43 #include <linux/random.h>
44 #include <kunit/test.h>
45 #include <kunit/test-bug.h>
46 #include <linux/sort.h>
47 #include <linux/irq_work.h>
48 #include <linux/kprobes.h>
49 #include <linux/debugfs.h>
50 #include <trace/events/kmem.h>
51 
52 #include "internal.h"
53 
54 /*
55  * Lock order:
56  *   1. slab_mutex (Global Mutex)
57  *   2. node->list_lock (Spinlock)
58  *   3. kmem_cache->cpu_slab->lock (Local lock)
59  *   4. slab_lock(slab) (Only on some arches)
60  *   5. object_map_lock (Only for debugging)
61  *
62  *   slab_mutex
63  *
64  *   The role of the slab_mutex is to protect the list of all the slabs
65  *   and to synchronize major metadata changes to slab cache structures.
66  *   Also synchronizes memory hotplug callbacks.
67  *
68  *   slab_lock
69  *
70  *   The slab_lock is a wrapper around the page lock, thus it is a bit
71  *   spinlock.
72  *
73  *   The slab_lock is only used on arches that do not have the ability
74  *   to do a cmpxchg_double. It only protects:
75  *
76  *	A. slab->freelist	-> List of free objects in a slab
77  *	B. slab->inuse		-> Number of objects in use
78  *	C. slab->objects	-> Number of objects in slab
79  *	D. slab->frozen		-> frozen state
80  *
81  *   Frozen slabs
82  *
83  *   If a slab is frozen then it is exempt from list management. It is
84  *   the cpu slab which is actively allocated from by the processor that
85  *   froze it and it is not on any list. The processor that froze the
86  *   slab is the one who can perform list operations on the slab. Other
87  *   processors may put objects onto the freelist but the processor that
88  *   froze the slab is the only one that can retrieve the objects from the
89  *   slab's freelist.
90  *
91  *   CPU partial slabs
92  *
93  *   The partially empty slabs cached on the CPU partial list are used
94  *   for performance reasons, which speeds up the allocation process.
95  *   These slabs are not frozen, but are also exempt from list management,
96  *   by clearing the SL_partial flag when moving out of the node
97  *   partial list. Please see __slab_free() for more details.
98  *
99  *   To sum up, the current scheme is:
100  *   - node partial slab: SL_partial && !frozen
101  *   - cpu partial slab: !SL_partial && !frozen
102  *   - cpu slab: !SL_partial && frozen
103  *   - full slab: !SL_partial && !frozen
104  *
105  *   list_lock
106  *
107  *   The list_lock protects the partial and full list on each node and
108  *   the partial slab counter. If taken then no new slabs may be added or
109  *   removed from the lists nor make the number of partial slabs be modified.
110  *   (Note that the total number of slabs is an atomic value that may be
111  *   modified without taking the list lock).
112  *
113  *   The list_lock is a centralized lock and thus we avoid taking it as
114  *   much as possible. As long as SLUB does not have to handle partial
115  *   slabs, operations can continue without any centralized lock. F.e.
116  *   allocating a long series of objects that fill up slabs does not require
117  *   the list lock.
118  *
119  *   For debug caches, all allocations are forced to go through a list_lock
120  *   protected region to serialize against concurrent validation.
121  *
122  *   cpu_slab->lock local lock
123  *
124  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
125  *   except the stat counters. This is a percpu structure manipulated only by
126  *   the local cpu, so the lock protects against being preempted or interrupted
127  *   by an irq. Fast path operations rely on lockless operations instead.
128  *
129  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
130  *   which means the lockless fastpath cannot be used as it might interfere with
131  *   an in-progress slow path operations. In this case the local lock is always
132  *   taken but it still utilizes the freelist for the common operations.
133  *
134  *   lockless fastpaths
135  *
136  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
137  *   are fully lockless when satisfied from the percpu slab (and when
138  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
139  *   They also don't disable preemption or migration or irqs. They rely on
140  *   the transaction id (tid) field to detect being preempted or moved to
141  *   another cpu.
142  *
143  *   irq, preemption, migration considerations
144  *
145  *   Interrupts are disabled as part of list_lock or local_lock operations, or
146  *   around the slab_lock operation, in order to make the slab allocator safe
147  *   to use in the context of an irq.
148  *
149  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
150  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
151  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
152  *   doesn't have to be revalidated in each section protected by the local lock.
153  *
154  * SLUB assigns one slab for allocation to each processor.
155  * Allocations only occur from these slabs called cpu slabs.
156  *
157  * Slabs with free elements are kept on a partial list and during regular
158  * operations no list for full slabs is used. If an object in a full slab is
159  * freed then the slab will show up again on the partial lists.
160  * We track full slabs for debugging purposes though because otherwise we
161  * cannot scan all objects.
162  *
163  * Slabs are freed when they become empty. Teardown and setup is
164  * minimal so we rely on the page allocators per cpu caches for
165  * fast frees and allocs.
166  *
167  * slab->frozen		The slab is frozen and exempt from list processing.
168  * 			This means that the slab is dedicated to a purpose
169  * 			such as satisfying allocations for a specific
170  * 			processor. Objects may be freed in the slab while
171  * 			it is frozen but slab_free will then skip the usual
172  * 			list operations. It is up to the processor holding
173  * 			the slab to integrate the slab into the slab lists
174  * 			when the slab is no longer needed.
175  *
176  * 			One use of this flag is to mark slabs that are
177  * 			used for allocations. Then such a slab becomes a cpu
178  * 			slab. The cpu slab may be equipped with an additional
179  * 			freelist that allows lockless access to
180  * 			free objects in addition to the regular freelist
181  * 			that requires the slab lock.
182  *
183  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
184  * 			options set. This moves	slab handling out of
185  * 			the fast path and disables lockless freelists.
186  */
187 
188 /**
189  * enum slab_flags - How the slab flags bits are used.
190  * @SL_locked: Is locked with slab_lock()
191  * @SL_partial: On the per-node partial list
192  * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
193  *
194  * The slab flags share space with the page flags but some bits have
195  * different interpretations.  The high bits are used for information
196  * like zone/node/section.
197  */
198 enum slab_flags {
199 	SL_locked = PG_locked,
200 	SL_partial = PG_workingset,	/* Historical reasons for this bit */
201 	SL_pfmemalloc = PG_active,	/* Historical reasons for this bit */
202 };
203 
204 /*
205  * We could simply use migrate_disable()/enable() but as long as it's a
206  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
207  */
208 #ifndef CONFIG_PREEMPT_RT
209 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
210 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
211 #define USE_LOCKLESS_FAST_PATH()	(true)
212 #else
213 #define slub_get_cpu_ptr(var)		\
214 ({					\
215 	migrate_disable();		\
216 	this_cpu_ptr(var);		\
217 })
218 #define slub_put_cpu_ptr(var)		\
219 do {					\
220 	(void)(var);			\
221 	migrate_enable();		\
222 } while (0)
223 #define USE_LOCKLESS_FAST_PATH()	(false)
224 #endif
225 
226 #ifndef CONFIG_SLUB_TINY
227 #define __fastpath_inline __always_inline
228 #else
229 #define __fastpath_inline
230 #endif
231 
232 #ifdef CONFIG_SLUB_DEBUG
233 #ifdef CONFIG_SLUB_DEBUG_ON
234 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
235 #else
236 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
237 #endif
238 #endif		/* CONFIG_SLUB_DEBUG */
239 
240 #ifdef CONFIG_NUMA
241 static DEFINE_STATIC_KEY_FALSE(strict_numa);
242 #endif
243 
244 /* Structure holding parameters for get_partial() call chain */
245 struct partial_context {
246 	gfp_t flags;
247 	unsigned int orig_size;
248 	void *object;
249 };
250 
kmem_cache_debug(struct kmem_cache * s)251 static inline bool kmem_cache_debug(struct kmem_cache *s)
252 {
253 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
254 }
255 
fixup_red_left(struct kmem_cache * s,void * p)256 void *fixup_red_left(struct kmem_cache *s, void *p)
257 {
258 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
259 		p += s->red_left_pad;
260 
261 	return p;
262 }
263 
kmem_cache_has_cpu_partial(struct kmem_cache * s)264 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
265 {
266 #ifdef CONFIG_SLUB_CPU_PARTIAL
267 	return !kmem_cache_debug(s);
268 #else
269 	return false;
270 #endif
271 }
272 
273 /*
274  * Issues still to be resolved:
275  *
276  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
277  *
278  * - Variable sizing of the per node arrays
279  */
280 
281 /* Enable to log cmpxchg failures */
282 #undef SLUB_DEBUG_CMPXCHG
283 
284 #ifndef CONFIG_SLUB_TINY
285 /*
286  * Minimum number of partial slabs. These will be left on the partial
287  * lists even if they are empty. kmem_cache_shrink may reclaim them.
288  */
289 #define MIN_PARTIAL 5
290 
291 /*
292  * Maximum number of desirable partial slabs.
293  * The existence of more partial slabs makes kmem_cache_shrink
294  * sort the partial list by the number of objects in use.
295  */
296 #define MAX_PARTIAL 10
297 #else
298 #define MIN_PARTIAL 0
299 #define MAX_PARTIAL 0
300 #endif
301 
302 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
303 				SLAB_POISON | SLAB_STORE_USER)
304 
305 /*
306  * These debug flags cannot use CMPXCHG because there might be consistency
307  * issues when checking or reading debug information
308  */
309 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
310 				SLAB_TRACE)
311 
312 
313 /*
314  * Debugging flags that require metadata to be stored in the slab.  These get
315  * disabled when slab_debug=O is used and a cache's min order increases with
316  * metadata.
317  */
318 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
319 
320 #define OO_SHIFT	16
321 #define OO_MASK		((1 << OO_SHIFT) - 1)
322 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
323 
324 /* Internal SLUB flags */
325 /* Poison object */
326 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
327 /* Use cmpxchg_double */
328 
329 #ifdef system_has_freelist_aba
330 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
331 #else
332 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
333 #endif
334 
335 /*
336  * Tracking user of a slab.
337  */
338 #define TRACK_ADDRS_COUNT 16
339 struct track {
340 	unsigned long addr;	/* Called from address */
341 #ifdef CONFIG_STACKDEPOT
342 	depot_stack_handle_t handle;
343 #endif
344 	int cpu;		/* Was running on cpu */
345 	int pid;		/* Pid context */
346 	unsigned long when;	/* When did the operation occur */
347 };
348 
349 enum track_item { TRACK_ALLOC, TRACK_FREE };
350 
351 #ifdef SLAB_SUPPORTS_SYSFS
352 static int sysfs_slab_add(struct kmem_cache *);
353 static int sysfs_slab_alias(struct kmem_cache *, const char *);
354 #else
sysfs_slab_add(struct kmem_cache * s)355 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)356 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
357 							{ return 0; }
358 #endif
359 
360 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
361 static void debugfs_slab_add(struct kmem_cache *);
362 #else
debugfs_slab_add(struct kmem_cache * s)363 static inline void debugfs_slab_add(struct kmem_cache *s) { }
364 #endif
365 
366 enum stat_item {
367 	ALLOC_PCS,		/* Allocation from percpu sheaf */
368 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
369 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
370 	FREE_PCS,		/* Free to percpu sheaf */
371 	FREE_RCU_SHEAF,		/* Free to rcu_free sheaf */
372 	FREE_RCU_SHEAF_FAIL,	/* Failed to free to a rcu_free sheaf */
373 	FREE_FASTPATH,		/* Free to cpu slab */
374 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
375 	FREE_FROZEN,		/* Freeing to frozen slab */
376 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
377 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
378 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
379 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
380 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
381 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
382 	FREE_SLAB,		/* Slab freed to the page allocator */
383 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
384 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
385 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
386 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
387 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
388 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
389 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
390 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
391 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
392 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
393 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
394 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
395 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
396 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
397 	SHEAF_FLUSH,		/* Objects flushed from a sheaf */
398 	SHEAF_REFILL,		/* Objects refilled to a sheaf */
399 	SHEAF_ALLOC,		/* Allocation of an empty sheaf */
400 	SHEAF_FREE,		/* Freeing of an empty sheaf */
401 	BARN_GET,		/* Got full sheaf from barn */
402 	BARN_GET_FAIL,		/* Failed to get full sheaf from barn */
403 	BARN_PUT,		/* Put full sheaf to barn */
404 	BARN_PUT_FAIL,		/* Failed to put full sheaf to barn */
405 	SHEAF_PREFILL_FAST,	/* Sheaf prefill grabbed the spare sheaf */
406 	SHEAF_PREFILL_SLOW,	/* Sheaf prefill found no spare sheaf */
407 	SHEAF_PREFILL_OVERSIZE,	/* Allocation of oversize sheaf for prefill */
408 	SHEAF_RETURN_FAST,	/* Sheaf return reattached spare sheaf */
409 	SHEAF_RETURN_SLOW,	/* Sheaf return could not reattach spare */
410 	NR_SLUB_STAT_ITEMS
411 };
412 
413 struct freelist_tid {
414 	union {
415 		struct {
416 			void *freelist;		/* Pointer to next available object */
417 			unsigned long tid;	/* Globally unique transaction id */
418 		};
419 		freelist_full_t freelist_tid;
420 	};
421 };
422 
423 /*
424  * When changing the layout, make sure freelist and tid are still compatible
425  * with this_cpu_cmpxchg_double() alignment requirements.
426  */
427 struct kmem_cache_cpu {
428 	struct freelist_tid;
429 	struct slab *slab;	/* The slab from which we are allocating */
430 #ifdef CONFIG_SLUB_CPU_PARTIAL
431 	struct slab *partial;	/* Partially allocated slabs */
432 #endif
433 	local_trylock_t lock;	/* Protects the fields above */
434 #ifdef CONFIG_SLUB_STATS
435 	unsigned int stat[NR_SLUB_STAT_ITEMS];
436 #endif
437 };
438 
stat(const struct kmem_cache * s,enum stat_item si)439 static inline void stat(const struct kmem_cache *s, enum stat_item si)
440 {
441 #ifdef CONFIG_SLUB_STATS
442 	/*
443 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
444 	 * avoid this_cpu_add()'s irq-disable overhead.
445 	 */
446 	raw_cpu_inc(s->cpu_slab->stat[si]);
447 #endif
448 }
449 
450 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)451 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
452 {
453 #ifdef CONFIG_SLUB_STATS
454 	raw_cpu_add(s->cpu_slab->stat[si], v);
455 #endif
456 }
457 
458 #define MAX_FULL_SHEAVES	10
459 #define MAX_EMPTY_SHEAVES	10
460 
461 struct node_barn {
462 	spinlock_t lock;
463 	struct list_head sheaves_full;
464 	struct list_head sheaves_empty;
465 	unsigned int nr_full;
466 	unsigned int nr_empty;
467 };
468 
469 struct slab_sheaf {
470 	union {
471 		struct rcu_head rcu_head;
472 		struct list_head barn_list;
473 		/* only used for prefilled sheafs */
474 		struct {
475 			unsigned int capacity;
476 			bool pfmemalloc;
477 		};
478 	};
479 	struct kmem_cache *cache;
480 	unsigned int size;
481 	int node; /* only used for rcu_sheaf */
482 	void *objects[];
483 };
484 
485 struct slub_percpu_sheaves {
486 	local_trylock_t lock;
487 	struct slab_sheaf *main; /* never NULL when unlocked */
488 	struct slab_sheaf *spare; /* empty or full, may be NULL */
489 	struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
490 };
491 
492 /*
493  * The slab lists for all objects.
494  */
495 struct kmem_cache_node {
496 	spinlock_t list_lock;
497 	unsigned long nr_partial;
498 	struct list_head partial;
499 #ifdef CONFIG_SLUB_DEBUG
500 	atomic_long_t nr_slabs;
501 	atomic_long_t total_objects;
502 	struct list_head full;
503 #endif
504 	struct node_barn *barn;
505 };
506 
get_node(struct kmem_cache * s,int node)507 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
508 {
509 	return s->node[node];
510 }
511 
512 /*
513  * Get the barn of the current cpu's closest memory node. It may not exist on
514  * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES
515  */
get_barn(struct kmem_cache * s)516 static inline struct node_barn *get_barn(struct kmem_cache *s)
517 {
518 	struct kmem_cache_node *n = get_node(s, numa_mem_id());
519 
520 	if (!n)
521 		return NULL;
522 
523 	return n->barn;
524 }
525 
526 /*
527  * Iterator over all nodes. The body will be executed for each node that has
528  * a kmem_cache_node structure allocated (which is true for all online nodes)
529  */
530 #define for_each_kmem_cache_node(__s, __node, __n) \
531 	for (__node = 0; __node < nr_node_ids; __node++) \
532 		 if ((__n = get_node(__s, __node)))
533 
534 /*
535  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
536  * Corresponds to node_state[N_MEMORY], but can temporarily
537  * differ during memory hotplug/hotremove operations.
538  * Protected by slab_mutex.
539  */
540 static nodemask_t slab_nodes;
541 
542 /*
543  * Workqueue used for flush_cpu_slab().
544  */
545 static struct workqueue_struct *flushwq;
546 
547 struct slub_flush_work {
548 	struct work_struct work;
549 	struct kmem_cache *s;
550 	bool skip;
551 };
552 
553 static DEFINE_MUTEX(flush_lock);
554 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
555 
556 /********************************************************************
557  * 			Core slab cache functions
558  *******************************************************************/
559 
560 /*
561  * Returns freelist pointer (ptr). With hardening, this is obfuscated
562  * with an XOR of the address where the pointer is held and a per-cache
563  * random number.
564  */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)565 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
566 					    void *ptr, unsigned long ptr_addr)
567 {
568 	unsigned long encoded;
569 
570 #ifdef CONFIG_SLAB_FREELIST_HARDENED
571 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
572 #else
573 	encoded = (unsigned long)ptr;
574 #endif
575 	return (freeptr_t){.v = encoded};
576 }
577 
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)578 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
579 					freeptr_t ptr, unsigned long ptr_addr)
580 {
581 	void *decoded;
582 
583 #ifdef CONFIG_SLAB_FREELIST_HARDENED
584 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
585 #else
586 	decoded = (void *)ptr.v;
587 #endif
588 	return decoded;
589 }
590 
get_freepointer(struct kmem_cache * s,void * object)591 static inline void *get_freepointer(struct kmem_cache *s, void *object)
592 {
593 	unsigned long ptr_addr;
594 	freeptr_t p;
595 
596 	object = kasan_reset_tag(object);
597 	ptr_addr = (unsigned long)object + s->offset;
598 	p = *(freeptr_t *)(ptr_addr);
599 	return freelist_ptr_decode(s, p, ptr_addr);
600 }
601 
prefetch_freepointer(const struct kmem_cache * s,void * object)602 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
603 {
604 	prefetchw(object + s->offset);
605 }
606 
607 /*
608  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
609  * pointer value in the case the current thread loses the race for the next
610  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
611  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
612  * KMSAN will still check all arguments of cmpxchg because of imperfect
613  * handling of inline assembly.
614  * To work around this problem, we apply __no_kmsan_checks to ensure that
615  * get_freepointer_safe() returns initialized memory.
616  */
617 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)618 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
619 {
620 	unsigned long freepointer_addr;
621 	freeptr_t p;
622 
623 	if (!debug_pagealloc_enabled_static())
624 		return get_freepointer(s, object);
625 
626 	object = kasan_reset_tag(object);
627 	freepointer_addr = (unsigned long)object + s->offset;
628 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
629 	return freelist_ptr_decode(s, p, freepointer_addr);
630 }
631 
set_freepointer(struct kmem_cache * s,void * object,void * fp)632 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
633 {
634 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
635 
636 #ifdef CONFIG_SLAB_FREELIST_HARDENED
637 	BUG_ON(object == fp); /* naive detection of double free or corruption */
638 #endif
639 
640 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
641 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
642 }
643 
644 /*
645  * See comment in calculate_sizes().
646  */
freeptr_outside_object(struct kmem_cache * s)647 static inline bool freeptr_outside_object(struct kmem_cache *s)
648 {
649 	return s->offset >= s->inuse;
650 }
651 
652 /*
653  * Return offset of the end of info block which is inuse + free pointer if
654  * not overlapping with object.
655  */
get_info_end(struct kmem_cache * s)656 static inline unsigned int get_info_end(struct kmem_cache *s)
657 {
658 	if (freeptr_outside_object(s))
659 		return s->inuse + sizeof(void *);
660 	else
661 		return s->inuse;
662 }
663 
664 /* Loop over all objects in a slab */
665 #define for_each_object(__p, __s, __addr, __objects) \
666 	for (__p = fixup_red_left(__s, __addr); \
667 		__p < (__addr) + (__objects) * (__s)->size; \
668 		__p += (__s)->size)
669 
order_objects(unsigned int order,unsigned int size)670 static inline unsigned int order_objects(unsigned int order, unsigned int size)
671 {
672 	return ((unsigned int)PAGE_SIZE << order) / size;
673 }
674 
oo_make(unsigned int order,unsigned int size)675 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
676 		unsigned int size)
677 {
678 	struct kmem_cache_order_objects x = {
679 		(order << OO_SHIFT) + order_objects(order, size)
680 	};
681 
682 	return x;
683 }
684 
oo_order(struct kmem_cache_order_objects x)685 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
686 {
687 	return x.x >> OO_SHIFT;
688 }
689 
oo_objects(struct kmem_cache_order_objects x)690 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
691 {
692 	return x.x & OO_MASK;
693 }
694 
695 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)696 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
697 {
698 	unsigned int nr_slabs;
699 
700 	s->cpu_partial = nr_objects;
701 
702 	/*
703 	 * We take the number of objects but actually limit the number of
704 	 * slabs on the per cpu partial list, in order to limit excessive
705 	 * growth of the list. For simplicity we assume that the slabs will
706 	 * be half-full.
707 	 */
708 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
709 	s->cpu_partial_slabs = nr_slabs;
710 }
711 
slub_get_cpu_partial(struct kmem_cache * s)712 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
713 {
714 	return s->cpu_partial_slabs;
715 }
716 #else
717 #ifdef SLAB_SUPPORTS_SYSFS
718 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)719 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
720 {
721 }
722 #endif
723 
slub_get_cpu_partial(struct kmem_cache * s)724 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
725 {
726 	return 0;
727 }
728 #endif /* CONFIG_SLUB_CPU_PARTIAL */
729 
730 /*
731  * If network-based swap is enabled, slub must keep track of whether memory
732  * were allocated from pfmemalloc reserves.
733  */
slab_test_pfmemalloc(const struct slab * slab)734 static inline bool slab_test_pfmemalloc(const struct slab *slab)
735 {
736 	return test_bit(SL_pfmemalloc, &slab->flags.f);
737 }
738 
slab_set_pfmemalloc(struct slab * slab)739 static inline void slab_set_pfmemalloc(struct slab *slab)
740 {
741 	set_bit(SL_pfmemalloc, &slab->flags.f);
742 }
743 
__slab_clear_pfmemalloc(struct slab * slab)744 static inline void __slab_clear_pfmemalloc(struct slab *slab)
745 {
746 	__clear_bit(SL_pfmemalloc, &slab->flags.f);
747 }
748 
749 /*
750  * Per slab locking using the pagelock
751  */
slab_lock(struct slab * slab)752 static __always_inline void slab_lock(struct slab *slab)
753 {
754 	bit_spin_lock(SL_locked, &slab->flags.f);
755 }
756 
slab_unlock(struct slab * slab)757 static __always_inline void slab_unlock(struct slab *slab)
758 {
759 	bit_spin_unlock(SL_locked, &slab->flags.f);
760 }
761 
762 static inline bool
__update_freelist_fast(struct slab * slab,struct freelist_counters * old,struct freelist_counters * new)763 __update_freelist_fast(struct slab *slab, struct freelist_counters *old,
764 		       struct freelist_counters *new)
765 {
766 #ifdef system_has_freelist_aba
767 	return try_cmpxchg_freelist(&slab->freelist_counters,
768 				    &old->freelist_counters,
769 				    new->freelist_counters);
770 #else
771 	return false;
772 #endif
773 }
774 
775 static inline bool
__update_freelist_slow(struct slab * slab,struct freelist_counters * old,struct freelist_counters * new)776 __update_freelist_slow(struct slab *slab, struct freelist_counters *old,
777 		       struct freelist_counters *new)
778 {
779 	bool ret = false;
780 
781 	slab_lock(slab);
782 	if (slab->freelist == old->freelist &&
783 	    slab->counters == old->counters) {
784 		slab->freelist = new->freelist;
785 		slab->counters = new->counters;
786 		ret = true;
787 	}
788 	slab_unlock(slab);
789 
790 	return ret;
791 }
792 
793 /*
794  * Interrupts must be disabled (for the fallback code to work right), typically
795  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
796  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
797  * allocation/ free operation in hardirq context. Therefore nothing can
798  * interrupt the operation.
799  */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,struct freelist_counters * old,struct freelist_counters * new,const char * n)800 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
801 		struct freelist_counters *old, struct freelist_counters *new, const char *n)
802 {
803 	bool ret;
804 
805 	if (USE_LOCKLESS_FAST_PATH())
806 		lockdep_assert_irqs_disabled();
807 
808 	if (s->flags & __CMPXCHG_DOUBLE)
809 		ret = __update_freelist_fast(slab, old, new);
810 	else
811 		ret = __update_freelist_slow(slab, old, new);
812 
813 	if (likely(ret))
814 		return true;
815 
816 	cpu_relax();
817 	stat(s, CMPXCHG_DOUBLE_FAIL);
818 
819 #ifdef SLUB_DEBUG_CMPXCHG
820 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
821 #endif
822 
823 	return false;
824 }
825 
slab_update_freelist(struct kmem_cache * s,struct slab * slab,struct freelist_counters * old,struct freelist_counters * new,const char * n)826 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
827 		struct freelist_counters *old, struct freelist_counters *new, const char *n)
828 {
829 	bool ret;
830 
831 	if (s->flags & __CMPXCHG_DOUBLE) {
832 		ret = __update_freelist_fast(slab, old, new);
833 	} else {
834 		unsigned long flags;
835 
836 		local_irq_save(flags);
837 		ret = __update_freelist_slow(slab, old, new);
838 		local_irq_restore(flags);
839 	}
840 	if (likely(ret))
841 		return true;
842 
843 	cpu_relax();
844 	stat(s, CMPXCHG_DOUBLE_FAIL);
845 
846 #ifdef SLUB_DEBUG_CMPXCHG
847 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
848 #endif
849 
850 	return false;
851 }
852 
853 /*
854  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
855  * family will round up the real request size to these fixed ones, so
856  * there could be an extra area than what is requested. Save the original
857  * request size in the meta data area, for better debug and sanity check.
858  */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)859 static inline void set_orig_size(struct kmem_cache *s,
860 				void *object, unsigned int orig_size)
861 {
862 	void *p = kasan_reset_tag(object);
863 
864 	if (!slub_debug_orig_size(s))
865 		return;
866 
867 	p += get_info_end(s);
868 	p += sizeof(struct track) * 2;
869 
870 	*(unsigned int *)p = orig_size;
871 }
872 
get_orig_size(struct kmem_cache * s,void * object)873 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
874 {
875 	void *p = kasan_reset_tag(object);
876 
877 	if (is_kfence_address(object))
878 		return kfence_ksize(object);
879 
880 	if (!slub_debug_orig_size(s))
881 		return s->object_size;
882 
883 	p += get_info_end(s);
884 	p += sizeof(struct track) * 2;
885 
886 	return *(unsigned int *)p;
887 }
888 
889 #ifdef CONFIG_SLUB_DEBUG
890 
891 /*
892  * For debugging context when we want to check if the struct slab pointer
893  * appears to be valid.
894  */
validate_slab_ptr(struct slab * slab)895 static inline bool validate_slab_ptr(struct slab *slab)
896 {
897 	return PageSlab(slab_page(slab));
898 }
899 
900 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
901 static DEFINE_SPINLOCK(object_map_lock);
902 
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)903 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
904 		       struct slab *slab)
905 {
906 	void *addr = slab_address(slab);
907 	void *p;
908 
909 	bitmap_zero(obj_map, slab->objects);
910 
911 	for (p = slab->freelist; p; p = get_freepointer(s, p))
912 		set_bit(__obj_to_index(s, addr, p), obj_map);
913 }
914 
915 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)916 static bool slab_add_kunit_errors(void)
917 {
918 	struct kunit_resource *resource;
919 
920 	if (!kunit_get_current_test())
921 		return false;
922 
923 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
924 	if (!resource)
925 		return false;
926 
927 	(*(int *)resource->data)++;
928 	kunit_put_resource(resource);
929 	return true;
930 }
931 
slab_in_kunit_test(void)932 bool slab_in_kunit_test(void)
933 {
934 	struct kunit_resource *resource;
935 
936 	if (!kunit_get_current_test())
937 		return false;
938 
939 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
940 	if (!resource)
941 		return false;
942 
943 	kunit_put_resource(resource);
944 	return true;
945 }
946 #else
slab_add_kunit_errors(void)947 static inline bool slab_add_kunit_errors(void) { return false; }
948 #endif
949 
size_from_object(struct kmem_cache * s)950 static inline unsigned int size_from_object(struct kmem_cache *s)
951 {
952 	if (s->flags & SLAB_RED_ZONE)
953 		return s->size - s->red_left_pad;
954 
955 	return s->size;
956 }
957 
restore_red_left(struct kmem_cache * s,void * p)958 static inline void *restore_red_left(struct kmem_cache *s, void *p)
959 {
960 	if (s->flags & SLAB_RED_ZONE)
961 		p -= s->red_left_pad;
962 
963 	return p;
964 }
965 
966 /*
967  * Debug settings:
968  */
969 #if defined(CONFIG_SLUB_DEBUG_ON)
970 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
971 #else
972 static slab_flags_t slub_debug;
973 #endif
974 
975 static const char *slub_debug_string __ro_after_init;
976 static int disable_higher_order_debug;
977 
978 /*
979  * slub is about to manipulate internal object metadata.  This memory lies
980  * outside the range of the allocated object, so accessing it would normally
981  * be reported by kasan as a bounds error.  metadata_access_enable() is used
982  * to tell kasan that these accesses are OK.
983  */
metadata_access_enable(void)984 static inline void metadata_access_enable(void)
985 {
986 	kasan_disable_current();
987 	kmsan_disable_current();
988 }
989 
metadata_access_disable(void)990 static inline void metadata_access_disable(void)
991 {
992 	kmsan_enable_current();
993 	kasan_enable_current();
994 }
995 
996 /*
997  * Object debugging
998  */
999 
1000 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)1001 static inline int check_valid_pointer(struct kmem_cache *s,
1002 				struct slab *slab, void *object)
1003 {
1004 	void *base;
1005 
1006 	if (!object)
1007 		return 1;
1008 
1009 	base = slab_address(slab);
1010 	object = kasan_reset_tag(object);
1011 	object = restore_red_left(s, object);
1012 	if (object < base || object >= base + slab->objects * s->size ||
1013 		(object - base) % s->size) {
1014 		return 0;
1015 	}
1016 
1017 	return 1;
1018 }
1019 
print_section(char * level,char * text,u8 * addr,unsigned int length)1020 static void print_section(char *level, char *text, u8 *addr,
1021 			  unsigned int length)
1022 {
1023 	metadata_access_enable();
1024 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
1025 			16, 1, kasan_reset_tag((void *)addr), length, 1);
1026 	metadata_access_disable();
1027 }
1028 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)1029 static struct track *get_track(struct kmem_cache *s, void *object,
1030 	enum track_item alloc)
1031 {
1032 	struct track *p;
1033 
1034 	p = object + get_info_end(s);
1035 
1036 	return kasan_reset_tag(p + alloc);
1037 }
1038 
1039 #ifdef CONFIG_STACKDEPOT
set_track_prepare(gfp_t gfp_flags)1040 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1041 {
1042 	depot_stack_handle_t handle;
1043 	unsigned long entries[TRACK_ADDRS_COUNT];
1044 	unsigned int nr_entries;
1045 
1046 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
1047 	handle = stack_depot_save(entries, nr_entries, gfp_flags);
1048 
1049 	return handle;
1050 }
1051 #else
set_track_prepare(gfp_t gfp_flags)1052 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1053 {
1054 	return 0;
1055 }
1056 #endif
1057 
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)1058 static void set_track_update(struct kmem_cache *s, void *object,
1059 			     enum track_item alloc, unsigned long addr,
1060 			     depot_stack_handle_t handle)
1061 {
1062 	struct track *p = get_track(s, object, alloc);
1063 
1064 #ifdef CONFIG_STACKDEPOT
1065 	p->handle = handle;
1066 #endif
1067 	p->addr = addr;
1068 	p->cpu = smp_processor_id();
1069 	p->pid = current->pid;
1070 	p->when = jiffies;
1071 }
1072 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)1073 static __always_inline void set_track(struct kmem_cache *s, void *object,
1074 				      enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1075 {
1076 	depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1077 
1078 	set_track_update(s, object, alloc, addr, handle);
1079 }
1080 
init_tracking(struct kmem_cache * s,void * object)1081 static void init_tracking(struct kmem_cache *s, void *object)
1082 {
1083 	struct track *p;
1084 
1085 	if (!(s->flags & SLAB_STORE_USER))
1086 		return;
1087 
1088 	p = get_track(s, object, TRACK_ALLOC);
1089 	memset(p, 0, 2*sizeof(struct track));
1090 }
1091 
print_track(const char * s,struct track * t,unsigned long pr_time)1092 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1093 {
1094 	depot_stack_handle_t handle __maybe_unused;
1095 
1096 	if (!t->addr)
1097 		return;
1098 
1099 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1100 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1101 #ifdef CONFIG_STACKDEPOT
1102 	handle = READ_ONCE(t->handle);
1103 	if (handle)
1104 		stack_depot_print(handle);
1105 	else
1106 		pr_err("object allocation/free stack trace missing\n");
1107 #endif
1108 }
1109 
print_tracking(struct kmem_cache * s,void * object)1110 void print_tracking(struct kmem_cache *s, void *object)
1111 {
1112 	unsigned long pr_time = jiffies;
1113 	if (!(s->flags & SLAB_STORE_USER))
1114 		return;
1115 
1116 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1117 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1118 }
1119 
print_slab_info(const struct slab * slab)1120 static void print_slab_info(const struct slab *slab)
1121 {
1122 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1123 	       slab, slab->objects, slab->inuse, slab->freelist,
1124 	       &slab->flags.f);
1125 }
1126 
skip_orig_size_check(struct kmem_cache * s,const void * object)1127 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1128 {
1129 	set_orig_size(s, (void *)object, s->object_size);
1130 }
1131 
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1132 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1133 {
1134 	struct va_format vaf;
1135 	va_list args;
1136 
1137 	va_copy(args, argsp);
1138 	vaf.fmt = fmt;
1139 	vaf.va = &args;
1140 	pr_err("=============================================================================\n");
1141 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1142 	pr_err("-----------------------------------------------------------------------------\n\n");
1143 	va_end(args);
1144 }
1145 
slab_bug(struct kmem_cache * s,const char * fmt,...)1146 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1147 {
1148 	va_list args;
1149 
1150 	va_start(args, fmt);
1151 	__slab_bug(s, fmt, args);
1152 	va_end(args);
1153 }
1154 
1155 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1156 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1157 {
1158 	struct va_format vaf;
1159 	va_list args;
1160 
1161 	if (slab_add_kunit_errors())
1162 		return;
1163 
1164 	va_start(args, fmt);
1165 	vaf.fmt = fmt;
1166 	vaf.va = &args;
1167 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1168 	va_end(args);
1169 }
1170 
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1171 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1172 {
1173 	unsigned int off;	/* Offset of last byte */
1174 	u8 *addr = slab_address(slab);
1175 
1176 	print_tracking(s, p);
1177 
1178 	print_slab_info(slab);
1179 
1180 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1181 	       p, p - addr, get_freepointer(s, p));
1182 
1183 	if (s->flags & SLAB_RED_ZONE)
1184 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1185 			      s->red_left_pad);
1186 	else if (p > addr + 16)
1187 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1188 
1189 	print_section(KERN_ERR,         "Object   ", p,
1190 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1191 	if (s->flags & SLAB_RED_ZONE)
1192 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1193 			s->inuse - s->object_size);
1194 
1195 	off = get_info_end(s);
1196 
1197 	if (s->flags & SLAB_STORE_USER)
1198 		off += 2 * sizeof(struct track);
1199 
1200 	if (slub_debug_orig_size(s))
1201 		off += sizeof(unsigned int);
1202 
1203 	off += kasan_metadata_size(s, false);
1204 
1205 	if (off != size_from_object(s))
1206 		/* Beginning of the filler is the free pointer */
1207 		print_section(KERN_ERR, "Padding  ", p + off,
1208 			      size_from_object(s) - off);
1209 }
1210 
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1211 static void object_err(struct kmem_cache *s, struct slab *slab,
1212 			u8 *object, const char *reason)
1213 {
1214 	if (slab_add_kunit_errors())
1215 		return;
1216 
1217 	slab_bug(s, reason);
1218 	if (!object || !check_valid_pointer(s, slab, object)) {
1219 		print_slab_info(slab);
1220 		pr_err("Invalid pointer 0x%p\n", object);
1221 	} else {
1222 		print_trailer(s, slab, object);
1223 	}
1224 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1225 
1226 	WARN_ON(1);
1227 }
1228 
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1229 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1230 			       void **freelist, void *nextfree)
1231 {
1232 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1233 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1234 		object_err(s, slab, *freelist, "Freechain corrupt");
1235 		*freelist = NULL;
1236 		slab_fix(s, "Isolate corrupted freechain");
1237 		return true;
1238 	}
1239 
1240 	return false;
1241 }
1242 
__slab_err(struct slab * slab)1243 static void __slab_err(struct slab *slab)
1244 {
1245 	if (slab_in_kunit_test())
1246 		return;
1247 
1248 	print_slab_info(slab);
1249 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1250 
1251 	WARN_ON(1);
1252 }
1253 
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1254 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1255 			const char *fmt, ...)
1256 {
1257 	va_list args;
1258 
1259 	if (slab_add_kunit_errors())
1260 		return;
1261 
1262 	va_start(args, fmt);
1263 	__slab_bug(s, fmt, args);
1264 	va_end(args);
1265 
1266 	__slab_err(slab);
1267 }
1268 
init_object(struct kmem_cache * s,void * object,u8 val)1269 static void init_object(struct kmem_cache *s, void *object, u8 val)
1270 {
1271 	u8 *p = kasan_reset_tag(object);
1272 	unsigned int poison_size = s->object_size;
1273 
1274 	if (s->flags & SLAB_RED_ZONE) {
1275 		/*
1276 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1277 		 * the shadow makes it possible to distinguish uninit-value
1278 		 * from use-after-free.
1279 		 */
1280 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1281 					  s->red_left_pad);
1282 
1283 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1284 			/*
1285 			 * Redzone the extra allocated space by kmalloc than
1286 			 * requested, and the poison size will be limited to
1287 			 * the original request size accordingly.
1288 			 */
1289 			poison_size = get_orig_size(s, object);
1290 		}
1291 	}
1292 
1293 	if (s->flags & __OBJECT_POISON) {
1294 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1295 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1296 	}
1297 
1298 	if (s->flags & SLAB_RED_ZONE)
1299 		memset_no_sanitize_memory(p + poison_size, val,
1300 					  s->inuse - poison_size);
1301 }
1302 
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1303 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1304 						void *from, void *to)
1305 {
1306 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1307 	memset(from, data, to - from);
1308 }
1309 
1310 #ifdef CONFIG_KMSAN
1311 #define pad_check_attributes noinline __no_kmsan_checks
1312 #else
1313 #define pad_check_attributes
1314 #endif
1315 
1316 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1317 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1318 		       u8 *object, const char *what, u8 *start, unsigned int value,
1319 		       unsigned int bytes, bool slab_obj_print)
1320 {
1321 	u8 *fault;
1322 	u8 *end;
1323 	u8 *addr = slab_address(slab);
1324 
1325 	metadata_access_enable();
1326 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1327 	metadata_access_disable();
1328 	if (!fault)
1329 		return 1;
1330 
1331 	end = start + bytes;
1332 	while (end > fault && end[-1] == value)
1333 		end--;
1334 
1335 	if (slab_add_kunit_errors())
1336 		goto skip_bug_print;
1337 
1338 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1339 	       what, fault, end - 1, fault - addr, fault[0], value);
1340 
1341 	if (slab_obj_print)
1342 		object_err(s, slab, object, "Object corrupt");
1343 
1344 skip_bug_print:
1345 	restore_bytes(s, what, value, fault, end);
1346 	return 0;
1347 }
1348 
1349 /*
1350  * Object layout:
1351  *
1352  * object address
1353  * 	Bytes of the object to be managed.
1354  * 	If the freepointer may overlay the object then the free
1355  *	pointer is at the middle of the object.
1356  *
1357  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1358  * 	0xa5 (POISON_END)
1359  *
1360  * object + s->object_size
1361  * 	Padding to reach word boundary. This is also used for Redzoning.
1362  * 	Padding is extended by another word if Redzoning is enabled and
1363  * 	object_size == inuse.
1364  *
1365  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1366  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1367  *
1368  * object + s->inuse
1369  * 	Meta data starts here.
1370  *
1371  * 	A. Free pointer (if we cannot overwrite object on free)
1372  * 	B. Tracking data for SLAB_STORE_USER
1373  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1374  *	D. Padding to reach required alignment boundary or at minimum
1375  * 		one word if debugging is on to be able to detect writes
1376  * 		before the word boundary.
1377  *
1378  *	Padding is done using 0x5a (POISON_INUSE)
1379  *
1380  * object + s->size
1381  * 	Nothing is used beyond s->size.
1382  *
1383  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1384  * ignored. And therefore no slab options that rely on these boundaries
1385  * may be used with merged slabcaches.
1386  */
1387 
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1388 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1389 {
1390 	unsigned long off = get_info_end(s);	/* The end of info */
1391 
1392 	if (s->flags & SLAB_STORE_USER) {
1393 		/* We also have user information there */
1394 		off += 2 * sizeof(struct track);
1395 
1396 		if (s->flags & SLAB_KMALLOC)
1397 			off += sizeof(unsigned int);
1398 	}
1399 
1400 	off += kasan_metadata_size(s, false);
1401 
1402 	if (size_from_object(s) == off)
1403 		return 1;
1404 
1405 	return check_bytes_and_report(s, slab, p, "Object padding",
1406 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1407 }
1408 
1409 /* Check the pad bytes at the end of a slab page */
1410 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1411 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1412 {
1413 	u8 *start;
1414 	u8 *fault;
1415 	u8 *end;
1416 	u8 *pad;
1417 	int length;
1418 	int remainder;
1419 
1420 	if (!(s->flags & SLAB_POISON))
1421 		return;
1422 
1423 	start = slab_address(slab);
1424 	length = slab_size(slab);
1425 	end = start + length;
1426 	remainder = length % s->size;
1427 	if (!remainder)
1428 		return;
1429 
1430 	pad = end - remainder;
1431 	metadata_access_enable();
1432 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1433 	metadata_access_disable();
1434 	if (!fault)
1435 		return;
1436 	while (end > fault && end[-1] == POISON_INUSE)
1437 		end--;
1438 
1439 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1440 		 fault, end - 1, fault - start);
1441 	print_section(KERN_ERR, "Padding ", pad, remainder);
1442 	__slab_err(slab);
1443 
1444 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1445 }
1446 
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1447 static int check_object(struct kmem_cache *s, struct slab *slab,
1448 					void *object, u8 val)
1449 {
1450 	u8 *p = object;
1451 	u8 *endobject = object + s->object_size;
1452 	unsigned int orig_size, kasan_meta_size;
1453 	int ret = 1;
1454 
1455 	if (s->flags & SLAB_RED_ZONE) {
1456 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1457 			object - s->red_left_pad, val, s->red_left_pad, ret))
1458 			ret = 0;
1459 
1460 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1461 			endobject, val, s->inuse - s->object_size, ret))
1462 			ret = 0;
1463 
1464 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1465 			orig_size = get_orig_size(s, object);
1466 
1467 			if (s->object_size > orig_size  &&
1468 				!check_bytes_and_report(s, slab, object,
1469 					"kmalloc Redzone", p + orig_size,
1470 					val, s->object_size - orig_size, ret)) {
1471 				ret = 0;
1472 			}
1473 		}
1474 	} else {
1475 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1476 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1477 				endobject, POISON_INUSE,
1478 				s->inuse - s->object_size, ret))
1479 				ret = 0;
1480 		}
1481 	}
1482 
1483 	if (s->flags & SLAB_POISON) {
1484 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1485 			/*
1486 			 * KASAN can save its free meta data inside of the
1487 			 * object at offset 0. Thus, skip checking the part of
1488 			 * the redzone that overlaps with the meta data.
1489 			 */
1490 			kasan_meta_size = kasan_metadata_size(s, true);
1491 			if (kasan_meta_size < s->object_size - 1 &&
1492 			    !check_bytes_and_report(s, slab, p, "Poison",
1493 					p + kasan_meta_size, POISON_FREE,
1494 					s->object_size - kasan_meta_size - 1, ret))
1495 				ret = 0;
1496 			if (kasan_meta_size < s->object_size &&
1497 			    !check_bytes_and_report(s, slab, p, "End Poison",
1498 					p + s->object_size - 1, POISON_END, 1, ret))
1499 				ret = 0;
1500 		}
1501 		/*
1502 		 * check_pad_bytes cleans up on its own.
1503 		 */
1504 		if (!check_pad_bytes(s, slab, p))
1505 			ret = 0;
1506 	}
1507 
1508 	/*
1509 	 * Cannot check freepointer while object is allocated if
1510 	 * object and freepointer overlap.
1511 	 */
1512 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1513 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1514 		object_err(s, slab, p, "Freepointer corrupt");
1515 		/*
1516 		 * No choice but to zap it and thus lose the remainder
1517 		 * of the free objects in this slab. May cause
1518 		 * another error because the object count is now wrong.
1519 		 */
1520 		set_freepointer(s, p, NULL);
1521 		ret = 0;
1522 	}
1523 
1524 	return ret;
1525 }
1526 
1527 /*
1528  * Checks if the slab state looks sane. Assumes the struct slab pointer
1529  * was either obtained in a way that ensures it's valid, or validated
1530  * by validate_slab_ptr()
1531  */
check_slab(struct kmem_cache * s,struct slab * slab)1532 static int check_slab(struct kmem_cache *s, struct slab *slab)
1533 {
1534 	int maxobj;
1535 
1536 	maxobj = order_objects(slab_order(slab), s->size);
1537 	if (slab->objects > maxobj) {
1538 		slab_err(s, slab, "objects %u > max %u",
1539 			slab->objects, maxobj);
1540 		return 0;
1541 	}
1542 	if (slab->inuse > slab->objects) {
1543 		slab_err(s, slab, "inuse %u > max %u",
1544 			slab->inuse, slab->objects);
1545 		return 0;
1546 	}
1547 	if (slab->frozen) {
1548 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1549 		return 0;
1550 	}
1551 
1552 	/* Slab_pad_check fixes things up after itself */
1553 	slab_pad_check(s, slab);
1554 	return 1;
1555 }
1556 
1557 /*
1558  * Determine if a certain object in a slab is on the freelist. Must hold the
1559  * slab lock to guarantee that the chains are in a consistent state.
1560  */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1561 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1562 {
1563 	int nr = 0;
1564 	void *fp;
1565 	void *object = NULL;
1566 	int max_objects;
1567 
1568 	fp = slab->freelist;
1569 	while (fp && nr <= slab->objects) {
1570 		if (fp == search)
1571 			return true;
1572 		if (!check_valid_pointer(s, slab, fp)) {
1573 			if (object) {
1574 				object_err(s, slab, object,
1575 					"Freechain corrupt");
1576 				set_freepointer(s, object, NULL);
1577 				break;
1578 			} else {
1579 				slab_err(s, slab, "Freepointer corrupt");
1580 				slab->freelist = NULL;
1581 				slab->inuse = slab->objects;
1582 				slab_fix(s, "Freelist cleared");
1583 				return false;
1584 			}
1585 		}
1586 		object = fp;
1587 		fp = get_freepointer(s, object);
1588 		nr++;
1589 	}
1590 
1591 	if (nr > slab->objects) {
1592 		slab_err(s, slab, "Freelist cycle detected");
1593 		slab->freelist = NULL;
1594 		slab->inuse = slab->objects;
1595 		slab_fix(s, "Freelist cleared");
1596 		return false;
1597 	}
1598 
1599 	max_objects = order_objects(slab_order(slab), s->size);
1600 	if (max_objects > MAX_OBJS_PER_PAGE)
1601 		max_objects = MAX_OBJS_PER_PAGE;
1602 
1603 	if (slab->objects != max_objects) {
1604 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1605 			 slab->objects, max_objects);
1606 		slab->objects = max_objects;
1607 		slab_fix(s, "Number of objects adjusted");
1608 	}
1609 	if (slab->inuse != slab->objects - nr) {
1610 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1611 			 slab->inuse, slab->objects - nr);
1612 		slab->inuse = slab->objects - nr;
1613 		slab_fix(s, "Object count adjusted");
1614 	}
1615 	return search == NULL;
1616 }
1617 
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1618 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1619 								int alloc)
1620 {
1621 	if (s->flags & SLAB_TRACE) {
1622 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1623 			s->name,
1624 			alloc ? "alloc" : "free",
1625 			object, slab->inuse,
1626 			slab->freelist);
1627 
1628 		if (!alloc)
1629 			print_section(KERN_INFO, "Object ", (void *)object,
1630 					s->object_size);
1631 
1632 		dump_stack();
1633 	}
1634 }
1635 
1636 /*
1637  * Tracking of fully allocated slabs for debugging purposes.
1638  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1639 static void add_full(struct kmem_cache *s,
1640 	struct kmem_cache_node *n, struct slab *slab)
1641 {
1642 	if (!(s->flags & SLAB_STORE_USER))
1643 		return;
1644 
1645 	lockdep_assert_held(&n->list_lock);
1646 	list_add(&slab->slab_list, &n->full);
1647 }
1648 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1649 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1650 {
1651 	if (!(s->flags & SLAB_STORE_USER))
1652 		return;
1653 
1654 	lockdep_assert_held(&n->list_lock);
1655 	list_del(&slab->slab_list);
1656 }
1657 
node_nr_slabs(struct kmem_cache_node * n)1658 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1659 {
1660 	return atomic_long_read(&n->nr_slabs);
1661 }
1662 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1663 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1664 {
1665 	struct kmem_cache_node *n = get_node(s, node);
1666 
1667 	atomic_long_inc(&n->nr_slabs);
1668 	atomic_long_add(objects, &n->total_objects);
1669 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1670 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1671 {
1672 	struct kmem_cache_node *n = get_node(s, node);
1673 
1674 	atomic_long_dec(&n->nr_slabs);
1675 	atomic_long_sub(objects, &n->total_objects);
1676 }
1677 
1678 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1679 static void setup_object_debug(struct kmem_cache *s, void *object)
1680 {
1681 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1682 		return;
1683 
1684 	init_object(s, object, SLUB_RED_INACTIVE);
1685 	init_tracking(s, object);
1686 }
1687 
1688 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1689 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1690 {
1691 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1692 		return;
1693 
1694 	metadata_access_enable();
1695 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1696 	metadata_access_disable();
1697 }
1698 
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1699 static inline int alloc_consistency_checks(struct kmem_cache *s,
1700 					struct slab *slab, void *object)
1701 {
1702 	if (!check_slab(s, slab))
1703 		return 0;
1704 
1705 	if (!check_valid_pointer(s, slab, object)) {
1706 		object_err(s, slab, object, "Freelist Pointer check fails");
1707 		return 0;
1708 	}
1709 
1710 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1711 		return 0;
1712 
1713 	return 1;
1714 }
1715 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1716 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1717 			struct slab *slab, void *object, int orig_size)
1718 {
1719 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1720 		if (!alloc_consistency_checks(s, slab, object))
1721 			goto bad;
1722 	}
1723 
1724 	/* Success. Perform special debug activities for allocs */
1725 	trace(s, slab, object, 1);
1726 	set_orig_size(s, object, orig_size);
1727 	init_object(s, object, SLUB_RED_ACTIVE);
1728 	return true;
1729 
1730 bad:
1731 	/*
1732 	 * Let's do the best we can to avoid issues in the future. Marking all
1733 	 * objects as used avoids touching the remaining objects.
1734 	 */
1735 	slab_fix(s, "Marking all objects used");
1736 	slab->inuse = slab->objects;
1737 	slab->freelist = NULL;
1738 	slab->frozen = 1; /* mark consistency-failed slab as frozen */
1739 
1740 	return false;
1741 }
1742 
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1743 static inline int free_consistency_checks(struct kmem_cache *s,
1744 		struct slab *slab, void *object, unsigned long addr)
1745 {
1746 	if (!check_valid_pointer(s, slab, object)) {
1747 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1748 		return 0;
1749 	}
1750 
1751 	if (on_freelist(s, slab, object)) {
1752 		object_err(s, slab, object, "Object already free");
1753 		return 0;
1754 	}
1755 
1756 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1757 		return 0;
1758 
1759 	if (unlikely(s != slab->slab_cache)) {
1760 		if (!slab->slab_cache) {
1761 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1762 				 object);
1763 		} else {
1764 			object_err(s, slab, object,
1765 				   "page slab pointer corrupt.");
1766 		}
1767 		return 0;
1768 	}
1769 	return 1;
1770 }
1771 
1772 /*
1773  * Parse a block of slab_debug options. Blocks are delimited by ';'
1774  *
1775  * @str:    start of block
1776  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1777  * @slabs:  return start of list of slabs, or NULL when there's no list
1778  * @init:   assume this is initial parsing and not per-kmem-create parsing
1779  *
1780  * returns the start of next block if there's any, or NULL
1781  */
1782 static const char *
parse_slub_debug_flags(const char * str,slab_flags_t * flags,const char ** slabs,bool init)1783 parse_slub_debug_flags(const char *str, slab_flags_t *flags, const char **slabs, bool init)
1784 {
1785 	bool higher_order_disable = false;
1786 
1787 	/* Skip any completely empty blocks */
1788 	while (*str && *str == ';')
1789 		str++;
1790 
1791 	if (*str == ',') {
1792 		/*
1793 		 * No options but restriction on slabs. This means full
1794 		 * debugging for slabs matching a pattern.
1795 		 */
1796 		*flags = DEBUG_DEFAULT_FLAGS;
1797 		goto check_slabs;
1798 	}
1799 	*flags = 0;
1800 
1801 	/* Determine which debug features should be switched on */
1802 	for (; *str && *str != ',' && *str != ';'; str++) {
1803 		switch (tolower(*str)) {
1804 		case '-':
1805 			*flags = 0;
1806 			break;
1807 		case 'f':
1808 			*flags |= SLAB_CONSISTENCY_CHECKS;
1809 			break;
1810 		case 'z':
1811 			*flags |= SLAB_RED_ZONE;
1812 			break;
1813 		case 'p':
1814 			*flags |= SLAB_POISON;
1815 			break;
1816 		case 'u':
1817 			*flags |= SLAB_STORE_USER;
1818 			break;
1819 		case 't':
1820 			*flags |= SLAB_TRACE;
1821 			break;
1822 		case 'a':
1823 			*flags |= SLAB_FAILSLAB;
1824 			break;
1825 		case 'o':
1826 			/*
1827 			 * Avoid enabling debugging on caches if its minimum
1828 			 * order would increase as a result.
1829 			 */
1830 			higher_order_disable = true;
1831 			break;
1832 		default:
1833 			if (init)
1834 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1835 		}
1836 	}
1837 check_slabs:
1838 	if (*str == ',')
1839 		*slabs = ++str;
1840 	else
1841 		*slabs = NULL;
1842 
1843 	/* Skip over the slab list */
1844 	while (*str && *str != ';')
1845 		str++;
1846 
1847 	/* Skip any completely empty blocks */
1848 	while (*str && *str == ';')
1849 		str++;
1850 
1851 	if (init && higher_order_disable)
1852 		disable_higher_order_debug = 1;
1853 
1854 	if (*str)
1855 		return str;
1856 	else
1857 		return NULL;
1858 }
1859 
setup_slub_debug(const char * str,const struct kernel_param * kp)1860 static int __init setup_slub_debug(const char *str, const struct kernel_param *kp)
1861 {
1862 	slab_flags_t flags;
1863 	slab_flags_t global_flags;
1864 	const char *saved_str;
1865 	const char *slab_list;
1866 	bool global_slub_debug_changed = false;
1867 	bool slab_list_specified = false;
1868 
1869 	global_flags = DEBUG_DEFAULT_FLAGS;
1870 	if (!str || !*str)
1871 		/*
1872 		 * No options specified. Switch on full debugging.
1873 		 */
1874 		goto out;
1875 
1876 	saved_str = str;
1877 	while (str) {
1878 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1879 
1880 		if (!slab_list) {
1881 			global_flags = flags;
1882 			global_slub_debug_changed = true;
1883 		} else {
1884 			slab_list_specified = true;
1885 			if (flags & SLAB_STORE_USER)
1886 				stack_depot_request_early_init();
1887 		}
1888 	}
1889 
1890 	/*
1891 	 * For backwards compatibility, a single list of flags with list of
1892 	 * slabs means debugging is only changed for those slabs, so the global
1893 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1894 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1895 	 * long as there is no option specifying flags without a slab list.
1896 	 */
1897 	if (slab_list_specified) {
1898 		if (!global_slub_debug_changed)
1899 			global_flags = slub_debug;
1900 		slub_debug_string = saved_str;
1901 	}
1902 out:
1903 	slub_debug = global_flags;
1904 	if (slub_debug & SLAB_STORE_USER)
1905 		stack_depot_request_early_init();
1906 	if (slub_debug != 0 || slub_debug_string)
1907 		static_branch_enable(&slub_debug_enabled);
1908 	else
1909 		static_branch_disable(&slub_debug_enabled);
1910 	if ((static_branch_unlikely(&init_on_alloc) ||
1911 	     static_branch_unlikely(&init_on_free)) &&
1912 	    (slub_debug & SLAB_POISON))
1913 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1914 	return 0;
1915 }
1916 
1917 static const struct kernel_param_ops param_ops_slab_debug __initconst = {
1918 	.flags = KERNEL_PARAM_OPS_FL_NOARG,
1919 	.set = setup_slub_debug,
1920 };
1921 __core_param_cb(slab_debug, &param_ops_slab_debug, NULL, 0);
1922 __core_param_cb(slub_debug, &param_ops_slab_debug, NULL, 0);
1923 
1924 /*
1925  * kmem_cache_flags - apply debugging options to the cache
1926  * @flags:		flags to set
1927  * @name:		name of the cache
1928  *
1929  * Debug option(s) are applied to @flags. In addition to the debug
1930  * option(s), if a slab name (or multiple) is specified i.e.
1931  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1932  * then only the select slabs will receive the debug option(s).
1933  */
kmem_cache_flags(slab_flags_t flags,const char * name)1934 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1935 {
1936 	const char *iter;
1937 	size_t len;
1938 	const char *next_block;
1939 	slab_flags_t block_flags;
1940 	slab_flags_t slub_debug_local = slub_debug;
1941 
1942 	if (flags & SLAB_NO_USER_FLAGS)
1943 		return flags;
1944 
1945 	/*
1946 	 * If the slab cache is for debugging (e.g. kmemleak) then
1947 	 * don't store user (stack trace) information by default,
1948 	 * but let the user enable it via the command line below.
1949 	 */
1950 	if (flags & SLAB_NOLEAKTRACE)
1951 		slub_debug_local &= ~SLAB_STORE_USER;
1952 
1953 	len = strlen(name);
1954 	next_block = slub_debug_string;
1955 	/* Go through all blocks of debug options, see if any matches our slab's name */
1956 	while (next_block) {
1957 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1958 		if (!iter)
1959 			continue;
1960 		/* Found a block that has a slab list, search it */
1961 		while (*iter) {
1962 			const char *end, *glob;
1963 			size_t cmplen;
1964 
1965 			end = strchrnul(iter, ',');
1966 			if (next_block && next_block < end)
1967 				end = next_block - 1;
1968 
1969 			glob = strnchr(iter, end - iter, '*');
1970 			if (glob)
1971 				cmplen = glob - iter;
1972 			else
1973 				cmplen = max_t(size_t, len, (end - iter));
1974 
1975 			if (!strncmp(name, iter, cmplen)) {
1976 				flags |= block_flags;
1977 				return flags;
1978 			}
1979 
1980 			if (!*end || *end == ';')
1981 				break;
1982 			iter = end + 1;
1983 		}
1984 	}
1985 
1986 	return flags | slub_debug_local;
1987 }
1988 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1989 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1990 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1991 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1992 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1993 static inline bool alloc_debug_processing(struct kmem_cache *s,
1994 	struct slab *slab, void *object, int orig_size) { return true; }
1995 
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1996 static inline bool free_debug_processing(struct kmem_cache *s,
1997 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1998 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1999 
slab_pad_check(struct kmem_cache * s,struct slab * slab)2000 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)2001 static inline int check_object(struct kmem_cache *s, struct slab *slab,
2002 			void *object, u8 val) { return 1; }
set_track_prepare(gfp_t gfp_flags)2003 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)2004 static inline void set_track(struct kmem_cache *s, void *object,
2005 			     enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2006 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
2007 					struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2008 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
2009 					struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)2010 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
2011 {
2012 	return flags;
2013 }
2014 #define slub_debug 0
2015 
2016 #define disable_higher_order_debug 0
2017 
node_nr_slabs(struct kmem_cache_node * n)2018 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
2019 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)2020 static inline void inc_slabs_node(struct kmem_cache *s, int node,
2021 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)2022 static inline void dec_slabs_node(struct kmem_cache *s, int node,
2023 							int objects) {}
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)2024 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
2025 			       void **freelist, void *nextfree)
2026 {
2027 	return false;
2028 }
2029 #endif /* CONFIG_SLUB_DEBUG */
2030 
2031 /*
2032  * The allocated objcg pointers array is not accounted directly.
2033  * Moreover, it should not come from DMA buffer and is not readily
2034  * reclaimable. So those GFP bits should be masked off.
2035  */
2036 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2037 				__GFP_ACCOUNT | __GFP_NOFAIL)
2038 
2039 #ifdef CONFIG_SLAB_OBJ_EXT
2040 
2041 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2042 
mark_objexts_empty(struct slabobj_ext * obj_exts)2043 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
2044 {
2045 	struct slabobj_ext *slab_exts;
2046 	struct slab *obj_exts_slab;
2047 
2048 	obj_exts_slab = virt_to_slab(obj_exts);
2049 	slab_exts = slab_obj_exts(obj_exts_slab);
2050 	if (slab_exts) {
2051 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
2052 						 obj_exts_slab, obj_exts);
2053 
2054 		if (unlikely(is_codetag_empty(&slab_exts[offs].ref)))
2055 			return;
2056 
2057 		/* codetag should be NULL here */
2058 		WARN_ON(slab_exts[offs].ref.ct);
2059 		set_codetag_empty(&slab_exts[offs].ref);
2060 	}
2061 }
2062 
mark_failed_objexts_alloc(struct slab * slab)2063 static inline bool mark_failed_objexts_alloc(struct slab *slab)
2064 {
2065 	return cmpxchg(&slab->obj_exts, 0, OBJEXTS_ALLOC_FAIL) == 0;
2066 }
2067 
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2068 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2069 			struct slabobj_ext *vec, unsigned int objects)
2070 {
2071 	/*
2072 	 * If vector previously failed to allocate then we have live
2073 	 * objects with no tag reference. Mark all references in this
2074 	 * vector as empty to avoid warnings later on.
2075 	 */
2076 	if (obj_exts == OBJEXTS_ALLOC_FAIL) {
2077 		unsigned int i;
2078 
2079 		for (i = 0; i < objects; i++)
2080 			set_codetag_empty(&vec[i].ref);
2081 	}
2082 }
2083 
2084 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2085 
mark_objexts_empty(struct slabobj_ext * obj_exts)2086 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)2087 static inline bool mark_failed_objexts_alloc(struct slab *slab) { return false; }
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2088 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2089 			struct slabobj_ext *vec, unsigned int objects) {}
2090 
2091 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2092 
init_slab_obj_exts(struct slab * slab)2093 static inline void init_slab_obj_exts(struct slab *slab)
2094 {
2095 	slab->obj_exts = 0;
2096 }
2097 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2098 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2099 		        gfp_t gfp, bool new_slab)
2100 {
2101 	bool allow_spin = gfpflags_allow_spinning(gfp);
2102 	unsigned int objects = objs_per_slab(s, slab);
2103 	unsigned long new_exts;
2104 	unsigned long old_exts;
2105 	struct slabobj_ext *vec;
2106 
2107 	gfp &= ~OBJCGS_CLEAR_MASK;
2108 	/* Prevent recursive extension vector allocation */
2109 	gfp |= __GFP_NO_OBJ_EXT;
2110 
2111 	/*
2112 	 * Note that allow_spin may be false during early boot and its
2113 	 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
2114 	 * architectures with cmpxchg16b, early obj_exts will be missing for
2115 	 * very early allocations on those.
2116 	 */
2117 	if (unlikely(!allow_spin)) {
2118 		size_t sz = objects * sizeof(struct slabobj_ext);
2119 
2120 		vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
2121 				     slab_nid(slab));
2122 	} else {
2123 		vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2124 				   slab_nid(slab));
2125 	}
2126 	if (!vec) {
2127 		/*
2128 		 * Try to mark vectors which failed to allocate.
2129 		 * If this operation fails, there may be a racing process
2130 		 * that has already completed the allocation.
2131 		 */
2132 		if (!mark_failed_objexts_alloc(slab) &&
2133 		    slab_obj_exts(slab))
2134 			return 0;
2135 
2136 		return -ENOMEM;
2137 	}
2138 
2139 	new_exts = (unsigned long)vec;
2140 	if (unlikely(!allow_spin))
2141 		new_exts |= OBJEXTS_NOSPIN_ALLOC;
2142 #ifdef CONFIG_MEMCG
2143 	new_exts |= MEMCG_DATA_OBJEXTS;
2144 #endif
2145 retry:
2146 	old_exts = READ_ONCE(slab->obj_exts);
2147 	handle_failed_objexts_alloc(old_exts, vec, objects);
2148 	if (new_slab) {
2149 		/*
2150 		 * If the slab is brand new and nobody can yet access its
2151 		 * obj_exts, no synchronization is required and obj_exts can
2152 		 * be simply assigned.
2153 		 */
2154 		slab->obj_exts = new_exts;
2155 	} else if (old_exts & ~OBJEXTS_FLAGS_MASK) {
2156 		/*
2157 		 * If the slab is already in use, somebody can allocate and
2158 		 * assign slabobj_exts in parallel. In this case the existing
2159 		 * objcg vector should be reused.
2160 		 */
2161 		mark_objexts_empty(vec);
2162 		if (unlikely(!allow_spin))
2163 			kfree_nolock(vec);
2164 		else
2165 			kfree(vec);
2166 		return 0;
2167 	} else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2168 		/* Retry if a racing thread changed slab->obj_exts from under us. */
2169 		goto retry;
2170 	}
2171 
2172 	if (allow_spin)
2173 		kmemleak_not_leak(vec);
2174 	return 0;
2175 }
2176 
free_slab_obj_exts(struct slab * slab)2177 static inline void free_slab_obj_exts(struct slab *slab)
2178 {
2179 	struct slabobj_ext *obj_exts;
2180 
2181 	obj_exts = slab_obj_exts(slab);
2182 	if (!obj_exts) {
2183 		/*
2184 		 * If obj_exts allocation failed, slab->obj_exts is set to
2185 		 * OBJEXTS_ALLOC_FAIL. In this case, we end up here and should
2186 		 * clear the flag.
2187 		 */
2188 		slab->obj_exts = 0;
2189 		return;
2190 	}
2191 
2192 	/*
2193 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2194 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2195 	 * warning if slab has extensions but the extension of an object is
2196 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2197 	 * the extension for obj_exts is expected to be NULL.
2198 	 */
2199 	mark_objexts_empty(obj_exts);
2200 	if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
2201 		kfree_nolock(obj_exts);
2202 	else
2203 		kfree(obj_exts);
2204 	slab->obj_exts = 0;
2205 }
2206 
2207 #else /* CONFIG_SLAB_OBJ_EXT */
2208 
init_slab_obj_exts(struct slab * slab)2209 static inline void init_slab_obj_exts(struct slab *slab)
2210 {
2211 }
2212 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2213 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2214 			       gfp_t gfp, bool new_slab)
2215 {
2216 	return 0;
2217 }
2218 
free_slab_obj_exts(struct slab * slab)2219 static inline void free_slab_obj_exts(struct slab *slab)
2220 {
2221 }
2222 
2223 #endif /* CONFIG_SLAB_OBJ_EXT */
2224 
2225 #ifdef CONFIG_MEM_ALLOC_PROFILING
2226 
2227 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2228 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2229 {
2230 	struct slab *slab;
2231 
2232 	slab = virt_to_slab(p);
2233 	if (!slab_obj_exts(slab) &&
2234 	    alloc_slab_obj_exts(slab, s, flags, false)) {
2235 		pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2236 			     __func__, s->name);
2237 		return NULL;
2238 	}
2239 
2240 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2241 }
2242 
2243 /* Should be called only if mem_alloc_profiling_enabled() */
2244 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2245 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2246 {
2247 	struct slabobj_ext *obj_exts;
2248 
2249 	if (!object)
2250 		return;
2251 
2252 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2253 		return;
2254 
2255 	if (flags & __GFP_NO_OBJ_EXT)
2256 		return;
2257 
2258 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2259 	/*
2260 	 * Currently obj_exts is used only for allocation profiling.
2261 	 * If other users appear then mem_alloc_profiling_enabled()
2262 	 * check should be added before alloc_tag_add().
2263 	 */
2264 	if (likely(obj_exts))
2265 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2266 	else
2267 		alloc_tag_set_inaccurate(current->alloc_tag);
2268 }
2269 
2270 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2271 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2272 {
2273 	if (mem_alloc_profiling_enabled())
2274 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2275 }
2276 
2277 /* Should be called only if mem_alloc_profiling_enabled() */
2278 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2279 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2280 			       int objects)
2281 {
2282 	struct slabobj_ext *obj_exts;
2283 	int i;
2284 
2285 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2286 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2287 		return;
2288 
2289 	obj_exts = slab_obj_exts(slab);
2290 	if (!obj_exts)
2291 		return;
2292 
2293 	for (i = 0; i < objects; i++) {
2294 		unsigned int off = obj_to_index(s, slab, p[i]);
2295 
2296 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2297 	}
2298 }
2299 
2300 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2301 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2302 			     int objects)
2303 {
2304 	if (mem_alloc_profiling_enabled())
2305 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2306 }
2307 
2308 #else /* CONFIG_MEM_ALLOC_PROFILING */
2309 
2310 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2311 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2312 {
2313 }
2314 
2315 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2316 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2317 			     int objects)
2318 {
2319 }
2320 
2321 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2322 
2323 
2324 #ifdef CONFIG_MEMCG
2325 
2326 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2327 
2328 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2329 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2330 				gfp_t flags, size_t size, void **p)
2331 {
2332 	if (likely(!memcg_kmem_online()))
2333 		return true;
2334 
2335 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2336 		return true;
2337 
2338 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2339 		return true;
2340 
2341 	if (likely(size == 1)) {
2342 		memcg_alloc_abort_single(s, *p);
2343 		*p = NULL;
2344 	} else {
2345 		kmem_cache_free_bulk(s, size, p);
2346 	}
2347 
2348 	return false;
2349 }
2350 
2351 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2352 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2353 			  int objects)
2354 {
2355 	struct slabobj_ext *obj_exts;
2356 
2357 	if (!memcg_kmem_online())
2358 		return;
2359 
2360 	obj_exts = slab_obj_exts(slab);
2361 	if (likely(!obj_exts))
2362 		return;
2363 
2364 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2365 }
2366 
2367 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2368 bool memcg_slab_post_charge(void *p, gfp_t flags)
2369 {
2370 	struct slabobj_ext *slab_exts;
2371 	struct kmem_cache *s;
2372 	struct page *page;
2373 	struct slab *slab;
2374 	unsigned long off;
2375 
2376 	page = virt_to_page(p);
2377 	if (PageLargeKmalloc(page)) {
2378 		unsigned int order;
2379 		int size;
2380 
2381 		if (PageMemcgKmem(page))
2382 			return true;
2383 
2384 		order = large_kmalloc_order(page);
2385 		if (__memcg_kmem_charge_page(page, flags, order))
2386 			return false;
2387 
2388 		/*
2389 		 * This page has already been accounted in the global stats but
2390 		 * not in the memcg stats. So, subtract from the global and use
2391 		 * the interface which adds to both global and memcg stats.
2392 		 */
2393 		size = PAGE_SIZE << order;
2394 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, -size);
2395 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, size);
2396 		return true;
2397 	}
2398 
2399 	slab = page_slab(page);
2400 	s = slab->slab_cache;
2401 
2402 	/*
2403 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2404 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2405 	 * becoming effectively unfreeable.
2406 	 */
2407 	if (is_kmalloc_normal(s))
2408 		return true;
2409 
2410 	/* Ignore already charged objects. */
2411 	slab_exts = slab_obj_exts(slab);
2412 	if (slab_exts) {
2413 		off = obj_to_index(s, slab, p);
2414 		if (unlikely(slab_exts[off].objcg))
2415 			return true;
2416 	}
2417 
2418 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2419 }
2420 
2421 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2422 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2423 					      struct list_lru *lru,
2424 					      gfp_t flags, size_t size,
2425 					      void **p)
2426 {
2427 	return true;
2428 }
2429 
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2430 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2431 					void **p, int objects)
2432 {
2433 }
2434 
memcg_slab_post_charge(void * p,gfp_t flags)2435 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2436 {
2437 	return true;
2438 }
2439 #endif /* CONFIG_MEMCG */
2440 
2441 #ifdef CONFIG_SLUB_RCU_DEBUG
2442 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2443 
2444 struct rcu_delayed_free {
2445 	struct rcu_head head;
2446 	void *object;
2447 };
2448 #endif
2449 
2450 /*
2451  * Hooks for other subsystems that check memory allocations. In a typical
2452  * production configuration these hooks all should produce no code at all.
2453  *
2454  * Returns true if freeing of the object can proceed, false if its reuse
2455  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2456  * to KFENCE.
2457  */
2458 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2459 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2460 		    bool after_rcu_delay)
2461 {
2462 	/* Are the object contents still accessible? */
2463 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2464 
2465 	kmemleak_free_recursive(x, s->flags);
2466 	kmsan_slab_free(s, x);
2467 
2468 	debug_check_no_locks_freed(x, s->object_size);
2469 
2470 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2471 		debug_check_no_obj_freed(x, s->object_size);
2472 
2473 	/* Use KCSAN to help debug racy use-after-free. */
2474 	if (!still_accessible)
2475 		__kcsan_check_access(x, s->object_size,
2476 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2477 
2478 	if (kfence_free(x))
2479 		return false;
2480 
2481 	/*
2482 	 * Give KASAN a chance to notice an invalid free operation before we
2483 	 * modify the object.
2484 	 */
2485 	if (kasan_slab_pre_free(s, x))
2486 		return false;
2487 
2488 #ifdef CONFIG_SLUB_RCU_DEBUG
2489 	if (still_accessible) {
2490 		struct rcu_delayed_free *delayed_free;
2491 
2492 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2493 		if (delayed_free) {
2494 			/*
2495 			 * Let KASAN track our call stack as a "related work
2496 			 * creation", just like if the object had been freed
2497 			 * normally via kfree_rcu().
2498 			 * We have to do this manually because the rcu_head is
2499 			 * not located inside the object.
2500 			 */
2501 			kasan_record_aux_stack(x);
2502 
2503 			delayed_free->object = x;
2504 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2505 			return false;
2506 		}
2507 	}
2508 #endif /* CONFIG_SLUB_RCU_DEBUG */
2509 
2510 	/*
2511 	 * As memory initialization might be integrated into KASAN,
2512 	 * kasan_slab_free and initialization memset's must be
2513 	 * kept together to avoid discrepancies in behavior.
2514 	 *
2515 	 * The initialization memset's clear the object and the metadata,
2516 	 * but don't touch the SLAB redzone.
2517 	 *
2518 	 * The object's freepointer is also avoided if stored outside the
2519 	 * object.
2520 	 */
2521 	if (unlikely(init)) {
2522 		int rsize;
2523 		unsigned int inuse, orig_size;
2524 
2525 		inuse = get_info_end(s);
2526 		orig_size = get_orig_size(s, x);
2527 		if (!kasan_has_integrated_init())
2528 			memset(kasan_reset_tag(x), 0, orig_size);
2529 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2530 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2531 		       s->size - inuse - rsize);
2532 		/*
2533 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2534 		 * would be reported
2535 		 */
2536 		set_orig_size(s, x, orig_size);
2537 
2538 	}
2539 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2540 	return !kasan_slab_free(s, x, init, still_accessible, false);
2541 }
2542 
2543 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2544 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2545 			     int *cnt)
2546 {
2547 
2548 	void *object;
2549 	void *next = *head;
2550 	void *old_tail = *tail;
2551 	bool init;
2552 
2553 	if (is_kfence_address(next)) {
2554 		slab_free_hook(s, next, false, false);
2555 		return false;
2556 	}
2557 
2558 	/* Head and tail of the reconstructed freelist */
2559 	*head = NULL;
2560 	*tail = NULL;
2561 
2562 	init = slab_want_init_on_free(s);
2563 
2564 	do {
2565 		object = next;
2566 		next = get_freepointer(s, object);
2567 
2568 		/* If object's reuse doesn't have to be delayed */
2569 		if (likely(slab_free_hook(s, object, init, false))) {
2570 			/* Move object to the new freelist */
2571 			set_freepointer(s, object, *head);
2572 			*head = object;
2573 			if (!*tail)
2574 				*tail = object;
2575 		} else {
2576 			/*
2577 			 * Adjust the reconstructed freelist depth
2578 			 * accordingly if object's reuse is delayed.
2579 			 */
2580 			--(*cnt);
2581 		}
2582 	} while (object != old_tail);
2583 
2584 	return *head != NULL;
2585 }
2586 
setup_object(struct kmem_cache * s,void * object)2587 static void *setup_object(struct kmem_cache *s, void *object)
2588 {
2589 	setup_object_debug(s, object);
2590 	object = kasan_init_slab_obj(s, object);
2591 	if (unlikely(s->ctor)) {
2592 		kasan_unpoison_new_object(s, object);
2593 		s->ctor(object);
2594 		kasan_poison_new_object(s, object);
2595 	}
2596 	return object;
2597 }
2598 
alloc_empty_sheaf(struct kmem_cache * s,gfp_t gfp)2599 static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
2600 {
2601 	struct slab_sheaf *sheaf;
2602 	size_t sheaf_size;
2603 
2604 	if (gfp & __GFP_NO_OBJ_EXT)
2605 		return NULL;
2606 
2607 	gfp &= ~OBJCGS_CLEAR_MASK;
2608 
2609 	/*
2610 	 * Prevent recursion to the same cache, or a deep stack of kmallocs of
2611 	 * varying sizes (sheaf capacity might differ for each kmalloc size
2612 	 * bucket)
2613 	 */
2614 	if (s->flags & SLAB_KMALLOC)
2615 		gfp |= __GFP_NO_OBJ_EXT;
2616 
2617 	sheaf_size = struct_size(sheaf, objects, s->sheaf_capacity);
2618 	sheaf = kzalloc(sheaf_size, gfp);
2619 
2620 	if (unlikely(!sheaf))
2621 		return NULL;
2622 
2623 	sheaf->cache = s;
2624 
2625 	stat(s, SHEAF_ALLOC);
2626 
2627 	return sheaf;
2628 }
2629 
free_empty_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf)2630 static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf)
2631 {
2632 	kfree(sheaf);
2633 
2634 	stat(s, SHEAF_FREE);
2635 }
2636 
2637 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
2638 				   size_t size, void **p);
2639 
2640 
refill_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf,gfp_t gfp)2641 static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf,
2642 			 gfp_t gfp)
2643 {
2644 	int to_fill = s->sheaf_capacity - sheaf->size;
2645 	int filled;
2646 
2647 	if (!to_fill)
2648 		return 0;
2649 
2650 	filled = __kmem_cache_alloc_bulk(s, gfp, to_fill,
2651 					 &sheaf->objects[sheaf->size]);
2652 
2653 	sheaf->size += filled;
2654 
2655 	stat_add(s, SHEAF_REFILL, filled);
2656 
2657 	if (filled < to_fill)
2658 		return -ENOMEM;
2659 
2660 	return 0;
2661 }
2662 
2663 
alloc_full_sheaf(struct kmem_cache * s,gfp_t gfp)2664 static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp)
2665 {
2666 	struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp);
2667 
2668 	if (!sheaf)
2669 		return NULL;
2670 
2671 	if (refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC)) {
2672 		free_empty_sheaf(s, sheaf);
2673 		return NULL;
2674 	}
2675 
2676 	return sheaf;
2677 }
2678 
2679 /*
2680  * Maximum number of objects freed during a single flush of main pcs sheaf.
2681  * Translates directly to an on-stack array size.
2682  */
2683 #define PCS_BATCH_MAX	32U
2684 
2685 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
2686 
2687 /*
2688  * Free all objects from the main sheaf. In order to perform
2689  * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where
2690  * object pointers are moved to a on-stack array under the lock. To bound the
2691  * stack usage, limit each batch to PCS_BATCH_MAX.
2692  *
2693  * returns true if at least partially flushed
2694  */
sheaf_flush_main(struct kmem_cache * s)2695 static bool sheaf_flush_main(struct kmem_cache *s)
2696 {
2697 	struct slub_percpu_sheaves *pcs;
2698 	unsigned int batch, remaining;
2699 	void *objects[PCS_BATCH_MAX];
2700 	struct slab_sheaf *sheaf;
2701 	bool ret = false;
2702 
2703 next_batch:
2704 	if (!local_trylock(&s->cpu_sheaves->lock))
2705 		return ret;
2706 
2707 	pcs = this_cpu_ptr(s->cpu_sheaves);
2708 	sheaf = pcs->main;
2709 
2710 	batch = min(PCS_BATCH_MAX, sheaf->size);
2711 
2712 	sheaf->size -= batch;
2713 	memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *));
2714 
2715 	remaining = sheaf->size;
2716 
2717 	local_unlock(&s->cpu_sheaves->lock);
2718 
2719 	__kmem_cache_free_bulk(s, batch, &objects[0]);
2720 
2721 	stat_add(s, SHEAF_FLUSH, batch);
2722 
2723 	ret = true;
2724 
2725 	if (remaining)
2726 		goto next_batch;
2727 
2728 	return ret;
2729 }
2730 
2731 /*
2732  * Free all objects from a sheaf that's unused, i.e. not linked to any
2733  * cpu_sheaves, so we need no locking and batching. The locking is also not
2734  * necessary when flushing cpu's sheaves (both spare and main) during cpu
2735  * hotremove as the cpu is not executing anymore.
2736  */
sheaf_flush_unused(struct kmem_cache * s,struct slab_sheaf * sheaf)2737 static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
2738 {
2739 	if (!sheaf->size)
2740 		return;
2741 
2742 	stat_add(s, SHEAF_FLUSH, sheaf->size);
2743 
2744 	__kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
2745 
2746 	sheaf->size = 0;
2747 }
2748 
__rcu_free_sheaf_prepare(struct kmem_cache * s,struct slab_sheaf * sheaf)2749 static bool __rcu_free_sheaf_prepare(struct kmem_cache *s,
2750 				     struct slab_sheaf *sheaf)
2751 {
2752 	bool init = slab_want_init_on_free(s);
2753 	void **p = &sheaf->objects[0];
2754 	unsigned int i = 0;
2755 	bool pfmemalloc = false;
2756 
2757 	while (i < sheaf->size) {
2758 		struct slab *slab = virt_to_slab(p[i]);
2759 
2760 		memcg_slab_free_hook(s, slab, p + i, 1);
2761 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
2762 
2763 		if (unlikely(!slab_free_hook(s, p[i], init, true))) {
2764 			p[i] = p[--sheaf->size];
2765 			continue;
2766 		}
2767 
2768 		if (slab_test_pfmemalloc(slab))
2769 			pfmemalloc = true;
2770 
2771 		i++;
2772 	}
2773 
2774 	return pfmemalloc;
2775 }
2776 
rcu_free_sheaf_nobarn(struct rcu_head * head)2777 static void rcu_free_sheaf_nobarn(struct rcu_head *head)
2778 {
2779 	struct slab_sheaf *sheaf;
2780 	struct kmem_cache *s;
2781 
2782 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
2783 	s = sheaf->cache;
2784 
2785 	__rcu_free_sheaf_prepare(s, sheaf);
2786 
2787 	sheaf_flush_unused(s, sheaf);
2788 
2789 	free_empty_sheaf(s, sheaf);
2790 }
2791 
2792 /*
2793  * Caller needs to make sure migration is disabled in order to fully flush
2794  * single cpu's sheaves
2795  *
2796  * must not be called from an irq
2797  *
2798  * flushing operations are rare so let's keep it simple and flush to slabs
2799  * directly, skipping the barn
2800  */
pcs_flush_all(struct kmem_cache * s)2801 static void pcs_flush_all(struct kmem_cache *s)
2802 {
2803 	struct slub_percpu_sheaves *pcs;
2804 	struct slab_sheaf *spare, *rcu_free;
2805 
2806 	local_lock(&s->cpu_sheaves->lock);
2807 	pcs = this_cpu_ptr(s->cpu_sheaves);
2808 
2809 	spare = pcs->spare;
2810 	pcs->spare = NULL;
2811 
2812 	rcu_free = pcs->rcu_free;
2813 	pcs->rcu_free = NULL;
2814 
2815 	local_unlock(&s->cpu_sheaves->lock);
2816 
2817 	if (spare) {
2818 		sheaf_flush_unused(s, spare);
2819 		free_empty_sheaf(s, spare);
2820 	}
2821 
2822 	if (rcu_free)
2823 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2824 
2825 	sheaf_flush_main(s);
2826 }
2827 
__pcs_flush_all_cpu(struct kmem_cache * s,unsigned int cpu)2828 static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
2829 {
2830 	struct slub_percpu_sheaves *pcs;
2831 
2832 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2833 
2834 	/* The cpu is not executing anymore so we don't need pcs->lock */
2835 	sheaf_flush_unused(s, pcs->main);
2836 	if (pcs->spare) {
2837 		sheaf_flush_unused(s, pcs->spare);
2838 		free_empty_sheaf(s, pcs->spare);
2839 		pcs->spare = NULL;
2840 	}
2841 
2842 	if (pcs->rcu_free) {
2843 		call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2844 		pcs->rcu_free = NULL;
2845 	}
2846 }
2847 
pcs_destroy(struct kmem_cache * s)2848 static void pcs_destroy(struct kmem_cache *s)
2849 {
2850 	int cpu;
2851 
2852 	for_each_possible_cpu(cpu) {
2853 		struct slub_percpu_sheaves *pcs;
2854 
2855 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2856 
2857 		/* can happen when unwinding failed create */
2858 		if (!pcs->main)
2859 			continue;
2860 
2861 		/*
2862 		 * We have already passed __kmem_cache_shutdown() so everything
2863 		 * was flushed and there should be no objects allocated from
2864 		 * slabs, otherwise kmem_cache_destroy() would have aborted.
2865 		 * Therefore something would have to be really wrong if the
2866 		 * warnings here trigger, and we should rather leave objects and
2867 		 * sheaves to leak in that case.
2868 		 */
2869 
2870 		WARN_ON(pcs->spare);
2871 		WARN_ON(pcs->rcu_free);
2872 
2873 		if (!WARN_ON(pcs->main->size)) {
2874 			free_empty_sheaf(s, pcs->main);
2875 			pcs->main = NULL;
2876 		}
2877 	}
2878 
2879 	free_percpu(s->cpu_sheaves);
2880 	s->cpu_sheaves = NULL;
2881 }
2882 
barn_get_empty_sheaf(struct node_barn * barn)2883 static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn)
2884 {
2885 	struct slab_sheaf *empty = NULL;
2886 	unsigned long flags;
2887 
2888 	if (!data_race(barn->nr_empty))
2889 		return NULL;
2890 
2891 	spin_lock_irqsave(&barn->lock, flags);
2892 
2893 	if (likely(barn->nr_empty)) {
2894 		empty = list_first_entry(&barn->sheaves_empty,
2895 					 struct slab_sheaf, barn_list);
2896 		list_del(&empty->barn_list);
2897 		barn->nr_empty--;
2898 	}
2899 
2900 	spin_unlock_irqrestore(&barn->lock, flags);
2901 
2902 	return empty;
2903 }
2904 
2905 /*
2906  * The following two functions are used mainly in cases where we have to undo an
2907  * intended action due to a race or cpu migration. Thus they do not check the
2908  * empty or full sheaf limits for simplicity.
2909  */
2910 
barn_put_empty_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2911 static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2912 {
2913 	unsigned long flags;
2914 
2915 	spin_lock_irqsave(&barn->lock, flags);
2916 
2917 	list_add(&sheaf->barn_list, &barn->sheaves_empty);
2918 	barn->nr_empty++;
2919 
2920 	spin_unlock_irqrestore(&barn->lock, flags);
2921 }
2922 
barn_put_full_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2923 static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2924 {
2925 	unsigned long flags;
2926 
2927 	spin_lock_irqsave(&barn->lock, flags);
2928 
2929 	list_add(&sheaf->barn_list, &barn->sheaves_full);
2930 	barn->nr_full++;
2931 
2932 	spin_unlock_irqrestore(&barn->lock, flags);
2933 }
2934 
barn_get_full_or_empty_sheaf(struct node_barn * barn)2935 static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn)
2936 {
2937 	struct slab_sheaf *sheaf = NULL;
2938 	unsigned long flags;
2939 
2940 	if (!data_race(barn->nr_full) && !data_race(barn->nr_empty))
2941 		return NULL;
2942 
2943 	spin_lock_irqsave(&barn->lock, flags);
2944 
2945 	if (barn->nr_full) {
2946 		sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2947 					barn_list);
2948 		list_del(&sheaf->barn_list);
2949 		barn->nr_full--;
2950 	} else if (barn->nr_empty) {
2951 		sheaf = list_first_entry(&barn->sheaves_empty,
2952 					 struct slab_sheaf, barn_list);
2953 		list_del(&sheaf->barn_list);
2954 		barn->nr_empty--;
2955 	}
2956 
2957 	spin_unlock_irqrestore(&barn->lock, flags);
2958 
2959 	return sheaf;
2960 }
2961 
2962 /*
2963  * If a full sheaf is available, return it and put the supplied empty one to
2964  * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't
2965  * change.
2966  */
2967 static struct slab_sheaf *
barn_replace_empty_sheaf(struct node_barn * barn,struct slab_sheaf * empty)2968 barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty)
2969 {
2970 	struct slab_sheaf *full = NULL;
2971 	unsigned long flags;
2972 
2973 	if (!data_race(barn->nr_full))
2974 		return NULL;
2975 
2976 	spin_lock_irqsave(&barn->lock, flags);
2977 
2978 	if (likely(barn->nr_full)) {
2979 		full = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2980 					barn_list);
2981 		list_del(&full->barn_list);
2982 		list_add(&empty->barn_list, &barn->sheaves_empty);
2983 		barn->nr_full--;
2984 		barn->nr_empty++;
2985 	}
2986 
2987 	spin_unlock_irqrestore(&barn->lock, flags);
2988 
2989 	return full;
2990 }
2991 
2992 /*
2993  * If an empty sheaf is available, return it and put the supplied full one to
2994  * barn. But if there are too many full sheaves, reject this with -E2BIG.
2995  */
2996 static struct slab_sheaf *
barn_replace_full_sheaf(struct node_barn * barn,struct slab_sheaf * full)2997 barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full)
2998 {
2999 	struct slab_sheaf *empty;
3000 	unsigned long flags;
3001 
3002 	/* we don't repeat this check under barn->lock as it's not critical */
3003 	if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES)
3004 		return ERR_PTR(-E2BIG);
3005 	if (!data_race(barn->nr_empty))
3006 		return ERR_PTR(-ENOMEM);
3007 
3008 	spin_lock_irqsave(&barn->lock, flags);
3009 
3010 	if (likely(barn->nr_empty)) {
3011 		empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf,
3012 					 barn_list);
3013 		list_del(&empty->barn_list);
3014 		list_add(&full->barn_list, &barn->sheaves_full);
3015 		barn->nr_empty--;
3016 		barn->nr_full++;
3017 	} else {
3018 		empty = ERR_PTR(-ENOMEM);
3019 	}
3020 
3021 	spin_unlock_irqrestore(&barn->lock, flags);
3022 
3023 	return empty;
3024 }
3025 
barn_init(struct node_barn * barn)3026 static void barn_init(struct node_barn *barn)
3027 {
3028 	spin_lock_init(&barn->lock);
3029 	INIT_LIST_HEAD(&barn->sheaves_full);
3030 	INIT_LIST_HEAD(&barn->sheaves_empty);
3031 	barn->nr_full = 0;
3032 	barn->nr_empty = 0;
3033 }
3034 
barn_shrink(struct kmem_cache * s,struct node_barn * barn)3035 static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
3036 {
3037 	LIST_HEAD(empty_list);
3038 	LIST_HEAD(full_list);
3039 	struct slab_sheaf *sheaf, *sheaf2;
3040 	unsigned long flags;
3041 
3042 	spin_lock_irqsave(&barn->lock, flags);
3043 
3044 	list_splice_init(&barn->sheaves_full, &full_list);
3045 	barn->nr_full = 0;
3046 	list_splice_init(&barn->sheaves_empty, &empty_list);
3047 	barn->nr_empty = 0;
3048 
3049 	spin_unlock_irqrestore(&barn->lock, flags);
3050 
3051 	list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) {
3052 		sheaf_flush_unused(s, sheaf);
3053 		free_empty_sheaf(s, sheaf);
3054 	}
3055 
3056 	list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list)
3057 		free_empty_sheaf(s, sheaf);
3058 }
3059 
3060 /*
3061  * Slab allocation and freeing
3062  */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo,bool allow_spin)3063 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
3064 					   struct kmem_cache_order_objects oo,
3065 					   bool allow_spin)
3066 {
3067 	struct page *page;
3068 	struct slab *slab;
3069 	unsigned int order = oo_order(oo);
3070 
3071 	if (unlikely(!allow_spin))
3072 		page = alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
3073 								  node, order);
3074 	else if (node == NUMA_NO_NODE)
3075 		page = alloc_frozen_pages(flags, order);
3076 	else
3077 		page = __alloc_frozen_pages(flags, order, node, NULL);
3078 
3079 	if (!page)
3080 		return NULL;
3081 
3082 	__SetPageSlab(page);
3083 	slab = page_slab(page);
3084 	if (page_is_pfmemalloc(page))
3085 		slab_set_pfmemalloc(slab);
3086 
3087 	return slab;
3088 }
3089 
3090 #ifdef CONFIG_SLAB_FREELIST_RANDOM
3091 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)3092 static int init_cache_random_seq(struct kmem_cache *s)
3093 {
3094 	unsigned int count = oo_objects(s->oo);
3095 	int err;
3096 
3097 	/* Bailout if already initialised */
3098 	if (s->random_seq)
3099 		return 0;
3100 
3101 	err = cache_random_seq_create(s, count, GFP_KERNEL);
3102 	if (err) {
3103 		pr_err("SLUB: Unable to initialize free list for %s\n",
3104 			s->name);
3105 		return err;
3106 	}
3107 
3108 	/* Transform to an offset on the set of pages */
3109 	if (s->random_seq) {
3110 		unsigned int i;
3111 
3112 		for (i = 0; i < count; i++)
3113 			s->random_seq[i] *= s->size;
3114 	}
3115 	return 0;
3116 }
3117 
3118 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)3119 static void __init init_freelist_randomization(void)
3120 {
3121 	struct kmem_cache *s;
3122 
3123 	mutex_lock(&slab_mutex);
3124 
3125 	list_for_each_entry(s, &slab_caches, list)
3126 		init_cache_random_seq(s);
3127 
3128 	mutex_unlock(&slab_mutex);
3129 }
3130 
3131 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)3132 static void *next_freelist_entry(struct kmem_cache *s,
3133 				unsigned long *pos, void *start,
3134 				unsigned long page_limit,
3135 				unsigned long freelist_count)
3136 {
3137 	unsigned int idx;
3138 
3139 	/*
3140 	 * If the target page allocation failed, the number of objects on the
3141 	 * page might be smaller than the usual size defined by the cache.
3142 	 */
3143 	do {
3144 		idx = s->random_seq[*pos];
3145 		*pos += 1;
3146 		if (*pos >= freelist_count)
3147 			*pos = 0;
3148 	} while (unlikely(idx >= page_limit));
3149 
3150 	return (char *)start + idx;
3151 }
3152 
3153 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3154 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3155 {
3156 	void *start;
3157 	void *cur;
3158 	void *next;
3159 	unsigned long idx, pos, page_limit, freelist_count;
3160 
3161 	if (slab->objects < 2 || !s->random_seq)
3162 		return false;
3163 
3164 	freelist_count = oo_objects(s->oo);
3165 	pos = get_random_u32_below(freelist_count);
3166 
3167 	page_limit = slab->objects * s->size;
3168 	start = fixup_red_left(s, slab_address(slab));
3169 
3170 	/* First entry is used as the base of the freelist */
3171 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
3172 	cur = setup_object(s, cur);
3173 	slab->freelist = cur;
3174 
3175 	for (idx = 1; idx < slab->objects; idx++) {
3176 		next = next_freelist_entry(s, &pos, start, page_limit,
3177 			freelist_count);
3178 		next = setup_object(s, next);
3179 		set_freepointer(s, cur, next);
3180 		cur = next;
3181 	}
3182 	set_freepointer(s, cur, NULL);
3183 
3184 	return true;
3185 }
3186 #else
init_cache_random_seq(struct kmem_cache * s)3187 static inline int init_cache_random_seq(struct kmem_cache *s)
3188 {
3189 	return 0;
3190 }
init_freelist_randomization(void)3191 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3192 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3193 {
3194 	return false;
3195 }
3196 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
3197 
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)3198 static __always_inline void account_slab(struct slab *slab, int order,
3199 					 struct kmem_cache *s, gfp_t gfp)
3200 {
3201 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
3202 		alloc_slab_obj_exts(slab, s, gfp, true);
3203 
3204 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3205 			    PAGE_SIZE << order);
3206 }
3207 
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)3208 static __always_inline void unaccount_slab(struct slab *slab, int order,
3209 					   struct kmem_cache *s)
3210 {
3211 	/*
3212 	 * The slab object extensions should now be freed regardless of
3213 	 * whether mem_alloc_profiling_enabled() or not because profiling
3214 	 * might have been disabled after slab->obj_exts got allocated.
3215 	 */
3216 	free_slab_obj_exts(slab);
3217 
3218 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3219 			    -(PAGE_SIZE << order));
3220 }
3221 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)3222 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
3223 {
3224 	bool allow_spin = gfpflags_allow_spinning(flags);
3225 	struct slab *slab;
3226 	struct kmem_cache_order_objects oo = s->oo;
3227 	gfp_t alloc_gfp;
3228 	void *start, *p, *next;
3229 	int idx;
3230 	bool shuffle;
3231 
3232 	flags &= gfp_allowed_mask;
3233 
3234 	flags |= s->allocflags;
3235 
3236 	/*
3237 	 * Let the initial higher-order allocation fail under memory pressure
3238 	 * so we fall-back to the minimum order allocation.
3239 	 */
3240 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
3241 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
3242 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
3243 
3244 	/*
3245 	 * __GFP_RECLAIM could be cleared on the first allocation attempt,
3246 	 * so pass allow_spin flag directly.
3247 	 */
3248 	slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3249 	if (unlikely(!slab)) {
3250 		oo = s->min;
3251 		alloc_gfp = flags;
3252 		/*
3253 		 * Allocation may have failed due to fragmentation.
3254 		 * Try a lower order alloc if possible
3255 		 */
3256 		slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3257 		if (unlikely(!slab))
3258 			return NULL;
3259 		stat(s, ORDER_FALLBACK);
3260 	}
3261 
3262 	slab->objects = oo_objects(oo);
3263 	slab->inuse = 0;
3264 	slab->frozen = 0;
3265 	init_slab_obj_exts(slab);
3266 
3267 	account_slab(slab, oo_order(oo), s, flags);
3268 
3269 	slab->slab_cache = s;
3270 
3271 	kasan_poison_slab(slab);
3272 
3273 	start = slab_address(slab);
3274 
3275 	setup_slab_debug(s, slab, start);
3276 
3277 	shuffle = shuffle_freelist(s, slab);
3278 
3279 	if (!shuffle) {
3280 		start = fixup_red_left(s, start);
3281 		start = setup_object(s, start);
3282 		slab->freelist = start;
3283 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
3284 			next = p + s->size;
3285 			next = setup_object(s, next);
3286 			set_freepointer(s, p, next);
3287 			p = next;
3288 		}
3289 		set_freepointer(s, p, NULL);
3290 	}
3291 
3292 	return slab;
3293 }
3294 
new_slab(struct kmem_cache * s,gfp_t flags,int node)3295 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
3296 {
3297 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3298 		flags = kmalloc_fix_flags(flags);
3299 
3300 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
3301 
3302 	return allocate_slab(s,
3303 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
3304 }
3305 
__free_slab(struct kmem_cache * s,struct slab * slab)3306 static void __free_slab(struct kmem_cache *s, struct slab *slab)
3307 {
3308 	struct page *page = slab_page(slab);
3309 	int order = compound_order(page);
3310 	int pages = 1 << order;
3311 
3312 	__slab_clear_pfmemalloc(slab);
3313 	page->mapping = NULL;
3314 	__ClearPageSlab(page);
3315 	mm_account_reclaimed_pages(pages);
3316 	unaccount_slab(slab, order, s);
3317 	free_frozen_pages(page, order);
3318 }
3319 
rcu_free_slab(struct rcu_head * h)3320 static void rcu_free_slab(struct rcu_head *h)
3321 {
3322 	struct slab *slab = container_of(h, struct slab, rcu_head);
3323 
3324 	__free_slab(slab->slab_cache, slab);
3325 }
3326 
free_slab(struct kmem_cache * s,struct slab * slab)3327 static void free_slab(struct kmem_cache *s, struct slab *slab)
3328 {
3329 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
3330 		void *p;
3331 
3332 		slab_pad_check(s, slab);
3333 		for_each_object(p, s, slab_address(slab), slab->objects)
3334 			check_object(s, slab, p, SLUB_RED_INACTIVE);
3335 	}
3336 
3337 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
3338 		call_rcu(&slab->rcu_head, rcu_free_slab);
3339 	else
3340 		__free_slab(s, slab);
3341 }
3342 
discard_slab(struct kmem_cache * s,struct slab * slab)3343 static void discard_slab(struct kmem_cache *s, struct slab *slab)
3344 {
3345 	dec_slabs_node(s, slab_nid(slab), slab->objects);
3346 	free_slab(s, slab);
3347 }
3348 
slab_test_node_partial(const struct slab * slab)3349 static inline bool slab_test_node_partial(const struct slab *slab)
3350 {
3351 	return test_bit(SL_partial, &slab->flags.f);
3352 }
3353 
slab_set_node_partial(struct slab * slab)3354 static inline void slab_set_node_partial(struct slab *slab)
3355 {
3356 	set_bit(SL_partial, &slab->flags.f);
3357 }
3358 
slab_clear_node_partial(struct slab * slab)3359 static inline void slab_clear_node_partial(struct slab *slab)
3360 {
3361 	clear_bit(SL_partial, &slab->flags.f);
3362 }
3363 
3364 /*
3365  * Management of partially allocated slabs.
3366  */
3367 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3368 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
3369 {
3370 	n->nr_partial++;
3371 	if (tail == DEACTIVATE_TO_TAIL)
3372 		list_add_tail(&slab->slab_list, &n->partial);
3373 	else
3374 		list_add(&slab->slab_list, &n->partial);
3375 	slab_set_node_partial(slab);
3376 }
3377 
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3378 static inline void add_partial(struct kmem_cache_node *n,
3379 				struct slab *slab, int tail)
3380 {
3381 	lockdep_assert_held(&n->list_lock);
3382 	__add_partial(n, slab, tail);
3383 }
3384 
remove_partial(struct kmem_cache_node * n,struct slab * slab)3385 static inline void remove_partial(struct kmem_cache_node *n,
3386 					struct slab *slab)
3387 {
3388 	lockdep_assert_held(&n->list_lock);
3389 	list_del(&slab->slab_list);
3390 	slab_clear_node_partial(slab);
3391 	n->nr_partial--;
3392 }
3393 
3394 /*
3395  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
3396  * slab from the n->partial list. Remove only a single object from the slab, do
3397  * the alloc_debug_processing() checks and leave the slab on the list, or move
3398  * it to full list if it was the last free object.
3399  */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)3400 static void *alloc_single_from_partial(struct kmem_cache *s,
3401 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
3402 {
3403 	void *object;
3404 
3405 	lockdep_assert_held(&n->list_lock);
3406 
3407 #ifdef CONFIG_SLUB_DEBUG
3408 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3409 		if (!validate_slab_ptr(slab)) {
3410 			slab_err(s, slab, "Not a valid slab page");
3411 			return NULL;
3412 		}
3413 	}
3414 #endif
3415 
3416 	object = slab->freelist;
3417 	slab->freelist = get_freepointer(s, object);
3418 	slab->inuse++;
3419 
3420 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3421 		remove_partial(n, slab);
3422 		return NULL;
3423 	}
3424 
3425 	if (slab->inuse == slab->objects) {
3426 		remove_partial(n, slab);
3427 		add_full(s, n, slab);
3428 	}
3429 
3430 	return object;
3431 }
3432 
3433 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
3434 
3435 /*
3436  * Called only for kmem_cache_debug() caches to allocate from a freshly
3437  * allocated slab. Allocate a single object instead of whole freelist
3438  * and put the slab to the partial (or full) list.
3439  */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size,gfp_t gfpflags)3440 static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
3441 					int orig_size, gfp_t gfpflags)
3442 {
3443 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
3444 	int nid = slab_nid(slab);
3445 	struct kmem_cache_node *n = get_node(s, nid);
3446 	unsigned long flags;
3447 	void *object;
3448 
3449 	if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
3450 		/* Unlucky, discard newly allocated slab */
3451 		defer_deactivate_slab(slab, NULL);
3452 		return NULL;
3453 	}
3454 
3455 	object = slab->freelist;
3456 	slab->freelist = get_freepointer(s, object);
3457 	slab->inuse = 1;
3458 
3459 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
3460 		/*
3461 		 * It's not really expected that this would fail on a
3462 		 * freshly allocated slab, but a concurrent memory
3463 		 * corruption in theory could cause that.
3464 		 * Leak memory of allocated slab.
3465 		 */
3466 		if (!allow_spin)
3467 			spin_unlock_irqrestore(&n->list_lock, flags);
3468 		return NULL;
3469 	}
3470 
3471 	if (allow_spin)
3472 		spin_lock_irqsave(&n->list_lock, flags);
3473 
3474 	if (slab->inuse == slab->objects)
3475 		add_full(s, n, slab);
3476 	else
3477 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
3478 
3479 	inc_slabs_node(s, nid, slab->objects);
3480 	spin_unlock_irqrestore(&n->list_lock, flags);
3481 
3482 	return object;
3483 }
3484 
3485 #ifdef CONFIG_SLUB_CPU_PARTIAL
3486 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
3487 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3488 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
3489 				   int drain) { }
3490 #endif
3491 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
3492 
3493 /*
3494  * Try to allocate a partial slab from a specific node.
3495  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)3496 static struct slab *get_partial_node(struct kmem_cache *s,
3497 				     struct kmem_cache_node *n,
3498 				     struct partial_context *pc)
3499 {
3500 	struct slab *slab, *slab2, *partial = NULL;
3501 	unsigned long flags;
3502 	unsigned int partial_slabs = 0;
3503 
3504 	/*
3505 	 * Racy check. If we mistakenly see no partial slabs then we
3506 	 * just allocate an empty slab. If we mistakenly try to get a
3507 	 * partial slab and there is none available then get_partial()
3508 	 * will return NULL.
3509 	 */
3510 	if (!n || !n->nr_partial)
3511 		return NULL;
3512 
3513 	if (gfpflags_allow_spinning(pc->flags))
3514 		spin_lock_irqsave(&n->list_lock, flags);
3515 	else if (!spin_trylock_irqsave(&n->list_lock, flags))
3516 		return NULL;
3517 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
3518 		if (!pfmemalloc_match(slab, pc->flags))
3519 			continue;
3520 
3521 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3522 			void *object = alloc_single_from_partial(s, n, slab,
3523 							pc->orig_size);
3524 			if (object) {
3525 				partial = slab;
3526 				pc->object = object;
3527 				break;
3528 			}
3529 			continue;
3530 		}
3531 
3532 		remove_partial(n, slab);
3533 
3534 		if (!partial) {
3535 			partial = slab;
3536 			stat(s, ALLOC_FROM_PARTIAL);
3537 
3538 			if ((slub_get_cpu_partial(s) == 0)) {
3539 				break;
3540 			}
3541 		} else {
3542 			put_cpu_partial(s, slab, 0);
3543 			stat(s, CPU_PARTIAL_NODE);
3544 
3545 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
3546 				break;
3547 			}
3548 		}
3549 	}
3550 	spin_unlock_irqrestore(&n->list_lock, flags);
3551 	return partial;
3552 }
3553 
3554 /*
3555  * Get a slab from somewhere. Search in increasing NUMA distances.
3556  */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)3557 static struct slab *get_any_partial(struct kmem_cache *s,
3558 				    struct partial_context *pc)
3559 {
3560 #ifdef CONFIG_NUMA
3561 	struct zonelist *zonelist;
3562 	struct zoneref *z;
3563 	struct zone *zone;
3564 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
3565 	struct slab *slab;
3566 	unsigned int cpuset_mems_cookie;
3567 
3568 	/*
3569 	 * The defrag ratio allows a configuration of the tradeoffs between
3570 	 * inter node defragmentation and node local allocations. A lower
3571 	 * defrag_ratio increases the tendency to do local allocations
3572 	 * instead of attempting to obtain partial slabs from other nodes.
3573 	 *
3574 	 * If the defrag_ratio is set to 0 then kmalloc() always
3575 	 * returns node local objects. If the ratio is higher then kmalloc()
3576 	 * may return off node objects because partial slabs are obtained
3577 	 * from other nodes and filled up.
3578 	 *
3579 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
3580 	 * (which makes defrag_ratio = 1000) then every (well almost)
3581 	 * allocation will first attempt to defrag slab caches on other nodes.
3582 	 * This means scanning over all nodes to look for partial slabs which
3583 	 * may be expensive if we do it every time we are trying to find a slab
3584 	 * with available objects.
3585 	 */
3586 	if (!s->remote_node_defrag_ratio ||
3587 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
3588 		return NULL;
3589 
3590 	do {
3591 		cpuset_mems_cookie = read_mems_allowed_begin();
3592 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
3593 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3594 			struct kmem_cache_node *n;
3595 
3596 			n = get_node(s, zone_to_nid(zone));
3597 
3598 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
3599 					n->nr_partial > s->min_partial) {
3600 				slab = get_partial_node(s, n, pc);
3601 				if (slab) {
3602 					/*
3603 					 * Don't check read_mems_allowed_retry()
3604 					 * here - if mems_allowed was updated in
3605 					 * parallel, that was a harmless race
3606 					 * between allocation and the cpuset
3607 					 * update
3608 					 */
3609 					return slab;
3610 				}
3611 			}
3612 		}
3613 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3614 #endif	/* CONFIG_NUMA */
3615 	return NULL;
3616 }
3617 
3618 /*
3619  * Get a partial slab, lock it and return it.
3620  */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)3621 static struct slab *get_partial(struct kmem_cache *s, int node,
3622 				struct partial_context *pc)
3623 {
3624 	struct slab *slab;
3625 	int searchnode = node;
3626 
3627 	if (node == NUMA_NO_NODE)
3628 		searchnode = numa_mem_id();
3629 
3630 	slab = get_partial_node(s, get_node(s, searchnode), pc);
3631 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3632 		return slab;
3633 
3634 	return get_any_partial(s, pc);
3635 }
3636 
3637 #ifdef CONFIG_PREEMPTION
3638 /*
3639  * Calculate the next globally unique transaction for disambiguation
3640  * during cmpxchg. The transactions start with the cpu number and are then
3641  * incremented by CONFIG_NR_CPUS.
3642  */
3643 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
3644 #else
3645 /*
3646  * No preemption supported therefore also no need to check for
3647  * different cpus.
3648  */
3649 #define TID_STEP 1
3650 #endif /* CONFIG_PREEMPTION */
3651 
next_tid(unsigned long tid)3652 static inline unsigned long next_tid(unsigned long tid)
3653 {
3654 	return tid + TID_STEP;
3655 }
3656 
3657 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3658 static inline unsigned int tid_to_cpu(unsigned long tid)
3659 {
3660 	return tid % TID_STEP;
3661 }
3662 
tid_to_event(unsigned long tid)3663 static inline unsigned long tid_to_event(unsigned long tid)
3664 {
3665 	return tid / TID_STEP;
3666 }
3667 #endif
3668 
init_tid(int cpu)3669 static inline unsigned int init_tid(int cpu)
3670 {
3671 	return cpu;
3672 }
3673 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3674 static inline void note_cmpxchg_failure(const char *n,
3675 		const struct kmem_cache *s, unsigned long tid)
3676 {
3677 #ifdef SLUB_DEBUG_CMPXCHG
3678 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3679 
3680 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3681 
3682 	if (IS_ENABLED(CONFIG_PREEMPTION) &&
3683 	    tid_to_cpu(tid) != tid_to_cpu(actual_tid)) {
3684 		pr_warn("due to cpu change %d -> %d\n",
3685 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3686 	} else if (tid_to_event(tid) != tid_to_event(actual_tid)) {
3687 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3688 			tid_to_event(tid), tid_to_event(actual_tid));
3689 	} else {
3690 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3691 			actual_tid, tid, next_tid(tid));
3692 	}
3693 #endif
3694 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3695 }
3696 
init_kmem_cache_cpus(struct kmem_cache * s)3697 static void init_kmem_cache_cpus(struct kmem_cache *s)
3698 {
3699 #ifdef CONFIG_PREEMPT_RT
3700 	/*
3701 	 * Register lockdep key for non-boot kmem caches to avoid
3702 	 * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
3703 	 */
3704 	bool finegrain_lockdep = !init_section_contains(s, 1);
3705 #else
3706 	/*
3707 	 * Don't bother with different lockdep classes for each
3708 	 * kmem_cache, since we only use local_trylock_irqsave().
3709 	 */
3710 	bool finegrain_lockdep = false;
3711 #endif
3712 	int cpu;
3713 	struct kmem_cache_cpu *c;
3714 
3715 	if (finegrain_lockdep)
3716 		lockdep_register_key(&s->lock_key);
3717 	for_each_possible_cpu(cpu) {
3718 		c = per_cpu_ptr(s->cpu_slab, cpu);
3719 		local_trylock_init(&c->lock);
3720 		if (finegrain_lockdep)
3721 			lockdep_set_class(&c->lock, &s->lock_key);
3722 		c->tid = init_tid(cpu);
3723 	}
3724 }
3725 
3726 /*
3727  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3728  * unfreezes the slabs and puts it on the proper list.
3729  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3730  * by the caller.
3731  */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3732 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3733 			    void *freelist)
3734 {
3735 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3736 	int free_delta = 0;
3737 	void *nextfree, *freelist_iter, *freelist_tail;
3738 	int tail = DEACTIVATE_TO_HEAD;
3739 	unsigned long flags = 0;
3740 	struct freelist_counters old, new;
3741 
3742 	if (READ_ONCE(slab->freelist)) {
3743 		stat(s, DEACTIVATE_REMOTE_FREES);
3744 		tail = DEACTIVATE_TO_TAIL;
3745 	}
3746 
3747 	/*
3748 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3749 	 * remember the last object in freelist_tail for later splicing.
3750 	 */
3751 	freelist_tail = NULL;
3752 	freelist_iter = freelist;
3753 	while (freelist_iter) {
3754 		nextfree = get_freepointer(s, freelist_iter);
3755 
3756 		/*
3757 		 * If 'nextfree' is invalid, it is possible that the object at
3758 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3759 		 * starting at 'freelist_iter' by skipping them.
3760 		 */
3761 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3762 			break;
3763 
3764 		freelist_tail = freelist_iter;
3765 		free_delta++;
3766 
3767 		freelist_iter = nextfree;
3768 	}
3769 
3770 	/*
3771 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3772 	 * freelist to the head of slab's freelist.
3773 	 */
3774 	do {
3775 		old.freelist = READ_ONCE(slab->freelist);
3776 		old.counters = READ_ONCE(slab->counters);
3777 		VM_BUG_ON(!old.frozen);
3778 
3779 		/* Determine target state of the slab */
3780 		new.counters = old.counters;
3781 		new.frozen = 0;
3782 		if (freelist_tail) {
3783 			new.inuse -= free_delta;
3784 			set_freepointer(s, freelist_tail, old.freelist);
3785 			new.freelist = freelist;
3786 		} else {
3787 			new.freelist = old.freelist;
3788 		}
3789 	} while (!slab_update_freelist(s, slab, &old, &new, "unfreezing slab"));
3790 
3791 	/*
3792 	 * Stage three: Manipulate the slab list based on the updated state.
3793 	 */
3794 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3795 		stat(s, DEACTIVATE_EMPTY);
3796 		discard_slab(s, slab);
3797 		stat(s, FREE_SLAB);
3798 	} else if (new.freelist) {
3799 		spin_lock_irqsave(&n->list_lock, flags);
3800 		add_partial(n, slab, tail);
3801 		spin_unlock_irqrestore(&n->list_lock, flags);
3802 		stat(s, tail);
3803 	} else {
3804 		stat(s, DEACTIVATE_FULL);
3805 	}
3806 }
3807 
3808 /*
3809  * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
3810  * can be acquired without a deadlock before invoking the function.
3811  *
3812  * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
3813  * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
3814  * and kmalloc() is not used in an unsupported context.
3815  *
3816  * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
3817  * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
3818  * lockdep_assert() will catch a bug in case:
3819  * #1
3820  * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
3821  * or
3822  * #2
3823  * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
3824  *
3825  * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
3826  * disabled context. The lock will always be acquired and if needed it
3827  * block and sleep until the lock is available.
3828  * #1 is possible in !PREEMPT_RT only.
3829  * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
3830  * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
3831  *    tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
3832  *
3833  * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
3834  */
3835 #if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
3836 #define local_lock_cpu_slab(s, flags)	\
3837 	local_lock_irqsave(&(s)->cpu_slab->lock, flags)
3838 #else
3839 #define local_lock_cpu_slab(s, flags)					       \
3840 	do {								       \
3841 		bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
3842 		lockdep_assert(__l);					       \
3843 	} while (0)
3844 #endif
3845 
3846 #define local_unlock_cpu_slab(s, flags)	\
3847 	local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
3848 
3849 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3850 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3851 {
3852 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3853 	struct slab *slab, *slab_to_discard = NULL;
3854 	unsigned long flags = 0;
3855 
3856 	while (partial_slab) {
3857 		slab = partial_slab;
3858 		partial_slab = slab->next;
3859 
3860 		n2 = get_node(s, slab_nid(slab));
3861 		if (n != n2) {
3862 			if (n)
3863 				spin_unlock_irqrestore(&n->list_lock, flags);
3864 
3865 			n = n2;
3866 			spin_lock_irqsave(&n->list_lock, flags);
3867 		}
3868 
3869 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3870 			slab->next = slab_to_discard;
3871 			slab_to_discard = slab;
3872 		} else {
3873 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3874 			stat(s, FREE_ADD_PARTIAL);
3875 		}
3876 	}
3877 
3878 	if (n)
3879 		spin_unlock_irqrestore(&n->list_lock, flags);
3880 
3881 	while (slab_to_discard) {
3882 		slab = slab_to_discard;
3883 		slab_to_discard = slab_to_discard->next;
3884 
3885 		stat(s, DEACTIVATE_EMPTY);
3886 		discard_slab(s, slab);
3887 		stat(s, FREE_SLAB);
3888 	}
3889 }
3890 
3891 /*
3892  * Put all the cpu partial slabs to the node partial list.
3893  */
put_partials(struct kmem_cache * s)3894 static void put_partials(struct kmem_cache *s)
3895 {
3896 	struct slab *partial_slab;
3897 	unsigned long flags;
3898 
3899 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3900 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3901 	this_cpu_write(s->cpu_slab->partial, NULL);
3902 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3903 
3904 	if (partial_slab)
3905 		__put_partials(s, partial_slab);
3906 }
3907 
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3908 static void put_partials_cpu(struct kmem_cache *s,
3909 			     struct kmem_cache_cpu *c)
3910 {
3911 	struct slab *partial_slab;
3912 
3913 	partial_slab = slub_percpu_partial(c);
3914 	c->partial = NULL;
3915 
3916 	if (partial_slab)
3917 		__put_partials(s, partial_slab);
3918 }
3919 
3920 /*
3921  * Put a slab into a partial slab slot if available.
3922  *
3923  * If we did not find a slot then simply move all the partials to the
3924  * per node partial list.
3925  */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3926 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3927 {
3928 	struct slab *oldslab;
3929 	struct slab *slab_to_put = NULL;
3930 	unsigned long flags;
3931 	int slabs = 0;
3932 
3933 	local_lock_cpu_slab(s, flags);
3934 
3935 	oldslab = this_cpu_read(s->cpu_slab->partial);
3936 
3937 	if (oldslab) {
3938 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3939 			/*
3940 			 * Partial array is full. Move the existing set to the
3941 			 * per node partial list. Postpone the actual unfreezing
3942 			 * outside of the critical section.
3943 			 */
3944 			slab_to_put = oldslab;
3945 			oldslab = NULL;
3946 		} else {
3947 			slabs = oldslab->slabs;
3948 		}
3949 	}
3950 
3951 	slabs++;
3952 
3953 	slab->slabs = slabs;
3954 	slab->next = oldslab;
3955 
3956 	this_cpu_write(s->cpu_slab->partial, slab);
3957 
3958 	local_unlock_cpu_slab(s, flags);
3959 
3960 	if (slab_to_put) {
3961 		__put_partials(s, slab_to_put);
3962 		stat(s, CPU_PARTIAL_DRAIN);
3963 	}
3964 }
3965 
3966 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3967 
put_partials(struct kmem_cache * s)3968 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3969 static inline void put_partials_cpu(struct kmem_cache *s,
3970 				    struct kmem_cache_cpu *c) { }
3971 
3972 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3973 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3974 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3975 {
3976 	unsigned long flags;
3977 	struct slab *slab;
3978 	void *freelist;
3979 
3980 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3981 
3982 	slab = c->slab;
3983 	freelist = c->freelist;
3984 
3985 	c->slab = NULL;
3986 	c->freelist = NULL;
3987 	c->tid = next_tid(c->tid);
3988 
3989 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3990 
3991 	if (slab) {
3992 		deactivate_slab(s, slab, freelist);
3993 		stat(s, CPUSLAB_FLUSH);
3994 	}
3995 }
3996 
__flush_cpu_slab(struct kmem_cache * s,int cpu)3997 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3998 {
3999 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4000 	void *freelist = c->freelist;
4001 	struct slab *slab = c->slab;
4002 
4003 	c->slab = NULL;
4004 	c->freelist = NULL;
4005 	c->tid = next_tid(c->tid);
4006 
4007 	if (slab) {
4008 		deactivate_slab(s, slab, freelist);
4009 		stat(s, CPUSLAB_FLUSH);
4010 	}
4011 
4012 	put_partials_cpu(s, c);
4013 }
4014 
flush_this_cpu_slab(struct kmem_cache * s)4015 static inline void flush_this_cpu_slab(struct kmem_cache *s)
4016 {
4017 	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
4018 
4019 	if (c->slab)
4020 		flush_slab(s, c);
4021 
4022 	put_partials(s);
4023 }
4024 
has_cpu_slab(int cpu,struct kmem_cache * s)4025 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
4026 {
4027 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4028 
4029 	return c->slab || slub_percpu_partial(c);
4030 }
4031 
has_pcs_used(int cpu,struct kmem_cache * s)4032 static bool has_pcs_used(int cpu, struct kmem_cache *s)
4033 {
4034 	struct slub_percpu_sheaves *pcs;
4035 
4036 	if (!s->cpu_sheaves)
4037 		return false;
4038 
4039 	pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
4040 
4041 	return (pcs->spare || pcs->rcu_free || pcs->main->size);
4042 }
4043 
4044 /*
4045  * Flush cpu slab.
4046  *
4047  * Called from CPU work handler with migration disabled.
4048  */
flush_cpu_slab(struct work_struct * w)4049 static void flush_cpu_slab(struct work_struct *w)
4050 {
4051 	struct kmem_cache *s;
4052 	struct slub_flush_work *sfw;
4053 
4054 	sfw = container_of(w, struct slub_flush_work, work);
4055 
4056 	s = sfw->s;
4057 
4058 	if (s->cpu_sheaves)
4059 		pcs_flush_all(s);
4060 
4061 	flush_this_cpu_slab(s);
4062 }
4063 
flush_all_cpus_locked(struct kmem_cache * s)4064 static void flush_all_cpus_locked(struct kmem_cache *s)
4065 {
4066 	struct slub_flush_work *sfw;
4067 	unsigned int cpu;
4068 
4069 	lockdep_assert_cpus_held();
4070 	mutex_lock(&flush_lock);
4071 
4072 	for_each_online_cpu(cpu) {
4073 		sfw = &per_cpu(slub_flush, cpu);
4074 		if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) {
4075 			sfw->skip = true;
4076 			continue;
4077 		}
4078 		INIT_WORK(&sfw->work, flush_cpu_slab);
4079 		sfw->skip = false;
4080 		sfw->s = s;
4081 		queue_work_on(cpu, flushwq, &sfw->work);
4082 	}
4083 
4084 	for_each_online_cpu(cpu) {
4085 		sfw = &per_cpu(slub_flush, cpu);
4086 		if (sfw->skip)
4087 			continue;
4088 		flush_work(&sfw->work);
4089 	}
4090 
4091 	mutex_unlock(&flush_lock);
4092 }
4093 
flush_all(struct kmem_cache * s)4094 static void flush_all(struct kmem_cache *s)
4095 {
4096 	cpus_read_lock();
4097 	flush_all_cpus_locked(s);
4098 	cpus_read_unlock();
4099 }
4100 
flush_rcu_sheaf(struct work_struct * w)4101 static void flush_rcu_sheaf(struct work_struct *w)
4102 {
4103 	struct slub_percpu_sheaves *pcs;
4104 	struct slab_sheaf *rcu_free;
4105 	struct slub_flush_work *sfw;
4106 	struct kmem_cache *s;
4107 
4108 	sfw = container_of(w, struct slub_flush_work, work);
4109 	s = sfw->s;
4110 
4111 	local_lock(&s->cpu_sheaves->lock);
4112 	pcs = this_cpu_ptr(s->cpu_sheaves);
4113 
4114 	rcu_free = pcs->rcu_free;
4115 	pcs->rcu_free = NULL;
4116 
4117 	local_unlock(&s->cpu_sheaves->lock);
4118 
4119 	if (rcu_free)
4120 		call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
4121 }
4122 
4123 
4124 /* needed for kvfree_rcu_barrier() */
flush_all_rcu_sheaves(void)4125 void flush_all_rcu_sheaves(void)
4126 {
4127 	struct slub_flush_work *sfw;
4128 	struct kmem_cache *s;
4129 	unsigned int cpu;
4130 
4131 	cpus_read_lock();
4132 	mutex_lock(&slab_mutex);
4133 
4134 	list_for_each_entry(s, &slab_caches, list) {
4135 		if (!s->cpu_sheaves)
4136 			continue;
4137 
4138 		mutex_lock(&flush_lock);
4139 
4140 		for_each_online_cpu(cpu) {
4141 			sfw = &per_cpu(slub_flush, cpu);
4142 
4143 			/*
4144 			 * we don't check if rcu_free sheaf exists - racing
4145 			 * __kfree_rcu_sheaf() might have just removed it.
4146 			 * by executing flush_rcu_sheaf() on the cpu we make
4147 			 * sure the __kfree_rcu_sheaf() finished its call_rcu()
4148 			 */
4149 
4150 			INIT_WORK(&sfw->work, flush_rcu_sheaf);
4151 			sfw->s = s;
4152 			queue_work_on(cpu, flushwq, &sfw->work);
4153 		}
4154 
4155 		for_each_online_cpu(cpu) {
4156 			sfw = &per_cpu(slub_flush, cpu);
4157 			flush_work(&sfw->work);
4158 		}
4159 
4160 		mutex_unlock(&flush_lock);
4161 	}
4162 
4163 	mutex_unlock(&slab_mutex);
4164 	cpus_read_unlock();
4165 
4166 	rcu_barrier();
4167 }
4168 
4169 /*
4170  * Use the cpu notifier to insure that the cpu slabs are flushed when
4171  * necessary.
4172  */
slub_cpu_dead(unsigned int cpu)4173 static int slub_cpu_dead(unsigned int cpu)
4174 {
4175 	struct kmem_cache *s;
4176 
4177 	mutex_lock(&slab_mutex);
4178 	list_for_each_entry(s, &slab_caches, list) {
4179 		__flush_cpu_slab(s, cpu);
4180 		if (s->cpu_sheaves)
4181 			__pcs_flush_all_cpu(s, cpu);
4182 	}
4183 	mutex_unlock(&slab_mutex);
4184 	return 0;
4185 }
4186 
4187 /*
4188  * Check if the objects in a per cpu structure fit numa
4189  * locality expectations.
4190  */
node_match(struct slab * slab,int node)4191 static inline int node_match(struct slab *slab, int node)
4192 {
4193 #ifdef CONFIG_NUMA
4194 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
4195 		return 0;
4196 #endif
4197 	return 1;
4198 }
4199 
4200 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)4201 static int count_free(struct slab *slab)
4202 {
4203 	return slab->objects - slab->inuse;
4204 }
4205 
node_nr_objs(struct kmem_cache_node * n)4206 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
4207 {
4208 	return atomic_long_read(&n->total_objects);
4209 }
4210 
4211 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)4212 static inline bool free_debug_processing(struct kmem_cache *s,
4213 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
4214 	unsigned long addr, depot_stack_handle_t handle)
4215 {
4216 	bool checks_ok = false;
4217 	void *object = head;
4218 	int cnt = 0;
4219 
4220 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4221 		if (!check_slab(s, slab))
4222 			goto out;
4223 	}
4224 
4225 	if (slab->inuse < *bulk_cnt) {
4226 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
4227 			 slab->inuse, *bulk_cnt);
4228 		goto out;
4229 	}
4230 
4231 next_object:
4232 
4233 	if (++cnt > *bulk_cnt)
4234 		goto out_cnt;
4235 
4236 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4237 		if (!free_consistency_checks(s, slab, object, addr))
4238 			goto out;
4239 	}
4240 
4241 	if (s->flags & SLAB_STORE_USER)
4242 		set_track_update(s, object, TRACK_FREE, addr, handle);
4243 	trace(s, slab, object, 0);
4244 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
4245 	init_object(s, object, SLUB_RED_INACTIVE);
4246 
4247 	/* Reached end of constructed freelist yet? */
4248 	if (object != tail) {
4249 		object = get_freepointer(s, object);
4250 		goto next_object;
4251 	}
4252 	checks_ok = true;
4253 
4254 out_cnt:
4255 	if (cnt != *bulk_cnt) {
4256 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
4257 			 *bulk_cnt, cnt);
4258 		*bulk_cnt = cnt;
4259 	}
4260 
4261 out:
4262 
4263 	if (!checks_ok)
4264 		slab_fix(s, "Object at 0x%p not freed", object);
4265 
4266 	return checks_ok;
4267 }
4268 #endif /* CONFIG_SLUB_DEBUG */
4269 
4270 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))4271 static unsigned long count_partial(struct kmem_cache_node *n,
4272 					int (*get_count)(struct slab *))
4273 {
4274 	unsigned long flags;
4275 	unsigned long x = 0;
4276 	struct slab *slab;
4277 
4278 	spin_lock_irqsave(&n->list_lock, flags);
4279 	list_for_each_entry(slab, &n->partial, slab_list)
4280 		x += get_count(slab);
4281 	spin_unlock_irqrestore(&n->list_lock, flags);
4282 	return x;
4283 }
4284 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
4285 
4286 #ifdef CONFIG_SLUB_DEBUG
4287 #define MAX_PARTIAL_TO_SCAN 10000
4288 
count_partial_free_approx(struct kmem_cache_node * n)4289 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
4290 {
4291 	unsigned long flags;
4292 	unsigned long x = 0;
4293 	struct slab *slab;
4294 
4295 	spin_lock_irqsave(&n->list_lock, flags);
4296 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
4297 		list_for_each_entry(slab, &n->partial, slab_list)
4298 			x += slab->objects - slab->inuse;
4299 	} else {
4300 		/*
4301 		 * For a long list, approximate the total count of objects in
4302 		 * it to meet the limit on the number of slabs to scan.
4303 		 * Scan from both the list's head and tail for better accuracy.
4304 		 */
4305 		unsigned long scanned = 0;
4306 
4307 		list_for_each_entry(slab, &n->partial, slab_list) {
4308 			x += slab->objects - slab->inuse;
4309 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
4310 				break;
4311 		}
4312 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
4313 			x += slab->objects - slab->inuse;
4314 			if (++scanned == MAX_PARTIAL_TO_SCAN)
4315 				break;
4316 		}
4317 		x = mult_frac(x, n->nr_partial, scanned);
4318 		x = min(x, node_nr_objs(n));
4319 	}
4320 	spin_unlock_irqrestore(&n->list_lock, flags);
4321 	return x;
4322 }
4323 
4324 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4325 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
4326 {
4327 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
4328 				      DEFAULT_RATELIMIT_BURST);
4329 	int cpu = raw_smp_processor_id();
4330 	int node;
4331 	struct kmem_cache_node *n;
4332 
4333 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
4334 		return;
4335 
4336 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
4337 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
4338 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
4339 		s->name, s->object_size, s->size, oo_order(s->oo),
4340 		oo_order(s->min));
4341 
4342 	if (oo_order(s->min) > get_order(s->object_size))
4343 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
4344 			s->name);
4345 
4346 	for_each_kmem_cache_node(s, node, n) {
4347 		unsigned long nr_slabs;
4348 		unsigned long nr_objs;
4349 		unsigned long nr_free;
4350 
4351 		nr_free  = count_partial_free_approx(n);
4352 		nr_slabs = node_nr_slabs(n);
4353 		nr_objs  = node_nr_objs(n);
4354 
4355 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
4356 			node, nr_slabs, nr_objs, nr_free);
4357 	}
4358 }
4359 #else /* CONFIG_SLUB_DEBUG */
4360 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4361 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
4362 #endif
4363 
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)4364 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
4365 {
4366 	if (unlikely(slab_test_pfmemalloc(slab)))
4367 		return gfp_pfmemalloc_allowed(gfpflags);
4368 
4369 	return true;
4370 }
4371 
4372 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)4373 __update_cpu_freelist_fast(struct kmem_cache *s,
4374 			   void *freelist_old, void *freelist_new,
4375 			   unsigned long tid)
4376 {
4377 	struct freelist_tid old = { .freelist = freelist_old, .tid = tid };
4378 	struct freelist_tid new = { .freelist = freelist_new, .tid = next_tid(tid) };
4379 
4380 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid,
4381 					     &old.freelist_tid, new.freelist_tid);
4382 }
4383 
4384 /*
4385  * Check the slab->freelist and either transfer the freelist to the
4386  * per cpu freelist or deactivate the slab.
4387  *
4388  * The slab is still frozen if the return value is not NULL.
4389  *
4390  * If this function returns NULL then the slab has been unfrozen.
4391  */
get_freelist(struct kmem_cache * s,struct slab * slab)4392 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
4393 {
4394 	struct freelist_counters old, new;
4395 
4396 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4397 
4398 	do {
4399 		old.freelist = slab->freelist;
4400 		old.counters = slab->counters;
4401 
4402 		new.freelist = NULL;
4403 		new.counters = old.counters;
4404 
4405 		new.inuse = old.objects;
4406 		new.frozen = old.freelist != NULL;
4407 
4408 
4409 	} while (!__slab_update_freelist(s, slab, &old, &new, "get_freelist"));
4410 
4411 	return old.freelist;
4412 }
4413 
4414 /*
4415  * Freeze the partial slab and return the pointer to the freelist.
4416  */
freeze_slab(struct kmem_cache * s,struct slab * slab)4417 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
4418 {
4419 	struct freelist_counters old, new;
4420 
4421 	do {
4422 		old.freelist = slab->freelist;
4423 		old.counters = slab->counters;
4424 
4425 		new.freelist = NULL;
4426 		new.counters = old.counters;
4427 		VM_BUG_ON(new.frozen);
4428 
4429 		new.inuse = old.objects;
4430 		new.frozen = 1;
4431 
4432 	} while (!slab_update_freelist(s, slab, &old, &new, "freeze_slab"));
4433 
4434 	return old.freelist;
4435 }
4436 
4437 /*
4438  * Slow path. The lockless freelist is empty or we need to perform
4439  * debugging duties.
4440  *
4441  * Processing is still very fast if new objects have been freed to the
4442  * regular freelist. In that case we simply take over the regular freelist
4443  * as the lockless freelist and zap the regular freelist.
4444  *
4445  * If that is not working then we fall back to the partial lists. We take the
4446  * first element of the freelist as the object to allocate now and move the
4447  * rest of the freelist to the lockless freelist.
4448  *
4449  * And if we were unable to get a new slab from the partial slab lists then
4450  * we need to allocate a new slab. This is the slowest path since it involves
4451  * a call to the page allocator and the setup of a new slab.
4452  *
4453  * Version of __slab_alloc to use when we know that preemption is
4454  * already disabled (which is the case for bulk allocation).
4455  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4456 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4457 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4458 {
4459 	bool allow_spin = gfpflags_allow_spinning(gfpflags);
4460 	void *freelist;
4461 	struct slab *slab;
4462 	unsigned long flags;
4463 	struct partial_context pc;
4464 	bool try_thisnode = true;
4465 
4466 	stat(s, ALLOC_SLOWPATH);
4467 
4468 reread_slab:
4469 
4470 	slab = READ_ONCE(c->slab);
4471 	if (!slab) {
4472 		/*
4473 		 * if the node is not online or has no normal memory, just
4474 		 * ignore the node constraint
4475 		 */
4476 		if (unlikely(node != NUMA_NO_NODE &&
4477 			     !node_isset(node, slab_nodes)))
4478 			node = NUMA_NO_NODE;
4479 		goto new_slab;
4480 	}
4481 
4482 	if (unlikely(!node_match(slab, node))) {
4483 		/*
4484 		 * same as above but node_match() being false already
4485 		 * implies node != NUMA_NO_NODE.
4486 		 *
4487 		 * We don't strictly honor pfmemalloc and NUMA preferences
4488 		 * when !allow_spin because:
4489 		 *
4490 		 * 1. Most kmalloc() users allocate objects on the local node,
4491 		 *    so kmalloc_nolock() tries not to interfere with them by
4492 		 *    deactivating the cpu slab.
4493 		 *
4494 		 * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
4495 		 *    unnecessary slab allocations even when n->partial list
4496 		 *    is not empty.
4497 		 */
4498 		if (!node_isset(node, slab_nodes) ||
4499 		    !allow_spin) {
4500 			node = NUMA_NO_NODE;
4501 		} else {
4502 			stat(s, ALLOC_NODE_MISMATCH);
4503 			goto deactivate_slab;
4504 		}
4505 	}
4506 
4507 	/*
4508 	 * By rights, we should be searching for a slab page that was
4509 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
4510 	 * information when the page leaves the per-cpu allocator
4511 	 */
4512 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
4513 		goto deactivate_slab;
4514 
4515 	/* must check again c->slab in case we got preempted and it changed */
4516 	local_lock_cpu_slab(s, flags);
4517 
4518 	if (unlikely(slab != c->slab)) {
4519 		local_unlock_cpu_slab(s, flags);
4520 		goto reread_slab;
4521 	}
4522 	freelist = c->freelist;
4523 	if (freelist)
4524 		goto load_freelist;
4525 
4526 	freelist = get_freelist(s, slab);
4527 
4528 	if (!freelist) {
4529 		c->slab = NULL;
4530 		c->tid = next_tid(c->tid);
4531 		local_unlock_cpu_slab(s, flags);
4532 		stat(s, DEACTIVATE_BYPASS);
4533 		goto new_slab;
4534 	}
4535 
4536 	stat(s, ALLOC_REFILL);
4537 
4538 load_freelist:
4539 
4540 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4541 
4542 	/*
4543 	 * freelist is pointing to the list of objects to be used.
4544 	 * slab is pointing to the slab from which the objects are obtained.
4545 	 * That slab must be frozen for per cpu allocations to work.
4546 	 */
4547 	VM_BUG_ON(!c->slab->frozen);
4548 	c->freelist = get_freepointer(s, freelist);
4549 	c->tid = next_tid(c->tid);
4550 	local_unlock_cpu_slab(s, flags);
4551 	return freelist;
4552 
4553 deactivate_slab:
4554 
4555 	local_lock_cpu_slab(s, flags);
4556 	if (slab != c->slab) {
4557 		local_unlock_cpu_slab(s, flags);
4558 		goto reread_slab;
4559 	}
4560 	freelist = c->freelist;
4561 	c->slab = NULL;
4562 	c->freelist = NULL;
4563 	c->tid = next_tid(c->tid);
4564 	local_unlock_cpu_slab(s, flags);
4565 	deactivate_slab(s, slab, freelist);
4566 
4567 new_slab:
4568 
4569 #ifdef CONFIG_SLUB_CPU_PARTIAL
4570 	while (slub_percpu_partial(c)) {
4571 		local_lock_cpu_slab(s, flags);
4572 		if (unlikely(c->slab)) {
4573 			local_unlock_cpu_slab(s, flags);
4574 			goto reread_slab;
4575 		}
4576 		if (unlikely(!slub_percpu_partial(c))) {
4577 			local_unlock_cpu_slab(s, flags);
4578 			/* we were preempted and partial list got empty */
4579 			goto new_objects;
4580 		}
4581 
4582 		slab = slub_percpu_partial(c);
4583 		slub_set_percpu_partial(c, slab);
4584 
4585 		if (likely(node_match(slab, node) &&
4586 			   pfmemalloc_match(slab, gfpflags)) ||
4587 		    !allow_spin) {
4588 			c->slab = slab;
4589 			freelist = get_freelist(s, slab);
4590 			VM_BUG_ON(!freelist);
4591 			stat(s, CPU_PARTIAL_ALLOC);
4592 			goto load_freelist;
4593 		}
4594 
4595 		local_unlock_cpu_slab(s, flags);
4596 
4597 		slab->next = NULL;
4598 		__put_partials(s, slab);
4599 	}
4600 #endif
4601 
4602 new_objects:
4603 
4604 	pc.flags = gfpflags;
4605 	/*
4606 	 * When a preferred node is indicated but no __GFP_THISNODE
4607 	 *
4608 	 * 1) try to get a partial slab from target node only by having
4609 	 *    __GFP_THISNODE in pc.flags for get_partial()
4610 	 * 2) if 1) failed, try to allocate a new slab from target node with
4611 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
4612 	 * 3) if 2) failed, retry with original gfpflags which will allow
4613 	 *    get_partial() try partial lists of other nodes before potentially
4614 	 *    allocating new page from other nodes
4615 	 */
4616 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4617 		     && try_thisnode)) {
4618 		if (unlikely(!allow_spin))
4619 			/* Do not upgrade gfp to NOWAIT from more restrictive mode */
4620 			pc.flags = gfpflags | __GFP_THISNODE;
4621 		else
4622 			pc.flags = GFP_NOWAIT | __GFP_THISNODE;
4623 	}
4624 
4625 	pc.orig_size = orig_size;
4626 	slab = get_partial(s, node, &pc);
4627 	if (slab) {
4628 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4629 			freelist = pc.object;
4630 			/*
4631 			 * For debug caches here we had to go through
4632 			 * alloc_single_from_partial() so just store the
4633 			 * tracking info and return the object.
4634 			 *
4635 			 * Due to disabled preemption we need to disallow
4636 			 * blocking. The flags are further adjusted by
4637 			 * gfp_nested_mask() in stack_depot itself.
4638 			 */
4639 			if (s->flags & SLAB_STORE_USER)
4640 				set_track(s, freelist, TRACK_ALLOC, addr,
4641 					  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4642 
4643 			return freelist;
4644 		}
4645 
4646 		freelist = freeze_slab(s, slab);
4647 		goto retry_load_slab;
4648 	}
4649 
4650 	slub_put_cpu_ptr(s->cpu_slab);
4651 	slab = new_slab(s, pc.flags, node);
4652 	c = slub_get_cpu_ptr(s->cpu_slab);
4653 
4654 	if (unlikely(!slab)) {
4655 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4656 		    && try_thisnode) {
4657 			try_thisnode = false;
4658 			goto new_objects;
4659 		}
4660 		slab_out_of_memory(s, gfpflags, node);
4661 		return NULL;
4662 	}
4663 
4664 	stat(s, ALLOC_SLAB);
4665 
4666 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4667 		freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4668 
4669 		if (unlikely(!freelist)) {
4670 			/* This could cause an endless loop. Fail instead. */
4671 			if (!allow_spin)
4672 				return NULL;
4673 			goto new_objects;
4674 		}
4675 
4676 		if (s->flags & SLAB_STORE_USER)
4677 			set_track(s, freelist, TRACK_ALLOC, addr,
4678 				  gfpflags & ~(__GFP_DIRECT_RECLAIM));
4679 
4680 		return freelist;
4681 	}
4682 
4683 	/*
4684 	 * No other reference to the slab yet so we can
4685 	 * muck around with it freely without cmpxchg
4686 	 */
4687 	freelist = slab->freelist;
4688 	slab->freelist = NULL;
4689 	slab->inuse = slab->objects;
4690 	slab->frozen = 1;
4691 
4692 	inc_slabs_node(s, slab_nid(slab), slab->objects);
4693 
4694 	if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
4695 		/*
4696 		 * For !pfmemalloc_match() case we don't load freelist so that
4697 		 * we don't make further mismatched allocations easier.
4698 		 */
4699 		deactivate_slab(s, slab, get_freepointer(s, freelist));
4700 		return freelist;
4701 	}
4702 
4703 retry_load_slab:
4704 
4705 	local_lock_cpu_slab(s, flags);
4706 	if (unlikely(c->slab)) {
4707 		void *flush_freelist = c->freelist;
4708 		struct slab *flush_slab = c->slab;
4709 
4710 		c->slab = NULL;
4711 		c->freelist = NULL;
4712 		c->tid = next_tid(c->tid);
4713 
4714 		local_unlock_cpu_slab(s, flags);
4715 
4716 		if (unlikely(!allow_spin)) {
4717 			/* Reentrant slub cannot take locks, defer */
4718 			defer_deactivate_slab(flush_slab, flush_freelist);
4719 		} else {
4720 			deactivate_slab(s, flush_slab, flush_freelist);
4721 		}
4722 
4723 		stat(s, CPUSLAB_FLUSH);
4724 
4725 		goto retry_load_slab;
4726 	}
4727 	c->slab = slab;
4728 
4729 	goto load_freelist;
4730 }
4731 /*
4732  * We disallow kprobes in ___slab_alloc() to prevent reentrance
4733  *
4734  * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
4735  * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
4736  * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
4737  * manipulating c->freelist without lock.
4738  *
4739  * This does not prevent kprobe in functions called from ___slab_alloc() such as
4740  * local_lock_irqsave() itself, and that is fine, we only need to protect the
4741  * c->freelist manipulation in ___slab_alloc() itself.
4742  */
4743 NOKPROBE_SYMBOL(___slab_alloc);
4744 
4745 /*
4746  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
4747  * disabled. Compensates for possible cpu changes by refetching the per cpu area
4748  * pointer.
4749  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4750 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4751 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4752 {
4753 	void *p;
4754 
4755 #ifdef CONFIG_PREEMPT_COUNT
4756 	/*
4757 	 * We may have been preempted and rescheduled on a different
4758 	 * cpu before disabling preemption. Need to reload cpu area
4759 	 * pointer.
4760 	 */
4761 	c = slub_get_cpu_ptr(s->cpu_slab);
4762 #endif
4763 	if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
4764 		if (local_lock_is_locked(&s->cpu_slab->lock)) {
4765 			/*
4766 			 * EBUSY is an internal signal to kmalloc_nolock() to
4767 			 * retry a different bucket. It's not propagated
4768 			 * to the caller.
4769 			 */
4770 			p = ERR_PTR(-EBUSY);
4771 			goto out;
4772 		}
4773 	}
4774 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
4775 out:
4776 #ifdef CONFIG_PREEMPT_COUNT
4777 	slub_put_cpu_ptr(s->cpu_slab);
4778 #endif
4779 	return p;
4780 }
4781 
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4782 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4783 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4784 {
4785 	struct kmem_cache_cpu *c;
4786 	struct slab *slab;
4787 	unsigned long tid;
4788 	void *object;
4789 
4790 redo:
4791 	/*
4792 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4793 	 * enabled. We may switch back and forth between cpus while
4794 	 * reading from one cpu area. That does not matter as long
4795 	 * as we end up on the original cpu again when doing the cmpxchg.
4796 	 *
4797 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4798 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4799 	 * the tid. If we are preempted and switched to another cpu between the
4800 	 * two reads, it's OK as the two are still associated with the same cpu
4801 	 * and cmpxchg later will validate the cpu.
4802 	 */
4803 	c = raw_cpu_ptr(s->cpu_slab);
4804 	tid = READ_ONCE(c->tid);
4805 
4806 	/*
4807 	 * Irqless object alloc/free algorithm used here depends on sequence
4808 	 * of fetching cpu_slab's data. tid should be fetched before anything
4809 	 * on c to guarantee that object and slab associated with previous tid
4810 	 * won't be used with current tid. If we fetch tid first, object and
4811 	 * slab could be one associated with next tid and our alloc/free
4812 	 * request will be failed. In this case, we will retry. So, no problem.
4813 	 */
4814 	barrier();
4815 
4816 	/*
4817 	 * The transaction ids are globally unique per cpu and per operation on
4818 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4819 	 * occurs on the right processor and that there was no operation on the
4820 	 * linked list in between.
4821 	 */
4822 
4823 	object = c->freelist;
4824 	slab = c->slab;
4825 
4826 #ifdef CONFIG_NUMA
4827 	if (static_branch_unlikely(&strict_numa) &&
4828 			node == NUMA_NO_NODE) {
4829 
4830 		struct mempolicy *mpol = current->mempolicy;
4831 
4832 		if (mpol) {
4833 			/*
4834 			 * Special BIND rule support. If existing slab
4835 			 * is in permitted set then do not redirect
4836 			 * to a particular node.
4837 			 * Otherwise we apply the memory policy to get
4838 			 * the node we need to allocate on.
4839 			 */
4840 			if (mpol->mode != MPOL_BIND || !slab ||
4841 					!node_isset(slab_nid(slab), mpol->nodes))
4842 
4843 				node = mempolicy_slab_node();
4844 		}
4845 	}
4846 #endif
4847 
4848 	if (!USE_LOCKLESS_FAST_PATH() ||
4849 	    unlikely(!object || !slab || !node_match(slab, node))) {
4850 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4851 	} else {
4852 		void *next_object = get_freepointer_safe(s, object);
4853 
4854 		/*
4855 		 * The cmpxchg will only match if there was no additional
4856 		 * operation and if we are on the right processor.
4857 		 *
4858 		 * The cmpxchg does the following atomically (without lock
4859 		 * semantics!)
4860 		 * 1. Relocate first pointer to the current per cpu area.
4861 		 * 2. Verify that tid and freelist have not been changed
4862 		 * 3. If they were not changed replace tid and freelist
4863 		 *
4864 		 * Since this is without lock semantics the protection is only
4865 		 * against code executing on this cpu *not* from access by
4866 		 * other cpus.
4867 		 */
4868 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4869 			note_cmpxchg_failure("slab_alloc", s, tid);
4870 			goto redo;
4871 		}
4872 		prefetch_freepointer(s, next_object);
4873 		stat(s, ALLOC_FASTPATH);
4874 	}
4875 
4876 	return object;
4877 }
4878 
4879 /*
4880  * If the object has been wiped upon free, make sure it's fully initialized by
4881  * zeroing out freelist pointer.
4882  *
4883  * Note that we also wipe custom freelist pointers.
4884  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4885 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4886 						   void *obj)
4887 {
4888 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4889 	    !freeptr_outside_object(s))
4890 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4891 			0, sizeof(void *));
4892 }
4893 
4894 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4895 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4896 {
4897 	flags &= gfp_allowed_mask;
4898 
4899 	might_alloc(flags);
4900 
4901 	if (unlikely(should_failslab(s, flags)))
4902 		return NULL;
4903 
4904 	return s;
4905 }
4906 
4907 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4908 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4909 			  gfp_t flags, size_t size, void **p, bool init,
4910 			  unsigned int orig_size)
4911 {
4912 	unsigned int zero_size = s->object_size;
4913 	bool kasan_init = init;
4914 	size_t i;
4915 	gfp_t init_flags = flags & gfp_allowed_mask;
4916 
4917 	/*
4918 	 * For kmalloc object, the allocated memory size(object_size) is likely
4919 	 * larger than the requested size(orig_size). If redzone check is
4920 	 * enabled for the extra space, don't zero it, as it will be redzoned
4921 	 * soon. The redzone operation for this extra space could be seen as a
4922 	 * replacement of current poisoning under certain debug option, and
4923 	 * won't break other sanity checks.
4924 	 */
4925 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4926 	    (s->flags & SLAB_KMALLOC))
4927 		zero_size = orig_size;
4928 
4929 	/*
4930 	 * When slab_debug is enabled, avoid memory initialization integrated
4931 	 * into KASAN and instead zero out the memory via the memset below with
4932 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4933 	 * cause false-positive reports. This does not lead to a performance
4934 	 * penalty on production builds, as slab_debug is not intended to be
4935 	 * enabled there.
4936 	 */
4937 	if (__slub_debug_enabled())
4938 		kasan_init = false;
4939 
4940 	/*
4941 	 * As memory initialization might be integrated into KASAN,
4942 	 * kasan_slab_alloc and initialization memset must be
4943 	 * kept together to avoid discrepancies in behavior.
4944 	 *
4945 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4946 	 */
4947 	for (i = 0; i < size; i++) {
4948 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4949 		if (p[i] && init && (!kasan_init ||
4950 				     !kasan_has_integrated_init()))
4951 			memset(p[i], 0, zero_size);
4952 		if (gfpflags_allow_spinning(flags))
4953 			kmemleak_alloc_recursive(p[i], s->object_size, 1,
4954 						 s->flags, init_flags);
4955 		kmsan_slab_alloc(s, p[i], init_flags);
4956 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4957 	}
4958 
4959 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4960 }
4961 
4962 /*
4963  * Replace the empty main sheaf with a (at least partially) full sheaf.
4964  *
4965  * Must be called with the cpu_sheaves local lock locked. If successful, returns
4966  * the pcs pointer and the local lock locked (possibly on a different cpu than
4967  * initially called). If not successful, returns NULL and the local lock
4968  * unlocked.
4969  */
4970 static struct slub_percpu_sheaves *
__pcs_replace_empty_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,gfp_t gfp)4971 __pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp)
4972 {
4973 	struct slab_sheaf *empty = NULL;
4974 	struct slab_sheaf *full;
4975 	struct node_barn *barn;
4976 	bool can_alloc;
4977 
4978 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
4979 
4980 	if (pcs->spare && pcs->spare->size > 0) {
4981 		swap(pcs->main, pcs->spare);
4982 		return pcs;
4983 	}
4984 
4985 	barn = get_barn(s);
4986 	if (!barn) {
4987 		local_unlock(&s->cpu_sheaves->lock);
4988 		return NULL;
4989 	}
4990 
4991 	full = barn_replace_empty_sheaf(barn, pcs->main);
4992 
4993 	if (full) {
4994 		stat(s, BARN_GET);
4995 		pcs->main = full;
4996 		return pcs;
4997 	}
4998 
4999 	stat(s, BARN_GET_FAIL);
5000 
5001 	can_alloc = gfpflags_allow_blocking(gfp);
5002 
5003 	if (can_alloc) {
5004 		if (pcs->spare) {
5005 			empty = pcs->spare;
5006 			pcs->spare = NULL;
5007 		} else {
5008 			empty = barn_get_empty_sheaf(barn);
5009 		}
5010 	}
5011 
5012 	local_unlock(&s->cpu_sheaves->lock);
5013 
5014 	if (!can_alloc)
5015 		return NULL;
5016 
5017 	if (empty) {
5018 		if (!refill_sheaf(s, empty, gfp | __GFP_NOMEMALLOC)) {
5019 			full = empty;
5020 		} else {
5021 			/*
5022 			 * we must be very low on memory so don't bother
5023 			 * with the barn
5024 			 */
5025 			free_empty_sheaf(s, empty);
5026 		}
5027 	} else {
5028 		full = alloc_full_sheaf(s, gfp);
5029 	}
5030 
5031 	if (!full)
5032 		return NULL;
5033 
5034 	/*
5035 	 * we can reach here only when gfpflags_allow_blocking
5036 	 * so this must not be an irq
5037 	 */
5038 	local_lock(&s->cpu_sheaves->lock);
5039 	pcs = this_cpu_ptr(s->cpu_sheaves);
5040 
5041 	/*
5042 	 * If we are returning empty sheaf, we either got it from the
5043 	 * barn or had to allocate one. If we are returning a full
5044 	 * sheaf, it's due to racing or being migrated to a different
5045 	 * cpu. Breaching the barn's sheaf limits should be thus rare
5046 	 * enough so just ignore them to simplify the recovery.
5047 	 */
5048 
5049 	if (pcs->main->size == 0) {
5050 		barn_put_empty_sheaf(barn, pcs->main);
5051 		pcs->main = full;
5052 		return pcs;
5053 	}
5054 
5055 	if (!pcs->spare) {
5056 		pcs->spare = full;
5057 		return pcs;
5058 	}
5059 
5060 	if (pcs->spare->size == 0) {
5061 		barn_put_empty_sheaf(barn, pcs->spare);
5062 		pcs->spare = full;
5063 		return pcs;
5064 	}
5065 
5066 	barn_put_full_sheaf(barn, full);
5067 	stat(s, BARN_PUT);
5068 
5069 	return pcs;
5070 }
5071 
5072 static __fastpath_inline
alloc_from_pcs(struct kmem_cache * s,gfp_t gfp,int node)5073 void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node)
5074 {
5075 	struct slub_percpu_sheaves *pcs;
5076 	bool node_requested;
5077 	void *object;
5078 
5079 #ifdef CONFIG_NUMA
5080 	if (static_branch_unlikely(&strict_numa) &&
5081 			 node == NUMA_NO_NODE) {
5082 
5083 		struct mempolicy *mpol = current->mempolicy;
5084 
5085 		if (mpol) {
5086 			/*
5087 			 * Special BIND rule support. If the local node
5088 			 * is in permitted set then do not redirect
5089 			 * to a particular node.
5090 			 * Otherwise we apply the memory policy to get
5091 			 * the node we need to allocate on.
5092 			 */
5093 			if (mpol->mode != MPOL_BIND ||
5094 					!node_isset(numa_mem_id(), mpol->nodes))
5095 
5096 				node = mempolicy_slab_node();
5097 		}
5098 	}
5099 #endif
5100 
5101 	node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE;
5102 
5103 	/*
5104 	 * We assume the percpu sheaves contain only local objects although it's
5105 	 * not completely guaranteed, so we verify later.
5106 	 */
5107 	if (unlikely(node_requested && node != numa_mem_id()))
5108 		return NULL;
5109 
5110 	if (!local_trylock(&s->cpu_sheaves->lock))
5111 		return NULL;
5112 
5113 	pcs = this_cpu_ptr(s->cpu_sheaves);
5114 
5115 	if (unlikely(pcs->main->size == 0)) {
5116 		pcs = __pcs_replace_empty_main(s, pcs, gfp);
5117 		if (unlikely(!pcs))
5118 			return NULL;
5119 	}
5120 
5121 	object = pcs->main->objects[pcs->main->size - 1];
5122 
5123 	if (unlikely(node_requested)) {
5124 		/*
5125 		 * Verify that the object was from the node we want. This could
5126 		 * be false because of cpu migration during an unlocked part of
5127 		 * the current allocation or previous freeing process.
5128 		 */
5129 		if (page_to_nid(virt_to_page(object)) != node) {
5130 			local_unlock(&s->cpu_sheaves->lock);
5131 			return NULL;
5132 		}
5133 	}
5134 
5135 	pcs->main->size--;
5136 
5137 	local_unlock(&s->cpu_sheaves->lock);
5138 
5139 	stat(s, ALLOC_PCS);
5140 
5141 	return object;
5142 }
5143 
5144 static __fastpath_inline
alloc_from_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)5145 unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
5146 {
5147 	struct slub_percpu_sheaves *pcs;
5148 	struct slab_sheaf *main;
5149 	unsigned int allocated = 0;
5150 	unsigned int batch;
5151 
5152 next_batch:
5153 	if (!local_trylock(&s->cpu_sheaves->lock))
5154 		return allocated;
5155 
5156 	pcs = this_cpu_ptr(s->cpu_sheaves);
5157 
5158 	if (unlikely(pcs->main->size == 0)) {
5159 
5160 		struct slab_sheaf *full;
5161 		struct node_barn *barn;
5162 
5163 		if (pcs->spare && pcs->spare->size > 0) {
5164 			swap(pcs->main, pcs->spare);
5165 			goto do_alloc;
5166 		}
5167 
5168 		barn = get_barn(s);
5169 		if (!barn) {
5170 			local_unlock(&s->cpu_sheaves->lock);
5171 			return allocated;
5172 		}
5173 
5174 		full = barn_replace_empty_sheaf(barn, pcs->main);
5175 
5176 		if (full) {
5177 			stat(s, BARN_GET);
5178 			pcs->main = full;
5179 			goto do_alloc;
5180 		}
5181 
5182 		stat(s, BARN_GET_FAIL);
5183 
5184 		local_unlock(&s->cpu_sheaves->lock);
5185 
5186 		/*
5187 		 * Once full sheaves in barn are depleted, let the bulk
5188 		 * allocation continue from slab pages, otherwise we would just
5189 		 * be copying arrays of pointers twice.
5190 		 */
5191 		return allocated;
5192 	}
5193 
5194 do_alloc:
5195 
5196 	main = pcs->main;
5197 	batch = min(size, main->size);
5198 
5199 	main->size -= batch;
5200 	memcpy(p, main->objects + main->size, batch * sizeof(void *));
5201 
5202 	local_unlock(&s->cpu_sheaves->lock);
5203 
5204 	stat_add(s, ALLOC_PCS, batch);
5205 
5206 	allocated += batch;
5207 
5208 	if (batch < size) {
5209 		p += batch;
5210 		size -= batch;
5211 		goto next_batch;
5212 	}
5213 
5214 	return allocated;
5215 }
5216 
5217 
5218 /*
5219  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
5220  * have the fastpath folded into their functions. So no function call
5221  * overhead for requests that can be satisfied on the fastpath.
5222  *
5223  * The fastpath works by first checking if the lockless freelist can be used.
5224  * If not then __slab_alloc is called for slow processing.
5225  *
5226  * Otherwise we can simply pick the next object from the lockless free list.
5227  */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)5228 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
5229 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
5230 {
5231 	void *object;
5232 	bool init = false;
5233 
5234 	s = slab_pre_alloc_hook(s, gfpflags);
5235 	if (unlikely(!s))
5236 		return NULL;
5237 
5238 	object = kfence_alloc(s, orig_size, gfpflags);
5239 	if (unlikely(object))
5240 		goto out;
5241 
5242 	if (s->cpu_sheaves)
5243 		object = alloc_from_pcs(s, gfpflags, node);
5244 
5245 	if (!object)
5246 		object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
5247 
5248 	maybe_wipe_obj_freeptr(s, object);
5249 	init = slab_want_init_on_alloc(gfpflags, s);
5250 
5251 out:
5252 	/*
5253 	 * When init equals 'true', like for kzalloc() family, only
5254 	 * @orig_size bytes might be zeroed instead of s->object_size
5255 	 * In case this fails due to memcg_slab_post_alloc_hook(),
5256 	 * object is set to NULL
5257 	 */
5258 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5259 
5260 	return object;
5261 }
5262 
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)5263 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
5264 {
5265 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
5266 				    s->object_size);
5267 
5268 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5269 
5270 	return ret;
5271 }
5272 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
5273 
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)5274 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
5275 			   gfp_t gfpflags)
5276 {
5277 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
5278 				    s->object_size);
5279 
5280 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5281 
5282 	return ret;
5283 }
5284 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
5285 
kmem_cache_charge(void * objp,gfp_t gfpflags)5286 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
5287 {
5288 	if (!memcg_kmem_online())
5289 		return true;
5290 
5291 	return memcg_slab_post_charge(objp, gfpflags);
5292 }
5293 EXPORT_SYMBOL(kmem_cache_charge);
5294 
5295 /**
5296  * kmem_cache_alloc_node - Allocate an object on the specified node
5297  * @s: The cache to allocate from.
5298  * @gfpflags: See kmalloc().
5299  * @node: node number of the target node.
5300  *
5301  * Identical to kmem_cache_alloc but it will allocate memory on the given
5302  * node, which can improve the performance for cpu bound structures.
5303  *
5304  * Fallback to other node is possible if __GFP_THISNODE is not set.
5305  *
5306  * Return: pointer to the new object or %NULL in case of error
5307  */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)5308 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
5309 {
5310 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5311 
5312 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5313 
5314 	return ret;
5315 }
5316 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
5317 
__prefill_sheaf_pfmemalloc(struct kmem_cache * s,struct slab_sheaf * sheaf,gfp_t gfp)5318 static int __prefill_sheaf_pfmemalloc(struct kmem_cache *s,
5319 				      struct slab_sheaf *sheaf, gfp_t gfp)
5320 {
5321 	int ret = 0;
5322 
5323 	ret = refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC);
5324 
5325 	if (likely(!ret || !gfp_pfmemalloc_allowed(gfp)))
5326 		return ret;
5327 
5328 	/*
5329 	 * if we are allowed to, refill sheaf with pfmemalloc but then remember
5330 	 * it for when it's returned
5331 	 */
5332 	ret = refill_sheaf(s, sheaf, gfp);
5333 	sheaf->pfmemalloc = true;
5334 
5335 	return ret;
5336 }
5337 
5338 /*
5339  * returns a sheaf that has at least the requested size
5340  * when prefilling is needed, do so with given gfp flags
5341  *
5342  * return NULL if sheaf allocation or prefilling failed
5343  */
5344 struct slab_sheaf *
kmem_cache_prefill_sheaf(struct kmem_cache * s,gfp_t gfp,unsigned int size)5345 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
5346 {
5347 	struct slub_percpu_sheaves *pcs;
5348 	struct slab_sheaf *sheaf = NULL;
5349 	struct node_barn *barn;
5350 
5351 	if (unlikely(size > s->sheaf_capacity)) {
5352 
5353 		/*
5354 		 * slab_debug disables cpu sheaves intentionally so all
5355 		 * prefilled sheaves become "oversize" and we give up on
5356 		 * performance for the debugging. Same with SLUB_TINY.
5357 		 * Creating a cache without sheaves and then requesting a
5358 		 * prefilled sheaf is however not expected, so warn.
5359 		 */
5360 		WARN_ON_ONCE(s->sheaf_capacity == 0 &&
5361 			     !IS_ENABLED(CONFIG_SLUB_TINY) &&
5362 			     !(s->flags & SLAB_DEBUG_FLAGS));
5363 
5364 		sheaf = kzalloc(struct_size(sheaf, objects, size), gfp);
5365 		if (!sheaf)
5366 			return NULL;
5367 
5368 		stat(s, SHEAF_PREFILL_OVERSIZE);
5369 		sheaf->cache = s;
5370 		sheaf->capacity = size;
5371 
5372 		/*
5373 		 * we do not need to care about pfmemalloc here because oversize
5374 		 * sheaves area always flushed and freed when returned
5375 		 */
5376 		if (!__kmem_cache_alloc_bulk(s, gfp, size,
5377 					     &sheaf->objects[0])) {
5378 			kfree(sheaf);
5379 			return NULL;
5380 		}
5381 
5382 		sheaf->size = size;
5383 
5384 		return sheaf;
5385 	}
5386 
5387 	local_lock(&s->cpu_sheaves->lock);
5388 	pcs = this_cpu_ptr(s->cpu_sheaves);
5389 
5390 	if (pcs->spare) {
5391 		sheaf = pcs->spare;
5392 		pcs->spare = NULL;
5393 		stat(s, SHEAF_PREFILL_FAST);
5394 	} else {
5395 		barn = get_barn(s);
5396 
5397 		stat(s, SHEAF_PREFILL_SLOW);
5398 		if (barn)
5399 			sheaf = barn_get_full_or_empty_sheaf(barn);
5400 		if (sheaf && sheaf->size)
5401 			stat(s, BARN_GET);
5402 		else
5403 			stat(s, BARN_GET_FAIL);
5404 	}
5405 
5406 	local_unlock(&s->cpu_sheaves->lock);
5407 
5408 
5409 	if (!sheaf)
5410 		sheaf = alloc_empty_sheaf(s, gfp);
5411 
5412 	if (sheaf) {
5413 		sheaf->capacity = s->sheaf_capacity;
5414 		sheaf->pfmemalloc = false;
5415 
5416 		if (sheaf->size < size &&
5417 		    __prefill_sheaf_pfmemalloc(s, sheaf, gfp)) {
5418 			sheaf_flush_unused(s, sheaf);
5419 			free_empty_sheaf(s, sheaf);
5420 			sheaf = NULL;
5421 		}
5422 	}
5423 
5424 	return sheaf;
5425 }
5426 
5427 /*
5428  * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf()
5429  *
5430  * If the sheaf cannot simply become the percpu spare sheaf, but there's space
5431  * for a full sheaf in the barn, we try to refill the sheaf back to the cache's
5432  * sheaf_capacity to avoid handling partially full sheaves.
5433  *
5434  * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the
5435  * sheaf is instead flushed and freed.
5436  */
kmem_cache_return_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5437 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
5438 			     struct slab_sheaf *sheaf)
5439 {
5440 	struct slub_percpu_sheaves *pcs;
5441 	struct node_barn *barn;
5442 
5443 	if (unlikely((sheaf->capacity != s->sheaf_capacity)
5444 		     || sheaf->pfmemalloc)) {
5445 		sheaf_flush_unused(s, sheaf);
5446 		kfree(sheaf);
5447 		return;
5448 	}
5449 
5450 	local_lock(&s->cpu_sheaves->lock);
5451 	pcs = this_cpu_ptr(s->cpu_sheaves);
5452 	barn = get_barn(s);
5453 
5454 	if (!pcs->spare) {
5455 		pcs->spare = sheaf;
5456 		sheaf = NULL;
5457 		stat(s, SHEAF_RETURN_FAST);
5458 	}
5459 
5460 	local_unlock(&s->cpu_sheaves->lock);
5461 
5462 	if (!sheaf)
5463 		return;
5464 
5465 	stat(s, SHEAF_RETURN_SLOW);
5466 
5467 	/*
5468 	 * If the barn has too many full sheaves or we fail to refill the sheaf,
5469 	 * simply flush and free it.
5470 	 */
5471 	if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES ||
5472 	    refill_sheaf(s, sheaf, gfp)) {
5473 		sheaf_flush_unused(s, sheaf);
5474 		free_empty_sheaf(s, sheaf);
5475 		return;
5476 	}
5477 
5478 	barn_put_full_sheaf(barn, sheaf);
5479 	stat(s, BARN_PUT);
5480 }
5481 
5482 /*
5483  * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least
5484  * the given size
5485  *
5486  * the sheaf might be replaced by a new one when requesting more than
5487  * s->sheaf_capacity objects if such replacement is necessary, but the refill
5488  * fails (returning -ENOMEM), the existing sheaf is left intact
5489  *
5490  * In practice we always refill to full sheaf's capacity.
5491  */
kmem_cache_refill_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf ** sheafp,unsigned int size)5492 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
5493 			    struct slab_sheaf **sheafp, unsigned int size)
5494 {
5495 	struct slab_sheaf *sheaf;
5496 
5497 	/*
5498 	 * TODO: do we want to support *sheaf == NULL to be equivalent of
5499 	 * kmem_cache_prefill_sheaf() ?
5500 	 */
5501 	if (!sheafp || !(*sheafp))
5502 		return -EINVAL;
5503 
5504 	sheaf = *sheafp;
5505 	if (sheaf->size >= size)
5506 		return 0;
5507 
5508 	if (likely(sheaf->capacity >= size)) {
5509 		if (likely(sheaf->capacity == s->sheaf_capacity))
5510 			return __prefill_sheaf_pfmemalloc(s, sheaf, gfp);
5511 
5512 		if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size,
5513 					     &sheaf->objects[sheaf->size])) {
5514 			return -ENOMEM;
5515 		}
5516 		sheaf->size = sheaf->capacity;
5517 
5518 		return 0;
5519 	}
5520 
5521 	/*
5522 	 * We had a regular sized sheaf and need an oversize one, or we had an
5523 	 * oversize one already but need a larger one now.
5524 	 * This should be a very rare path so let's not complicate it.
5525 	 */
5526 	sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
5527 	if (!sheaf)
5528 		return -ENOMEM;
5529 
5530 	kmem_cache_return_sheaf(s, gfp, *sheafp);
5531 	*sheafp = sheaf;
5532 	return 0;
5533 }
5534 
5535 /*
5536  * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf()
5537  *
5538  * Guaranteed not to fail as many allocations as was the requested size.
5539  * After the sheaf is emptied, it fails - no fallback to the slab cache itself.
5540  *
5541  * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT
5542  * memcg charging is forced over limit if necessary, to avoid failure.
5543  *
5544  * It is possible that the allocation comes from kfence and then the sheaf
5545  * size is not decreased.
5546  */
5547 void *
kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5548 kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp,
5549 				   struct slab_sheaf *sheaf)
5550 {
5551 	void *ret = NULL;
5552 	bool init;
5553 
5554 	if (sheaf->size == 0)
5555 		goto out;
5556 
5557 	ret = kfence_alloc(s, s->object_size, gfp);
5558 
5559 	if (likely(!ret))
5560 		ret = sheaf->objects[--sheaf->size];
5561 
5562 	init = slab_want_init_on_alloc(gfp, s);
5563 
5564 	/* add __GFP_NOFAIL to force successful memcg charging */
5565 	slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size);
5566 out:
5567 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE);
5568 
5569 	return ret;
5570 }
5571 
kmem_cache_sheaf_size(struct slab_sheaf * sheaf)5572 unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf)
5573 {
5574 	return sheaf->size;
5575 }
5576 /*
5577  * To avoid unnecessary overhead, we pass through large allocation requests
5578  * directly to the page allocator. We use __GFP_COMP, because we will need to
5579  * know the allocation order to free the pages properly in kfree.
5580  */
___kmalloc_large_node(size_t size,gfp_t flags,int node)5581 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
5582 {
5583 	struct page *page;
5584 	void *ptr = NULL;
5585 	unsigned int order = get_order(size);
5586 
5587 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
5588 		flags = kmalloc_fix_flags(flags);
5589 
5590 	flags |= __GFP_COMP;
5591 
5592 	if (node == NUMA_NO_NODE)
5593 		page = alloc_frozen_pages_noprof(flags, order);
5594 	else
5595 		page = __alloc_frozen_pages_noprof(flags, order, node, NULL);
5596 
5597 	if (page) {
5598 		ptr = page_address(page);
5599 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
5600 				      PAGE_SIZE << order);
5601 		__SetPageLargeKmalloc(page);
5602 	}
5603 
5604 	ptr = kasan_kmalloc_large(ptr, size, flags);
5605 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
5606 	kmemleak_alloc(ptr, size, 1, flags);
5607 	kmsan_kmalloc_large(ptr, size, flags);
5608 
5609 	return ptr;
5610 }
5611 
__kmalloc_large_noprof(size_t size,gfp_t flags)5612 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
5613 {
5614 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
5615 
5616 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5617 		      flags, NUMA_NO_NODE);
5618 	return ret;
5619 }
5620 EXPORT_SYMBOL(__kmalloc_large_noprof);
5621 
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)5622 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
5623 {
5624 	void *ret = ___kmalloc_large_node(size, flags, node);
5625 
5626 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5627 		      flags, node);
5628 	return ret;
5629 }
5630 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5631 
5632 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)5633 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
5634 			unsigned long caller)
5635 {
5636 	struct kmem_cache *s;
5637 	void *ret;
5638 
5639 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5640 		ret = __kmalloc_large_node_noprof(size, flags, node);
5641 		trace_kmalloc(caller, ret, size,
5642 			      PAGE_SIZE << get_order(size), flags, node);
5643 		return ret;
5644 	}
5645 
5646 	if (unlikely(!size))
5647 		return ZERO_SIZE_PTR;
5648 
5649 	s = kmalloc_slab(size, b, flags, caller);
5650 
5651 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
5652 	ret = kasan_kmalloc(s, ret, size, flags);
5653 	trace_kmalloc(caller, ret, size, s->size, flags, node);
5654 	return ret;
5655 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5656 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5657 {
5658 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
5659 }
5660 EXPORT_SYMBOL(__kmalloc_node_noprof);
5661 
__kmalloc_noprof(size_t size,gfp_t flags)5662 void *__kmalloc_noprof(size_t size, gfp_t flags)
5663 {
5664 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
5665 }
5666 EXPORT_SYMBOL(__kmalloc_noprof);
5667 
5668 /**
5669  * kmalloc_nolock - Allocate an object of given size from any context.
5670  * @size: size to allocate
5671  * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
5672  * allowed.
5673  * @node: node number of the target node.
5674  *
5675  * Return: pointer to the new object or NULL in case of error.
5676  * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
5677  * There is no reason to call it again and expect !NULL.
5678  */
kmalloc_nolock_noprof(size_t size,gfp_t gfp_flags,int node)5679 void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
5680 {
5681 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
5682 	struct kmem_cache *s;
5683 	bool can_retry = true;
5684 	void *ret = ERR_PTR(-EBUSY);
5685 
5686 	VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
5687 				      __GFP_NO_OBJ_EXT));
5688 
5689 	if (unlikely(!size))
5690 		return ZERO_SIZE_PTR;
5691 
5692 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
5693 		/* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
5694 		return NULL;
5695 retry:
5696 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
5697 		return NULL;
5698 	s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
5699 
5700 	if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
5701 		/*
5702 		 * kmalloc_nolock() is not supported on architectures that
5703 		 * don't implement cmpxchg16b, but debug caches don't use
5704 		 * per-cpu slab and per-cpu partial slabs. They rely on
5705 		 * kmem_cache_node->list_lock, so kmalloc_nolock() can
5706 		 * attempt to allocate from debug caches by
5707 		 * spin_trylock_irqsave(&n->list_lock, ...)
5708 		 */
5709 		return NULL;
5710 
5711 	/*
5712 	 * Do not call slab_alloc_node(), since trylock mode isn't
5713 	 * compatible with slab_pre_alloc_hook/should_failslab and
5714 	 * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
5715 	 * and slab_post_alloc_hook() directly.
5716 	 *
5717 	 * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
5718 	 * in irq saved region. It assumes that the same cpu will not
5719 	 * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
5720 	 * Therefore use in_nmi() to check whether particular bucket is in
5721 	 * irq protected section.
5722 	 *
5723 	 * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
5724 	 * this cpu was interrupted somewhere inside ___slab_alloc() after
5725 	 * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
5726 	 * In this case fast path with __update_cpu_freelist_fast() is not safe.
5727 	 */
5728 	if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
5729 		ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
5730 
5731 	if (PTR_ERR(ret) == -EBUSY) {
5732 		if (can_retry) {
5733 			/* pick the next kmalloc bucket */
5734 			size = s->object_size + 1;
5735 			/*
5736 			 * Another alternative is to
5737 			 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
5738 			 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
5739 			 * to retry from bucket of the same size.
5740 			 */
5741 			can_retry = false;
5742 			goto retry;
5743 		}
5744 		ret = NULL;
5745 	}
5746 
5747 	maybe_wipe_obj_freeptr(s, ret);
5748 	slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
5749 			     slab_want_init_on_alloc(alloc_gfp, s), size);
5750 
5751 	ret = kasan_kmalloc(s, ret, size, alloc_gfp);
5752 	return ret;
5753 }
5754 EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
5755 
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)5756 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
5757 					 int node, unsigned long caller)
5758 {
5759 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
5760 
5761 }
5762 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
5763 
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)5764 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5765 {
5766 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
5767 					    _RET_IP_, size);
5768 
5769 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
5770 
5771 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5772 	return ret;
5773 }
5774 EXPORT_SYMBOL(__kmalloc_cache_noprof);
5775 
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)5776 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
5777 				  int node, size_t size)
5778 {
5779 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
5780 
5781 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
5782 
5783 	ret = kasan_kmalloc(s, ret, size, gfpflags);
5784 	return ret;
5785 }
5786 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
5787 
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)5788 static noinline void free_to_partial_list(
5789 	struct kmem_cache *s, struct slab *slab,
5790 	void *head, void *tail, int bulk_cnt,
5791 	unsigned long addr)
5792 {
5793 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
5794 	struct slab *slab_free = NULL;
5795 	int cnt = bulk_cnt;
5796 	unsigned long flags;
5797 	depot_stack_handle_t handle = 0;
5798 
5799 	/*
5800 	 * We cannot use GFP_NOWAIT as there are callsites where waking up
5801 	 * kswapd could deadlock
5802 	 */
5803 	if (s->flags & SLAB_STORE_USER)
5804 		handle = set_track_prepare(__GFP_NOWARN);
5805 
5806 	spin_lock_irqsave(&n->list_lock, flags);
5807 
5808 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
5809 		void *prior = slab->freelist;
5810 
5811 		/* Perform the actual freeing while we still hold the locks */
5812 		slab->inuse -= cnt;
5813 		set_freepointer(s, tail, prior);
5814 		slab->freelist = head;
5815 
5816 		/*
5817 		 * If the slab is empty, and node's partial list is full,
5818 		 * it should be discarded anyway no matter it's on full or
5819 		 * partial list.
5820 		 */
5821 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
5822 			slab_free = slab;
5823 
5824 		if (!prior) {
5825 			/* was on full list */
5826 			remove_full(s, n, slab);
5827 			if (!slab_free) {
5828 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
5829 				stat(s, FREE_ADD_PARTIAL);
5830 			}
5831 		} else if (slab_free) {
5832 			remove_partial(n, slab);
5833 			stat(s, FREE_REMOVE_PARTIAL);
5834 		}
5835 	}
5836 
5837 	if (slab_free) {
5838 		/*
5839 		 * Update the counters while still holding n->list_lock to
5840 		 * prevent spurious validation warnings
5841 		 */
5842 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
5843 	}
5844 
5845 	spin_unlock_irqrestore(&n->list_lock, flags);
5846 
5847 	if (slab_free) {
5848 		stat(s, FREE_SLAB);
5849 		free_slab(s, slab_free);
5850 	}
5851 }
5852 
5853 /*
5854  * Slow path handling. This may still be called frequently since objects
5855  * have a longer lifetime than the cpu slabs in most processing loads.
5856  *
5857  * So we still attempt to reduce cache line usage. Just take the slab
5858  * lock and free the item. If there is no additional partial slab
5859  * handling required then we can return immediately.
5860  */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)5861 static void __slab_free(struct kmem_cache *s, struct slab *slab,
5862 			void *head, void *tail, int cnt,
5863 			unsigned long addr)
5864 
5865 {
5866 	bool was_frozen, was_full;
5867 	struct freelist_counters old, new;
5868 	struct kmem_cache_node *n = NULL;
5869 	unsigned long flags;
5870 	bool on_node_partial;
5871 
5872 	stat(s, FREE_SLOWPATH);
5873 
5874 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
5875 		free_to_partial_list(s, slab, head, tail, cnt, addr);
5876 		return;
5877 	}
5878 
5879 	/*
5880 	 * It is enough to test IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) below
5881 	 * instead of kmem_cache_has_cpu_partial(s), because kmem_cache_debug(s)
5882 	 * is the only other reason it can be false, and it is already handled
5883 	 * above.
5884 	 */
5885 
5886 	do {
5887 		if (unlikely(n)) {
5888 			spin_unlock_irqrestore(&n->list_lock, flags);
5889 			n = NULL;
5890 		}
5891 
5892 		old.freelist = slab->freelist;
5893 		old.counters = slab->counters;
5894 
5895 		was_full = (old.freelist == NULL);
5896 		was_frozen = old.frozen;
5897 
5898 		set_freepointer(s, tail, old.freelist);
5899 
5900 		new.freelist = head;
5901 		new.counters = old.counters;
5902 		new.inuse -= cnt;
5903 
5904 		/*
5905 		 * Might need to be taken off (due to becoming empty) or added
5906 		 * to (due to not being full anymore) the partial list.
5907 		 * Unless it's frozen.
5908 		 */
5909 		if ((!new.inuse || was_full) && !was_frozen) {
5910 			/*
5911 			 * If slab becomes non-full and we have cpu partial
5912 			 * lists, we put it there unconditionally to avoid
5913 			 * taking the list_lock. Otherwise we need it.
5914 			 */
5915 			if (!(IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && was_full)) {
5916 
5917 				n = get_node(s, slab_nid(slab));
5918 				/*
5919 				 * Speculatively acquire the list_lock.
5920 				 * If the cmpxchg does not succeed then we may
5921 				 * drop the list_lock without any processing.
5922 				 *
5923 				 * Otherwise the list_lock will synchronize with
5924 				 * other processors updating the list of slabs.
5925 				 */
5926 				spin_lock_irqsave(&n->list_lock, flags);
5927 
5928 				on_node_partial = slab_test_node_partial(slab);
5929 			}
5930 		}
5931 
5932 	} while (!slab_update_freelist(s, slab, &old, &new, "__slab_free"));
5933 
5934 	if (likely(!n)) {
5935 
5936 		if (likely(was_frozen)) {
5937 			/*
5938 			 * The list lock was not taken therefore no list
5939 			 * activity can be necessary.
5940 			 */
5941 			stat(s, FREE_FROZEN);
5942 		} else if (IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && was_full) {
5943 			/*
5944 			 * If we started with a full slab then put it onto the
5945 			 * per cpu partial list.
5946 			 */
5947 			put_cpu_partial(s, slab, 1);
5948 			stat(s, CPU_PARTIAL_FREE);
5949 		}
5950 
5951 		/*
5952 		 * In other cases we didn't take the list_lock because the slab
5953 		 * was already on the partial list and will remain there.
5954 		 */
5955 
5956 		return;
5957 	}
5958 
5959 	/*
5960 	 * This slab was partially empty but not on the per-node partial list,
5961 	 * in which case we shouldn't manipulate its list, just return.
5962 	 */
5963 	if (!was_full && !on_node_partial) {
5964 		spin_unlock_irqrestore(&n->list_lock, flags);
5965 		return;
5966 	}
5967 
5968 	/*
5969 	 * If slab became empty, should we add/keep it on the partial list or we
5970 	 * have enough?
5971 	 */
5972 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
5973 		goto slab_empty;
5974 
5975 	/*
5976 	 * Objects left in the slab. If it was not on the partial list before
5977 	 * then add it. This can only happen when cache has no per cpu partial
5978 	 * list otherwise we would have put it there.
5979 	 */
5980 	if (!IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && unlikely(was_full)) {
5981 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
5982 		stat(s, FREE_ADD_PARTIAL);
5983 	}
5984 	spin_unlock_irqrestore(&n->list_lock, flags);
5985 	return;
5986 
5987 slab_empty:
5988 	/*
5989 	 * The slab could have a single object and thus go from full to empty in
5990 	 * a single free, but more likely it was on the partial list. Remove it.
5991 	 */
5992 	if (likely(!was_full)) {
5993 		remove_partial(n, slab);
5994 		stat(s, FREE_REMOVE_PARTIAL);
5995 	}
5996 
5997 	spin_unlock_irqrestore(&n->list_lock, flags);
5998 	stat(s, FREE_SLAB);
5999 	discard_slab(s, slab);
6000 }
6001 
6002 /*
6003  * pcs is locked. We should have get rid of the spare sheaf and obtained an
6004  * empty sheaf, while the main sheaf is full. We want to install the empty sheaf
6005  * as a main sheaf, and make the current main sheaf a spare sheaf.
6006  *
6007  * However due to having relinquished the cpu_sheaves lock when obtaining
6008  * the empty sheaf, we need to handle some unlikely but possible cases.
6009  *
6010  * If we put any sheaf to barn here, it's because we were interrupted or have
6011  * been migrated to a different cpu, which should be rare enough so just ignore
6012  * the barn's limits to simplify the handling.
6013  *
6014  * An alternative scenario that gets us here is when we fail
6015  * barn_replace_full_sheaf(), because there's no empty sheaf available in the
6016  * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the
6017  * limit on full sheaves was not exceeded, we assume it didn't change and just
6018  * put the full sheaf there.
6019  */
__pcs_install_empty_sheaf(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,struct slab_sheaf * empty,struct node_barn * barn)6020 static void __pcs_install_empty_sheaf(struct kmem_cache *s,
6021 		struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty,
6022 		struct node_barn *barn)
6023 {
6024 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6025 
6026 	/* This is what we expect to find if nobody interrupted us. */
6027 	if (likely(!pcs->spare)) {
6028 		pcs->spare = pcs->main;
6029 		pcs->main = empty;
6030 		return;
6031 	}
6032 
6033 	/*
6034 	 * Unlikely because if the main sheaf had space, we would have just
6035 	 * freed to it. Get rid of our empty sheaf.
6036 	 */
6037 	if (pcs->main->size < s->sheaf_capacity) {
6038 		barn_put_empty_sheaf(barn, empty);
6039 		return;
6040 	}
6041 
6042 	/* Also unlikely for the same reason */
6043 	if (pcs->spare->size < s->sheaf_capacity) {
6044 		swap(pcs->main, pcs->spare);
6045 		barn_put_empty_sheaf(barn, empty);
6046 		return;
6047 	}
6048 
6049 	/*
6050 	 * We probably failed barn_replace_full_sheaf() due to no empty sheaf
6051 	 * available there, but we allocated one, so finish the job.
6052 	 */
6053 	barn_put_full_sheaf(barn, pcs->main);
6054 	stat(s, BARN_PUT);
6055 	pcs->main = empty;
6056 }
6057 
6058 /*
6059  * Replace the full main sheaf with a (at least partially) empty sheaf.
6060  *
6061  * Must be called with the cpu_sheaves local lock locked. If successful, returns
6062  * the pcs pointer and the local lock locked (possibly on a different cpu than
6063  * initially called). If not successful, returns NULL and the local lock
6064  * unlocked.
6065  */
6066 static struct slub_percpu_sheaves *
__pcs_replace_full_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs)6067 __pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs)
6068 {
6069 	struct slab_sheaf *empty;
6070 	struct node_barn *barn;
6071 	bool put_fail;
6072 
6073 restart:
6074 	lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6075 
6076 	barn = get_barn(s);
6077 	if (!barn) {
6078 		local_unlock(&s->cpu_sheaves->lock);
6079 		return NULL;
6080 	}
6081 
6082 	put_fail = false;
6083 
6084 	if (!pcs->spare) {
6085 		empty = barn_get_empty_sheaf(barn);
6086 		if (empty) {
6087 			pcs->spare = pcs->main;
6088 			pcs->main = empty;
6089 			return pcs;
6090 		}
6091 		goto alloc_empty;
6092 	}
6093 
6094 	if (pcs->spare->size < s->sheaf_capacity) {
6095 		swap(pcs->main, pcs->spare);
6096 		return pcs;
6097 	}
6098 
6099 	empty = barn_replace_full_sheaf(barn, pcs->main);
6100 
6101 	if (!IS_ERR(empty)) {
6102 		stat(s, BARN_PUT);
6103 		pcs->main = empty;
6104 		return pcs;
6105 	}
6106 
6107 	if (PTR_ERR(empty) == -E2BIG) {
6108 		/* Since we got here, spare exists and is full */
6109 		struct slab_sheaf *to_flush = pcs->spare;
6110 
6111 		stat(s, BARN_PUT_FAIL);
6112 
6113 		pcs->spare = NULL;
6114 		local_unlock(&s->cpu_sheaves->lock);
6115 
6116 		sheaf_flush_unused(s, to_flush);
6117 		empty = to_flush;
6118 		goto got_empty;
6119 	}
6120 
6121 	/*
6122 	 * We could not replace full sheaf because barn had no empty
6123 	 * sheaves. We can still allocate it and put the full sheaf in
6124 	 * __pcs_install_empty_sheaf(), but if we fail to allocate it,
6125 	 * make sure to count the fail.
6126 	 */
6127 	put_fail = true;
6128 
6129 alloc_empty:
6130 	local_unlock(&s->cpu_sheaves->lock);
6131 
6132 	empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6133 	if (empty)
6134 		goto got_empty;
6135 
6136 	if (put_fail)
6137 		 stat(s, BARN_PUT_FAIL);
6138 
6139 	if (!sheaf_flush_main(s))
6140 		return NULL;
6141 
6142 	if (!local_trylock(&s->cpu_sheaves->lock))
6143 		return NULL;
6144 
6145 	pcs = this_cpu_ptr(s->cpu_sheaves);
6146 
6147 	/*
6148 	 * we flushed the main sheaf so it should be empty now,
6149 	 * but in case we got preempted or migrated, we need to
6150 	 * check again
6151 	 */
6152 	if (pcs->main->size == s->sheaf_capacity)
6153 		goto restart;
6154 
6155 	return pcs;
6156 
6157 got_empty:
6158 	if (!local_trylock(&s->cpu_sheaves->lock)) {
6159 		barn_put_empty_sheaf(barn, empty);
6160 		return NULL;
6161 	}
6162 
6163 	pcs = this_cpu_ptr(s->cpu_sheaves);
6164 	__pcs_install_empty_sheaf(s, pcs, empty, barn);
6165 
6166 	return pcs;
6167 }
6168 
6169 /*
6170  * Free an object to the percpu sheaves.
6171  * The object is expected to have passed slab_free_hook() already.
6172  */
6173 static __fastpath_inline
free_to_pcs(struct kmem_cache * s,void * object)6174 bool free_to_pcs(struct kmem_cache *s, void *object)
6175 {
6176 	struct slub_percpu_sheaves *pcs;
6177 
6178 	if (!local_trylock(&s->cpu_sheaves->lock))
6179 		return false;
6180 
6181 	pcs = this_cpu_ptr(s->cpu_sheaves);
6182 
6183 	if (unlikely(pcs->main->size == s->sheaf_capacity)) {
6184 
6185 		pcs = __pcs_replace_full_main(s, pcs);
6186 		if (unlikely(!pcs))
6187 			return false;
6188 	}
6189 
6190 	pcs->main->objects[pcs->main->size++] = object;
6191 
6192 	local_unlock(&s->cpu_sheaves->lock);
6193 
6194 	stat(s, FREE_PCS);
6195 
6196 	return true;
6197 }
6198 
rcu_free_sheaf(struct rcu_head * head)6199 static void rcu_free_sheaf(struct rcu_head *head)
6200 {
6201 	struct kmem_cache_node *n;
6202 	struct slab_sheaf *sheaf;
6203 	struct node_barn *barn = NULL;
6204 	struct kmem_cache *s;
6205 
6206 	sheaf = container_of(head, struct slab_sheaf, rcu_head);
6207 
6208 	s = sheaf->cache;
6209 
6210 	/*
6211 	 * This may remove some objects due to slab_free_hook() returning false,
6212 	 * so that the sheaf might no longer be completely full. But it's easier
6213 	 * to handle it as full (unless it became completely empty), as the code
6214 	 * handles it fine. The only downside is that sheaf will serve fewer
6215 	 * allocations when reused. It only happens due to debugging, which is a
6216 	 * performance hit anyway.
6217 	 *
6218 	 * If it returns true, there was at least one object from pfmemalloc
6219 	 * slab so simply flush everything.
6220 	 */
6221 	if (__rcu_free_sheaf_prepare(s, sheaf))
6222 		goto flush;
6223 
6224 	n = get_node(s, sheaf->node);
6225 	if (!n)
6226 		goto flush;
6227 
6228 	barn = n->barn;
6229 
6230 	/* due to slab_free_hook() */
6231 	if (unlikely(sheaf->size == 0))
6232 		goto empty;
6233 
6234 	/*
6235 	 * Checking nr_full/nr_empty outside lock avoids contention in case the
6236 	 * barn is at the respective limit. Due to the race we might go over the
6237 	 * limit but that should be rare and harmless.
6238 	 */
6239 
6240 	if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
6241 		stat(s, BARN_PUT);
6242 		barn_put_full_sheaf(barn, sheaf);
6243 		return;
6244 	}
6245 
6246 flush:
6247 	stat(s, BARN_PUT_FAIL);
6248 	sheaf_flush_unused(s, sheaf);
6249 
6250 empty:
6251 	if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
6252 		barn_put_empty_sheaf(barn, sheaf);
6253 		return;
6254 	}
6255 
6256 	free_empty_sheaf(s, sheaf);
6257 }
6258 
__kfree_rcu_sheaf(struct kmem_cache * s,void * obj)6259 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
6260 {
6261 	struct slub_percpu_sheaves *pcs;
6262 	struct slab_sheaf *rcu_sheaf;
6263 
6264 	if (!local_trylock(&s->cpu_sheaves->lock))
6265 		goto fail;
6266 
6267 	pcs = this_cpu_ptr(s->cpu_sheaves);
6268 
6269 	if (unlikely(!pcs->rcu_free)) {
6270 
6271 		struct slab_sheaf *empty;
6272 		struct node_barn *barn;
6273 
6274 		if (pcs->spare && pcs->spare->size == 0) {
6275 			pcs->rcu_free = pcs->spare;
6276 			pcs->spare = NULL;
6277 			goto do_free;
6278 		}
6279 
6280 		barn = get_barn(s);
6281 		if (!barn) {
6282 			local_unlock(&s->cpu_sheaves->lock);
6283 			goto fail;
6284 		}
6285 
6286 		empty = barn_get_empty_sheaf(barn);
6287 
6288 		if (empty) {
6289 			pcs->rcu_free = empty;
6290 			goto do_free;
6291 		}
6292 
6293 		local_unlock(&s->cpu_sheaves->lock);
6294 
6295 		empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6296 
6297 		if (!empty)
6298 			goto fail;
6299 
6300 		if (!local_trylock(&s->cpu_sheaves->lock)) {
6301 			barn_put_empty_sheaf(barn, empty);
6302 			goto fail;
6303 		}
6304 
6305 		pcs = this_cpu_ptr(s->cpu_sheaves);
6306 
6307 		if (unlikely(pcs->rcu_free))
6308 			barn_put_empty_sheaf(barn, empty);
6309 		else
6310 			pcs->rcu_free = empty;
6311 	}
6312 
6313 do_free:
6314 
6315 	rcu_sheaf = pcs->rcu_free;
6316 
6317 	/*
6318 	 * Since we flush immediately when size reaches capacity, we never reach
6319 	 * this with size already at capacity, so no OOB write is possible.
6320 	 */
6321 	rcu_sheaf->objects[rcu_sheaf->size++] = obj;
6322 
6323 	if (likely(rcu_sheaf->size < s->sheaf_capacity)) {
6324 		rcu_sheaf = NULL;
6325 	} else {
6326 		pcs->rcu_free = NULL;
6327 		rcu_sheaf->node = numa_mem_id();
6328 	}
6329 
6330 	/*
6331 	 * we flush before local_unlock to make sure a racing
6332 	 * flush_all_rcu_sheaves() doesn't miss this sheaf
6333 	 */
6334 	if (rcu_sheaf)
6335 		call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
6336 
6337 	local_unlock(&s->cpu_sheaves->lock);
6338 
6339 	stat(s, FREE_RCU_SHEAF);
6340 	return true;
6341 
6342 fail:
6343 	stat(s, FREE_RCU_SHEAF_FAIL);
6344 	return false;
6345 }
6346 
6347 /*
6348  * Bulk free objects to the percpu sheaves.
6349  * Unlike free_to_pcs() this includes the calls to all necessary hooks
6350  * and the fallback to freeing to slab pages.
6351  */
free_to_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)6352 static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
6353 {
6354 	struct slub_percpu_sheaves *pcs;
6355 	struct slab_sheaf *main, *empty;
6356 	bool init = slab_want_init_on_free(s);
6357 	unsigned int batch, i = 0;
6358 	struct node_barn *barn;
6359 	void *remote_objects[PCS_BATCH_MAX];
6360 	unsigned int remote_nr = 0;
6361 	int node = numa_mem_id();
6362 
6363 next_remote_batch:
6364 	while (i < size) {
6365 		struct slab *slab = virt_to_slab(p[i]);
6366 
6367 		memcg_slab_free_hook(s, slab, p + i, 1);
6368 		alloc_tagging_slab_free_hook(s, slab, p + i, 1);
6369 
6370 		if (unlikely(!slab_free_hook(s, p[i], init, false))) {
6371 			p[i] = p[--size];
6372 			continue;
6373 		}
6374 
6375 		if (unlikely((IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)
6376 			     || slab_test_pfmemalloc(slab))) {
6377 			remote_objects[remote_nr] = p[i];
6378 			p[i] = p[--size];
6379 			if (++remote_nr >= PCS_BATCH_MAX)
6380 				goto flush_remote;
6381 			continue;
6382 		}
6383 
6384 		i++;
6385 	}
6386 
6387 	if (!size)
6388 		goto flush_remote;
6389 
6390 next_batch:
6391 	if (!local_trylock(&s->cpu_sheaves->lock))
6392 		goto fallback;
6393 
6394 	pcs = this_cpu_ptr(s->cpu_sheaves);
6395 
6396 	if (likely(pcs->main->size < s->sheaf_capacity))
6397 		goto do_free;
6398 
6399 	barn = get_barn(s);
6400 	if (!barn)
6401 		goto no_empty;
6402 
6403 	if (!pcs->spare) {
6404 		empty = barn_get_empty_sheaf(barn);
6405 		if (!empty)
6406 			goto no_empty;
6407 
6408 		pcs->spare = pcs->main;
6409 		pcs->main = empty;
6410 		goto do_free;
6411 	}
6412 
6413 	if (pcs->spare->size < s->sheaf_capacity) {
6414 		swap(pcs->main, pcs->spare);
6415 		goto do_free;
6416 	}
6417 
6418 	empty = barn_replace_full_sheaf(barn, pcs->main);
6419 	if (IS_ERR(empty)) {
6420 		stat(s, BARN_PUT_FAIL);
6421 		goto no_empty;
6422 	}
6423 
6424 	stat(s, BARN_PUT);
6425 	pcs->main = empty;
6426 
6427 do_free:
6428 	main = pcs->main;
6429 	batch = min(size, s->sheaf_capacity - main->size);
6430 
6431 	memcpy(main->objects + main->size, p, batch * sizeof(void *));
6432 	main->size += batch;
6433 
6434 	local_unlock(&s->cpu_sheaves->lock);
6435 
6436 	stat_add(s, FREE_PCS, batch);
6437 
6438 	if (batch < size) {
6439 		p += batch;
6440 		size -= batch;
6441 		goto next_batch;
6442 	}
6443 
6444 	if (remote_nr)
6445 		goto flush_remote;
6446 
6447 	return;
6448 
6449 no_empty:
6450 	local_unlock(&s->cpu_sheaves->lock);
6451 
6452 	/*
6453 	 * if we depleted all empty sheaves in the barn or there are too
6454 	 * many full sheaves, free the rest to slab pages
6455 	 */
6456 fallback:
6457 	__kmem_cache_free_bulk(s, size, p);
6458 
6459 flush_remote:
6460 	if (remote_nr) {
6461 		__kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]);
6462 		if (i < size) {
6463 			remote_nr = 0;
6464 			goto next_remote_batch;
6465 		}
6466 	}
6467 }
6468 
6469 struct defer_free {
6470 	struct llist_head objects;
6471 	struct llist_head slabs;
6472 	struct irq_work work;
6473 };
6474 
6475 static void free_deferred_objects(struct irq_work *work);
6476 
6477 static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
6478 	.objects = LLIST_HEAD_INIT(objects),
6479 	.slabs = LLIST_HEAD_INIT(slabs),
6480 	.work = IRQ_WORK_INIT(free_deferred_objects),
6481 };
6482 
6483 /*
6484  * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
6485  * to take sleeping spin_locks from __slab_free() and deactivate_slab().
6486  * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
6487  */
free_deferred_objects(struct irq_work * work)6488 static void free_deferred_objects(struct irq_work *work)
6489 {
6490 	struct defer_free *df = container_of(work, struct defer_free, work);
6491 	struct llist_head *objs = &df->objects;
6492 	struct llist_head *slabs = &df->slabs;
6493 	struct llist_node *llnode, *pos, *t;
6494 
6495 	if (llist_empty(objs) && llist_empty(slabs))
6496 		return;
6497 
6498 	llnode = llist_del_all(objs);
6499 	llist_for_each_safe(pos, t, llnode) {
6500 		struct kmem_cache *s;
6501 		struct slab *slab;
6502 		void *x = pos;
6503 
6504 		slab = virt_to_slab(x);
6505 		s = slab->slab_cache;
6506 
6507 		/* Point 'x' back to the beginning of allocated object */
6508 		x -= s->offset;
6509 
6510 		/*
6511 		 * We used freepointer in 'x' to link 'x' into df->objects.
6512 		 * Clear it to NULL to avoid false positive detection
6513 		 * of "Freepointer corruption".
6514 		 */
6515 		set_freepointer(s, x, NULL);
6516 
6517 		__slab_free(s, slab, x, x, 1, _THIS_IP_);
6518 	}
6519 
6520 	llnode = llist_del_all(slabs);
6521 	llist_for_each_safe(pos, t, llnode) {
6522 		struct slab *slab = container_of(pos, struct slab, llnode);
6523 
6524 		if (slab->frozen)
6525 			deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
6526 		else
6527 			free_slab(slab->slab_cache, slab);
6528 	}
6529 }
6530 
defer_free(struct kmem_cache * s,void * head)6531 static void defer_free(struct kmem_cache *s, void *head)
6532 {
6533 	struct defer_free *df;
6534 
6535 	guard(preempt)();
6536 
6537 	df = this_cpu_ptr(&defer_free_objects);
6538 	if (llist_add(head + s->offset, &df->objects))
6539 		irq_work_queue(&df->work);
6540 }
6541 
defer_deactivate_slab(struct slab * slab,void * flush_freelist)6542 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
6543 {
6544 	struct defer_free *df;
6545 
6546 	slab->flush_freelist = flush_freelist;
6547 
6548 	guard(preempt)();
6549 
6550 	df = this_cpu_ptr(&defer_free_objects);
6551 	if (llist_add(&slab->llnode, &df->slabs))
6552 		irq_work_queue(&df->work);
6553 }
6554 
defer_free_barrier(void)6555 void defer_free_barrier(void)
6556 {
6557 	int cpu;
6558 
6559 	for_each_possible_cpu(cpu)
6560 		irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
6561 }
6562 
6563 /*
6564  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
6565  * can perform fastpath freeing without additional function calls.
6566  *
6567  * The fastpath is only possible if we are freeing to the current cpu slab
6568  * of this processor. This typically the case if we have just allocated
6569  * the item before.
6570  *
6571  * If fastpath is not possible then fall back to __slab_free where we deal
6572  * with all sorts of special processing.
6573  *
6574  * Bulk free of a freelist with several objects (all pointing to the
6575  * same slab) possible by specifying head and tail ptr, plus objects
6576  * count (cnt). Bulk free indicated by tail pointer being set.
6577  */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)6578 static __always_inline void do_slab_free(struct kmem_cache *s,
6579 				struct slab *slab, void *head, void *tail,
6580 				int cnt, unsigned long addr)
6581 {
6582 	/* cnt == 0 signals that it's called from kfree_nolock() */
6583 	bool allow_spin = cnt;
6584 	struct kmem_cache_cpu *c;
6585 	unsigned long tid;
6586 	void **freelist;
6587 
6588 redo:
6589 	/*
6590 	 * Determine the currently cpus per cpu slab.
6591 	 * The cpu may change afterward. However that does not matter since
6592 	 * data is retrieved via this pointer. If we are on the same cpu
6593 	 * during the cmpxchg then the free will succeed.
6594 	 */
6595 	c = raw_cpu_ptr(s->cpu_slab);
6596 	tid = READ_ONCE(c->tid);
6597 
6598 	/* Same with comment on barrier() in __slab_alloc_node() */
6599 	barrier();
6600 
6601 	if (unlikely(slab != c->slab)) {
6602 		if (unlikely(!allow_spin)) {
6603 			/*
6604 			 * __slab_free() can locklessly cmpxchg16 into a slab,
6605 			 * but then it might need to take spin_lock or local_lock
6606 			 * in put_cpu_partial() for further processing.
6607 			 * Avoid the complexity and simply add to a deferred list.
6608 			 */
6609 			defer_free(s, head);
6610 		} else {
6611 			__slab_free(s, slab, head, tail, cnt, addr);
6612 		}
6613 		return;
6614 	}
6615 
6616 	if (unlikely(!allow_spin)) {
6617 		if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
6618 		    local_lock_is_locked(&s->cpu_slab->lock)) {
6619 			defer_free(s, head);
6620 			return;
6621 		}
6622 		cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
6623 	}
6624 
6625 	if (USE_LOCKLESS_FAST_PATH()) {
6626 		freelist = READ_ONCE(c->freelist);
6627 
6628 		set_freepointer(s, tail, freelist);
6629 
6630 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
6631 			note_cmpxchg_failure("slab_free", s, tid);
6632 			goto redo;
6633 		}
6634 	} else {
6635 		__maybe_unused unsigned long flags = 0;
6636 
6637 		/* Update the free list under the local lock */
6638 		local_lock_cpu_slab(s, flags);
6639 		c = this_cpu_ptr(s->cpu_slab);
6640 		if (unlikely(slab != c->slab)) {
6641 			local_unlock_cpu_slab(s, flags);
6642 			goto redo;
6643 		}
6644 		tid = c->tid;
6645 		freelist = c->freelist;
6646 
6647 		set_freepointer(s, tail, freelist);
6648 		c->freelist = head;
6649 		c->tid = next_tid(tid);
6650 
6651 		local_unlock_cpu_slab(s, flags);
6652 	}
6653 	stat_add(s, FREE_FASTPATH, cnt);
6654 }
6655 
6656 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)6657 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
6658 	       unsigned long addr)
6659 {
6660 	memcg_slab_free_hook(s, slab, &object, 1);
6661 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
6662 
6663 	if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6664 		return;
6665 
6666 	if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) ||
6667 				     slab_nid(slab) == numa_mem_id())
6668 			   && likely(!slab_test_pfmemalloc(slab))) {
6669 		if (likely(free_to_pcs(s, object)))
6670 			return;
6671 	}
6672 
6673 	do_slab_free(s, slab, object, object, 1, addr);
6674 }
6675 
6676 #ifdef CONFIG_MEMCG
6677 /* Do not inline the rare memcg charging failed path into the allocation path */
6678 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)6679 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
6680 {
6681 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6682 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
6683 }
6684 #endif
6685 
6686 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)6687 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
6688 		    void *tail, void **p, int cnt, unsigned long addr)
6689 {
6690 	memcg_slab_free_hook(s, slab, p, cnt);
6691 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
6692 	/*
6693 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
6694 	 * to remove objects, whose reuse must be delayed.
6695 	 */
6696 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
6697 		do_slab_free(s, slab, head, tail, cnt, addr);
6698 }
6699 
6700 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)6701 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
6702 {
6703 	struct rcu_delayed_free *delayed_free =
6704 			container_of(rcu_head, struct rcu_delayed_free, head);
6705 	void *object = delayed_free->object;
6706 	struct slab *slab = virt_to_slab(object);
6707 	struct kmem_cache *s;
6708 
6709 	kfree(delayed_free);
6710 
6711 	if (WARN_ON(is_kfence_address(object)))
6712 		return;
6713 
6714 	/* find the object and the cache again */
6715 	if (WARN_ON(!slab))
6716 		return;
6717 	s = slab->slab_cache;
6718 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
6719 		return;
6720 
6721 	/* resume freeing */
6722 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
6723 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
6724 }
6725 #endif /* CONFIG_SLUB_RCU_DEBUG */
6726 
6727 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)6728 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
6729 {
6730 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
6731 }
6732 #endif
6733 
virt_to_cache(const void * obj)6734 static inline struct kmem_cache *virt_to_cache(const void *obj)
6735 {
6736 	struct slab *slab;
6737 
6738 	slab = virt_to_slab(obj);
6739 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
6740 		return NULL;
6741 	return slab->slab_cache;
6742 }
6743 
cache_from_obj(struct kmem_cache * s,void * x)6744 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
6745 {
6746 	struct kmem_cache *cachep;
6747 
6748 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
6749 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
6750 		return s;
6751 
6752 	cachep = virt_to_cache(x);
6753 	if (WARN(cachep && cachep != s,
6754 		 "%s: Wrong slab cache. %s but object is from %s\n",
6755 		 __func__, s->name, cachep->name))
6756 		print_tracking(cachep, x);
6757 	return cachep;
6758 }
6759 
6760 /**
6761  * kmem_cache_free - Deallocate an object
6762  * @s: The cache the allocation was from.
6763  * @x: The previously allocated object.
6764  *
6765  * Free an object which was previously allocated from this
6766  * cache.
6767  */
kmem_cache_free(struct kmem_cache * s,void * x)6768 void kmem_cache_free(struct kmem_cache *s, void *x)
6769 {
6770 	s = cache_from_obj(s, x);
6771 	if (!s)
6772 		return;
6773 	trace_kmem_cache_free(_RET_IP_, x, s);
6774 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
6775 }
6776 EXPORT_SYMBOL(kmem_cache_free);
6777 
free_large_kmalloc(struct page * page,void * object)6778 static void free_large_kmalloc(struct page *page, void *object)
6779 {
6780 	unsigned int order = compound_order(page);
6781 
6782 	if (WARN_ON_ONCE(!PageLargeKmalloc(page))) {
6783 		dump_page(page, "Not a kmalloc allocation");
6784 		return;
6785 	}
6786 
6787 	if (WARN_ON_ONCE(order == 0))
6788 		pr_warn_once("object pointer: 0x%p\n", object);
6789 
6790 	kmemleak_free(object);
6791 	kasan_kfree_large(object);
6792 	kmsan_kfree_large(object);
6793 
6794 	mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
6795 			      -(PAGE_SIZE << order));
6796 	__ClearPageLargeKmalloc(page);
6797 	free_frozen_pages(page, order);
6798 }
6799 
6800 /*
6801  * Given an rcu_head embedded within an object obtained from kvmalloc at an
6802  * offset < 4k, free the object in question.
6803  */
kvfree_rcu_cb(struct rcu_head * head)6804 void kvfree_rcu_cb(struct rcu_head *head)
6805 {
6806 	void *obj = head;
6807 	struct page *page;
6808 	struct slab *slab;
6809 	struct kmem_cache *s;
6810 	void *slab_addr;
6811 
6812 	if (is_vmalloc_addr(obj)) {
6813 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6814 		vfree(obj);
6815 		return;
6816 	}
6817 
6818 	page = virt_to_page(obj);
6819 	slab = page_slab(page);
6820 	if (!slab) {
6821 		/*
6822 		 * rcu_head offset can be only less than page size so no need to
6823 		 * consider allocation order
6824 		 */
6825 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6826 		free_large_kmalloc(page, obj);
6827 		return;
6828 	}
6829 
6830 	s = slab->slab_cache;
6831 	slab_addr = slab_address(slab);
6832 
6833 	if (is_kfence_address(obj)) {
6834 		obj = kfence_object_start(obj);
6835 	} else {
6836 		unsigned int idx = __obj_to_index(s, slab_addr, obj);
6837 
6838 		obj = slab_addr + s->size * idx;
6839 		obj = fixup_red_left(s, obj);
6840 	}
6841 
6842 	slab_free(s, slab, obj, _RET_IP_);
6843 }
6844 
6845 /**
6846  * kfree - free previously allocated memory
6847  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
6848  *
6849  * If @object is NULL, no operation is performed.
6850  */
kfree(const void * object)6851 void kfree(const void *object)
6852 {
6853 	struct page *page;
6854 	struct slab *slab;
6855 	struct kmem_cache *s;
6856 	void *x = (void *)object;
6857 
6858 	trace_kfree(_RET_IP_, object);
6859 
6860 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6861 		return;
6862 
6863 	page = virt_to_page(object);
6864 	slab = page_slab(page);
6865 	if (!slab) {
6866 		free_large_kmalloc(page, (void *)object);
6867 		return;
6868 	}
6869 
6870 	s = slab->slab_cache;
6871 	slab_free(s, slab, x, _RET_IP_);
6872 }
6873 EXPORT_SYMBOL(kfree);
6874 
6875 /*
6876  * Can be called while holding raw_spinlock_t or from IRQ and NMI,
6877  * but ONLY for objects allocated by kmalloc_nolock().
6878  * Debug checks (like kmemleak and kfence) were skipped on allocation,
6879  * hence
6880  * obj = kmalloc(); kfree_nolock(obj);
6881  * will miss kmemleak/kfence book keeping and will cause false positives.
6882  * large_kmalloc is not supported either.
6883  */
kfree_nolock(const void * object)6884 void kfree_nolock(const void *object)
6885 {
6886 	struct slab *slab;
6887 	struct kmem_cache *s;
6888 	void *x = (void *)object;
6889 
6890 	if (unlikely(ZERO_OR_NULL_PTR(object)))
6891 		return;
6892 
6893 	slab = virt_to_slab(object);
6894 	if (unlikely(!slab)) {
6895 		WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
6896 		return;
6897 	}
6898 
6899 	s = slab->slab_cache;
6900 
6901 	memcg_slab_free_hook(s, slab, &x, 1);
6902 	alloc_tagging_slab_free_hook(s, slab, &x, 1);
6903 	/*
6904 	 * Unlike slab_free() do NOT call the following:
6905 	 * kmemleak_free_recursive(x, s->flags);
6906 	 * debug_check_no_locks_freed(x, s->object_size);
6907 	 * debug_check_no_obj_freed(x, s->object_size);
6908 	 * __kcsan_check_access(x, s->object_size, ..);
6909 	 * kfence_free(x);
6910 	 * since they take spinlocks or not safe from any context.
6911 	 */
6912 	kmsan_slab_free(s, x);
6913 	/*
6914 	 * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
6915 	 * which will call raw_spin_lock_irqsave() which is technically
6916 	 * unsafe from NMI, but take chance and report kernel bug.
6917 	 * The sequence of
6918 	 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
6919 	 *  -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
6920 	 * is double buggy and deserves to deadlock.
6921 	 */
6922 	if (kasan_slab_pre_free(s, x))
6923 		return;
6924 	/*
6925 	 * memcg, kasan_slab_pre_free are done for 'x'.
6926 	 * The only thing left is kasan_poison without quarantine,
6927 	 * since kasan quarantine takes locks and not supported from NMI.
6928 	 */
6929 	kasan_slab_free(s, x, false, false, /* skip quarantine */true);
6930 	do_slab_free(s, slab, x, x, 0, _RET_IP_);
6931 }
6932 EXPORT_SYMBOL_GPL(kfree_nolock);
6933 
6934 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)6935 __do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid)
6936 {
6937 	void *ret;
6938 	size_t ks = 0;
6939 	int orig_size = 0;
6940 	struct kmem_cache *s = NULL;
6941 
6942 	if (unlikely(ZERO_OR_NULL_PTR(p)))
6943 		goto alloc_new;
6944 
6945 	/* Check for double-free. */
6946 	if (!kasan_check_byte(p))
6947 		return NULL;
6948 
6949 	/*
6950 	 * If reallocation is not necessary (e. g. the new size is less
6951 	 * than the current allocated size), the current allocation will be
6952 	 * preserved unless __GFP_THISNODE is set. In the latter case a new
6953 	 * allocation on the requested node will be attempted.
6954 	 */
6955 	if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
6956 		     nid != page_to_nid(virt_to_page(p)))
6957 		goto alloc_new;
6958 
6959 	if (is_kfence_address(p)) {
6960 		ks = orig_size = kfence_ksize(p);
6961 	} else {
6962 		struct page *page = virt_to_page(p);
6963 		struct slab *slab = page_slab(page);
6964 
6965 		if (!slab) {
6966 			/* Big kmalloc object */
6967 			ks = page_size(page);
6968 			WARN_ON(ks <= KMALLOC_MAX_CACHE_SIZE);
6969 			WARN_ON(p != page_address(page));
6970 		} else {
6971 			s = slab->slab_cache;
6972 			orig_size = get_orig_size(s, (void *)p);
6973 			ks = s->object_size;
6974 		}
6975 	}
6976 
6977 	/* If the old object doesn't fit, allocate a bigger one */
6978 	if (new_size > ks)
6979 		goto alloc_new;
6980 
6981 	/* If the old object doesn't satisfy the new alignment, allocate a new one */
6982 	if (!IS_ALIGNED((unsigned long)p, align))
6983 		goto alloc_new;
6984 
6985 	/* Zero out spare memory. */
6986 	if (want_init_on_alloc(flags)) {
6987 		kasan_disable_current();
6988 		if (orig_size && orig_size < new_size)
6989 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
6990 		else
6991 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
6992 		kasan_enable_current();
6993 	}
6994 
6995 	/* Setup kmalloc redzone when needed */
6996 	if (s && slub_debug_orig_size(s)) {
6997 		set_orig_size(s, (void *)p, new_size);
6998 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
6999 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
7000 						SLUB_RED_ACTIVE, ks - new_size);
7001 	}
7002 
7003 	p = kasan_krealloc(p, new_size, flags);
7004 	return (void *)p;
7005 
7006 alloc_new:
7007 	ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_);
7008 	if (ret && p) {
7009 		/* Disable KASAN checks as the object's redzone is accessed. */
7010 		kasan_disable_current();
7011 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
7012 		kasan_enable_current();
7013 	}
7014 
7015 	return ret;
7016 }
7017 
7018 /**
7019  * krealloc_node_align - reallocate memory. The contents will remain unchanged.
7020  * @p: object to reallocate memory for.
7021  * @new_size: how many bytes of memory are required.
7022  * @align: desired alignment.
7023  * @flags: the type of memory to allocate.
7024  * @nid: NUMA node or NUMA_NO_NODE
7025  *
7026  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
7027  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
7028  *
7029  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7030  * Documentation/core-api/memory-allocation.rst for more details.
7031  *
7032  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7033  * initial memory allocation, every subsequent call to this API for the same
7034  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7035  * __GFP_ZERO is not fully honored by this API.
7036  *
7037  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
7038  * size of an allocation (but not the exact size it was allocated with) and
7039  * hence implements the following semantics for shrinking and growing buffers
7040  * with __GFP_ZERO::
7041  *
7042  *           new             bucket
7043  *   0       size             size
7044  *   |--------|----------------|
7045  *   |  keep  |      zero      |
7046  *
7047  * Otherwise, the original allocation size 'orig_size' could be used to
7048  * precisely clear the requested size, and the new size will also be stored
7049  * as the new 'orig_size'.
7050  *
7051  * In any case, the contents of the object pointed to are preserved up to the
7052  * lesser of the new and old sizes.
7053  *
7054  * Return: pointer to the allocated memory or %NULL in case of error
7055  */
krealloc_node_align_noprof(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)7056 void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align,
7057 				 gfp_t flags, int nid)
7058 {
7059 	void *ret;
7060 
7061 	if (unlikely(!new_size)) {
7062 		kfree(p);
7063 		return ZERO_SIZE_PTR;
7064 	}
7065 
7066 	ret = __do_krealloc(p, new_size, align, flags, nid);
7067 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
7068 		kfree(p);
7069 
7070 	return ret;
7071 }
7072 EXPORT_SYMBOL(krealloc_node_align_noprof);
7073 
kmalloc_gfp_adjust(gfp_t flags,size_t size)7074 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
7075 {
7076 	/*
7077 	 * We want to attempt a large physically contiguous block first because
7078 	 * it is less likely to fragment multiple larger blocks and therefore
7079 	 * contribute to a long term fragmentation less than vmalloc fallback.
7080 	 * However make sure that larger requests are not too disruptive - i.e.
7081 	 * do not direct reclaim unless physically continuous memory is preferred
7082 	 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
7083 	 * start working in the background
7084 	 */
7085 	if (size > PAGE_SIZE) {
7086 		flags |= __GFP_NOWARN;
7087 
7088 		if (!(flags & __GFP_RETRY_MAYFAIL))
7089 			flags &= ~__GFP_DIRECT_RECLAIM;
7090 
7091 		/* nofail semantic is implemented by the vmalloc fallback */
7092 		flags &= ~__GFP_NOFAIL;
7093 	}
7094 
7095 	return flags;
7096 }
7097 
7098 /**
7099  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
7100  * failure, fall back to non-contiguous (vmalloc) allocation.
7101  * @size: size of the request.
7102  * @b: which set of kmalloc buckets to allocate from.
7103  * @align: desired alignment.
7104  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
7105  * @node: numa node to allocate from
7106  *
7107  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7108  * Documentation/core-api/memory-allocation.rst for more details.
7109  *
7110  * Uses kmalloc to get the memory but if the allocation fails then falls back
7111  * to the vmalloc allocator. Use kvfree for freeing the memory.
7112  *
7113  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
7114  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
7115  * preferable to the vmalloc fallback, due to visible performance drawbacks.
7116  *
7117  * Return: pointer to the allocated memory of %NULL in case of failure
7118  */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),unsigned long align,gfp_t flags,int node)7119 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align,
7120 			     gfp_t flags, int node)
7121 {
7122 	void *ret;
7123 
7124 	/*
7125 	 * It doesn't really make sense to fallback to vmalloc for sub page
7126 	 * requests
7127 	 */
7128 	ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
7129 				kmalloc_gfp_adjust(flags, size),
7130 				node, _RET_IP_);
7131 	if (ret || size <= PAGE_SIZE)
7132 		return ret;
7133 
7134 	/* non-sleeping allocations are not supported by vmalloc */
7135 	if (!gfpflags_allow_blocking(flags))
7136 		return NULL;
7137 
7138 	/* Don't even allow crazy sizes */
7139 	if (unlikely(size > INT_MAX)) {
7140 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7141 		return NULL;
7142 	}
7143 
7144 	/*
7145 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
7146 	 * since the callers already cannot assume anything
7147 	 * about the resulting pointer, and cannot play
7148 	 * protection games.
7149 	 */
7150 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
7151 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
7152 			node, __builtin_return_address(0));
7153 }
7154 EXPORT_SYMBOL(__kvmalloc_node_noprof);
7155 
7156 /**
7157  * kvfree() - Free memory.
7158  * @addr: Pointer to allocated memory.
7159  *
7160  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
7161  * It is slightly more efficient to use kfree() or vfree() if you are certain
7162  * that you know which one to use.
7163  *
7164  * Context: Either preemptible task context or not-NMI interrupt.
7165  */
kvfree(const void * addr)7166 void kvfree(const void *addr)
7167 {
7168 	if (is_vmalloc_addr(addr))
7169 		vfree(addr);
7170 	else
7171 		kfree(addr);
7172 }
7173 EXPORT_SYMBOL(kvfree);
7174 
7175 /**
7176  * kvfree_sensitive - Free a data object containing sensitive information.
7177  * @addr: address of the data object to be freed.
7178  * @len: length of the data object.
7179  *
7180  * Use the special memzero_explicit() function to clear the content of a
7181  * kvmalloc'ed object containing sensitive data to make sure that the
7182  * compiler won't optimize out the data clearing.
7183  */
kvfree_sensitive(const void * addr,size_t len)7184 void kvfree_sensitive(const void *addr, size_t len)
7185 {
7186 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
7187 		memzero_explicit((void *)addr, len);
7188 		kvfree(addr);
7189 	}
7190 }
7191 EXPORT_SYMBOL(kvfree_sensitive);
7192 
7193 /**
7194  * kvrealloc_node_align - reallocate memory; contents remain unchanged
7195  * @p: object to reallocate memory for
7196  * @size: the size to reallocate
7197  * @align: desired alignment
7198  * @flags: the flags for the page level allocator
7199  * @nid: NUMA node id
7200  *
7201  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
7202  * and @p is not a %NULL pointer, the object pointed to is freed.
7203  *
7204  * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7205  * Documentation/core-api/memory-allocation.rst for more details.
7206  *
7207  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7208  * initial memory allocation, every subsequent call to this API for the same
7209  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7210  * __GFP_ZERO is not fully honored by this API.
7211  *
7212  * In any case, the contents of the object pointed to are preserved up to the
7213  * lesser of the new and old sizes.
7214  *
7215  * This function must not be called concurrently with itself or kvfree() for the
7216  * same memory allocation.
7217  *
7218  * Return: pointer to the allocated memory or %NULL in case of error
7219  */
kvrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int nid)7220 void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
7221 				  gfp_t flags, int nid)
7222 {
7223 	void *n;
7224 
7225 	if (is_vmalloc_addr(p))
7226 		return vrealloc_node_align_noprof(p, size, align, flags, nid);
7227 
7228 	n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid);
7229 	if (!n) {
7230 		/* We failed to krealloc(), fall back to kvmalloc(). */
7231 		n = kvmalloc_node_align_noprof(size, align, flags, nid);
7232 		if (!n)
7233 			return NULL;
7234 
7235 		if (p) {
7236 			/* We already know that `p` is not a vmalloc address. */
7237 			kasan_disable_current();
7238 			memcpy(n, kasan_reset_tag(p), ksize(p));
7239 			kasan_enable_current();
7240 
7241 			kfree(p);
7242 		}
7243 	}
7244 
7245 	return n;
7246 }
7247 EXPORT_SYMBOL(kvrealloc_node_align_noprof);
7248 
7249 struct detached_freelist {
7250 	struct slab *slab;
7251 	void *tail;
7252 	void *freelist;
7253 	int cnt;
7254 	struct kmem_cache *s;
7255 };
7256 
7257 /*
7258  * This function progressively scans the array with free objects (with
7259  * a limited look ahead) and extract objects belonging to the same
7260  * slab.  It builds a detached freelist directly within the given
7261  * slab/objects.  This can happen without any need for
7262  * synchronization, because the objects are owned by running process.
7263  * The freelist is build up as a single linked list in the objects.
7264  * The idea is, that this detached freelist can then be bulk
7265  * transferred to the real freelist(s), but only requiring a single
7266  * synchronization primitive.  Look ahead in the array is limited due
7267  * to performance reasons.
7268  */
7269 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)7270 int build_detached_freelist(struct kmem_cache *s, size_t size,
7271 			    void **p, struct detached_freelist *df)
7272 {
7273 	int lookahead = 3;
7274 	void *object;
7275 	struct page *page;
7276 	struct slab *slab;
7277 	size_t same;
7278 
7279 	object = p[--size];
7280 	page = virt_to_page(object);
7281 	slab = page_slab(page);
7282 	if (!s) {
7283 		/* Handle kalloc'ed objects */
7284 		if (!slab) {
7285 			free_large_kmalloc(page, object);
7286 			df->slab = NULL;
7287 			return size;
7288 		}
7289 		/* Derive kmem_cache from object */
7290 		df->slab = slab;
7291 		df->s = slab->slab_cache;
7292 	} else {
7293 		df->slab = slab;
7294 		df->s = cache_from_obj(s, object); /* Support for memcg */
7295 	}
7296 
7297 	/* Start new detached freelist */
7298 	df->tail = object;
7299 	df->freelist = object;
7300 	df->cnt = 1;
7301 
7302 	if (is_kfence_address(object))
7303 		return size;
7304 
7305 	set_freepointer(df->s, object, NULL);
7306 
7307 	same = size;
7308 	while (size) {
7309 		object = p[--size];
7310 		/* df->slab is always set at this point */
7311 		if (df->slab == virt_to_slab(object)) {
7312 			/* Opportunity build freelist */
7313 			set_freepointer(df->s, object, df->freelist);
7314 			df->freelist = object;
7315 			df->cnt++;
7316 			same--;
7317 			if (size != same)
7318 				swap(p[size], p[same]);
7319 			continue;
7320 		}
7321 
7322 		/* Limit look ahead search */
7323 		if (!--lookahead)
7324 			break;
7325 	}
7326 
7327 	return same;
7328 }
7329 
7330 /*
7331  * Internal bulk free of objects that were not initialised by the post alloc
7332  * hooks and thus should not be processed by the free hooks
7333  */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7334 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7335 {
7336 	if (!size)
7337 		return;
7338 
7339 	do {
7340 		struct detached_freelist df;
7341 
7342 		size = build_detached_freelist(s, size, p, &df);
7343 		if (!df.slab)
7344 			continue;
7345 
7346 		if (kfence_free(df.freelist))
7347 			continue;
7348 
7349 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
7350 			     _RET_IP_);
7351 	} while (likely(size));
7352 }
7353 
7354 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7355 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7356 {
7357 	if (!size)
7358 		return;
7359 
7360 	/*
7361 	 * freeing to sheaves is so incompatible with the detached freelist so
7362 	 * once we go that way, we have to do everything differently
7363 	 */
7364 	if (s && s->cpu_sheaves) {
7365 		free_to_pcs_bulk(s, size, p);
7366 		return;
7367 	}
7368 
7369 	do {
7370 		struct detached_freelist df;
7371 
7372 		size = build_detached_freelist(s, size, p, &df);
7373 		if (!df.slab)
7374 			continue;
7375 
7376 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
7377 			       df.cnt, _RET_IP_);
7378 	} while (likely(size));
7379 }
7380 EXPORT_SYMBOL(kmem_cache_free_bulk);
7381 
7382 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7383 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
7384 			    void **p)
7385 {
7386 	struct kmem_cache_cpu *c;
7387 	unsigned long irqflags;
7388 	int i;
7389 
7390 	/*
7391 	 * Drain objects in the per cpu slab, while disabling local
7392 	 * IRQs, which protects against PREEMPT and interrupts
7393 	 * handlers invoking normal fastpath.
7394 	 */
7395 	c = slub_get_cpu_ptr(s->cpu_slab);
7396 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7397 
7398 	for (i = 0; i < size; i++) {
7399 		void *object = c->freelist;
7400 
7401 		if (unlikely(!object)) {
7402 			/*
7403 			 * We may have removed an object from c->freelist using
7404 			 * the fastpath in the previous iteration; in that case,
7405 			 * c->tid has not been bumped yet.
7406 			 * Since ___slab_alloc() may reenable interrupts while
7407 			 * allocating memory, we should bump c->tid now.
7408 			 */
7409 			c->tid = next_tid(c->tid);
7410 
7411 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7412 
7413 			/*
7414 			 * Invoking slow path likely have side-effect
7415 			 * of re-populating per CPU c->freelist
7416 			 */
7417 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
7418 					    _RET_IP_, c, s->object_size);
7419 			if (unlikely(!p[i]))
7420 				goto error;
7421 
7422 			c = this_cpu_ptr(s->cpu_slab);
7423 			maybe_wipe_obj_freeptr(s, p[i]);
7424 
7425 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7426 
7427 			continue; /* goto for-loop */
7428 		}
7429 		c->freelist = get_freepointer(s, object);
7430 		p[i] = object;
7431 		maybe_wipe_obj_freeptr(s, p[i]);
7432 		stat(s, ALLOC_FASTPATH);
7433 	}
7434 	c->tid = next_tid(c->tid);
7435 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7436 	slub_put_cpu_ptr(s->cpu_slab);
7437 
7438 	return i;
7439 
7440 error:
7441 	slub_put_cpu_ptr(s->cpu_slab);
7442 	__kmem_cache_free_bulk(s, i, p);
7443 	return 0;
7444 
7445 }
7446 
7447 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7448 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
7449 				 void **p)
7450 {
7451 	unsigned int i = 0;
7452 	void *kfence_obj;
7453 
7454 	if (!size)
7455 		return 0;
7456 
7457 	s = slab_pre_alloc_hook(s, flags);
7458 	if (unlikely(!s))
7459 		return 0;
7460 
7461 	/*
7462 	 * to make things simpler, only assume at most once kfence allocated
7463 	 * object per bulk allocation and choose its index randomly
7464 	 */
7465 	kfence_obj = kfence_alloc(s, s->object_size, flags);
7466 
7467 	if (unlikely(kfence_obj)) {
7468 		if (unlikely(size == 1)) {
7469 			p[0] = kfence_obj;
7470 			goto out;
7471 		}
7472 		size--;
7473 	}
7474 
7475 	if (s->cpu_sheaves)
7476 		i = alloc_from_pcs_bulk(s, size, p);
7477 
7478 	if (i < size) {
7479 		/*
7480 		 * If we ran out of memory, don't bother with freeing back to
7481 		 * the percpu sheaves, we have bigger problems.
7482 		 */
7483 		if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) {
7484 			if (i > 0)
7485 				__kmem_cache_free_bulk(s, i, p);
7486 			if (kfence_obj)
7487 				__kfence_free(kfence_obj);
7488 			return 0;
7489 		}
7490 	}
7491 
7492 	if (unlikely(kfence_obj)) {
7493 		int idx = get_random_u32_below(size + 1);
7494 
7495 		if (idx != size)
7496 			p[size] = p[idx];
7497 		p[idx] = kfence_obj;
7498 
7499 		size++;
7500 	}
7501 
7502 out:
7503 	/*
7504 	 * memcg and kmem_cache debug support and memory initialization.
7505 	 * Done outside of the IRQ disabled fastpath loop.
7506 	 */
7507 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
7508 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
7509 		return 0;
7510 	}
7511 
7512 	return size;
7513 }
7514 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
7515 
7516 /*
7517  * Object placement in a slab is made very easy because we always start at
7518  * offset 0. If we tune the size of the object to the alignment then we can
7519  * get the required alignment by putting one properly sized object after
7520  * another.
7521  *
7522  * Notice that the allocation order determines the sizes of the per cpu
7523  * caches. Each processor has always one slab available for allocations.
7524  * Increasing the allocation order reduces the number of times that slabs
7525  * must be moved on and off the partial lists and is therefore a factor in
7526  * locking overhead.
7527  */
7528 
7529 /*
7530  * Minimum / Maximum order of slab pages. This influences locking overhead
7531  * and slab fragmentation. A higher order reduces the number of partial slabs
7532  * and increases the number of allocations possible without having to
7533  * take the list_lock.
7534  */
7535 static unsigned int slub_min_order;
7536 static unsigned int slub_max_order =
7537 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
7538 static unsigned int slub_min_objects;
7539 
7540 /*
7541  * Calculate the order of allocation given an slab object size.
7542  *
7543  * The order of allocation has significant impact on performance and other
7544  * system components. Generally order 0 allocations should be preferred since
7545  * order 0 does not cause fragmentation in the page allocator. Larger objects
7546  * be problematic to put into order 0 slabs because there may be too much
7547  * unused space left. We go to a higher order if more than 1/16th of the slab
7548  * would be wasted.
7549  *
7550  * In order to reach satisfactory performance we must ensure that a minimum
7551  * number of objects is in one slab. Otherwise we may generate too much
7552  * activity on the partial lists which requires taking the list_lock. This is
7553  * less a concern for large slabs though which are rarely used.
7554  *
7555  * slab_max_order specifies the order where we begin to stop considering the
7556  * number of objects in a slab as critical. If we reach slab_max_order then
7557  * we try to keep the page order as low as possible. So we accept more waste
7558  * of space in favor of a small page order.
7559  *
7560  * Higher order allocations also allow the placement of more objects in a
7561  * slab and thereby reduce object handling overhead. If the user has
7562  * requested a higher minimum order then we start with that one instead of
7563  * the smallest order which will fit the object.
7564  */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)7565 static inline unsigned int calc_slab_order(unsigned int size,
7566 		unsigned int min_order, unsigned int max_order,
7567 		unsigned int fract_leftover)
7568 {
7569 	unsigned int order;
7570 
7571 	for (order = min_order; order <= max_order; order++) {
7572 
7573 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
7574 		unsigned int rem;
7575 
7576 		rem = slab_size % size;
7577 
7578 		if (rem <= slab_size / fract_leftover)
7579 			break;
7580 	}
7581 
7582 	return order;
7583 }
7584 
calculate_order(unsigned int size)7585 static inline int calculate_order(unsigned int size)
7586 {
7587 	unsigned int order;
7588 	unsigned int min_objects;
7589 	unsigned int max_objects;
7590 	unsigned int min_order;
7591 
7592 	min_objects = slub_min_objects;
7593 	if (!min_objects) {
7594 		/*
7595 		 * Some architectures will only update present cpus when
7596 		 * onlining them, so don't trust the number if it's just 1. But
7597 		 * we also don't want to use nr_cpu_ids always, as on some other
7598 		 * architectures, there can be many possible cpus, but never
7599 		 * onlined. Here we compromise between trying to avoid too high
7600 		 * order on systems that appear larger than they are, and too
7601 		 * low order on systems that appear smaller than they are.
7602 		 */
7603 		unsigned int nr_cpus = num_present_cpus();
7604 		if (nr_cpus <= 1)
7605 			nr_cpus = nr_cpu_ids;
7606 		min_objects = 4 * (fls(nr_cpus) + 1);
7607 	}
7608 	/* min_objects can't be 0 because get_order(0) is undefined */
7609 	max_objects = max(order_objects(slub_max_order, size), 1U);
7610 	min_objects = min(min_objects, max_objects);
7611 
7612 	min_order = max_t(unsigned int, slub_min_order,
7613 			  get_order(min_objects * size));
7614 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
7615 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
7616 
7617 	/*
7618 	 * Attempt to find best configuration for a slab. This works by first
7619 	 * attempting to generate a layout with the best possible configuration
7620 	 * and backing off gradually.
7621 	 *
7622 	 * We start with accepting at most 1/16 waste and try to find the
7623 	 * smallest order from min_objects-derived/slab_min_order up to
7624 	 * slab_max_order that will satisfy the constraint. Note that increasing
7625 	 * the order can only result in same or less fractional waste, not more.
7626 	 *
7627 	 * If that fails, we increase the acceptable fraction of waste and try
7628 	 * again. The last iteration with fraction of 1/2 would effectively
7629 	 * accept any waste and give us the order determined by min_objects, as
7630 	 * long as at least single object fits within slab_max_order.
7631 	 */
7632 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
7633 		order = calc_slab_order(size, min_order, slub_max_order,
7634 					fraction);
7635 		if (order <= slub_max_order)
7636 			return order;
7637 	}
7638 
7639 	/*
7640 	 * Doh this slab cannot be placed using slab_max_order.
7641 	 */
7642 	order = get_order(size);
7643 	if (order <= MAX_PAGE_ORDER)
7644 		return order;
7645 	return -ENOSYS;
7646 }
7647 
7648 static void
init_kmem_cache_node(struct kmem_cache_node * n,struct node_barn * barn)7649 init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn)
7650 {
7651 	n->nr_partial = 0;
7652 	spin_lock_init(&n->list_lock);
7653 	INIT_LIST_HEAD(&n->partial);
7654 #ifdef CONFIG_SLUB_DEBUG
7655 	atomic_long_set(&n->nr_slabs, 0);
7656 	atomic_long_set(&n->total_objects, 0);
7657 	INIT_LIST_HEAD(&n->full);
7658 #endif
7659 	n->barn = barn;
7660 	if (barn)
7661 		barn_init(barn);
7662 }
7663 
alloc_kmem_cache_cpus(struct kmem_cache * s)7664 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7665 {
7666 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
7667 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
7668 			sizeof(struct kmem_cache_cpu));
7669 
7670 	/*
7671 	 * Must align to double word boundary for the double cmpxchg
7672 	 * instructions to work; see __pcpu_double_call_return_bool().
7673 	 */
7674 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
7675 				     2 * sizeof(void *));
7676 
7677 	if (!s->cpu_slab)
7678 		return 0;
7679 
7680 	init_kmem_cache_cpus(s);
7681 
7682 	return 1;
7683 }
7684 
init_percpu_sheaves(struct kmem_cache * s)7685 static int init_percpu_sheaves(struct kmem_cache *s)
7686 {
7687 	int cpu;
7688 
7689 	for_each_possible_cpu(cpu) {
7690 		struct slub_percpu_sheaves *pcs;
7691 
7692 		pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
7693 
7694 		local_trylock_init(&pcs->lock);
7695 
7696 		pcs->main = alloc_empty_sheaf(s, GFP_KERNEL);
7697 
7698 		if (!pcs->main)
7699 			return -ENOMEM;
7700 	}
7701 
7702 	return 0;
7703 }
7704 
7705 static struct kmem_cache *kmem_cache_node;
7706 
7707 /*
7708  * No kmalloc_node yet so do it by hand. We know that this is the first
7709  * slab on the node for this slabcache. There are no concurrent accesses
7710  * possible.
7711  *
7712  * Note that this function only works on the kmem_cache_node
7713  * when allocating for the kmem_cache_node. This is used for bootstrapping
7714  * memory on a fresh node that has no slab structures yet.
7715  */
early_kmem_cache_node_alloc(int node)7716 static void early_kmem_cache_node_alloc(int node)
7717 {
7718 	struct slab *slab;
7719 	struct kmem_cache_node *n;
7720 
7721 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
7722 
7723 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
7724 
7725 	BUG_ON(!slab);
7726 	if (slab_nid(slab) != node) {
7727 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
7728 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
7729 	}
7730 
7731 	n = slab->freelist;
7732 	BUG_ON(!n);
7733 #ifdef CONFIG_SLUB_DEBUG
7734 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
7735 #endif
7736 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
7737 	slab->freelist = get_freepointer(kmem_cache_node, n);
7738 	slab->inuse = 1;
7739 	kmem_cache_node->node[node] = n;
7740 	init_kmem_cache_node(n, NULL);
7741 	inc_slabs_node(kmem_cache_node, node, slab->objects);
7742 
7743 	/*
7744 	 * No locks need to be taken here as it has just been
7745 	 * initialized and there is no concurrent access.
7746 	 */
7747 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
7748 }
7749 
free_kmem_cache_nodes(struct kmem_cache * s)7750 static void free_kmem_cache_nodes(struct kmem_cache *s)
7751 {
7752 	int node;
7753 	struct kmem_cache_node *n;
7754 
7755 	for_each_kmem_cache_node(s, node, n) {
7756 		if (n->barn) {
7757 			WARN_ON(n->barn->nr_full);
7758 			WARN_ON(n->barn->nr_empty);
7759 			kfree(n->barn);
7760 			n->barn = NULL;
7761 		}
7762 
7763 		s->node[node] = NULL;
7764 		kmem_cache_free(kmem_cache_node, n);
7765 	}
7766 }
7767 
__kmem_cache_release(struct kmem_cache * s)7768 void __kmem_cache_release(struct kmem_cache *s)
7769 {
7770 	cache_random_seq_destroy(s);
7771 	if (s->cpu_sheaves)
7772 		pcs_destroy(s);
7773 #ifdef CONFIG_PREEMPT_RT
7774 	if (s->cpu_slab)
7775 		lockdep_unregister_key(&s->lock_key);
7776 #endif
7777 	free_percpu(s->cpu_slab);
7778 	free_kmem_cache_nodes(s);
7779 }
7780 
init_kmem_cache_nodes(struct kmem_cache * s)7781 static int init_kmem_cache_nodes(struct kmem_cache *s)
7782 {
7783 	int node;
7784 
7785 	for_each_node_mask(node, slab_nodes) {
7786 		struct kmem_cache_node *n;
7787 		struct node_barn *barn = NULL;
7788 
7789 		if (slab_state == DOWN) {
7790 			early_kmem_cache_node_alloc(node);
7791 			continue;
7792 		}
7793 
7794 		if (s->cpu_sheaves) {
7795 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node);
7796 
7797 			if (!barn)
7798 				return 0;
7799 		}
7800 
7801 		n = kmem_cache_alloc_node(kmem_cache_node,
7802 						GFP_KERNEL, node);
7803 		if (!n) {
7804 			kfree(barn);
7805 			return 0;
7806 		}
7807 
7808 		init_kmem_cache_node(n, barn);
7809 
7810 		s->node[node] = n;
7811 	}
7812 	return 1;
7813 }
7814 
set_cpu_partial(struct kmem_cache * s)7815 static void set_cpu_partial(struct kmem_cache *s)
7816 {
7817 #ifdef CONFIG_SLUB_CPU_PARTIAL
7818 	unsigned int nr_objects;
7819 
7820 	/*
7821 	 * cpu_partial determined the maximum number of objects kept in the
7822 	 * per cpu partial lists of a processor.
7823 	 *
7824 	 * Per cpu partial lists mainly contain slabs that just have one
7825 	 * object freed. If they are used for allocation then they can be
7826 	 * filled up again with minimal effort. The slab will never hit the
7827 	 * per node partial lists and therefore no locking will be required.
7828 	 *
7829 	 * For backwards compatibility reasons, this is determined as number
7830 	 * of objects, even though we now limit maximum number of pages, see
7831 	 * slub_set_cpu_partial()
7832 	 */
7833 	if (!kmem_cache_has_cpu_partial(s))
7834 		nr_objects = 0;
7835 	else if (s->size >= PAGE_SIZE)
7836 		nr_objects = 6;
7837 	else if (s->size >= 1024)
7838 		nr_objects = 24;
7839 	else if (s->size >= 256)
7840 		nr_objects = 52;
7841 	else
7842 		nr_objects = 120;
7843 
7844 	slub_set_cpu_partial(s, nr_objects);
7845 #endif
7846 }
7847 
7848 /*
7849  * calculate_sizes() determines the order and the distribution of data within
7850  * a slab object.
7851  */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)7852 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
7853 {
7854 	slab_flags_t flags = s->flags;
7855 	unsigned int size = s->object_size;
7856 	unsigned int order;
7857 
7858 	/*
7859 	 * Round up object size to the next word boundary. We can only
7860 	 * place the free pointer at word boundaries and this determines
7861 	 * the possible location of the free pointer.
7862 	 */
7863 	size = ALIGN(size, sizeof(void *));
7864 
7865 #ifdef CONFIG_SLUB_DEBUG
7866 	/*
7867 	 * Determine if we can poison the object itself. If the user of
7868 	 * the slab may touch the object after free or before allocation
7869 	 * then we should never poison the object itself.
7870 	 */
7871 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
7872 			!s->ctor)
7873 		s->flags |= __OBJECT_POISON;
7874 	else
7875 		s->flags &= ~__OBJECT_POISON;
7876 
7877 
7878 	/*
7879 	 * If we are Redzoning then check if there is some space between the
7880 	 * end of the object and the free pointer. If not then add an
7881 	 * additional word to have some bytes to store Redzone information.
7882 	 */
7883 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
7884 		size += sizeof(void *);
7885 #endif
7886 
7887 	/*
7888 	 * With that we have determined the number of bytes in actual use
7889 	 * by the object and redzoning.
7890 	 */
7891 	s->inuse = size;
7892 
7893 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
7894 	    (flags & SLAB_POISON) || s->ctor ||
7895 	    ((flags & SLAB_RED_ZONE) &&
7896 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
7897 		/*
7898 		 * Relocate free pointer after the object if it is not
7899 		 * permitted to overwrite the first word of the object on
7900 		 * kmem_cache_free.
7901 		 *
7902 		 * This is the case if we do RCU, have a constructor or
7903 		 * destructor, are poisoning the objects, or are
7904 		 * redzoning an object smaller than sizeof(void *) or are
7905 		 * redzoning an object with slub_debug_orig_size() enabled,
7906 		 * in which case the right redzone may be extended.
7907 		 *
7908 		 * The assumption that s->offset >= s->inuse means free
7909 		 * pointer is outside of the object is used in the
7910 		 * freeptr_outside_object() function. If that is no
7911 		 * longer true, the function needs to be modified.
7912 		 */
7913 		s->offset = size;
7914 		size += sizeof(void *);
7915 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
7916 		s->offset = args->freeptr_offset;
7917 	} else {
7918 		/*
7919 		 * Store freelist pointer near middle of object to keep
7920 		 * it away from the edges of the object to avoid small
7921 		 * sized over/underflows from neighboring allocations.
7922 		 */
7923 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
7924 	}
7925 
7926 #ifdef CONFIG_SLUB_DEBUG
7927 	if (flags & SLAB_STORE_USER) {
7928 		/*
7929 		 * Need to store information about allocs and frees after
7930 		 * the object.
7931 		 */
7932 		size += 2 * sizeof(struct track);
7933 
7934 		/* Save the original kmalloc request size */
7935 		if (flags & SLAB_KMALLOC)
7936 			size += sizeof(unsigned int);
7937 	}
7938 #endif
7939 
7940 	kasan_cache_create(s, &size, &s->flags);
7941 #ifdef CONFIG_SLUB_DEBUG
7942 	if (flags & SLAB_RED_ZONE) {
7943 		/*
7944 		 * Add some empty padding so that we can catch
7945 		 * overwrites from earlier objects rather than let
7946 		 * tracking information or the free pointer be
7947 		 * corrupted if a user writes before the start
7948 		 * of the object.
7949 		 */
7950 		size += sizeof(void *);
7951 
7952 		s->red_left_pad = sizeof(void *);
7953 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
7954 		size += s->red_left_pad;
7955 	}
7956 #endif
7957 
7958 	/*
7959 	 * SLUB stores one object immediately after another beginning from
7960 	 * offset 0. In order to align the objects we have to simply size
7961 	 * each object to conform to the alignment.
7962 	 */
7963 	size = ALIGN(size, s->align);
7964 	s->size = size;
7965 	s->reciprocal_size = reciprocal_value(size);
7966 	order = calculate_order(size);
7967 
7968 	if ((int)order < 0)
7969 		return 0;
7970 
7971 	s->allocflags = __GFP_COMP;
7972 
7973 	if (s->flags & SLAB_CACHE_DMA)
7974 		s->allocflags |= GFP_DMA;
7975 
7976 	if (s->flags & SLAB_CACHE_DMA32)
7977 		s->allocflags |= GFP_DMA32;
7978 
7979 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7980 		s->allocflags |= __GFP_RECLAIMABLE;
7981 
7982 	/*
7983 	 * Determine the number of objects per slab
7984 	 */
7985 	s->oo = oo_make(order, size);
7986 	s->min = oo_make(get_order(size), size);
7987 
7988 	return !!oo_objects(s->oo);
7989 }
7990 
list_slab_objects(struct kmem_cache * s,struct slab * slab)7991 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
7992 {
7993 #ifdef CONFIG_SLUB_DEBUG
7994 	void *addr = slab_address(slab);
7995 	void *p;
7996 
7997 	if (!slab_add_kunit_errors())
7998 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
7999 
8000 	spin_lock(&object_map_lock);
8001 	__fill_map(object_map, s, slab);
8002 
8003 	for_each_object(p, s, addr, slab->objects) {
8004 
8005 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
8006 			if (slab_add_kunit_errors())
8007 				continue;
8008 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
8009 			print_tracking(s, p);
8010 		}
8011 	}
8012 	spin_unlock(&object_map_lock);
8013 
8014 	__slab_err(slab);
8015 #endif
8016 }
8017 
8018 /*
8019  * Attempt to free all partial slabs on a node.
8020  * This is called from __kmem_cache_shutdown(). We must take list_lock
8021  * because sysfs file might still access partial list after the shutdowning.
8022  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)8023 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
8024 {
8025 	LIST_HEAD(discard);
8026 	struct slab *slab, *h;
8027 
8028 	BUG_ON(irqs_disabled());
8029 	spin_lock_irq(&n->list_lock);
8030 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
8031 		if (!slab->inuse) {
8032 			remove_partial(n, slab);
8033 			list_add(&slab->slab_list, &discard);
8034 		} else {
8035 			list_slab_objects(s, slab);
8036 		}
8037 	}
8038 	spin_unlock_irq(&n->list_lock);
8039 
8040 	list_for_each_entry_safe(slab, h, &discard, slab_list)
8041 		discard_slab(s, slab);
8042 }
8043 
__kmem_cache_empty(struct kmem_cache * s)8044 bool __kmem_cache_empty(struct kmem_cache *s)
8045 {
8046 	int node;
8047 	struct kmem_cache_node *n;
8048 
8049 	for_each_kmem_cache_node(s, node, n)
8050 		if (n->nr_partial || node_nr_slabs(n))
8051 			return false;
8052 	return true;
8053 }
8054 
8055 /*
8056  * Release all resources used by a slab cache.
8057  */
__kmem_cache_shutdown(struct kmem_cache * s)8058 int __kmem_cache_shutdown(struct kmem_cache *s)
8059 {
8060 	int node;
8061 	struct kmem_cache_node *n;
8062 
8063 	flush_all_cpus_locked(s);
8064 
8065 	/* we might have rcu sheaves in flight */
8066 	if (s->cpu_sheaves)
8067 		rcu_barrier();
8068 
8069 	/* Attempt to free all objects */
8070 	for_each_kmem_cache_node(s, node, n) {
8071 		if (n->barn)
8072 			barn_shrink(s, n->barn);
8073 		free_partial(s, n);
8074 		if (n->nr_partial || node_nr_slabs(n))
8075 			return 1;
8076 	}
8077 	return 0;
8078 }
8079 
8080 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)8081 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8082 {
8083 	void *base;
8084 	int __maybe_unused i;
8085 	unsigned int objnr;
8086 	void *objp;
8087 	void *objp0;
8088 	struct kmem_cache *s = slab->slab_cache;
8089 	struct track __maybe_unused *trackp;
8090 
8091 	kpp->kp_ptr = object;
8092 	kpp->kp_slab = slab;
8093 	kpp->kp_slab_cache = s;
8094 	base = slab_address(slab);
8095 	objp0 = kasan_reset_tag(object);
8096 #ifdef CONFIG_SLUB_DEBUG
8097 	objp = restore_red_left(s, objp0);
8098 #else
8099 	objp = objp0;
8100 #endif
8101 	objnr = obj_to_index(s, slab, objp);
8102 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
8103 	objp = base + s->size * objnr;
8104 	kpp->kp_objp = objp;
8105 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
8106 			 || (objp - base) % s->size) ||
8107 	    !(s->flags & SLAB_STORE_USER))
8108 		return;
8109 #ifdef CONFIG_SLUB_DEBUG
8110 	objp = fixup_red_left(s, objp);
8111 	trackp = get_track(s, objp, TRACK_ALLOC);
8112 	kpp->kp_ret = (void *)trackp->addr;
8113 #ifdef CONFIG_STACKDEPOT
8114 	{
8115 		depot_stack_handle_t handle;
8116 		unsigned long *entries;
8117 		unsigned int nr_entries;
8118 
8119 		handle = READ_ONCE(trackp->handle);
8120 		if (handle) {
8121 			nr_entries = stack_depot_fetch(handle, &entries);
8122 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8123 				kpp->kp_stack[i] = (void *)entries[i];
8124 		}
8125 
8126 		trackp = get_track(s, objp, TRACK_FREE);
8127 		handle = READ_ONCE(trackp->handle);
8128 		if (handle) {
8129 			nr_entries = stack_depot_fetch(handle, &entries);
8130 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8131 				kpp->kp_free_stack[i] = (void *)entries[i];
8132 		}
8133 	}
8134 #endif
8135 #endif
8136 }
8137 #endif
8138 
8139 /********************************************************************
8140  *		Kmalloc subsystem
8141  *******************************************************************/
8142 
setup_slub_min_order(const char * str,const struct kernel_param * kp)8143 static int __init setup_slub_min_order(const char *str, const struct kernel_param *kp)
8144 {
8145 	int ret;
8146 
8147 	ret = kstrtouint(str, 0, &slub_min_order);
8148 	if (ret)
8149 		return ret;
8150 
8151 	if (slub_min_order > slub_max_order)
8152 		slub_max_order = slub_min_order;
8153 
8154 	return 0;
8155 }
8156 
8157 static const struct kernel_param_ops param_ops_slab_min_order __initconst = {
8158 	.set = setup_slub_min_order,
8159 };
8160 __core_param_cb(slab_min_order, &param_ops_slab_min_order, &slub_min_order, 0);
8161 __core_param_cb(slub_min_order, &param_ops_slab_min_order, &slub_min_order, 0);
8162 
setup_slub_max_order(const char * str,const struct kernel_param * kp)8163 static int __init setup_slub_max_order(const char *str, const struct kernel_param *kp)
8164 {
8165 	int ret;
8166 
8167 	ret = kstrtouint(str, 0, &slub_max_order);
8168 	if (ret)
8169 		return ret;
8170 
8171 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
8172 
8173 	if (slub_min_order > slub_max_order)
8174 		slub_min_order = slub_max_order;
8175 
8176 	return 0;
8177 }
8178 
8179 static const struct kernel_param_ops param_ops_slab_max_order __initconst = {
8180 	.set = setup_slub_max_order,
8181 };
8182 __core_param_cb(slab_max_order, &param_ops_slab_max_order, &slub_max_order, 0);
8183 __core_param_cb(slub_max_order, &param_ops_slab_max_order, &slub_max_order, 0);
8184 
8185 core_param(slab_min_objects, slub_min_objects, uint, 0);
8186 core_param(slub_min_objects, slub_min_objects, uint, 0);
8187 
8188 #ifdef CONFIG_NUMA
setup_slab_strict_numa(const char * str,const struct kernel_param * kp)8189 static int __init setup_slab_strict_numa(const char *str, const struct kernel_param *kp)
8190 {
8191 	if (nr_node_ids > 1) {
8192 		static_branch_enable(&strict_numa);
8193 		pr_info("SLUB: Strict NUMA enabled.\n");
8194 	} else {
8195 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
8196 	}
8197 
8198 	return 0;
8199 }
8200 
8201 static const struct kernel_param_ops param_ops_slab_strict_numa __initconst = {
8202 	.flags = KERNEL_PARAM_OPS_FL_NOARG,
8203 	.set = setup_slab_strict_numa,
8204 };
8205 __core_param_cb(slab_strict_numa, &param_ops_slab_strict_numa, NULL, 0);
8206 #endif
8207 
8208 
8209 #ifdef CONFIG_HARDENED_USERCOPY
8210 /*
8211  * Rejects incorrectly sized objects and objects that are to be copied
8212  * to/from userspace but do not fall entirely within the containing slab
8213  * cache's usercopy region.
8214  *
8215  * Returns NULL if check passes, otherwise const char * to name of cache
8216  * to indicate an error.
8217  */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)8218 void __check_heap_object(const void *ptr, unsigned long n,
8219 			 const struct slab *slab, bool to_user)
8220 {
8221 	struct kmem_cache *s;
8222 	unsigned int offset;
8223 	bool is_kfence = is_kfence_address(ptr);
8224 
8225 	ptr = kasan_reset_tag(ptr);
8226 
8227 	/* Find object and usable object size. */
8228 	s = slab->slab_cache;
8229 
8230 	/* Reject impossible pointers. */
8231 	if (ptr < slab_address(slab))
8232 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
8233 			       to_user, 0, n);
8234 
8235 	/* Find offset within object. */
8236 	if (is_kfence)
8237 		offset = ptr - kfence_object_start(ptr);
8238 	else
8239 		offset = (ptr - slab_address(slab)) % s->size;
8240 
8241 	/* Adjust for redzone and reject if within the redzone. */
8242 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
8243 		if (offset < s->red_left_pad)
8244 			usercopy_abort("SLUB object in left red zone",
8245 				       s->name, to_user, offset, n);
8246 		offset -= s->red_left_pad;
8247 	}
8248 
8249 	/* Allow address range falling entirely within usercopy region. */
8250 	if (offset >= s->useroffset &&
8251 	    offset - s->useroffset <= s->usersize &&
8252 	    n <= s->useroffset - offset + s->usersize)
8253 		return;
8254 
8255 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
8256 }
8257 #endif /* CONFIG_HARDENED_USERCOPY */
8258 
8259 #define SHRINK_PROMOTE_MAX 32
8260 
8261 /*
8262  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
8263  * up most to the head of the partial lists. New allocations will then
8264  * fill those up and thus they can be removed from the partial lists.
8265  *
8266  * The slabs with the least items are placed last. This results in them
8267  * being allocated from last increasing the chance that the last objects
8268  * are freed in them.
8269  */
__kmem_cache_do_shrink(struct kmem_cache * s)8270 static int __kmem_cache_do_shrink(struct kmem_cache *s)
8271 {
8272 	int node;
8273 	int i;
8274 	struct kmem_cache_node *n;
8275 	struct slab *slab;
8276 	struct slab *t;
8277 	struct list_head discard;
8278 	struct list_head promote[SHRINK_PROMOTE_MAX];
8279 	unsigned long flags;
8280 	int ret = 0;
8281 
8282 	for_each_kmem_cache_node(s, node, n) {
8283 		INIT_LIST_HEAD(&discard);
8284 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
8285 			INIT_LIST_HEAD(promote + i);
8286 
8287 		if (n->barn)
8288 			barn_shrink(s, n->barn);
8289 
8290 		spin_lock_irqsave(&n->list_lock, flags);
8291 
8292 		/*
8293 		 * Build lists of slabs to discard or promote.
8294 		 *
8295 		 * Note that concurrent frees may occur while we hold the
8296 		 * list_lock. slab->inuse here is the upper limit.
8297 		 */
8298 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
8299 			int free = slab->objects - slab->inuse;
8300 
8301 			/* Do not reread slab->inuse */
8302 			barrier();
8303 
8304 			/* We do not keep full slabs on the list */
8305 			BUG_ON(free <= 0);
8306 
8307 			if (free == slab->objects) {
8308 				list_move(&slab->slab_list, &discard);
8309 				slab_clear_node_partial(slab);
8310 				n->nr_partial--;
8311 				dec_slabs_node(s, node, slab->objects);
8312 			} else if (free <= SHRINK_PROMOTE_MAX)
8313 				list_move(&slab->slab_list, promote + free - 1);
8314 		}
8315 
8316 		/*
8317 		 * Promote the slabs filled up most to the head of the
8318 		 * partial list.
8319 		 */
8320 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
8321 			list_splice(promote + i, &n->partial);
8322 
8323 		spin_unlock_irqrestore(&n->list_lock, flags);
8324 
8325 		/* Release empty slabs */
8326 		list_for_each_entry_safe(slab, t, &discard, slab_list)
8327 			free_slab(s, slab);
8328 
8329 		if (node_nr_slabs(n))
8330 			ret = 1;
8331 	}
8332 
8333 	return ret;
8334 }
8335 
__kmem_cache_shrink(struct kmem_cache * s)8336 int __kmem_cache_shrink(struct kmem_cache *s)
8337 {
8338 	flush_all(s);
8339 	return __kmem_cache_do_shrink(s);
8340 }
8341 
slab_mem_going_offline_callback(void)8342 static int slab_mem_going_offline_callback(void)
8343 {
8344 	struct kmem_cache *s;
8345 
8346 	mutex_lock(&slab_mutex);
8347 	list_for_each_entry(s, &slab_caches, list) {
8348 		flush_all_cpus_locked(s);
8349 		__kmem_cache_do_shrink(s);
8350 	}
8351 	mutex_unlock(&slab_mutex);
8352 
8353 	return 0;
8354 }
8355 
slab_mem_going_online_callback(int nid)8356 static int slab_mem_going_online_callback(int nid)
8357 {
8358 	struct kmem_cache_node *n;
8359 	struct kmem_cache *s;
8360 	int ret = 0;
8361 
8362 	/*
8363 	 * We are bringing a node online. No memory is available yet. We must
8364 	 * allocate a kmem_cache_node structure in order to bring the node
8365 	 * online.
8366 	 */
8367 	mutex_lock(&slab_mutex);
8368 	list_for_each_entry(s, &slab_caches, list) {
8369 		struct node_barn *barn = NULL;
8370 
8371 		/*
8372 		 * The structure may already exist if the node was previously
8373 		 * onlined and offlined.
8374 		 */
8375 		if (get_node(s, nid))
8376 			continue;
8377 
8378 		if (s->cpu_sheaves) {
8379 			barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid);
8380 
8381 			if (!barn) {
8382 				ret = -ENOMEM;
8383 				goto out;
8384 			}
8385 		}
8386 
8387 		/*
8388 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
8389 		 *      since memory is not yet available from the node that
8390 		 *      is brought up.
8391 		 */
8392 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
8393 		if (!n) {
8394 			kfree(barn);
8395 			ret = -ENOMEM;
8396 			goto out;
8397 		}
8398 
8399 		init_kmem_cache_node(n, barn);
8400 
8401 		s->node[nid] = n;
8402 	}
8403 	/*
8404 	 * Any cache created after this point will also have kmem_cache_node
8405 	 * initialized for the new node.
8406 	 */
8407 	node_set(nid, slab_nodes);
8408 out:
8409 	mutex_unlock(&slab_mutex);
8410 	return ret;
8411 }
8412 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)8413 static int slab_memory_callback(struct notifier_block *self,
8414 				unsigned long action, void *arg)
8415 {
8416 	struct node_notify *nn = arg;
8417 	int nid = nn->nid;
8418 	int ret = 0;
8419 
8420 	switch (action) {
8421 	case NODE_ADDING_FIRST_MEMORY:
8422 		ret = slab_mem_going_online_callback(nid);
8423 		break;
8424 	case NODE_REMOVING_LAST_MEMORY:
8425 		ret = slab_mem_going_offline_callback();
8426 		break;
8427 	}
8428 	if (ret)
8429 		ret = notifier_from_errno(ret);
8430 	else
8431 		ret = NOTIFY_OK;
8432 	return ret;
8433 }
8434 
8435 /********************************************************************
8436  *			Basic setup of slabs
8437  *******************************************************************/
8438 
8439 /*
8440  * Used for early kmem_cache structures that were allocated using
8441  * the page allocator. Allocate them properly then fix up the pointers
8442  * that may be pointing to the wrong kmem_cache structure.
8443  */
8444 
bootstrap(struct kmem_cache * static_cache)8445 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
8446 {
8447 	int node;
8448 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8449 	struct kmem_cache_node *n;
8450 
8451 	memcpy(s, static_cache, kmem_cache->object_size);
8452 
8453 	/*
8454 	 * This runs very early, and only the boot processor is supposed to be
8455 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
8456 	 * IPIs around.
8457 	 */
8458 	__flush_cpu_slab(s, smp_processor_id());
8459 	for_each_kmem_cache_node(s, node, n) {
8460 		struct slab *p;
8461 
8462 		list_for_each_entry(p, &n->partial, slab_list)
8463 			p->slab_cache = s;
8464 
8465 #ifdef CONFIG_SLUB_DEBUG
8466 		list_for_each_entry(p, &n->full, slab_list)
8467 			p->slab_cache = s;
8468 #endif
8469 	}
8470 	list_add(&s->list, &slab_caches);
8471 	return s;
8472 }
8473 
kmem_cache_init(void)8474 void __init kmem_cache_init(void)
8475 {
8476 	static __initdata struct kmem_cache boot_kmem_cache,
8477 		boot_kmem_cache_node;
8478 	int node;
8479 
8480 	if (debug_guardpage_minorder())
8481 		slub_max_order = 0;
8482 
8483 	/* Inform pointer hashing choice about slub debugging state. */
8484 	hash_pointers_finalize(__slub_debug_enabled());
8485 
8486 	kmem_cache_node = &boot_kmem_cache_node;
8487 	kmem_cache = &boot_kmem_cache;
8488 
8489 	/*
8490 	 * Initialize the nodemask for which we will allocate per node
8491 	 * structures. Here we don't need taking slab_mutex yet.
8492 	 */
8493 	for_each_node_state(node, N_MEMORY)
8494 		node_set(node, slab_nodes);
8495 
8496 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
8497 			sizeof(struct kmem_cache_node),
8498 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8499 
8500 	hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
8501 
8502 	/* Able to allocate the per node structures */
8503 	slab_state = PARTIAL;
8504 
8505 	create_boot_cache(kmem_cache, "kmem_cache",
8506 			offsetof(struct kmem_cache, node) +
8507 				nr_node_ids * sizeof(struct kmem_cache_node *),
8508 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8509 
8510 	kmem_cache = bootstrap(&boot_kmem_cache);
8511 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
8512 
8513 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
8514 	setup_kmalloc_cache_index_table();
8515 	create_kmalloc_caches();
8516 
8517 	/* Setup random freelists for each cache */
8518 	init_freelist_randomization();
8519 
8520 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
8521 				  slub_cpu_dead);
8522 
8523 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
8524 		cache_line_size(),
8525 		slub_min_order, slub_max_order, slub_min_objects,
8526 		nr_cpu_ids, nr_node_ids);
8527 }
8528 
kmem_cache_init_late(void)8529 void __init kmem_cache_init_late(void)
8530 {
8531 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
8532 	WARN_ON(!flushwq);
8533 }
8534 
8535 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))8536 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
8537 		   slab_flags_t flags, void (*ctor)(void *))
8538 {
8539 	struct kmem_cache *s;
8540 
8541 	s = find_mergeable(size, align, flags, name, ctor);
8542 	if (s) {
8543 		if (sysfs_slab_alias(s, name))
8544 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
8545 			       name);
8546 
8547 		s->refcount++;
8548 
8549 		/*
8550 		 * Adjust the object sizes so that we clear
8551 		 * the complete object on kzalloc.
8552 		 */
8553 		s->object_size = max(s->object_size, size);
8554 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
8555 	}
8556 
8557 	return s;
8558 }
8559 
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)8560 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
8561 			 unsigned int size, struct kmem_cache_args *args,
8562 			 slab_flags_t flags)
8563 {
8564 	int err = -EINVAL;
8565 
8566 	s->name = name;
8567 	s->size = s->object_size = size;
8568 
8569 	s->flags = kmem_cache_flags(flags, s->name);
8570 #ifdef CONFIG_SLAB_FREELIST_HARDENED
8571 	s->random = get_random_long();
8572 #endif
8573 	s->align = args->align;
8574 	s->ctor = args->ctor;
8575 #ifdef CONFIG_HARDENED_USERCOPY
8576 	s->useroffset = args->useroffset;
8577 	s->usersize = args->usersize;
8578 #endif
8579 
8580 	if (!calculate_sizes(args, s))
8581 		goto out;
8582 	if (disable_higher_order_debug) {
8583 		/*
8584 		 * Disable debugging flags that store metadata if the min slab
8585 		 * order increased.
8586 		 */
8587 		if (get_order(s->size) > get_order(s->object_size)) {
8588 			s->flags &= ~DEBUG_METADATA_FLAGS;
8589 			s->offset = 0;
8590 			if (!calculate_sizes(args, s))
8591 				goto out;
8592 		}
8593 	}
8594 
8595 #ifdef system_has_freelist_aba
8596 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
8597 		/* Enable fast mode */
8598 		s->flags |= __CMPXCHG_DOUBLE;
8599 	}
8600 #endif
8601 
8602 	/*
8603 	 * The larger the object size is, the more slabs we want on the partial
8604 	 * list to avoid pounding the page allocator excessively.
8605 	 */
8606 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
8607 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
8608 
8609 	set_cpu_partial(s);
8610 
8611 	if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY)
8612 					&& !(s->flags & SLAB_DEBUG_FLAGS)) {
8613 		s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves);
8614 		if (!s->cpu_sheaves) {
8615 			err = -ENOMEM;
8616 			goto out;
8617 		}
8618 		// TODO: increase capacity to grow slab_sheaf up to next kmalloc size?
8619 		s->sheaf_capacity = args->sheaf_capacity;
8620 	}
8621 
8622 #ifdef CONFIG_NUMA
8623 	s->remote_node_defrag_ratio = 1000;
8624 #endif
8625 
8626 	/* Initialize the pre-computed randomized freelist if slab is up */
8627 	if (slab_state >= UP) {
8628 		if (init_cache_random_seq(s))
8629 			goto out;
8630 	}
8631 
8632 	if (!init_kmem_cache_nodes(s))
8633 		goto out;
8634 
8635 	if (!alloc_kmem_cache_cpus(s))
8636 		goto out;
8637 
8638 	if (s->cpu_sheaves) {
8639 		err = init_percpu_sheaves(s);
8640 		if (err)
8641 			goto out;
8642 	}
8643 
8644 	err = 0;
8645 
8646 	/* Mutex is not taken during early boot */
8647 	if (slab_state <= UP)
8648 		goto out;
8649 
8650 	/*
8651 	 * Failing to create sysfs files is not critical to SLUB functionality.
8652 	 * If it fails, proceed with cache creation without these files.
8653 	 */
8654 	if (sysfs_slab_add(s))
8655 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
8656 
8657 	if (s->flags & SLAB_STORE_USER)
8658 		debugfs_slab_add(s);
8659 
8660 out:
8661 	if (err)
8662 		__kmem_cache_release(s);
8663 	return err;
8664 }
8665 
8666 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)8667 static int count_inuse(struct slab *slab)
8668 {
8669 	return slab->inuse;
8670 }
8671 
count_total(struct slab * slab)8672 static int count_total(struct slab *slab)
8673 {
8674 	return slab->objects;
8675 }
8676 #endif
8677 
8678 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)8679 static void validate_slab(struct kmem_cache *s, struct slab *slab,
8680 			  unsigned long *obj_map)
8681 {
8682 	void *p;
8683 	void *addr = slab_address(slab);
8684 
8685 	if (!validate_slab_ptr(slab)) {
8686 		slab_err(s, slab, "Not a valid slab page");
8687 		return;
8688 	}
8689 
8690 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
8691 		return;
8692 
8693 	/* Now we know that a valid freelist exists */
8694 	__fill_map(obj_map, s, slab);
8695 	for_each_object(p, s, addr, slab->objects) {
8696 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
8697 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
8698 
8699 		if (!check_object(s, slab, p, val))
8700 			break;
8701 	}
8702 }
8703 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)8704 static int validate_slab_node(struct kmem_cache *s,
8705 		struct kmem_cache_node *n, unsigned long *obj_map)
8706 {
8707 	unsigned long count = 0;
8708 	struct slab *slab;
8709 	unsigned long flags;
8710 
8711 	spin_lock_irqsave(&n->list_lock, flags);
8712 
8713 	list_for_each_entry(slab, &n->partial, slab_list) {
8714 		validate_slab(s, slab, obj_map);
8715 		count++;
8716 	}
8717 	if (count != n->nr_partial) {
8718 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
8719 		       s->name, count, n->nr_partial);
8720 		slab_add_kunit_errors();
8721 	}
8722 
8723 	if (!(s->flags & SLAB_STORE_USER))
8724 		goto out;
8725 
8726 	list_for_each_entry(slab, &n->full, slab_list) {
8727 		validate_slab(s, slab, obj_map);
8728 		count++;
8729 	}
8730 	if (count != node_nr_slabs(n)) {
8731 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8732 		       s->name, count, node_nr_slabs(n));
8733 		slab_add_kunit_errors();
8734 	}
8735 
8736 out:
8737 	spin_unlock_irqrestore(&n->list_lock, flags);
8738 	return count;
8739 }
8740 
validate_slab_cache(struct kmem_cache * s)8741 long validate_slab_cache(struct kmem_cache *s)
8742 {
8743 	int node;
8744 	unsigned long count = 0;
8745 	struct kmem_cache_node *n;
8746 	unsigned long *obj_map;
8747 
8748 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
8749 	if (!obj_map)
8750 		return -ENOMEM;
8751 
8752 	flush_all(s);
8753 	for_each_kmem_cache_node(s, node, n)
8754 		count += validate_slab_node(s, n, obj_map);
8755 
8756 	bitmap_free(obj_map);
8757 
8758 	return count;
8759 }
8760 EXPORT_SYMBOL(validate_slab_cache);
8761 
8762 #ifdef CONFIG_DEBUG_FS
8763 /*
8764  * Generate lists of code addresses where slabcache objects are allocated
8765  * and freed.
8766  */
8767 
8768 struct location {
8769 	depot_stack_handle_t handle;
8770 	unsigned long count;
8771 	unsigned long addr;
8772 	unsigned long waste;
8773 	long long sum_time;
8774 	long min_time;
8775 	long max_time;
8776 	long min_pid;
8777 	long max_pid;
8778 	DECLARE_BITMAP(cpus, NR_CPUS);
8779 	nodemask_t nodes;
8780 };
8781 
8782 struct loc_track {
8783 	unsigned long max;
8784 	unsigned long count;
8785 	struct location *loc;
8786 	loff_t idx;
8787 };
8788 
8789 static struct dentry *slab_debugfs_root;
8790 
free_loc_track(struct loc_track * t)8791 static void free_loc_track(struct loc_track *t)
8792 {
8793 	if (t->max)
8794 		free_pages((unsigned long)t->loc,
8795 			get_order(sizeof(struct location) * t->max));
8796 }
8797 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)8798 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
8799 {
8800 	struct location *l;
8801 	int order;
8802 
8803 	order = get_order(sizeof(struct location) * max);
8804 
8805 	l = (void *)__get_free_pages(flags, order);
8806 	if (!l)
8807 		return 0;
8808 
8809 	if (t->count) {
8810 		memcpy(l, t->loc, sizeof(struct location) * t->count);
8811 		free_loc_track(t);
8812 	}
8813 	t->max = max;
8814 	t->loc = l;
8815 	return 1;
8816 }
8817 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)8818 static int add_location(struct loc_track *t, struct kmem_cache *s,
8819 				const struct track *track,
8820 				unsigned int orig_size)
8821 {
8822 	long start, end, pos;
8823 	struct location *l;
8824 	unsigned long caddr, chandle, cwaste;
8825 	unsigned long age = jiffies - track->when;
8826 	depot_stack_handle_t handle = 0;
8827 	unsigned int waste = s->object_size - orig_size;
8828 
8829 #ifdef CONFIG_STACKDEPOT
8830 	handle = READ_ONCE(track->handle);
8831 #endif
8832 	start = -1;
8833 	end = t->count;
8834 
8835 	for ( ; ; ) {
8836 		pos = start + (end - start + 1) / 2;
8837 
8838 		/*
8839 		 * There is nothing at "end". If we end up there
8840 		 * we need to add something to before end.
8841 		 */
8842 		if (pos == end)
8843 			break;
8844 
8845 		l = &t->loc[pos];
8846 		caddr = l->addr;
8847 		chandle = l->handle;
8848 		cwaste = l->waste;
8849 		if ((track->addr == caddr) && (handle == chandle) &&
8850 			(waste == cwaste)) {
8851 
8852 			l->count++;
8853 			if (track->when) {
8854 				l->sum_time += age;
8855 				if (age < l->min_time)
8856 					l->min_time = age;
8857 				if (age > l->max_time)
8858 					l->max_time = age;
8859 
8860 				if (track->pid < l->min_pid)
8861 					l->min_pid = track->pid;
8862 				if (track->pid > l->max_pid)
8863 					l->max_pid = track->pid;
8864 
8865 				cpumask_set_cpu(track->cpu,
8866 						to_cpumask(l->cpus));
8867 			}
8868 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
8869 			return 1;
8870 		}
8871 
8872 		if (track->addr < caddr)
8873 			end = pos;
8874 		else if (track->addr == caddr && handle < chandle)
8875 			end = pos;
8876 		else if (track->addr == caddr && handle == chandle &&
8877 				waste < cwaste)
8878 			end = pos;
8879 		else
8880 			start = pos;
8881 	}
8882 
8883 	/*
8884 	 * Not found. Insert new tracking element.
8885 	 */
8886 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
8887 		return 0;
8888 
8889 	l = t->loc + pos;
8890 	if (pos < t->count)
8891 		memmove(l + 1, l,
8892 			(t->count - pos) * sizeof(struct location));
8893 	t->count++;
8894 	l->count = 1;
8895 	l->addr = track->addr;
8896 	l->sum_time = age;
8897 	l->min_time = age;
8898 	l->max_time = age;
8899 	l->min_pid = track->pid;
8900 	l->max_pid = track->pid;
8901 	l->handle = handle;
8902 	l->waste = waste;
8903 	cpumask_clear(to_cpumask(l->cpus));
8904 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
8905 	nodes_clear(l->nodes);
8906 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
8907 	return 1;
8908 }
8909 
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)8910 static void process_slab(struct loc_track *t, struct kmem_cache *s,
8911 		struct slab *slab, enum track_item alloc,
8912 		unsigned long *obj_map)
8913 {
8914 	void *addr = slab_address(slab);
8915 	bool is_alloc = (alloc == TRACK_ALLOC);
8916 	void *p;
8917 
8918 	__fill_map(obj_map, s, slab);
8919 
8920 	for_each_object(p, s, addr, slab->objects)
8921 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
8922 			add_location(t, s, get_track(s, p, alloc),
8923 				     is_alloc ? get_orig_size(s, p) :
8924 						s->object_size);
8925 }
8926 #endif  /* CONFIG_DEBUG_FS   */
8927 #endif	/* CONFIG_SLUB_DEBUG */
8928 
8929 #ifdef SLAB_SUPPORTS_SYSFS
8930 enum slab_stat_type {
8931 	SL_ALL,			/* All slabs */
8932 	SL_PARTIAL,		/* Only partially allocated slabs */
8933 	SL_CPU,			/* Only slabs used for cpu caches */
8934 	SL_OBJECTS,		/* Determine allocated objects not slabs */
8935 	SL_TOTAL		/* Determine object capacity not slabs */
8936 };
8937 
8938 #define SO_ALL		(1 << SL_ALL)
8939 #define SO_PARTIAL	(1 << SL_PARTIAL)
8940 #define SO_CPU		(1 << SL_CPU)
8941 #define SO_OBJECTS	(1 << SL_OBJECTS)
8942 #define SO_TOTAL	(1 << SL_TOTAL)
8943 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)8944 static ssize_t show_slab_objects(struct kmem_cache *s,
8945 				 char *buf, unsigned long flags)
8946 {
8947 	unsigned long total = 0;
8948 	int node;
8949 	int x;
8950 	unsigned long *nodes;
8951 	int len = 0;
8952 
8953 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
8954 	if (!nodes)
8955 		return -ENOMEM;
8956 
8957 	if (flags & SO_CPU) {
8958 		int cpu;
8959 
8960 		for_each_possible_cpu(cpu) {
8961 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
8962 							       cpu);
8963 			int node;
8964 			struct slab *slab;
8965 
8966 			slab = READ_ONCE(c->slab);
8967 			if (!slab)
8968 				continue;
8969 
8970 			node = slab_nid(slab);
8971 			if (flags & SO_TOTAL)
8972 				x = slab->objects;
8973 			else if (flags & SO_OBJECTS)
8974 				x = slab->inuse;
8975 			else
8976 				x = 1;
8977 
8978 			total += x;
8979 			nodes[node] += x;
8980 
8981 #ifdef CONFIG_SLUB_CPU_PARTIAL
8982 			slab = slub_percpu_partial_read_once(c);
8983 			if (slab) {
8984 				node = slab_nid(slab);
8985 				if (flags & SO_TOTAL)
8986 					WARN_ON_ONCE(1);
8987 				else if (flags & SO_OBJECTS)
8988 					WARN_ON_ONCE(1);
8989 				else
8990 					x = data_race(slab->slabs);
8991 				total += x;
8992 				nodes[node] += x;
8993 			}
8994 #endif
8995 		}
8996 	}
8997 
8998 	/*
8999 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
9000 	 * already held which will conflict with an existing lock order:
9001 	 *
9002 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
9003 	 *
9004 	 * We don't really need mem_hotplug_lock (to hold off
9005 	 * slab_mem_going_offline_callback) here because slab's memory hot
9006 	 * unplug code doesn't destroy the kmem_cache->node[] data.
9007 	 */
9008 
9009 #ifdef CONFIG_SLUB_DEBUG
9010 	if (flags & SO_ALL) {
9011 		struct kmem_cache_node *n;
9012 
9013 		for_each_kmem_cache_node(s, node, n) {
9014 
9015 			if (flags & SO_TOTAL)
9016 				x = node_nr_objs(n);
9017 			else if (flags & SO_OBJECTS)
9018 				x = node_nr_objs(n) - count_partial(n, count_free);
9019 			else
9020 				x = node_nr_slabs(n);
9021 			total += x;
9022 			nodes[node] += x;
9023 		}
9024 
9025 	} else
9026 #endif
9027 	if (flags & SO_PARTIAL) {
9028 		struct kmem_cache_node *n;
9029 
9030 		for_each_kmem_cache_node(s, node, n) {
9031 			if (flags & SO_TOTAL)
9032 				x = count_partial(n, count_total);
9033 			else if (flags & SO_OBJECTS)
9034 				x = count_partial(n, count_inuse);
9035 			else
9036 				x = n->nr_partial;
9037 			total += x;
9038 			nodes[node] += x;
9039 		}
9040 	}
9041 
9042 	len += sysfs_emit_at(buf, len, "%lu", total);
9043 #ifdef CONFIG_NUMA
9044 	for (node = 0; node < nr_node_ids; node++) {
9045 		if (nodes[node])
9046 			len += sysfs_emit_at(buf, len, " N%d=%lu",
9047 					     node, nodes[node]);
9048 	}
9049 #endif
9050 	len += sysfs_emit_at(buf, len, "\n");
9051 	kfree(nodes);
9052 
9053 	return len;
9054 }
9055 
9056 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
9057 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
9058 
9059 struct slab_attribute {
9060 	struct attribute attr;
9061 	ssize_t (*show)(struct kmem_cache *s, char *buf);
9062 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
9063 };
9064 
9065 #define SLAB_ATTR_RO(_name) \
9066 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
9067 
9068 #define SLAB_ATTR(_name) \
9069 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
9070 
slab_size_show(struct kmem_cache * s,char * buf)9071 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
9072 {
9073 	return sysfs_emit(buf, "%u\n", s->size);
9074 }
9075 SLAB_ATTR_RO(slab_size);
9076 
align_show(struct kmem_cache * s,char * buf)9077 static ssize_t align_show(struct kmem_cache *s, char *buf)
9078 {
9079 	return sysfs_emit(buf, "%u\n", s->align);
9080 }
9081 SLAB_ATTR_RO(align);
9082 
object_size_show(struct kmem_cache * s,char * buf)9083 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
9084 {
9085 	return sysfs_emit(buf, "%u\n", s->object_size);
9086 }
9087 SLAB_ATTR_RO(object_size);
9088 
objs_per_slab_show(struct kmem_cache * s,char * buf)9089 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
9090 {
9091 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
9092 }
9093 SLAB_ATTR_RO(objs_per_slab);
9094 
order_show(struct kmem_cache * s,char * buf)9095 static ssize_t order_show(struct kmem_cache *s, char *buf)
9096 {
9097 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
9098 }
9099 SLAB_ATTR_RO(order);
9100 
sheaf_capacity_show(struct kmem_cache * s,char * buf)9101 static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf)
9102 {
9103 	return sysfs_emit(buf, "%u\n", s->sheaf_capacity);
9104 }
9105 SLAB_ATTR_RO(sheaf_capacity);
9106 
min_partial_show(struct kmem_cache * s,char * buf)9107 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
9108 {
9109 	return sysfs_emit(buf, "%lu\n", s->min_partial);
9110 }
9111 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)9112 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
9113 				 size_t length)
9114 {
9115 	unsigned long min;
9116 	int err;
9117 
9118 	err = kstrtoul(buf, 10, &min);
9119 	if (err)
9120 		return err;
9121 
9122 	s->min_partial = min;
9123 	return length;
9124 }
9125 SLAB_ATTR(min_partial);
9126 
cpu_partial_show(struct kmem_cache * s,char * buf)9127 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
9128 {
9129 	unsigned int nr_partial = 0;
9130 #ifdef CONFIG_SLUB_CPU_PARTIAL
9131 	nr_partial = s->cpu_partial;
9132 #endif
9133 
9134 	return sysfs_emit(buf, "%u\n", nr_partial);
9135 }
9136 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)9137 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
9138 				 size_t length)
9139 {
9140 	unsigned int objects;
9141 	int err;
9142 
9143 	err = kstrtouint(buf, 10, &objects);
9144 	if (err)
9145 		return err;
9146 	if (objects && !kmem_cache_has_cpu_partial(s))
9147 		return -EINVAL;
9148 
9149 	slub_set_cpu_partial(s, objects);
9150 	flush_all(s);
9151 	return length;
9152 }
9153 SLAB_ATTR(cpu_partial);
9154 
ctor_show(struct kmem_cache * s,char * buf)9155 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
9156 {
9157 	if (!s->ctor)
9158 		return 0;
9159 	return sysfs_emit(buf, "%pS\n", s->ctor);
9160 }
9161 SLAB_ATTR_RO(ctor);
9162 
aliases_show(struct kmem_cache * s,char * buf)9163 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
9164 {
9165 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
9166 }
9167 SLAB_ATTR_RO(aliases);
9168 
partial_show(struct kmem_cache * s,char * buf)9169 static ssize_t partial_show(struct kmem_cache *s, char *buf)
9170 {
9171 	return show_slab_objects(s, buf, SO_PARTIAL);
9172 }
9173 SLAB_ATTR_RO(partial);
9174 
cpu_slabs_show(struct kmem_cache * s,char * buf)9175 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
9176 {
9177 	return show_slab_objects(s, buf, SO_CPU);
9178 }
9179 SLAB_ATTR_RO(cpu_slabs);
9180 
objects_partial_show(struct kmem_cache * s,char * buf)9181 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
9182 {
9183 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
9184 }
9185 SLAB_ATTR_RO(objects_partial);
9186 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)9187 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
9188 {
9189 	int objects = 0;
9190 	int slabs = 0;
9191 	int cpu __maybe_unused;
9192 	int len = 0;
9193 
9194 #ifdef CONFIG_SLUB_CPU_PARTIAL
9195 	for_each_online_cpu(cpu) {
9196 		struct slab *slab;
9197 
9198 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9199 
9200 		if (slab)
9201 			slabs += data_race(slab->slabs);
9202 	}
9203 #endif
9204 
9205 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
9206 	objects = (slabs * oo_objects(s->oo)) / 2;
9207 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
9208 
9209 #ifdef CONFIG_SLUB_CPU_PARTIAL
9210 	for_each_online_cpu(cpu) {
9211 		struct slab *slab;
9212 
9213 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9214 		if (slab) {
9215 			slabs = data_race(slab->slabs);
9216 			objects = (slabs * oo_objects(s->oo)) / 2;
9217 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
9218 					     cpu, objects, slabs);
9219 		}
9220 	}
9221 #endif
9222 	len += sysfs_emit_at(buf, len, "\n");
9223 
9224 	return len;
9225 }
9226 SLAB_ATTR_RO(slabs_cpu_partial);
9227 
reclaim_account_show(struct kmem_cache * s,char * buf)9228 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
9229 {
9230 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
9231 }
9232 SLAB_ATTR_RO(reclaim_account);
9233 
hwcache_align_show(struct kmem_cache * s,char * buf)9234 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
9235 {
9236 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
9237 }
9238 SLAB_ATTR_RO(hwcache_align);
9239 
9240 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)9241 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
9242 {
9243 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
9244 }
9245 SLAB_ATTR_RO(cache_dma);
9246 #endif
9247 
9248 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)9249 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
9250 {
9251 	return sysfs_emit(buf, "%u\n", s->usersize);
9252 }
9253 SLAB_ATTR_RO(usersize);
9254 #endif
9255 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)9256 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
9257 {
9258 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
9259 }
9260 SLAB_ATTR_RO(destroy_by_rcu);
9261 
9262 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)9263 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
9264 {
9265 	return show_slab_objects(s, buf, SO_ALL);
9266 }
9267 SLAB_ATTR_RO(slabs);
9268 
total_objects_show(struct kmem_cache * s,char * buf)9269 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
9270 {
9271 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
9272 }
9273 SLAB_ATTR_RO(total_objects);
9274 
objects_show(struct kmem_cache * s,char * buf)9275 static ssize_t objects_show(struct kmem_cache *s, char *buf)
9276 {
9277 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
9278 }
9279 SLAB_ATTR_RO(objects);
9280 
sanity_checks_show(struct kmem_cache * s,char * buf)9281 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
9282 {
9283 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
9284 }
9285 SLAB_ATTR_RO(sanity_checks);
9286 
trace_show(struct kmem_cache * s,char * buf)9287 static ssize_t trace_show(struct kmem_cache *s, char *buf)
9288 {
9289 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
9290 }
9291 SLAB_ATTR_RO(trace);
9292 
red_zone_show(struct kmem_cache * s,char * buf)9293 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
9294 {
9295 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
9296 }
9297 
9298 SLAB_ATTR_RO(red_zone);
9299 
poison_show(struct kmem_cache * s,char * buf)9300 static ssize_t poison_show(struct kmem_cache *s, char *buf)
9301 {
9302 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
9303 }
9304 
9305 SLAB_ATTR_RO(poison);
9306 
store_user_show(struct kmem_cache * s,char * buf)9307 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
9308 {
9309 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
9310 }
9311 
9312 SLAB_ATTR_RO(store_user);
9313 
validate_show(struct kmem_cache * s,char * buf)9314 static ssize_t validate_show(struct kmem_cache *s, char *buf)
9315 {
9316 	return 0;
9317 }
9318 
validate_store(struct kmem_cache * s,const char * buf,size_t length)9319 static ssize_t validate_store(struct kmem_cache *s,
9320 			const char *buf, size_t length)
9321 {
9322 	int ret = -EINVAL;
9323 
9324 	if (buf[0] == '1' && kmem_cache_debug(s)) {
9325 		ret = validate_slab_cache(s);
9326 		if (ret >= 0)
9327 			ret = length;
9328 	}
9329 	return ret;
9330 }
9331 SLAB_ATTR(validate);
9332 
9333 #endif /* CONFIG_SLUB_DEBUG */
9334 
9335 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)9336 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
9337 {
9338 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
9339 }
9340 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)9341 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
9342 				size_t length)
9343 {
9344 	if (s->refcount > 1)
9345 		return -EINVAL;
9346 
9347 	if (buf[0] == '1')
9348 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
9349 	else
9350 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
9351 
9352 	return length;
9353 }
9354 SLAB_ATTR(failslab);
9355 #endif
9356 
shrink_show(struct kmem_cache * s,char * buf)9357 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
9358 {
9359 	return 0;
9360 }
9361 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)9362 static ssize_t shrink_store(struct kmem_cache *s,
9363 			const char *buf, size_t length)
9364 {
9365 	if (buf[0] == '1')
9366 		kmem_cache_shrink(s);
9367 	else
9368 		return -EINVAL;
9369 	return length;
9370 }
9371 SLAB_ATTR(shrink);
9372 
9373 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)9374 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
9375 {
9376 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
9377 }
9378 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)9379 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
9380 				const char *buf, size_t length)
9381 {
9382 	unsigned int ratio;
9383 	int err;
9384 
9385 	err = kstrtouint(buf, 10, &ratio);
9386 	if (err)
9387 		return err;
9388 	if (ratio > 100)
9389 		return -ERANGE;
9390 
9391 	s->remote_node_defrag_ratio = ratio * 10;
9392 
9393 	return length;
9394 }
9395 SLAB_ATTR(remote_node_defrag_ratio);
9396 #endif
9397 
9398 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)9399 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
9400 {
9401 	unsigned long sum  = 0;
9402 	int cpu;
9403 	int len = 0;
9404 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
9405 
9406 	if (!data)
9407 		return -ENOMEM;
9408 
9409 	for_each_online_cpu(cpu) {
9410 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
9411 
9412 		data[cpu] = x;
9413 		sum += x;
9414 	}
9415 
9416 	len += sysfs_emit_at(buf, len, "%lu", sum);
9417 
9418 #ifdef CONFIG_SMP
9419 	for_each_online_cpu(cpu) {
9420 		if (data[cpu])
9421 			len += sysfs_emit_at(buf, len, " C%d=%u",
9422 					     cpu, data[cpu]);
9423 	}
9424 #endif
9425 	kfree(data);
9426 	len += sysfs_emit_at(buf, len, "\n");
9427 
9428 	return len;
9429 }
9430 
clear_stat(struct kmem_cache * s,enum stat_item si)9431 static void clear_stat(struct kmem_cache *s, enum stat_item si)
9432 {
9433 	int cpu;
9434 
9435 	for_each_online_cpu(cpu)
9436 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
9437 }
9438 
9439 #define STAT_ATTR(si, text) 					\
9440 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
9441 {								\
9442 	return show_stat(s, buf, si);				\
9443 }								\
9444 static ssize_t text##_store(struct kmem_cache *s,		\
9445 				const char *buf, size_t length)	\
9446 {								\
9447 	if (buf[0] != '0')					\
9448 		return -EINVAL;					\
9449 	clear_stat(s, si);					\
9450 	return length;						\
9451 }								\
9452 SLAB_ATTR(text);						\
9453 
9454 STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
9455 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
9456 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
9457 STAT_ATTR(FREE_PCS, free_cpu_sheaf);
9458 STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
9459 STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
9460 STAT_ATTR(FREE_FASTPATH, free_fastpath);
9461 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
9462 STAT_ATTR(FREE_FROZEN, free_frozen);
9463 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
9464 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
9465 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
9466 STAT_ATTR(ALLOC_SLAB, alloc_slab);
9467 STAT_ATTR(ALLOC_REFILL, alloc_refill);
9468 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
9469 STAT_ATTR(FREE_SLAB, free_slab);
9470 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
9471 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
9472 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
9473 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
9474 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
9475 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
9476 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
9477 STAT_ATTR(ORDER_FALLBACK, order_fallback);
9478 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
9479 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
9480 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
9481 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
9482 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
9483 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
9484 STAT_ATTR(SHEAF_FLUSH, sheaf_flush);
9485 STAT_ATTR(SHEAF_REFILL, sheaf_refill);
9486 STAT_ATTR(SHEAF_ALLOC, sheaf_alloc);
9487 STAT_ATTR(SHEAF_FREE, sheaf_free);
9488 STAT_ATTR(BARN_GET, barn_get);
9489 STAT_ATTR(BARN_GET_FAIL, barn_get_fail);
9490 STAT_ATTR(BARN_PUT, barn_put);
9491 STAT_ATTR(BARN_PUT_FAIL, barn_put_fail);
9492 STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast);
9493 STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow);
9494 STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize);
9495 STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast);
9496 STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow);
9497 #endif	/* CONFIG_SLUB_STATS */
9498 
9499 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)9500 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
9501 {
9502 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
9503 }
9504 
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)9505 static ssize_t skip_kfence_store(struct kmem_cache *s,
9506 			const char *buf, size_t length)
9507 {
9508 	int ret = length;
9509 
9510 	if (buf[0] == '0')
9511 		s->flags &= ~SLAB_SKIP_KFENCE;
9512 	else if (buf[0] == '1')
9513 		s->flags |= SLAB_SKIP_KFENCE;
9514 	else
9515 		ret = -EINVAL;
9516 
9517 	return ret;
9518 }
9519 SLAB_ATTR(skip_kfence);
9520 #endif
9521 
9522 static struct attribute *slab_attrs[] = {
9523 	&slab_size_attr.attr,
9524 	&object_size_attr.attr,
9525 	&objs_per_slab_attr.attr,
9526 	&order_attr.attr,
9527 	&sheaf_capacity_attr.attr,
9528 	&min_partial_attr.attr,
9529 	&cpu_partial_attr.attr,
9530 	&objects_partial_attr.attr,
9531 	&partial_attr.attr,
9532 	&cpu_slabs_attr.attr,
9533 	&ctor_attr.attr,
9534 	&aliases_attr.attr,
9535 	&align_attr.attr,
9536 	&hwcache_align_attr.attr,
9537 	&reclaim_account_attr.attr,
9538 	&destroy_by_rcu_attr.attr,
9539 	&shrink_attr.attr,
9540 	&slabs_cpu_partial_attr.attr,
9541 #ifdef CONFIG_SLUB_DEBUG
9542 	&total_objects_attr.attr,
9543 	&objects_attr.attr,
9544 	&slabs_attr.attr,
9545 	&sanity_checks_attr.attr,
9546 	&trace_attr.attr,
9547 	&red_zone_attr.attr,
9548 	&poison_attr.attr,
9549 	&store_user_attr.attr,
9550 	&validate_attr.attr,
9551 #endif
9552 #ifdef CONFIG_ZONE_DMA
9553 	&cache_dma_attr.attr,
9554 #endif
9555 #ifdef CONFIG_NUMA
9556 	&remote_node_defrag_ratio_attr.attr,
9557 #endif
9558 #ifdef CONFIG_SLUB_STATS
9559 	&alloc_cpu_sheaf_attr.attr,
9560 	&alloc_fastpath_attr.attr,
9561 	&alloc_slowpath_attr.attr,
9562 	&free_cpu_sheaf_attr.attr,
9563 	&free_rcu_sheaf_attr.attr,
9564 	&free_rcu_sheaf_fail_attr.attr,
9565 	&free_fastpath_attr.attr,
9566 	&free_slowpath_attr.attr,
9567 	&free_frozen_attr.attr,
9568 	&free_add_partial_attr.attr,
9569 	&free_remove_partial_attr.attr,
9570 	&alloc_from_partial_attr.attr,
9571 	&alloc_slab_attr.attr,
9572 	&alloc_refill_attr.attr,
9573 	&alloc_node_mismatch_attr.attr,
9574 	&free_slab_attr.attr,
9575 	&cpuslab_flush_attr.attr,
9576 	&deactivate_full_attr.attr,
9577 	&deactivate_empty_attr.attr,
9578 	&deactivate_to_head_attr.attr,
9579 	&deactivate_to_tail_attr.attr,
9580 	&deactivate_remote_frees_attr.attr,
9581 	&deactivate_bypass_attr.attr,
9582 	&order_fallback_attr.attr,
9583 	&cmpxchg_double_fail_attr.attr,
9584 	&cmpxchg_double_cpu_fail_attr.attr,
9585 	&cpu_partial_alloc_attr.attr,
9586 	&cpu_partial_free_attr.attr,
9587 	&cpu_partial_node_attr.attr,
9588 	&cpu_partial_drain_attr.attr,
9589 	&sheaf_flush_attr.attr,
9590 	&sheaf_refill_attr.attr,
9591 	&sheaf_alloc_attr.attr,
9592 	&sheaf_free_attr.attr,
9593 	&barn_get_attr.attr,
9594 	&barn_get_fail_attr.attr,
9595 	&barn_put_attr.attr,
9596 	&barn_put_fail_attr.attr,
9597 	&sheaf_prefill_fast_attr.attr,
9598 	&sheaf_prefill_slow_attr.attr,
9599 	&sheaf_prefill_oversize_attr.attr,
9600 	&sheaf_return_fast_attr.attr,
9601 	&sheaf_return_slow_attr.attr,
9602 #endif
9603 #ifdef CONFIG_FAILSLAB
9604 	&failslab_attr.attr,
9605 #endif
9606 #ifdef CONFIG_HARDENED_USERCOPY
9607 	&usersize_attr.attr,
9608 #endif
9609 #ifdef CONFIG_KFENCE
9610 	&skip_kfence_attr.attr,
9611 #endif
9612 
9613 	NULL
9614 };
9615 
9616 static const struct attribute_group slab_attr_group = {
9617 	.attrs = slab_attrs,
9618 };
9619 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)9620 static ssize_t slab_attr_show(struct kobject *kobj,
9621 				struct attribute *attr,
9622 				char *buf)
9623 {
9624 	struct slab_attribute *attribute;
9625 	struct kmem_cache *s;
9626 
9627 	attribute = to_slab_attr(attr);
9628 	s = to_slab(kobj);
9629 
9630 	if (!attribute->show)
9631 		return -EIO;
9632 
9633 	return attribute->show(s, buf);
9634 }
9635 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)9636 static ssize_t slab_attr_store(struct kobject *kobj,
9637 				struct attribute *attr,
9638 				const char *buf, size_t len)
9639 {
9640 	struct slab_attribute *attribute;
9641 	struct kmem_cache *s;
9642 
9643 	attribute = to_slab_attr(attr);
9644 	s = to_slab(kobj);
9645 
9646 	if (!attribute->store)
9647 		return -EIO;
9648 
9649 	return attribute->store(s, buf, len);
9650 }
9651 
kmem_cache_release(struct kobject * k)9652 static void kmem_cache_release(struct kobject *k)
9653 {
9654 	slab_kmem_cache_release(to_slab(k));
9655 }
9656 
9657 static const struct sysfs_ops slab_sysfs_ops = {
9658 	.show = slab_attr_show,
9659 	.store = slab_attr_store,
9660 };
9661 
9662 static const struct kobj_type slab_ktype = {
9663 	.sysfs_ops = &slab_sysfs_ops,
9664 	.release = kmem_cache_release,
9665 };
9666 
9667 static struct kset *slab_kset;
9668 
cache_kset(struct kmem_cache * s)9669 static inline struct kset *cache_kset(struct kmem_cache *s)
9670 {
9671 	return slab_kset;
9672 }
9673 
9674 #define ID_STR_LENGTH 32
9675 
9676 /* Create a unique string id for a slab cache:
9677  *
9678  * Format	:[flags-]size
9679  */
create_unique_id(struct kmem_cache * s)9680 static char *create_unique_id(struct kmem_cache *s)
9681 {
9682 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
9683 	char *p = name;
9684 
9685 	if (!name)
9686 		return ERR_PTR(-ENOMEM);
9687 
9688 	*p++ = ':';
9689 	/*
9690 	 * First flags affecting slabcache operations. We will only
9691 	 * get here for aliasable slabs so we do not need to support
9692 	 * too many flags. The flags here must cover all flags that
9693 	 * are matched during merging to guarantee that the id is
9694 	 * unique.
9695 	 */
9696 	if (s->flags & SLAB_CACHE_DMA)
9697 		*p++ = 'd';
9698 	if (s->flags & SLAB_CACHE_DMA32)
9699 		*p++ = 'D';
9700 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
9701 		*p++ = 'a';
9702 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
9703 		*p++ = 'F';
9704 	if (s->flags & SLAB_ACCOUNT)
9705 		*p++ = 'A';
9706 	if (p != name + 1)
9707 		*p++ = '-';
9708 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
9709 
9710 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
9711 		kfree(name);
9712 		return ERR_PTR(-EINVAL);
9713 	}
9714 	kmsan_unpoison_memory(name, p - name);
9715 	return name;
9716 }
9717 
sysfs_slab_add(struct kmem_cache * s)9718 static int sysfs_slab_add(struct kmem_cache *s)
9719 {
9720 	int err;
9721 	const char *name;
9722 	struct kset *kset = cache_kset(s);
9723 	int unmergeable = slab_unmergeable(s);
9724 
9725 	if (!unmergeable && disable_higher_order_debug &&
9726 			(slub_debug & DEBUG_METADATA_FLAGS))
9727 		unmergeable = 1;
9728 
9729 	if (unmergeable) {
9730 		/*
9731 		 * Slabcache can never be merged so we can use the name proper.
9732 		 * This is typically the case for debug situations. In that
9733 		 * case we can catch duplicate names easily.
9734 		 */
9735 		sysfs_remove_link(&slab_kset->kobj, s->name);
9736 		name = s->name;
9737 	} else {
9738 		/*
9739 		 * Create a unique name for the slab as a target
9740 		 * for the symlinks.
9741 		 */
9742 		name = create_unique_id(s);
9743 		if (IS_ERR(name))
9744 			return PTR_ERR(name);
9745 	}
9746 
9747 	s->kobj.kset = kset;
9748 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
9749 	if (err)
9750 		goto out;
9751 
9752 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
9753 	if (err)
9754 		goto out_del_kobj;
9755 
9756 	if (!unmergeable) {
9757 		/* Setup first alias */
9758 		sysfs_slab_alias(s, s->name);
9759 	}
9760 out:
9761 	if (!unmergeable)
9762 		kfree(name);
9763 	return err;
9764 out_del_kobj:
9765 	kobject_del(&s->kobj);
9766 	goto out;
9767 }
9768 
sysfs_slab_unlink(struct kmem_cache * s)9769 void sysfs_slab_unlink(struct kmem_cache *s)
9770 {
9771 	if (s->kobj.state_in_sysfs)
9772 		kobject_del(&s->kobj);
9773 }
9774 
sysfs_slab_release(struct kmem_cache * s)9775 void sysfs_slab_release(struct kmem_cache *s)
9776 {
9777 	kobject_put(&s->kobj);
9778 }
9779 
9780 /*
9781  * Need to buffer aliases during bootup until sysfs becomes
9782  * available lest we lose that information.
9783  */
9784 struct saved_alias {
9785 	struct kmem_cache *s;
9786 	const char *name;
9787 	struct saved_alias *next;
9788 };
9789 
9790 static struct saved_alias *alias_list;
9791 
sysfs_slab_alias(struct kmem_cache * s,const char * name)9792 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
9793 {
9794 	struct saved_alias *al;
9795 
9796 	if (slab_state == FULL) {
9797 		/*
9798 		 * If we have a leftover link then remove it.
9799 		 */
9800 		sysfs_remove_link(&slab_kset->kobj, name);
9801 		/*
9802 		 * The original cache may have failed to generate sysfs file.
9803 		 * In that case, sysfs_create_link() returns -ENOENT and
9804 		 * symbolic link creation is skipped.
9805 		 */
9806 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
9807 	}
9808 
9809 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
9810 	if (!al)
9811 		return -ENOMEM;
9812 
9813 	al->s = s;
9814 	al->name = name;
9815 	al->next = alias_list;
9816 	alias_list = al;
9817 	kmsan_unpoison_memory(al, sizeof(*al));
9818 	return 0;
9819 }
9820 
slab_sysfs_init(void)9821 static int __init slab_sysfs_init(void)
9822 {
9823 	struct kmem_cache *s;
9824 	int err;
9825 
9826 	mutex_lock(&slab_mutex);
9827 
9828 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
9829 	if (!slab_kset) {
9830 		mutex_unlock(&slab_mutex);
9831 		pr_err("Cannot register slab subsystem.\n");
9832 		return -ENOMEM;
9833 	}
9834 
9835 	slab_state = FULL;
9836 
9837 	list_for_each_entry(s, &slab_caches, list) {
9838 		err = sysfs_slab_add(s);
9839 		if (err)
9840 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
9841 			       s->name);
9842 	}
9843 
9844 	while (alias_list) {
9845 		struct saved_alias *al = alias_list;
9846 
9847 		alias_list = alias_list->next;
9848 		err = sysfs_slab_alias(al->s, al->name);
9849 		if (err)
9850 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
9851 			       al->name);
9852 		kfree(al);
9853 	}
9854 
9855 	mutex_unlock(&slab_mutex);
9856 	return 0;
9857 }
9858 late_initcall(slab_sysfs_init);
9859 #endif /* SLAB_SUPPORTS_SYSFS */
9860 
9861 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)9862 static int slab_debugfs_show(struct seq_file *seq, void *v)
9863 {
9864 	struct loc_track *t = seq->private;
9865 	struct location *l;
9866 	unsigned long idx;
9867 
9868 	idx = (unsigned long) t->idx;
9869 	if (idx < t->count) {
9870 		l = &t->loc[idx];
9871 
9872 		seq_printf(seq, "%7ld ", l->count);
9873 
9874 		if (l->addr)
9875 			seq_printf(seq, "%pS", (void *)l->addr);
9876 		else
9877 			seq_puts(seq, "<not-available>");
9878 
9879 		if (l->waste)
9880 			seq_printf(seq, " waste=%lu/%lu",
9881 				l->count * l->waste, l->waste);
9882 
9883 		if (l->sum_time != l->min_time) {
9884 			seq_printf(seq, " age=%ld/%llu/%ld",
9885 				l->min_time, div_u64(l->sum_time, l->count),
9886 				l->max_time);
9887 		} else
9888 			seq_printf(seq, " age=%ld", l->min_time);
9889 
9890 		if (l->min_pid != l->max_pid)
9891 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
9892 		else
9893 			seq_printf(seq, " pid=%ld",
9894 				l->min_pid);
9895 
9896 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
9897 			seq_printf(seq, " cpus=%*pbl",
9898 				 cpumask_pr_args(to_cpumask(l->cpus)));
9899 
9900 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
9901 			seq_printf(seq, " nodes=%*pbl",
9902 				 nodemask_pr_args(&l->nodes));
9903 
9904 #ifdef CONFIG_STACKDEPOT
9905 		{
9906 			depot_stack_handle_t handle;
9907 			unsigned long *entries;
9908 			unsigned int nr_entries, j;
9909 
9910 			handle = READ_ONCE(l->handle);
9911 			if (handle) {
9912 				nr_entries = stack_depot_fetch(handle, &entries);
9913 				seq_puts(seq, "\n");
9914 				for (j = 0; j < nr_entries; j++)
9915 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
9916 			}
9917 		}
9918 #endif
9919 		seq_puts(seq, "\n");
9920 	}
9921 
9922 	if (!idx && !t->count)
9923 		seq_puts(seq, "No data\n");
9924 
9925 	return 0;
9926 }
9927 
slab_debugfs_stop(struct seq_file * seq,void * v)9928 static void slab_debugfs_stop(struct seq_file *seq, void *v)
9929 {
9930 }
9931 
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)9932 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
9933 {
9934 	struct loc_track *t = seq->private;
9935 
9936 	t->idx = ++(*ppos);
9937 	if (*ppos <= t->count)
9938 		return ppos;
9939 
9940 	return NULL;
9941 }
9942 
cmp_loc_by_count(const void * a,const void * b)9943 static int cmp_loc_by_count(const void *a, const void *b)
9944 {
9945 	struct location *loc1 = (struct location *)a;
9946 	struct location *loc2 = (struct location *)b;
9947 
9948 	return cmp_int(loc2->count, loc1->count);
9949 }
9950 
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)9951 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
9952 {
9953 	struct loc_track *t = seq->private;
9954 
9955 	t->idx = *ppos;
9956 	return ppos;
9957 }
9958 
9959 static const struct seq_operations slab_debugfs_sops = {
9960 	.start  = slab_debugfs_start,
9961 	.next   = slab_debugfs_next,
9962 	.stop   = slab_debugfs_stop,
9963 	.show   = slab_debugfs_show,
9964 };
9965 
slab_debug_trace_open(struct inode * inode,struct file * filep)9966 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
9967 {
9968 
9969 	struct kmem_cache_node *n;
9970 	enum track_item alloc;
9971 	int node;
9972 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
9973 						sizeof(struct loc_track));
9974 	struct kmem_cache *s = file_inode(filep)->i_private;
9975 	unsigned long *obj_map;
9976 
9977 	if (!t)
9978 		return -ENOMEM;
9979 
9980 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
9981 	if (!obj_map) {
9982 		seq_release_private(inode, filep);
9983 		return -ENOMEM;
9984 	}
9985 
9986 	alloc = debugfs_get_aux_num(filep);
9987 
9988 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
9989 		bitmap_free(obj_map);
9990 		seq_release_private(inode, filep);
9991 		return -ENOMEM;
9992 	}
9993 
9994 	for_each_kmem_cache_node(s, node, n) {
9995 		unsigned long flags;
9996 		struct slab *slab;
9997 
9998 		if (!node_nr_slabs(n))
9999 			continue;
10000 
10001 		spin_lock_irqsave(&n->list_lock, flags);
10002 		list_for_each_entry(slab, &n->partial, slab_list)
10003 			process_slab(t, s, slab, alloc, obj_map);
10004 		list_for_each_entry(slab, &n->full, slab_list)
10005 			process_slab(t, s, slab, alloc, obj_map);
10006 		spin_unlock_irqrestore(&n->list_lock, flags);
10007 	}
10008 
10009 	/* Sort locations by count */
10010 	sort(t->loc, t->count, sizeof(struct location),
10011 	     cmp_loc_by_count, NULL);
10012 
10013 	bitmap_free(obj_map);
10014 	return 0;
10015 }
10016 
slab_debug_trace_release(struct inode * inode,struct file * file)10017 static int slab_debug_trace_release(struct inode *inode, struct file *file)
10018 {
10019 	struct seq_file *seq = file->private_data;
10020 	struct loc_track *t = seq->private;
10021 
10022 	free_loc_track(t);
10023 	return seq_release_private(inode, file);
10024 }
10025 
10026 static const struct file_operations slab_debugfs_fops = {
10027 	.open    = slab_debug_trace_open,
10028 	.read    = seq_read,
10029 	.llseek  = seq_lseek,
10030 	.release = slab_debug_trace_release,
10031 };
10032 
debugfs_slab_add(struct kmem_cache * s)10033 static void debugfs_slab_add(struct kmem_cache *s)
10034 {
10035 	struct dentry *slab_cache_dir;
10036 
10037 	if (unlikely(!slab_debugfs_root))
10038 		return;
10039 
10040 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
10041 
10042 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
10043 					TRACK_ALLOC, &slab_debugfs_fops);
10044 
10045 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
10046 					TRACK_FREE, &slab_debugfs_fops);
10047 }
10048 
debugfs_slab_release(struct kmem_cache * s)10049 void debugfs_slab_release(struct kmem_cache *s)
10050 {
10051 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
10052 }
10053 
slab_debugfs_init(void)10054 static int __init slab_debugfs_init(void)
10055 {
10056 	struct kmem_cache *s;
10057 
10058 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
10059 
10060 	list_for_each_entry(s, &slab_caches, list)
10061 		if (s->flags & SLAB_STORE_USER)
10062 			debugfs_slab_add(s);
10063 
10064 	return 0;
10065 
10066 }
10067 __initcall(slab_debugfs_init);
10068 #endif
10069 /*
10070  * The /proc/slabinfo ABI
10071  */
10072 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)10073 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
10074 {
10075 	unsigned long nr_slabs = 0;
10076 	unsigned long nr_objs = 0;
10077 	unsigned long nr_free = 0;
10078 	int node;
10079 	struct kmem_cache_node *n;
10080 
10081 	for_each_kmem_cache_node(s, node, n) {
10082 		nr_slabs += node_nr_slabs(n);
10083 		nr_objs += node_nr_objs(n);
10084 		nr_free += count_partial_free_approx(n);
10085 	}
10086 
10087 	sinfo->active_objs = nr_objs - nr_free;
10088 	sinfo->num_objs = nr_objs;
10089 	sinfo->active_slabs = nr_slabs;
10090 	sinfo->num_slabs = nr_slabs;
10091 	sinfo->objects_per_slab = oo_objects(s->oo);
10092 	sinfo->cache_order = oo_order(s->oo);
10093 }
10094 #endif /* CONFIG_SLUB_DEBUG */
10095