1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 32 * Copyright 2015 Joyent, Inc. 33 */ 34 35 #include <sys/flock_impl.h> 36 #include <sys/vfs.h> 37 #include <sys/t_lock.h> /* for <sys/callb.h> */ 38 #include <sys/callb.h> 39 #include <sys/clconf.h> 40 #include <sys/cladm.h> 41 #include <sys/nbmlock.h> 42 #include <sys/cred.h> 43 #include <sys/policy.h> 44 45 /* 46 * The following four variables are for statistics purposes and they are 47 * not protected by locks. They may not be accurate but will at least be 48 * close to the actual value. 49 */ 50 51 int flk_lock_allocs; 52 int flk_lock_frees; 53 int edge_allocs; 54 int edge_frees; 55 int flk_proc_vertex_allocs; 56 int flk_proc_edge_allocs; 57 int flk_proc_vertex_frees; 58 int flk_proc_edge_frees; 59 60 static kmutex_t flock_lock; 61 62 #ifdef DEBUG 63 int check_debug = 0; 64 #define CHECK_ACTIVE_LOCKS(gp) if (check_debug) \ 65 check_active_locks(gp); 66 #define CHECK_SLEEPING_LOCKS(gp) if (check_debug) \ 67 check_sleeping_locks(gp); 68 #define CHECK_OWNER_LOCKS(gp, pid, sysid, vp) \ 69 if (check_debug) \ 70 check_owner_locks(gp, pid, sysid, vp); 71 #define CHECK_LOCK_TRANSITION(old_state, new_state) \ 72 { \ 73 if (check_lock_transition(old_state, new_state)) { \ 74 cmn_err(CE_PANIC, "Illegal lock transition \ 75 from %d to %d", old_state, new_state); \ 76 } \ 77 } 78 #else 79 80 #define CHECK_ACTIVE_LOCKS(gp) 81 #define CHECK_SLEEPING_LOCKS(gp) 82 #define CHECK_OWNER_LOCKS(gp, pid, sysid, vp) 83 #define CHECK_LOCK_TRANSITION(old_state, new_state) 84 85 #endif /* DEBUG */ 86 87 struct kmem_cache *flk_edge_cache; 88 89 graph_t *lock_graph[HASH_SIZE]; 90 proc_graph_t pgraph; 91 92 /* 93 * Clustering. 94 * 95 * NLM REGISTRY TYPE IMPLEMENTATION 96 * 97 * Assumptions: 98 * 1. Nodes in a cluster are numbered starting at 1; always non-negative 99 * integers; maximum node id is returned by clconf_maximum_nodeid(). 100 * 2. We use this node id to identify the node an NLM server runs on. 101 */ 102 103 /* 104 * NLM registry object keeps track of NLM servers via their 105 * nlmids (which are the node ids of the node in the cluster they run on) 106 * that have requested locks at this LLM with which this registry is 107 * associated. 108 * 109 * Representation of abstraction: 110 * rep = record[ states: array[nlm_state], 111 * lock: mutex] 112 * 113 * Representation invariants: 114 * 1. index i of rep.states is between 0 and n - 1 where n is number 115 * of elements in the array, which happen to be the maximum number 116 * of nodes in the cluster configuration + 1. 117 * 2. map nlmid to index i of rep.states 118 * 0 -> 0 119 * 1 -> 1 120 * 2 -> 2 121 * n-1 -> clconf_maximum_nodeid()+1 122 * 3. This 1-1 mapping is quite convenient and it avoids errors resulting 123 * from forgetting to subtract 1 from the index. 124 * 4. The reason we keep the 0th index is the following. A legitimate 125 * cluster configuration includes making a UFS file system NFS 126 * exportable. The code is structured so that if you're in a cluster 127 * you do one thing; otherwise, you do something else. The problem 128 * is what to do if you think you're in a cluster with PXFS loaded, 129 * but you're using UFS not PXFS? The upper two bytes of the sysid 130 * encode the node id of the node where NLM server runs; these bytes 131 * are zero for UFS. Since the nodeid is used to index into the 132 * registry, we can record the NLM server state information at index 133 * 0 using the same mechanism used for PXFS file locks! 134 */ 135 static flk_nlm_status_t *nlm_reg_status = NULL; /* state array 0..N-1 */ 136 static kmutex_t nlm_reg_lock; /* lock to protect arrary */ 137 static uint_t nlm_status_size; /* size of state array */ 138 139 /* 140 * Although we need a global lock dependency graph (and associated data 141 * structures), we also need a per-zone notion of whether the lock manager is 142 * running, and so whether to allow lock manager requests or not. 143 * 144 * Thus, on a per-zone basis we maintain a ``global'' variable 145 * (flk_lockmgr_status), protected by flock_lock, and set when the lock 146 * manager is determined to be changing state (starting or stopping). 147 * 148 * Each graph/zone pair also has a copy of this variable, which is protected by 149 * the graph's mutex. 150 * 151 * The per-graph copies are used to synchronize lock requests with shutdown 152 * requests. The global copy is used to initialize the per-graph field when a 153 * new graph is created. 154 */ 155 struct flock_globals { 156 flk_lockmgr_status_t flk_lockmgr_status; 157 flk_lockmgr_status_t lockmgr_status[HASH_SIZE]; 158 }; 159 160 zone_key_t flock_zone_key; 161 162 static void create_flock(lock_descriptor_t *, flock64_t *); 163 static lock_descriptor_t *flk_get_lock(void); 164 static void flk_free_lock(lock_descriptor_t *lock); 165 static void flk_get_first_blocking_lock(lock_descriptor_t *request); 166 static int flk_process_request(lock_descriptor_t *); 167 static int flk_add_edge(lock_descriptor_t *, lock_descriptor_t *, int, int); 168 static edge_t *flk_get_edge(void); 169 static int flk_wait_execute_request(lock_descriptor_t *); 170 static int flk_relation(lock_descriptor_t *, lock_descriptor_t *); 171 static void flk_insert_active_lock(lock_descriptor_t *); 172 static void flk_delete_active_lock(lock_descriptor_t *, int); 173 static void flk_insert_sleeping_lock(lock_descriptor_t *); 174 static void flk_graph_uncolor(graph_t *); 175 static void flk_wakeup(lock_descriptor_t *, int); 176 static void flk_free_edge(edge_t *); 177 static void flk_recompute_dependencies(lock_descriptor_t *, 178 lock_descriptor_t **, int, int); 179 static int flk_find_barriers(lock_descriptor_t *); 180 static void flk_update_barriers(lock_descriptor_t *); 181 static int flk_color_reachables(lock_descriptor_t *); 182 static int flk_canceled(lock_descriptor_t *); 183 static void flk_delete_locks_by_sysid(lock_descriptor_t *); 184 static void report_blocker(lock_descriptor_t *, lock_descriptor_t *); 185 static void wait_for_lock(lock_descriptor_t *); 186 static void unlock_lockmgr_granted(struct flock_globals *); 187 static void wakeup_sleeping_lockmgr_locks(struct flock_globals *); 188 189 /* Clustering hooks */ 190 static void cl_flk_change_nlm_state_all_locks(int, flk_nlm_status_t); 191 static void cl_flk_wakeup_sleeping_nlm_locks(int); 192 static void cl_flk_unlock_nlm_granted(int); 193 194 #ifdef DEBUG 195 static int check_lock_transition(int, int); 196 static void check_sleeping_locks(graph_t *); 197 static void check_active_locks(graph_t *); 198 static int no_path(lock_descriptor_t *, lock_descriptor_t *); 199 static void path(lock_descriptor_t *, lock_descriptor_t *); 200 static void check_owner_locks(graph_t *, pid_t, int, vnode_t *); 201 static int level_one_path(lock_descriptor_t *, lock_descriptor_t *); 202 static int level_two_path(lock_descriptor_t *, lock_descriptor_t *, int); 203 #endif 204 205 /* proc_graph function definitions */ 206 static int flk_check_deadlock(lock_descriptor_t *); 207 static void flk_proc_graph_uncolor(void); 208 static proc_vertex_t *flk_get_proc_vertex(lock_descriptor_t *); 209 static proc_edge_t *flk_get_proc_edge(void); 210 static void flk_proc_release(proc_vertex_t *); 211 static void flk_free_proc_edge(proc_edge_t *); 212 static void flk_update_proc_graph(edge_t *, int); 213 214 /* Non-blocking mandatory locking */ 215 static int lock_blocks_io(nbl_op_t, u_offset_t, ssize_t, int, u_offset_t, 216 u_offset_t); 217 218 static struct flock_globals * 219 flk_get_globals(void) 220 { 221 /* 222 * The KLM module had better be loaded if we're attempting to handle 223 * lockmgr requests. 224 */ 225 ASSERT(flock_zone_key != ZONE_KEY_UNINITIALIZED); 226 return (zone_getspecific(flock_zone_key, curproc->p_zone)); 227 } 228 229 static flk_lockmgr_status_t 230 flk_get_lockmgr_status(void) 231 { 232 struct flock_globals *fg; 233 234 ASSERT(MUTEX_HELD(&flock_lock)); 235 236 if (flock_zone_key == ZONE_KEY_UNINITIALIZED) { 237 /* 238 * KLM module not loaded; lock manager definitely not running. 239 */ 240 return (FLK_LOCKMGR_DOWN); 241 } 242 fg = flk_get_globals(); 243 return (fg->flk_lockmgr_status); 244 } 245 246 /* 247 * This implements Open File Description (not descriptor) style record locking. 248 * These locks can also be thought of as pid-less since they are not tied to a 249 * specific process, thus they're preserved across fork. 250 * 251 * Called directly from fcntl. 252 * 253 * See reclock() for the implementation of the traditional POSIX style record 254 * locking scheme (pid-ful). This function is derived from reclock() but 255 * simplified and modified to work for OFD style locking. 256 * 257 * The two primary advantages of OFD style of locking are: 258 * 1) It is per-file description, so closing a file descriptor that refers to a 259 * different file description for the same file will not drop the lock (i.e. 260 * two open's of the same file get different descriptions but a dup or fork 261 * will refer to the same description). 262 * 2) Locks are preserved across fork(2). 263 * 264 * Because these locks are per-description a lock ptr lives at the f_filocks 265 * member of the file_t and the lock_descriptor includes a file_t pointer 266 * to enable unique lock identification and management. 267 * 268 * Since these locks are pid-less we cannot do deadlock detection with the 269 * current process-oriented implementation. This is consistent with OFD locking 270 * behavior on other operating systems such as Linux. Since we don't do 271 * deadlock detection we never interact with the process graph that is 272 * maintained for deadlock detection on the traditional POSIX-style locks. 273 * 274 * Future Work: 275 * 276 * The current implementation does not support record locks. That is, 277 * currently the single lock must cover the entire file. This is validated in 278 * fcntl. To support record locks the f_filock pointer in the file_t needs to 279 * be changed to a list of pointers to the locks. That list needs to be 280 * managed independently of the lock list on the vnode itself and it needs to 281 * be maintained as record locks are created, split, coalesced and deleted. 282 * 283 * The current implementation does not support remote file systems (e.g. 284 * NFS or CIFS). This is handled in fs_frlock(). The design of how OFD locks 285 * interact with the NLM is not clear since the NLM protocol/implementation 286 * appears to be oriented around locks associated with a process. A further 287 * problem is that a design is needed for what nlm_send_siglost() should do and 288 * where it will send SIGLOST. More recent versions of Linux apparently try to 289 * emulate OFD locks on NFS by converting them to traditional POSIX style locks 290 * that work with the NLM. It is not clear that this provides the correct 291 * semantics in all cases. 292 */ 293 int 294 ofdlock(file_t *fp, int fcmd, flock64_t *lckdat, int flag, u_offset_t offset) 295 { 296 int cmd = 0; 297 vnode_t *vp; 298 lock_descriptor_t stack_lock_request; 299 lock_descriptor_t *lock_request; 300 int error = 0; 301 graph_t *gp; 302 int serialize = 0; 303 304 if (fcmd != F_OFD_GETLK) 305 cmd = SETFLCK; 306 307 if (fcmd == F_OFD_SETLKW || fcmd == F_FLOCKW) 308 cmd |= SLPFLCK; 309 310 /* see block comment */ 311 VERIFY(lckdat->l_whence == 0); 312 VERIFY(lckdat->l_start == 0); 313 VERIFY(lckdat->l_len == 0); 314 315 vp = fp->f_vnode; 316 317 /* 318 * For reclock fs_frlock() would normally have set these in a few 319 * places but for us it's cleaner to centralize it here. Note that 320 * IGN_PID is -1. We use 0 for our pid-less locks. 321 */ 322 lckdat->l_pid = 0; 323 lckdat->l_sysid = 0; 324 325 /* 326 * Check access permissions 327 */ 328 if ((fcmd == F_OFD_SETLK || fcmd == F_OFD_SETLKW) && 329 ((lckdat->l_type == F_RDLCK && (flag & FREAD) == 0) || 330 (lckdat->l_type == F_WRLCK && (flag & FWRITE) == 0))) 331 return (EBADF); 332 333 /* 334 * for query and unlock we use the stack_lock_request 335 */ 336 if (lckdat->l_type == F_UNLCK || !(cmd & SETFLCK)) { 337 lock_request = &stack_lock_request; 338 (void) bzero((caddr_t)lock_request, 339 sizeof (lock_descriptor_t)); 340 341 /* 342 * following is added to make the assertions in 343 * flk_execute_request() pass 344 */ 345 lock_request->l_edge.edge_in_next = &lock_request->l_edge; 346 lock_request->l_edge.edge_in_prev = &lock_request->l_edge; 347 lock_request->l_edge.edge_adj_next = &lock_request->l_edge; 348 lock_request->l_edge.edge_adj_prev = &lock_request->l_edge; 349 lock_request->l_status = FLK_INITIAL_STATE; 350 } else { 351 lock_request = flk_get_lock(); 352 fp->f_filock = (struct filock *)lock_request; 353 } 354 lock_request->l_state = 0; 355 lock_request->l_vnode = vp; 356 lock_request->l_zoneid = getzoneid(); 357 lock_request->l_ofd = fp; 358 359 /* 360 * Convert the request range into the canonical start and end 361 * values then check the validity of the lock range. 362 */ 363 error = flk_convert_lock_data(vp, lckdat, &lock_request->l_start, 364 &lock_request->l_end, offset); 365 if (error) 366 goto done; 367 368 error = flk_check_lock_data(lock_request->l_start, lock_request->l_end, 369 MAXEND); 370 if (error) 371 goto done; 372 373 ASSERT(lock_request->l_end >= lock_request->l_start); 374 375 lock_request->l_type = lckdat->l_type; 376 if (cmd & SLPFLCK) 377 lock_request->l_state |= WILLING_TO_SLEEP_LOCK; 378 379 if (!(cmd & SETFLCK)) { 380 if (lock_request->l_type == F_RDLCK || 381 lock_request->l_type == F_WRLCK) 382 lock_request->l_state |= QUERY_LOCK; 383 } 384 lock_request->l_flock = (*lckdat); 385 386 /* 387 * We are ready for processing the request 388 */ 389 390 if (fcmd != F_OFD_GETLK && lock_request->l_type != F_UNLCK && 391 nbl_need_check(vp)) { 392 nbl_start_crit(vp, RW_WRITER); 393 serialize = 1; 394 } 395 396 /* Get the lock graph for a particular vnode */ 397 gp = flk_get_lock_graph(vp, FLK_INIT_GRAPH); 398 399 mutex_enter(&gp->gp_mutex); 400 401 lock_request->l_state |= REFERENCED_LOCK; 402 lock_request->l_graph = gp; 403 404 switch (lock_request->l_type) { 405 case F_RDLCK: 406 case F_WRLCK: 407 if (IS_QUERY_LOCK(lock_request)) { 408 flk_get_first_blocking_lock(lock_request); 409 if (lock_request->l_ofd != NULL) 410 lock_request->l_flock.l_pid = -1; 411 (*lckdat) = lock_request->l_flock; 412 } else { 413 /* process the request now */ 414 error = flk_process_request(lock_request); 415 } 416 break; 417 418 case F_UNLCK: 419 /* unlock request will not block so execute it immediately */ 420 error = flk_execute_request(lock_request); 421 break; 422 423 default: 424 error = EINVAL; 425 break; 426 } 427 428 if (lock_request == &stack_lock_request) { 429 flk_set_state(lock_request, FLK_DEAD_STATE); 430 } else { 431 lock_request->l_state &= ~REFERENCED_LOCK; 432 if ((error != 0) || IS_DELETED(lock_request)) { 433 flk_set_state(lock_request, FLK_DEAD_STATE); 434 flk_free_lock(lock_request); 435 } 436 } 437 438 mutex_exit(&gp->gp_mutex); 439 if (serialize) 440 nbl_end_crit(vp); 441 442 return (error); 443 444 done: 445 flk_set_state(lock_request, FLK_DEAD_STATE); 446 if (lock_request != &stack_lock_request) 447 flk_free_lock(lock_request); 448 return (error); 449 } 450 451 /* 452 * Remove any lock on the vnode belonging to the given file_t. 453 * Called from closef on last close, file_t is locked. 454 * 455 * This is modeled on the cleanlocks() function but only removes the single 456 * lock associated with fp. 457 */ 458 void 459 ofdcleanlock(file_t *fp) 460 { 461 lock_descriptor_t *fplock, *lock, *nlock; 462 vnode_t *vp; 463 graph_t *gp; 464 465 ASSERT(MUTEX_HELD(&fp->f_tlock)); 466 467 if ((fplock = (lock_descriptor_t *)fp->f_filock) == NULL) 468 return; 469 470 fp->f_filock = NULL; 471 vp = fp->f_vnode; 472 473 gp = flk_get_lock_graph(vp, FLK_USE_GRAPH); 474 475 if (gp == NULL) 476 return; 477 mutex_enter(&gp->gp_mutex); 478 479 CHECK_SLEEPING_LOCKS(gp); 480 CHECK_ACTIVE_LOCKS(gp); 481 482 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 483 484 if (lock) { 485 do { 486 nlock = lock->l_next; 487 if (fplock == lock) { 488 CANCEL_WAKEUP(lock); 489 break; 490 } 491 lock = nlock; 492 } while (lock->l_vnode == vp); 493 } 494 495 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 496 497 if (lock) { 498 do { 499 nlock = lock->l_next; 500 if (fplock == lock) { 501 flk_delete_active_lock(lock, 0); 502 flk_wakeup(lock, 1); 503 flk_free_lock(lock); 504 break; 505 } 506 lock = nlock; 507 } while (lock->l_vnode == vp); 508 } 509 510 CHECK_SLEEPING_LOCKS(gp); 511 CHECK_ACTIVE_LOCKS(gp); 512 mutex_exit(&gp->gp_mutex); 513 } 514 515 /* 516 * Routine called from fs_frlock in fs/fs_subr.c 517 * 518 * This implements traditional POSIX style record locking. The two primary 519 * drawbacks to this style of locking are: 520 * 1) It is per-process, so any close of a file descriptor that refers to the 521 * file will drop the lock (e.g. lock /etc/passwd, call a library function 522 * which opens /etc/passwd to read the file, when the library closes it's 523 * file descriptor the application loses its lock and does not know). 524 * 2) Locks are not preserved across fork(2). 525 * 526 * Because these locks are only assoiciated with a pid they are per-process. 527 * This is why any close will drop the lock and is also why once the process 528 * forks then the lock is no longer related to the new process. These locks can 529 * be considered as pid-ful. 530 * 531 * See ofdlock() for the implementation of a similar but improved locking 532 * scheme. 533 */ 534 int 535 reclock(vnode_t *vp, flock64_t *lckdat, int cmd, int flag, u_offset_t offset, 536 flk_callback_t *flk_cbp) 537 { 538 lock_descriptor_t stack_lock_request; 539 lock_descriptor_t *lock_request; 540 int error = 0; 541 graph_t *gp; 542 int nlmid; 543 544 /* 545 * Check access permissions 546 */ 547 if ((cmd & SETFLCK) && 548 ((lckdat->l_type == F_RDLCK && (flag & FREAD) == 0) || 549 (lckdat->l_type == F_WRLCK && (flag & FWRITE) == 0))) 550 return (EBADF); 551 552 /* 553 * for query and unlock we use the stack_lock_request 554 */ 555 556 if ((lckdat->l_type == F_UNLCK) || 557 !((cmd & INOFLCK) || (cmd & SETFLCK))) { 558 lock_request = &stack_lock_request; 559 (void) bzero((caddr_t)lock_request, 560 sizeof (lock_descriptor_t)); 561 562 /* 563 * following is added to make the assertions in 564 * flk_execute_request() to pass through 565 */ 566 567 lock_request->l_edge.edge_in_next = &lock_request->l_edge; 568 lock_request->l_edge.edge_in_prev = &lock_request->l_edge; 569 lock_request->l_edge.edge_adj_next = &lock_request->l_edge; 570 lock_request->l_edge.edge_adj_prev = &lock_request->l_edge; 571 lock_request->l_status = FLK_INITIAL_STATE; 572 } else { 573 lock_request = flk_get_lock(); 574 } 575 lock_request->l_state = 0; 576 lock_request->l_vnode = vp; 577 lock_request->l_zoneid = getzoneid(); 578 579 /* 580 * Convert the request range into the canonical start and end 581 * values. The NLM protocol supports locking over the entire 582 * 32-bit range, so there's no range checking for remote requests, 583 * but we still need to verify that local requests obey the rules. 584 */ 585 /* Clustering */ 586 if ((cmd & (RCMDLCK | PCMDLCK)) != 0) { 587 ASSERT(lckdat->l_whence == 0); 588 lock_request->l_start = lckdat->l_start; 589 lock_request->l_end = (lckdat->l_len == 0) ? MAX_U_OFFSET_T : 590 lckdat->l_start + (lckdat->l_len - 1); 591 } else { 592 /* check the validity of the lock range */ 593 error = flk_convert_lock_data(vp, lckdat, 594 &lock_request->l_start, &lock_request->l_end, 595 offset); 596 if (error) { 597 goto done; 598 } 599 error = flk_check_lock_data(lock_request->l_start, 600 lock_request->l_end, MAXEND); 601 if (error) { 602 goto done; 603 } 604 } 605 606 ASSERT(lock_request->l_end >= lock_request->l_start); 607 608 lock_request->l_type = lckdat->l_type; 609 if (cmd & INOFLCK) 610 lock_request->l_state |= IO_LOCK; 611 if (cmd & SLPFLCK) 612 lock_request->l_state |= WILLING_TO_SLEEP_LOCK; 613 if (cmd & RCMDLCK) 614 lock_request->l_state |= LOCKMGR_LOCK; 615 if (cmd & NBMLCK) 616 lock_request->l_state |= NBMAND_LOCK; 617 /* 618 * Clustering: set flag for PXFS locks 619 * We do not _only_ check for the PCMDLCK flag because PXFS locks could 620 * also be of type 'RCMDLCK'. 621 * We do not _only_ check the GETPXFSID() macro because local PXFS 622 * clients use a pxfsid of zero to permit deadlock detection in the LLM. 623 */ 624 625 if ((cmd & PCMDLCK) || (GETPXFSID(lckdat->l_sysid) != 0)) { 626 lock_request->l_state |= PXFS_LOCK; 627 } 628 if (!((cmd & SETFLCK) || (cmd & INOFLCK))) { 629 if (lock_request->l_type == F_RDLCK || 630 lock_request->l_type == F_WRLCK) 631 lock_request->l_state |= QUERY_LOCK; 632 } 633 lock_request->l_flock = (*lckdat); 634 lock_request->l_callbacks = flk_cbp; 635 636 /* 637 * We are ready for processing the request 638 */ 639 if (IS_LOCKMGR(lock_request)) { 640 /* 641 * If the lock request is an NLM server request .... 642 */ 643 if (nlm_status_size == 0) { /* not booted as cluster */ 644 mutex_enter(&flock_lock); 645 /* 646 * Bail out if this is a lock manager request and the 647 * lock manager is not supposed to be running. 648 */ 649 if (flk_get_lockmgr_status() != FLK_LOCKMGR_UP) { 650 mutex_exit(&flock_lock); 651 error = ENOLCK; 652 goto done; 653 } 654 mutex_exit(&flock_lock); 655 } else { /* booted as a cluster */ 656 nlmid = GETNLMID(lock_request->l_flock.l_sysid); 657 ASSERT(nlmid <= nlm_status_size && nlmid >= 0); 658 659 mutex_enter(&nlm_reg_lock); 660 /* 661 * If the NLM registry does not know about this 662 * NLM server making the request, add its nlmid 663 * to the registry. 664 */ 665 if (FLK_REGISTRY_IS_NLM_UNKNOWN(nlm_reg_status, 666 nlmid)) { 667 FLK_REGISTRY_ADD_NLMID(nlm_reg_status, nlmid); 668 } else if (!FLK_REGISTRY_IS_NLM_UP(nlm_reg_status, 669 nlmid)) { 670 /* 671 * If the NLM server is already known (has made 672 * previous lock requests) and its state is 673 * not NLM_UP (means that NLM server is 674 * shutting down), then bail out with an 675 * error to deny the lock request. 676 */ 677 mutex_exit(&nlm_reg_lock); 678 error = ENOLCK; 679 goto done; 680 } 681 mutex_exit(&nlm_reg_lock); 682 } 683 } 684 685 /* Now get the lock graph for a particular vnode */ 686 gp = flk_get_lock_graph(vp, FLK_INIT_GRAPH); 687 688 /* 689 * We drop rwlock here otherwise this might end up causing a 690 * deadlock if this IOLOCK sleeps. (bugid # 1183392). 691 */ 692 693 if (IS_IO_LOCK(lock_request)) { 694 VOP_RWUNLOCK(vp, 695 (lock_request->l_type == F_RDLCK) ? 696 V_WRITELOCK_FALSE : V_WRITELOCK_TRUE, NULL); 697 } 698 mutex_enter(&gp->gp_mutex); 699 700 lock_request->l_state |= REFERENCED_LOCK; 701 lock_request->l_graph = gp; 702 703 switch (lock_request->l_type) { 704 case F_RDLCK: 705 case F_WRLCK: 706 if (IS_QUERY_LOCK(lock_request)) { 707 flk_get_first_blocking_lock(lock_request); 708 if (lock_request->l_ofd != NULL) 709 lock_request->l_flock.l_pid = -1; 710 (*lckdat) = lock_request->l_flock; 711 break; 712 } 713 714 /* process the request now */ 715 716 error = flk_process_request(lock_request); 717 break; 718 719 case F_UNLCK: 720 /* unlock request will not block so execute it immediately */ 721 722 if (IS_LOCKMGR(lock_request) && 723 flk_canceled(lock_request)) { 724 error = 0; 725 } else { 726 error = flk_execute_request(lock_request); 727 } 728 break; 729 730 case F_UNLKSYS: 731 /* 732 * Recovery mechanism to release lock manager locks when 733 * NFS client crashes and restart. NFS server will clear 734 * old locks and grant new locks. 735 */ 736 737 if (lock_request->l_flock.l_sysid == 0) { 738 mutex_exit(&gp->gp_mutex); 739 return (EINVAL); 740 } 741 if (secpolicy_nfs(CRED()) != 0) { 742 mutex_exit(&gp->gp_mutex); 743 return (EPERM); 744 } 745 flk_delete_locks_by_sysid(lock_request); 746 lock_request->l_state &= ~REFERENCED_LOCK; 747 flk_set_state(lock_request, FLK_DEAD_STATE); 748 flk_free_lock(lock_request); 749 mutex_exit(&gp->gp_mutex); 750 return (0); 751 752 default: 753 error = EINVAL; 754 break; 755 } 756 757 /* Clustering: For blocked PXFS locks, return */ 758 if (error == PXFS_LOCK_BLOCKED) { 759 lock_request->l_state &= ~REFERENCED_LOCK; 760 mutex_exit(&gp->gp_mutex); 761 return (error); 762 } 763 764 /* 765 * Now that we have seen the status of locks in the system for 766 * this vnode we acquire the rwlock if it is an IO_LOCK. 767 */ 768 769 if (IS_IO_LOCK(lock_request)) { 770 (void) VOP_RWLOCK(vp, 771 (lock_request->l_type == F_RDLCK) ? 772 V_WRITELOCK_FALSE : V_WRITELOCK_TRUE, NULL); 773 if (!error) { 774 lckdat->l_type = F_UNLCK; 775 776 /* 777 * This wake up is needed otherwise 778 * if IO_LOCK has slept the dependents on this 779 * will not be woken up at all. (bugid # 1185482). 780 */ 781 782 flk_wakeup(lock_request, 1); 783 flk_set_state(lock_request, FLK_DEAD_STATE); 784 flk_free_lock(lock_request); 785 } 786 /* 787 * else if error had occurred either flk_process_request() 788 * has returned EDEADLK in which case there will be no 789 * dependents for this lock or EINTR from flk_wait_execute_ 790 * request() in which case flk_cancel_sleeping_lock() 791 * would have been done. same is true with EBADF. 792 */ 793 } 794 795 if (lock_request == &stack_lock_request) { 796 flk_set_state(lock_request, FLK_DEAD_STATE); 797 } else { 798 lock_request->l_state &= ~REFERENCED_LOCK; 799 if ((error != 0) || IS_DELETED(lock_request)) { 800 flk_set_state(lock_request, FLK_DEAD_STATE); 801 flk_free_lock(lock_request); 802 } 803 } 804 805 mutex_exit(&gp->gp_mutex); 806 return (error); 807 808 done: 809 flk_set_state(lock_request, FLK_DEAD_STATE); 810 if (lock_request != &stack_lock_request) 811 flk_free_lock(lock_request); 812 return (error); 813 } 814 815 /* 816 * Invoke the callbacks in the given list. If before sleeping, invoke in 817 * list order. If after sleeping, invoke in reverse order. 818 * 819 * CPR (suspend/resume) support: if one of the callbacks returns a 820 * callb_cpr_t, return it. This will be used to make the thread CPR-safe 821 * while it is sleeping. There should be at most one callb_cpr_t for the 822 * thread. 823 * XXX This is unnecessarily complicated. The CPR information should just 824 * get passed in directly through VOP_FRLOCK and reclock, rather than 825 * sneaking it in via a callback. 826 */ 827 828 callb_cpr_t * 829 flk_invoke_callbacks(flk_callback_t *cblist, flk_cb_when_t when) 830 { 831 callb_cpr_t *cpr_callbackp = NULL; 832 callb_cpr_t *one_result; 833 flk_callback_t *cb; 834 835 if (cblist == NULL) 836 return (NULL); 837 838 if (when == FLK_BEFORE_SLEEP) { 839 cb = cblist; 840 do { 841 one_result = (*cb->cb_callback)(when, cb->cb_data); 842 if (one_result != NULL) { 843 ASSERT(cpr_callbackp == NULL); 844 cpr_callbackp = one_result; 845 } 846 cb = cb->cb_next; 847 } while (cb != cblist); 848 } else { 849 cb = cblist->cb_prev; 850 do { 851 one_result = (*cb->cb_callback)(when, cb->cb_data); 852 if (one_result != NULL) { 853 cpr_callbackp = one_result; 854 } 855 cb = cb->cb_prev; 856 } while (cb != cblist->cb_prev); 857 } 858 859 return (cpr_callbackp); 860 } 861 862 /* 863 * Initialize a flk_callback_t to hold the given callback. 864 */ 865 866 void 867 flk_init_callback(flk_callback_t *flk_cb, 868 callb_cpr_t *(*cb_fcn)(flk_cb_when_t, void *), void *cbdata) 869 { 870 flk_cb->cb_next = flk_cb; 871 flk_cb->cb_prev = flk_cb; 872 flk_cb->cb_callback = cb_fcn; 873 flk_cb->cb_data = cbdata; 874 } 875 876 /* 877 * Initialize an flk_callback_t and then link it into the head of an 878 * existing list (which may be NULL). 879 */ 880 881 void 882 flk_add_callback(flk_callback_t *newcb, 883 callb_cpr_t *(*cb_fcn)(flk_cb_when_t, void *), 884 void *cbdata, flk_callback_t *cblist) 885 { 886 flk_init_callback(newcb, cb_fcn, cbdata); 887 888 if (cblist == NULL) 889 return; 890 891 newcb->cb_prev = cblist->cb_prev; 892 newcb->cb_next = cblist; 893 cblist->cb_prev->cb_next = newcb; 894 cblist->cb_prev = newcb; 895 } 896 897 /* 898 * Remove the callback from a list. 899 */ 900 901 void 902 flk_del_callback(flk_callback_t *flk_cb) 903 { 904 flk_cb->cb_next->cb_prev = flk_cb->cb_prev; 905 flk_cb->cb_prev->cb_next = flk_cb->cb_next; 906 907 flk_cb->cb_prev = flk_cb; 908 flk_cb->cb_next = flk_cb; 909 } 910 911 /* 912 * Initialize the flk_edge_cache data structure and create the 913 * nlm_reg_status array. 914 */ 915 916 void 917 flk_init(void) 918 { 919 uint_t i; 920 921 flk_edge_cache = kmem_cache_create("flk_edges", 922 sizeof (struct edge), 0, NULL, NULL, NULL, NULL, NULL, 0); 923 if (flk_edge_cache == NULL) { 924 cmn_err(CE_PANIC, "Couldn't create flk_edge_cache\n"); 925 } 926 /* 927 * Create the NLM registry object. 928 */ 929 930 if (cluster_bootflags & CLUSTER_BOOTED) { 931 /* 932 * This routine tells you the maximum node id that will be used 933 * in the cluster. This number will be the size of the nlm 934 * registry status array. We add 1 because we will be using 935 * all entries indexed from 0 to maxnodeid; e.g., from 0 936 * to 64, for a total of 65 entries. 937 */ 938 nlm_status_size = clconf_maximum_nodeid() + 1; 939 } else { 940 nlm_status_size = 0; 941 } 942 943 if (nlm_status_size != 0) { /* booted as a cluster */ 944 nlm_reg_status = (flk_nlm_status_t *) 945 kmem_alloc(sizeof (flk_nlm_status_t) * nlm_status_size, 946 KM_SLEEP); 947 948 /* initialize all NLM states in array to NLM_UNKNOWN */ 949 for (i = 0; i < nlm_status_size; i++) { 950 nlm_reg_status[i] = FLK_NLM_UNKNOWN; 951 } 952 } 953 } 954 955 /* 956 * Zone constructor/destructor callbacks to be executed when a zone is 957 * created/destroyed. 958 */ 959 /* ARGSUSED */ 960 void * 961 flk_zone_init(zoneid_t zoneid) 962 { 963 struct flock_globals *fg; 964 uint_t i; 965 966 fg = kmem_alloc(sizeof (*fg), KM_SLEEP); 967 fg->flk_lockmgr_status = FLK_LOCKMGR_UP; 968 for (i = 0; i < HASH_SIZE; i++) 969 fg->lockmgr_status[i] = FLK_LOCKMGR_UP; 970 return (fg); 971 } 972 973 /* ARGSUSED */ 974 void 975 flk_zone_fini(zoneid_t zoneid, void *data) 976 { 977 struct flock_globals *fg = data; 978 979 kmem_free(fg, sizeof (*fg)); 980 } 981 982 /* 983 * Get a lock_descriptor structure with initialization of edge lists. 984 */ 985 986 static lock_descriptor_t * 987 flk_get_lock(void) 988 { 989 lock_descriptor_t *l; 990 991 l = kmem_zalloc(sizeof (lock_descriptor_t), KM_SLEEP); 992 993 cv_init(&l->l_cv, NULL, CV_DRIVER, NULL); 994 l->l_edge.edge_in_next = &l->l_edge; 995 l->l_edge.edge_in_prev = &l->l_edge; 996 l->l_edge.edge_adj_next = &l->l_edge; 997 l->l_edge.edge_adj_prev = &l->l_edge; 998 l->pvertex = -1; 999 l->l_status = FLK_INITIAL_STATE; 1000 flk_lock_allocs++; 1001 return (l); 1002 } 1003 1004 /* 1005 * Free a lock_descriptor structure. Just sets the DELETED_LOCK flag 1006 * when some thread has a reference to it as in reclock(). 1007 */ 1008 1009 void 1010 flk_free_lock(lock_descriptor_t *lock) 1011 { 1012 file_t *fp; 1013 1014 ASSERT(IS_DEAD(lock)); 1015 1016 if ((fp = lock->l_ofd) != NULL) 1017 fp->f_filock = NULL; 1018 1019 if (IS_REFERENCED(lock)) { 1020 lock->l_state |= DELETED_LOCK; 1021 return; 1022 } 1023 flk_lock_frees++; 1024 kmem_free((void *)lock, sizeof (lock_descriptor_t)); 1025 } 1026 1027 void 1028 flk_set_state(lock_descriptor_t *lock, int new_state) 1029 { 1030 /* 1031 * Locks in the sleeping list may be woken up in a number of ways, 1032 * and more than once. If a sleeping lock is signaled awake more 1033 * than once, then it may or may not change state depending on its 1034 * current state. 1035 * Also note that NLM locks that are sleeping could be moved to an 1036 * interrupted state more than once if the unlock request is 1037 * retransmitted by the NLM client - the second time around, this is 1038 * just a nop. 1039 * The ordering of being signaled awake is: 1040 * INTERRUPTED_STATE > CANCELLED_STATE > GRANTED_STATE. 1041 * The checks below implement this ordering. 1042 */ 1043 if (IS_INTERRUPTED(lock)) { 1044 if ((new_state == FLK_CANCELLED_STATE) || 1045 (new_state == FLK_GRANTED_STATE) || 1046 (new_state == FLK_INTERRUPTED_STATE)) { 1047 return; 1048 } 1049 } 1050 if (IS_CANCELLED(lock)) { 1051 if ((new_state == FLK_GRANTED_STATE) || 1052 (new_state == FLK_CANCELLED_STATE)) { 1053 return; 1054 } 1055 } 1056 CHECK_LOCK_TRANSITION(lock->l_status, new_state); 1057 if (IS_PXFS(lock)) { 1058 cl_flk_state_transition_notify(lock, lock->l_status, new_state); 1059 } 1060 lock->l_status = new_state; 1061 } 1062 1063 /* 1064 * Routine that checks whether there are any blocking locks in the system. 1065 * 1066 * The policy followed is if a write lock is sleeping we don't allow read 1067 * locks before this write lock even though there may not be any active 1068 * locks corresponding to the read locks' region. 1069 * 1070 * flk_add_edge() function adds an edge between l1 and l2 iff there 1071 * is no path between l1 and l2. This is done to have a "minimum 1072 * storage representation" of the dependency graph. 1073 * 1074 * Another property of the graph is since only the new request throws 1075 * edges to the existing locks in the graph, the graph is always topologically 1076 * ordered. 1077 */ 1078 1079 static int 1080 flk_process_request(lock_descriptor_t *request) 1081 { 1082 graph_t *gp = request->l_graph; 1083 lock_descriptor_t *lock; 1084 int request_blocked_by_active = 0; 1085 int request_blocked_by_granted = 0; 1086 int request_blocked_by_sleeping = 0; 1087 vnode_t *vp = request->l_vnode; 1088 int error = 0; 1089 int request_will_wait = 0; 1090 int found_covering_lock = 0; 1091 lock_descriptor_t *covered_by = NULL; 1092 1093 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 1094 request_will_wait = IS_WILLING_TO_SLEEP(request); 1095 1096 /* 1097 * check active locks 1098 */ 1099 1100 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 1101 1102 1103 if (lock) { 1104 do { 1105 if (BLOCKS(lock, request)) { 1106 if (!request_will_wait) 1107 return (EAGAIN); 1108 request_blocked_by_active = 1; 1109 break; 1110 } 1111 /* 1112 * Grant lock if it is for the same owner holding active 1113 * lock that covers the request. 1114 */ 1115 1116 if (SAME_OWNER(lock, request) && 1117 COVERS(lock, request) && 1118 (request->l_type == F_RDLCK)) 1119 return (flk_execute_request(request)); 1120 lock = lock->l_next; 1121 } while (lock->l_vnode == vp); 1122 } 1123 1124 if (!request_blocked_by_active) { 1125 lock_descriptor_t *lk[1]; 1126 lock_descriptor_t *first_glock = NULL; 1127 /* 1128 * Shall we grant this?! NO!! 1129 * What about those locks that were just granted and still 1130 * in sleep queue. Those threads are woken up and so locks 1131 * are almost active. 1132 */ 1133 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 1134 if (lock) { 1135 do { 1136 if (BLOCKS(lock, request)) { 1137 if (IS_GRANTED(lock)) { 1138 request_blocked_by_granted = 1; 1139 } else { 1140 request_blocked_by_sleeping = 1; 1141 } 1142 } 1143 1144 lock = lock->l_next; 1145 } while ((lock->l_vnode == vp)); 1146 first_glock = lock->l_prev; 1147 ASSERT(first_glock->l_vnode == vp); 1148 } 1149 1150 if (request_blocked_by_granted) 1151 goto block; 1152 1153 if (!request_blocked_by_sleeping) { 1154 /* 1155 * If the request isn't going to be blocked by a 1156 * sleeping request, we know that it isn't going to 1157 * be blocked; we can just execute the request -- 1158 * without performing costly deadlock detection. 1159 */ 1160 ASSERT(!request_blocked_by_active); 1161 return (flk_execute_request(request)); 1162 } else if (request->l_type == F_RDLCK) { 1163 /* 1164 * If we have a sleeping writer in the requested 1165 * lock's range, block. 1166 */ 1167 goto block; 1168 } 1169 1170 lk[0] = request; 1171 request->l_state |= RECOMPUTE_LOCK; 1172 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 1173 if (lock) { 1174 do { 1175 flk_recompute_dependencies(lock, lk, 1, 0); 1176 lock = lock->l_next; 1177 } while (lock->l_vnode == vp); 1178 } 1179 lock = first_glock; 1180 if (lock) { 1181 do { 1182 if (IS_GRANTED(lock)) { 1183 flk_recompute_dependencies(lock, lk, 1, 0); 1184 } 1185 lock = lock->l_prev; 1186 } while ((lock->l_vnode == vp)); 1187 } 1188 request->l_state &= ~RECOMPUTE_LOCK; 1189 if (!NO_DEPENDENTS(request) && flk_check_deadlock(request)) 1190 return (EDEADLK); 1191 return (flk_execute_request(request)); 1192 } 1193 1194 block: 1195 if (request_will_wait) 1196 flk_graph_uncolor(gp); 1197 1198 /* check sleeping locks */ 1199 1200 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 1201 1202 /* 1203 * If we find a sleeping write lock that is a superset of the 1204 * region wanted by request we can be assured that by adding an 1205 * edge to this write lock we have paths to all locks in the 1206 * graph that blocks the request except in one case and that is why 1207 * another check for SAME_OWNER in the loop below. The exception 1208 * case is when this process that owns the sleeping write lock 'l1' 1209 * has other locks l2, l3, l4 that are in the system and arrived 1210 * before l1. l1 does not have path to these locks as they are from 1211 * same process. We break when we find a second covering sleeping 1212 * lock l5 owned by a process different from that owning l1, because 1213 * there cannot be any of l2, l3, l4, etc., arrived before l5, and if 1214 * it has l1 would have produced a deadlock already. 1215 */ 1216 1217 if (lock) { 1218 do { 1219 if (BLOCKS(lock, request)) { 1220 if (!request_will_wait) 1221 return (EAGAIN); 1222 if (COVERS(lock, request) && 1223 lock->l_type == F_WRLCK) { 1224 if (found_covering_lock && 1225 !SAME_OWNER(lock, covered_by)) { 1226 found_covering_lock++; 1227 break; 1228 } 1229 found_covering_lock = 1; 1230 covered_by = lock; 1231 } 1232 if (found_covering_lock && 1233 !SAME_OWNER(lock, covered_by)) { 1234 lock = lock->l_next; 1235 continue; 1236 } 1237 if ((error = flk_add_edge(request, lock, 1238 !found_covering_lock, 0))) 1239 return (error); 1240 } 1241 lock = lock->l_next; 1242 } while (lock->l_vnode == vp); 1243 } 1244 1245 /* 1246 * found_covering_lock == 2 iff at this point 'request' has paths 1247 * to all locks that blocks 'request'. found_covering_lock == 1 iff at this 1248 * point 'request' has paths to all locks that blocks 'request' whose owners 1249 * are not same as the one that covers 'request' (covered_by above) and 1250 * we can have locks whose owner is same as covered_by in the active list. 1251 */ 1252 1253 if (request_blocked_by_active && found_covering_lock != 2) { 1254 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 1255 ASSERT(lock != NULL); 1256 do { 1257 if (BLOCKS(lock, request)) { 1258 if (found_covering_lock && 1259 !SAME_OWNER(lock, covered_by)) { 1260 lock = lock->l_next; 1261 continue; 1262 } 1263 if ((error = flk_add_edge(request, lock, 1264 CHECK_CYCLE, 0))) 1265 return (error); 1266 } 1267 lock = lock->l_next; 1268 } while (lock->l_vnode == vp); 1269 } 1270 1271 if (NOT_BLOCKED(request)) { 1272 /* 1273 * request not dependent on any other locks 1274 * so execute this request 1275 */ 1276 return (flk_execute_request(request)); 1277 } else { 1278 /* 1279 * check for deadlock 1280 */ 1281 if (flk_check_deadlock(request)) 1282 return (EDEADLK); 1283 /* 1284 * this thread has to sleep 1285 */ 1286 return (flk_wait_execute_request(request)); 1287 } 1288 } 1289 1290 /* 1291 * The actual execution of the request in the simple case is only to 1292 * insert the 'request' in the list of active locks if it is not an 1293 * UNLOCK. 1294 * We have to consider the existing active locks' relation to 1295 * this 'request' if they are owned by same process. flk_relation() does 1296 * this job and sees to that the dependency graph information is maintained 1297 * properly. 1298 */ 1299 1300 int 1301 flk_execute_request(lock_descriptor_t *request) 1302 { 1303 graph_t *gp = request->l_graph; 1304 vnode_t *vp = request->l_vnode; 1305 lock_descriptor_t *lock, *lock1; 1306 int done_searching = 0; 1307 1308 CHECK_SLEEPING_LOCKS(gp); 1309 CHECK_ACTIVE_LOCKS(gp); 1310 1311 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 1312 1313 flk_set_state(request, FLK_START_STATE); 1314 1315 ASSERT(NOT_BLOCKED(request)); 1316 1317 /* IO_LOCK requests are only to check status */ 1318 1319 if (IS_IO_LOCK(request)) 1320 return (0); 1321 1322 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 1323 1324 if (lock == NULL && request->l_type == F_UNLCK) 1325 return (0); 1326 if (lock == NULL) { 1327 flk_insert_active_lock(request); 1328 return (0); 1329 } 1330 1331 do { 1332 lock1 = lock->l_next; 1333 if (SAME_OWNER(request, lock)) { 1334 done_searching = flk_relation(lock, request); 1335 } 1336 lock = lock1; 1337 } while (lock->l_vnode == vp && !done_searching); 1338 1339 /* 1340 * insert in active queue 1341 */ 1342 1343 if (request->l_type != F_UNLCK) 1344 flk_insert_active_lock(request); 1345 1346 return (0); 1347 } 1348 1349 /* 1350 * 'request' is blocked by some one therefore we put it into sleep queue. 1351 */ 1352 static int 1353 flk_wait_execute_request(lock_descriptor_t *request) 1354 { 1355 graph_t *gp = request->l_graph; 1356 callb_cpr_t *cprp; /* CPR info from callback */ 1357 struct flock_globals *fg; 1358 int index; 1359 1360 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 1361 ASSERT(IS_WILLING_TO_SLEEP(request)); 1362 1363 flk_insert_sleeping_lock(request); 1364 1365 if (IS_LOCKMGR(request)) { 1366 index = HASH_INDEX(request->l_vnode); 1367 fg = flk_get_globals(); 1368 1369 if (nlm_status_size == 0) { /* not booted as a cluster */ 1370 if (fg->lockmgr_status[index] != FLK_LOCKMGR_UP) { 1371 flk_cancel_sleeping_lock(request, 1); 1372 return (ENOLCK); 1373 } 1374 } else { /* booted as a cluster */ 1375 /* 1376 * If the request is an NLM server lock request, 1377 * and the NLM state of the lock request is not 1378 * NLM_UP (because the NLM server is shutting 1379 * down), then cancel the sleeping lock and 1380 * return error ENOLCK that will encourage the 1381 * client to retransmit. 1382 */ 1383 if (!IS_NLM_UP(request)) { 1384 flk_cancel_sleeping_lock(request, 1); 1385 return (ENOLCK); 1386 } 1387 } 1388 } 1389 1390 /* Clustering: For blocking PXFS locks, return */ 1391 if (IS_PXFS(request)) { 1392 /* 1393 * PXFS locks sleep on the client side. 1394 * The callback argument is used to wake up the sleeper 1395 * when the lock is granted. 1396 * We return -1 (rather than an errno value) to indicate 1397 * the client side should sleep 1398 */ 1399 return (PXFS_LOCK_BLOCKED); 1400 } 1401 1402 if (request->l_callbacks != NULL) { 1403 /* 1404 * To make sure the shutdown code works correctly, either 1405 * the callback must happen after putting the lock on the 1406 * sleep list, or we must check the shutdown status after 1407 * returning from the callback (and before sleeping). At 1408 * least for now, we'll use the first option. If a 1409 * shutdown or signal or whatever happened while the graph 1410 * mutex was dropped, that will be detected by 1411 * wait_for_lock(). 1412 */ 1413 mutex_exit(&gp->gp_mutex); 1414 1415 cprp = flk_invoke_callbacks(request->l_callbacks, 1416 FLK_BEFORE_SLEEP); 1417 1418 mutex_enter(&gp->gp_mutex); 1419 1420 if (cprp == NULL) { 1421 wait_for_lock(request); 1422 } else { 1423 mutex_enter(cprp->cc_lockp); 1424 CALLB_CPR_SAFE_BEGIN(cprp); 1425 mutex_exit(cprp->cc_lockp); 1426 wait_for_lock(request); 1427 mutex_enter(cprp->cc_lockp); 1428 CALLB_CPR_SAFE_END(cprp, cprp->cc_lockp); 1429 mutex_exit(cprp->cc_lockp); 1430 } 1431 1432 mutex_exit(&gp->gp_mutex); 1433 (void) flk_invoke_callbacks(request->l_callbacks, 1434 FLK_AFTER_SLEEP); 1435 mutex_enter(&gp->gp_mutex); 1436 } else { 1437 wait_for_lock(request); 1438 } 1439 1440 if (IS_LOCKMGR(request)) { 1441 /* 1442 * If the lock manager is shutting down, return an 1443 * error that will encourage the client to retransmit. 1444 */ 1445 if (fg->lockmgr_status[index] != FLK_LOCKMGR_UP && 1446 !IS_GRANTED(request)) { 1447 flk_cancel_sleeping_lock(request, 1); 1448 return (ENOLCK); 1449 } 1450 } 1451 1452 if (IS_INTERRUPTED(request)) { 1453 /* we got a signal, or act like we did */ 1454 flk_cancel_sleeping_lock(request, 1); 1455 return (EINTR); 1456 } 1457 1458 /* Cancelled if some other thread has closed the file */ 1459 1460 if (IS_CANCELLED(request)) { 1461 flk_cancel_sleeping_lock(request, 1); 1462 return (EBADF); 1463 } 1464 1465 request->l_state &= ~GRANTED_LOCK; 1466 REMOVE_SLEEP_QUEUE(request); 1467 return (flk_execute_request(request)); 1468 } 1469 1470 /* 1471 * This routine adds an edge between from and to because from depends 1472 * to. If asked to check for deadlock it checks whether there are any 1473 * reachable locks from "from_lock" that is owned by the same process 1474 * as "from_lock". 1475 * NOTE: It is the caller's responsibility to make sure that the color 1476 * of the graph is consistent between the calls to flk_add_edge as done 1477 * in flk_process_request. This routine does not color and check for 1478 * deadlock explicitly. 1479 */ 1480 1481 static int 1482 flk_add_edge(lock_descriptor_t *from_lock, lock_descriptor_t *to_lock, 1483 int check_cycle, int update_graph) 1484 { 1485 edge_t *edge; 1486 edge_t *ep; 1487 lock_descriptor_t *vertex; 1488 lock_descriptor_t *vertex_stack; 1489 1490 STACK_INIT(vertex_stack); 1491 1492 /* 1493 * if to vertex already has mark_color just return 1494 * don't add an edge as it is reachable from from vertex 1495 * before itself. 1496 */ 1497 1498 if (COLORED(to_lock)) 1499 return (0); 1500 1501 edge = flk_get_edge(); 1502 1503 /* 1504 * set the from and to vertex 1505 */ 1506 1507 edge->from_vertex = from_lock; 1508 edge->to_vertex = to_lock; 1509 1510 /* 1511 * put in adjacency list of from vertex 1512 */ 1513 1514 from_lock->l_edge.edge_adj_next->edge_adj_prev = edge; 1515 edge->edge_adj_next = from_lock->l_edge.edge_adj_next; 1516 edge->edge_adj_prev = &from_lock->l_edge; 1517 from_lock->l_edge.edge_adj_next = edge; 1518 1519 /* 1520 * put in list of to vertex 1521 */ 1522 1523 to_lock->l_edge.edge_in_next->edge_in_prev = edge; 1524 edge->edge_in_next = to_lock->l_edge.edge_in_next; 1525 to_lock->l_edge.edge_in_next = edge; 1526 edge->edge_in_prev = &to_lock->l_edge; 1527 1528 1529 if (update_graph) { 1530 flk_update_proc_graph(edge, 0); 1531 return (0); 1532 } 1533 if (!check_cycle) { 1534 return (0); 1535 } 1536 1537 STACK_PUSH(vertex_stack, from_lock, l_stack); 1538 1539 while ((vertex = STACK_TOP(vertex_stack)) != NULL) { 1540 1541 STACK_POP(vertex_stack, l_stack); 1542 1543 for (ep = FIRST_ADJ(vertex); 1544 ep != HEAD(vertex); 1545 ep = NEXT_ADJ(ep)) { 1546 if (COLORED(ep->to_vertex)) 1547 continue; 1548 COLOR(ep->to_vertex); 1549 if (SAME_OWNER(ep->to_vertex, from_lock)) 1550 goto dead_lock; 1551 STACK_PUSH(vertex_stack, ep->to_vertex, l_stack); 1552 } 1553 } 1554 return (0); 1555 1556 dead_lock: 1557 1558 /* 1559 * remove all edges 1560 */ 1561 1562 ep = FIRST_ADJ(from_lock); 1563 1564 while (ep != HEAD(from_lock)) { 1565 IN_LIST_REMOVE(ep); 1566 from_lock->l_sedge = NEXT_ADJ(ep); 1567 ADJ_LIST_REMOVE(ep); 1568 flk_free_edge(ep); 1569 ep = from_lock->l_sedge; 1570 } 1571 return (EDEADLK); 1572 } 1573 1574 /* 1575 * Get an edge structure for representing the dependency between two locks. 1576 */ 1577 1578 static edge_t * 1579 flk_get_edge() 1580 { 1581 edge_t *ep; 1582 1583 ASSERT(flk_edge_cache != NULL); 1584 1585 ep = kmem_cache_alloc(flk_edge_cache, KM_SLEEP); 1586 edge_allocs++; 1587 return (ep); 1588 } 1589 1590 /* 1591 * Free the edge structure. 1592 */ 1593 1594 static void 1595 flk_free_edge(edge_t *ep) 1596 { 1597 edge_frees++; 1598 kmem_cache_free(flk_edge_cache, (void *)ep); 1599 } 1600 1601 /* 1602 * Check the relationship of request with lock and perform the 1603 * recomputation of dependencies, break lock if required, and return 1604 * 1 if request cannot have any more relationship with the next 1605 * active locks. 1606 * The 'lock' and 'request' are compared and in case of overlap we 1607 * delete the 'lock' and form new locks to represent the non-overlapped 1608 * portion of original 'lock'. This function has side effects such as 1609 * 'lock' will be freed, new locks will be added to the active list. 1610 */ 1611 1612 static int 1613 flk_relation(lock_descriptor_t *lock, lock_descriptor_t *request) 1614 { 1615 int lock_effect; 1616 lock_descriptor_t *lock1, *lock2; 1617 lock_descriptor_t *topology[3]; 1618 int nvertex = 0; 1619 int i; 1620 edge_t *ep; 1621 graph_t *gp = (lock->l_graph); 1622 1623 1624 CHECK_SLEEPING_LOCKS(gp); 1625 CHECK_ACTIVE_LOCKS(gp); 1626 1627 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 1628 1629 topology[0] = topology[1] = topology[2] = NULL; 1630 1631 if (request->l_type == F_UNLCK) 1632 lock_effect = FLK_UNLOCK; 1633 else if (request->l_type == F_RDLCK && 1634 lock->l_type == F_WRLCK) 1635 lock_effect = FLK_DOWNGRADE; 1636 else if (request->l_type == F_WRLCK && 1637 lock->l_type == F_RDLCK) 1638 lock_effect = FLK_UPGRADE; 1639 else 1640 lock_effect = FLK_STAY_SAME; 1641 1642 if (lock->l_end < request->l_start) { 1643 if (lock->l_end == request->l_start - 1 && 1644 lock_effect == FLK_STAY_SAME) { 1645 topology[0] = request; 1646 request->l_start = lock->l_start; 1647 nvertex = 1; 1648 goto recompute; 1649 } else { 1650 return (0); 1651 } 1652 } 1653 1654 if (lock->l_start > request->l_end) { 1655 if (request->l_end == lock->l_start - 1 && 1656 lock_effect == FLK_STAY_SAME) { 1657 topology[0] = request; 1658 request->l_end = lock->l_end; 1659 nvertex = 1; 1660 goto recompute; 1661 } else { 1662 return (1); 1663 } 1664 } 1665 1666 if (request->l_end < lock->l_end) { 1667 if (request->l_start > lock->l_start) { 1668 if (lock_effect == FLK_STAY_SAME) { 1669 request->l_start = lock->l_start; 1670 request->l_end = lock->l_end; 1671 topology[0] = request; 1672 nvertex = 1; 1673 } else { 1674 lock1 = flk_get_lock(); 1675 lock2 = flk_get_lock(); 1676 COPY(lock1, lock); 1677 COPY(lock2, lock); 1678 lock1->l_start = lock->l_start; 1679 lock1->l_end = request->l_start - 1; 1680 lock2->l_start = request->l_end + 1; 1681 lock2->l_end = lock->l_end; 1682 topology[0] = lock1; 1683 topology[1] = lock2; 1684 topology[2] = request; 1685 nvertex = 3; 1686 } 1687 } else if (request->l_start < lock->l_start) { 1688 if (lock_effect == FLK_STAY_SAME) { 1689 request->l_end = lock->l_end; 1690 topology[0] = request; 1691 nvertex = 1; 1692 } else { 1693 lock1 = flk_get_lock(); 1694 COPY(lock1, lock); 1695 lock1->l_start = request->l_end + 1; 1696 topology[0] = lock1; 1697 topology[1] = request; 1698 nvertex = 2; 1699 } 1700 } else { 1701 if (lock_effect == FLK_STAY_SAME) { 1702 request->l_start = lock->l_start; 1703 request->l_end = lock->l_end; 1704 topology[0] = request; 1705 nvertex = 1; 1706 } else { 1707 lock1 = flk_get_lock(); 1708 COPY(lock1, lock); 1709 lock1->l_start = request->l_end + 1; 1710 topology[0] = lock1; 1711 topology[1] = request; 1712 nvertex = 2; 1713 } 1714 } 1715 } else if (request->l_end > lock->l_end) { 1716 if (request->l_start > lock->l_start) { 1717 if (lock_effect == FLK_STAY_SAME) { 1718 request->l_start = lock->l_start; 1719 topology[0] = request; 1720 nvertex = 1; 1721 } else { 1722 lock1 = flk_get_lock(); 1723 COPY(lock1, lock); 1724 lock1->l_end = request->l_start - 1; 1725 topology[0] = lock1; 1726 topology[1] = request; 1727 nvertex = 2; 1728 } 1729 } else if (request->l_start < lock->l_start) { 1730 topology[0] = request; 1731 nvertex = 1; 1732 } else { 1733 topology[0] = request; 1734 nvertex = 1; 1735 } 1736 } else { 1737 if (request->l_start > lock->l_start) { 1738 if (lock_effect == FLK_STAY_SAME) { 1739 request->l_start = lock->l_start; 1740 topology[0] = request; 1741 nvertex = 1; 1742 } else { 1743 lock1 = flk_get_lock(); 1744 COPY(lock1, lock); 1745 lock1->l_end = request->l_start - 1; 1746 topology[0] = lock1; 1747 topology[1] = request; 1748 nvertex = 2; 1749 } 1750 } else if (request->l_start < lock->l_start) { 1751 topology[0] = request; 1752 nvertex = 1; 1753 } else { 1754 if (lock_effect != FLK_UNLOCK) { 1755 topology[0] = request; 1756 nvertex = 1; 1757 } else { 1758 flk_delete_active_lock(lock, 0); 1759 flk_wakeup(lock, 1); 1760 flk_free_lock(lock); 1761 CHECK_SLEEPING_LOCKS(gp); 1762 CHECK_ACTIVE_LOCKS(gp); 1763 return (1); 1764 } 1765 } 1766 } 1767 1768 recompute: 1769 1770 /* 1771 * For unlock we don't send the 'request' to for recomputing 1772 * dependencies because no lock will add an edge to this. 1773 */ 1774 1775 if (lock_effect == FLK_UNLOCK) { 1776 topology[nvertex-1] = NULL; 1777 nvertex--; 1778 } 1779 for (i = 0; i < nvertex; i++) { 1780 topology[i]->l_state |= RECOMPUTE_LOCK; 1781 topology[i]->l_color = NO_COLOR; 1782 } 1783 1784 ASSERT(FIRST_ADJ(lock) == HEAD(lock)); 1785 1786 /* 1787 * we remove the adjacent edges for all vertices' to this vertex 1788 * 'lock'. 1789 */ 1790 1791 ep = FIRST_IN(lock); 1792 while (ep != HEAD(lock)) { 1793 ADJ_LIST_REMOVE(ep); 1794 ep = NEXT_IN(ep); 1795 } 1796 1797 flk_delete_active_lock(lock, 0); 1798 1799 /* We are ready for recomputing the dependencies now */ 1800 1801 flk_recompute_dependencies(lock, topology, nvertex, 1); 1802 1803 for (i = 0; i < nvertex; i++) { 1804 topology[i]->l_state &= ~RECOMPUTE_LOCK; 1805 topology[i]->l_color = NO_COLOR; 1806 } 1807 1808 1809 if (lock_effect == FLK_UNLOCK) { 1810 nvertex++; 1811 } 1812 for (i = 0; i < nvertex - 1; i++) { 1813 flk_insert_active_lock(topology[i]); 1814 } 1815 1816 1817 if (lock_effect == FLK_DOWNGRADE || lock_effect == FLK_UNLOCK) { 1818 flk_wakeup(lock, 0); 1819 } else { 1820 ep = FIRST_IN(lock); 1821 while (ep != HEAD(lock)) { 1822 lock->l_sedge = NEXT_IN(ep); 1823 IN_LIST_REMOVE(ep); 1824 flk_update_proc_graph(ep, 1); 1825 flk_free_edge(ep); 1826 ep = lock->l_sedge; 1827 } 1828 } 1829 flk_free_lock(lock); 1830 1831 CHECK_SLEEPING_LOCKS(gp); 1832 CHECK_ACTIVE_LOCKS(gp); 1833 return (0); 1834 } 1835 1836 /* 1837 * Insert a lock into the active queue. 1838 */ 1839 1840 static void 1841 flk_insert_active_lock(lock_descriptor_t *new_lock) 1842 { 1843 graph_t *gp = new_lock->l_graph; 1844 vnode_t *vp = new_lock->l_vnode; 1845 lock_descriptor_t *first_lock, *lock; 1846 1847 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 1848 1849 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 1850 first_lock = lock; 1851 1852 if (first_lock != NULL) { 1853 for (; (lock->l_vnode == vp && 1854 lock->l_start < new_lock->l_start); lock = lock->l_next) 1855 ; 1856 } else { 1857 lock = ACTIVE_HEAD(gp); 1858 } 1859 1860 lock->l_prev->l_next = new_lock; 1861 new_lock->l_next = lock; 1862 new_lock->l_prev = lock->l_prev; 1863 lock->l_prev = new_lock; 1864 1865 if (first_lock == NULL || (new_lock->l_start <= first_lock->l_start)) { 1866 vp->v_filocks = (struct filock *)new_lock; 1867 } 1868 flk_set_state(new_lock, FLK_ACTIVE_STATE); 1869 new_lock->l_state |= ACTIVE_LOCK; 1870 1871 CHECK_ACTIVE_LOCKS(gp); 1872 CHECK_SLEEPING_LOCKS(gp); 1873 } 1874 1875 /* 1876 * Delete the active lock : Performs two functions depending on the 1877 * value of second parameter. One is to remove from the active lists 1878 * only and other is to both remove and free the lock. 1879 */ 1880 1881 static void 1882 flk_delete_active_lock(lock_descriptor_t *lock, int free_lock) 1883 { 1884 vnode_t *vp = lock->l_vnode; 1885 graph_t *gp = lock->l_graph; 1886 1887 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 1888 if (free_lock) 1889 ASSERT(NO_DEPENDENTS(lock)); 1890 ASSERT(NOT_BLOCKED(lock)); 1891 ASSERT(IS_ACTIVE(lock)); 1892 1893 ASSERT((vp->v_filocks != NULL)); 1894 1895 if (vp->v_filocks == (struct filock *)lock) { 1896 vp->v_filocks = (struct filock *) 1897 ((lock->l_next->l_vnode == vp) ? lock->l_next : 1898 NULL); 1899 } 1900 lock->l_next->l_prev = lock->l_prev; 1901 lock->l_prev->l_next = lock->l_next; 1902 lock->l_next = lock->l_prev = NULL; 1903 flk_set_state(lock, FLK_DEAD_STATE); 1904 lock->l_state &= ~ACTIVE_LOCK; 1905 1906 if (free_lock) 1907 flk_free_lock(lock); 1908 CHECK_ACTIVE_LOCKS(gp); 1909 CHECK_SLEEPING_LOCKS(gp); 1910 } 1911 1912 /* 1913 * Insert into the sleep queue. 1914 */ 1915 1916 static void 1917 flk_insert_sleeping_lock(lock_descriptor_t *request) 1918 { 1919 graph_t *gp = request->l_graph; 1920 vnode_t *vp = request->l_vnode; 1921 lock_descriptor_t *lock; 1922 1923 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 1924 ASSERT(IS_INITIAL(request)); 1925 1926 for (lock = gp->sleeping_locks.l_next; (lock != &gp->sleeping_locks && 1927 lock->l_vnode < vp); lock = lock->l_next) 1928 ; 1929 1930 lock->l_prev->l_next = request; 1931 request->l_prev = lock->l_prev; 1932 lock->l_prev = request; 1933 request->l_next = lock; 1934 flk_set_state(request, FLK_SLEEPING_STATE); 1935 request->l_state |= SLEEPING_LOCK; 1936 } 1937 1938 /* 1939 * Cancelling a sleeping lock implies removing a vertex from the 1940 * dependency graph and therefore we should recompute the dependencies 1941 * of all vertices that have a path to this vertex, w.r.t. all 1942 * vertices reachable from this vertex. 1943 */ 1944 1945 void 1946 flk_cancel_sleeping_lock(lock_descriptor_t *request, int remove_from_queue) 1947 { 1948 graph_t *gp = request->l_graph; 1949 vnode_t *vp = request->l_vnode; 1950 lock_descriptor_t **topology = NULL; 1951 edge_t *ep; 1952 lock_descriptor_t *vertex, *lock; 1953 int nvertex = 0; 1954 int i; 1955 lock_descriptor_t *vertex_stack; 1956 1957 STACK_INIT(vertex_stack); 1958 1959 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 1960 /* 1961 * count number of vertex pointers that has to be allocated 1962 * All vertices that are reachable from request. 1963 */ 1964 1965 STACK_PUSH(vertex_stack, request, l_stack); 1966 1967 while ((vertex = STACK_TOP(vertex_stack)) != NULL) { 1968 STACK_POP(vertex_stack, l_stack); 1969 for (ep = FIRST_ADJ(vertex); ep != HEAD(vertex); 1970 ep = NEXT_ADJ(ep)) { 1971 if (IS_RECOMPUTE(ep->to_vertex)) 1972 continue; 1973 ep->to_vertex->l_state |= RECOMPUTE_LOCK; 1974 STACK_PUSH(vertex_stack, ep->to_vertex, l_stack); 1975 nvertex++; 1976 } 1977 } 1978 1979 /* 1980 * allocate memory for holding the vertex pointers 1981 */ 1982 1983 if (nvertex) { 1984 topology = kmem_zalloc(nvertex * sizeof (lock_descriptor_t *), 1985 KM_SLEEP); 1986 } 1987 1988 /* 1989 * one more pass to actually store the vertices in the 1990 * allocated array. 1991 * We first check sleeping locks and then active locks 1992 * so that topology array will be in a topological 1993 * order. 1994 */ 1995 1996 nvertex = 0; 1997 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 1998 1999 if (lock) { 2000 do { 2001 if (IS_RECOMPUTE(lock)) { 2002 lock->l_index = nvertex; 2003 topology[nvertex++] = lock; 2004 } 2005 lock->l_color = NO_COLOR; 2006 lock = lock->l_next; 2007 } while (lock->l_vnode == vp); 2008 } 2009 2010 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 2011 2012 if (lock) { 2013 do { 2014 if (IS_RECOMPUTE(lock)) { 2015 lock->l_index = nvertex; 2016 topology[nvertex++] = lock; 2017 } 2018 lock->l_color = NO_COLOR; 2019 lock = lock->l_next; 2020 } while (lock->l_vnode == vp); 2021 } 2022 2023 /* 2024 * remove in and out edges of request 2025 * They are freed after updating proc_graph below. 2026 */ 2027 2028 for (ep = FIRST_IN(request); ep != HEAD(request); ep = NEXT_IN(ep)) { 2029 ADJ_LIST_REMOVE(ep); 2030 } 2031 2032 2033 if (remove_from_queue) 2034 REMOVE_SLEEP_QUEUE(request); 2035 2036 /* we are ready to recompute */ 2037 2038 flk_recompute_dependencies(request, topology, nvertex, 1); 2039 2040 ep = FIRST_ADJ(request); 2041 while (ep != HEAD(request)) { 2042 IN_LIST_REMOVE(ep); 2043 request->l_sedge = NEXT_ADJ(ep); 2044 ADJ_LIST_REMOVE(ep); 2045 flk_update_proc_graph(ep, 1); 2046 flk_free_edge(ep); 2047 ep = request->l_sedge; 2048 } 2049 2050 2051 /* 2052 * unset the RECOMPUTE flag in those vertices 2053 */ 2054 2055 for (i = 0; i < nvertex; i++) { 2056 topology[i]->l_state &= ~RECOMPUTE_LOCK; 2057 } 2058 2059 /* 2060 * free the topology 2061 */ 2062 if (nvertex) 2063 kmem_free((void *)topology, 2064 (nvertex * sizeof (lock_descriptor_t *))); 2065 /* 2066 * Possibility of some locks unblocked now 2067 */ 2068 2069 flk_wakeup(request, 0); 2070 2071 /* 2072 * we expect to have a correctly recomputed graph now. 2073 */ 2074 flk_set_state(request, FLK_DEAD_STATE); 2075 flk_free_lock(request); 2076 CHECK_SLEEPING_LOCKS(gp); 2077 CHECK_ACTIVE_LOCKS(gp); 2078 2079 } 2080 2081 /* 2082 * Uncoloring the graph is simply to increment the mark value of the graph 2083 * And only when wrap round takes place will we color all vertices in 2084 * the graph explicitly. 2085 */ 2086 2087 static void 2088 flk_graph_uncolor(graph_t *gp) 2089 { 2090 lock_descriptor_t *lock; 2091 2092 if (gp->mark == UINT_MAX) { 2093 gp->mark = 1; 2094 for (lock = ACTIVE_HEAD(gp)->l_next; lock != ACTIVE_HEAD(gp); 2095 lock = lock->l_next) 2096 lock->l_color = 0; 2097 2098 for (lock = SLEEPING_HEAD(gp)->l_next; lock != SLEEPING_HEAD(gp); 2099 lock = lock->l_next) 2100 lock->l_color = 0; 2101 } else { 2102 gp->mark++; 2103 } 2104 } 2105 2106 /* 2107 * Wake up locks that are blocked on the given lock. 2108 */ 2109 2110 static void 2111 flk_wakeup(lock_descriptor_t *lock, int adj_list_remove) 2112 { 2113 edge_t *ep; 2114 graph_t *gp = lock->l_graph; 2115 lock_descriptor_t *lck; 2116 2117 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 2118 if (NO_DEPENDENTS(lock)) 2119 return; 2120 ep = FIRST_IN(lock); 2121 do { 2122 /* 2123 * delete the edge from the adjacency list 2124 * of from vertex. if no more adjacent edges 2125 * for this vertex wake this process. 2126 */ 2127 lck = ep->from_vertex; 2128 if (adj_list_remove) 2129 ADJ_LIST_REMOVE(ep); 2130 flk_update_proc_graph(ep, 1); 2131 if (NOT_BLOCKED(lck)) { 2132 GRANT_WAKEUP(lck); 2133 } 2134 lock->l_sedge = NEXT_IN(ep); 2135 IN_LIST_REMOVE(ep); 2136 flk_free_edge(ep); 2137 ep = lock->l_sedge; 2138 } while (ep != HEAD(lock)); 2139 ASSERT(NO_DEPENDENTS(lock)); 2140 } 2141 2142 /* 2143 * The dependents of request, is checked for its dependency against the 2144 * locks in topology (called topology because the array is and should be in 2145 * topological order for this algorithm, if not in topological order the 2146 * inner loop below might add more edges than necessary. Topological ordering 2147 * of vertices satisfies the property that all edges will be from left to 2148 * right i.e., topology[i] can have an edge to topology[j], iff i<j) 2149 * If lock l1 in the dependent set of request is dependent (blocked by) 2150 * on lock l2 in topology but does not have a path to it, we add an edge 2151 * in the inner loop below. 2152 * 2153 * We don't want to add an edge between l1 and l2 if there exists 2154 * already a path from l1 to l2, so care has to be taken for those vertices 2155 * that have two paths to 'request'. These vertices are referred to here 2156 * as barrier locks. 2157 * 2158 * The barriers has to be found (those vertex that originally had two paths 2159 * to request) because otherwise we may end up adding edges unnecessarily 2160 * to vertices in topology, and thus barrier vertices can have an edge 2161 * to a vertex in topology as well a path to it. 2162 */ 2163 2164 static void 2165 flk_recompute_dependencies(lock_descriptor_t *request, 2166 lock_descriptor_t **topology, int nvertex, int update_graph) 2167 { 2168 lock_descriptor_t *vertex, *lock; 2169 graph_t *gp = request->l_graph; 2170 int i, count; 2171 int barrier_found = 0; 2172 edge_t *ep; 2173 lock_descriptor_t *vertex_stack; 2174 2175 STACK_INIT(vertex_stack); 2176 2177 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 2178 if (nvertex == 0) 2179 return; 2180 flk_graph_uncolor(request->l_graph); 2181 barrier_found = flk_find_barriers(request); 2182 request->l_state |= RECOMPUTE_DONE; 2183 2184 STACK_PUSH(vertex_stack, request, l_stack); 2185 request->l_sedge = FIRST_IN(request); 2186 2187 2188 while ((vertex = STACK_TOP(vertex_stack)) != NULL) { 2189 if (vertex->l_state & RECOMPUTE_DONE) { 2190 count = 0; 2191 goto next_in_edge; 2192 } 2193 if (IS_BARRIER(vertex)) { 2194 /* decrement the barrier count */ 2195 if (vertex->l_index) { 2196 vertex->l_index--; 2197 /* this guy will be pushed again anyway ? */ 2198 STACK_POP(vertex_stack, l_stack); 2199 if (vertex->l_index == 0) { 2200 /* 2201 * barrier is over we can recompute 2202 * dependencies for this lock in the 2203 * next stack pop 2204 */ 2205 vertex->l_state &= ~BARRIER_LOCK; 2206 } 2207 continue; 2208 } 2209 } 2210 vertex->l_state |= RECOMPUTE_DONE; 2211 flk_graph_uncolor(gp); 2212 count = flk_color_reachables(vertex); 2213 for (i = 0; i < nvertex; i++) { 2214 lock = topology[i]; 2215 if (COLORED(lock)) 2216 continue; 2217 if (BLOCKS(lock, vertex)) { 2218 (void) flk_add_edge(vertex, lock, 2219 NO_CHECK_CYCLE, update_graph); 2220 COLOR(lock); 2221 count++; 2222 count += flk_color_reachables(lock); 2223 } 2224 2225 } 2226 2227 next_in_edge: 2228 if (count == nvertex || 2229 vertex->l_sedge == HEAD(vertex)) { 2230 /* prune the tree below this */ 2231 STACK_POP(vertex_stack, l_stack); 2232 vertex->l_state &= ~RECOMPUTE_DONE; 2233 /* update the barrier locks below this! */ 2234 if (vertex->l_sedge != HEAD(vertex) && barrier_found) { 2235 flk_graph_uncolor(gp); 2236 flk_update_barriers(vertex); 2237 } 2238 continue; 2239 } 2240 2241 ep = vertex->l_sedge; 2242 lock = ep->from_vertex; 2243 STACK_PUSH(vertex_stack, lock, l_stack); 2244 lock->l_sedge = FIRST_IN(lock); 2245 vertex->l_sedge = NEXT_IN(ep); 2246 } 2247 2248 } 2249 2250 /* 2251 * Color all reachable vertices from vertex that belongs to topology (here 2252 * those that have RECOMPUTE_LOCK set in their state) and yet uncolored. 2253 * 2254 * Note: we need to use a different stack_link l_stack1 because this is 2255 * called from flk_recompute_dependencies() that already uses a stack with 2256 * l_stack as stack_link. 2257 */ 2258 2259 static int 2260 flk_color_reachables(lock_descriptor_t *vertex) 2261 { 2262 lock_descriptor_t *ver, *lock; 2263 int count; 2264 edge_t *ep; 2265 lock_descriptor_t *vertex_stack; 2266 2267 STACK_INIT(vertex_stack); 2268 2269 STACK_PUSH(vertex_stack, vertex, l_stack1); 2270 count = 0; 2271 while ((ver = STACK_TOP(vertex_stack)) != NULL) { 2272 2273 STACK_POP(vertex_stack, l_stack1); 2274 for (ep = FIRST_ADJ(ver); ep != HEAD(ver); 2275 ep = NEXT_ADJ(ep)) { 2276 lock = ep->to_vertex; 2277 if (COLORED(lock)) 2278 continue; 2279 COLOR(lock); 2280 if (IS_RECOMPUTE(lock)) 2281 count++; 2282 STACK_PUSH(vertex_stack, lock, l_stack1); 2283 } 2284 2285 } 2286 return (count); 2287 } 2288 2289 /* 2290 * Called from flk_recompute_dependencies() this routine decrements 2291 * the barrier count of barrier vertices that are reachable from lock. 2292 */ 2293 2294 static void 2295 flk_update_barriers(lock_descriptor_t *lock) 2296 { 2297 lock_descriptor_t *vertex, *lck; 2298 edge_t *ep; 2299 lock_descriptor_t *vertex_stack; 2300 2301 STACK_INIT(vertex_stack); 2302 2303 STACK_PUSH(vertex_stack, lock, l_stack1); 2304 2305 while ((vertex = STACK_TOP(vertex_stack)) != NULL) { 2306 STACK_POP(vertex_stack, l_stack1); 2307 for (ep = FIRST_IN(vertex); ep != HEAD(vertex); 2308 ep = NEXT_IN(ep)) { 2309 lck = ep->from_vertex; 2310 if (COLORED(lck)) { 2311 if (IS_BARRIER(lck)) { 2312 ASSERT(lck->l_index > 0); 2313 lck->l_index--; 2314 if (lck->l_index == 0) 2315 lck->l_state &= ~BARRIER_LOCK; 2316 } 2317 continue; 2318 } 2319 COLOR(lck); 2320 if (IS_BARRIER(lck)) { 2321 ASSERT(lck->l_index > 0); 2322 lck->l_index--; 2323 if (lck->l_index == 0) 2324 lck->l_state &= ~BARRIER_LOCK; 2325 } 2326 STACK_PUSH(vertex_stack, lck, l_stack1); 2327 } 2328 } 2329 } 2330 2331 /* 2332 * Finds all vertices that are reachable from 'lock' more than once and 2333 * mark them as barrier vertices and increment their barrier count. 2334 * The barrier count is one minus the total number of paths from lock 2335 * to that vertex. 2336 */ 2337 2338 static int 2339 flk_find_barriers(lock_descriptor_t *lock) 2340 { 2341 lock_descriptor_t *vertex, *lck; 2342 int found = 0; 2343 edge_t *ep; 2344 lock_descriptor_t *vertex_stack; 2345 2346 STACK_INIT(vertex_stack); 2347 2348 STACK_PUSH(vertex_stack, lock, l_stack1); 2349 2350 while ((vertex = STACK_TOP(vertex_stack)) != NULL) { 2351 STACK_POP(vertex_stack, l_stack1); 2352 for (ep = FIRST_IN(vertex); ep != HEAD(vertex); 2353 ep = NEXT_IN(ep)) { 2354 lck = ep->from_vertex; 2355 if (COLORED(lck)) { 2356 /* this is a barrier */ 2357 lck->l_state |= BARRIER_LOCK; 2358 /* index will have barrier count */ 2359 lck->l_index++; 2360 if (!found) 2361 found = 1; 2362 continue; 2363 } 2364 COLOR(lck); 2365 lck->l_index = 0; 2366 STACK_PUSH(vertex_stack, lck, l_stack1); 2367 } 2368 } 2369 return (found); 2370 } 2371 2372 /* 2373 * Finds the first lock that is mainly responsible for blocking this 2374 * request. If there is no such lock, request->l_flock.l_type is set to 2375 * F_UNLCK. Otherwise, request->l_flock is filled in with the particulars 2376 * of the blocking lock. 2377 * 2378 * Note: It is possible a request is blocked by a sleeping lock because 2379 * of the fairness policy used in flk_process_request() to construct the 2380 * dependencies. (see comments before flk_process_request()). 2381 */ 2382 2383 static void 2384 flk_get_first_blocking_lock(lock_descriptor_t *request) 2385 { 2386 graph_t *gp = request->l_graph; 2387 vnode_t *vp = request->l_vnode; 2388 lock_descriptor_t *lock, *blocker; 2389 2390 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 2391 blocker = NULL; 2392 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 2393 2394 if (lock) { 2395 do { 2396 if (BLOCKS(lock, request)) { 2397 blocker = lock; 2398 break; 2399 } 2400 lock = lock->l_next; 2401 } while (lock->l_vnode == vp); 2402 } 2403 2404 if (blocker == NULL && request->l_flock.l_type == F_RDLCK) { 2405 /* 2406 * No active lock is blocking this request, but if a read 2407 * lock is requested, it may also get blocked by a waiting 2408 * writer. So search all sleeping locks and see if there is 2409 * a writer waiting. 2410 */ 2411 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 2412 if (lock) { 2413 do { 2414 if (BLOCKS(lock, request)) { 2415 blocker = lock; 2416 break; 2417 } 2418 lock = lock->l_next; 2419 } while (lock->l_vnode == vp); 2420 } 2421 } 2422 2423 if (blocker) { 2424 report_blocker(blocker, request); 2425 } else 2426 request->l_flock.l_type = F_UNLCK; 2427 } 2428 2429 /* 2430 * Get the graph_t structure associated with a vnode. 2431 * If 'initialize' is non-zero, and the graph_t structure for this vnode has 2432 * not yet been initialized, then a new element is allocated and returned. 2433 */ 2434 graph_t * 2435 flk_get_lock_graph(vnode_t *vp, int initialize) 2436 { 2437 graph_t *gp; 2438 graph_t *gp_alloc = NULL; 2439 int index = HASH_INDEX(vp); 2440 2441 if (initialize == FLK_USE_GRAPH) { 2442 mutex_enter(&flock_lock); 2443 gp = lock_graph[index]; 2444 mutex_exit(&flock_lock); 2445 return (gp); 2446 } 2447 2448 ASSERT(initialize == FLK_INIT_GRAPH); 2449 2450 if (lock_graph[index] == NULL) { 2451 2452 gp_alloc = kmem_zalloc(sizeof (graph_t), KM_SLEEP); 2453 2454 /* Initialize the graph */ 2455 2456 gp_alloc->active_locks.l_next = 2457 gp_alloc->active_locks.l_prev = 2458 (lock_descriptor_t *)ACTIVE_HEAD(gp_alloc); 2459 gp_alloc->sleeping_locks.l_next = 2460 gp_alloc->sleeping_locks.l_prev = 2461 (lock_descriptor_t *)SLEEPING_HEAD(gp_alloc); 2462 gp_alloc->index = index; 2463 mutex_init(&gp_alloc->gp_mutex, NULL, MUTEX_DEFAULT, NULL); 2464 } 2465 2466 mutex_enter(&flock_lock); 2467 2468 gp = lock_graph[index]; 2469 2470 /* Recheck the value within flock_lock */ 2471 if (gp == NULL) { 2472 struct flock_globals *fg; 2473 2474 /* We must have previously allocated the graph_t structure */ 2475 ASSERT(gp_alloc != NULL); 2476 lock_graph[index] = gp = gp_alloc; 2477 /* 2478 * The lockmgr status is only needed if KLM is loaded. 2479 */ 2480 if (flock_zone_key != ZONE_KEY_UNINITIALIZED) { 2481 fg = flk_get_globals(); 2482 fg->lockmgr_status[index] = fg->flk_lockmgr_status; 2483 } 2484 } 2485 2486 mutex_exit(&flock_lock); 2487 2488 if ((gp_alloc != NULL) && (gp != gp_alloc)) { 2489 /* There was a race to allocate the graph_t and we lost */ 2490 mutex_destroy(&gp_alloc->gp_mutex); 2491 kmem_free(gp_alloc, sizeof (graph_t)); 2492 } 2493 2494 return (gp); 2495 } 2496 2497 /* 2498 * PSARC case 1997/292 2499 */ 2500 int 2501 cl_flk_has_remote_locks_for_nlmid(vnode_t *vp, int nlmid) 2502 { 2503 lock_descriptor_t *lock; 2504 int result = 0; 2505 graph_t *gp; 2506 int lock_nlmid; 2507 2508 /* 2509 * Check to see if node is booted as a cluster. If not, return. 2510 */ 2511 if ((cluster_bootflags & CLUSTER_BOOTED) == 0) { 2512 return (0); 2513 } 2514 2515 gp = flk_get_lock_graph(vp, FLK_USE_GRAPH); 2516 if (gp == NULL) { 2517 return (0); 2518 } 2519 2520 mutex_enter(&gp->gp_mutex); 2521 2522 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 2523 2524 if (lock) { 2525 while (lock->l_vnode == vp) { 2526 /* get NLM id from sysid */ 2527 lock_nlmid = GETNLMID(lock->l_flock.l_sysid); 2528 2529 /* 2530 * If NLM server request _and_ nlmid of lock matches 2531 * nlmid of argument, then we've found a remote lock. 2532 */ 2533 if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) { 2534 result = 1; 2535 goto done; 2536 } 2537 lock = lock->l_next; 2538 } 2539 } 2540 2541 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 2542 2543 if (lock) { 2544 while (lock->l_vnode == vp) { 2545 /* get NLM id from sysid */ 2546 lock_nlmid = GETNLMID(lock->l_flock.l_sysid); 2547 2548 /* 2549 * If NLM server request _and_ nlmid of lock matches 2550 * nlmid of argument, then we've found a remote lock. 2551 */ 2552 if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) { 2553 result = 1; 2554 goto done; 2555 } 2556 lock = lock->l_next; 2557 } 2558 } 2559 2560 done: 2561 mutex_exit(&gp->gp_mutex); 2562 return (result); 2563 } 2564 2565 /* 2566 * Determine whether there are any locks for the given vnode with a remote 2567 * sysid. Returns zero if not, non-zero if there are. 2568 * 2569 * Note that the return value from this function is potentially invalid 2570 * once it has been returned. The caller is responsible for providing its 2571 * own synchronization mechanism to ensure that the return value is useful 2572 * (e.g., see nfs_lockcompletion()). 2573 */ 2574 int 2575 flk_has_remote_locks(vnode_t *vp) 2576 { 2577 lock_descriptor_t *lock; 2578 int result = 0; 2579 graph_t *gp; 2580 2581 gp = flk_get_lock_graph(vp, FLK_USE_GRAPH); 2582 if (gp == NULL) { 2583 return (0); 2584 } 2585 2586 mutex_enter(&gp->gp_mutex); 2587 2588 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 2589 2590 if (lock) { 2591 while (lock->l_vnode == vp) { 2592 if (IS_REMOTE(lock)) { 2593 result = 1; 2594 goto done; 2595 } 2596 lock = lock->l_next; 2597 } 2598 } 2599 2600 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 2601 2602 if (lock) { 2603 while (lock->l_vnode == vp) { 2604 if (IS_REMOTE(lock)) { 2605 result = 1; 2606 goto done; 2607 } 2608 lock = lock->l_next; 2609 } 2610 } 2611 2612 done: 2613 mutex_exit(&gp->gp_mutex); 2614 return (result); 2615 } 2616 2617 /* 2618 * Determine whether there are any locks for the given vnode with a remote 2619 * sysid matching given sysid. 2620 * Used by the new (open source) NFS Lock Manager (NLM) 2621 */ 2622 int 2623 flk_has_remote_locks_for_sysid(vnode_t *vp, int sysid) 2624 { 2625 lock_descriptor_t *lock; 2626 int result = 0; 2627 graph_t *gp; 2628 2629 if (sysid == 0) 2630 return (0); 2631 2632 gp = flk_get_lock_graph(vp, FLK_USE_GRAPH); 2633 if (gp == NULL) { 2634 return (0); 2635 } 2636 2637 mutex_enter(&gp->gp_mutex); 2638 2639 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 2640 2641 if (lock) { 2642 while (lock->l_vnode == vp) { 2643 if (lock->l_flock.l_sysid == sysid) { 2644 result = 1; 2645 goto done; 2646 } 2647 lock = lock->l_next; 2648 } 2649 } 2650 2651 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 2652 2653 if (lock) { 2654 while (lock->l_vnode == vp) { 2655 if (lock->l_flock.l_sysid == sysid) { 2656 result = 1; 2657 goto done; 2658 } 2659 lock = lock->l_next; 2660 } 2661 } 2662 2663 done: 2664 mutex_exit(&gp->gp_mutex); 2665 return (result); 2666 } 2667 2668 /* 2669 * Determine if there are any locks owned by the given sysid. 2670 * Returns zero if not, non-zero if there are. Note that this return code 2671 * could be derived from flk_get_{sleeping,active}_locks, but this routine 2672 * avoids all the memory allocations of those routines. 2673 * 2674 * This routine has the same synchronization issues as 2675 * flk_has_remote_locks. 2676 */ 2677 2678 int 2679 flk_sysid_has_locks(int sysid, int lck_type) 2680 { 2681 int has_locks = 0; 2682 lock_descriptor_t *lock; 2683 graph_t *gp; 2684 int i; 2685 2686 for (i = 0; i < HASH_SIZE && !has_locks; i++) { 2687 mutex_enter(&flock_lock); 2688 gp = lock_graph[i]; 2689 mutex_exit(&flock_lock); 2690 if (gp == NULL) { 2691 continue; 2692 } 2693 2694 mutex_enter(&gp->gp_mutex); 2695 2696 if (lck_type & FLK_QUERY_ACTIVE) { 2697 for (lock = ACTIVE_HEAD(gp)->l_next; 2698 lock != ACTIVE_HEAD(gp) && !has_locks; 2699 lock = lock->l_next) { 2700 if (lock->l_flock.l_sysid == sysid) 2701 has_locks = 1; 2702 } 2703 } 2704 2705 if (lck_type & FLK_QUERY_SLEEPING) { 2706 for (lock = SLEEPING_HEAD(gp)->l_next; 2707 lock != SLEEPING_HEAD(gp) && !has_locks; 2708 lock = lock->l_next) { 2709 if (lock->l_flock.l_sysid == sysid) 2710 has_locks = 1; 2711 } 2712 } 2713 mutex_exit(&gp->gp_mutex); 2714 } 2715 2716 return (has_locks); 2717 } 2718 2719 2720 /* 2721 * PSARC case 1997/292 2722 * 2723 * Requires: "sysid" is a pair [nlmid, sysid]. The lower half is 16-bit 2724 * quantity, the real sysid generated by the NLM server; the upper half 2725 * identifies the node of the cluster where the NLM server ran. 2726 * This routine is only called by an NLM server running in a cluster. 2727 * Effects: Remove all locks held on behalf of the client identified 2728 * by "sysid." 2729 */ 2730 void 2731 cl_flk_remove_locks_by_sysid(int sysid) 2732 { 2733 graph_t *gp; 2734 int i; 2735 lock_descriptor_t *lock, *nlock; 2736 2737 /* 2738 * Check to see if node is booted as a cluster. If not, return. 2739 */ 2740 if ((cluster_bootflags & CLUSTER_BOOTED) == 0) { 2741 return; 2742 } 2743 2744 ASSERT(sysid != 0); 2745 for (i = 0; i < HASH_SIZE; i++) { 2746 mutex_enter(&flock_lock); 2747 gp = lock_graph[i]; 2748 mutex_exit(&flock_lock); 2749 2750 if (gp == NULL) 2751 continue; 2752 2753 mutex_enter(&gp->gp_mutex); /* get mutex on lock graph */ 2754 2755 /* signal sleeping requests so that they bail out */ 2756 lock = SLEEPING_HEAD(gp)->l_next; 2757 while (lock != SLEEPING_HEAD(gp)) { 2758 nlock = lock->l_next; 2759 if (lock->l_flock.l_sysid == sysid) { 2760 INTERRUPT_WAKEUP(lock); 2761 } 2762 lock = nlock; 2763 } 2764 2765 /* delete active locks */ 2766 lock = ACTIVE_HEAD(gp)->l_next; 2767 while (lock != ACTIVE_HEAD(gp)) { 2768 nlock = lock->l_next; 2769 if (lock->l_flock.l_sysid == sysid) { 2770 flk_delete_active_lock(lock, 0); 2771 flk_wakeup(lock, 1); 2772 flk_free_lock(lock); 2773 } 2774 lock = nlock; 2775 } 2776 mutex_exit(&gp->gp_mutex); /* release mutex on lock graph */ 2777 } 2778 } 2779 2780 /* 2781 * Delete all locks in the system that belongs to the sysid of the request. 2782 */ 2783 2784 static void 2785 flk_delete_locks_by_sysid(lock_descriptor_t *request) 2786 { 2787 int sysid = request->l_flock.l_sysid; 2788 lock_descriptor_t *lock, *nlock; 2789 graph_t *gp; 2790 int i; 2791 2792 ASSERT(MUTEX_HELD(&request->l_graph->gp_mutex)); 2793 ASSERT(sysid != 0); 2794 2795 mutex_exit(&request->l_graph->gp_mutex); 2796 2797 for (i = 0; i < HASH_SIZE; i++) { 2798 mutex_enter(&flock_lock); 2799 gp = lock_graph[i]; 2800 mutex_exit(&flock_lock); 2801 2802 if (gp == NULL) 2803 continue; 2804 2805 mutex_enter(&gp->gp_mutex); 2806 2807 /* signal sleeping requests so that they bail out */ 2808 lock = SLEEPING_HEAD(gp)->l_next; 2809 while (lock != SLEEPING_HEAD(gp)) { 2810 nlock = lock->l_next; 2811 if (lock->l_flock.l_sysid == sysid) { 2812 INTERRUPT_WAKEUP(lock); 2813 } 2814 lock = nlock; 2815 } 2816 2817 /* delete active locks */ 2818 lock = ACTIVE_HEAD(gp)->l_next; 2819 while (lock != ACTIVE_HEAD(gp)) { 2820 nlock = lock->l_next; 2821 if (lock->l_flock.l_sysid == sysid) { 2822 flk_delete_active_lock(lock, 0); 2823 flk_wakeup(lock, 1); 2824 flk_free_lock(lock); 2825 } 2826 lock = nlock; 2827 } 2828 mutex_exit(&gp->gp_mutex); 2829 } 2830 2831 mutex_enter(&request->l_graph->gp_mutex); 2832 } 2833 2834 /* 2835 * Clustering: Deletes PXFS locks 2836 * Effects: Delete all locks on files in the given file system and with the 2837 * given PXFS id. 2838 */ 2839 void 2840 cl_flk_delete_pxfs_locks(struct vfs *vfsp, int pxfsid) 2841 { 2842 lock_descriptor_t *lock, *nlock; 2843 graph_t *gp; 2844 int i; 2845 2846 for (i = 0; i < HASH_SIZE; i++) { 2847 mutex_enter(&flock_lock); 2848 gp = lock_graph[i]; 2849 mutex_exit(&flock_lock); 2850 2851 if (gp == NULL) 2852 continue; 2853 2854 mutex_enter(&gp->gp_mutex); 2855 2856 /* signal sleeping requests so that they bail out */ 2857 lock = SLEEPING_HEAD(gp)->l_next; 2858 while (lock != SLEEPING_HEAD(gp)) { 2859 nlock = lock->l_next; 2860 if (lock->l_vnode->v_vfsp == vfsp) { 2861 ASSERT(IS_PXFS(lock)); 2862 if (GETPXFSID(lock->l_flock.l_sysid) == 2863 pxfsid) { 2864 flk_set_state(lock, 2865 FLK_CANCELLED_STATE); 2866 flk_cancel_sleeping_lock(lock, 1); 2867 } 2868 } 2869 lock = nlock; 2870 } 2871 2872 /* delete active locks */ 2873 lock = ACTIVE_HEAD(gp)->l_next; 2874 while (lock != ACTIVE_HEAD(gp)) { 2875 nlock = lock->l_next; 2876 if (lock->l_vnode->v_vfsp == vfsp) { 2877 ASSERT(IS_PXFS(lock)); 2878 if (GETPXFSID(lock->l_flock.l_sysid) == 2879 pxfsid) { 2880 flk_delete_active_lock(lock, 0); 2881 flk_wakeup(lock, 1); 2882 flk_free_lock(lock); 2883 } 2884 } 2885 lock = nlock; 2886 } 2887 mutex_exit(&gp->gp_mutex); 2888 } 2889 } 2890 2891 /* 2892 * Search for a sleeping lock manager lock which matches exactly this lock 2893 * request; if one is found, fake a signal to cancel it. 2894 * 2895 * Return 1 if a matching lock was found, 0 otherwise. 2896 */ 2897 2898 static int 2899 flk_canceled(lock_descriptor_t *request) 2900 { 2901 lock_descriptor_t *lock, *nlock; 2902 graph_t *gp = request->l_graph; 2903 vnode_t *vp = request->l_vnode; 2904 2905 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 2906 ASSERT(IS_LOCKMGR(request)); 2907 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 2908 2909 if (lock) { 2910 while (lock->l_vnode == vp) { 2911 nlock = lock->l_next; 2912 if (SAME_OWNER(lock, request) && 2913 lock->l_start == request->l_start && 2914 lock->l_end == request->l_end) { 2915 INTERRUPT_WAKEUP(lock); 2916 return (1); 2917 } 2918 lock = nlock; 2919 } 2920 } 2921 return (0); 2922 } 2923 2924 /* 2925 * Remove all non-OFD locks for the vnode belonging to the given pid and sysid. 2926 * That is, since OFD locks are pid-less we'll never match on the incoming 2927 * pid. OFD locks are removed earlier in the close() path via closef() and 2928 * ofdcleanlock(). 2929 */ 2930 void 2931 cleanlocks(vnode_t *vp, pid_t pid, int sysid) 2932 { 2933 graph_t *gp; 2934 lock_descriptor_t *lock, *nlock; 2935 lock_descriptor_t *link_stack; 2936 2937 STACK_INIT(link_stack); 2938 2939 gp = flk_get_lock_graph(vp, FLK_USE_GRAPH); 2940 2941 if (gp == NULL) 2942 return; 2943 mutex_enter(&gp->gp_mutex); 2944 2945 CHECK_SLEEPING_LOCKS(gp); 2946 CHECK_ACTIVE_LOCKS(gp); 2947 2948 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 2949 2950 if (lock) { 2951 do { 2952 nlock = lock->l_next; 2953 if ((lock->l_flock.l_pid == pid || 2954 pid == IGN_PID) && 2955 lock->l_flock.l_sysid == sysid) { 2956 CANCEL_WAKEUP(lock); 2957 } 2958 lock = nlock; 2959 } while (lock->l_vnode == vp); 2960 } 2961 2962 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 2963 2964 if (lock) { 2965 do { 2966 nlock = lock->l_next; 2967 if ((lock->l_flock.l_pid == pid || 2968 pid == IGN_PID) && 2969 lock->l_flock.l_sysid == sysid) { 2970 flk_delete_active_lock(lock, 0); 2971 STACK_PUSH(link_stack, lock, l_stack); 2972 } 2973 lock = nlock; 2974 } while (lock->l_vnode == vp); 2975 } 2976 2977 while ((lock = STACK_TOP(link_stack)) != NULL) { 2978 STACK_POP(link_stack, l_stack); 2979 flk_wakeup(lock, 1); 2980 flk_free_lock(lock); 2981 } 2982 2983 CHECK_SLEEPING_LOCKS(gp); 2984 CHECK_ACTIVE_LOCKS(gp); 2985 CHECK_OWNER_LOCKS(gp, pid, sysid, vp); 2986 mutex_exit(&gp->gp_mutex); 2987 } 2988 2989 2990 /* 2991 * Called from 'fs' read and write routines for files that have mandatory 2992 * locking enabled. 2993 */ 2994 2995 int 2996 chklock(struct vnode *vp, int iomode, u_offset_t offset, ssize_t len, int fmode, 2997 caller_context_t *ct) 2998 { 2999 register int i; 3000 struct flock64 bf; 3001 int error = 0; 3002 3003 bf.l_type = (iomode & FWRITE) ? F_WRLCK : F_RDLCK; 3004 bf.l_whence = 0; 3005 bf.l_start = offset; 3006 bf.l_len = len; 3007 if (ct == NULL) { 3008 bf.l_pid = curproc->p_pid; 3009 bf.l_sysid = 0; 3010 } else { 3011 bf.l_pid = ct->cc_pid; 3012 bf.l_sysid = ct->cc_sysid; 3013 } 3014 i = (fmode & (FNDELAY|FNONBLOCK)) ? INOFLCK : INOFLCK|SLPFLCK; 3015 if ((i = reclock(vp, &bf, i, 0, offset, NULL)) != 0 || 3016 bf.l_type != F_UNLCK) 3017 error = i ? i : EAGAIN; 3018 return (error); 3019 } 3020 3021 /* 3022 * convoff - converts the given data (start, whence) to the 3023 * given whence. 3024 */ 3025 int 3026 convoff(struct vnode *vp, struct flock64 *lckdat, int whence, offset_t offset) 3027 { 3028 int error; 3029 struct vattr vattr; 3030 3031 if ((lckdat->l_whence == 2) || (whence == 2)) { 3032 vattr.va_mask = AT_SIZE; 3033 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) 3034 return (error); 3035 } 3036 3037 switch (lckdat->l_whence) { 3038 case 1: 3039 lckdat->l_start += offset; 3040 break; 3041 case 2: 3042 lckdat->l_start += vattr.va_size; 3043 /* FALLTHRU */ 3044 case 0: 3045 break; 3046 default: 3047 return (EINVAL); 3048 } 3049 3050 if (lckdat->l_start < 0) 3051 return (EINVAL); 3052 3053 switch (whence) { 3054 case 1: 3055 lckdat->l_start -= offset; 3056 break; 3057 case 2: 3058 lckdat->l_start -= vattr.va_size; 3059 /* FALLTHRU */ 3060 case 0: 3061 break; 3062 default: 3063 return (EINVAL); 3064 } 3065 3066 lckdat->l_whence = (short)whence; 3067 return (0); 3068 } 3069 3070 3071 /* proc_graph function definitions */ 3072 3073 /* 3074 * Function checks for deadlock due to the new 'lock'. If deadlock found 3075 * edges of this lock are freed and returned. 3076 */ 3077 3078 static int 3079 flk_check_deadlock(lock_descriptor_t *lock) 3080 { 3081 proc_vertex_t *start_vertex, *pvertex; 3082 proc_vertex_t *dvertex; 3083 proc_edge_t *pep, *ppep; 3084 edge_t *ep, *nep; 3085 proc_vertex_t *process_stack; 3086 3087 /* 3088 * OFD style locks are not associated with any process so there is 3089 * no proc graph for these. Thus we cannot, and do not, do deadlock 3090 * detection. 3091 */ 3092 if (lock->l_ofd != NULL) 3093 return (0); 3094 3095 STACK_INIT(process_stack); 3096 3097 mutex_enter(&flock_lock); 3098 start_vertex = flk_get_proc_vertex(lock); 3099 ASSERT(start_vertex != NULL); 3100 3101 /* construct the edges from this process to other processes */ 3102 3103 ep = FIRST_ADJ(lock); 3104 while (ep != HEAD(lock)) { 3105 proc_vertex_t *adj_proc; 3106 3107 adj_proc = flk_get_proc_vertex(ep->to_vertex); 3108 for (pep = start_vertex->edge; pep != NULL; pep = pep->next) { 3109 if (pep->to_proc == adj_proc) { 3110 ASSERT(pep->refcount); 3111 pep->refcount++; 3112 break; 3113 } 3114 } 3115 if (pep == NULL) { 3116 pep = flk_get_proc_edge(); 3117 pep->to_proc = adj_proc; 3118 pep->refcount = 1; 3119 adj_proc->incount++; 3120 pep->next = start_vertex->edge; 3121 start_vertex->edge = pep; 3122 } 3123 ep = NEXT_ADJ(ep); 3124 } 3125 3126 ep = FIRST_IN(lock); 3127 3128 while (ep != HEAD(lock)) { 3129 proc_vertex_t *in_proc; 3130 3131 in_proc = flk_get_proc_vertex(ep->from_vertex); 3132 3133 for (pep = in_proc->edge; pep != NULL; pep = pep->next) { 3134 if (pep->to_proc == start_vertex) { 3135 ASSERT(pep->refcount); 3136 pep->refcount++; 3137 break; 3138 } 3139 } 3140 if (pep == NULL) { 3141 pep = flk_get_proc_edge(); 3142 pep->to_proc = start_vertex; 3143 pep->refcount = 1; 3144 start_vertex->incount++; 3145 pep->next = in_proc->edge; 3146 in_proc->edge = pep; 3147 } 3148 ep = NEXT_IN(ep); 3149 } 3150 3151 if (start_vertex->incount == 0) { 3152 mutex_exit(&flock_lock); 3153 return (0); 3154 } 3155 3156 flk_proc_graph_uncolor(); 3157 3158 start_vertex->p_sedge = start_vertex->edge; 3159 3160 STACK_PUSH(process_stack, start_vertex, p_stack); 3161 3162 while ((pvertex = STACK_TOP(process_stack)) != NULL) { 3163 for (pep = pvertex->p_sedge; pep != NULL; pep = pep->next) { 3164 dvertex = pep->to_proc; 3165 if (!PROC_ARRIVED(dvertex)) { 3166 STACK_PUSH(process_stack, dvertex, p_stack); 3167 dvertex->p_sedge = dvertex->edge; 3168 PROC_ARRIVE(pvertex); 3169 pvertex->p_sedge = pep->next; 3170 break; 3171 } 3172 if (!PROC_DEPARTED(dvertex)) 3173 goto deadlock; 3174 } 3175 if (pep == NULL) { 3176 PROC_DEPART(pvertex); 3177 STACK_POP(process_stack, p_stack); 3178 } 3179 } 3180 mutex_exit(&flock_lock); 3181 return (0); 3182 3183 deadlock: 3184 3185 /* we remove all lock edges and proc edges */ 3186 3187 ep = FIRST_ADJ(lock); 3188 while (ep != HEAD(lock)) { 3189 proc_vertex_t *adj_proc; 3190 adj_proc = flk_get_proc_vertex(ep->to_vertex); 3191 nep = NEXT_ADJ(ep); 3192 IN_LIST_REMOVE(ep); 3193 ADJ_LIST_REMOVE(ep); 3194 flk_free_edge(ep); 3195 ppep = start_vertex->edge; 3196 for (pep = start_vertex->edge; pep != NULL; ppep = pep, 3197 pep = ppep->next) { 3198 if (pep->to_proc == adj_proc) { 3199 pep->refcount--; 3200 if (pep->refcount == 0) { 3201 if (pep == ppep) { 3202 start_vertex->edge = pep->next; 3203 } else { 3204 ppep->next = pep->next; 3205 } 3206 adj_proc->incount--; 3207 flk_proc_release(adj_proc); 3208 flk_free_proc_edge(pep); 3209 } 3210 break; 3211 } 3212 } 3213 ep = nep; 3214 } 3215 ep = FIRST_IN(lock); 3216 while (ep != HEAD(lock)) { 3217 proc_vertex_t *in_proc; 3218 in_proc = flk_get_proc_vertex(ep->from_vertex); 3219 nep = NEXT_IN(ep); 3220 IN_LIST_REMOVE(ep); 3221 ADJ_LIST_REMOVE(ep); 3222 flk_free_edge(ep); 3223 ppep = in_proc->edge; 3224 for (pep = in_proc->edge; pep != NULL; ppep = pep, 3225 pep = ppep->next) { 3226 if (pep->to_proc == start_vertex) { 3227 pep->refcount--; 3228 if (pep->refcount == 0) { 3229 if (pep == ppep) { 3230 in_proc->edge = pep->next; 3231 } else { 3232 ppep->next = pep->next; 3233 } 3234 start_vertex->incount--; 3235 flk_proc_release(in_proc); 3236 flk_free_proc_edge(pep); 3237 } 3238 break; 3239 } 3240 } 3241 ep = nep; 3242 } 3243 flk_proc_release(start_vertex); 3244 mutex_exit(&flock_lock); 3245 return (1); 3246 } 3247 3248 /* 3249 * Get a proc vertex. If lock's pvertex value gets a correct proc vertex 3250 * from the list we return that, otherwise we allocate one. If necessary, 3251 * we grow the list of vertices also. 3252 */ 3253 3254 static proc_vertex_t * 3255 flk_get_proc_vertex(lock_descriptor_t *lock) 3256 { 3257 int i; 3258 proc_vertex_t *pv; 3259 proc_vertex_t **palloc; 3260 3261 ASSERT(MUTEX_HELD(&flock_lock)); 3262 if (lock->pvertex != -1) { 3263 ASSERT(lock->pvertex >= 0); 3264 pv = pgraph.proc[lock->pvertex]; 3265 if (pv != NULL && PROC_SAME_OWNER(lock, pv)) { 3266 return (pv); 3267 } 3268 } 3269 for (i = 0; i < pgraph.gcount; i++) { 3270 pv = pgraph.proc[i]; 3271 if (pv != NULL && PROC_SAME_OWNER(lock, pv)) { 3272 lock->pvertex = pv->index = i; 3273 return (pv); 3274 } 3275 } 3276 pv = kmem_zalloc(sizeof (struct proc_vertex), KM_SLEEP); 3277 pv->pid = lock->l_flock.l_pid; 3278 pv->sysid = lock->l_flock.l_sysid; 3279 flk_proc_vertex_allocs++; 3280 if (pgraph.free != 0) { 3281 for (i = 0; i < pgraph.gcount; i++) { 3282 if (pgraph.proc[i] == NULL) { 3283 pgraph.proc[i] = pv; 3284 lock->pvertex = pv->index = i; 3285 pgraph.free--; 3286 return (pv); 3287 } 3288 } 3289 } 3290 palloc = kmem_zalloc((pgraph.gcount + PROC_CHUNK) * 3291 sizeof (proc_vertex_t *), KM_SLEEP); 3292 3293 if (pgraph.proc) { 3294 bcopy(pgraph.proc, palloc, 3295 pgraph.gcount * sizeof (proc_vertex_t *)); 3296 3297 kmem_free(pgraph.proc, 3298 pgraph.gcount * sizeof (proc_vertex_t *)); 3299 } 3300 pgraph.proc = palloc; 3301 pgraph.free += (PROC_CHUNK - 1); 3302 pv->index = lock->pvertex = pgraph.gcount; 3303 pgraph.gcount += PROC_CHUNK; 3304 pgraph.proc[pv->index] = pv; 3305 return (pv); 3306 } 3307 3308 /* 3309 * Allocate a proc edge. 3310 */ 3311 3312 static proc_edge_t * 3313 flk_get_proc_edge() 3314 { 3315 proc_edge_t *pep; 3316 3317 pep = kmem_zalloc(sizeof (proc_edge_t), KM_SLEEP); 3318 flk_proc_edge_allocs++; 3319 return (pep); 3320 } 3321 3322 /* 3323 * Free the proc edge. Called whenever its reference count goes to zero. 3324 */ 3325 3326 static void 3327 flk_free_proc_edge(proc_edge_t *pep) 3328 { 3329 ASSERT(pep->refcount == 0); 3330 kmem_free((void *)pep, sizeof (proc_edge_t)); 3331 flk_proc_edge_frees++; 3332 } 3333 3334 /* 3335 * Color the graph explicitly done only when the mark value hits max value. 3336 */ 3337 3338 static void 3339 flk_proc_graph_uncolor() 3340 { 3341 int i; 3342 3343 if (pgraph.mark == UINT_MAX) { 3344 for (i = 0; i < pgraph.gcount; i++) 3345 if (pgraph.proc[i] != NULL) { 3346 pgraph.proc[i]->atime = 0; 3347 pgraph.proc[i]->dtime = 0; 3348 } 3349 pgraph.mark = 1; 3350 } else { 3351 pgraph.mark++; 3352 } 3353 } 3354 3355 /* 3356 * Release the proc vertex iff both there are no in edges and out edges 3357 */ 3358 3359 static void 3360 flk_proc_release(proc_vertex_t *proc) 3361 { 3362 ASSERT(MUTEX_HELD(&flock_lock)); 3363 if (proc->edge == NULL && proc->incount == 0) { 3364 pgraph.proc[proc->index] = NULL; 3365 pgraph.free++; 3366 kmem_free(proc, sizeof (proc_vertex_t)); 3367 flk_proc_vertex_frees++; 3368 } 3369 } 3370 3371 /* 3372 * Updates process graph to reflect change in a lock_graph. 3373 * Note: We should call this function only after we have a correctly 3374 * recomputed lock graph. Otherwise we might miss a deadlock detection. 3375 * eg: in function flk_relation() we call this function after flk_recompute_ 3376 * dependencies() otherwise if a process tries to lock a vnode hashed 3377 * into another graph it might sleep for ever. 3378 */ 3379 3380 static void 3381 flk_update_proc_graph(edge_t *ep, int delete) 3382 { 3383 proc_vertex_t *toproc, *fromproc; 3384 proc_edge_t *pep, *prevpep; 3385 3386 mutex_enter(&flock_lock); 3387 3388 /* 3389 * OFD style locks are not associated with any process so there is 3390 * no proc graph for these. 3391 */ 3392 if (ep->from_vertex->l_ofd != NULL) { 3393 mutex_exit(&flock_lock); 3394 return; 3395 } 3396 3397 toproc = flk_get_proc_vertex(ep->to_vertex); 3398 fromproc = flk_get_proc_vertex(ep->from_vertex); 3399 3400 if (!delete) 3401 goto add; 3402 pep = prevpep = fromproc->edge; 3403 3404 ASSERT(pep != NULL); 3405 while (pep != NULL) { 3406 if (pep->to_proc == toproc) { 3407 ASSERT(pep->refcount > 0); 3408 pep->refcount--; 3409 if (pep->refcount == 0) { 3410 if (pep == prevpep) { 3411 fromproc->edge = pep->next; 3412 } else { 3413 prevpep->next = pep->next; 3414 } 3415 toproc->incount--; 3416 flk_proc_release(toproc); 3417 flk_free_proc_edge(pep); 3418 } 3419 break; 3420 } 3421 prevpep = pep; 3422 pep = pep->next; 3423 } 3424 flk_proc_release(fromproc); 3425 mutex_exit(&flock_lock); 3426 return; 3427 add: 3428 3429 pep = fromproc->edge; 3430 3431 while (pep != NULL) { 3432 if (pep->to_proc == toproc) { 3433 ASSERT(pep->refcount > 0); 3434 pep->refcount++; 3435 break; 3436 } 3437 pep = pep->next; 3438 } 3439 if (pep == NULL) { 3440 pep = flk_get_proc_edge(); 3441 pep->to_proc = toproc; 3442 pep->refcount = 1; 3443 toproc->incount++; 3444 pep->next = fromproc->edge; 3445 fromproc->edge = pep; 3446 } 3447 mutex_exit(&flock_lock); 3448 } 3449 3450 /* 3451 * Set the control status for lock manager requests. 3452 * 3453 */ 3454 3455 /* 3456 * PSARC case 1997/292 3457 * 3458 * Requires: "nlmid" must be >= 1 and <= clconf_maximum_nodeid(). 3459 * Effects: Set the state of the NLM server identified by "nlmid" 3460 * in the NLM registry to state "nlm_state." 3461 * Raises exception no_such_nlm if "nlmid" doesn't identify a known 3462 * NLM server to this LLM. 3463 * Note that when this routine is called with NLM_SHUTTING_DOWN there 3464 * may be locks requests that have gotten started but not finished. In 3465 * particular, there may be blocking requests that are in the callback code 3466 * before sleeping (so they're not holding the lock for the graph). If 3467 * such a thread reacquires the graph's lock (to go to sleep) after 3468 * NLM state in the NLM registry is set to a non-up value, 3469 * it will notice the status and bail out. If the request gets 3470 * granted before the thread can check the NLM registry, let it 3471 * continue normally. It will get flushed when we are called with NLM_DOWN. 3472 * 3473 * Modifies: nlm_reg_obj (global) 3474 * Arguments: 3475 * nlmid (IN): id uniquely identifying an NLM server 3476 * nlm_state (IN): NLM server state to change "nlmid" to 3477 */ 3478 void 3479 cl_flk_set_nlm_status(int nlmid, flk_nlm_status_t nlm_state) 3480 { 3481 /* 3482 * Check to see if node is booted as a cluster. If not, return. 3483 */ 3484 if ((cluster_bootflags & CLUSTER_BOOTED) == 0) { 3485 return; 3486 } 3487 3488 /* 3489 * Check for development/debugging. It is possible to boot a node 3490 * in non-cluster mode, and then run a special script, currently 3491 * available only to developers, to bring up the node as part of a 3492 * cluster. The problem is that running such a script does not 3493 * result in the routine flk_init() being called and hence global array 3494 * nlm_reg_status is NULL. The NLM thinks it's in cluster mode, 3495 * but the LLM needs to do an additional check to see if the global 3496 * array has been created or not. If nlm_reg_status is NULL, then 3497 * return, else continue. 3498 */ 3499 if (nlm_reg_status == NULL) { 3500 return; 3501 } 3502 3503 ASSERT(nlmid <= nlm_status_size && nlmid >= 0); 3504 mutex_enter(&nlm_reg_lock); 3505 3506 if (FLK_REGISTRY_IS_NLM_UNKNOWN(nlm_reg_status, nlmid)) { 3507 /* 3508 * If the NLM server "nlmid" is unknown in the NLM registry, 3509 * add it to the registry in the nlm shutting down state. 3510 */ 3511 FLK_REGISTRY_CHANGE_NLM_STATE(nlm_reg_status, nlmid, 3512 FLK_NLM_SHUTTING_DOWN); 3513 } else { 3514 /* 3515 * Change the state of the NLM server identified by "nlmid" 3516 * in the NLM registry to the argument "nlm_state." 3517 */ 3518 FLK_REGISTRY_CHANGE_NLM_STATE(nlm_reg_status, nlmid, 3519 nlm_state); 3520 } 3521 3522 /* 3523 * The reason we must register the NLM server that is shutting down 3524 * with an LLM that doesn't already know about it (never sent a lock 3525 * request) is to handle correctly a race between shutdown and a new 3526 * lock request. Suppose that a shutdown request from the NLM server 3527 * invokes this routine at the LLM, and a thread is spawned to 3528 * service the request. Now suppose a new lock request is in 3529 * progress and has already passed the first line of defense in 3530 * reclock(), which denies new locks requests from NLM servers 3531 * that are not in the NLM_UP state. After the current routine 3532 * is invoked for both phases of shutdown, the routine will return, 3533 * having done nothing, and the lock request will proceed and 3534 * probably be granted. The problem is that the shutdown was ignored 3535 * by the lock request because there was no record of that NLM server 3536 * shutting down. We will be in the peculiar position of thinking 3537 * that we've shutdown the NLM server and all locks at all LLMs have 3538 * been discarded, but in fact there's still one lock held. 3539 * The solution is to record the existence of NLM server and change 3540 * its state immediately to NLM_SHUTTING_DOWN. The lock request in 3541 * progress may proceed because the next phase NLM_DOWN will catch 3542 * this lock and discard it. 3543 */ 3544 mutex_exit(&nlm_reg_lock); 3545 3546 switch (nlm_state) { 3547 case FLK_NLM_UP: 3548 /* 3549 * Change the NLM state of all locks still held on behalf of 3550 * the NLM server identified by "nlmid" to NLM_UP. 3551 */ 3552 cl_flk_change_nlm_state_all_locks(nlmid, FLK_NLM_UP); 3553 break; 3554 3555 case FLK_NLM_SHUTTING_DOWN: 3556 /* 3557 * Wake up all sleeping locks for the NLM server identified 3558 * by "nlmid." Note that eventually all woken threads will 3559 * have their lock requests cancelled and descriptors 3560 * removed from the sleeping lock list. Note that the NLM 3561 * server state associated with each lock descriptor is 3562 * changed to FLK_NLM_SHUTTING_DOWN. 3563 */ 3564 cl_flk_wakeup_sleeping_nlm_locks(nlmid); 3565 break; 3566 3567 case FLK_NLM_DOWN: 3568 /* 3569 * Discard all active, granted locks for this NLM server 3570 * identified by "nlmid." 3571 */ 3572 cl_flk_unlock_nlm_granted(nlmid); 3573 break; 3574 3575 default: 3576 panic("cl_set_nlm_status: bad status (%d)", nlm_state); 3577 } 3578 } 3579 3580 /* 3581 * Set the control status for lock manager requests. 3582 * 3583 * Note that when this routine is called with FLK_WAKEUP_SLEEPERS, there 3584 * may be locks requests that have gotten started but not finished. In 3585 * particular, there may be blocking requests that are in the callback code 3586 * before sleeping (so they're not holding the lock for the graph). If 3587 * such a thread reacquires the graph's lock (to go to sleep) after 3588 * flk_lockmgr_status is set to a non-up value, it will notice the status 3589 * and bail out. If the request gets granted before the thread can check 3590 * flk_lockmgr_status, let it continue normally. It will get flushed when 3591 * we are called with FLK_LOCKMGR_DOWN. 3592 */ 3593 3594 void 3595 flk_set_lockmgr_status(flk_lockmgr_status_t status) 3596 { 3597 int i; 3598 graph_t *gp; 3599 struct flock_globals *fg; 3600 3601 fg = flk_get_globals(); 3602 ASSERT(fg != NULL); 3603 3604 mutex_enter(&flock_lock); 3605 fg->flk_lockmgr_status = status; 3606 mutex_exit(&flock_lock); 3607 3608 /* 3609 * If the lock manager is coming back up, all that's needed is to 3610 * propagate this information to the graphs. If the lock manager 3611 * is going down, additional action is required, and each graph's 3612 * copy of the state is updated atomically with this other action. 3613 */ 3614 switch (status) { 3615 case FLK_LOCKMGR_UP: 3616 for (i = 0; i < HASH_SIZE; i++) { 3617 mutex_enter(&flock_lock); 3618 gp = lock_graph[i]; 3619 mutex_exit(&flock_lock); 3620 if (gp == NULL) 3621 continue; 3622 mutex_enter(&gp->gp_mutex); 3623 fg->lockmgr_status[i] = status; 3624 mutex_exit(&gp->gp_mutex); 3625 } 3626 break; 3627 case FLK_WAKEUP_SLEEPERS: 3628 wakeup_sleeping_lockmgr_locks(fg); 3629 break; 3630 case FLK_LOCKMGR_DOWN: 3631 unlock_lockmgr_granted(fg); 3632 break; 3633 default: 3634 panic("flk_set_lockmgr_status: bad status (%d)", status); 3635 break; 3636 } 3637 } 3638 3639 /* 3640 * This routine returns all the locks that are active or sleeping and are 3641 * associated with a particular set of identifiers. If lock_state != 0, then 3642 * only locks that match the lock_state are returned. If lock_state == 0, then 3643 * all locks are returned. If pid == NOPID, the pid is ignored. If 3644 * use_sysid is FALSE, then the sysid is ignored. If vp is NULL, then the 3645 * vnode pointer is ignored. 3646 * 3647 * A list containing the vnode pointer and an flock structure 3648 * describing the lock is returned. Each element in the list is 3649 * dynamically allocated and must be freed by the caller. The 3650 * last item in the list is denoted by a NULL value in the ll_next 3651 * field. 3652 * 3653 * The vnode pointers returned are held. The caller is responsible 3654 * for releasing these. Note that the returned list is only a snapshot of 3655 * the current lock information, and that it is a snapshot of a moving 3656 * target (only one graph is locked at a time). 3657 */ 3658 3659 locklist_t * 3660 get_lock_list(int list_type, int lock_state, int sysid, boolean_t use_sysid, 3661 pid_t pid, const vnode_t *vp, zoneid_t zoneid) 3662 { 3663 lock_descriptor_t *lock; 3664 lock_descriptor_t *graph_head; 3665 locklist_t listhead; 3666 locklist_t *llheadp; 3667 locklist_t *llp; 3668 locklist_t *lltp; 3669 graph_t *gp; 3670 int i; 3671 int first_index; /* graph index */ 3672 int num_indexes; /* graph index */ 3673 3674 ASSERT((list_type == FLK_ACTIVE_STATE) || 3675 (list_type == FLK_SLEEPING_STATE)); 3676 3677 /* 3678 * Get a pointer to something to use as a list head while building 3679 * the rest of the list. 3680 */ 3681 llheadp = &listhead; 3682 lltp = llheadp; 3683 llheadp->ll_next = (locklist_t *)NULL; 3684 3685 /* Figure out which graphs we want to look at. */ 3686 if (vp == NULL) { 3687 first_index = 0; 3688 num_indexes = HASH_SIZE; 3689 } else { 3690 first_index = HASH_INDEX(vp); 3691 num_indexes = 1; 3692 } 3693 3694 for (i = first_index; i < first_index + num_indexes; i++) { 3695 mutex_enter(&flock_lock); 3696 gp = lock_graph[i]; 3697 mutex_exit(&flock_lock); 3698 if (gp == NULL) { 3699 continue; 3700 } 3701 3702 mutex_enter(&gp->gp_mutex); 3703 graph_head = (list_type == FLK_ACTIVE_STATE) ? 3704 ACTIVE_HEAD(gp) : SLEEPING_HEAD(gp); 3705 for (lock = graph_head->l_next; 3706 lock != graph_head; 3707 lock = lock->l_next) { 3708 if (use_sysid && lock->l_flock.l_sysid != sysid) 3709 continue; 3710 if (pid != NOPID && lock->l_flock.l_pid != pid) 3711 continue; 3712 if (vp != NULL && lock->l_vnode != vp) 3713 continue; 3714 if (lock_state && !(lock_state & lock->l_state)) 3715 continue; 3716 if (zoneid != lock->l_zoneid && zoneid != ALL_ZONES) 3717 continue; 3718 /* 3719 * A matching lock was found. Allocate 3720 * space for a new locklist entry and fill 3721 * it in. 3722 */ 3723 llp = kmem_alloc(sizeof (locklist_t), KM_SLEEP); 3724 lltp->ll_next = llp; 3725 VN_HOLD(lock->l_vnode); 3726 llp->ll_vp = lock->l_vnode; 3727 create_flock(lock, &(llp->ll_flock)); 3728 llp->ll_next = (locklist_t *)NULL; 3729 lltp = llp; 3730 } 3731 mutex_exit(&gp->gp_mutex); 3732 } 3733 3734 llp = llheadp->ll_next; 3735 return (llp); 3736 } 3737 3738 /* 3739 * These two functions are simply interfaces to get_lock_list. They return 3740 * a list of sleeping or active locks for the given sysid and pid. See 3741 * get_lock_list for details. 3742 * 3743 * In either case we don't particularly care to specify the zone of interest; 3744 * the sysid-space is global across zones, so the sysid will map to exactly one 3745 * zone, and we'll return information for that zone. 3746 */ 3747 3748 locklist_t * 3749 flk_get_sleeping_locks(int sysid, pid_t pid) 3750 { 3751 return (get_lock_list(FLK_SLEEPING_STATE, 0, sysid, B_TRUE, pid, NULL, 3752 ALL_ZONES)); 3753 } 3754 3755 locklist_t * 3756 flk_get_active_locks(int sysid, pid_t pid) 3757 { 3758 return (get_lock_list(FLK_ACTIVE_STATE, 0, sysid, B_TRUE, pid, NULL, 3759 ALL_ZONES)); 3760 } 3761 3762 /* 3763 * Another interface to get_lock_list. This one returns all the active 3764 * locks for a given vnode. Again, see get_lock_list for details. 3765 * 3766 * We don't need to specify which zone's locks we're interested in. The matter 3767 * would only be interesting if the vnode belonged to NFS, and NFS vnodes can't 3768 * be used by multiple zones, so the list of locks will all be from the right 3769 * zone. 3770 */ 3771 3772 locklist_t * 3773 flk_active_locks_for_vp(const vnode_t *vp) 3774 { 3775 return (get_lock_list(FLK_ACTIVE_STATE, 0, 0, B_FALSE, NOPID, vp, 3776 ALL_ZONES)); 3777 } 3778 3779 /* 3780 * Another interface to get_lock_list. This one returns all the active 3781 * nbmand locks for a given vnode. Again, see get_lock_list for details. 3782 * 3783 * See the comment for flk_active_locks_for_vp() for why we don't care to 3784 * specify the particular zone of interest. 3785 */ 3786 locklist_t * 3787 flk_active_nbmand_locks_for_vp(const vnode_t *vp) 3788 { 3789 return (get_lock_list(FLK_ACTIVE_STATE, NBMAND_LOCK, 0, B_FALSE, 3790 NOPID, vp, ALL_ZONES)); 3791 } 3792 3793 /* 3794 * Another interface to get_lock_list. This one returns all the active 3795 * nbmand locks for a given pid. Again, see get_lock_list for details. 3796 * 3797 * The zone doesn't need to be specified here; the locks held by a 3798 * particular process will either be local (ie, non-NFS) or from the zone 3799 * the process is executing in. This is because other parts of the system 3800 * ensure that an NFS vnode can't be used in a zone other than that in 3801 * which it was opened. 3802 */ 3803 locklist_t * 3804 flk_active_nbmand_locks(pid_t pid) 3805 { 3806 return (get_lock_list(FLK_ACTIVE_STATE, NBMAND_LOCK, 0, B_FALSE, 3807 pid, NULL, ALL_ZONES)); 3808 } 3809 3810 /* 3811 * Free up all entries in the locklist. 3812 */ 3813 void 3814 flk_free_locklist(locklist_t *llp) 3815 { 3816 locklist_t *next_llp; 3817 3818 while (llp) { 3819 next_llp = llp->ll_next; 3820 VN_RELE(llp->ll_vp); 3821 kmem_free(llp, sizeof (*llp)); 3822 llp = next_llp; 3823 } 3824 } 3825 3826 static void 3827 cl_flk_change_nlm_state_all_locks(int nlmid, flk_nlm_status_t nlm_state) 3828 { 3829 /* 3830 * For each graph "lg" in the hash table lock_graph do 3831 * a. Get the list of sleeping locks 3832 * b. For each lock descriptor in the list do 3833 * i. If the requested lock is an NLM server request AND 3834 * the nlmid is the same as the routine argument then 3835 * change the lock descriptor's state field to 3836 * "nlm_state." 3837 * c. Get the list of active locks 3838 * d. For each lock descriptor in the list do 3839 * i. If the requested lock is an NLM server request AND 3840 * the nlmid is the same as the routine argument then 3841 * change the lock descriptor's state field to 3842 * "nlm_state." 3843 */ 3844 3845 int i; 3846 graph_t *gp; /* lock graph */ 3847 lock_descriptor_t *lock; /* lock */ 3848 lock_descriptor_t *nlock = NULL; /* next lock */ 3849 int lock_nlmid; 3850 3851 for (i = 0; i < HASH_SIZE; i++) { 3852 mutex_enter(&flock_lock); 3853 gp = lock_graph[i]; 3854 mutex_exit(&flock_lock); 3855 if (gp == NULL) { 3856 continue; 3857 } 3858 3859 /* Get list of sleeping locks in current lock graph. */ 3860 mutex_enter(&gp->gp_mutex); 3861 for (lock = SLEEPING_HEAD(gp)->l_next; 3862 lock != SLEEPING_HEAD(gp); 3863 lock = nlock) { 3864 nlock = lock->l_next; 3865 /* get NLM id */ 3866 lock_nlmid = GETNLMID(lock->l_flock.l_sysid); 3867 3868 /* 3869 * If NLM server request AND nlmid of lock matches 3870 * nlmid of argument, then set the NLM state of the 3871 * lock to "nlm_state." 3872 */ 3873 if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) { 3874 SET_NLM_STATE(lock, nlm_state); 3875 } 3876 } 3877 3878 /* Get list of active locks in current lock graph. */ 3879 for (lock = ACTIVE_HEAD(gp)->l_next; 3880 lock != ACTIVE_HEAD(gp); 3881 lock = nlock) { 3882 nlock = lock->l_next; 3883 /* get NLM id */ 3884 lock_nlmid = GETNLMID(lock->l_flock.l_sysid); 3885 3886 /* 3887 * If NLM server request AND nlmid of lock matches 3888 * nlmid of argument, then set the NLM state of the 3889 * lock to "nlm_state." 3890 */ 3891 if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) { 3892 ASSERT(IS_ACTIVE(lock)); 3893 SET_NLM_STATE(lock, nlm_state); 3894 } 3895 } 3896 mutex_exit(&gp->gp_mutex); 3897 } 3898 } 3899 3900 /* 3901 * Requires: "nlmid" >= 1 and <= clconf_maximum_nodeid(). 3902 * Effects: Find all sleeping lock manager requests _only_ for the NLM server 3903 * identified by "nlmid." Poke those lock requests. 3904 */ 3905 static void 3906 cl_flk_wakeup_sleeping_nlm_locks(int nlmid) 3907 { 3908 lock_descriptor_t *lock; 3909 lock_descriptor_t *nlock = NULL; /* next lock */ 3910 int i; 3911 graph_t *gp; 3912 int lock_nlmid; 3913 3914 for (i = 0; i < HASH_SIZE; i++) { 3915 mutex_enter(&flock_lock); 3916 gp = lock_graph[i]; 3917 mutex_exit(&flock_lock); 3918 if (gp == NULL) { 3919 continue; 3920 } 3921 3922 mutex_enter(&gp->gp_mutex); 3923 for (lock = SLEEPING_HEAD(gp)->l_next; 3924 lock != SLEEPING_HEAD(gp); 3925 lock = nlock) { 3926 nlock = lock->l_next; 3927 /* 3928 * If NLM server request _and_ nlmid of lock matches 3929 * nlmid of argument, then set the NLM state of the 3930 * lock to NLM_SHUTTING_DOWN, and wake up sleeping 3931 * request. 3932 */ 3933 if (IS_LOCKMGR(lock)) { 3934 /* get NLM id */ 3935 lock_nlmid = 3936 GETNLMID(lock->l_flock.l_sysid); 3937 if (nlmid == lock_nlmid) { 3938 SET_NLM_STATE(lock, 3939 FLK_NLM_SHUTTING_DOWN); 3940 INTERRUPT_WAKEUP(lock); 3941 } 3942 } 3943 } 3944 mutex_exit(&gp->gp_mutex); 3945 } 3946 } 3947 3948 /* 3949 * Requires: "nlmid" >= 1 and <= clconf_maximum_nodeid() 3950 * Effects: Find all active (granted) lock manager locks _only_ for the 3951 * NLM server identified by "nlmid" and release them. 3952 */ 3953 static void 3954 cl_flk_unlock_nlm_granted(int nlmid) 3955 { 3956 lock_descriptor_t *lock; 3957 lock_descriptor_t *nlock = NULL; /* next lock */ 3958 int i; 3959 graph_t *gp; 3960 int lock_nlmid; 3961 3962 for (i = 0; i < HASH_SIZE; i++) { 3963 mutex_enter(&flock_lock); 3964 gp = lock_graph[i]; 3965 mutex_exit(&flock_lock); 3966 if (gp == NULL) { 3967 continue; 3968 } 3969 3970 mutex_enter(&gp->gp_mutex); 3971 for (lock = ACTIVE_HEAD(gp)->l_next; 3972 lock != ACTIVE_HEAD(gp); 3973 lock = nlock) { 3974 nlock = lock->l_next; 3975 ASSERT(IS_ACTIVE(lock)); 3976 3977 /* 3978 * If it's an NLM server request _and_ nlmid of 3979 * the lock matches nlmid of argument, then 3980 * remove the active lock the list, wakup blocked 3981 * threads, and free the storage for the lock. 3982 * Note that there's no need to mark the NLM state 3983 * of this lock to NLM_DOWN because the lock will 3984 * be deleted anyway and its storage freed. 3985 */ 3986 if (IS_LOCKMGR(lock)) { 3987 /* get NLM id */ 3988 lock_nlmid = GETNLMID(lock->l_flock.l_sysid); 3989 if (nlmid == lock_nlmid) { 3990 flk_delete_active_lock(lock, 0); 3991 flk_wakeup(lock, 1); 3992 flk_free_lock(lock); 3993 } 3994 } 3995 } 3996 mutex_exit(&gp->gp_mutex); 3997 } 3998 } 3999 4000 /* 4001 * Find all sleeping lock manager requests and poke them. 4002 */ 4003 static void 4004 wakeup_sleeping_lockmgr_locks(struct flock_globals *fg) 4005 { 4006 lock_descriptor_t *lock; 4007 lock_descriptor_t *nlock = NULL; /* next lock */ 4008 int i; 4009 graph_t *gp; 4010 zoneid_t zoneid = getzoneid(); 4011 4012 for (i = 0; i < HASH_SIZE; i++) { 4013 mutex_enter(&flock_lock); 4014 gp = lock_graph[i]; 4015 mutex_exit(&flock_lock); 4016 if (gp == NULL) { 4017 continue; 4018 } 4019 4020 mutex_enter(&gp->gp_mutex); 4021 fg->lockmgr_status[i] = FLK_WAKEUP_SLEEPERS; 4022 for (lock = SLEEPING_HEAD(gp)->l_next; 4023 lock != SLEEPING_HEAD(gp); 4024 lock = nlock) { 4025 nlock = lock->l_next; 4026 if (IS_LOCKMGR(lock) && lock->l_zoneid == zoneid) { 4027 INTERRUPT_WAKEUP(lock); 4028 } 4029 } 4030 mutex_exit(&gp->gp_mutex); 4031 } 4032 } 4033 4034 4035 /* 4036 * Find all active (granted) lock manager locks and release them. 4037 */ 4038 static void 4039 unlock_lockmgr_granted(struct flock_globals *fg) 4040 { 4041 lock_descriptor_t *lock; 4042 lock_descriptor_t *nlock = NULL; /* next lock */ 4043 int i; 4044 graph_t *gp; 4045 zoneid_t zoneid = getzoneid(); 4046 4047 for (i = 0; i < HASH_SIZE; i++) { 4048 mutex_enter(&flock_lock); 4049 gp = lock_graph[i]; 4050 mutex_exit(&flock_lock); 4051 if (gp == NULL) { 4052 continue; 4053 } 4054 4055 mutex_enter(&gp->gp_mutex); 4056 fg->lockmgr_status[i] = FLK_LOCKMGR_DOWN; 4057 for (lock = ACTIVE_HEAD(gp)->l_next; 4058 lock != ACTIVE_HEAD(gp); 4059 lock = nlock) { 4060 nlock = lock->l_next; 4061 if (IS_LOCKMGR(lock) && lock->l_zoneid == zoneid) { 4062 ASSERT(IS_ACTIVE(lock)); 4063 flk_delete_active_lock(lock, 0); 4064 flk_wakeup(lock, 1); 4065 flk_free_lock(lock); 4066 } 4067 } 4068 mutex_exit(&gp->gp_mutex); 4069 } 4070 } 4071 4072 4073 /* 4074 * Wait until a lock is granted, cancelled, or interrupted. 4075 */ 4076 4077 static void 4078 wait_for_lock(lock_descriptor_t *request) 4079 { 4080 graph_t *gp = request->l_graph; 4081 4082 ASSERT(MUTEX_HELD(&gp->gp_mutex)); 4083 4084 while (!(IS_GRANTED(request)) && !(IS_CANCELLED(request)) && 4085 !(IS_INTERRUPTED(request))) { 4086 if (!cv_wait_sig(&request->l_cv, &gp->gp_mutex)) { 4087 flk_set_state(request, FLK_INTERRUPTED_STATE); 4088 request->l_state |= INTERRUPTED_LOCK; 4089 } 4090 } 4091 } 4092 4093 /* 4094 * Create an flock structure from the existing lock information 4095 * 4096 * This routine is used to create flock structures for the lock manager 4097 * to use in a reclaim request. Since the lock was originated on this 4098 * host, it must be conforming to UNIX semantics, so no checking is 4099 * done to make sure it falls within the lower half of the 32-bit range. 4100 */ 4101 4102 static void 4103 create_flock(lock_descriptor_t *lp, flock64_t *flp) 4104 { 4105 ASSERT(lp->l_end == MAX_U_OFFSET_T || lp->l_end <= MAXEND); 4106 ASSERT(lp->l_end >= lp->l_start); 4107 4108 flp->l_type = lp->l_type; 4109 flp->l_whence = 0; 4110 flp->l_start = lp->l_start; 4111 flp->l_len = (lp->l_end == MAX_U_OFFSET_T) ? 0 : 4112 (lp->l_end - lp->l_start + 1); 4113 flp->l_sysid = lp->l_flock.l_sysid; 4114 flp->l_pid = lp->l_flock.l_pid; 4115 } 4116 4117 /* 4118 * Convert flock_t data describing a lock range into unsigned long starting 4119 * and ending points, which are put into lock_request. Returns 0 or an 4120 * errno value. 4121 */ 4122 4123 int 4124 flk_convert_lock_data(vnode_t *vp, flock64_t *flp, 4125 u_offset_t *start, u_offset_t *end, offset_t offset) 4126 { 4127 struct vattr vattr; 4128 int error; 4129 4130 /* 4131 * Determine the starting point of the request 4132 */ 4133 switch (flp->l_whence) { 4134 case 0: /* SEEK_SET */ 4135 *start = (u_offset_t)flp->l_start; 4136 break; 4137 case 1: /* SEEK_CUR */ 4138 *start = (u_offset_t)(flp->l_start + offset); 4139 break; 4140 case 2: /* SEEK_END */ 4141 vattr.va_mask = AT_SIZE; 4142 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) 4143 return (error); 4144 *start = (u_offset_t)(flp->l_start + vattr.va_size); 4145 break; 4146 default: 4147 return (EINVAL); 4148 } 4149 4150 /* 4151 * Determine the range covered by the request. 4152 */ 4153 if (flp->l_len == 0) 4154 *end = MAX_U_OFFSET_T; 4155 else if ((offset_t)flp->l_len > 0) { 4156 *end = (u_offset_t)(*start + (flp->l_len - 1)); 4157 } else { 4158 /* 4159 * Negative length; why do we even allow this ? 4160 * Because this allows easy specification of 4161 * the last n bytes of the file. 4162 */ 4163 *end = *start; 4164 *start += (u_offset_t)flp->l_len; 4165 (*start)++; 4166 } 4167 return (0); 4168 } 4169 4170 /* 4171 * Check the validity of lock data. This can used by the NFS 4172 * frlock routines to check data before contacting the server. The 4173 * server must support semantics that aren't as restrictive as 4174 * the UNIX API, so the NFS client is required to check. 4175 * The maximum is now passed in by the caller. 4176 */ 4177 4178 int 4179 flk_check_lock_data(u_offset_t start, u_offset_t end, offset_t max) 4180 { 4181 /* 4182 * The end (length) for local locking should never be greater 4183 * than MAXEND. However, the representation for 4184 * the entire file is MAX_U_OFFSET_T. 4185 */ 4186 if ((start > max) || 4187 ((end > max) && (end != MAX_U_OFFSET_T))) { 4188 return (EINVAL); 4189 } 4190 if (start > end) { 4191 return (EINVAL); 4192 } 4193 return (0); 4194 } 4195 4196 /* 4197 * Fill in request->l_flock with information about the lock blocking the 4198 * request. The complexity here is that lock manager requests are allowed 4199 * to see into the upper part of the 32-bit address range, whereas local 4200 * requests are only allowed to see signed values. 4201 * 4202 * What should be done when "blocker" is a lock manager lock that uses the 4203 * upper portion of the 32-bit range, but "request" is local? Since the 4204 * request has already been determined to have been blocked by the blocker, 4205 * at least some portion of "blocker" must be in the range of the request, 4206 * or the request extends to the end of file. For the first case, the 4207 * portion in the lower range is returned with the indication that it goes 4208 * "to EOF." For the second case, the last byte of the lower range is 4209 * returned with the indication that it goes "to EOF." 4210 */ 4211 4212 static void 4213 report_blocker(lock_descriptor_t *blocker, lock_descriptor_t *request) 4214 { 4215 flock64_t *flrp; /* l_flock portion of request */ 4216 4217 ASSERT(blocker != NULL); 4218 4219 flrp = &request->l_flock; 4220 flrp->l_whence = 0; 4221 flrp->l_type = blocker->l_type; 4222 flrp->l_pid = blocker->l_flock.l_pid; 4223 flrp->l_sysid = blocker->l_flock.l_sysid; 4224 request->l_ofd = blocker->l_ofd; 4225 4226 if (IS_LOCKMGR(request)) { 4227 flrp->l_start = blocker->l_start; 4228 if (blocker->l_end == MAX_U_OFFSET_T) 4229 flrp->l_len = 0; 4230 else 4231 flrp->l_len = blocker->l_end - blocker->l_start + 1; 4232 } else { 4233 if (blocker->l_start > MAXEND) { 4234 flrp->l_start = MAXEND; 4235 flrp->l_len = 0; 4236 } else { 4237 flrp->l_start = blocker->l_start; 4238 if (blocker->l_end == MAX_U_OFFSET_T) 4239 flrp->l_len = 0; 4240 else 4241 flrp->l_len = blocker->l_end - 4242 blocker->l_start + 1; 4243 } 4244 } 4245 } 4246 4247 /* 4248 * PSARC case 1997/292 4249 */ 4250 /* 4251 * This is the public routine exported by flock.h. 4252 */ 4253 void 4254 cl_flk_change_nlm_state_to_unknown(int nlmid) 4255 { 4256 /* 4257 * Check to see if node is booted as a cluster. If not, return. 4258 */ 4259 if ((cluster_bootflags & CLUSTER_BOOTED) == 0) { 4260 return; 4261 } 4262 4263 /* 4264 * See comment in cl_flk_set_nlm_status(). 4265 */ 4266 if (nlm_reg_status == NULL) { 4267 return; 4268 } 4269 4270 /* 4271 * protect NLM registry state with a mutex. 4272 */ 4273 ASSERT(nlmid <= nlm_status_size && nlmid >= 0); 4274 mutex_enter(&nlm_reg_lock); 4275 FLK_REGISTRY_CHANGE_NLM_STATE(nlm_reg_status, nlmid, FLK_NLM_UNKNOWN); 4276 mutex_exit(&nlm_reg_lock); 4277 } 4278 4279 /* 4280 * Return non-zero if the given I/O request conflicts with an active NBMAND 4281 * lock. 4282 * If svmand is non-zero, it means look at all active locks, not just NBMAND 4283 * locks. 4284 */ 4285 4286 int 4287 nbl_lock_conflict(vnode_t *vp, nbl_op_t op, u_offset_t offset, 4288 ssize_t length, int svmand, caller_context_t *ct) 4289 { 4290 int conflict = 0; 4291 graph_t *gp; 4292 lock_descriptor_t *lock; 4293 pid_t pid; 4294 int sysid; 4295 4296 if (ct == NULL) { 4297 pid = curproc->p_pid; 4298 sysid = 0; 4299 } else { 4300 pid = ct->cc_pid; 4301 sysid = ct->cc_sysid; 4302 } 4303 4304 mutex_enter(&flock_lock); 4305 gp = lock_graph[HASH_INDEX(vp)]; 4306 mutex_exit(&flock_lock); 4307 if (gp == NULL) 4308 return (0); 4309 4310 mutex_enter(&gp->gp_mutex); 4311 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 4312 4313 for (; lock && lock->l_vnode == vp; lock = lock->l_next) { 4314 if ((svmand || (lock->l_state & NBMAND_LOCK)) && 4315 (lock->l_flock.l_sysid != sysid || 4316 lock->l_flock.l_pid != pid) && 4317 lock_blocks_io(op, offset, length, 4318 lock->l_type, lock->l_start, lock->l_end)) { 4319 conflict = 1; 4320 break; 4321 } 4322 } 4323 mutex_exit(&gp->gp_mutex); 4324 4325 return (conflict); 4326 } 4327 4328 /* 4329 * Return non-zero if the given I/O request conflicts with the given lock. 4330 */ 4331 4332 static int 4333 lock_blocks_io(nbl_op_t op, u_offset_t offset, ssize_t length, 4334 int lock_type, u_offset_t lock_start, u_offset_t lock_end) 4335 { 4336 ASSERT(op == NBL_READ || op == NBL_WRITE || op == NBL_READWRITE); 4337 ASSERT(lock_type == F_RDLCK || lock_type == F_WRLCK); 4338 4339 if (op == NBL_READ && lock_type == F_RDLCK) 4340 return (0); 4341 4342 if (offset <= lock_start && lock_start < offset + length) 4343 return (1); 4344 if (lock_start <= offset && offset <= lock_end) 4345 return (1); 4346 4347 return (0); 4348 } 4349 4350 #ifdef DEBUG 4351 static void 4352 check_active_locks(graph_t *gp) 4353 { 4354 lock_descriptor_t *lock, *lock1; 4355 edge_t *ep; 4356 4357 for (lock = ACTIVE_HEAD(gp)->l_next; lock != ACTIVE_HEAD(gp); 4358 lock = lock->l_next) { 4359 ASSERT(IS_ACTIVE(lock)); 4360 ASSERT(NOT_BLOCKED(lock)); 4361 ASSERT(!IS_BARRIER(lock)); 4362 4363 ep = FIRST_IN(lock); 4364 4365 while (ep != HEAD(lock)) { 4366 ASSERT(IS_SLEEPING(ep->from_vertex)); 4367 ASSERT(!NOT_BLOCKED(ep->from_vertex)); 4368 ep = NEXT_IN(ep); 4369 } 4370 4371 for (lock1 = lock->l_next; lock1 != ACTIVE_HEAD(gp); 4372 lock1 = lock1->l_next) { 4373 if (lock1->l_vnode == lock->l_vnode) { 4374 if (BLOCKS(lock1, lock)) { 4375 cmn_err(CE_PANIC, 4376 "active lock %p blocks %p", 4377 (void *)lock1, (void *)lock); 4378 } else if (BLOCKS(lock, lock1)) { 4379 cmn_err(CE_PANIC, 4380 "active lock %p blocks %p", 4381 (void *)lock, (void *)lock1); 4382 } 4383 } 4384 } 4385 } 4386 } 4387 4388 /* 4389 * Effect: This functions checks to see if the transition from 'old_state' to 4390 * 'new_state' is a valid one. It returns 0 if the transition is valid 4391 * and 1 if it is not. 4392 * For a map of valid transitions, see sys/flock_impl.h 4393 */ 4394 static int 4395 check_lock_transition(int old_state, int new_state) 4396 { 4397 switch (old_state) { 4398 case FLK_INITIAL_STATE: 4399 if ((new_state == FLK_START_STATE) || 4400 (new_state == FLK_SLEEPING_STATE) || 4401 (new_state == FLK_ACTIVE_STATE) || 4402 (new_state == FLK_DEAD_STATE)) { 4403 return (0); 4404 } else { 4405 return (1); 4406 } 4407 case FLK_START_STATE: 4408 if ((new_state == FLK_ACTIVE_STATE) || 4409 (new_state == FLK_DEAD_STATE)) { 4410 return (0); 4411 } else { 4412 return (1); 4413 } 4414 case FLK_ACTIVE_STATE: 4415 if (new_state == FLK_DEAD_STATE) { 4416 return (0); 4417 } else { 4418 return (1); 4419 } 4420 case FLK_SLEEPING_STATE: 4421 if ((new_state == FLK_GRANTED_STATE) || 4422 (new_state == FLK_INTERRUPTED_STATE) || 4423 (new_state == FLK_CANCELLED_STATE)) { 4424 return (0); 4425 } else { 4426 return (1); 4427 } 4428 case FLK_GRANTED_STATE: 4429 if ((new_state == FLK_START_STATE) || 4430 (new_state == FLK_INTERRUPTED_STATE) || 4431 (new_state == FLK_CANCELLED_STATE)) { 4432 return (0); 4433 } else { 4434 return (1); 4435 } 4436 case FLK_CANCELLED_STATE: 4437 if ((new_state == FLK_INTERRUPTED_STATE) || 4438 (new_state == FLK_DEAD_STATE)) { 4439 return (0); 4440 } else { 4441 return (1); 4442 } 4443 case FLK_INTERRUPTED_STATE: 4444 if (new_state == FLK_DEAD_STATE) { 4445 return (0); 4446 } else { 4447 return (1); 4448 } 4449 case FLK_DEAD_STATE: 4450 /* May be set more than once */ 4451 if (new_state == FLK_DEAD_STATE) { 4452 return (0); 4453 } else { 4454 return (1); 4455 } 4456 default: 4457 return (1); 4458 } 4459 } 4460 4461 static void 4462 check_sleeping_locks(graph_t *gp) 4463 { 4464 lock_descriptor_t *lock1, *lock2; 4465 edge_t *ep; 4466 for (lock1 = SLEEPING_HEAD(gp)->l_next; lock1 != SLEEPING_HEAD(gp); 4467 lock1 = lock1->l_next) { 4468 ASSERT(!IS_BARRIER(lock1)); 4469 for (lock2 = lock1->l_next; lock2 != SLEEPING_HEAD(gp); 4470 lock2 = lock2->l_next) { 4471 if (lock1->l_vnode == lock2->l_vnode) { 4472 if (BLOCKS(lock2, lock1)) { 4473 ASSERT(!IS_GRANTED(lock1)); 4474 ASSERT(!NOT_BLOCKED(lock1)); 4475 path(lock1, lock2); 4476 } 4477 } 4478 } 4479 4480 for (lock2 = ACTIVE_HEAD(gp)->l_next; lock2 != ACTIVE_HEAD(gp); 4481 lock2 = lock2->l_next) { 4482 ASSERT(!IS_BARRIER(lock1)); 4483 if (lock1->l_vnode == lock2->l_vnode) { 4484 if (BLOCKS(lock2, lock1)) { 4485 ASSERT(!IS_GRANTED(lock1)); 4486 ASSERT(!NOT_BLOCKED(lock1)); 4487 path(lock1, lock2); 4488 } 4489 } 4490 } 4491 ep = FIRST_ADJ(lock1); 4492 while (ep != HEAD(lock1)) { 4493 ASSERT(BLOCKS(ep->to_vertex, lock1)); 4494 ep = NEXT_ADJ(ep); 4495 } 4496 } 4497 } 4498 4499 static int 4500 level_two_path(lock_descriptor_t *lock1, lock_descriptor_t *lock2, int no_path) 4501 { 4502 edge_t *ep; 4503 lock_descriptor_t *vertex; 4504 lock_descriptor_t *vertex_stack; 4505 4506 STACK_INIT(vertex_stack); 4507 4508 flk_graph_uncolor(lock1->l_graph); 4509 ep = FIRST_ADJ(lock1); 4510 ASSERT(ep != HEAD(lock1)); 4511 while (ep != HEAD(lock1)) { 4512 if (no_path) 4513 ASSERT(ep->to_vertex != lock2); 4514 STACK_PUSH(vertex_stack, ep->to_vertex, l_dstack); 4515 COLOR(ep->to_vertex); 4516 ep = NEXT_ADJ(ep); 4517 } 4518 4519 while ((vertex = STACK_TOP(vertex_stack)) != NULL) { 4520 STACK_POP(vertex_stack, l_dstack); 4521 for (ep = FIRST_ADJ(vertex); ep != HEAD(vertex); 4522 ep = NEXT_ADJ(ep)) { 4523 if (COLORED(ep->to_vertex)) 4524 continue; 4525 COLOR(ep->to_vertex); 4526 if (ep->to_vertex == lock2) 4527 return (1); 4528 4529 STACK_PUSH(vertex_stack, ep->to_vertex, l_dstack); 4530 } 4531 } 4532 return (0); 4533 } 4534 4535 static void 4536 check_owner_locks(graph_t *gp, pid_t pid, int sysid, vnode_t *vp) 4537 { 4538 lock_descriptor_t *lock; 4539 4540 /* Ignore OFD style locks since they're not process-wide. */ 4541 if (pid == 0) 4542 return; 4543 4544 SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp); 4545 4546 if (lock) { 4547 while (lock != ACTIVE_HEAD(gp) && (lock->l_vnode == vp)) { 4548 if (lock->l_flock.l_pid == pid && 4549 lock->l_flock.l_sysid == sysid) 4550 cmn_err(CE_PANIC, 4551 "owner pid %d's lock %p in active queue", 4552 pid, (void *)lock); 4553 lock = lock->l_next; 4554 } 4555 } 4556 SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp); 4557 4558 if (lock) { 4559 while (lock != SLEEPING_HEAD(gp) && (lock->l_vnode == vp)) { 4560 if (lock->l_flock.l_pid == pid && 4561 lock->l_flock.l_sysid == sysid) 4562 cmn_err(CE_PANIC, 4563 "owner pid %d's lock %p in sleep queue", 4564 pid, (void *)lock); 4565 lock = lock->l_next; 4566 } 4567 } 4568 } 4569 4570 static int 4571 level_one_path(lock_descriptor_t *lock1, lock_descriptor_t *lock2) 4572 { 4573 edge_t *ep = FIRST_ADJ(lock1); 4574 4575 while (ep != HEAD(lock1)) { 4576 if (ep->to_vertex == lock2) 4577 return (1); 4578 else 4579 ep = NEXT_ADJ(ep); 4580 } 4581 return (0); 4582 } 4583 4584 static int 4585 no_path(lock_descriptor_t *lock1, lock_descriptor_t *lock2) 4586 { 4587 return (!level_two_path(lock1, lock2, 1)); 4588 } 4589 4590 static void 4591 path(lock_descriptor_t *lock1, lock_descriptor_t *lock2) 4592 { 4593 if (level_one_path(lock1, lock2)) { 4594 if (level_two_path(lock1, lock2, 0) != 0) { 4595 cmn_err(CE_WARN, 4596 "one edge one path from lock1 %p lock2 %p", 4597 (void *)lock1, (void *)lock2); 4598 } 4599 } else if (no_path(lock1, lock2)) { 4600 cmn_err(CE_PANIC, 4601 "No path from lock1 %p to lock2 %p", 4602 (void *)lock1, (void *)lock2); 4603 } 4604 } 4605 #endif /* DEBUG */ 4606