xref: /illumos-gate/usr/src/common/zfs/zfs_fletcher_sse.c (revision 0886dcadf4b2cd677c3b944167f0d16ccb243616)
1 /*
2  * Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86)
3  *
4  * Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute
5  * Fletcher4 in two incremental 64-bit parallel accumulator streams,
6  * and then combine the streams to form the final four checksum words.
7  * This implementation is a derivative of the AVX SIMD implementation by
8  * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
9  *
10  * Copyright (C) 2016 Tyler J. Stachecki.
11  *
12  * Authors:
13  *	Tyler J. Stachecki <stachecki.tyler@gmail.com>
14  *
15  * This software is available to you under a choice of one of two
16  * licenses.  You may choose to be licensed under the terms of the GNU
17  * General Public License (GPL) Version 2, available from the file
18  * COPYING in the main directory of this source tree, or the
19  * OpenIB.org BSD license below:
20  *
21  *     Redistribution and use in source and binary forms, with or
22  *     without modification, are permitted provided that the following
23  *     conditions are met:
24  *
25  *      - Redistributions of source code must retain the above
26  *        copyright notice, this list of conditions and the following
27  *        disclaimer.
28  *
29  *      - Redistributions in binary form must reproduce the above
30  *        copyright notice, this list of conditions and the following
31  *        disclaimer in the documentation and/or other materials
32  *        provided with the distribution.
33  *
34  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
41  * SOFTWARE.
42  */
43 
44 #ifdef __amd64
45 
46 #include <sys/types.h>
47 #include <sys/sunddi.h>
48 #include <sys/byteorder.h>
49 #include <sys/simd.h>
50 #include <sys/spa_checksum.h>
51 #include <zfs_fletcher.h>
52 #ifndef _KERNEL
53 #include <strings.h>
54 #endif
55 
56 struct zfs_fletcher_sse_array {
57 	uint64_t v[2] __attribute__((aligned(16)));
58 };
59 
60 static void
fletcher_4_sse2_init(fletcher_4_ctx_t * ctx)61 fletcher_4_sse2_init(fletcher_4_ctx_t *ctx)
62 {
63 	bzero(ctx->sse, 4 * sizeof (zfs_fletcher_sse_t));
64 }
65 
66 static void
fletcher_4_sse2_fini(fletcher_4_ctx_t * ctx,zio_cksum_t * zcp)67 fletcher_4_sse2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
68 {
69 	uint64_t A, B, C, D;
70 
71 	/*
72 	 * The mixing matrix for checksum calculation is:
73 	 * a = a0 + a1
74 	 * b = 2b0 + 2b1 - a1
75 	 * c = 4c0 - b0 + 4c1 -3b1
76 	 * d = 8d0 - 4c0 + 8d1 - 8c1 + b1;
77 	 *
78 	 * c and d are multiplied by 4 and 8, respectively,
79 	 * before spilling the vectors out to memory.
80 	 */
81 	A = ctx->sse[0].v[0] + ctx->sse[0].v[1];
82 	B = 2 * ctx->sse[1].v[0] + 2 * ctx->sse[1].v[1] - ctx->sse[0].v[1];
83 	C = 4 * ctx->sse[2].v[0] - ctx->sse[1].v[0] + 4 * ctx->sse[2].v[1] -
84 	    3 * ctx->sse[1].v[1];
85 	D = 8 * ctx->sse[3].v[0] - 4 * ctx->sse[2].v[0] + 8 * ctx->sse[3].v[1] -
86 	    8 * ctx->sse[2].v[1] + ctx->sse[1].v[1];
87 
88 	ZIO_SET_CHECKSUM(zcp, A, B, C, D);
89 }
90 
91 #define	FLETCHER_4_SSE_RESTORE_CTX(ctx)				\
92 {								\
93 	__asm("movdqu %0, %%xmm0" :: "m" ((ctx)->sse[0]));	\
94 	__asm("movdqu %0, %%xmm1" :: "m" ((ctx)->sse[1]));	\
95 	__asm("movdqu %0, %%xmm2" :: "m" ((ctx)->sse[2]));	\
96 	__asm("movdqu %0, %%xmm3" :: "m" ((ctx)->sse[3]));	\
97 }
98 
99 #define	FLETCHER_4_SSE_SAVE_CTX(ctx)				\
100 {								\
101 	__asm("movdqu %%xmm0, %0" : "=m" ((ctx)->sse[0]));	\
102 	__asm("movdqu %%xmm1, %0" : "=m" ((ctx)->sse[1]));	\
103 	__asm("movdqu %%xmm2, %0" : "=m" ((ctx)->sse[2]));	\
104 	__asm("movdqu %%xmm3, %0" : "=m" ((ctx)->sse[3]));	\
105 }
106 
107 static void
fletcher_4_sse2_native(fletcher_4_ctx_t * ctx,const void * buf,size_t size)108 fletcher_4_sse2_native(fletcher_4_ctx_t *ctx, const void *buf, size_t size)
109 {
110 	const uint64_t *ip = buf;
111 	const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
112 
113 	FLETCHER_4_SSE_RESTORE_CTX(ctx);
114 
115 	__asm("pxor %xmm4, %xmm4");
116 
117 	do {
118 		__asm("movdqu %0, %%xmm5" :: "m"(*ip));
119 		__asm("movdqa %xmm5, %xmm6");
120 		__asm("punpckldq %xmm4, %xmm5");
121 		__asm("punpckhdq %xmm4, %xmm6");
122 		__asm("paddq %xmm5, %xmm0");
123 		__asm("paddq %xmm0, %xmm1");
124 		__asm("paddq %xmm1, %xmm2");
125 		__asm("paddq %xmm2, %xmm3");
126 		__asm("paddq %xmm6, %xmm0");
127 		__asm("paddq %xmm0, %xmm1");
128 		__asm("paddq %xmm1, %xmm2");
129 		__asm("paddq %xmm2, %xmm3");
130 	} while ((ip += 2) < ipend);
131 
132 	FLETCHER_4_SSE_SAVE_CTX(ctx);
133 }
134 
135 static void
fletcher_4_sse2_byteswap(fletcher_4_ctx_t * ctx,const void * buf,size_t size)136 fletcher_4_sse2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, size_t size)
137 {
138 	const uint32_t *ip = buf;
139 	const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
140 
141 	FLETCHER_4_SSE_RESTORE_CTX(ctx);
142 
143 	do {
144 		uint32_t scratch1 = BSWAP_32(ip[0]);
145 		uint32_t scratch2 = BSWAP_32(ip[1]);
146 
147 		__asm("movd %0, %%xmm5" :: "r"(scratch1));
148 		__asm("movd %0, %%xmm6" :: "r"(scratch2));
149 		__asm("punpcklqdq %xmm6, %xmm5");
150 		__asm("paddq %xmm5, %xmm0");
151 		__asm("paddq %xmm0, %xmm1");
152 		__asm("paddq %xmm1, %xmm2");
153 		__asm("paddq %xmm2, %xmm3");
154 	} while ((ip += 2) < ipend);
155 
156 	FLETCHER_4_SSE_SAVE_CTX(ctx);
157 }
158 
159 static boolean_t
fletcher_4_sse2_valid(void)160 fletcher_4_sse2_valid(void)
161 {
162 	return (kfpu_allowed() && zfs_sse2_available());
163 }
164 
165 const fletcher_4_ops_t fletcher_4_sse2_ops = {
166 	.init_native = fletcher_4_sse2_init,
167 	.fini_native = fletcher_4_sse2_fini,
168 	.compute_native = fletcher_4_sse2_native,
169 	.init_byteswap = fletcher_4_sse2_init,
170 	.fini_byteswap = fletcher_4_sse2_fini,
171 	.compute_byteswap = fletcher_4_sse2_byteswap,
172 	.valid = fletcher_4_sse2_valid,
173 	.uses_fpu_native = B_TRUE,
174 	.uses_fpu_byteswap = B_TRUE,
175 	.name = "sse2"
176 };
177 
178 static void
fletcher_4_ssse3_byteswap(fletcher_4_ctx_t * ctx,const void * buf,size_t size)179 fletcher_4_ssse3_byteswap(fletcher_4_ctx_t *ctx, const void *buf, size_t size)
180 {
181 	static const zfs_fletcher_sse_t mask = {
182 		.v = { 0x0405060700010203, 0x0C0D0E0F08090A0B }
183 	};
184 
185 	const uint64_t *ip = buf;
186 	const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
187 
188 	FLETCHER_4_SSE_RESTORE_CTX(ctx);
189 
190 	__asm("movdqa %0, %%xmm7"::"m" (mask));
191 	__asm("pxor %xmm4, %xmm4");
192 
193 	do {
194 		__asm("movdqu %0, %%xmm5"::"m" (*ip));
195 		__asm("pshufb %xmm7, %xmm5");
196 		__asm("movdqa %xmm5, %xmm6");
197 		__asm("punpckldq %xmm4, %xmm5");
198 		__asm("punpckhdq %xmm4, %xmm6");
199 		__asm("paddq %xmm5, %xmm0");
200 		__asm("paddq %xmm0, %xmm1");
201 		__asm("paddq %xmm1, %xmm2");
202 		__asm("paddq %xmm2, %xmm3");
203 		__asm("paddq %xmm6, %xmm0");
204 		__asm("paddq %xmm0, %xmm1");
205 		__asm("paddq %xmm1, %xmm2");
206 		__asm("paddq %xmm2, %xmm3");
207 	} while ((ip += 2) < ipend);
208 
209 	FLETCHER_4_SSE_SAVE_CTX(ctx);
210 }
211 
fletcher_4_ssse3_valid(void)212 static boolean_t fletcher_4_ssse3_valid(void)
213 {
214 	return (zfs_sse2_available() && zfs_ssse3_available());
215 }
216 
217 const fletcher_4_ops_t fletcher_4_ssse3_ops = {
218 	.init_native = fletcher_4_sse2_init,
219 	.fini_native = fletcher_4_sse2_fini,
220 	.compute_native = fletcher_4_sse2_native,
221 	.init_byteswap = fletcher_4_sse2_init,
222 	.fini_byteswap = fletcher_4_sse2_fini,
223 	.compute_byteswap = fletcher_4_ssse3_byteswap,
224 	.valid = fletcher_4_ssse3_valid,
225 	.uses_fpu_native = B_TRUE,
226 	.uses_fpu_byteswap = B_TRUE,
227 	.name = "ssse3"
228 };
229 
230 #endif /* __amd64 */
231