1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
26 */
27 /*
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 */
30
31 /*
32 * Copyright (c) 2016 by Delphix. All rights reserved.
33 */
34
35 /*
36 * Fletcher Checksums
37 * ------------------
38 *
39 * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
40 * recurrence relations:
41 *
42 * a = a + f
43 * i i-1 i-1
44 *
45 * b = b + a
46 * i i-1 i
47 *
48 * c = c + b (fletcher-4 only)
49 * i i-1 i
50 *
51 * d = d + c (fletcher-4 only)
52 * i i-1 i
53 *
54 * Where
55 * a_0 = b_0 = c_0 = d_0 = 0
56 * and
57 * f_0 .. f_(n-1) are the input data.
58 *
59 * Using standard techniques, these translate into the following series:
60 *
61 * __n_ __n_
62 * \ | \ |
63 * a = > f b = > i * f
64 * n /___| n - i n /___| n - i
65 * i = 1 i = 1
66 *
67 *
68 * __n_ __n_
69 * \ | i*(i+1) \ | i*(i+1)*(i+2)
70 * c = > ------- f d = > ------------- f
71 * n /___| 2 n - i n /___| 6 n - i
72 * i = 1 i = 1
73 *
74 * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
75 * Since the additions are done mod (2^64), errors in the high bits may not
76 * be noticed. For this reason, fletcher-2 is deprecated.
77 *
78 * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
79 * A conservative estimate of how big the buffer can get before we overflow
80 * can be estimated using f_i = 0xffffffff for all i:
81 *
82 * % bc
83 * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
84 * 2264
85 * quit
86 * %
87 *
88 * So blocks of up to 2k will not overflow. Our largest block size is
89 * 128k, which has 32k 4-byte words, so we can compute the largest possible
90 * accumulators, then divide by 2^64 to figure the max amount of overflow:
91 *
92 * % bc
93 * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
94 * a/2^64;b/2^64;c/2^64;d/2^64
95 * 0
96 * 0
97 * 1365
98 * 11186858
99 * quit
100 * %
101 *
102 * So a and b cannot overflow. To make sure each bit of input has some
103 * effect on the contents of c and d, we can look at what the factors of
104 * the coefficients in the equations for c_n and d_n are. The number of 2s
105 * in the factors determines the lowest set bit in the multiplier. Running
106 * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
107 * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
108 * the 64-bit accumulators, every bit of every f_i effects every accumulator,
109 * even for 128k blocks.
110 *
111 * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
112 * we could do our calculations mod (2^32 - 1) by adding in the carries
113 * periodically, and store the number of carries in the top 32-bits.
114 *
115 * --------------------
116 * Checksum Performance
117 * --------------------
118 *
119 * There are two interesting components to checksum performance: cached and
120 * uncached performance. With cached data, fletcher-2 is about four times
121 * faster than fletcher-4. With uncached data, the performance difference is
122 * negligible, since the cost of a cache fill dominates the processing time.
123 * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
124 * efficient pass over the data.
125 *
126 * In normal operation, the data which is being checksummed is in a buffer
127 * which has been filled either by:
128 *
129 * 1. a compression step, which will be mostly cached, or
130 * 2. a memcpy() or copyin(), which will be uncached
131 * (because the copy is cache-bypassing).
132 *
133 * For both cached and uncached data, both fletcher checksums are much faster
134 * than sha-256, and slower than 'off', which doesn't touch the data at all.
135 */
136
137 #include <sys/types.h>
138 #include <sys/sysmacros.h>
139 #include <sys/byteorder.h>
140 #include <sys/simd.h>
141 #include <sys/spa.h>
142 #include <sys/zio_checksum.h>
143 #include <sys/zfs_context.h>
144 #include <zfs_fletcher.h>
145
146 #define FLETCHER_MIN_SIMD_SIZE 64
147
148 static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
149 static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
150 static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
151 const void *buf, uint64_t size);
152 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
153 const void *buf, uint64_t size);
154 static boolean_t fletcher_4_scalar_valid(void);
155
156 static const fletcher_4_ops_t fletcher_4_scalar_ops = {
157 .init_native = fletcher_4_scalar_init,
158 .fini_native = fletcher_4_scalar_fini,
159 .compute_native = fletcher_4_scalar_native,
160 .init_byteswap = fletcher_4_scalar_init,
161 .fini_byteswap = fletcher_4_scalar_fini,
162 .compute_byteswap = fletcher_4_scalar_byteswap,
163 .valid = fletcher_4_scalar_valid,
164 .uses_fpu = B_FALSE,
165 .name = "scalar"
166 };
167
168 static fletcher_4_ops_t fletcher_4_fastest_impl = {
169 .name = "fastest",
170 .valid = fletcher_4_scalar_valid
171 };
172
173 static const fletcher_4_ops_t *fletcher_4_impls[] = {
174 &fletcher_4_scalar_ops,
175 &fletcher_4_superscalar_ops,
176 &fletcher_4_superscalar4_ops,
177 #if defined(HAVE_SSE2)
178 &fletcher_4_sse2_ops,
179 #endif
180 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
181 &fletcher_4_ssse3_ops,
182 #endif
183 #if defined(HAVE_AVX) && defined(HAVE_AVX2)
184 &fletcher_4_avx2_ops,
185 #endif
186 #if defined(__x86_64) && defined(HAVE_AVX512F)
187 &fletcher_4_avx512f_ops,
188 #endif
189 #if defined(__x86_64) && defined(HAVE_AVX512BW)
190 &fletcher_4_avx512bw_ops,
191 #endif
192 #if defined(__aarch64__) && !defined(__FreeBSD__)
193 &fletcher_4_aarch64_neon_ops,
194 #endif
195 };
196
197 /* Hold all supported implementations */
198 static uint32_t fletcher_4_supp_impls_cnt = 0;
199 static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
200
201 /* Select fletcher4 implementation */
202 #define IMPL_FASTEST (UINT32_MAX)
203 #define IMPL_CYCLE (UINT32_MAX - 1)
204 #define IMPL_SCALAR (0)
205
206 static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
207
208 #define IMPL_READ(i) (*(volatile uint32_t *) &(i))
209
210 static struct fletcher_4_impl_selector {
211 const char *fis_name;
212 uint32_t fis_sel;
213 } fletcher_4_impl_selectors[] = {
214 { "cycle", IMPL_CYCLE },
215 { "fastest", IMPL_FASTEST },
216 { "scalar", IMPL_SCALAR }
217 };
218
219 #if defined(_KERNEL)
220 static kstat_t *fletcher_4_kstat;
221
222 static struct fletcher_4_kstat {
223 uint64_t native;
224 uint64_t byteswap;
225 } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
226 #endif
227
228 /* Indicate that benchmark has been completed */
229 static boolean_t fletcher_4_initialized = B_FALSE;
230
231 void
fletcher_init(zio_cksum_t * zcp)232 fletcher_init(zio_cksum_t *zcp)
233 {
234 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
235 }
236
237 int
fletcher_2_incremental_native(void * buf,size_t size,void * data)238 fletcher_2_incremental_native(void *buf, size_t size, void *data)
239 {
240 zio_cksum_t *zcp = data;
241
242 const uint64_t *ip = buf;
243 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
244 uint64_t a0, b0, a1, b1;
245
246 a0 = zcp->zc_word[0];
247 a1 = zcp->zc_word[1];
248 b0 = zcp->zc_word[2];
249 b1 = zcp->zc_word[3];
250
251 for (; ip < ipend; ip += 2) {
252 a0 += ip[0];
253 a1 += ip[1];
254 b0 += a0;
255 b1 += a1;
256 }
257
258 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
259 return (0);
260 }
261
262 void
fletcher_2_native(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)263 fletcher_2_native(const void *buf, uint64_t size,
264 const void *ctx_template, zio_cksum_t *zcp)
265 {
266 (void) ctx_template;
267 fletcher_init(zcp);
268 (void) fletcher_2_incremental_native((void *) buf, size, zcp);
269 }
270
271 int
fletcher_2_incremental_byteswap(void * buf,size_t size,void * data)272 fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
273 {
274 zio_cksum_t *zcp = data;
275
276 const uint64_t *ip = buf;
277 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
278 uint64_t a0, b0, a1, b1;
279
280 a0 = zcp->zc_word[0];
281 a1 = zcp->zc_word[1];
282 b0 = zcp->zc_word[2];
283 b1 = zcp->zc_word[3];
284
285 for (; ip < ipend; ip += 2) {
286 a0 += BSWAP_64(ip[0]);
287 a1 += BSWAP_64(ip[1]);
288 b0 += a0;
289 b1 += a1;
290 }
291
292 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
293 return (0);
294 }
295
296 void
fletcher_2_byteswap(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)297 fletcher_2_byteswap(const void *buf, uint64_t size,
298 const void *ctx_template, zio_cksum_t *zcp)
299 {
300 (void) ctx_template;
301 fletcher_init(zcp);
302 (void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
303 }
304
305 static void
fletcher_4_scalar_init(fletcher_4_ctx_t * ctx)306 fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
307 {
308 ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
309 }
310
311 static void
fletcher_4_scalar_fini(fletcher_4_ctx_t * ctx,zio_cksum_t * zcp)312 fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
313 {
314 memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
315 }
316
317 static void
fletcher_4_scalar_native(fletcher_4_ctx_t * ctx,const void * buf,uint64_t size)318 fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
319 uint64_t size)
320 {
321 const uint32_t *ip = buf;
322 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
323 uint64_t a, b, c, d;
324
325 a = ctx->scalar.zc_word[0];
326 b = ctx->scalar.zc_word[1];
327 c = ctx->scalar.zc_word[2];
328 d = ctx->scalar.zc_word[3];
329
330 for (; ip < ipend; ip++) {
331 a += ip[0];
332 b += a;
333 c += b;
334 d += c;
335 }
336
337 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
338 }
339
340 static void
fletcher_4_scalar_byteswap(fletcher_4_ctx_t * ctx,const void * buf,uint64_t size)341 fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
342 uint64_t size)
343 {
344 const uint32_t *ip = buf;
345 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
346 uint64_t a, b, c, d;
347
348 a = ctx->scalar.zc_word[0];
349 b = ctx->scalar.zc_word[1];
350 c = ctx->scalar.zc_word[2];
351 d = ctx->scalar.zc_word[3];
352
353 for (; ip < ipend; ip++) {
354 a += BSWAP_32(ip[0]);
355 b += a;
356 c += b;
357 d += c;
358 }
359
360 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
361 }
362
363 static boolean_t
fletcher_4_scalar_valid(void)364 fletcher_4_scalar_valid(void)
365 {
366 return (B_TRUE);
367 }
368
369 int
fletcher_4_impl_set(const char * val)370 fletcher_4_impl_set(const char *val)
371 {
372 int err = -EINVAL;
373 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
374 size_t i, val_len;
375
376 val_len = strlen(val);
377 while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
378 val_len--;
379
380 /* check mandatory implementations */
381 for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
382 const char *name = fletcher_4_impl_selectors[i].fis_name;
383
384 if (val_len == strlen(name) &&
385 strncmp(val, name, val_len) == 0) {
386 impl = fletcher_4_impl_selectors[i].fis_sel;
387 err = 0;
388 break;
389 }
390 }
391
392 if (err != 0 && fletcher_4_initialized) {
393 /* check all supported implementations */
394 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
395 const char *name = fletcher_4_supp_impls[i]->name;
396
397 if (val_len == strlen(name) &&
398 strncmp(val, name, val_len) == 0) {
399 impl = i;
400 err = 0;
401 break;
402 }
403 }
404 }
405
406 if (err == 0) {
407 atomic_swap_32(&fletcher_4_impl_chosen, impl);
408 membar_producer();
409 }
410
411 return (err);
412 }
413
414 /*
415 * Returns the Fletcher 4 operations for checksums. When a SIMD
416 * implementation is not allowed in the current context, then fallback
417 * to the fastest generic implementation.
418 */
419 static inline const fletcher_4_ops_t *
fletcher_4_impl_get(void)420 fletcher_4_impl_get(void)
421 {
422 if (!kfpu_allowed())
423 return (&fletcher_4_superscalar4_ops);
424
425 const fletcher_4_ops_t *ops = NULL;
426 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
427
428 switch (impl) {
429 case IMPL_FASTEST:
430 ASSERT(fletcher_4_initialized);
431 ops = &fletcher_4_fastest_impl;
432 break;
433 case IMPL_CYCLE:
434 /* Cycle through supported implementations */
435 ASSERT(fletcher_4_initialized);
436 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
437 static uint32_t cycle_count = 0;
438 uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
439 ops = fletcher_4_supp_impls[idx];
440 break;
441 default:
442 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
443 ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
444 ops = fletcher_4_supp_impls[impl];
445 break;
446 }
447
448 ASSERT3P(ops, !=, NULL);
449
450 return (ops);
451 }
452
453 static inline void
fletcher_4_native_impl(const void * buf,uint64_t size,zio_cksum_t * zcp)454 fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
455 {
456 fletcher_4_ctx_t ctx;
457 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
458
459 if (ops->uses_fpu == B_TRUE) {
460 kfpu_begin();
461 }
462 ops->init_native(&ctx);
463 ops->compute_native(&ctx, buf, size);
464 ops->fini_native(&ctx, zcp);
465 if (ops->uses_fpu == B_TRUE) {
466 kfpu_end();
467 }
468 }
469
470 void
fletcher_4_native(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)471 fletcher_4_native(const void *buf, uint64_t size,
472 const void *ctx_template, zio_cksum_t *zcp)
473 {
474 (void) ctx_template;
475 const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE,
476 uint64_t);
477
478 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
479
480 if (size == 0 || p2size == 0) {
481 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
482
483 if (size > 0)
484 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
485 buf, size);
486 } else {
487 fletcher_4_native_impl(buf, p2size, zcp);
488
489 if (p2size < size)
490 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
491 (char *)buf + p2size, size - p2size);
492 }
493 }
494
495 void
fletcher_4_native_varsize(const void * buf,uint64_t size,zio_cksum_t * zcp)496 fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
497 {
498 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
499 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
500 }
501
502 static inline void
fletcher_4_byteswap_impl(const void * buf,uint64_t size,zio_cksum_t * zcp)503 fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
504 {
505 fletcher_4_ctx_t ctx;
506 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
507
508 if (ops->uses_fpu == B_TRUE) {
509 kfpu_begin();
510 }
511 ops->init_byteswap(&ctx);
512 ops->compute_byteswap(&ctx, buf, size);
513 ops->fini_byteswap(&ctx, zcp);
514 if (ops->uses_fpu == B_TRUE) {
515 kfpu_end();
516 }
517 }
518
519 void
fletcher_4_byteswap(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)520 fletcher_4_byteswap(const void *buf, uint64_t size,
521 const void *ctx_template, zio_cksum_t *zcp)
522 {
523 (void) ctx_template;
524 const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE,
525 uint64_t);
526
527 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
528
529 if (size == 0 || p2size == 0) {
530 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
531
532 if (size > 0)
533 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
534 buf, size);
535 } else {
536 fletcher_4_byteswap_impl(buf, p2size, zcp);
537
538 if (p2size < size)
539 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
540 (char *)buf + p2size, size - p2size);
541 }
542 }
543
544 /* Incremental Fletcher 4 */
545
546 #define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20)
547
548 static inline void
fletcher_4_incremental_combine(zio_cksum_t * zcp,const uint64_t size,const zio_cksum_t * nzcp)549 fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
550 const zio_cksum_t *nzcp)
551 {
552 const uint64_t c1 = size / sizeof (uint32_t);
553 const uint64_t c2 = c1 * (c1 + 1) / 2;
554 const uint64_t c3 = c2 * (c1 + 2) / 3;
555
556 /*
557 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
558 * reason we split incremental fletcher4 computation of large buffers
559 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
560 */
561 ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
562
563 zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
564 c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
565 zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
566 c2 * zcp->zc_word[0];
567 zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
568 zcp->zc_word[0] += nzcp->zc_word[0];
569 }
570
571 static inline void
fletcher_4_incremental_impl(boolean_t native,const void * buf,uint64_t size,zio_cksum_t * zcp)572 fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
573 zio_cksum_t *zcp)
574 {
575 while (size > 0) {
576 zio_cksum_t nzc;
577 uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
578
579 if (native)
580 fletcher_4_native(buf, len, NULL, &nzc);
581 else
582 fletcher_4_byteswap(buf, len, NULL, &nzc);
583
584 fletcher_4_incremental_combine(zcp, len, &nzc);
585
586 size -= len;
587 buf += len;
588 }
589 }
590
591 int
fletcher_4_incremental_native(void * buf,size_t size,void * data)592 fletcher_4_incremental_native(void *buf, size_t size, void *data)
593 {
594 zio_cksum_t *zcp = data;
595 /* Use scalar impl to directly update cksum of small blocks */
596 if (size < SPA_MINBLOCKSIZE)
597 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
598 else
599 fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
600 return (0);
601 }
602
603 int
fletcher_4_incremental_byteswap(void * buf,size_t size,void * data)604 fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
605 {
606 zio_cksum_t *zcp = data;
607 /* Use scalar impl to directly update cksum of small blocks */
608 if (size < SPA_MINBLOCKSIZE)
609 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
610 else
611 fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
612 return (0);
613 }
614
615 #if defined(_KERNEL)
616 /*
617 * Fletcher 4 kstats
618 */
619 static int
fletcher_4_kstat_headers(char * buf,size_t size)620 fletcher_4_kstat_headers(char *buf, size_t size)
621 {
622 ssize_t off = 0;
623
624 off += snprintf(buf + off, size, "%-17s", "implementation");
625 off += snprintf(buf + off, size - off, "%-15s", "native");
626 (void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
627
628 return (0);
629 }
630
631 static int
fletcher_4_kstat_data(char * buf,size_t size,void * data)632 fletcher_4_kstat_data(char *buf, size_t size, void *data)
633 {
634 struct fletcher_4_kstat *fastest_stat =
635 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
636 struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
637 ssize_t off = 0;
638
639 if (curr_stat == fastest_stat) {
640 off += snprintf(buf + off, size - off, "%-17s", "fastest");
641 off += snprintf(buf + off, size - off, "%-15s",
642 fletcher_4_supp_impls[fastest_stat->native]->name);
643 (void) snprintf(buf + off, size - off, "%-15s\n",
644 fletcher_4_supp_impls[fastest_stat->byteswap]->name);
645 } else {
646 ptrdiff_t id = curr_stat - fletcher_4_stat_data;
647
648 off += snprintf(buf + off, size - off, "%-17s",
649 fletcher_4_supp_impls[id]->name);
650 off += snprintf(buf + off, size - off, "%-15llu",
651 (u_longlong_t)curr_stat->native);
652 (void) snprintf(buf + off, size - off, "%-15llu\n",
653 (u_longlong_t)curr_stat->byteswap);
654 }
655
656 return (0);
657 }
658
659 static void *
fletcher_4_kstat_addr(kstat_t * ksp,loff_t n)660 fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
661 {
662 if (n <= fletcher_4_supp_impls_cnt)
663 ksp->ks_private = (void *) (fletcher_4_stat_data + n);
664 else
665 ksp->ks_private = NULL;
666
667 return (ksp->ks_private);
668 }
669 #endif
670
671 #define FLETCHER_4_FASTEST_FN_COPY(type, src) \
672 { \
673 fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \
674 fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \
675 fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
676 fletcher_4_fastest_impl.uses_fpu = src->uses_fpu; \
677 }
678
679 #define FLETCHER_4_BENCH_NS (MSEC2NSEC(1)) /* 1ms */
680
681 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
682 zio_cksum_t *);
683
684 #if defined(_KERNEL)
685 static void
fletcher_4_benchmark_impl(boolean_t native,char * data,uint64_t data_size)686 fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
687 {
688
689 struct fletcher_4_kstat *fastest_stat =
690 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
691 hrtime_t start;
692 uint64_t run_bw, run_time_ns, best_run = 0;
693 zio_cksum_t zc;
694 uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
695
696 fletcher_checksum_func_t *fletcher_4_test = native ?
697 fletcher_4_native : fletcher_4_byteswap;
698
699 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
700 struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
701 uint64_t run_count = 0;
702
703 /* temporary set an implementation */
704 fletcher_4_impl_chosen = i;
705
706 kpreempt_disable();
707 start = gethrtime();
708 do {
709 for (l = 0; l < 32; l++, run_count++)
710 fletcher_4_test(data, data_size, NULL, &zc);
711
712 run_time_ns = gethrtime() - start;
713 } while (run_time_ns < FLETCHER_4_BENCH_NS);
714 kpreempt_enable();
715
716 run_bw = data_size * run_count * NANOSEC;
717 run_bw /= run_time_ns; /* B/s */
718
719 if (native)
720 stat->native = run_bw;
721 else
722 stat->byteswap = run_bw;
723
724 if (run_bw > best_run) {
725 best_run = run_bw;
726
727 if (native) {
728 fastest_stat->native = i;
729 FLETCHER_4_FASTEST_FN_COPY(native,
730 fletcher_4_supp_impls[i]);
731 } else {
732 fastest_stat->byteswap = i;
733 FLETCHER_4_FASTEST_FN_COPY(byteswap,
734 fletcher_4_supp_impls[i]);
735 }
736 }
737 }
738
739 /* restore original selection */
740 atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
741 }
742 #endif /* _KERNEL */
743
744 /*
745 * Initialize and benchmark all supported implementations.
746 */
747 static void
fletcher_4_benchmark(void)748 fletcher_4_benchmark(void)
749 {
750 fletcher_4_ops_t *curr_impl;
751 int i, c;
752
753 /* Move supported implementations into fletcher_4_supp_impls */
754 for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
755 curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
756
757 if (curr_impl->valid && curr_impl->valid())
758 fletcher_4_supp_impls[c++] = curr_impl;
759 }
760 membar_producer(); /* complete fletcher_4_supp_impls[] init */
761 fletcher_4_supp_impls_cnt = c; /* number of supported impl */
762
763 #if defined(_KERNEL)
764 static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
765 char *databuf = vmem_alloc(data_size, KM_SLEEP);
766
767 for (i = 0; i < data_size / sizeof (uint64_t); i++)
768 ((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
769
770 fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
771 fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
772
773 vmem_free(databuf, data_size);
774 #else
775 /*
776 * Skip the benchmark in user space to avoid impacting libzpool
777 * consumers (zdb, zhack, zinject, ztest). The last implementation
778 * is assumed to be the fastest and used by default.
779 */
780 memcpy(&fletcher_4_fastest_impl,
781 fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
782 sizeof (fletcher_4_fastest_impl));
783 fletcher_4_fastest_impl.name = "fastest";
784 membar_producer();
785 #endif /* _KERNEL */
786 }
787
788 void
fletcher_4_init(void)789 fletcher_4_init(void)
790 {
791 /* Determine the fastest available implementation. */
792 fletcher_4_benchmark();
793
794 #if defined(_KERNEL)
795 /* Install kstats for all implementations */
796 fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
797 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
798 if (fletcher_4_kstat != NULL) {
799 fletcher_4_kstat->ks_data = NULL;
800 fletcher_4_kstat->ks_ndata = UINT32_MAX;
801 kstat_set_raw_ops(fletcher_4_kstat,
802 fletcher_4_kstat_headers,
803 fletcher_4_kstat_data,
804 fletcher_4_kstat_addr);
805 kstat_install(fletcher_4_kstat);
806 }
807 #endif
808
809 /* Finish initialization */
810 fletcher_4_initialized = B_TRUE;
811 }
812
813 void
fletcher_4_fini(void)814 fletcher_4_fini(void)
815 {
816 #if defined(_KERNEL)
817 if (fletcher_4_kstat != NULL) {
818 kstat_delete(fletcher_4_kstat);
819 fletcher_4_kstat = NULL;
820 }
821 #endif
822 }
823
824 /* ABD adapters */
825
826 static void
abd_fletcher_4_init(zio_abd_checksum_data_t * cdp)827 abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
828 {
829 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
830 cdp->acd_private = (void *) ops;
831
832 if (ops->uses_fpu == B_TRUE) {
833 kfpu_begin();
834 }
835 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
836 ops->init_native(cdp->acd_ctx);
837 else
838 ops->init_byteswap(cdp->acd_ctx);
839
840 }
841
842 static void
abd_fletcher_4_fini(zio_abd_checksum_data_t * cdp)843 abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
844 {
845 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
846
847 ASSERT(ops);
848
849 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
850 ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
851 else
852 ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
853
854 if (ops->uses_fpu == B_TRUE) {
855 kfpu_end();
856 }
857 }
858
859
860 static void
abd_fletcher_4_simd2scalar(boolean_t native,void * data,size_t size,zio_abd_checksum_data_t * cdp)861 abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
862 zio_abd_checksum_data_t *cdp)
863 {
864 zio_cksum_t *zcp = cdp->acd_zcp;
865
866 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
867
868 abd_fletcher_4_fini(cdp);
869 cdp->acd_private = (void *)&fletcher_4_scalar_ops;
870
871 if (native)
872 fletcher_4_incremental_native(data, size, zcp);
873 else
874 fletcher_4_incremental_byteswap(data, size, zcp);
875 }
876
877 static int
abd_fletcher_4_iter(void * data,size_t size,void * private)878 abd_fletcher_4_iter(void *data, size_t size, void *private)
879 {
880 zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
881 fletcher_4_ctx_t *ctx = cdp->acd_ctx;
882 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
883 boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
884 uint64_t asize = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE, uint64_t);
885
886 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
887
888 if (asize > 0) {
889 if (native)
890 ops->compute_native(ctx, data, asize);
891 else
892 ops->compute_byteswap(ctx, data, asize);
893
894 size -= asize;
895 data = (char *)data + asize;
896 }
897
898 if (size > 0) {
899 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
900 /* At this point we have to switch to scalar impl */
901 abd_fletcher_4_simd2scalar(native, data, size, cdp);
902 }
903
904 return (0);
905 }
906
907 zio_abd_checksum_func_t fletcher_4_abd_ops = {
908 .acf_init = abd_fletcher_4_init,
909 .acf_fini = abd_fletcher_4_fini,
910 .acf_iter = abd_fletcher_4_iter
911 };
912
913 #if defined(_KERNEL)
914
915 #define IMPL_FMT(impl, i) (((impl) == (i)) ? "[%s] " : "%s ")
916
917 #if defined(__linux__)
918
919 static int
fletcher_4_param_get(char * buffer,zfs_kernel_param_t * unused)920 fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
921 {
922 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
923 char *fmt;
924 int cnt = 0;
925
926 /* list fastest */
927 fmt = IMPL_FMT(impl, IMPL_FASTEST);
928 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt, "fastest");
929
930 /* list all supported implementations */
931 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
932 fmt = IMPL_FMT(impl, i);
933 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt,
934 fletcher_4_supp_impls[i]->name);
935 }
936
937 return (cnt);
938 }
939
940 static int
fletcher_4_param_set(const char * val,zfs_kernel_param_t * unused)941 fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
942 {
943 return (fletcher_4_impl_set(val));
944 }
945
946 #else
947
948 #include <sys/sbuf.h>
949
950 static int
fletcher_4_param(ZFS_MODULE_PARAM_ARGS)951 fletcher_4_param(ZFS_MODULE_PARAM_ARGS)
952 {
953 int err;
954
955 if (req->newptr == NULL) {
956 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
957 const int init_buflen = 64;
958 const char *fmt;
959 struct sbuf *s;
960
961 s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req);
962
963 /* list fastest */
964 fmt = IMPL_FMT(impl, IMPL_FASTEST);
965 (void) sbuf_printf(s, fmt, "fastest");
966
967 /* list all supported implementations */
968 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
969 fmt = IMPL_FMT(impl, i);
970 (void) sbuf_printf(s, fmt,
971 fletcher_4_supp_impls[i]->name);
972 }
973
974 err = sbuf_finish(s);
975 sbuf_delete(s);
976
977 return (err);
978 }
979
980 char buf[16];
981
982 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
983 if (err)
984 return (err);
985 return (-fletcher_4_impl_set(buf));
986 }
987
988 #endif
989
990 #undef IMPL_FMT
991
992 /*
993 * Choose a fletcher 4 implementation in ZFS.
994 * Users can choose "cycle" to exercise all implementations, but this is
995 * for testing purpose therefore it can only be set in user space.
996 */
997 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl,
998 fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW,
999 "Select fletcher 4 implementation.");
1000
1001 EXPORT_SYMBOL(fletcher_init);
1002 EXPORT_SYMBOL(fletcher_2_incremental_native);
1003 EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
1004 EXPORT_SYMBOL(fletcher_4_init);
1005 EXPORT_SYMBOL(fletcher_4_fini);
1006 EXPORT_SYMBOL(fletcher_2_native);
1007 EXPORT_SYMBOL(fletcher_2_byteswap);
1008 EXPORT_SYMBOL(fletcher_4_native);
1009 EXPORT_SYMBOL(fletcher_4_native_varsize);
1010 EXPORT_SYMBOL(fletcher_4_byteswap);
1011 EXPORT_SYMBOL(fletcher_4_incremental_native);
1012 EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
1013 EXPORT_SYMBOL(fletcher_4_abd_ops);
1014 #endif
1015