1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Linux INET6 implementation
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 */
8
9 #ifndef _NET_IPV6_H
10 #define _NET_IPV6_H
11
12 #include <linux/ipv6.h>
13 #include <linux/hardirq.h>
14 #include <linux/jhash.h>
15 #include <linux/refcount.h>
16 #include <linux/jump_label_ratelimit.h>
17 #include <net/if_inet6.h>
18 #include <net/flow.h>
19 #include <net/flow_dissector.h>
20 #include <net/inet_dscp.h>
21 #include <net/snmp.h>
22 #include <net/netns/hash.h>
23
24 struct ip_tunnel_info;
25
26 #define SIN6_LEN_RFC2133 24
27
28 #define IPV6_MAXPLEN 65535
29
30 /*
31 * NextHeader field of IPv6 header
32 */
33
34 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
35 #define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */
36 #define NEXTHDR_TCP 6 /* TCP segment. */
37 #define NEXTHDR_UDP 17 /* UDP message. */
38 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
39 #define NEXTHDR_ROUTING 43 /* Routing header. */
40 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
41 #define NEXTHDR_GRE 47 /* GRE header. */
42 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
43 #define NEXTHDR_AUTH 51 /* Authentication header. */
44 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
45 #define NEXTHDR_NONE 59 /* No next header */
46 #define NEXTHDR_DEST 60 /* Destination options header. */
47 #define NEXTHDR_SCTP 132 /* SCTP message. */
48 #define NEXTHDR_MOBILITY 135 /* Mobility header. */
49
50 #define NEXTHDR_MAX 255
51
52 #define IPV6_DEFAULT_HOPLIMIT 64
53 #define IPV6_DEFAULT_MCASTHOPS 1
54
55 /* Limits on Hop-by-Hop and Destination options.
56 *
57 * Per RFC8200 there is no limit on the maximum number or lengths of options in
58 * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
59 * We allow configurable limits in order to mitigate potential denial of
60 * service attacks.
61 *
62 * There are three limits that may be set:
63 * - Limit the number of options in a Hop-by-Hop or Destination options
64 * extension header
65 * - Limit the byte length of a Hop-by-Hop or Destination options extension
66 * header
67 * - Disallow unknown options
68 *
69 * The limits are expressed in corresponding sysctls:
70 *
71 * ipv6.sysctl.max_dst_opts_cnt
72 * ipv6.sysctl.max_hbh_opts_cnt
73 * ipv6.sysctl.max_dst_opts_len
74 * ipv6.sysctl.max_hbh_opts_len
75 *
76 * max_*_opts_cnt is the number of TLVs that are allowed for Destination
77 * options or Hop-by-Hop options. If the number is less than zero then unknown
78 * TLVs are disallowed and the number of known options that are allowed is the
79 * absolute value. Setting the value to INT_MAX indicates no limit.
80 *
81 * max_*_opts_len is the length limit in bytes of a Destination or
82 * Hop-by-Hop options extension header. Setting the value to INT_MAX
83 * indicates no length limit.
84 *
85 * If a limit is exceeded when processing an extension header the packet is
86 * silently discarded.
87 */
88
89 /* Default limits for Hop-by-Hop and Destination options */
90 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
91 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
92 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
93 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
94
95 /*
96 * Addr type
97 *
98 * type - unicast | multicast
99 * scope - local | site | global
100 * v4 - compat
101 * v4mapped
102 * any
103 * loopback
104 */
105
106 #define IPV6_ADDR_ANY 0x0000U
107
108 #define IPV6_ADDR_UNICAST 0x0001U
109 #define IPV6_ADDR_MULTICAST 0x0002U
110
111 #define IPV6_ADDR_LOOPBACK 0x0010U
112 #define IPV6_ADDR_LINKLOCAL 0x0020U
113 #define IPV6_ADDR_SITELOCAL 0x0040U
114
115 #define IPV6_ADDR_COMPATv4 0x0080U
116
117 #define IPV6_ADDR_SCOPE_MASK 0x00f0U
118
119 #define IPV6_ADDR_MAPPED 0x1000U
120
121 /*
122 * Addr scopes
123 */
124 #define IPV6_ADDR_MC_SCOPE(a) \
125 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
126 #define __IPV6_ADDR_SCOPE_INVALID -1
127 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
128 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
129 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
130 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
131 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
132
133 /*
134 * Addr flags
135 */
136 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
137 ((a)->s6_addr[1] & 0x10)
138 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
139 ((a)->s6_addr[1] & 0x20)
140 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
141 ((a)->s6_addr[1] & 0x40)
142
143 /*
144 * fragmentation header
145 */
146
147 struct frag_hdr {
148 __u8 nexthdr;
149 __u8 reserved;
150 __be16 frag_off;
151 __be32 identification;
152 };
153
154 /*
155 * Jumbo payload option, as described in RFC 2675 2.
156 */
157 struct hop_jumbo_hdr {
158 u8 nexthdr;
159 u8 hdrlen;
160 u8 tlv_type; /* IPV6_TLV_JUMBO, 0xC2 */
161 u8 tlv_len; /* 4 */
162 __be32 jumbo_payload_len;
163 };
164
165 #define IP6_MF 0x0001
166 #define IP6_OFFSET 0xFFF8
167
168 struct ip6_fraglist_iter {
169 struct ipv6hdr *tmp_hdr;
170 struct sk_buff *frag;
171 int offset;
172 unsigned int hlen;
173 __be32 frag_id;
174 u8 nexthdr;
175 };
176
177 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
178 u8 nexthdr, __be32 frag_id,
179 struct ip6_fraglist_iter *iter);
180 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
181
ip6_fraglist_next(struct ip6_fraglist_iter * iter)182 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
183 {
184 struct sk_buff *skb = iter->frag;
185
186 iter->frag = skb->next;
187 skb_mark_not_on_list(skb);
188
189 return skb;
190 }
191
192 struct ip6_frag_state {
193 u8 *prevhdr;
194 unsigned int hlen;
195 unsigned int mtu;
196 unsigned int left;
197 int offset;
198 int ptr;
199 int hroom;
200 int troom;
201 __be32 frag_id;
202 u8 nexthdr;
203 };
204
205 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
206 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
207 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
208 struct sk_buff *ip6_frag_next(struct sk_buff *skb,
209 struct ip6_frag_state *state);
210
211 #define IP6_REPLY_MARK(net, mark) \
212 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
213
214 #include <net/sock.h>
215
216 /* sysctls */
217 extern int sysctl_mld_max_msf;
218 extern int sysctl_mld_qrv;
219
220 #define _DEVINC(net, statname, mod, idev, field) \
221 ({ \
222 struct inet6_dev *_idev = (idev); \
223 if (likely(_idev != NULL)) \
224 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
225 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
226 })
227
228 /* per device counters are atomic_long_t */
229 #define _DEVINCATOMIC(net, statname, mod, idev, field) \
230 ({ \
231 struct inet6_dev *_idev = (idev); \
232 if (likely(_idev != NULL)) \
233 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
234 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
235 })
236
237 /* per device and per net counters are atomic_long_t */
238 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
239 ({ \
240 struct inet6_dev *_idev = (idev); \
241 if (likely(_idev != NULL)) \
242 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
243 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
244 })
245
246 #define _DEVADD(net, statname, mod, idev, field, val) \
247 ({ \
248 struct inet6_dev *_idev = (idev); \
249 unsigned long _field = (field); \
250 unsigned long _val = (val); \
251 if (likely(_idev != NULL)) \
252 mod##SNMP_ADD_STATS((_idev)->stats.statname, _field, _val); \
253 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, _field, _val);\
254 })
255
256 #define _DEVUPD(net, statname, mod, idev, field, val) \
257 ({ \
258 struct inet6_dev *_idev = (idev); \
259 unsigned long _val = (val); \
260 if (likely(_idev != NULL)) \
261 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, _val); \
262 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, _val);\
263 })
264
265 /* MIBs */
266
267 #define IP6_INC_STATS(net, idev,field) \
268 _DEVINC(net, ipv6, , idev, field)
269 #define __IP6_INC_STATS(net, idev,field) \
270 _DEVINC(net, ipv6, __, idev, field)
271 #define IP6_ADD_STATS(net, idev,field,val) \
272 _DEVADD(net, ipv6, , idev, field, val)
273 #define __IP6_ADD_STATS(net, idev,field,val) \
274 _DEVADD(net, ipv6, __, idev, field, val)
275 #define IP6_UPD_PO_STATS(net, idev,field,val) \
276 _DEVUPD(net, ipv6, , idev, field, val)
277 #define __IP6_UPD_PO_STATS(net, idev,field,val) \
278 _DEVUPD(net, ipv6, __, idev, field, val)
279 #define ICMP6_INC_STATS(net, idev, field) \
280 _DEVINCATOMIC(net, icmpv6, , idev, field)
281 #define __ICMP6_INC_STATS(net, idev, field) \
282 _DEVINCATOMIC(net, icmpv6, __, idev, field)
283
284 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
285 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
286 #define ICMP6MSGIN_INC_STATS(net, idev, field) \
287 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
288
289 struct ip6_ra_chain {
290 struct ip6_ra_chain *next;
291 struct sock *sk;
292 int sel;
293 void (*destructor)(struct sock *);
294 };
295
296 extern struct ip6_ra_chain *ip6_ra_chain;
297 extern rwlock_t ip6_ra_lock;
298
299 /*
300 This structure is prepared by protocol, when parsing
301 ancillary data and passed to IPv6.
302 */
303
304 struct ipv6_txoptions {
305 refcount_t refcnt;
306 /* Length of this structure */
307 int tot_len;
308
309 /* length of extension headers */
310
311 __u16 opt_flen; /* after fragment hdr */
312 __u16 opt_nflen; /* before fragment hdr */
313
314 struct ipv6_opt_hdr *hopopt;
315 struct ipv6_opt_hdr *dst0opt;
316 struct ipv6_rt_hdr *srcrt; /* Routing Header */
317 struct ipv6_opt_hdr *dst1opt;
318 struct rcu_head rcu;
319 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
320 };
321
322 /* flowlabel_reflect sysctl values */
323 enum flowlabel_reflect {
324 FLOWLABEL_REFLECT_ESTABLISHED = 1,
325 FLOWLABEL_REFLECT_TCP_RESET = 2,
326 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4,
327 };
328
329 struct ip6_flowlabel {
330 struct ip6_flowlabel __rcu *next;
331 __be32 label;
332 atomic_t users;
333 struct in6_addr dst;
334 struct ipv6_txoptions *opt;
335 unsigned long linger;
336 struct rcu_head rcu;
337 u8 share;
338 union {
339 struct pid *pid;
340 kuid_t uid;
341 } owner;
342 unsigned long lastuse;
343 unsigned long expires;
344 struct net *fl_net;
345 };
346
347 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
348 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
349 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
350
351 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
352 #define IPV6_TCLASS_SHIFT 20
353
354 struct ipv6_fl_socklist {
355 struct ipv6_fl_socklist __rcu *next;
356 struct ip6_flowlabel *fl;
357 struct rcu_head rcu;
358 };
359
360 struct ipcm6_cookie {
361 struct sockcm_cookie sockc;
362 __s16 hlimit;
363 __s16 tclass;
364 __u16 gso_size;
365 __s8 dontfrag;
366 struct ipv6_txoptions *opt;
367 };
368
ipcm6_init_sk(struct ipcm6_cookie * ipc6,const struct sock * sk)369 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
370 const struct sock *sk)
371 {
372 *ipc6 = (struct ipcm6_cookie) {
373 .hlimit = -1,
374 .tclass = inet6_sk(sk)->tclass,
375 .dontfrag = inet6_test_bit(DONTFRAG, sk),
376 };
377
378 sockcm_init(&ipc6->sockc, sk);
379 }
380
txopt_get(const struct ipv6_pinfo * np)381 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
382 {
383 struct ipv6_txoptions *opt;
384
385 rcu_read_lock();
386 opt = rcu_dereference(np->opt);
387 if (opt) {
388 if (!refcount_inc_not_zero(&opt->refcnt))
389 opt = NULL;
390 else
391 opt = rcu_pointer_handoff(opt);
392 }
393 rcu_read_unlock();
394 return opt;
395 }
396
txopt_put(struct ipv6_txoptions * opt)397 static inline void txopt_put(struct ipv6_txoptions *opt)
398 {
399 if (opt && refcount_dec_and_test(&opt->refcnt))
400 kfree_rcu(opt, rcu);
401 }
402
403 #if IS_ENABLED(CONFIG_IPV6)
404 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
405
406 extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
fl6_sock_lookup(struct sock * sk,__be32 label)407 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
408 __be32 label)
409 {
410 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) &&
411 READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl))
412 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
413
414 return NULL;
415 }
416 #endif
417
418 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
419 struct ip6_flowlabel *fl,
420 struct ipv6_txoptions *fopt);
421 void fl6_free_socklist(struct sock *sk);
422 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
423 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
424 int flags);
425 int ip6_flowlabel_init(void);
426 void ip6_flowlabel_cleanup(void);
427 bool ip6_autoflowlabel(struct net *net, const struct sock *sk);
428
fl6_sock_release(struct ip6_flowlabel * fl)429 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
430 {
431 if (fl)
432 atomic_dec(&fl->users);
433 }
434
435 enum skb_drop_reason icmpv6_notify(struct sk_buff *skb, u8 type,
436 u8 code, __be32 info);
437
438 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
439 struct icmp6hdr *thdr, int len);
440
441 int ip6_ra_control(struct sock *sk, int sel);
442
443 int ipv6_parse_hopopts(struct sk_buff *skb);
444
445 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
446 struct ipv6_txoptions *opt);
447 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
448 struct ipv6_txoptions *opt,
449 int newtype,
450 struct ipv6_opt_hdr *newopt);
451 struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space,
452 struct ipv6_txoptions *opt);
453
454 static inline struct ipv6_txoptions *
ipv6_fixup_options(struct ipv6_txoptions * opt_space,struct ipv6_txoptions * opt)455 ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt)
456 {
457 if (!opt)
458 return NULL;
459 return __ipv6_fixup_options(opt_space, opt);
460 }
461
462 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
463 const struct inet6_skb_parm *opt);
464 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
465 struct ipv6_txoptions *opt);
466
467 /* This helper is specialized for BIG TCP needs.
468 * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header.
469 * It assumes headers are already in skb->head.
470 * Returns: 0, or IPPROTO_TCP if a BIG TCP packet is there.
471 */
ipv6_has_hopopt_jumbo(const struct sk_buff * skb)472 static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb)
473 {
474 const struct hop_jumbo_hdr *jhdr;
475 const struct ipv6hdr *nhdr;
476
477 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
478 return 0;
479
480 if (skb->protocol != htons(ETH_P_IPV6))
481 return 0;
482
483 if (skb_network_offset(skb) +
484 sizeof(struct ipv6hdr) +
485 sizeof(struct hop_jumbo_hdr) > skb_headlen(skb))
486 return 0;
487
488 nhdr = ipv6_hdr(skb);
489
490 if (nhdr->nexthdr != NEXTHDR_HOP)
491 return 0;
492
493 jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1);
494 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
495 jhdr->nexthdr != IPPROTO_TCP)
496 return 0;
497 return jhdr->nexthdr;
498 }
499
500 /* Return 0 if HBH header is successfully removed
501 * Or if HBH removal is unnecessary (packet is not big TCP)
502 * Return error to indicate dropping the packet
503 */
ipv6_hopopt_jumbo_remove(struct sk_buff * skb)504 static inline int ipv6_hopopt_jumbo_remove(struct sk_buff *skb)
505 {
506 const int hophdr_len = sizeof(struct hop_jumbo_hdr);
507 int nexthdr = ipv6_has_hopopt_jumbo(skb);
508 struct ipv6hdr *h6;
509
510 if (!nexthdr)
511 return 0;
512
513 if (skb_cow_head(skb, 0))
514 return -1;
515
516 /* Remove the HBH header.
517 * Layout: [Ethernet header][IPv6 header][HBH][L4 Header]
518 */
519 memmove(skb_mac_header(skb) + hophdr_len, skb_mac_header(skb),
520 skb_network_header(skb) - skb_mac_header(skb) +
521 sizeof(struct ipv6hdr));
522
523 __skb_pull(skb, hophdr_len);
524 skb->network_header += hophdr_len;
525 skb->mac_header += hophdr_len;
526
527 h6 = ipv6_hdr(skb);
528 h6->nexthdr = nexthdr;
529
530 return 0;
531 }
532
ipv6_accept_ra(const struct inet6_dev * idev)533 static inline bool ipv6_accept_ra(const struct inet6_dev *idev)
534 {
535 s32 accept_ra = READ_ONCE(idev->cnf.accept_ra);
536
537 /* If forwarding is enabled, RA are not accepted unless the special
538 * hybrid mode (accept_ra=2) is enabled.
539 */
540 return READ_ONCE(idev->cnf.forwarding) ? accept_ra == 2 :
541 accept_ra;
542 }
543
544 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
545 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
546 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
547
548 int __ipv6_addr_type(const struct in6_addr *addr);
ipv6_addr_type(const struct in6_addr * addr)549 static inline int ipv6_addr_type(const struct in6_addr *addr)
550 {
551 return __ipv6_addr_type(addr) & 0xffff;
552 }
553
ipv6_addr_scope(const struct in6_addr * addr)554 static inline int ipv6_addr_scope(const struct in6_addr *addr)
555 {
556 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
557 }
558
__ipv6_addr_src_scope(int type)559 static inline int __ipv6_addr_src_scope(int type)
560 {
561 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
562 }
563
ipv6_addr_src_scope(const struct in6_addr * addr)564 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
565 {
566 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
567 }
568
__ipv6_addr_needs_scope_id(int type)569 static inline bool __ipv6_addr_needs_scope_id(int type)
570 {
571 return type & IPV6_ADDR_LINKLOCAL ||
572 (type & IPV6_ADDR_MULTICAST &&
573 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
574 }
575
ipv6_iface_scope_id(const struct in6_addr * addr,int iface)576 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
577 {
578 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
579 }
580
ipv6_addr_cmp(const struct in6_addr * a1,const struct in6_addr * a2)581 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
582 {
583 return memcmp(a1, a2, sizeof(struct in6_addr));
584 }
585
586 static inline bool
ipv6_masked_addr_cmp(const struct in6_addr * a1,const struct in6_addr * m,const struct in6_addr * a2)587 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
588 const struct in6_addr *a2)
589 {
590 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
591 const unsigned long *ul1 = (const unsigned long *)a1;
592 const unsigned long *ulm = (const unsigned long *)m;
593 const unsigned long *ul2 = (const unsigned long *)a2;
594
595 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
596 ((ul1[1] ^ ul2[1]) & ulm[1]));
597 #else
598 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
599 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
600 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
601 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
602 #endif
603 }
604
ipv6_addr_prefix(struct in6_addr * pfx,const struct in6_addr * addr,int plen)605 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
606 const struct in6_addr *addr,
607 int plen)
608 {
609 /* caller must guarantee 0 <= plen <= 128 */
610 int o = plen >> 3,
611 b = plen & 0x7;
612
613 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
614 memcpy(pfx->s6_addr, addr, o);
615 if (b != 0)
616 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
617 }
618
ipv6_addr_prefix_copy(struct in6_addr * addr,const struct in6_addr * pfx,int plen)619 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
620 const struct in6_addr *pfx,
621 int plen)
622 {
623 /* caller must guarantee 0 <= plen <= 128 */
624 int o = plen >> 3,
625 b = plen & 0x7;
626
627 memcpy(addr->s6_addr, pfx, o);
628 if (b != 0) {
629 addr->s6_addr[o] &= ~(0xff00 >> b);
630 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
631 }
632 }
633
__ipv6_addr_set_half(__be32 * addr,__be32 wh,__be32 wl)634 static inline void __ipv6_addr_set_half(__be32 *addr,
635 __be32 wh, __be32 wl)
636 {
637 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
638 #if defined(__BIG_ENDIAN)
639 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
640 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
641 return;
642 }
643 #elif defined(__LITTLE_ENDIAN)
644 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
645 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
646 return;
647 }
648 #endif
649 #endif
650 addr[0] = wh;
651 addr[1] = wl;
652 }
653
ipv6_addr_set(struct in6_addr * addr,__be32 w1,__be32 w2,__be32 w3,__be32 w4)654 static inline void ipv6_addr_set(struct in6_addr *addr,
655 __be32 w1, __be32 w2,
656 __be32 w3, __be32 w4)
657 {
658 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
659 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
660 }
661
ipv6_addr_equal(const struct in6_addr * a1,const struct in6_addr * a2)662 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
663 const struct in6_addr *a2)
664 {
665 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
666 const unsigned long *ul1 = (const unsigned long *)a1;
667 const unsigned long *ul2 = (const unsigned long *)a2;
668
669 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
670 #else
671 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
672 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
673 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
674 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
675 #endif
676 }
677
678 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_prefix_equal64_half(const __be64 * a1,const __be64 * a2,unsigned int len)679 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
680 const __be64 *a2,
681 unsigned int len)
682 {
683 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
684 return false;
685 return true;
686 }
687
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)688 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
689 const struct in6_addr *addr2,
690 unsigned int prefixlen)
691 {
692 const __be64 *a1 = (const __be64 *)addr1;
693 const __be64 *a2 = (const __be64 *)addr2;
694
695 if (prefixlen >= 64) {
696 if (a1[0] ^ a2[0])
697 return false;
698 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
699 }
700 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
701 }
702 #else
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)703 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
704 const struct in6_addr *addr2,
705 unsigned int prefixlen)
706 {
707 const __be32 *a1 = addr1->s6_addr32;
708 const __be32 *a2 = addr2->s6_addr32;
709 unsigned int pdw, pbi;
710
711 /* check complete u32 in prefix */
712 pdw = prefixlen >> 5;
713 if (pdw && memcmp(a1, a2, pdw << 2))
714 return false;
715
716 /* check incomplete u32 in prefix */
717 pbi = prefixlen & 0x1f;
718 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
719 return false;
720
721 return true;
722 }
723 #endif
724
ipv6_addr_any(const struct in6_addr * a)725 static inline bool ipv6_addr_any(const struct in6_addr *a)
726 {
727 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
728 const unsigned long *ul = (const unsigned long *)a;
729
730 return (ul[0] | ul[1]) == 0UL;
731 #else
732 return (a->s6_addr32[0] | a->s6_addr32[1] |
733 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
734 #endif
735 }
736
ipv6_addr_hash(const struct in6_addr * a)737 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
738 {
739 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
740 const unsigned long *ul = (const unsigned long *)a;
741 unsigned long x = ul[0] ^ ul[1];
742
743 return (u32)(x ^ (x >> 32));
744 #else
745 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
746 a->s6_addr32[2] ^ a->s6_addr32[3]);
747 #endif
748 }
749
750 /* more secured version of ipv6_addr_hash() */
__ipv6_addr_jhash(const struct in6_addr * a,const u32 initval)751 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
752 {
753 return jhash2((__force const u32 *)a->s6_addr32,
754 ARRAY_SIZE(a->s6_addr32), initval);
755 }
756
ipv6_addr_loopback(const struct in6_addr * a)757 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
758 {
759 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
760 const __be64 *be = (const __be64 *)a;
761
762 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
763 #else
764 return (a->s6_addr32[0] | a->s6_addr32[1] |
765 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
766 #endif
767 }
768
769 /*
770 * Note that we must __force cast these to unsigned long to make sparse happy,
771 * since all of the endian-annotated types are fixed size regardless of arch.
772 */
ipv6_addr_v4mapped(const struct in6_addr * a)773 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
774 {
775 return (
776 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
777 *(unsigned long *)a |
778 #else
779 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
780 #endif
781 (__force unsigned long)(a->s6_addr32[2] ^
782 cpu_to_be32(0x0000ffff))) == 0UL;
783 }
784
ipv6_addr_v4mapped_loopback(const struct in6_addr * a)785 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
786 {
787 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
788 }
789
ipv6_portaddr_hash(const struct net * net,const struct in6_addr * addr6,unsigned int port)790 static inline u32 ipv6_portaddr_hash(const struct net *net,
791 const struct in6_addr *addr6,
792 unsigned int port)
793 {
794 unsigned int hash, mix = net_hash_mix(net);
795
796 if (ipv6_addr_any(addr6))
797 hash = jhash_1word(0, mix);
798 else if (ipv6_addr_v4mapped(addr6))
799 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
800 else
801 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
802
803 return hash ^ port;
804 }
805
806 /*
807 * Check for a RFC 4843 ORCHID address
808 * (Overlay Routable Cryptographic Hash Identifiers)
809 */
ipv6_addr_orchid(const struct in6_addr * a)810 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
811 {
812 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
813 }
814
ipv6_addr_is_multicast(const struct in6_addr * addr)815 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
816 {
817 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
818 }
819
ipv6_addr_set_v4mapped(const __be32 addr,struct in6_addr * v4mapped)820 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
821 struct in6_addr *v4mapped)
822 {
823 ipv6_addr_set(v4mapped,
824 0, 0,
825 htonl(0x0000FFFF),
826 addr);
827 }
828
829 /*
830 * find the first different bit between two addresses
831 * length of address must be a multiple of 32bits
832 */
__ipv6_addr_diff32(const void * token1,const void * token2,int addrlen)833 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
834 {
835 const __be32 *a1 = token1, *a2 = token2;
836 int i;
837
838 addrlen >>= 2;
839
840 for (i = 0; i < addrlen; i++) {
841 __be32 xb = a1[i] ^ a2[i];
842 if (xb)
843 return i * 32 + 31 - __fls(ntohl(xb));
844 }
845
846 /*
847 * we should *never* get to this point since that
848 * would mean the addrs are equal
849 *
850 * However, we do get to it 8) And exactly, when
851 * addresses are equal 8)
852 *
853 * ip route add 1111::/128 via ...
854 * ip route add 1111::/64 via ...
855 * and we are here.
856 *
857 * Ideally, this function should stop comparison
858 * at prefix length. It does not, but it is still OK,
859 * if returned value is greater than prefix length.
860 * --ANK (980803)
861 */
862 return addrlen << 5;
863 }
864
865 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_addr_diff64(const void * token1,const void * token2,int addrlen)866 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
867 {
868 const __be64 *a1 = token1, *a2 = token2;
869 int i;
870
871 addrlen >>= 3;
872
873 for (i = 0; i < addrlen; i++) {
874 __be64 xb = a1[i] ^ a2[i];
875 if (xb)
876 return i * 64 + 63 - __fls(be64_to_cpu(xb));
877 }
878
879 return addrlen << 6;
880 }
881 #endif
882
__ipv6_addr_diff(const void * token1,const void * token2,int addrlen)883 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
884 {
885 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
886 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
887 return __ipv6_addr_diff64(token1, token2, addrlen);
888 #endif
889 return __ipv6_addr_diff32(token1, token2, addrlen);
890 }
891
ipv6_addr_diff(const struct in6_addr * a1,const struct in6_addr * a2)892 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
893 {
894 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
895 }
896
897 __be32 ipv6_select_ident(struct net *net,
898 const struct in6_addr *daddr,
899 const struct in6_addr *saddr);
900 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
901
902 int ip6_dst_hoplimit(struct dst_entry *dst);
903
ip6_sk_dst_hoplimit(struct ipv6_pinfo * np,struct flowi6 * fl6,struct dst_entry * dst)904 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
905 struct dst_entry *dst)
906 {
907 int hlimit;
908
909 if (ipv6_addr_is_multicast(&fl6->daddr))
910 hlimit = READ_ONCE(np->mcast_hops);
911 else
912 hlimit = READ_ONCE(np->hop_limit);
913 if (hlimit < 0)
914 hlimit = ip6_dst_hoplimit(dst);
915 return hlimit;
916 }
917
918 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
919 * Equivalent to : flow->v6addrs.src = iph->saddr;
920 * flow->v6addrs.dst = iph->daddr;
921 */
iph_to_flow_copy_v6addrs(struct flow_keys * flow,const struct ipv6hdr * iph)922 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
923 const struct ipv6hdr *iph)
924 {
925 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
926 offsetof(typeof(flow->addrs), v6addrs.src) +
927 sizeof(flow->addrs.v6addrs.src));
928 memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs));
929 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
930 }
931
932 #if IS_ENABLED(CONFIG_IPV6)
933
ipv6_can_nonlocal_bind(struct net * net,struct inet_sock * inet)934 static inline bool ipv6_can_nonlocal_bind(struct net *net,
935 struct inet_sock *inet)
936 {
937 return net->ipv6.sysctl.ip_nonlocal_bind ||
938 test_bit(INET_FLAGS_FREEBIND, &inet->inet_flags) ||
939 test_bit(INET_FLAGS_TRANSPARENT, &inet->inet_flags);
940 }
941
942 /* Sysctl settings for net ipv6.auto_flowlabels */
943 #define IP6_AUTO_FLOW_LABEL_OFF 0
944 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
945 #define IP6_AUTO_FLOW_LABEL_OPTIN 2
946 #define IP6_AUTO_FLOW_LABEL_FORCED 3
947
948 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
949
950 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
951
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)952 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
953 __be32 flowlabel, bool autolabel,
954 struct flowi6 *fl6)
955 {
956 u32 hash;
957
958 /* @flowlabel may include more than a flow label, eg, the traffic class.
959 * Here we want only the flow label value.
960 */
961 flowlabel &= IPV6_FLOWLABEL_MASK;
962
963 if (flowlabel ||
964 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
965 (!autolabel &&
966 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
967 return flowlabel;
968
969 hash = skb_get_hash_flowi6(skb, fl6);
970
971 /* Since this is being sent on the wire obfuscate hash a bit
972 * to minimize possibility that any useful information to an
973 * attacker is leaked. Only lower 20 bits are relevant.
974 */
975 hash = rol32(hash, 16);
976
977 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
978
979 if (net->ipv6.sysctl.flowlabel_state_ranges)
980 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
981
982 return flowlabel;
983 }
984
ip6_default_np_autolabel(struct net * net)985 static inline int ip6_default_np_autolabel(struct net *net)
986 {
987 switch (net->ipv6.sysctl.auto_flowlabels) {
988 case IP6_AUTO_FLOW_LABEL_OFF:
989 case IP6_AUTO_FLOW_LABEL_OPTIN:
990 default:
991 return 0;
992 case IP6_AUTO_FLOW_LABEL_OPTOUT:
993 case IP6_AUTO_FLOW_LABEL_FORCED:
994 return 1;
995 }
996 }
997 #else
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)998 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
999 __be32 flowlabel, bool autolabel,
1000 struct flowi6 *fl6)
1001 {
1002 return flowlabel;
1003 }
ip6_default_np_autolabel(struct net * net)1004 static inline int ip6_default_np_autolabel(struct net *net)
1005 {
1006 return 0;
1007 }
1008 #endif
1009
1010 #if IS_ENABLED(CONFIG_IPV6)
ip6_multipath_hash_policy(const struct net * net)1011 static inline int ip6_multipath_hash_policy(const struct net *net)
1012 {
1013 return net->ipv6.sysctl.multipath_hash_policy;
1014 }
ip6_multipath_hash_fields(const struct net * net)1015 static inline u32 ip6_multipath_hash_fields(const struct net *net)
1016 {
1017 return net->ipv6.sysctl.multipath_hash_fields;
1018 }
1019 #else
ip6_multipath_hash_policy(const struct net * net)1020 static inline int ip6_multipath_hash_policy(const struct net *net)
1021 {
1022 return 0;
1023 }
ip6_multipath_hash_fields(const struct net * net)1024 static inline u32 ip6_multipath_hash_fields(const struct net *net)
1025 {
1026 return 0;
1027 }
1028 #endif
1029
1030 /*
1031 * Header manipulation
1032 */
ip6_flow_hdr(struct ipv6hdr * hdr,unsigned int tclass,__be32 flowlabel)1033 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
1034 __be32 flowlabel)
1035 {
1036 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
1037 }
1038
ip6_flowinfo(const struct ipv6hdr * hdr)1039 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
1040 {
1041 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
1042 }
1043
ip6_flowlabel(const struct ipv6hdr * hdr)1044 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
1045 {
1046 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
1047 }
1048
ip6_tclass(__be32 flowinfo)1049 static inline u8 ip6_tclass(__be32 flowinfo)
1050 {
1051 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
1052 }
1053
ip6_dscp(__be32 flowinfo)1054 static inline dscp_t ip6_dscp(__be32 flowinfo)
1055 {
1056 return inet_dsfield_to_dscp(ip6_tclass(flowinfo));
1057 }
1058
ip6_make_flowinfo(unsigned int tclass,__be32 flowlabel)1059 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
1060 {
1061 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
1062 }
1063
flowi6_get_flowlabel(const struct flowi6 * fl6)1064 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
1065 {
1066 return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
1067 }
1068
1069 /*
1070 * Prototypes exported by ipv6
1071 */
1072
1073 /*
1074 * rcv function (called from netdevice level)
1075 */
1076
1077 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
1078 struct packet_type *pt, struct net_device *orig_dev);
1079 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
1080 struct net_device *orig_dev);
1081
1082 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
1083
1084 /*
1085 * upper-layer output functions
1086 */
1087 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
1088 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
1089
1090 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
1091
1092 int ip6_append_data(struct sock *sk,
1093 int getfrag(void *from, char *to, int offset, int len,
1094 int odd, struct sk_buff *skb),
1095 void *from, size_t length, int transhdrlen,
1096 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1097 struct rt6_info *rt, unsigned int flags);
1098
1099 int ip6_push_pending_frames(struct sock *sk);
1100
1101 void ip6_flush_pending_frames(struct sock *sk);
1102
1103 int ip6_send_skb(struct sk_buff *skb);
1104
1105 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1106 struct inet_cork_full *cork,
1107 struct inet6_cork *v6_cork);
1108 struct sk_buff *ip6_make_skb(struct sock *sk,
1109 int getfrag(void *from, char *to, int offset,
1110 int len, int odd, struct sk_buff *skb),
1111 void *from, size_t length, int transhdrlen,
1112 struct ipcm6_cookie *ipc6,
1113 struct rt6_info *rt, unsigned int flags,
1114 struct inet_cork_full *cork);
1115
ip6_finish_skb(struct sock * sk)1116 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1117 {
1118 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1119 &inet6_sk(sk)->cork);
1120 }
1121
1122 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1123 struct flowi6 *fl6);
1124 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
1125 const struct in6_addr *final_dst);
1126 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1127 const struct in6_addr *final_dst,
1128 bool connected);
1129 struct dst_entry *ip6_blackhole_route(struct net *net,
1130 struct dst_entry *orig_dst);
1131
1132 /*
1133 * skb processing functions
1134 */
1135
1136 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1137 int ip6_forward(struct sk_buff *skb);
1138 int ip6_input(struct sk_buff *skb);
1139 int ip6_mc_input(struct sk_buff *skb);
1140 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1141 bool have_final);
1142
1143 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1144 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1145
1146 /*
1147 * Extension header (options) processing
1148 */
1149
1150 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1151 u8 *proto, struct in6_addr **daddr_p,
1152 struct in6_addr *saddr);
1153 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1154 u8 *proto);
1155
1156 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1157 __be16 *frag_offp);
1158
1159 bool ipv6_ext_hdr(u8 nexthdr);
1160
1161 enum {
1162 IP6_FH_F_FRAG = (1 << 0),
1163 IP6_FH_F_AUTH = (1 << 1),
1164 IP6_FH_F_SKIP_RH = (1 << 2),
1165 };
1166
1167 /* find specified header and get offset to it */
1168 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1169 unsigned short *fragoff, int *fragflg);
1170
1171 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1172
1173 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1174 const struct ipv6_txoptions *opt,
1175 struct in6_addr *orig);
1176
1177 /*
1178 * socket options (ipv6_sockglue.c)
1179 */
1180 DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount);
1181
1182 int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1183 unsigned int optlen);
1184 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1185 unsigned int optlen);
1186 int do_ipv6_getsockopt(struct sock *sk, int level, int optname,
1187 sockptr_t optval, sockptr_t optlen);
1188 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1189 char __user *optval, int __user *optlen);
1190
1191 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1192 int addr_len);
1193 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1194 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1195 int addr_len);
1196 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1197 void ip6_datagram_release_cb(struct sock *sk);
1198
1199 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1200 int *addr_len);
1201 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1202 int *addr_len);
1203 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1204 u32 info, u8 *payload);
1205 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1206 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1207
1208 void inet6_cleanup_sock(struct sock *sk);
1209 void inet6_sock_destruct(struct sock *sk);
1210 int inet6_release(struct socket *sock);
1211 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1212 int inet6_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len);
1213 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1214 int peer);
1215 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1216 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
1217 unsigned long arg);
1218
1219 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1220 struct sock *sk);
1221 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
1222 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1223 int flags);
1224
1225 /*
1226 * reassembly.c
1227 */
1228 extern const struct proto_ops inet6_stream_ops;
1229 extern const struct proto_ops inet6_dgram_ops;
1230 extern const struct proto_ops inet6_sockraw_ops;
1231
1232 struct group_source_req;
1233 struct group_filter;
1234
1235 int ip6_mc_source(int add, int omode, struct sock *sk,
1236 struct group_source_req *pgsr);
1237 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
1238 struct sockaddr_storage *list);
1239 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1240 sockptr_t optval, size_t ss_offset);
1241
1242 #ifdef CONFIG_PROC_FS
1243 int ac6_proc_init(struct net *net);
1244 void ac6_proc_exit(struct net *net);
1245 int raw6_proc_init(void);
1246 void raw6_proc_exit(void);
1247 int tcp6_proc_init(struct net *net);
1248 void tcp6_proc_exit(struct net *net);
1249 int udp6_proc_init(struct net *net);
1250 void udp6_proc_exit(struct net *net);
1251 int udplite6_proc_init(void);
1252 void udplite6_proc_exit(void);
1253 int ipv6_misc_proc_init(void);
1254 void ipv6_misc_proc_exit(void);
1255 int snmp6_register_dev(struct inet6_dev *idev);
1256 int snmp6_unregister_dev(struct inet6_dev *idev);
1257
1258 #else
ac6_proc_init(struct net * net)1259 static inline int ac6_proc_init(struct net *net) { return 0; }
ac6_proc_exit(struct net * net)1260 static inline void ac6_proc_exit(struct net *net) { }
snmp6_register_dev(struct inet6_dev * idev)1261 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
snmp6_unregister_dev(struct inet6_dev * idev)1262 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1263 #endif
1264
1265 #ifdef CONFIG_SYSCTL
1266 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1267 size_t ipv6_icmp_sysctl_table_size(void);
1268 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1269 size_t ipv6_route_sysctl_table_size(struct net *net);
1270 int ipv6_sysctl_register(void);
1271 void ipv6_sysctl_unregister(void);
1272 #endif
1273
1274 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1275 const struct in6_addr *addr);
1276 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1277 const struct in6_addr *addr, unsigned int mode);
1278 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1279 const struct in6_addr *addr);
1280
ip6_sock_set_v6only(struct sock * sk)1281 static inline int ip6_sock_set_v6only(struct sock *sk)
1282 {
1283 if (inet_sk(sk)->inet_num)
1284 return -EINVAL;
1285 lock_sock(sk);
1286 sk->sk_ipv6only = true;
1287 release_sock(sk);
1288 return 0;
1289 }
1290
ip6_sock_set_recverr(struct sock * sk)1291 static inline void ip6_sock_set_recverr(struct sock *sk)
1292 {
1293 inet6_set_bit(RECVERR6, sk);
1294 }
1295
1296 #define IPV6_PREFER_SRC_MASK (IPV6_PREFER_SRC_TMP | IPV6_PREFER_SRC_PUBLIC | \
1297 IPV6_PREFER_SRC_COA)
1298
ip6_sock_set_addr_preferences(struct sock * sk,int val)1299 static inline int ip6_sock_set_addr_preferences(struct sock *sk, int val)
1300 {
1301 unsigned int prefmask = ~IPV6_PREFER_SRC_MASK;
1302 unsigned int pref = 0;
1303
1304 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
1305 switch (val & (IPV6_PREFER_SRC_PUBLIC |
1306 IPV6_PREFER_SRC_TMP |
1307 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
1308 case IPV6_PREFER_SRC_PUBLIC:
1309 pref |= IPV6_PREFER_SRC_PUBLIC;
1310 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1311 IPV6_PREFER_SRC_TMP);
1312 break;
1313 case IPV6_PREFER_SRC_TMP:
1314 pref |= IPV6_PREFER_SRC_TMP;
1315 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1316 IPV6_PREFER_SRC_TMP);
1317 break;
1318 case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
1319 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1320 IPV6_PREFER_SRC_TMP);
1321 break;
1322 case 0:
1323 break;
1324 default:
1325 return -EINVAL;
1326 }
1327
1328 /* check HOME/COA conflicts */
1329 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
1330 case IPV6_PREFER_SRC_HOME:
1331 prefmask &= ~IPV6_PREFER_SRC_COA;
1332 break;
1333 case IPV6_PREFER_SRC_COA:
1334 pref |= IPV6_PREFER_SRC_COA;
1335 break;
1336 case 0:
1337 break;
1338 default:
1339 return -EINVAL;
1340 }
1341
1342 /* check CGA/NONCGA conflicts */
1343 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
1344 case IPV6_PREFER_SRC_CGA:
1345 case IPV6_PREFER_SRC_NONCGA:
1346 case 0:
1347 break;
1348 default:
1349 return -EINVAL;
1350 }
1351
1352 WRITE_ONCE(inet6_sk(sk)->srcprefs,
1353 (READ_ONCE(inet6_sk(sk)->srcprefs) & prefmask) | pref);
1354 return 0;
1355 }
1356
ip6_sock_set_recvpktinfo(struct sock * sk)1357 static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
1358 {
1359 lock_sock(sk);
1360 inet6_sk(sk)->rxopt.bits.rxinfo = true;
1361 release_sock(sk);
1362 }
1363
1364 #define IPV6_ADDR_WORDS 4
1365
ipv6_addr_cpu_to_be32(__be32 * dst,const u32 * src)1366 static inline void ipv6_addr_cpu_to_be32(__be32 *dst, const u32 *src)
1367 {
1368 cpu_to_be32_array(dst, src, IPV6_ADDR_WORDS);
1369 }
1370
ipv6_addr_be32_to_cpu(u32 * dst,const __be32 * src)1371 static inline void ipv6_addr_be32_to_cpu(u32 *dst, const __be32 *src)
1372 {
1373 be32_to_cpu_array(dst, src, IPV6_ADDR_WORDS);
1374 }
1375
1376 #endif /* _NET_IPV6_H */
1377