1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2011, 2025 Chelsio Communications.
5 * Written by: Navdeep Parhar <np@FreeBSD.org>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_ddb.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35 #include "opt_rss.h"
36
37 #include <sys/param.h>
38 #include <sys/conf.h>
39 #include <sys/priv.h>
40 #include <sys/kernel.h>
41 #include <sys/bus.h>
42 #include <sys/eventhandler.h>
43 #include <sys/module.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 #include <dev/pci/pcireg.h>
48 #include <dev/pci/pcivar.h>
49 #include <sys/firmware.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/if_vlan_var.h>
60 #include <net/rss_config.h>
61 #include <netinet/in.h>
62 #include <netinet/ip.h>
63 #ifdef KERN_TLS
64 #include <netinet/tcp_seq.h>
65 #endif
66 #if defined(__i386__) || defined(__amd64__)
67 #include <machine/md_var.h>
68 #include <machine/cputypes.h>
69 #include <vm/vm.h>
70 #include <vm/pmap.h>
71 #endif
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #include <ddb/db_lex.h>
75 #endif
76
77 #include "common/common.h"
78 #include "common/t4_msg.h"
79 #include "common/t4_regs.h"
80 #include "common/t4_regs_values.h"
81 #include "cudbg/cudbg.h"
82 #include "t4_clip.h"
83 #include "t4_ioctl.h"
84 #include "t4_l2t.h"
85 #include "t4_mp_ring.h"
86 #include "t4_if.h"
87 #include "t4_smt.h"
88
89 /* T4 bus driver interface */
90 static int t4_probe(device_t);
91 static int t4_attach(device_t);
92 static int t4_detach(device_t);
93 static int t4_child_location(device_t, device_t, struct sbuf *);
94 static int t4_ready(device_t);
95 static int t4_read_port_device(device_t, int, device_t *);
96 static int t4_suspend(device_t);
97 static int t4_resume(device_t);
98 static int t4_reset_prepare(device_t, device_t);
99 static int t4_reset_post(device_t, device_t);
100 static device_method_t t4_methods[] = {
101 DEVMETHOD(device_probe, t4_probe),
102 DEVMETHOD(device_attach, t4_attach),
103 DEVMETHOD(device_detach, t4_detach),
104 DEVMETHOD(device_suspend, t4_suspend),
105 DEVMETHOD(device_resume, t4_resume),
106
107 DEVMETHOD(bus_child_location, t4_child_location),
108 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
109 DEVMETHOD(bus_reset_post, t4_reset_post),
110
111 DEVMETHOD(t4_is_main_ready, t4_ready),
112 DEVMETHOD(t4_read_port_device, t4_read_port_device),
113
114 DEVMETHOD_END
115 };
116 static driver_t t4_driver = {
117 "t4nex",
118 t4_methods,
119 sizeof(struct adapter)
120 };
121
122
123 /* T4 port (cxgbe) interface */
124 static int cxgbe_probe(device_t);
125 static int cxgbe_attach(device_t);
126 static int cxgbe_detach(device_t);
127 device_method_t cxgbe_methods[] = {
128 DEVMETHOD(device_probe, cxgbe_probe),
129 DEVMETHOD(device_attach, cxgbe_attach),
130 DEVMETHOD(device_detach, cxgbe_detach),
131 { 0, 0 }
132 };
133 static driver_t cxgbe_driver = {
134 "cxgbe",
135 cxgbe_methods,
136 sizeof(struct port_info)
137 };
138
139 /* T4 VI (vcxgbe) interface */
140 static int vcxgbe_probe(device_t);
141 static int vcxgbe_attach(device_t);
142 static int vcxgbe_detach(device_t);
143 static device_method_t vcxgbe_methods[] = {
144 DEVMETHOD(device_probe, vcxgbe_probe),
145 DEVMETHOD(device_attach, vcxgbe_attach),
146 DEVMETHOD(device_detach, vcxgbe_detach),
147 { 0, 0 }
148 };
149 static driver_t vcxgbe_driver = {
150 "vcxgbe",
151 vcxgbe_methods,
152 sizeof(struct vi_info)
153 };
154
155 static d_ioctl_t t4_ioctl;
156
157 static struct cdevsw t4_cdevsw = {
158 .d_version = D_VERSION,
159 .d_ioctl = t4_ioctl,
160 .d_name = "t4nex",
161 };
162
163 /* T5 bus driver interface */
164 static int t5_probe(device_t);
165 static device_method_t t5_methods[] = {
166 DEVMETHOD(device_probe, t5_probe),
167 DEVMETHOD(device_attach, t4_attach),
168 DEVMETHOD(device_detach, t4_detach),
169 DEVMETHOD(device_suspend, t4_suspend),
170 DEVMETHOD(device_resume, t4_resume),
171
172 DEVMETHOD(bus_child_location, t4_child_location),
173 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
174 DEVMETHOD(bus_reset_post, t4_reset_post),
175
176 DEVMETHOD(t4_is_main_ready, t4_ready),
177 DEVMETHOD(t4_read_port_device, t4_read_port_device),
178
179 DEVMETHOD_END
180 };
181 static driver_t t5_driver = {
182 "t5nex",
183 t5_methods,
184 sizeof(struct adapter)
185 };
186
187
188 /* T5 port (cxl) interface */
189 static driver_t cxl_driver = {
190 "cxl",
191 cxgbe_methods,
192 sizeof(struct port_info)
193 };
194
195 /* T5 VI (vcxl) interface */
196 static driver_t vcxl_driver = {
197 "vcxl",
198 vcxgbe_methods,
199 sizeof(struct vi_info)
200 };
201
202 /* T6 bus driver interface */
203 static int t6_probe(device_t);
204 static device_method_t t6_methods[] = {
205 DEVMETHOD(device_probe, t6_probe),
206 DEVMETHOD(device_attach, t4_attach),
207 DEVMETHOD(device_detach, t4_detach),
208 DEVMETHOD(device_suspend, t4_suspend),
209 DEVMETHOD(device_resume, t4_resume),
210
211 DEVMETHOD(bus_child_location, t4_child_location),
212 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
213 DEVMETHOD(bus_reset_post, t4_reset_post),
214
215 DEVMETHOD(t4_is_main_ready, t4_ready),
216 DEVMETHOD(t4_read_port_device, t4_read_port_device),
217
218 DEVMETHOD_END
219 };
220 static driver_t t6_driver = {
221 "t6nex",
222 t6_methods,
223 sizeof(struct adapter)
224 };
225
226
227 /* T6 port (cc) interface */
228 static driver_t cc_driver = {
229 "cc",
230 cxgbe_methods,
231 sizeof(struct port_info)
232 };
233
234 /* T6 VI (vcc) interface */
235 static driver_t vcc_driver = {
236 "vcc",
237 vcxgbe_methods,
238 sizeof(struct vi_info)
239 };
240
241 /* T7+ bus driver interface */
242 static int ch_probe(device_t);
243 static device_method_t ch_methods[] = {
244 DEVMETHOD(device_probe, ch_probe),
245 DEVMETHOD(device_attach, t4_attach),
246 DEVMETHOD(device_detach, t4_detach),
247 DEVMETHOD(device_suspend, t4_suspend),
248 DEVMETHOD(device_resume, t4_resume),
249
250 DEVMETHOD(bus_child_location, t4_child_location),
251 DEVMETHOD(bus_reset_prepare, t4_reset_prepare),
252 DEVMETHOD(bus_reset_post, t4_reset_post),
253
254 DEVMETHOD(t4_is_main_ready, t4_ready),
255 DEVMETHOD(t4_read_port_device, t4_read_port_device),
256
257 DEVMETHOD_END
258 };
259 static driver_t ch_driver = {
260 "chnex",
261 ch_methods,
262 sizeof(struct adapter)
263 };
264
265
266 /* T7+ port (che) interface */
267 static driver_t che_driver = {
268 "che",
269 cxgbe_methods,
270 sizeof(struct port_info)
271 };
272
273 /* T7+ VI (vche) interface */
274 static driver_t vche_driver = {
275 "vche",
276 vcxgbe_methods,
277 sizeof(struct vi_info)
278 };
279
280 /* ifnet interface */
281 static void cxgbe_init(void *);
282 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
283 static int cxgbe_transmit(if_t, struct mbuf *);
284 static void cxgbe_qflush(if_t);
285 #if defined(KERN_TLS) || defined(RATELIMIT)
286 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
287 struct m_snd_tag **);
288 #endif
289
290 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
291
292 /*
293 * Correct lock order when you need to acquire multiple locks is t4_list_lock,
294 * then ADAPTER_LOCK, then t4_uld_list_lock.
295 */
296 static struct sx t4_list_lock;
297 SLIST_HEAD(, adapter) t4_list;
298 #ifdef TCP_OFFLOAD
299 static struct sx t4_uld_list_lock;
300 struct uld_info *t4_uld_list[ULD_MAX + 1];
301 #endif
302
303 /*
304 * Tunables. See tweak_tunables() too.
305 *
306 * Each tunable is set to a default value here if it's known at compile-time.
307 * Otherwise it is set to -n as an indication to tweak_tunables() that it should
308 * provide a reasonable default (upto n) when the driver is loaded.
309 *
310 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
311 * T5 are under hw.cxl.
312 */
313 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
314 "cxgbe(4) parameters");
315 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
316 "cxgbe(4) T5+ parameters");
317 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
318 "cxgbe(4) TOE parameters");
319
320 /*
321 * Number of queues for tx and rx, NIC and offload.
322 */
323 #define NTXQ 16
324 int t4_ntxq = -NTXQ;
325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
326 "Number of TX queues per port");
327 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */
328
329 #define NRXQ 8
330 int t4_nrxq = -NRXQ;
331 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
332 "Number of RX queues per port");
333 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */
334
335 #define NTXQ_VI 1
336 static int t4_ntxq_vi = -NTXQ_VI;
337 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
338 "Number of TX queues per VI");
339
340 #define NRXQ_VI 1
341 static int t4_nrxq_vi = -NRXQ_VI;
342 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
343 "Number of RX queues per VI");
344
345 static int t4_rsrv_noflowq = 0;
346 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
347 0, "Reserve TX queue 0 of each VI for non-flowid packets");
348
349 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
350 #define NOFLDTXQ 8
351 static int t4_nofldtxq = -NOFLDTXQ;
352 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
353 "Number of offload TX queues per port");
354
355 #define NOFLDTXQ_VI 1
356 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
357 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
358 "Number of offload TX queues per VI");
359 #endif
360
361 #if defined(TCP_OFFLOAD)
362 #define NOFLDRXQ 2
363 static int t4_nofldrxq = -NOFLDRXQ;
364 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
365 "Number of offload RX queues per port");
366
367 #define NOFLDRXQ_VI 1
368 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
369 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
370 "Number of offload RX queues per VI");
371
372 #define TMR_IDX_OFLD 1
373 static int t4_tmr_idx_ofld = TMR_IDX_OFLD;
374 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
375 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
376
377 #define PKTC_IDX_OFLD (-1)
378 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
379 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
380 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
381
382 /* 0 means chip/fw default, non-zero number is value in microseconds */
383 static u_long t4_toe_keepalive_idle = 0;
384 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
385 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
386
387 /* 0 means chip/fw default, non-zero number is value in microseconds */
388 static u_long t4_toe_keepalive_interval = 0;
389 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
390 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
391
392 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
393 static int t4_toe_keepalive_count = 0;
394 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
395 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
396
397 /* 0 means chip/fw default, non-zero number is value in microseconds */
398 static u_long t4_toe_rexmt_min = 0;
399 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
400 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
401
402 /* 0 means chip/fw default, non-zero number is value in microseconds */
403 static u_long t4_toe_rexmt_max = 0;
404 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
405 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
406
407 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
408 static int t4_toe_rexmt_count = 0;
409 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
410 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
411
412 /* -1 means chip/fw default, other values are raw backoff values to use */
413 static int t4_toe_rexmt_backoff[16] = {
414 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
415 };
416 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
417 CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
418 "cxgbe(4) TOE retransmit backoff values");
419 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
420 &t4_toe_rexmt_backoff[0], 0, "");
421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
422 &t4_toe_rexmt_backoff[1], 0, "");
423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
424 &t4_toe_rexmt_backoff[2], 0, "");
425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
426 &t4_toe_rexmt_backoff[3], 0, "");
427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
428 &t4_toe_rexmt_backoff[4], 0, "");
429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
430 &t4_toe_rexmt_backoff[5], 0, "");
431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
432 &t4_toe_rexmt_backoff[6], 0, "");
433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
434 &t4_toe_rexmt_backoff[7], 0, "");
435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
436 &t4_toe_rexmt_backoff[8], 0, "");
437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
438 &t4_toe_rexmt_backoff[9], 0, "");
439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
440 &t4_toe_rexmt_backoff[10], 0, "");
441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
442 &t4_toe_rexmt_backoff[11], 0, "");
443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
444 &t4_toe_rexmt_backoff[12], 0, "");
445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
446 &t4_toe_rexmt_backoff[13], 0, "");
447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
448 &t4_toe_rexmt_backoff[14], 0, "");
449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
450 &t4_toe_rexmt_backoff[15], 0, "");
451
452 int t4_ddp_rcvbuf_len = 256 * 1024;
453 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
454 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
455
456 unsigned int t4_ddp_rcvbuf_cache = 4;
457 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
458 &t4_ddp_rcvbuf_cache, 0,
459 "maximum number of free DDP RX buffers to cache per connection");
460 #endif
461
462 #ifdef DEV_NETMAP
463 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */
464 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */
465 static int t4_native_netmap = NN_EXTRA_VI;
466 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
467 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs");
468
469 #define NNMTXQ 8
470 static int t4_nnmtxq = -NNMTXQ;
471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
472 "Number of netmap TX queues");
473
474 #define NNMRXQ 8
475 static int t4_nnmrxq = -NNMRXQ;
476 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
477 "Number of netmap RX queues");
478
479 #define NNMTXQ_VI 2
480 static int t4_nnmtxq_vi = -NNMTXQ_VI;
481 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
482 "Number of netmap TX queues per VI");
483
484 #define NNMRXQ_VI 2
485 static int t4_nnmrxq_vi = -NNMRXQ_VI;
486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
487 "Number of netmap RX queues per VI");
488 #endif
489
490 /*
491 * Holdoff parameters for ports.
492 */
493 #define TMR_IDX 1
494 int t4_tmr_idx = TMR_IDX;
495 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
496 0, "Holdoff timer index");
497 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */
498
499 #define PKTC_IDX (-1)
500 int t4_pktc_idx = PKTC_IDX;
501 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
502 0, "Holdoff packet counter index");
503 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */
504
505 /*
506 * Size (# of entries) of each tx and rx queue.
507 */
508 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
510 "Number of descriptors in each TX queue");
511
512 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
513 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
514 "Number of descriptors in each RX queue");
515
516 /*
517 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
518 */
519 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
520 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
521 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
522
523 /*
524 * Configuration file. All the _CF names here are special.
525 */
526 #define DEFAULT_CF "default"
527 #define BUILTIN_CF "built-in"
528 #define FLASH_CF "flash"
529 #define UWIRE_CF "uwire"
530 #define FPGA_CF "fpga"
531 static char t4_cfg_file[32] = DEFAULT_CF;
532 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
533 sizeof(t4_cfg_file), "Firmware configuration file");
534
535 /*
536 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
537 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
538 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
539 * mark or when signalled to do so, 0 to never emit PAUSE.
540 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
541 * negotiated settings will override rx_pause/tx_pause.
542 * Otherwise rx_pause/tx_pause are applied forcibly.
543 */
544 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
545 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
546 &t4_pause_settings, 0,
547 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
548
549 /*
550 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
551 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5)
552 * 0 to disable FEC.
553 */
554 static int t4_fec = -1;
555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
556 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
557
558 static const char *
559 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module";
560
561 /*
562 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
563 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the
564 * driver runs as if this is set to 0.
565 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
566 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
567 * transceiver. Multiple FEC bits may not be okay but will be passed on to
568 * the firmware anyway (may result in l1cfg errors with old firmwares).
569 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
570 * means set all FEC bits that are valid for the speed.
571 */
572 static int t4_force_fec = -1;
573 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
574 "Controls the use of FORCE_FEC bit in L1 configuration.");
575
576 /*
577 * Link autonegotiation.
578 * -1 to run with the firmware default.
579 * 0 to disable.
580 * 1 to enable.
581 */
582 static int t4_autoneg = -1;
583 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
584 "Link autonegotiation");
585
586 /*
587 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
588 * encouraged respectively). '-n' is the same as 'n' except the firmware
589 * version used in the checks is read from the firmware bundled with the driver.
590 */
591 static int t4_fw_install = 1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
593 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
594
595 /*
596 * ASIC features that will be used. Disable the ones you don't want so that the
597 * chip resources aren't wasted on features that will not be used.
598 */
599 static int t4_nbmcaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
601 &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
602
603 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
604 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
605 &t4_linkcaps_allowed, 0, "Default link capabilities");
606
607 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
608 FW_CAPS_CONFIG_SWITCH_EGRESS;
609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
610 &t4_switchcaps_allowed, 0, "Default switch capabilities");
611
612 static int t4_nvmecaps_allowed = -1;
613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN,
614 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities");
615
616 #ifdef RATELIMIT
617 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
618 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
619 #else
620 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
621 FW_CAPS_CONFIG_NIC_HASHFILTER;
622 #endif
623 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
624 &t4_niccaps_allowed, 0, "Default NIC capabilities");
625
626 static int t4_toecaps_allowed = -1;
627 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
628 &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
629
630 static int t4_rdmacaps_allowed = -1;
631 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
632 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
633
634 static int t4_cryptocaps_allowed = -1;
635 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
636 &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
637
638 static int t4_iscsicaps_allowed = -1;
639 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
640 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
641
642 static int t4_fcoecaps_allowed = 0;
643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
644 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
645
646 static int t5_write_combine = 0;
647 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
648 0, "Use WC instead of UC for BAR2");
649
650 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */
651 static int t4_doorbells_allowed = 0xf;
652 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN,
653 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells");
654
655 static int t4_num_vis = 1;
656 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
657 "Number of VIs per port");
658
659 /*
660 * PCIe Relaxed Ordering.
661 * -1: driver should figure out a good value.
662 * 0: disable RO.
663 * 1: enable RO.
664 * 2: leave RO alone.
665 */
666 static int pcie_relaxed_ordering = -1;
667 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
668 &pcie_relaxed_ordering, 0,
669 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
670
671 static int t4_panic_on_fatal_err = 0;
672 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
673 &t4_panic_on_fatal_err, 0, "panic on fatal errors");
674
675 static int t4_reset_on_fatal_err = 0;
676 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
677 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
678
679 static int t4_reset_method = 1;
680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method,
681 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce");
682
683 static int t4_clock_gate_on_suspend = 0;
684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
685 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
686
687 static int t4_tx_vm_wr = 0;
688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
689 "Use VM work requests to transmit packets.");
690
691 /*
692 * Set to non-zero to enable the attack filter. A packet that matches any of
693 * these conditions will get dropped on ingress:
694 * 1) IP && source address == destination address.
695 * 2) TCP/IP && source address is not a unicast address.
696 * 3) TCP/IP && destination address is not a unicast address.
697 * 4) IP && source address is loopback (127.x.y.z).
698 * 5) IP && destination address is loopback (127.x.y.z).
699 * 6) IPv6 && source address == destination address.
700 * 7) IPv6 && source address is not a unicast address.
701 * 8) IPv6 && source address is loopback (::1/128).
702 * 9) IPv6 && destination address is loopback (::1/128).
703 * 10) IPv6 && source address is unspecified (::/128).
704 * 11) IPv6 && destination address is unspecified (::/128).
705 * 12) TCP/IPv6 && source address is multicast (ff00::/8).
706 * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
707 */
708 static int t4_attack_filter = 0;
709 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
710 &t4_attack_filter, 0, "Drop suspicious traffic");
711
712 static int t4_drop_ip_fragments = 0;
713 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
714 &t4_drop_ip_fragments, 0, "Drop IP fragments");
715
716 static int t4_drop_pkts_with_l2_errors = 1;
717 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
718 &t4_drop_pkts_with_l2_errors, 0,
719 "Drop all frames with Layer 2 length or checksum errors");
720
721 static int t4_drop_pkts_with_l3_errors = 0;
722 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
723 &t4_drop_pkts_with_l3_errors, 0,
724 "Drop all frames with IP version, length, or checksum errors");
725
726 static int t4_drop_pkts_with_l4_errors = 0;
727 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
728 &t4_drop_pkts_with_l4_errors, 0,
729 "Drop all frames with Layer 4 length, checksum, or other errors");
730
731 #ifdef TCP_OFFLOAD
732 /*
733 * TOE tunables.
734 */
735 static int t4_cop_managed_offloading = 0;
736 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
737 &t4_cop_managed_offloading, 0,
738 "COP (Connection Offload Policy) controls all TOE offload");
739 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading);
740 #endif
741
742 #ifdef KERN_TLS
743 /*
744 * This enables KERN_TLS for all adapters if set.
745 */
746 static int t4_kern_tls = 0;
747 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
748 "Enable KERN_TLS mode for T6 adapters");
749
750 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
751 "cxgbe(4) KERN_TLS parameters");
752
753 static int t4_tls_inline_keys = 0;
754 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
755 &t4_tls_inline_keys, 0,
756 "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
757 "in card memory.");
758
759 static int t4_tls_combo_wrs = 0;
760 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
761 0, "Attempt to combine TCB field updates with TLS record work requests.");
762
763 static int t4_tls_short_records = 1;
764 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN,
765 &t4_tls_short_records, 0, "Use cipher-only mode for short records.");
766
767 static int t4_tls_partial_ghash = 1;
768 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN,
769 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records.");
770 #endif
771
772 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
773 static int vi_mac_funcs[] = {
774 FW_VI_FUNC_ETH,
775 FW_VI_FUNC_OFLD,
776 FW_VI_FUNC_IWARP,
777 FW_VI_FUNC_OPENISCSI,
778 FW_VI_FUNC_OPENFCOE,
779 FW_VI_FUNC_FOISCSI,
780 FW_VI_FUNC_FOFCOE,
781 };
782
783 struct intrs_and_queues {
784 uint16_t intr_type; /* INTx, MSI, or MSI-X */
785 uint16_t num_vis; /* number of VIs for each port */
786 uint16_t nirq; /* Total # of vectors */
787 uint16_t ntxq; /* # of NIC txq's for each port */
788 uint16_t nrxq; /* # of NIC rxq's for each port */
789 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */
790 uint16_t nofldrxq; /* # of TOE rxq's for each port */
791 uint16_t nnmtxq; /* # of netmap txq's */
792 uint16_t nnmrxq; /* # of netmap rxq's */
793
794 /* The vcxgbe/vcxl interfaces use these and not the ones above. */
795 uint16_t ntxq_vi; /* # of NIC txq's */
796 uint16_t nrxq_vi; /* # of NIC rxq's */
797 uint16_t nofldtxq_vi; /* # of TOE txq's */
798 uint16_t nofldrxq_vi; /* # of TOE rxq's */
799 uint16_t nnmtxq_vi; /* # of netmap txq's */
800 uint16_t nnmrxq_vi; /* # of netmap rxq's */
801 };
802
803 static void setup_memwin(struct adapter *);
804 static void position_memwin(struct adapter *, int, uint32_t);
805 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
806 static int fwmtype_to_hwmtype(int);
807 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
808 uint32_t *);
809 static int fixup_devlog_params(struct adapter *);
810 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
811 static int contact_firmware(struct adapter *);
812 static int partition_resources(struct adapter *);
813 static int get_params__pre_init(struct adapter *);
814 static int set_params__pre_init(struct adapter *);
815 static int get_params__post_init(struct adapter *);
816 static int set_params__post_init(struct adapter *);
817 static void t4_set_desc(struct adapter *);
818 static bool fixed_ifmedia(struct port_info *);
819 static void build_medialist(struct port_info *);
820 static void init_link_config(struct port_info *);
821 static int fixup_link_config(struct port_info *);
822 static int apply_link_config(struct port_info *);
823 static int cxgbe_init_synchronized(struct vi_info *);
824 static int cxgbe_uninit_synchronized(struct vi_info *);
825 static int adapter_full_init(struct adapter *);
826 static void adapter_full_uninit(struct adapter *);
827 static int vi_full_init(struct vi_info *);
828 static void vi_full_uninit(struct vi_info *);
829 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
830 static void quiesce_txq(struct sge_txq *);
831 static void quiesce_wrq(struct sge_wrq *);
832 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
833 static void quiesce_vi(struct vi_info *);
834 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
835 driver_intr_t *, void *, char *);
836 static int t4_free_irq(struct adapter *, struct irq *);
837 static void t4_init_atid_table(struct adapter *);
838 static void t4_free_atid_table(struct adapter *);
839 static void stop_atid_allocator(struct adapter *);
840 static void restart_atid_allocator(struct adapter *);
841 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
842 static void vi_refresh_stats(struct vi_info *);
843 static void cxgbe_refresh_stats(struct vi_info *);
844 static void cxgbe_tick(void *);
845 static void vi_tick(void *);
846 static void cxgbe_sysctls(struct port_info *);
847 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
848 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
849 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
850 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
851 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
852 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
853 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
854 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
855 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
856 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
857 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
858 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
859 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
860 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
861 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
862 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
863 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS);
864 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
865 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
866 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
867 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
868 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
869 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
870 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS);
871 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS);
872 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
873 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
874 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
875 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
876 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS);
877 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
878 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
879 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
880 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
881 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
882 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
883 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
884 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
885 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
886 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
887 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
888 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS);
889 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
890 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
891 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
892 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
893 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
894 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
895 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
896 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
897 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
898 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
899 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
900 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
901 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
902 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
903 static int sysctl_tcb_cache(SYSCTL_HANDLER_ARGS);
904 #ifdef TCP_OFFLOAD
905 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
906 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
907 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
908 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
909 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
910 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
911 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
912 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
913 #endif
914 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *);
915 static int load_fw(struct adapter *, struct t4_data *);
916 static int load_cfg(struct adapter *, struct t4_data *);
917 static int load_boot(struct adapter *, struct t4_bootrom *);
918 static int load_bootcfg(struct adapter *, struct t4_data *);
919 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
920 static void free_offload_policy(struct t4_offload_policy *);
921 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
922 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
923 static int read_i2c(struct adapter *, struct t4_i2c_data *);
924 static int clear_stats(struct adapter *, u_int);
925 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
926 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
927 static inline int stop_adapter(struct adapter *);
928 static inline void set_adapter_hwstatus(struct adapter *, const bool);
929 static int stop_lld(struct adapter *);
930 static inline int restart_adapter(struct adapter *);
931 static int restart_lld(struct adapter *);
932 #ifdef TCP_OFFLOAD
933 static int deactivate_all_uld(struct adapter *);
934 static void stop_all_uld(struct adapter *);
935 static void restart_all_uld(struct adapter *);
936 #endif
937 #ifdef KERN_TLS
938 static int ktls_capability(struct adapter *, bool);
939 #endif
940 static int mod_event(module_t, int, void *);
941 static int notify_siblings(device_t, int);
942 static uint64_t vi_get_counter(if_t, ift_counter);
943 static uint64_t cxgbe_get_counter(if_t, ift_counter);
944 static void enable_vxlan_rx(struct adapter *);
945 static void reset_adapter_task(void *, int);
946 static void fatal_error_task(void *, int);
947 static void dump_devlog(struct adapter *);
948 static void dump_cim_regs(struct adapter *);
949 static void dump_cimla(struct adapter *);
950
951 struct {
952 uint16_t device;
953 char *desc;
954 } t4_pciids[] = {
955 {0xa000, "Chelsio Terminator 4 FPGA"},
956 {0x4400, "Chelsio T440-dbg"},
957 {0x4401, "Chelsio T420-CR"},
958 {0x4402, "Chelsio T422-CR"},
959 {0x4403, "Chelsio T440-CR"},
960 {0x4404, "Chelsio T420-BCH"},
961 {0x4405, "Chelsio T440-BCH"},
962 {0x4406, "Chelsio T440-CH"},
963 {0x4407, "Chelsio T420-SO"},
964 {0x4408, "Chelsio T420-CX"},
965 {0x4409, "Chelsio T420-BT"},
966 {0x440a, "Chelsio T404-BT"},
967 {0x440e, "Chelsio T440-LP-CR"},
968 }, t5_pciids[] = {
969 {0xb000, "Chelsio Terminator 5 FPGA"},
970 {0x5400, "Chelsio T580-dbg"},
971 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
972 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
973 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
974 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
975 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
976 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
977 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
978 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
979 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
980 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
981 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
982 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
983 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
984 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */
985 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */
986 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */
987 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */
988
989 /* Custom */
990 {0x5483, "Custom T540-CR"},
991 {0x5484, "Custom T540-BT"},
992 }, t6_pciids[] = {
993 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */
994 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */
995 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */
996 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */
997 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */
998 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */
999 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */
1000 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */
1001 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */
1002 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */
1003 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */
1004 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */
1005 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */
1006 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */
1007 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */
1008 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */
1009
1010 /* Custom */
1011 {0x6480, "Custom T6225-CR"},
1012 {0x6481, "Custom T62100-CR"},
1013 {0x6482, "Custom T6225-CR"},
1014 {0x6483, "Custom T62100-CR"},
1015 {0x6484, "Custom T64100-CR"},
1016 {0x6485, "Custom T6240-SO"},
1017 {0x6486, "Custom T6225-SO-CR"},
1018 {0x6487, "Custom T6225-CR"},
1019 }, t7_pciids[] = {
1020 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */
1021 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */
1022 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */
1023 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */
1024 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */
1025 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */
1026 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */
1027 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */
1028 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */
1029 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */
1030 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */
1031 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */
1032 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */
1033 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */
1034 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */
1035 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */
1036 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */
1037 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */
1038 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */
1039
1040 /* Custom */
1041 {0x7480, "Custom T7"},
1042 };
1043
1044 #ifdef TCP_OFFLOAD
1045 /*
1046 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should
1047 * be exactly the same for both rxq and ofld_rxq.
1048 */
1049 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
1050 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
1051 #endif
1052 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
1053
1054 static int
t4_probe(device_t dev)1055 t4_probe(device_t dev)
1056 {
1057 int i;
1058 uint16_t v = pci_get_vendor(dev);
1059 uint16_t d = pci_get_device(dev);
1060 uint8_t f = pci_get_function(dev);
1061
1062 if (v != PCI_VENDOR_ID_CHELSIO)
1063 return (ENXIO);
1064
1065 /* Attach only to PF0 of the FPGA */
1066 if (d == 0xa000 && f != 0)
1067 return (ENXIO);
1068
1069 for (i = 0; i < nitems(t4_pciids); i++) {
1070 if (d == t4_pciids[i].device) {
1071 device_set_desc(dev, t4_pciids[i].desc);
1072 return (BUS_PROBE_DEFAULT);
1073 }
1074 }
1075
1076 return (ENXIO);
1077 }
1078
1079 static int
t5_probe(device_t dev)1080 t5_probe(device_t dev)
1081 {
1082 int i;
1083 uint16_t v = pci_get_vendor(dev);
1084 uint16_t d = pci_get_device(dev);
1085 uint8_t f = pci_get_function(dev);
1086
1087 if (v != PCI_VENDOR_ID_CHELSIO)
1088 return (ENXIO);
1089
1090 /* Attach only to PF0 of the FPGA */
1091 if (d == 0xb000 && f != 0)
1092 return (ENXIO);
1093
1094 for (i = 0; i < nitems(t5_pciids); i++) {
1095 if (d == t5_pciids[i].device) {
1096 device_set_desc(dev, t5_pciids[i].desc);
1097 return (BUS_PROBE_DEFAULT);
1098 }
1099 }
1100
1101 return (ENXIO);
1102 }
1103
1104 static int
t6_probe(device_t dev)1105 t6_probe(device_t dev)
1106 {
1107 int i;
1108 uint16_t v = pci_get_vendor(dev);
1109 uint16_t d = pci_get_device(dev);
1110
1111 if (v != PCI_VENDOR_ID_CHELSIO)
1112 return (ENXIO);
1113
1114 for (i = 0; i < nitems(t6_pciids); i++) {
1115 if (d == t6_pciids[i].device) {
1116 device_set_desc(dev, t6_pciids[i].desc);
1117 return (BUS_PROBE_DEFAULT);
1118 }
1119 }
1120
1121 return (ENXIO);
1122 }
1123
1124 static int
ch_probe(device_t dev)1125 ch_probe(device_t dev)
1126 {
1127 int i;
1128 uint16_t v = pci_get_vendor(dev);
1129 uint16_t d = pci_get_device(dev);
1130 uint8_t f = pci_get_function(dev);
1131
1132 if (v != PCI_VENDOR_ID_CHELSIO)
1133 return (ENXIO);
1134
1135 /* Attach only to PF0 of the FPGA */
1136 if (d == 0xd000 && f != 0)
1137 return (ENXIO);
1138
1139 for (i = 0; i < nitems(t7_pciids); i++) {
1140 if (d == t7_pciids[i].device) {
1141 device_set_desc(dev, t7_pciids[i].desc);
1142 return (BUS_PROBE_DEFAULT);
1143 }
1144 }
1145
1146 return (ENXIO);
1147 }
1148
1149 static void
t5_attribute_workaround(device_t dev)1150 t5_attribute_workaround(device_t dev)
1151 {
1152 device_t root_port;
1153 uint32_t v;
1154
1155 /*
1156 * The T5 chips do not properly echo the No Snoop and Relaxed
1157 * Ordering attributes when replying to a TLP from a Root
1158 * Port. As a workaround, find the parent Root Port and
1159 * disable No Snoop and Relaxed Ordering. Note that this
1160 * affects all devices under this root port.
1161 */
1162 root_port = pci_find_pcie_root_port(dev);
1163 if (root_port == NULL) {
1164 device_printf(dev, "Unable to find parent root port\n");
1165 return;
1166 }
1167
1168 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1169 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1170 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1171 0)
1172 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1173 device_get_nameunit(root_port));
1174 }
1175
1176 static const struct devnames devnames[] = {
1177 {
1178 .nexus_name = "t4nex",
1179 .ifnet_name = "cxgbe",
1180 .vi_ifnet_name = "vcxgbe",
1181 .pf03_drv_name = "t4iov",
1182 .vf_nexus_name = "t4vf",
1183 .vf_ifnet_name = "cxgbev"
1184 }, {
1185 .nexus_name = "t5nex",
1186 .ifnet_name = "cxl",
1187 .vi_ifnet_name = "vcxl",
1188 .pf03_drv_name = "t5iov",
1189 .vf_nexus_name = "t5vf",
1190 .vf_ifnet_name = "cxlv"
1191 }, {
1192 .nexus_name = "t6nex",
1193 .ifnet_name = "cc",
1194 .vi_ifnet_name = "vcc",
1195 .pf03_drv_name = "t6iov",
1196 .vf_nexus_name = "t6vf",
1197 .vf_ifnet_name = "ccv"
1198 }, {
1199 .nexus_name = "chnex",
1200 .ifnet_name = "che",
1201 .vi_ifnet_name = "vche",
1202 .pf03_drv_name = "chiov",
1203 .vf_nexus_name = "chvf",
1204 .vf_ifnet_name = "chev"
1205 }
1206 };
1207
1208 void
t4_init_devnames(struct adapter * sc)1209 t4_init_devnames(struct adapter *sc)
1210 {
1211 int id;
1212
1213 id = chip_id(sc);
1214 if (id < CHELSIO_T4) {
1215 device_printf(sc->dev, "chip id %d is not supported.\n", id);
1216 sc->names = NULL;
1217 } else if (id - CHELSIO_T4 < nitems(devnames))
1218 sc->names = &devnames[id - CHELSIO_T4];
1219 else
1220 sc->names = &devnames[nitems(devnames) - 1];
1221 }
1222
1223 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1224 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1225 {
1226 const char *parent, *name;
1227 long value;
1228 int line, unit;
1229
1230 line = 0;
1231 parent = device_get_nameunit(sc->dev);
1232 name = sc->names->ifnet_name;
1233 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1234 if (resource_long_value(name, unit, "port", &value) == 0 &&
1235 value == pi->port_id)
1236 return (unit);
1237 }
1238 return (-1);
1239 }
1240
1241 static void
t4_calibration(void * arg)1242 t4_calibration(void *arg)
1243 {
1244 struct adapter *sc;
1245 struct clock_sync *cur, *nex;
1246 uint64_t hw;
1247 sbintime_t sbt;
1248 int next_up;
1249
1250 sc = (struct adapter *)arg;
1251
1252 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration"));
1253 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1254 sbt = sbinuptime();
1255
1256 cur = &sc->cal_info[sc->cal_current];
1257 next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1258 nex = &sc->cal_info[next_up];
1259 if (__predict_false(sc->cal_count == 0)) {
1260 /* First time in, just get the values in */
1261 cur->hw_cur = hw;
1262 cur->sbt_cur = sbt;
1263 sc->cal_count++;
1264 goto done;
1265 }
1266
1267 if (cur->hw_cur == hw) {
1268 /* The clock is not advancing? */
1269 sc->cal_count = 0;
1270 atomic_store_rel_int(&cur->gen, 0);
1271 goto done;
1272 }
1273
1274 seqc_write_begin(&nex->gen);
1275 nex->hw_prev = cur->hw_cur;
1276 nex->sbt_prev = cur->sbt_cur;
1277 nex->hw_cur = hw;
1278 nex->sbt_cur = sbt;
1279 seqc_write_end(&nex->gen);
1280 sc->cal_current = next_up;
1281 done:
1282 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1283 sc, C_DIRECT_EXEC);
1284 }
1285
1286 static void
t4_calibration_start(struct adapter * sc)1287 t4_calibration_start(struct adapter *sc)
1288 {
1289 /*
1290 * Here if we have not done a calibration
1291 * then do so otherwise start the appropriate
1292 * timer.
1293 */
1294 int i;
1295
1296 for (i = 0; i < CNT_CAL_INFO; i++) {
1297 sc->cal_info[i].gen = 0;
1298 }
1299 sc->cal_current = 0;
1300 sc->cal_count = 0;
1301 sc->cal_gen = 0;
1302 t4_calibration(sc);
1303 }
1304
1305 static int
t4_attach(device_t dev)1306 t4_attach(device_t dev)
1307 {
1308 struct adapter *sc;
1309 int rc = 0, i, j, rqidx, tqidx, nports;
1310 struct make_dev_args mda;
1311 struct intrs_and_queues iaq;
1312 struct sge *s;
1313 uint32_t *buf;
1314 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1315 int ofld_tqidx;
1316 #endif
1317 #ifdef TCP_OFFLOAD
1318 int ofld_rqidx;
1319 #endif
1320 #ifdef DEV_NETMAP
1321 int nm_rqidx, nm_tqidx;
1322 #endif
1323 int num_vis;
1324
1325 sc = device_get_softc(dev);
1326 sc->dev = dev;
1327 sysctl_ctx_init(&sc->ctx);
1328 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1329 if (TUNABLE_INT_FETCH("hw.cxgbe.iflags", &sc->intr_flags) == 0)
1330 sc->intr_flags = IHF_INTR_CLEAR_ON_INIT | IHF_CLR_ALL_UNIGNORED;
1331
1332 if ((pci_get_device(dev) & 0xff00) == 0x5400)
1333 t5_attribute_workaround(dev);
1334 pci_enable_busmaster(dev);
1335 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1336 uint32_t v;
1337
1338 pci_set_max_read_req(dev, 4096);
1339 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1340 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1341 if (pcie_relaxed_ordering == 0 &&
1342 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1343 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1344 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1345 } else if (pcie_relaxed_ordering == 1 &&
1346 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1347 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1348 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1349 }
1350 }
1351
1352 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1353 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1354 sc->traceq = -1;
1355 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1356 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1357 device_get_nameunit(dev));
1358
1359 snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1360 device_get_nameunit(dev));
1361 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1362 t4_add_adapter(sc);
1363
1364 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1365 TAILQ_INIT(&sc->sfl);
1366 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1367
1368 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1369
1370 sc->policy = NULL;
1371 rw_init(&sc->policy_lock, "connection offload policy");
1372
1373 callout_init(&sc->ktls_tick, 1);
1374
1375 callout_init(&sc->cal_callout, 1);
1376
1377 refcount_init(&sc->vxlan_refcount, 0);
1378
1379 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1380 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1381
1382 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1383 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1384 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1385 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1386 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1387 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1388
1389 rc = t4_map_bars_0_and_4(sc);
1390 if (rc != 0)
1391 goto done; /* error message displayed already */
1392
1393 memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1394 memset(sc->port_map, 0xff, sizeof(sc->port_map));
1395
1396 /* Prepare the adapter for operation. */
1397 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1398 rc = -t4_prep_adapter(sc, buf);
1399 free(buf, M_CXGBE);
1400 if (rc != 0) {
1401 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1402 goto done;
1403 }
1404
1405 /*
1406 * This is the real PF# to which we're attaching. Works from within PCI
1407 * passthrough environments too, where pci_get_function() could return a
1408 * different PF# depending on the passthrough configuration. We need to
1409 * use the real PF# in all our communication with the firmware.
1410 */
1411 j = t4_read_reg(sc, A_PL_WHOAMI);
1412 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1413 sc->mbox = sc->pf;
1414
1415 t4_init_devnames(sc);
1416 if (sc->names == NULL) {
1417 rc = ENOTSUP;
1418 goto done; /* error message displayed already */
1419 }
1420
1421 /*
1422 * Do this really early, with the memory windows set up even before the
1423 * character device. The userland tool's register i/o and mem read
1424 * will work even in "recovery mode".
1425 */
1426 setup_memwin(sc);
1427 if (t4_init_devlog_ncores_params(sc, 0) == 0)
1428 fixup_devlog_params(sc);
1429 make_dev_args_init(&mda);
1430 mda.mda_devsw = &t4_cdevsw;
1431 mda.mda_uid = UID_ROOT;
1432 mda.mda_gid = GID_WHEEL;
1433 mda.mda_mode = 0600;
1434 mda.mda_si_drv1 = sc;
1435 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1436 if (rc != 0)
1437 device_printf(dev, "failed to create nexus char device: %d.\n",
1438 rc);
1439
1440 /* Go no further if recovery mode has been requested. */
1441 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1442 device_printf(dev, "recovery mode.\n");
1443 goto done;
1444 }
1445
1446 #if defined(__i386__)
1447 if ((cpu_feature & CPUID_CX8) == 0) {
1448 device_printf(dev, "64 bit atomics not available.\n");
1449 rc = ENOTSUP;
1450 goto done;
1451 }
1452 #endif
1453
1454 /* Contact the firmware and try to become the master driver. */
1455 rc = contact_firmware(sc);
1456 if (rc != 0)
1457 goto done; /* error message displayed already */
1458 MPASS(sc->flags & FW_OK);
1459
1460 rc = get_params__pre_init(sc);
1461 if (rc != 0)
1462 goto done; /* error message displayed already */
1463
1464 if (sc->flags & MASTER_PF) {
1465 rc = partition_resources(sc);
1466 if (rc != 0)
1467 goto done; /* error message displayed already */
1468 }
1469
1470 rc = get_params__post_init(sc);
1471 if (rc != 0)
1472 goto done; /* error message displayed already */
1473
1474 rc = set_params__post_init(sc);
1475 if (rc != 0)
1476 goto done; /* error message displayed already */
1477
1478 rc = t4_map_bar_2(sc);
1479 if (rc != 0)
1480 goto done; /* error message displayed already */
1481
1482 rc = t4_adj_doorbells(sc);
1483 if (rc != 0)
1484 goto done; /* error message displayed already */
1485
1486 rc = t4_create_dma_tag(sc);
1487 if (rc != 0)
1488 goto done; /* error message displayed already */
1489
1490 /*
1491 * First pass over all the ports - allocate VIs and initialize some
1492 * basic parameters like mac address, port type, etc.
1493 */
1494 for_each_port(sc, i) {
1495 struct port_info *pi;
1496
1497 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1498 sc->port[i] = pi;
1499
1500 /* These must be set before t4_port_init */
1501 pi->adapter = sc;
1502 pi->port_id = i;
1503 /*
1504 * XXX: vi[0] is special so we can't delay this allocation until
1505 * pi->nvi's final value is known.
1506 */
1507 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1508 M_ZERO | M_WAITOK);
1509
1510 /*
1511 * Allocate the "main" VI and initialize parameters
1512 * like mac addr.
1513 */
1514 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1515 if (rc != 0) {
1516 device_printf(dev, "unable to initialize port %d: %d\n",
1517 i, rc);
1518 free(pi->vi, M_CXGBE);
1519 free(pi, M_CXGBE);
1520 sc->port[i] = NULL;
1521 goto done;
1522 }
1523
1524 if (is_bt(pi->port_type))
1525 setbit(&sc->bt_map, pi->hw_port);
1526 else
1527 MPASS(!isset(&sc->bt_map, pi->hw_port));
1528
1529 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1530 device_get_nameunit(dev), i);
1531 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1532 for (j = 0; j < sc->params.tp.lb_nchan; j++)
1533 sc->chan_map[pi->tx_chan + j] = i;
1534 sc->port_map[pi->hw_port] = i;
1535
1536 /*
1537 * The MPS counter for FCS errors doesn't work correctly on the
1538 * T6 so we use the MAC counter here. Which MAC is in use
1539 * depends on the link settings which will be known when the
1540 * link comes up.
1541 */
1542 if (is_t6(sc))
1543 pi->fcs_reg = -1;
1544 else
1545 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L;
1546 pi->fcs_base = 0;
1547
1548 /* All VIs on this port share this media. */
1549 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1550 cxgbe_media_status);
1551
1552 PORT_LOCK(pi);
1553 init_link_config(pi);
1554 fixup_link_config(pi);
1555 build_medialist(pi);
1556 if (fixed_ifmedia(pi))
1557 pi->flags |= FIXED_IFMEDIA;
1558 PORT_UNLOCK(pi);
1559
1560 pi->dev = device_add_child(dev, sc->names->ifnet_name,
1561 t4_ifnet_unit(sc, pi));
1562 if (pi->dev == NULL) {
1563 device_printf(dev,
1564 "failed to add device for port %d.\n", i);
1565 rc = ENXIO;
1566 goto done;
1567 }
1568 pi->vi[0].dev = pi->dev;
1569 device_set_softc(pi->dev, pi);
1570 }
1571
1572 /*
1573 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1574 */
1575 nports = sc->params.nports;
1576 rc = cfg_itype_and_nqueues(sc, &iaq);
1577 if (rc != 0)
1578 goto done; /* error message displayed already */
1579
1580 num_vis = iaq.num_vis;
1581 sc->intr_type = iaq.intr_type;
1582 sc->intr_count = iaq.nirq;
1583
1584 s = &sc->sge;
1585 s->nctrlq = max(sc->params.nports, sc->params.ncores);
1586 s->nrxq = nports * iaq.nrxq;
1587 s->ntxq = nports * iaq.ntxq;
1588 if (num_vis > 1) {
1589 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1590 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1591 }
1592 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
1593 s->neq += nports; /* ctrl queues: 1 per port */
1594 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
1595 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1596 if (is_offload(sc) || is_ethoffload(sc)) {
1597 s->nofldtxq = nports * iaq.nofldtxq;
1598 if (num_vis > 1)
1599 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1600 s->neq += s->nofldtxq;
1601
1602 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1603 M_CXGBE, M_ZERO | M_WAITOK);
1604 }
1605 #endif
1606 #ifdef TCP_OFFLOAD
1607 if (is_offload(sc)) {
1608 s->nofldrxq = nports * iaq.nofldrxq;
1609 if (num_vis > 1)
1610 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1611 s->neq += s->nofldrxq; /* free list */
1612 s->niq += s->nofldrxq;
1613
1614 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1615 M_CXGBE, M_ZERO | M_WAITOK);
1616 }
1617 #endif
1618 #ifdef DEV_NETMAP
1619 s->nnmrxq = 0;
1620 s->nnmtxq = 0;
1621 if (t4_native_netmap & NN_MAIN_VI) {
1622 s->nnmrxq += nports * iaq.nnmrxq;
1623 s->nnmtxq += nports * iaq.nnmtxq;
1624 }
1625 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1626 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1627 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1628 }
1629 s->neq += s->nnmtxq + s->nnmrxq;
1630 s->niq += s->nnmrxq;
1631
1632 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1633 M_CXGBE, M_ZERO | M_WAITOK);
1634 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1635 M_CXGBE, M_ZERO | M_WAITOK);
1636 #endif
1637 MPASS(s->niq <= s->iqmap_sz);
1638 MPASS(s->neq <= s->eqmap_sz);
1639
1640 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE,
1641 M_ZERO | M_WAITOK);
1642 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1643 M_ZERO | M_WAITOK);
1644 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1645 M_ZERO | M_WAITOK);
1646 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1647 M_ZERO | M_WAITOK);
1648 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1649 M_ZERO | M_WAITOK);
1650
1651 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1652 M_ZERO | M_WAITOK);
1653
1654 t4_init_l2t(sc, M_WAITOK);
1655 t4_init_smt(sc, M_WAITOK);
1656 t4_init_tx_sched(sc);
1657 t4_init_atid_table(sc);
1658 #ifdef RATELIMIT
1659 t4_init_etid_table(sc);
1660 #endif
1661 #ifdef INET6
1662 t4_init_clip_table(sc);
1663 #endif
1664 if (sc->vres.key.size != 0)
1665 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1666 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1667 t4_init_tpt(sc);
1668
1669 /*
1670 * Second pass over the ports. This time we know the number of rx and
1671 * tx queues that each port should get.
1672 */
1673 rqidx = tqidx = 0;
1674 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1675 ofld_tqidx = 0;
1676 #endif
1677 #ifdef TCP_OFFLOAD
1678 ofld_rqidx = 0;
1679 #endif
1680 #ifdef DEV_NETMAP
1681 nm_rqidx = nm_tqidx = 0;
1682 #endif
1683 for_each_port(sc, i) {
1684 struct port_info *pi = sc->port[i];
1685 struct vi_info *vi;
1686
1687 if (pi == NULL)
1688 continue;
1689
1690 pi->nvi = num_vis;
1691 for_each_vi(pi, j, vi) {
1692 vi->pi = pi;
1693 vi->adapter = sc;
1694 vi->first_intr = -1;
1695 vi->qsize_rxq = t4_qsize_rxq;
1696 vi->qsize_txq = t4_qsize_txq;
1697
1698 vi->first_rxq = rqidx;
1699 vi->first_txq = tqidx;
1700 vi->tmr_idx = t4_tmr_idx;
1701 vi->pktc_idx = t4_pktc_idx;
1702 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1703 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1704
1705 rqidx += vi->nrxq;
1706 tqidx += vi->ntxq;
1707
1708 if (j == 0 && vi->ntxq > 1)
1709 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1710 else
1711 vi->rsrv_noflowq = 0;
1712
1713 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1714 vi->first_ofld_txq = ofld_tqidx;
1715 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1716 ofld_tqidx += vi->nofldtxq;
1717 #endif
1718 #ifdef TCP_OFFLOAD
1719 vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1720 vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1721 vi->first_ofld_rxq = ofld_rqidx;
1722 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1723
1724 ofld_rqidx += vi->nofldrxq;
1725 #endif
1726 #ifdef DEV_NETMAP
1727 vi->first_nm_rxq = nm_rqidx;
1728 vi->first_nm_txq = nm_tqidx;
1729 if (j == 0) {
1730 vi->nnmrxq = iaq.nnmrxq;
1731 vi->nnmtxq = iaq.nnmtxq;
1732 } else {
1733 vi->nnmrxq = iaq.nnmrxq_vi;
1734 vi->nnmtxq = iaq.nnmtxq_vi;
1735 }
1736 nm_rqidx += vi->nnmrxq;
1737 nm_tqidx += vi->nnmtxq;
1738 #endif
1739 }
1740 }
1741
1742 rc = t4_setup_intr_handlers(sc);
1743 if (rc != 0) {
1744 device_printf(dev,
1745 "failed to setup interrupt handlers: %d\n", rc);
1746 goto done;
1747 }
1748
1749 bus_identify_children(dev);
1750
1751 /*
1752 * Ensure thread-safe mailbox access (in debug builds).
1753 *
1754 * So far this was the only thread accessing the mailbox but various
1755 * ifnets and sysctls are about to be created and their handlers/ioctls
1756 * will access the mailbox from different threads.
1757 */
1758 sc->flags |= CHK_MBOX_ACCESS;
1759
1760 bus_attach_children(dev);
1761 t4_calibration_start(sc);
1762
1763 device_printf(dev,
1764 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1765 sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1766 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1767 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1768 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1769
1770 t4_set_desc(sc);
1771
1772 notify_siblings(dev, 0);
1773
1774 done:
1775 if (rc != 0 && sc->cdev) {
1776 /* cdev was created and so cxgbetool works; recover that way. */
1777 device_printf(dev,
1778 "error during attach, adapter is now in recovery mode.\n");
1779 rc = 0;
1780 }
1781
1782 if (rc != 0)
1783 t4_detach_common(dev);
1784 else
1785 t4_sysctls(sc);
1786
1787 return (rc);
1788 }
1789
1790 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1791 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1792 {
1793 struct adapter *sc;
1794 struct port_info *pi;
1795 int i;
1796
1797 sc = device_get_softc(bus);
1798 for_each_port(sc, i) {
1799 pi = sc->port[i];
1800 if (pi != NULL && pi->dev == dev) {
1801 sbuf_printf(sb, "port=%d", pi->port_id);
1802 break;
1803 }
1804 }
1805 return (0);
1806 }
1807
1808 static int
t4_ready(device_t dev)1809 t4_ready(device_t dev)
1810 {
1811 struct adapter *sc;
1812
1813 sc = device_get_softc(dev);
1814 if (sc->flags & FW_OK)
1815 return (0);
1816 return (ENXIO);
1817 }
1818
1819 static int
t4_read_port_device(device_t dev,int port,device_t * child)1820 t4_read_port_device(device_t dev, int port, device_t *child)
1821 {
1822 struct adapter *sc;
1823 struct port_info *pi;
1824
1825 sc = device_get_softc(dev);
1826 if (port < 0 || port >= MAX_NPORTS)
1827 return (EINVAL);
1828 pi = sc->port[port];
1829 if (pi == NULL || pi->dev == NULL)
1830 return (ENXIO);
1831 *child = pi->dev;
1832 return (0);
1833 }
1834
1835 static int
notify_siblings(device_t dev,int detaching)1836 notify_siblings(device_t dev, int detaching)
1837 {
1838 device_t sibling;
1839 int error, i;
1840
1841 error = 0;
1842 for (i = 0; i < PCI_FUNCMAX; i++) {
1843 if (i == pci_get_function(dev))
1844 continue;
1845 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1846 pci_get_slot(dev), i);
1847 if (sibling == NULL || !device_is_attached(sibling))
1848 continue;
1849 if (detaching)
1850 error = T4_DETACH_CHILD(sibling);
1851 else
1852 (void)T4_ATTACH_CHILD(sibling);
1853 if (error)
1854 break;
1855 }
1856 return (error);
1857 }
1858
1859 /*
1860 * Idempotent
1861 */
1862 static int
t4_detach(device_t dev)1863 t4_detach(device_t dev)
1864 {
1865 int rc;
1866
1867 rc = notify_siblings(dev, 1);
1868 if (rc) {
1869 device_printf(dev,
1870 "failed to detach sibling devices: %d\n", rc);
1871 return (rc);
1872 }
1873
1874 return (t4_detach_common(dev));
1875 }
1876
1877 int
t4_detach_common(device_t dev)1878 t4_detach_common(device_t dev)
1879 {
1880 struct adapter *sc;
1881 struct port_info *pi;
1882 int i, rc;
1883
1884 sc = device_get_softc(dev);
1885
1886 #ifdef TCP_OFFLOAD
1887 rc = deactivate_all_uld(sc);
1888 if (rc) {
1889 device_printf(dev,
1890 "failed to detach upper layer drivers: %d\n", rc);
1891 return (rc);
1892 }
1893 #endif
1894
1895 if (sc->cdev) {
1896 destroy_dev(sc->cdev);
1897 sc->cdev = NULL;
1898 }
1899
1900 sx_xlock(&t4_list_lock);
1901 SLIST_REMOVE(&t4_list, sc, adapter, link);
1902 sx_xunlock(&t4_list_lock);
1903
1904 sc->flags &= ~CHK_MBOX_ACCESS;
1905 if (sc->flags & FULL_INIT_DONE) {
1906 if (!(sc->flags & IS_VF))
1907 t4_intr_disable(sc);
1908 }
1909
1910 if (device_is_attached(dev)) {
1911 rc = bus_detach_children(dev);
1912 if (rc) {
1913 device_printf(dev,
1914 "failed to detach child devices: %d\n", rc);
1915 return (rc);
1916 }
1917 }
1918
1919 for (i = 0; i < sc->intr_count; i++)
1920 t4_free_irq(sc, &sc->irq[i]);
1921
1922 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1923 t4_free_tx_sched(sc);
1924
1925 for (i = 0; i < MAX_NPORTS; i++) {
1926 pi = sc->port[i];
1927 if (pi) {
1928 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1929
1930 mtx_destroy(&pi->pi_lock);
1931 free(pi->vi, M_CXGBE);
1932 free(pi, M_CXGBE);
1933 }
1934 }
1935 callout_stop(&sc->cal_callout);
1936 callout_drain(&sc->cal_callout);
1937 device_delete_children(dev);
1938 sysctl_ctx_free(&sc->ctx);
1939 adapter_full_uninit(sc);
1940
1941 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1942 t4_fw_bye(sc, sc->mbox);
1943
1944 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1945 pci_release_msi(dev);
1946
1947 if (sc->regs_res)
1948 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1949 sc->regs_res);
1950
1951 if (sc->udbs_res)
1952 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1953 sc->udbs_res);
1954
1955 if (sc->msix_res)
1956 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1957 sc->msix_res);
1958
1959 if (sc->l2t)
1960 t4_free_l2t(sc);
1961 if (sc->smt)
1962 t4_free_smt(sc->smt);
1963 t4_free_atid_table(sc);
1964 #ifdef RATELIMIT
1965 t4_free_etid_table(sc);
1966 #endif
1967 if (sc->key_map)
1968 vmem_destroy(sc->key_map);
1969 t4_free_tpt(sc);
1970 #ifdef INET6
1971 t4_destroy_clip_table(sc);
1972 #endif
1973
1974 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1975 free(sc->sge.ofld_txq, M_CXGBE);
1976 #endif
1977 #ifdef TCP_OFFLOAD
1978 free(sc->sge.ofld_rxq, M_CXGBE);
1979 #endif
1980 #ifdef DEV_NETMAP
1981 free(sc->sge.nm_rxq, M_CXGBE);
1982 free(sc->sge.nm_txq, M_CXGBE);
1983 #endif
1984 free(sc->irq, M_CXGBE);
1985 free(sc->sge.rxq, M_CXGBE);
1986 free(sc->sge.txq, M_CXGBE);
1987 free(sc->sge.ctrlq, M_CXGBE);
1988 free(sc->sge.iqmap, M_CXGBE);
1989 free(sc->sge.eqmap, M_CXGBE);
1990 free(sc->tids.ftid_tab, M_CXGBE);
1991 free(sc->tids.hpftid_tab, M_CXGBE);
1992 free_hftid_hash(&sc->tids);
1993 free(sc->tids.tid_tab, M_CXGBE);
1994 t4_destroy_dma_tag(sc);
1995
1996 callout_drain(&sc->ktls_tick);
1997 callout_drain(&sc->sfl_callout);
1998 if (mtx_initialized(&sc->tids.ftid_lock)) {
1999 mtx_destroy(&sc->tids.ftid_lock);
2000 cv_destroy(&sc->tids.ftid_cv);
2001 }
2002 if (mtx_initialized(&sc->tids.atid_lock))
2003 mtx_destroy(&sc->tids.atid_lock);
2004 if (mtx_initialized(&sc->ifp_lock))
2005 mtx_destroy(&sc->ifp_lock);
2006
2007 if (rw_initialized(&sc->policy_lock)) {
2008 rw_destroy(&sc->policy_lock);
2009 #ifdef TCP_OFFLOAD
2010 if (sc->policy != NULL)
2011 free_offload_policy(sc->policy);
2012 #endif
2013 }
2014
2015 for (i = 0; i < NUM_MEMWIN; i++) {
2016 struct memwin *mw = &sc->memwin[i];
2017
2018 if (rw_initialized(&mw->mw_lock))
2019 rw_destroy(&mw->mw_lock);
2020 }
2021
2022 mtx_destroy(&sc->sfl_lock);
2023 mtx_destroy(&sc->reg_lock);
2024 mtx_destroy(&sc->sc_lock);
2025
2026 bzero(sc, sizeof(*sc));
2027
2028 return (0);
2029 }
2030
2031 static inline int
stop_adapter(struct adapter * sc)2032 stop_adapter(struct adapter *sc)
2033 {
2034 struct port_info *pi;
2035 int i;
2036
2037 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2038 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2039 __func__, curthread, sc->flags, sc->error_flags);
2040 return (EALREADY);
2041 }
2042 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2043 sc->flags, sc->error_flags);
2044 t4_shutdown_adapter(sc);
2045 for_each_port(sc, i) {
2046 pi = sc->port[i];
2047 if (pi == NULL)
2048 continue;
2049 PORT_LOCK(pi);
2050 if (pi->up_vis > 0 && pi->link_cfg.link_ok) {
2051 /*
2052 * t4_shutdown_adapter has already shut down all the
2053 * PHYs but it also disables interrupts and DMA so there
2054 * won't be a link interrupt. Update the state manually
2055 * if the link was up previously and inform the kernel.
2056 */
2057 pi->link_cfg.link_ok = false;
2058 t4_os_link_changed(pi);
2059 }
2060 PORT_UNLOCK(pi);
2061 }
2062
2063 return (0);
2064 }
2065
2066 static inline int
restart_adapter(struct adapter * sc)2067 restart_adapter(struct adapter *sc)
2068 {
2069 uint32_t val;
2070
2071 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) {
2072 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n",
2073 __func__, curthread, sc->flags, sc->error_flags);
2074 return (EALREADY);
2075 }
2076 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread,
2077 sc->flags, sc->error_flags);
2078
2079 MPASS(hw_off_limits(sc));
2080 MPASS((sc->flags & FW_OK) == 0);
2081 MPASS((sc->flags & MASTER_PF) == 0);
2082 MPASS(sc->reset_thread == NULL);
2083
2084 /*
2085 * The adapter is supposed to be back on PCIE with its config space and
2086 * BARs restored to their state before reset. Register access via
2087 * t4_read_reg BAR0 should just work.
2088 */
2089 sc->reset_thread = curthread;
2090 val = t4_read_reg(sc, A_PL_WHOAMI);
2091 if (val == 0xffffffff || val == 0xeeeeeeee) {
2092 CH_ERR(sc, "%s: device registers not readable.\n", __func__);
2093 sc->reset_thread = NULL;
2094 atomic_set_int(&sc->error_flags, ADAP_STOPPED);
2095 return (ENXIO);
2096 }
2097 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR);
2098 atomic_add_int(&sc->incarnation, 1);
2099 atomic_add_int(&sc->num_resets, 1);
2100
2101 return (0);
2102 }
2103
2104 static inline void
set_adapter_hwstatus(struct adapter * sc,const bool usable)2105 set_adapter_hwstatus(struct adapter *sc, const bool usable)
2106 {
2107 if (usable) {
2108 /* Must be marked reusable by the designated thread. */
2109 ASSERT_SYNCHRONIZED_OP(sc);
2110 MPASS(sc->reset_thread == curthread);
2111 mtx_lock(&sc->reg_lock);
2112 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2113 mtx_unlock(&sc->reg_lock);
2114 } else {
2115 /* Mark the adapter totally off limits. */
2116 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts");
2117 mtx_lock(&sc->reg_lock);
2118 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2119 mtx_unlock(&sc->reg_lock);
2120 sc->flags &= ~(FW_OK | MASTER_PF);
2121 sc->reset_thread = NULL;
2122 end_synchronized_op(sc, 0);
2123 }
2124 }
2125
2126 static int
stop_lld(struct adapter * sc)2127 stop_lld(struct adapter *sc)
2128 {
2129 struct port_info *pi;
2130 struct vi_info *vi;
2131 if_t ifp;
2132 struct sge_rxq *rxq;
2133 struct sge_txq *txq;
2134 struct sge_wrq *wrq;
2135 #ifdef TCP_OFFLOAD
2136 struct sge_ofld_rxq *ofld_rxq;
2137 #endif
2138 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2139 struct sge_ofld_txq *ofld_txq;
2140 #endif
2141 int rc, i, j, k;
2142
2143 /*
2144 * XXX: Can there be a synch_op in progress that will hang because
2145 * hardware has been stopped? We'll hang too and the solution will be
2146 * to use a version of begin_synch_op that wakes up existing synch_op
2147 * with errors. Maybe stop_adapter should do this wakeup?
2148 *
2149 * I don't think any synch_op could get stranded waiting for DMA or
2150 * interrupt so I think we're okay here. Remove this comment block
2151 * after testing.
2152 */
2153 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld");
2154 if (rc != 0)
2155 return (ENXIO);
2156
2157 /* Quiesce all activity. */
2158 for_each_port(sc, i) {
2159 pi = sc->port[i];
2160 if (pi == NULL)
2161 continue;
2162 pi->vxlan_tcam_entry = false;
2163 for_each_vi(pi, j, vi) {
2164 vi->xact_addr_filt = -1;
2165 mtx_lock(&vi->tick_mtx);
2166 vi->flags |= VI_SKIP_STATS;
2167 mtx_unlock(&vi->tick_mtx);
2168 if (!(vi->flags & VI_INIT_DONE))
2169 continue;
2170
2171 ifp = vi->ifp;
2172 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2173 mtx_lock(&vi->tick_mtx);
2174 callout_stop(&vi->tick);
2175 mtx_unlock(&vi->tick_mtx);
2176 callout_drain(&vi->tick);
2177 }
2178
2179 /*
2180 * Note that the HW is not available.
2181 */
2182 for_each_txq(vi, k, txq) {
2183 TXQ_LOCK(txq);
2184 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2185 TXQ_UNLOCK(txq);
2186 }
2187 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2188 for_each_ofld_txq(vi, k, ofld_txq) {
2189 TXQ_LOCK(&ofld_txq->wrq);
2190 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2191 TXQ_UNLOCK(&ofld_txq->wrq);
2192 }
2193 #endif
2194 for_each_rxq(vi, k, rxq) {
2195 rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2196 }
2197 #if defined(TCP_OFFLOAD)
2198 for_each_ofld_rxq(vi, k, ofld_rxq) {
2199 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2200 }
2201 #endif
2202
2203 quiesce_vi(vi);
2204 }
2205
2206 if (sc->flags & FULL_INIT_DONE) {
2207 /* Control queue */
2208 wrq = &sc->sge.ctrlq[i];
2209 TXQ_LOCK(wrq);
2210 wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2211 TXQ_UNLOCK(wrq);
2212 quiesce_wrq(wrq);
2213 }
2214
2215 if (pi->flags & HAS_TRACEQ) {
2216 pi->flags &= ~HAS_TRACEQ;
2217 sc->traceq = -1;
2218 sc->tracer_valid = 0;
2219 sc->tracer_enabled = 0;
2220 }
2221 }
2222 if (sc->flags & FULL_INIT_DONE) {
2223 /* Firmware event queue */
2224 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2225 quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2226 }
2227
2228 /* Stop calibration */
2229 callout_stop(&sc->cal_callout);
2230 callout_drain(&sc->cal_callout);
2231
2232 if (t4_clock_gate_on_suspend) {
2233 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2234 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2235 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2236 }
2237
2238 end_synchronized_op(sc, 0);
2239
2240 stop_atid_allocator(sc);
2241 t4_stop_l2t(sc);
2242
2243 return (rc);
2244 }
2245
2246 int
suspend_adapter(struct adapter * sc)2247 suspend_adapter(struct adapter *sc)
2248 {
2249 stop_adapter(sc);
2250 stop_lld(sc);
2251 #ifdef TCP_OFFLOAD
2252 stop_all_uld(sc);
2253 #endif
2254 set_adapter_hwstatus(sc, false);
2255
2256 return (0);
2257 }
2258
2259 static int
t4_suspend(device_t dev)2260 t4_suspend(device_t dev)
2261 {
2262 struct adapter *sc = device_get_softc(dev);
2263 int rc;
2264
2265 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2266 rc = suspend_adapter(sc);
2267 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2268
2269 return (rc);
2270 }
2271
2272 struct adapter_pre_reset_state {
2273 u_int flags;
2274 uint16_t nbmcaps;
2275 uint16_t linkcaps;
2276 uint16_t switchcaps;
2277 uint16_t nvmecaps;
2278 uint16_t niccaps;
2279 uint16_t toecaps;
2280 uint16_t rdmacaps;
2281 uint16_t cryptocaps;
2282 uint16_t iscsicaps;
2283 uint16_t fcoecaps;
2284
2285 u_int cfcsum;
2286 char cfg_file[32];
2287
2288 struct adapter_params params;
2289 struct t4_virt_res vres;
2290 struct tid_info tids;
2291 struct sge sge;
2292
2293 int rawf_base;
2294 int nrawf;
2295
2296 };
2297
2298 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2299 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2300 {
2301
2302 ASSERT_SYNCHRONIZED_OP(sc);
2303
2304 o->flags = sc->flags;
2305
2306 o->nbmcaps = sc->nbmcaps;
2307 o->linkcaps = sc->linkcaps;
2308 o->switchcaps = sc->switchcaps;
2309 o->nvmecaps = sc->nvmecaps;
2310 o->niccaps = sc->niccaps;
2311 o->toecaps = sc->toecaps;
2312 o->rdmacaps = sc->rdmacaps;
2313 o->cryptocaps = sc->cryptocaps;
2314 o->iscsicaps = sc->iscsicaps;
2315 o->fcoecaps = sc->fcoecaps;
2316
2317 o->cfcsum = sc->cfcsum;
2318 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2319 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2320
2321 o->params = sc->params;
2322 o->vres = sc->vres;
2323 o->tids = sc->tids;
2324 o->sge = sc->sge;
2325
2326 o->rawf_base = sc->rawf_base;
2327 o->nrawf = sc->nrawf;
2328 }
2329
2330 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2331 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2332 {
2333 int rc = 0;
2334
2335 ASSERT_SYNCHRONIZED_OP(sc);
2336
2337 /* Capabilities */
2338 #define COMPARE_CAPS(c) do { \
2339 if (o->c##caps != sc->c##caps) { \
2340 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2341 sc->c##caps); \
2342 rc = EINVAL; \
2343 } \
2344 } while (0)
2345 COMPARE_CAPS(nbm);
2346 COMPARE_CAPS(link);
2347 COMPARE_CAPS(switch);
2348 COMPARE_CAPS(nvme);
2349 COMPARE_CAPS(nic);
2350 COMPARE_CAPS(toe);
2351 COMPARE_CAPS(rdma);
2352 COMPARE_CAPS(crypto);
2353 COMPARE_CAPS(iscsi);
2354 COMPARE_CAPS(fcoe);
2355 #undef COMPARE_CAPS
2356
2357 /* Firmware config file */
2358 if (o->cfcsum != sc->cfcsum) {
2359 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2360 o->cfcsum, sc->cfg_file, sc->cfcsum);
2361 rc = EINVAL;
2362 }
2363
2364 #define COMPARE_PARAM(p, name) do { \
2365 if (o->p != sc->p) { \
2366 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2367 rc = EINVAL; \
2368 } \
2369 } while (0)
2370 COMPARE_PARAM(sge.iq_start, iq_start);
2371 COMPARE_PARAM(sge.eq_start, eq_start);
2372 COMPARE_PARAM(tids.ftid_base, ftid_base);
2373 COMPARE_PARAM(tids.ftid_end, ftid_end);
2374 COMPARE_PARAM(tids.nftids, nftids);
2375 COMPARE_PARAM(vres.l2t.start, l2t_start);
2376 COMPARE_PARAM(vres.l2t.size, l2t_size);
2377 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2378 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2379 COMPARE_PARAM(tids.tid_base, tid_base);
2380 COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2381 COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2382 COMPARE_PARAM(tids.nhpftids, nhpftids);
2383 COMPARE_PARAM(rawf_base, rawf_base);
2384 COMPARE_PARAM(nrawf, nrawf);
2385 COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2386 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2387 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2388 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2389 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2390 COMPARE_PARAM(tids.ntids, ntids);
2391 COMPARE_PARAM(tids.etid_base, etid_base);
2392 COMPARE_PARAM(tids.etid_end, etid_end);
2393 COMPARE_PARAM(tids.netids, netids);
2394 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2395 COMPARE_PARAM(params.ethoffload, ethoffload);
2396 COMPARE_PARAM(tids.natids, natids);
2397 COMPARE_PARAM(tids.stid_base, stid_base);
2398 COMPARE_PARAM(vres.ddp.start, ddp_start);
2399 COMPARE_PARAM(vres.ddp.size, ddp_size);
2400 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2401 COMPARE_PARAM(vres.stag.start, stag_start);
2402 COMPARE_PARAM(vres.stag.size, stag_size);
2403 COMPARE_PARAM(vres.rq.start, rq_start);
2404 COMPARE_PARAM(vres.rq.size, rq_size);
2405 COMPARE_PARAM(vres.pbl.start, pbl_start);
2406 COMPARE_PARAM(vres.pbl.size, pbl_size);
2407 COMPARE_PARAM(vres.qp.start, qp_start);
2408 COMPARE_PARAM(vres.qp.size, qp_size);
2409 COMPARE_PARAM(vres.cq.start, cq_start);
2410 COMPARE_PARAM(vres.cq.size, cq_size);
2411 COMPARE_PARAM(vres.ocq.start, ocq_start);
2412 COMPARE_PARAM(vres.ocq.size, ocq_size);
2413 COMPARE_PARAM(vres.srq.start, srq_start);
2414 COMPARE_PARAM(vres.srq.size, srq_size);
2415 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2416 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2417 COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2418 COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2419 COMPARE_PARAM(vres.key.start, key_start);
2420 COMPARE_PARAM(vres.key.size, key_size);
2421 #undef COMPARE_PARAM
2422
2423 return (rc);
2424 }
2425
2426 static int
restart_lld(struct adapter * sc)2427 restart_lld(struct adapter *sc)
2428 {
2429 struct adapter_pre_reset_state *old_state = NULL;
2430 struct port_info *pi;
2431 struct vi_info *vi;
2432 if_t ifp;
2433 struct sge_txq *txq;
2434 int rc, i, j, k;
2435
2436 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld");
2437 if (rc != 0)
2438 return (ENXIO);
2439
2440 /* Restore memory window. */
2441 setup_memwin(sc);
2442
2443 /* Go no further if recovery mode has been requested. */
2444 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2445 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__);
2446 rc = 0;
2447 set_adapter_hwstatus(sc, true);
2448 goto done;
2449 }
2450
2451 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2452 save_caps_and_params(sc, old_state);
2453
2454 /* Reestablish contact with firmware and become the primary PF. */
2455 rc = contact_firmware(sc);
2456 if (rc != 0)
2457 goto done; /* error message displayed already */
2458 MPASS(sc->flags & FW_OK);
2459
2460 if (sc->flags & MASTER_PF) {
2461 rc = partition_resources(sc);
2462 if (rc != 0)
2463 goto done; /* error message displayed already */
2464 }
2465
2466 rc = get_params__post_init(sc);
2467 if (rc != 0)
2468 goto done; /* error message displayed already */
2469
2470 rc = set_params__post_init(sc);
2471 if (rc != 0)
2472 goto done; /* error message displayed already */
2473
2474 rc = compare_caps_and_params(sc, old_state);
2475 if (rc != 0)
2476 goto done; /* error message displayed already */
2477
2478 for_each_port(sc, i) {
2479 pi = sc->port[i];
2480 MPASS(pi != NULL);
2481 MPASS(pi->vi != NULL);
2482 MPASS(pi->vi[0].dev == pi->dev);
2483
2484 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2485 if (rc != 0) {
2486 CH_ERR(sc,
2487 "failed to re-initialize port %d: %d\n", i, rc);
2488 goto done;
2489 }
2490 MPASS(sc->chan_map[pi->tx_chan] == i);
2491
2492 PORT_LOCK(pi);
2493 fixup_link_config(pi);
2494 build_medialist(pi);
2495 PORT_UNLOCK(pi);
2496 for_each_vi(pi, j, vi) {
2497 if (IS_MAIN_VI(vi))
2498 continue;
2499 rc = alloc_extra_vi(sc, pi, vi);
2500 if (rc != 0) {
2501 CH_ERR(vi,
2502 "failed to re-allocate extra VI: %d\n", rc);
2503 goto done;
2504 }
2505 }
2506 }
2507
2508 /*
2509 * Interrupts and queues are about to be enabled and other threads will
2510 * want to access the hardware too. It is safe to do so. Note that
2511 * this thread is still in the middle of a synchronized_op.
2512 */
2513 set_adapter_hwstatus(sc, true);
2514
2515 if (sc->flags & FULL_INIT_DONE) {
2516 rc = adapter_full_init(sc);
2517 if (rc != 0) {
2518 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2519 goto done;
2520 }
2521
2522 if (sc->vxlan_refcount > 0)
2523 enable_vxlan_rx(sc);
2524
2525 for_each_port(sc, i) {
2526 pi = sc->port[i];
2527 for_each_vi(pi, j, vi) {
2528 mtx_lock(&vi->tick_mtx);
2529 vi->flags &= ~VI_SKIP_STATS;
2530 mtx_unlock(&vi->tick_mtx);
2531 if (!(vi->flags & VI_INIT_DONE))
2532 continue;
2533 rc = vi_full_init(vi);
2534 if (rc != 0) {
2535 CH_ERR(vi, "failed to re-initialize "
2536 "interface: %d\n", rc);
2537 goto done;
2538 }
2539 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
2540 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
2541 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
2542 pi->flags |= HAS_TRACEQ;
2543 }
2544
2545 ifp = vi->ifp;
2546 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2547 continue;
2548 /*
2549 * Note that we do not setup multicast addresses
2550 * in the first pass. This ensures that the
2551 * unicast DMACs for all VIs on all ports get an
2552 * MPS TCAM entry.
2553 */
2554 rc = update_mac_settings(ifp, XGMAC_ALL &
2555 ~XGMAC_MCADDRS);
2556 if (rc != 0) {
2557 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2558 goto done;
2559 }
2560 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2561 true);
2562 if (rc != 0) {
2563 CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2564 goto done;
2565 }
2566 for_each_txq(vi, k, txq) {
2567 TXQ_LOCK(txq);
2568 txq->eq.flags |= EQ_ENABLED;
2569 TXQ_UNLOCK(txq);
2570 }
2571 mtx_lock(&vi->tick_mtx);
2572 callout_schedule(&vi->tick, hz);
2573 mtx_unlock(&vi->tick_mtx);
2574 }
2575 PORT_LOCK(pi);
2576 if (pi->up_vis > 0) {
2577 t4_update_port_info(pi);
2578 fixup_link_config(pi);
2579 build_medialist(pi);
2580 apply_link_config(pi);
2581 if (pi->link_cfg.link_ok)
2582 t4_os_link_changed(pi);
2583 }
2584 PORT_UNLOCK(pi);
2585 }
2586
2587 /* Now reprogram the L2 multicast addresses. */
2588 for_each_port(sc, i) {
2589 pi = sc->port[i];
2590 for_each_vi(pi, j, vi) {
2591 if (!(vi->flags & VI_INIT_DONE))
2592 continue;
2593 ifp = vi->ifp;
2594 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2595 continue;
2596 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2597 if (rc != 0) {
2598 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2599 rc = 0; /* carry on */
2600 }
2601 }
2602 }
2603 }
2604
2605 /* Reset all calibration */
2606 t4_calibration_start(sc);
2607 done:
2608 end_synchronized_op(sc, 0);
2609 free(old_state, M_CXGBE);
2610
2611 restart_atid_allocator(sc);
2612 t4_restart_l2t(sc);
2613
2614 return (rc);
2615 }
2616
2617 int
resume_adapter(struct adapter * sc)2618 resume_adapter(struct adapter *sc)
2619 {
2620 restart_adapter(sc);
2621 restart_lld(sc);
2622 #ifdef TCP_OFFLOAD
2623 restart_all_uld(sc);
2624 #endif
2625 return (0);
2626 }
2627
2628 static int
t4_resume(device_t dev)2629 t4_resume(device_t dev)
2630 {
2631 struct adapter *sc = device_get_softc(dev);
2632 int rc;
2633
2634 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2635 rc = resume_adapter(sc);
2636 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread);
2637
2638 return (rc);
2639 }
2640
2641 static int
t4_reset_prepare(device_t dev,device_t child)2642 t4_reset_prepare(device_t dev, device_t child)
2643 {
2644 struct adapter *sc = device_get_softc(dev);
2645
2646 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2647 return (0);
2648 }
2649
2650 static int
t4_reset_post(device_t dev,device_t child)2651 t4_reset_post(device_t dev, device_t child)
2652 {
2653 struct adapter *sc = device_get_softc(dev);
2654
2655 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread);
2656 return (0);
2657 }
2658
2659 static int
reset_adapter_with_pl_rst(struct adapter * sc)2660 reset_adapter_with_pl_rst(struct adapter *sc)
2661 {
2662 /* This is a t4_write_reg without the hw_off_limits check. */
2663 MPASS(sc->error_flags & HW_OFF_LIMITS);
2664 bus_write_4(sc->regs_res, A_PL_RST,
2665 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE);
2666 pause("pl_rst", 1 * hz); /* Wait 1s for reset */
2667 return (0);
2668 }
2669
2670 static int
reset_adapter_with_pcie_sbr(struct adapter * sc)2671 reset_adapter_with_pcie_sbr(struct adapter *sc)
2672 {
2673 device_t pdev = device_get_parent(sc->dev);
2674 device_t gpdev = device_get_parent(pdev);
2675 device_t *children;
2676 int rc, i, lcap, lsta, nchildren;
2677 uint32_t v;
2678
2679 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2680 if (rc != 0) {
2681 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2682 device_get_nameunit(gpdev), rc);
2683 return (ENOTSUP);
2684 }
2685 lcap = v + PCIER_LINK_CAP;
2686 lsta = v + PCIER_LINK_STA;
2687
2688 nchildren = 0;
2689 device_get_children(pdev, &children, &nchildren);
2690 for (i = 0; i < nchildren; i++)
2691 pci_save_state(children[i]);
2692 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2);
2693 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2);
2694 pause("pcie_sbr1", hz / 10); /* 100ms */
2695 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2);
2696 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */
2697 v = pci_read_config(gpdev, lsta, 2);
2698 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2699 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2700 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2701 rc = ETIMEDOUT;
2702 else
2703 rc = 0;
2704 if (rc != 0)
2705 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2706 __func__, v);
2707 else {
2708 for (i = 0; i < nchildren; i++)
2709 pci_restore_state(children[i]);
2710 }
2711 free(children, M_TEMP);
2712
2713 return (rc);
2714 }
2715
2716 static int
reset_adapter_with_pcie_link_bounce(struct adapter * sc)2717 reset_adapter_with_pcie_link_bounce(struct adapter *sc)
2718 {
2719 device_t pdev = device_get_parent(sc->dev);
2720 device_t gpdev = device_get_parent(pdev);
2721 device_t *children;
2722 int rc, i, lcap, lctl, lsta, nchildren;
2723 uint32_t v;
2724
2725 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v);
2726 if (rc != 0) {
2727 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__,
2728 device_get_nameunit(gpdev), rc);
2729 return (ENOTSUP);
2730 }
2731 lcap = v + PCIER_LINK_CAP;
2732 lctl = v + PCIER_LINK_CTL;
2733 lsta = v + PCIER_LINK_STA;
2734
2735 nchildren = 0;
2736 device_get_children(pdev, &children, &nchildren);
2737 for (i = 0; i < nchildren; i++)
2738 pci_save_state(children[i]);
2739 v = pci_read_config(gpdev, lctl, 2);
2740 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2);
2741 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */
2742 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2);
2743 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */
2744 v = pci_read_config(gpdev, lsta, 2);
2745 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE)
2746 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT;
2747 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING))
2748 rc = ETIMEDOUT;
2749 else
2750 rc = 0;
2751 if (rc != 0)
2752 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n",
2753 __func__, v);
2754 else {
2755 for (i = 0; i < nchildren; i++)
2756 pci_restore_state(children[i]);
2757 }
2758 free(children, M_TEMP);
2759
2760 return (rc);
2761 }
2762
2763 static inline int
reset_adapter(struct adapter * sc)2764 reset_adapter(struct adapter *sc)
2765 {
2766 int rc;
2767 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0;
2768
2769 rc = suspend_adapter(sc);
2770 if (rc != 0)
2771 return (rc);
2772
2773 switch (reset_method) {
2774 case 1:
2775 rc = reset_adapter_with_pcie_sbr(sc);
2776 break;
2777 case 2:
2778 rc = reset_adapter_with_pcie_link_bounce(sc);
2779 break;
2780 case 0:
2781 default:
2782 rc = reset_adapter_with_pl_rst(sc);
2783 break;
2784 }
2785 if (rc == 0)
2786 rc = resume_adapter(sc);
2787 return (rc);
2788 }
2789
2790 static void
reset_adapter_task(void * arg,int pending)2791 reset_adapter_task(void *arg, int pending)
2792 {
2793 struct adapter *sc = arg;
2794 const int flags = sc->flags;
2795 const int eflags = sc->error_flags;
2796 int rc;
2797
2798 if (pending > 1)
2799 CH_ALERT(sc, "%s: pending %d\n", __func__, pending);
2800 rc = reset_adapter(sc);
2801 if (rc != 0) {
2802 CH_ERR(sc, "adapter did not reset properly, rc = %d, "
2803 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n",
2804 rc, flags, sc->flags, eflags, sc->error_flags);
2805 }
2806 }
2807
2808 static int
cxgbe_probe(device_t dev)2809 cxgbe_probe(device_t dev)
2810 {
2811 struct port_info *pi = device_get_softc(dev);
2812
2813 device_set_descf(dev, "port %d", pi->port_id);
2814
2815 return (BUS_PROBE_DEFAULT);
2816 }
2817
2818 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2819 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2820 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2821 IFCAP_HWRXTSTMP | IFCAP_MEXTPG | IFCAP_NV)
2822 #define T4_CAP_ENABLE (T4_CAP)
2823
2824 static void
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2825 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2826 {
2827 if_t ifp;
2828 struct sbuf *sb;
2829 struct sysctl_ctx_list *ctx = &vi->ctx;
2830 struct sysctl_oid_list *children;
2831 struct pfil_head_args pa;
2832 struct adapter *sc = vi->adapter;
2833
2834 sysctl_ctx_init(ctx);
2835 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2836 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2837 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2838 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2839 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2840 #ifdef DEV_NETMAP
2841 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2842 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2843 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2844 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2845 #endif
2846 #ifdef TCP_OFFLOAD
2847 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2848 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2849 #endif
2850 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2851 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2852 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2853 #endif
2854
2855 vi->xact_addr_filt = -1;
2856 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2857 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2858 if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2859 vi->flags |= TX_USES_VM_WR;
2860
2861 /* Allocate an ifnet and set it up */
2862 ifp = if_alloc_dev(IFT_ETHER, dev);
2863 vi->ifp = ifp;
2864 if_setsoftc(ifp, vi);
2865
2866 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2867 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2868
2869 if_setinitfn(ifp, cxgbe_init);
2870 if_setioctlfn(ifp, cxgbe_ioctl);
2871 if_settransmitfn(ifp, cxgbe_transmit);
2872 if_setqflushfn(ifp, cxgbe_qflush);
2873 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2874 if_setgetcounterfn(ifp, vi_get_counter);
2875 else
2876 if_setgetcounterfn(ifp, cxgbe_get_counter);
2877 #if defined(KERN_TLS) || defined(RATELIMIT)
2878 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2879 #endif
2880 #ifdef RATELIMIT
2881 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2882 #endif
2883
2884 if_setcapabilities(ifp, T4_CAP);
2885 if_setcapenable(ifp, T4_CAP_ENABLE);
2886 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2887 CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2888 if (chip_id(sc) >= CHELSIO_T6) {
2889 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2890 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2891 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2892 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2893 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2894 }
2895
2896 #ifdef TCP_OFFLOAD
2897 if (vi->nofldrxq != 0)
2898 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2899 #endif
2900 #ifdef RATELIMIT
2901 if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2902 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2903 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2904 }
2905 #endif
2906
2907 if_sethwtsomax(ifp, IP_MAXPACKET);
2908 if (vi->flags & TX_USES_VM_WR)
2909 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2910 else
2911 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2912 #ifdef RATELIMIT
2913 if (is_ethoffload(sc) && vi->nofldtxq != 0)
2914 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2915 #endif
2916 if_sethwtsomaxsegsize(ifp, 65536);
2917 #ifdef KERN_TLS
2918 if (is_ktls(sc)) {
2919 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2920 if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2921 if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2922 }
2923 #endif
2924
2925 ether_ifattach(ifp, vi->hw_addr);
2926 #ifdef DEV_NETMAP
2927 if (vi->nnmrxq != 0)
2928 cxgbe_nm_attach(vi);
2929 #endif
2930 sb = sbuf_new_auto();
2931 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2932 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2933 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2934 case IFCAP_TOE:
2935 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2936 break;
2937 case IFCAP_TOE | IFCAP_TXRTLMT:
2938 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2939 break;
2940 case IFCAP_TXRTLMT:
2941 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2942 break;
2943 }
2944 #endif
2945 #ifdef TCP_OFFLOAD
2946 if (if_getcapabilities(ifp) & IFCAP_TOE)
2947 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2948 #endif
2949 #ifdef DEV_NETMAP
2950 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2951 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2952 vi->nnmtxq, vi->nnmrxq);
2953 #endif
2954 sbuf_finish(sb);
2955 device_printf(dev, "%s\n", sbuf_data(sb));
2956 sbuf_delete(sb);
2957
2958 vi_sysctls(vi);
2959
2960 pa.pa_version = PFIL_VERSION;
2961 pa.pa_flags = PFIL_IN;
2962 pa.pa_type = PFIL_TYPE_ETHERNET;
2963 pa.pa_headname = if_name(ifp);
2964 vi->pfil = pfil_head_register(&pa);
2965 }
2966
2967 static int
cxgbe_attach(device_t dev)2968 cxgbe_attach(device_t dev)
2969 {
2970 struct port_info *pi = device_get_softc(dev);
2971 struct adapter *sc = pi->adapter;
2972 struct vi_info *vi;
2973 int i;
2974
2975 sysctl_ctx_init(&pi->ctx);
2976
2977 cxgbe_vi_attach(dev, &pi->vi[0]);
2978
2979 for_each_vi(pi, i, vi) {
2980 if (i == 0)
2981 continue;
2982 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY);
2983 if (vi->dev == NULL) {
2984 device_printf(dev, "failed to add VI %d\n", i);
2985 continue;
2986 }
2987 device_set_softc(vi->dev, vi);
2988 }
2989
2990 cxgbe_sysctls(pi);
2991
2992 bus_attach_children(dev);
2993
2994 return (0);
2995 }
2996
2997 static void
cxgbe_vi_detach(struct vi_info * vi)2998 cxgbe_vi_detach(struct vi_info *vi)
2999 {
3000 if_t ifp = vi->ifp;
3001
3002 if (vi->pfil != NULL) {
3003 pfil_head_unregister(vi->pfil);
3004 vi->pfil = NULL;
3005 }
3006
3007 ether_ifdetach(ifp);
3008
3009 /* Let detach proceed even if these fail. */
3010 #ifdef DEV_NETMAP
3011 if (if_getcapabilities(ifp) & IFCAP_NETMAP)
3012 cxgbe_nm_detach(vi);
3013 #endif
3014 cxgbe_uninit_synchronized(vi);
3015 callout_drain(&vi->tick);
3016 mtx_destroy(&vi->tick_mtx);
3017 sysctl_ctx_free(&vi->ctx);
3018 vi_full_uninit(vi);
3019
3020 if_free(vi->ifp);
3021 vi->ifp = NULL;
3022 }
3023
3024 static int
cxgbe_detach(device_t dev)3025 cxgbe_detach(device_t dev)
3026 {
3027 struct port_info *pi = device_get_softc(dev);
3028 struct adapter *sc = pi->adapter;
3029 int rc;
3030
3031 /* Detach the extra VIs first. */
3032 rc = bus_generic_detach(dev);
3033 if (rc)
3034 return (rc);
3035
3036 sysctl_ctx_free(&pi->ctx);
3037 begin_vi_detach(sc, &pi->vi[0]);
3038 if (pi->flags & HAS_TRACEQ) {
3039 sc->traceq = -1; /* cloner should not create ifnet */
3040 t4_tracer_port_detach(sc);
3041 }
3042 cxgbe_vi_detach(&pi->vi[0]);
3043 ifmedia_removeall(&pi->media);
3044 end_vi_detach(sc, &pi->vi[0]);
3045
3046 return (0);
3047 }
3048
3049 static void
cxgbe_init(void * arg)3050 cxgbe_init(void *arg)
3051 {
3052 struct vi_info *vi = arg;
3053 struct adapter *sc = vi->adapter;
3054
3055 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
3056 return;
3057 cxgbe_init_synchronized(vi);
3058 end_synchronized_op(sc, 0);
3059 }
3060
3061 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)3062 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
3063 {
3064 int rc = 0, mtu, flags;
3065 struct vi_info *vi = if_getsoftc(ifp);
3066 struct port_info *pi = vi->pi;
3067 struct adapter *sc = pi->adapter;
3068 struct ifreq *ifr = (struct ifreq *)data;
3069 uint32_t mask, mask2;
3070
3071 switch (cmd) {
3072 case SIOCSIFMTU:
3073 mtu = ifr->ifr_mtu;
3074 if (mtu < ETHERMIN || mtu > MAX_MTU)
3075 return (EINVAL);
3076
3077 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
3078 if (rc)
3079 return (rc);
3080 if_setmtu(ifp, mtu);
3081 if (vi->flags & VI_INIT_DONE) {
3082 t4_update_fl_bufsize(ifp);
3083 if (hw_all_ok(sc) &&
3084 if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3085 rc = update_mac_settings(ifp, XGMAC_MTU);
3086 }
3087 end_synchronized_op(sc, 0);
3088 break;
3089
3090 case SIOCSIFFLAGS:
3091 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
3092 if (rc)
3093 return (rc);
3094
3095 if (!hw_all_ok(sc)) {
3096 rc = ENXIO;
3097 goto fail;
3098 }
3099
3100 if (if_getflags(ifp) & IFF_UP) {
3101 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3102 flags = vi->if_flags;
3103 if ((if_getflags(ifp) ^ flags) &
3104 (IFF_PROMISC | IFF_ALLMULTI)) {
3105 rc = update_mac_settings(ifp,
3106 XGMAC_PROMISC | XGMAC_ALLMULTI);
3107 }
3108 } else {
3109 rc = cxgbe_init_synchronized(vi);
3110 }
3111 vi->if_flags = if_getflags(ifp);
3112 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3113 rc = cxgbe_uninit_synchronized(vi);
3114 }
3115 end_synchronized_op(sc, 0);
3116 break;
3117
3118 case SIOCADDMULTI:
3119 case SIOCDELMULTI:
3120 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
3121 if (rc)
3122 return (rc);
3123 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3124 rc = update_mac_settings(ifp, XGMAC_MCADDRS);
3125 end_synchronized_op(sc, 0);
3126 break;
3127
3128 case SIOCGIFCAPNV:
3129 break;
3130 case SIOCSIFCAPNV:
3131 case SIOCSIFCAP:
3132 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
3133 if (rc)
3134 return (rc);
3135
3136 if (cmd == SIOCSIFCAPNV) {
3137 const struct siocsifcapnv_driver_data *ifr_nv =
3138 (struct siocsifcapnv_driver_data *)data;
3139
3140 mask = ifr_nv->reqcap ^ if_getcapenable(ifp);
3141 mask2 = ifr_nv->reqcap2 ^ if_getcapenable2(ifp);
3142 } else {
3143 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3144 mask2 = 0;
3145 }
3146 if (mask & IFCAP_TXCSUM) {
3147 if_togglecapenable(ifp, IFCAP_TXCSUM);
3148 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
3149
3150 if (IFCAP_TSO4 & if_getcapenable(ifp) &&
3151 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3152 mask &= ~IFCAP_TSO4;
3153 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3154 if_printf(ifp,
3155 "tso4 disabled due to -txcsum.\n");
3156 }
3157 }
3158 if (mask & IFCAP_TXCSUM_IPV6) {
3159 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
3160 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
3161
3162 if (IFCAP_TSO6 & if_getcapenable(ifp) &&
3163 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3164 mask &= ~IFCAP_TSO6;
3165 if_setcapenablebit(ifp, 0, IFCAP_TSO6);
3166 if_printf(ifp,
3167 "tso6 disabled due to -txcsum6.\n");
3168 }
3169 }
3170 if (mask & IFCAP_RXCSUM)
3171 if_togglecapenable(ifp, IFCAP_RXCSUM);
3172 if (mask & IFCAP_RXCSUM_IPV6)
3173 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
3174
3175 /*
3176 * Note that we leave CSUM_TSO alone (it is always set). The
3177 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
3178 * sending a TSO request our way, so it's sufficient to toggle
3179 * IFCAP_TSOx only.
3180 */
3181 if (mask & IFCAP_TSO4) {
3182 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
3183 !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
3184 if_printf(ifp, "enable txcsum first.\n");
3185 rc = EAGAIN;
3186 goto fail;
3187 }
3188 if_togglecapenable(ifp, IFCAP_TSO4);
3189 }
3190 if (mask & IFCAP_TSO6) {
3191 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
3192 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
3193 if_printf(ifp, "enable txcsum6 first.\n");
3194 rc = EAGAIN;
3195 goto fail;
3196 }
3197 if_togglecapenable(ifp, IFCAP_TSO6);
3198 }
3199 if (mask & IFCAP_LRO) {
3200 #if defined(INET) || defined(INET6)
3201 int i;
3202 struct sge_rxq *rxq;
3203
3204 if_togglecapenable(ifp, IFCAP_LRO);
3205 for_each_rxq(vi, i, rxq) {
3206 if (if_getcapenable(ifp) & IFCAP_LRO)
3207 rxq->iq.flags |= IQ_LRO_ENABLED;
3208 else
3209 rxq->iq.flags &= ~IQ_LRO_ENABLED;
3210 }
3211 #endif
3212 }
3213 #ifdef TCP_OFFLOAD
3214 if (mask & IFCAP_TOE) {
3215 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
3216
3217 rc = toe_capability(vi, enable);
3218 if (rc != 0)
3219 goto fail;
3220
3221 if_togglecapenable(ifp, mask);
3222 }
3223 #endif
3224 if (mask & IFCAP_VLAN_HWTAGGING) {
3225 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3226 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
3227 rc = update_mac_settings(ifp, XGMAC_VLANEX);
3228 }
3229 if (mask & IFCAP_VLAN_MTU) {
3230 if_togglecapenable(ifp, IFCAP_VLAN_MTU);
3231
3232 /* Need to find out how to disable auto-mtu-inflation */
3233 }
3234 if (mask & IFCAP_VLAN_HWTSO)
3235 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3236 if (mask & IFCAP_VLAN_HWCSUM)
3237 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
3238 #ifdef RATELIMIT
3239 if (mask & IFCAP_TXRTLMT)
3240 if_togglecapenable(ifp, IFCAP_TXRTLMT);
3241 #endif
3242 if (mask & IFCAP_HWRXTSTMP) {
3243 int i;
3244 struct sge_rxq *rxq;
3245
3246 if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
3247 for_each_rxq(vi, i, rxq) {
3248 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
3249 rxq->iq.flags |= IQ_RX_TIMESTAMP;
3250 else
3251 rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
3252 }
3253 }
3254 if (mask & IFCAP_MEXTPG)
3255 if_togglecapenable(ifp, IFCAP_MEXTPG);
3256
3257 #ifdef KERN_TLS
3258 if (mask & IFCAP_TXTLS) {
3259 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
3260
3261 rc = ktls_capability(sc, enable);
3262 if (rc != 0)
3263 goto fail;
3264
3265 if_togglecapenable(ifp, mask & IFCAP_TXTLS);
3266 }
3267 #endif
3268 if (mask & IFCAP_VXLAN_HWCSUM) {
3269 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
3270 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
3271 CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
3272 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
3273 }
3274 if (mask & IFCAP_VXLAN_HWTSO) {
3275 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
3276 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
3277 CSUM_INNER_IP_TSO);
3278 }
3279
3280 MPASS(mask2 == 0);
3281 (void)mask2;
3282
3283 #ifdef VLAN_CAPABILITIES
3284 VLAN_CAPABILITIES(ifp);
3285 #endif
3286 fail:
3287 end_synchronized_op(sc, 0);
3288 break;
3289
3290 case SIOCSIFMEDIA:
3291 case SIOCGIFMEDIA:
3292 case SIOCGIFXMEDIA:
3293 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3294 break;
3295
3296 case SIOCGI2C: {
3297 struct ifi2creq i2c;
3298
3299 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3300 if (rc != 0)
3301 break;
3302 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3303 rc = EPERM;
3304 break;
3305 }
3306 if (i2c.len > sizeof(i2c.data)) {
3307 rc = EINVAL;
3308 break;
3309 }
3310 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3311 if (rc)
3312 return (rc);
3313 if (!hw_all_ok(sc))
3314 rc = ENXIO;
3315 else
3316 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3317 i2c.offset, i2c.len, &i2c.data[0]);
3318 end_synchronized_op(sc, 0);
3319 if (rc == 0)
3320 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3321 break;
3322 }
3323
3324 default:
3325 rc = ether_ioctl(ifp, cmd, data);
3326 }
3327
3328 return (rc);
3329 }
3330
3331 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3332 cxgbe_transmit(if_t ifp, struct mbuf *m)
3333 {
3334 struct vi_info *vi = if_getsoftc(ifp);
3335 struct port_info *pi = vi->pi;
3336 struct adapter *sc;
3337 struct sge_txq *txq;
3338 void *items[1];
3339 int rc;
3340
3341 M_ASSERTPKTHDR(m);
3342 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
3343 #if defined(KERN_TLS) || defined(RATELIMIT)
3344 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3345 MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3346 #endif
3347
3348 if (__predict_false(pi->link_cfg.link_ok == false)) {
3349 m_freem(m);
3350 return (ENETDOWN);
3351 }
3352
3353 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3354 if (__predict_false(rc != 0)) {
3355 if (__predict_true(rc == EINPROGRESS)) {
3356 /* queued by parse_pkt */
3357 MPASS(m != NULL);
3358 return (0);
3359 }
3360
3361 MPASS(m == NULL); /* was freed already */
3362 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
3363 return (rc);
3364 }
3365
3366 /* Select a txq. */
3367 sc = vi->adapter;
3368 txq = &sc->sge.txq[vi->first_txq];
3369 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3370 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3371 vi->rsrv_noflowq);
3372
3373 items[0] = m;
3374 rc = mp_ring_enqueue(txq->r, items, 1, 256);
3375 if (__predict_false(rc != 0))
3376 m_freem(m);
3377
3378 return (rc);
3379 }
3380
3381 static void
cxgbe_qflush(if_t ifp)3382 cxgbe_qflush(if_t ifp)
3383 {
3384 struct vi_info *vi = if_getsoftc(ifp);
3385 struct sge_txq *txq;
3386 int i;
3387
3388 /* queues do not exist if !VI_INIT_DONE. */
3389 if (vi->flags & VI_INIT_DONE) {
3390 for_each_txq(vi, i, txq) {
3391 TXQ_LOCK(txq);
3392 txq->eq.flags |= EQ_QFLUSH;
3393 TXQ_UNLOCK(txq);
3394 while (!mp_ring_is_idle(txq->r)) {
3395 mp_ring_check_drainage(txq->r, 4096);
3396 pause("qflush", 1);
3397 }
3398 TXQ_LOCK(txq);
3399 txq->eq.flags &= ~EQ_QFLUSH;
3400 TXQ_UNLOCK(txq);
3401 }
3402 }
3403 if_qflush(ifp);
3404 }
3405
3406 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3407 vi_get_counter(if_t ifp, ift_counter c)
3408 {
3409 struct vi_info *vi = if_getsoftc(ifp);
3410 struct fw_vi_stats_vf *s = &vi->stats;
3411
3412 mtx_lock(&vi->tick_mtx);
3413 vi_refresh_stats(vi);
3414 mtx_unlock(&vi->tick_mtx);
3415
3416 switch (c) {
3417 case IFCOUNTER_IPACKETS:
3418 return (s->rx_bcast_frames + s->rx_mcast_frames +
3419 s->rx_ucast_frames);
3420 case IFCOUNTER_IERRORS:
3421 return (s->rx_err_frames);
3422 case IFCOUNTER_OPACKETS:
3423 return (s->tx_bcast_frames + s->tx_mcast_frames +
3424 s->tx_ucast_frames + s->tx_offload_frames);
3425 case IFCOUNTER_OERRORS:
3426 return (s->tx_drop_frames);
3427 case IFCOUNTER_IBYTES:
3428 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3429 s->rx_ucast_bytes);
3430 case IFCOUNTER_OBYTES:
3431 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3432 s->tx_ucast_bytes + s->tx_offload_bytes);
3433 case IFCOUNTER_IMCASTS:
3434 return (s->rx_mcast_frames);
3435 case IFCOUNTER_OMCASTS:
3436 return (s->tx_mcast_frames);
3437 case IFCOUNTER_OQDROPS: {
3438 uint64_t drops;
3439
3440 drops = 0;
3441 if (vi->flags & VI_INIT_DONE) {
3442 int i;
3443 struct sge_txq *txq;
3444
3445 for_each_txq(vi, i, txq)
3446 drops += counter_u64_fetch(txq->r->dropped);
3447 }
3448
3449 return (drops);
3450
3451 }
3452
3453 default:
3454 return (if_get_counter_default(ifp, c));
3455 }
3456 }
3457
3458 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3459 cxgbe_get_counter(if_t ifp, ift_counter c)
3460 {
3461 struct vi_info *vi = if_getsoftc(ifp);
3462 struct port_info *pi = vi->pi;
3463 struct port_stats *s = &pi->stats;
3464
3465 mtx_lock(&vi->tick_mtx);
3466 cxgbe_refresh_stats(vi);
3467 mtx_unlock(&vi->tick_mtx);
3468
3469 switch (c) {
3470 case IFCOUNTER_IPACKETS:
3471 return (s->rx_frames);
3472
3473 case IFCOUNTER_IERRORS:
3474 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3475 s->rx_fcs_err + s->rx_len_err);
3476
3477 case IFCOUNTER_OPACKETS:
3478 return (s->tx_frames);
3479
3480 case IFCOUNTER_OERRORS:
3481 return (s->tx_error_frames);
3482
3483 case IFCOUNTER_IBYTES:
3484 return (s->rx_octets);
3485
3486 case IFCOUNTER_OBYTES:
3487 return (s->tx_octets);
3488
3489 case IFCOUNTER_IMCASTS:
3490 return (s->rx_mcast_frames);
3491
3492 case IFCOUNTER_OMCASTS:
3493 return (s->tx_mcast_frames);
3494
3495 case IFCOUNTER_IQDROPS:
3496 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3497 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3498 s->rx_trunc3 + pi->tnl_cong_drops);
3499
3500 case IFCOUNTER_OQDROPS: {
3501 uint64_t drops;
3502
3503 drops = s->tx_drop;
3504 if (vi->flags & VI_INIT_DONE) {
3505 int i;
3506 struct sge_txq *txq;
3507
3508 for_each_txq(vi, i, txq)
3509 drops += counter_u64_fetch(txq->r->dropped);
3510 }
3511
3512 return (drops);
3513
3514 }
3515
3516 default:
3517 return (if_get_counter_default(ifp, c));
3518 }
3519 }
3520
3521 #if defined(KERN_TLS) || defined(RATELIMIT)
3522 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3523 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3524 struct m_snd_tag **pt)
3525 {
3526 int error;
3527
3528 switch (params->hdr.type) {
3529 #ifdef RATELIMIT
3530 case IF_SND_TAG_TYPE_RATE_LIMIT:
3531 error = cxgbe_rate_tag_alloc(ifp, params, pt);
3532 break;
3533 #endif
3534 #ifdef KERN_TLS
3535 case IF_SND_TAG_TYPE_TLS:
3536 {
3537 struct vi_info *vi = if_getsoftc(ifp);
3538
3539 if (is_t6(vi->pi->adapter))
3540 error = t6_tls_tag_alloc(ifp, params, pt);
3541 else
3542 error = t7_tls_tag_alloc(ifp, params, pt);
3543 break;
3544 }
3545 #endif
3546 default:
3547 error = EOPNOTSUPP;
3548 }
3549 return (error);
3550 }
3551 #endif
3552
3553 /*
3554 * The kernel picks a media from the list we had provided but we still validate
3555 * the requeste.
3556 */
3557 int
cxgbe_media_change(if_t ifp)3558 cxgbe_media_change(if_t ifp)
3559 {
3560 struct vi_info *vi = if_getsoftc(ifp);
3561 struct port_info *pi = vi->pi;
3562 struct ifmedia *ifm = &pi->media;
3563 struct link_config *lc = &pi->link_cfg;
3564 struct adapter *sc = pi->adapter;
3565 int rc;
3566
3567 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3568 if (rc != 0)
3569 return (rc);
3570 PORT_LOCK(pi);
3571 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3572 /* ifconfig .. media autoselect */
3573 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3574 rc = ENOTSUP; /* AN not supported by transceiver */
3575 goto done;
3576 }
3577 lc->requested_aneg = AUTONEG_ENABLE;
3578 lc->requested_speed = 0;
3579 lc->requested_fc |= PAUSE_AUTONEG;
3580 } else {
3581 lc->requested_aneg = AUTONEG_DISABLE;
3582 lc->requested_speed =
3583 ifmedia_baudrate(ifm->ifm_media) / 1000000;
3584 lc->requested_fc = 0;
3585 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3586 lc->requested_fc |= PAUSE_RX;
3587 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3588 lc->requested_fc |= PAUSE_TX;
3589 }
3590 if (pi->up_vis > 0 && hw_all_ok(sc)) {
3591 fixup_link_config(pi);
3592 rc = apply_link_config(pi);
3593 }
3594 done:
3595 PORT_UNLOCK(pi);
3596 end_synchronized_op(sc, 0);
3597 return (rc);
3598 }
3599
3600 /*
3601 * Base media word (without ETHER, pause, link active, etc.) for the port at the
3602 * given speed.
3603 */
3604 static int
port_mword(struct port_info * pi,uint32_t speed)3605 port_mword(struct port_info *pi, uint32_t speed)
3606 {
3607
3608 MPASS(speed & M_FW_PORT_CAP32_SPEED);
3609 MPASS(powerof2(speed));
3610
3611 switch(pi->port_type) {
3612 case FW_PORT_TYPE_BT_SGMII:
3613 case FW_PORT_TYPE_BT_XFI:
3614 case FW_PORT_TYPE_BT_XAUI:
3615 /* BaseT */
3616 switch (speed) {
3617 case FW_PORT_CAP32_SPEED_100M:
3618 return (IFM_100_T);
3619 case FW_PORT_CAP32_SPEED_1G:
3620 return (IFM_1000_T);
3621 case FW_PORT_CAP32_SPEED_10G:
3622 return (IFM_10G_T);
3623 }
3624 break;
3625 case FW_PORT_TYPE_KX4:
3626 if (speed == FW_PORT_CAP32_SPEED_10G)
3627 return (IFM_10G_KX4);
3628 break;
3629 case FW_PORT_TYPE_CX4:
3630 if (speed == FW_PORT_CAP32_SPEED_10G)
3631 return (IFM_10G_CX4);
3632 break;
3633 case FW_PORT_TYPE_KX:
3634 if (speed == FW_PORT_CAP32_SPEED_1G)
3635 return (IFM_1000_KX);
3636 break;
3637 case FW_PORT_TYPE_KR:
3638 case FW_PORT_TYPE_BP_AP:
3639 case FW_PORT_TYPE_BP4_AP:
3640 case FW_PORT_TYPE_BP40_BA:
3641 case FW_PORT_TYPE_KR4_100G:
3642 case FW_PORT_TYPE_KR_SFP28:
3643 case FW_PORT_TYPE_KR_XLAUI:
3644 switch (speed) {
3645 case FW_PORT_CAP32_SPEED_1G:
3646 return (IFM_1000_KX);
3647 case FW_PORT_CAP32_SPEED_10G:
3648 return (IFM_10G_KR);
3649 case FW_PORT_CAP32_SPEED_25G:
3650 return (IFM_25G_KR);
3651 case FW_PORT_CAP32_SPEED_40G:
3652 return (IFM_40G_KR4);
3653 case FW_PORT_CAP32_SPEED_50G:
3654 return (IFM_50G_KR2);
3655 case FW_PORT_CAP32_SPEED_100G:
3656 return (IFM_100G_KR4);
3657 }
3658 break;
3659 case FW_PORT_TYPE_FIBER_XFI:
3660 case FW_PORT_TYPE_FIBER_XAUI:
3661 case FW_PORT_TYPE_SFP:
3662 case FW_PORT_TYPE_QSFP_10G:
3663 case FW_PORT_TYPE_QSA:
3664 case FW_PORT_TYPE_QSFP:
3665 case FW_PORT_TYPE_CR4_QSFP:
3666 case FW_PORT_TYPE_CR_QSFP:
3667 case FW_PORT_TYPE_CR2_QSFP:
3668 case FW_PORT_TYPE_SFP28:
3669 case FW_PORT_TYPE_SFP56:
3670 case FW_PORT_TYPE_QSFP56:
3671 case FW_PORT_TYPE_QSFPDD:
3672 /* Pluggable transceiver */
3673 switch (pi->mod_type) {
3674 case FW_PORT_MOD_TYPE_LR:
3675 case FW_PORT_MOD_TYPE_LR_SIMPLEX:
3676 switch (speed) {
3677 case FW_PORT_CAP32_SPEED_1G:
3678 return (IFM_1000_LX);
3679 case FW_PORT_CAP32_SPEED_10G:
3680 return (IFM_10G_LR);
3681 case FW_PORT_CAP32_SPEED_25G:
3682 return (IFM_25G_LR);
3683 case FW_PORT_CAP32_SPEED_40G:
3684 return (IFM_40G_LR4);
3685 case FW_PORT_CAP32_SPEED_50G:
3686 return (IFM_50G_LR2);
3687 case FW_PORT_CAP32_SPEED_100G:
3688 return (IFM_100G_LR4);
3689 case FW_PORT_CAP32_SPEED_200G:
3690 return (IFM_200G_LR4);
3691 case FW_PORT_CAP32_SPEED_400G:
3692 return (IFM_400G_LR8);
3693 }
3694 break;
3695 case FW_PORT_MOD_TYPE_SR:
3696 switch (speed) {
3697 case FW_PORT_CAP32_SPEED_1G:
3698 return (IFM_1000_SX);
3699 case FW_PORT_CAP32_SPEED_10G:
3700 return (IFM_10G_SR);
3701 case FW_PORT_CAP32_SPEED_25G:
3702 return (IFM_25G_SR);
3703 case FW_PORT_CAP32_SPEED_40G:
3704 return (IFM_40G_SR4);
3705 case FW_PORT_CAP32_SPEED_50G:
3706 return (IFM_50G_SR2);
3707 case FW_PORT_CAP32_SPEED_100G:
3708 return (IFM_100G_SR4);
3709 case FW_PORT_CAP32_SPEED_200G:
3710 return (IFM_200G_SR4);
3711 case FW_PORT_CAP32_SPEED_400G:
3712 return (IFM_400G_SR8);
3713 }
3714 break;
3715 case FW_PORT_MOD_TYPE_ER:
3716 if (speed == FW_PORT_CAP32_SPEED_10G)
3717 return (IFM_10G_ER);
3718 break;
3719 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3720 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3721 switch (speed) {
3722 case FW_PORT_CAP32_SPEED_1G:
3723 return (IFM_1000_CX);
3724 case FW_PORT_CAP32_SPEED_10G:
3725 return (IFM_10G_TWINAX);
3726 case FW_PORT_CAP32_SPEED_25G:
3727 return (IFM_25G_CR);
3728 case FW_PORT_CAP32_SPEED_40G:
3729 return (IFM_40G_CR4);
3730 case FW_PORT_CAP32_SPEED_50G:
3731 return (IFM_50G_CR2);
3732 case FW_PORT_CAP32_SPEED_100G:
3733 return (IFM_100G_CR4);
3734 case FW_PORT_CAP32_SPEED_200G:
3735 return (IFM_200G_CR4_PAM4);
3736 case FW_PORT_CAP32_SPEED_400G:
3737 return (IFM_400G_CR8);
3738 }
3739 break;
3740 case FW_PORT_MOD_TYPE_LRM:
3741 if (speed == FW_PORT_CAP32_SPEED_10G)
3742 return (IFM_10G_LRM);
3743 break;
3744 case FW_PORT_MOD_TYPE_DR:
3745 if (speed == FW_PORT_CAP32_SPEED_100G)
3746 return (IFM_100G_DR);
3747 if (speed == FW_PORT_CAP32_SPEED_200G)
3748 return (IFM_200G_DR4);
3749 if (speed == FW_PORT_CAP32_SPEED_400G)
3750 return (IFM_400G_DR4);
3751 break;
3752 case FW_PORT_MOD_TYPE_NA:
3753 MPASS(0); /* Not pluggable? */
3754 /* fall through */
3755 case FW_PORT_MOD_TYPE_ERROR:
3756 case FW_PORT_MOD_TYPE_UNKNOWN:
3757 case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3758 break;
3759 case FW_PORT_MOD_TYPE_NONE:
3760 return (IFM_NONE);
3761 }
3762 break;
3763 case M_FW_PORT_CMD_PTYPE: /* FW_PORT_TYPE_NONE for old firmware */
3764 if (chip_id(pi->adapter) >= CHELSIO_T7)
3765 return (IFM_UNKNOWN);
3766 /* fall through */
3767 case FW_PORT_TYPE_NONE:
3768 return (IFM_NONE);
3769 }
3770
3771 return (IFM_UNKNOWN);
3772 }
3773
3774 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3775 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3776 {
3777 struct vi_info *vi = if_getsoftc(ifp);
3778 struct port_info *pi = vi->pi;
3779 struct adapter *sc = pi->adapter;
3780 struct link_config *lc = &pi->link_cfg;
3781
3782 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3783 return;
3784 PORT_LOCK(pi);
3785
3786 if (pi->up_vis == 0 && hw_all_ok(sc)) {
3787 /*
3788 * If all the interfaces are administratively down the firmware
3789 * does not report transceiver changes. Refresh port info here
3790 * so that ifconfig displays accurate ifmedia at all times.
3791 * This is the only reason we have a synchronized op in this
3792 * function. Just PORT_LOCK would have been enough otherwise.
3793 */
3794 t4_update_port_info(pi);
3795 build_medialist(pi);
3796 }
3797
3798 /* ifm_status */
3799 ifmr->ifm_status = IFM_AVALID;
3800 if (lc->link_ok == false)
3801 goto done;
3802 ifmr->ifm_status |= IFM_ACTIVE;
3803
3804 /* ifm_active */
3805 ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3806 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3807 if (lc->fc & PAUSE_RX)
3808 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3809 if (lc->fc & PAUSE_TX)
3810 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3811 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3812 done:
3813 PORT_UNLOCK(pi);
3814 end_synchronized_op(sc, 0);
3815 }
3816
3817 static int
vcxgbe_probe(device_t dev)3818 vcxgbe_probe(device_t dev)
3819 {
3820 struct vi_info *vi = device_get_softc(dev);
3821
3822 device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3823 vi - vi->pi->vi);
3824
3825 return (BUS_PROBE_DEFAULT);
3826 }
3827
3828 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3829 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3830 {
3831 int func, index, rc;
3832 uint32_t param, val;
3833
3834 ASSERT_SYNCHRONIZED_OP(sc);
3835
3836 index = vi - pi->vi;
3837 MPASS(index > 0); /* This function deals with _extra_ VIs only */
3838 KASSERT(index < nitems(vi_mac_funcs),
3839 ("%s: VI %s doesn't have a MAC func", __func__,
3840 device_get_nameunit(vi->dev)));
3841 func = vi_mac_funcs[index];
3842 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1,
3843 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3844 if (rc < 0) {
3845 CH_ERR(vi, "failed to allocate virtual interface %d"
3846 "for port %d: %d\n", index, pi->port_id, -rc);
3847 return (-rc);
3848 }
3849 vi->viid = rc;
3850
3851 if (vi->rss_size == 1) {
3852 /*
3853 * This VI didn't get a slice of the RSS table. Reduce the
3854 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3855 * configuration file (nvi, rssnvi for this PF) if this is a
3856 * problem.
3857 */
3858 device_printf(vi->dev, "RSS table not available.\n");
3859 vi->rss_base = 0xffff;
3860
3861 return (0);
3862 }
3863
3864 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3865 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3866 V_FW_PARAMS_PARAM_YZ(vi->viid);
3867 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3868 if (rc)
3869 vi->rss_base = 0xffff;
3870 else {
3871 MPASS((val >> 16) == vi->rss_size);
3872 vi->rss_base = val & 0xffff;
3873 }
3874
3875 return (0);
3876 }
3877
3878 static int
vcxgbe_attach(device_t dev)3879 vcxgbe_attach(device_t dev)
3880 {
3881 struct vi_info *vi;
3882 struct port_info *pi;
3883 struct adapter *sc;
3884 int rc;
3885
3886 vi = device_get_softc(dev);
3887 pi = vi->pi;
3888 sc = pi->adapter;
3889
3890 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3891 if (rc)
3892 return (rc);
3893 rc = alloc_extra_vi(sc, pi, vi);
3894 end_synchronized_op(sc, 0);
3895 if (rc)
3896 return (rc);
3897
3898 cxgbe_vi_attach(dev, vi);
3899
3900 return (0);
3901 }
3902
3903 static int
vcxgbe_detach(device_t dev)3904 vcxgbe_detach(device_t dev)
3905 {
3906 struct vi_info *vi;
3907 struct adapter *sc;
3908
3909 vi = device_get_softc(dev);
3910 sc = vi->adapter;
3911
3912 begin_vi_detach(sc, vi);
3913 cxgbe_vi_detach(vi);
3914 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3915 end_vi_detach(sc, vi);
3916
3917 return (0);
3918 }
3919
3920 static struct callout fatal_callout;
3921 static struct taskqueue *reset_tq;
3922
3923 static void
delayed_panic(void * arg)3924 delayed_panic(void *arg)
3925 {
3926 struct adapter *sc = arg;
3927
3928 panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3929 }
3930
3931 static void
fatal_error_task(void * arg,int pending)3932 fatal_error_task(void *arg, int pending)
3933 {
3934 struct adapter *sc = arg;
3935 int rc;
3936
3937 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3938 dump_cim_regs(sc);
3939 dump_cimla(sc);
3940 dump_devlog(sc);
3941 }
3942
3943 if (t4_reset_on_fatal_err) {
3944 CH_ALERT(sc, "resetting adapter after fatal error.\n");
3945 rc = reset_adapter(sc);
3946 if (rc == 0 && t4_panic_on_fatal_err) {
3947 CH_ALERT(sc, "reset was successful, "
3948 "system will NOT panic.\n");
3949 return;
3950 }
3951 }
3952
3953 if (t4_panic_on_fatal_err) {
3954 CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3955 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3956 }
3957 }
3958
3959 void
t4_fatal_err(struct adapter * sc,bool fw_error)3960 t4_fatal_err(struct adapter *sc, bool fw_error)
3961 {
3962 stop_adapter(sc);
3963 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3964 return;
3965 if (fw_error) {
3966 /*
3967 * We are here because of a firmware error/timeout and not
3968 * because of a hardware interrupt. It is possible (although
3969 * not very likely) that an error interrupt was also raised but
3970 * this thread ran first and inhibited t4_intr_err. We walk the
3971 * main INT_CAUSE registers here to make sure we haven't missed
3972 * anything interesting.
3973 */
3974 t4_slow_intr_handler(sc, sc->intr_flags);
3975 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3976 }
3977 t4_report_fw_error(sc);
3978 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3979 device_get_nameunit(sc->dev), fw_error);
3980 taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3981 }
3982
3983 void
t4_add_adapter(struct adapter * sc)3984 t4_add_adapter(struct adapter *sc)
3985 {
3986 sx_xlock(&t4_list_lock);
3987 SLIST_INSERT_HEAD(&t4_list, sc, link);
3988 sx_xunlock(&t4_list_lock);
3989 }
3990
3991 int
t4_map_bars_0_and_4(struct adapter * sc)3992 t4_map_bars_0_and_4(struct adapter *sc)
3993 {
3994 sc->regs_rid = PCIR_BAR(0);
3995 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3996 &sc->regs_rid, RF_ACTIVE);
3997 if (sc->regs_res == NULL) {
3998 device_printf(sc->dev, "cannot map registers.\n");
3999 return (ENXIO);
4000 }
4001 sc->mmio_len = rman_get_size(sc->regs_res);
4002 setbit(&sc->doorbells, DOORBELL_KDB);
4003
4004 sc->msix_rid = PCIR_BAR(4);
4005 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4006 &sc->msix_rid, RF_ACTIVE);
4007 if (sc->msix_res == NULL) {
4008 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
4009 return (ENXIO);
4010 }
4011
4012 return (0);
4013 }
4014
4015 int
t4_map_bar_2(struct adapter * sc)4016 t4_map_bar_2(struct adapter *sc)
4017 {
4018
4019 /*
4020 * T4: only iWARP driver uses the userspace doorbells. There is no need
4021 * to map it if RDMA is disabled.
4022 */
4023 if (is_t4(sc) && sc->rdmacaps == 0)
4024 return (0);
4025
4026 sc->udbs_rid = PCIR_BAR(2);
4027 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4028 &sc->udbs_rid, RF_ACTIVE);
4029 if (sc->udbs_res == NULL) {
4030 device_printf(sc->dev, "cannot map doorbell BAR.\n");
4031 return (ENXIO);
4032 }
4033 sc->udbs_base = rman_get_virtual(sc->udbs_res);
4034
4035 if (chip_id(sc) >= CHELSIO_T5) {
4036 setbit(&sc->doorbells, DOORBELL_UDB);
4037 #if defined(__i386__) || defined(__amd64__)
4038 if (t5_write_combine) {
4039 int rc, mode;
4040
4041 /*
4042 * Enable write combining on BAR2. This is the
4043 * userspace doorbell BAR and is split into 128B
4044 * (UDBS_SEG_SIZE) doorbell regions, each associated
4045 * with an egress queue. The first 64B has the doorbell
4046 * and the second 64B can be used to submit a tx work
4047 * request with an implicit doorbell.
4048 */
4049
4050 rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
4051 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
4052 if (rc == 0) {
4053 clrbit(&sc->doorbells, DOORBELL_UDB);
4054 setbit(&sc->doorbells, DOORBELL_WCWR);
4055 setbit(&sc->doorbells, DOORBELL_UDBWC);
4056 } else {
4057 device_printf(sc->dev,
4058 "couldn't enable write combining: %d\n",
4059 rc);
4060 }
4061
4062 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
4063 t4_write_reg(sc, A_SGE_STAT_CFG,
4064 V_STATSOURCE_T5(7) | mode);
4065 }
4066 #endif
4067 }
4068 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
4069
4070 return (0);
4071 }
4072
4073 int
t4_adj_doorbells(struct adapter * sc)4074 t4_adj_doorbells(struct adapter *sc)
4075 {
4076 if ((sc->doorbells & t4_doorbells_allowed) != 0) {
4077 sc->doorbells &= t4_doorbells_allowed;
4078 return (0);
4079 }
4080 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n",
4081 sc->doorbells, t4_doorbells_allowed);
4082 return (EINVAL);
4083 }
4084
4085 struct memwin_init {
4086 uint32_t base;
4087 uint32_t aperture;
4088 };
4089
4090 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
4091 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4092 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4093 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
4094 };
4095
4096 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
4097 { MEMWIN0_BASE, MEMWIN0_APERTURE },
4098 { MEMWIN1_BASE, MEMWIN1_APERTURE },
4099 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
4100 };
4101
4102 static void
setup_memwin(struct adapter * sc)4103 setup_memwin(struct adapter *sc)
4104 {
4105 const struct memwin_init *mw_init;
4106 struct memwin *mw;
4107 int i;
4108 uint32_t bar0, reg;
4109
4110 if (is_t4(sc)) {
4111 /*
4112 * Read low 32b of bar0 indirectly via the hardware backdoor
4113 * mechanism. Works from within PCI passthrough environments
4114 * too, where rman_get_start() can return a different value. We
4115 * need to program the T4 memory window decoders with the actual
4116 * addresses that will be coming across the PCIe link.
4117 */
4118 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
4119 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
4120
4121 mw_init = &t4_memwin[0];
4122 } else {
4123 /* T5+ use the relative offset inside the PCIe BAR */
4124 bar0 = 0;
4125
4126 mw_init = &t5_memwin[0];
4127 }
4128
4129 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
4130 if (!rw_initialized(&mw->mw_lock)) {
4131 rw_init(&mw->mw_lock, "memory window access");
4132 mw->mw_base = mw_init->base;
4133 mw->mw_aperture = mw_init->aperture;
4134 mw->mw_curpos = 0;
4135 }
4136 reg = chip_id(sc) > CHELSIO_T6 ?
4137 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) :
4138 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i);
4139 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) |
4140 V_WINDOW(ilog2(mw->mw_aperture) - 10));
4141 rw_wlock(&mw->mw_lock);
4142 position_memwin(sc, i, mw->mw_curpos);
4143 rw_wunlock(&mw->mw_lock);
4144 }
4145
4146 /* flush */
4147 t4_read_reg(sc, reg);
4148 }
4149
4150 /*
4151 * Positions the memory window at the given address in the card's address space.
4152 * There are some alignment requirements and the actual position may be at an
4153 * address prior to the requested address. mw->mw_curpos always has the actual
4154 * position of the window.
4155 */
4156 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)4157 position_memwin(struct adapter *sc, int idx, uint32_t addr)
4158 {
4159 struct memwin *mw;
4160 uint32_t pf, reg, val;
4161
4162 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4163 mw = &sc->memwin[idx];
4164 rw_assert(&mw->mw_lock, RA_WLOCKED);
4165
4166 if (is_t4(sc)) {
4167 pf = 0;
4168 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
4169 } else {
4170 pf = V_PFNUM(sc->pf);
4171 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
4172 }
4173 if (chip_id(sc) > CHELSIO_T6) {
4174 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx);
4175 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf;
4176 } else {
4177 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
4178 val = mw->mw_curpos | pf;
4179 }
4180 t4_write_reg(sc, reg, val);
4181 t4_read_reg(sc, reg); /* flush */
4182 }
4183
4184 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)4185 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
4186 int len, int rw)
4187 {
4188 struct memwin *mw;
4189 uint32_t mw_end, v;
4190
4191 MPASS(idx >= 0 && idx < NUM_MEMWIN);
4192
4193 /* Memory can only be accessed in naturally aligned 4 byte units */
4194 if (addr & 3 || len & 3 || len <= 0)
4195 return (EINVAL);
4196
4197 mw = &sc->memwin[idx];
4198 while (len > 0) {
4199 rw_rlock(&mw->mw_lock);
4200 mw_end = mw->mw_curpos + mw->mw_aperture;
4201 if (addr >= mw_end || addr < mw->mw_curpos) {
4202 /* Will need to reposition the window */
4203 if (!rw_try_upgrade(&mw->mw_lock)) {
4204 rw_runlock(&mw->mw_lock);
4205 rw_wlock(&mw->mw_lock);
4206 }
4207 rw_assert(&mw->mw_lock, RA_WLOCKED);
4208 position_memwin(sc, idx, addr);
4209 rw_downgrade(&mw->mw_lock);
4210 mw_end = mw->mw_curpos + mw->mw_aperture;
4211 }
4212 rw_assert(&mw->mw_lock, RA_RLOCKED);
4213 while (addr < mw_end && len > 0) {
4214 if (rw == 0) {
4215 v = t4_read_reg(sc, mw->mw_base + addr -
4216 mw->mw_curpos);
4217 *val++ = le32toh(v);
4218 } else {
4219 v = *val++;
4220 t4_write_reg(sc, mw->mw_base + addr -
4221 mw->mw_curpos, htole32(v));
4222 }
4223 addr += 4;
4224 len -= 4;
4225 }
4226 rw_runlock(&mw->mw_lock);
4227 }
4228
4229 return (0);
4230 }
4231
4232 CTASSERT(M_TID_COOKIE == M_COOKIE);
4233 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
4234
4235 static void
t4_init_atid_table(struct adapter * sc)4236 t4_init_atid_table(struct adapter *sc)
4237 {
4238 struct tid_info *t;
4239 int i;
4240
4241 t = &sc->tids;
4242 if (t->natids == 0)
4243 return;
4244
4245 MPASS(t->atid_tab == NULL);
4246
4247 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
4248 M_ZERO | M_WAITOK);
4249 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
4250 t->afree = t->atid_tab;
4251 t->atids_in_use = 0;
4252 t->atid_alloc_stopped = false;
4253 for (i = 1; i < t->natids; i++)
4254 t->atid_tab[i - 1].next = &t->atid_tab[i];
4255 t->atid_tab[t->natids - 1].next = NULL;
4256 }
4257
4258 static void
t4_free_atid_table(struct adapter * sc)4259 t4_free_atid_table(struct adapter *sc)
4260 {
4261 struct tid_info *t;
4262
4263 t = &sc->tids;
4264
4265 KASSERT(t->atids_in_use == 0,
4266 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4267
4268 if (mtx_initialized(&t->atid_lock))
4269 mtx_destroy(&t->atid_lock);
4270 free(t->atid_tab, M_CXGBE);
4271 t->atid_tab = NULL;
4272 }
4273
4274 static void
stop_atid_allocator(struct adapter * sc)4275 stop_atid_allocator(struct adapter *sc)
4276 {
4277 struct tid_info *t = &sc->tids;
4278
4279 if (t->natids == 0)
4280 return;
4281 mtx_lock(&t->atid_lock);
4282 t->atid_alloc_stopped = true;
4283 mtx_unlock(&t->atid_lock);
4284 }
4285
4286 static void
restart_atid_allocator(struct adapter * sc)4287 restart_atid_allocator(struct adapter *sc)
4288 {
4289 struct tid_info *t = &sc->tids;
4290
4291 if (t->natids == 0)
4292 return;
4293 mtx_lock(&t->atid_lock);
4294 KASSERT(t->atids_in_use == 0,
4295 ("%s: %d atids still in use.", __func__, t->atids_in_use));
4296 t->atid_alloc_stopped = false;
4297 mtx_unlock(&t->atid_lock);
4298 }
4299
4300 int
alloc_atid(struct adapter * sc,void * ctx)4301 alloc_atid(struct adapter *sc, void *ctx)
4302 {
4303 struct tid_info *t = &sc->tids;
4304 int atid = -1;
4305
4306 mtx_lock(&t->atid_lock);
4307 if (t->afree && !t->atid_alloc_stopped) {
4308 union aopen_entry *p = t->afree;
4309
4310 atid = p - t->atid_tab;
4311 MPASS(atid <= M_TID_TID);
4312 t->afree = p->next;
4313 p->data = ctx;
4314 t->atids_in_use++;
4315 }
4316 mtx_unlock(&t->atid_lock);
4317 return (atid);
4318 }
4319
4320 void *
lookup_atid(struct adapter * sc,int atid)4321 lookup_atid(struct adapter *sc, int atid)
4322 {
4323 struct tid_info *t = &sc->tids;
4324
4325 return (t->atid_tab[atid].data);
4326 }
4327
4328 void
free_atid(struct adapter * sc,int atid)4329 free_atid(struct adapter *sc, int atid)
4330 {
4331 struct tid_info *t = &sc->tids;
4332 union aopen_entry *p = &t->atid_tab[atid];
4333
4334 mtx_lock(&t->atid_lock);
4335 p->next = t->afree;
4336 t->afree = p;
4337 t->atids_in_use--;
4338 mtx_unlock(&t->atid_lock);
4339 }
4340
4341 static void
queue_tid_release(struct adapter * sc,int tid)4342 queue_tid_release(struct adapter *sc, int tid)
4343 {
4344
4345 CXGBE_UNIMPLEMENTED("deferred tid release");
4346 }
4347
4348 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)4349 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
4350 {
4351 struct wrqe *wr;
4352 struct cpl_tid_release *req;
4353
4354 wr = alloc_wrqe(sizeof(*req), ctrlq);
4355 if (wr == NULL) {
4356 queue_tid_release(sc, tid); /* defer */
4357 return;
4358 }
4359 req = wrtod(wr);
4360
4361 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4362
4363 t4_wrq_tx(sc, wr);
4364 }
4365
4366 static int
t4_range_cmp(const void * a,const void * b)4367 t4_range_cmp(const void *a, const void *b)
4368 {
4369 return ((const struct t4_range *)a)->start -
4370 ((const struct t4_range *)b)->start;
4371 }
4372
4373 /*
4374 * Verify that the memory range specified by the addr/len pair is valid within
4375 * the card's address space.
4376 */
4377 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4378 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4379 {
4380 struct t4_range mem_ranges[4], *r, *next;
4381 uint32_t em, addr_len;
4382 int i, n, remaining;
4383
4384 /* Memory can only be accessed in naturally aligned 4 byte units */
4385 if (addr & 3 || len & 3 || len == 0)
4386 return (EINVAL);
4387
4388 /* Enabled memories */
4389 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4390
4391 r = &mem_ranges[0];
4392 n = 0;
4393 bzero(r, sizeof(mem_ranges));
4394 if (em & F_EDRAM0_ENABLE) {
4395 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4396 r->size = G_EDRAM0_SIZE(addr_len) << 20;
4397 if (r->size > 0) {
4398 r->start = G_EDRAM0_BASE(addr_len) << 20;
4399 if (addr >= r->start &&
4400 addr + len <= r->start + r->size)
4401 return (0);
4402 r++;
4403 n++;
4404 }
4405 }
4406 if (em & F_EDRAM1_ENABLE) {
4407 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4408 r->size = G_EDRAM1_SIZE(addr_len) << 20;
4409 if (r->size > 0) {
4410 r->start = G_EDRAM1_BASE(addr_len) << 20;
4411 if (addr >= r->start &&
4412 addr + len <= r->start + r->size)
4413 return (0);
4414 r++;
4415 n++;
4416 }
4417 }
4418 if (em & F_EXT_MEM_ENABLE) {
4419 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4420 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4421 if (r->size > 0) {
4422 r->start = G_EXT_MEM_BASE(addr_len) << 20;
4423 if (addr >= r->start &&
4424 addr + len <= r->start + r->size)
4425 return (0);
4426 r++;
4427 n++;
4428 }
4429 }
4430 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4431 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4432 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4433 if (r->size > 0) {
4434 r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4435 if (addr >= r->start &&
4436 addr + len <= r->start + r->size)
4437 return (0);
4438 r++;
4439 n++;
4440 }
4441 }
4442 MPASS(n <= nitems(mem_ranges));
4443
4444 if (n > 1) {
4445 /* Sort and merge the ranges. */
4446 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4447
4448 /* Start from index 0 and examine the next n - 1 entries. */
4449 r = &mem_ranges[0];
4450 for (remaining = n - 1; remaining > 0; remaining--, r++) {
4451
4452 MPASS(r->size > 0); /* r is a valid entry. */
4453 next = r + 1;
4454 MPASS(next->size > 0); /* and so is the next one. */
4455
4456 while (r->start + r->size >= next->start) {
4457 /* Merge the next one into the current entry. */
4458 r->size = max(r->start + r->size,
4459 next->start + next->size) - r->start;
4460 n--; /* One fewer entry in total. */
4461 if (--remaining == 0)
4462 goto done; /* short circuit */
4463 next++;
4464 }
4465 if (next != r + 1) {
4466 /*
4467 * Some entries were merged into r and next
4468 * points to the first valid entry that couldn't
4469 * be merged.
4470 */
4471 MPASS(next->size > 0); /* must be valid */
4472 memcpy(r + 1, next, remaining * sizeof(*r));
4473 #ifdef INVARIANTS
4474 /*
4475 * This so that the foo->size assertion in the
4476 * next iteration of the loop do the right
4477 * thing for entries that were pulled up and are
4478 * no longer valid.
4479 */
4480 MPASS(n < nitems(mem_ranges));
4481 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4482 sizeof(struct t4_range));
4483 #endif
4484 }
4485 }
4486 done:
4487 /* Done merging the ranges. */
4488 MPASS(n > 0);
4489 r = &mem_ranges[0];
4490 for (i = 0; i < n; i++, r++) {
4491 if (addr >= r->start &&
4492 addr + len <= r->start + r->size)
4493 return (0);
4494 }
4495 }
4496
4497 return (EFAULT);
4498 }
4499
4500 static int
fwmtype_to_hwmtype(int mtype)4501 fwmtype_to_hwmtype(int mtype)
4502 {
4503
4504 switch (mtype) {
4505 case FW_MEMTYPE_EDC0:
4506 return (MEM_EDC0);
4507 case FW_MEMTYPE_EDC1:
4508 return (MEM_EDC1);
4509 case FW_MEMTYPE_EXTMEM:
4510 return (MEM_MC0);
4511 case FW_MEMTYPE_EXTMEM1:
4512 return (MEM_MC1);
4513 default:
4514 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4515 }
4516 }
4517
4518 /*
4519 * Verify that the memory range specified by the memtype/offset/len pair is
4520 * valid and lies entirely within the memtype specified. The global address of
4521 * the start of the range is returned in addr.
4522 */
4523 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4524 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4525 uint32_t *addr)
4526 {
4527 uint32_t em, addr_len, maddr;
4528
4529 /* Memory can only be accessed in naturally aligned 4 byte units */
4530 if (off & 3 || len & 3 || len == 0)
4531 return (EINVAL);
4532
4533 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4534 switch (fwmtype_to_hwmtype(mtype)) {
4535 case MEM_EDC0:
4536 if (!(em & F_EDRAM0_ENABLE))
4537 return (EINVAL);
4538 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4539 maddr = G_EDRAM0_BASE(addr_len) << 20;
4540 break;
4541 case MEM_EDC1:
4542 if (!(em & F_EDRAM1_ENABLE))
4543 return (EINVAL);
4544 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4545 maddr = G_EDRAM1_BASE(addr_len) << 20;
4546 break;
4547 case MEM_MC:
4548 if (!(em & F_EXT_MEM_ENABLE))
4549 return (EINVAL);
4550 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4551 maddr = G_EXT_MEM_BASE(addr_len) << 20;
4552 break;
4553 case MEM_MC1:
4554 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4555 return (EINVAL);
4556 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4557 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4558 break;
4559 default:
4560 return (EINVAL);
4561 }
4562
4563 *addr = maddr + off; /* global address */
4564 return (validate_mem_range(sc, *addr, len));
4565 }
4566
4567 static int
fixup_devlog_params(struct adapter * sc)4568 fixup_devlog_params(struct adapter *sc)
4569 {
4570 struct devlog_params *dparams = &sc->params.devlog;
4571 int rc;
4572
4573 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4574 dparams->size, &dparams->addr);
4575
4576 return (rc);
4577 }
4578
4579 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4580 update_nirq(struct intrs_and_queues *iaq, int nports)
4581 {
4582
4583 iaq->nirq = T4_EXTRA_INTR;
4584 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4585 iaq->nirq += nports * iaq->nofldrxq;
4586 iaq->nirq += nports * (iaq->num_vis - 1) *
4587 max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4588 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4589 }
4590
4591 /*
4592 * Adjust requirements to fit the number of interrupts available.
4593 */
4594 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4595 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4596 int navail)
4597 {
4598 int old_nirq;
4599 const int nports = sc->params.nports;
4600
4601 MPASS(nports > 0);
4602 MPASS(navail > 0);
4603
4604 bzero(iaq, sizeof(*iaq));
4605 iaq->intr_type = itype;
4606 iaq->num_vis = t4_num_vis;
4607 iaq->ntxq = t4_ntxq;
4608 iaq->ntxq_vi = t4_ntxq_vi;
4609 iaq->nrxq = t4_nrxq;
4610 iaq->nrxq_vi = t4_nrxq_vi;
4611 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4612 if (is_offload(sc) || is_ethoffload(sc)) {
4613 if (sc->params.tid_qid_sel_mask == 0) {
4614 iaq->nofldtxq = t4_nofldtxq;
4615 iaq->nofldtxq_vi = t4_nofldtxq_vi;
4616 } else {
4617 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores);
4618 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi,
4619 sc->params.ncores);
4620 if (iaq->nofldtxq != t4_nofldtxq)
4621 device_printf(sc->dev,
4622 "nofldtxq updated (%d -> %d) for correct"
4623 " operation with %d firmware cores.\n",
4624 t4_nofldtxq, iaq->nofldtxq,
4625 sc->params.ncores);
4626 if (iaq->num_vis > 1 &&
4627 iaq->nofldtxq_vi != t4_nofldtxq_vi)
4628 device_printf(sc->dev,
4629 "nofldtxq_vi updated (%d -> %d) for correct"
4630 " operation with %d firmware cores.\n",
4631 t4_nofldtxq_vi, iaq->nofldtxq_vi,
4632 sc->params.ncores);
4633 }
4634 }
4635 #endif
4636 #ifdef TCP_OFFLOAD
4637 if (is_offload(sc)) {
4638 iaq->nofldrxq = t4_nofldrxq;
4639 iaq->nofldrxq_vi = t4_nofldrxq_vi;
4640 }
4641 #endif
4642 #ifdef DEV_NETMAP
4643 if (t4_native_netmap & NN_MAIN_VI) {
4644 iaq->nnmtxq = t4_nnmtxq;
4645 iaq->nnmrxq = t4_nnmrxq;
4646 }
4647 if (t4_native_netmap & NN_EXTRA_VI) {
4648 iaq->nnmtxq_vi = t4_nnmtxq_vi;
4649 iaq->nnmrxq_vi = t4_nnmrxq_vi;
4650 }
4651 #endif
4652
4653 update_nirq(iaq, nports);
4654 if (iaq->nirq <= navail &&
4655 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4656 /*
4657 * This is the normal case -- there are enough interrupts for
4658 * everything.
4659 */
4660 goto done;
4661 }
4662
4663 /*
4664 * If extra VIs have been configured try reducing their count and see if
4665 * that works.
4666 */
4667 while (iaq->num_vis > 1) {
4668 iaq->num_vis--;
4669 update_nirq(iaq, nports);
4670 if (iaq->nirq <= navail &&
4671 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4672 device_printf(sc->dev, "virtual interfaces per port "
4673 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, "
4674 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. "
4675 "itype %d, navail %u, nirq %d.\n",
4676 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4677 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4678 itype, navail, iaq->nirq);
4679 goto done;
4680 }
4681 }
4682
4683 /*
4684 * Extra VIs will not be created. Log a message if they were requested.
4685 */
4686 MPASS(iaq->num_vis == 1);
4687 iaq->ntxq_vi = iaq->nrxq_vi = 0;
4688 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4689 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4690 if (iaq->num_vis != t4_num_vis) {
4691 device_printf(sc->dev, "extra virtual interfaces disabled. "
4692 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4693 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n",
4694 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4695 iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4696 }
4697
4698 /*
4699 * Keep reducing the number of NIC rx queues to the next lower power of
4700 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4701 * if that works.
4702 */
4703 do {
4704 if (iaq->nrxq > 1) {
4705 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1);
4706 if (iaq->nnmrxq > iaq->nrxq)
4707 iaq->nnmrxq = iaq->nrxq;
4708 }
4709 if (iaq->nofldrxq > 1)
4710 iaq->nofldrxq >>= 1;
4711
4712 old_nirq = iaq->nirq;
4713 update_nirq(iaq, nports);
4714 if (iaq->nirq <= navail &&
4715 (itype != INTR_MSI || powerof2(iaq->nirq))) {
4716 device_printf(sc->dev, "running with reduced number of "
4717 "rx queues because of shortage of interrupts. "
4718 "nrxq=%u, nofldrxq=%u. "
4719 "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4720 iaq->nofldrxq, itype, navail, iaq->nirq);
4721 goto done;
4722 }
4723 } while (old_nirq != iaq->nirq);
4724
4725 /* One interrupt for everything. Ugh. */
4726 device_printf(sc->dev, "running with minimal number of queues. "
4727 "itype %d, navail %u.\n", itype, navail);
4728 iaq->nirq = 1;
4729 iaq->nrxq = 1;
4730 iaq->ntxq = 1;
4731 if (iaq->nofldrxq > 0) {
4732 iaq->nofldrxq = 1;
4733 iaq->nofldtxq = 1;
4734 if (sc->params.tid_qid_sel_mask == 0)
4735 iaq->nofldtxq = 1;
4736 else
4737 iaq->nofldtxq = sc->params.ncores;
4738 }
4739 iaq->nnmtxq = 0;
4740 iaq->nnmrxq = 0;
4741 done:
4742 MPASS(iaq->num_vis > 0);
4743 if (iaq->num_vis > 1) {
4744 MPASS(iaq->nrxq_vi > 0);
4745 MPASS(iaq->ntxq_vi > 0);
4746 }
4747 MPASS(iaq->nirq > 0);
4748 MPASS(iaq->nrxq > 0);
4749 MPASS(iaq->ntxq > 0);
4750 if (itype == INTR_MSI)
4751 MPASS(powerof2(iaq->nirq));
4752 if (sc->params.tid_qid_sel_mask != 0)
4753 MPASS(iaq->nofldtxq % sc->params.ncores == 0);
4754 }
4755
4756 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4757 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4758 {
4759 int rc, itype, navail, nalloc;
4760
4761 for (itype = INTR_MSIX; itype; itype >>= 1) {
4762
4763 if ((itype & t4_intr_types) == 0)
4764 continue; /* not allowed */
4765
4766 if (itype == INTR_MSIX)
4767 navail = pci_msix_count(sc->dev);
4768 else if (itype == INTR_MSI)
4769 navail = pci_msi_count(sc->dev);
4770 else
4771 navail = 1;
4772 restart:
4773 if (navail == 0)
4774 continue;
4775
4776 calculate_iaq(sc, iaq, itype, navail);
4777 nalloc = iaq->nirq;
4778 rc = 0;
4779 if (itype == INTR_MSIX)
4780 rc = pci_alloc_msix(sc->dev, &nalloc);
4781 else if (itype == INTR_MSI)
4782 rc = pci_alloc_msi(sc->dev, &nalloc);
4783
4784 if (rc == 0 && nalloc > 0) {
4785 if (nalloc == iaq->nirq)
4786 return (0);
4787
4788 /*
4789 * Didn't get the number requested. Use whatever number
4790 * the kernel is willing to allocate.
4791 */
4792 device_printf(sc->dev, "fewer vectors than requested, "
4793 "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4794 itype, iaq->nirq, nalloc);
4795 pci_release_msi(sc->dev);
4796 navail = nalloc;
4797 goto restart;
4798 }
4799
4800 device_printf(sc->dev,
4801 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4802 itype, rc, iaq->nirq, nalloc);
4803 }
4804
4805 device_printf(sc->dev,
4806 "failed to find a usable interrupt type. "
4807 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4808 pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4809
4810 return (ENXIO);
4811 }
4812
4813 #define FW_VERSION(chip) ( \
4814 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4815 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4816 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4817 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4818 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4819
4820 /* Just enough of fw_hdr to cover all version info. */
4821 struct fw_h {
4822 __u8 ver;
4823 __u8 chip;
4824 __be16 len512;
4825 __be32 fw_ver;
4826 __be32 tp_microcode_ver;
4827 __u8 intfver_nic;
4828 __u8 intfver_vnic;
4829 __u8 intfver_ofld;
4830 __u8 intfver_ri;
4831 __u8 intfver_iscsipdu;
4832 __u8 intfver_iscsi;
4833 __u8 intfver_fcoepdu;
4834 __u8 intfver_fcoe;
4835 };
4836 /* Spot check a couple of fields. */
4837 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4838 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4839 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4840
4841 struct fw_info {
4842 uint8_t chip;
4843 char *kld_name;
4844 char *fw_mod_name;
4845 struct fw_h fw_h;
4846 } fw_info[] = {
4847 {
4848 .chip = CHELSIO_T4,
4849 .kld_name = "t4fw_cfg",
4850 .fw_mod_name = "t4fw",
4851 .fw_h = {
4852 .chip = FW_HDR_CHIP_T4,
4853 .fw_ver = htobe32(FW_VERSION(T4)),
4854 .intfver_nic = FW_INTFVER(T4, NIC),
4855 .intfver_vnic = FW_INTFVER(T4, VNIC),
4856 .intfver_ofld = FW_INTFVER(T4, OFLD),
4857 .intfver_ri = FW_INTFVER(T4, RI),
4858 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4859 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4860 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4861 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4862 },
4863 }, {
4864 .chip = CHELSIO_T5,
4865 .kld_name = "t5fw_cfg",
4866 .fw_mod_name = "t5fw",
4867 .fw_h = {
4868 .chip = FW_HDR_CHIP_T5,
4869 .fw_ver = htobe32(FW_VERSION(T5)),
4870 .intfver_nic = FW_INTFVER(T5, NIC),
4871 .intfver_vnic = FW_INTFVER(T5, VNIC),
4872 .intfver_ofld = FW_INTFVER(T5, OFLD),
4873 .intfver_ri = FW_INTFVER(T5, RI),
4874 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4875 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4876 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4877 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4878 },
4879 }, {
4880 .chip = CHELSIO_T6,
4881 .kld_name = "t6fw_cfg",
4882 .fw_mod_name = "t6fw",
4883 .fw_h = {
4884 .chip = FW_HDR_CHIP_T6,
4885 .fw_ver = htobe32(FW_VERSION(T6)),
4886 .intfver_nic = FW_INTFVER(T6, NIC),
4887 .intfver_vnic = FW_INTFVER(T6, VNIC),
4888 .intfver_ofld = FW_INTFVER(T6, OFLD),
4889 .intfver_ri = FW_INTFVER(T6, RI),
4890 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4891 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4892 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4893 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4894 },
4895 }, {
4896 .chip = CHELSIO_T7,
4897 .kld_name = "t7fw_cfg",
4898 .fw_mod_name = "t7fw",
4899 .fw_h = {
4900 .chip = FW_HDR_CHIP_T7,
4901 .fw_ver = htobe32(FW_VERSION(T7)),
4902 .intfver_nic = FW_INTFVER(T7, NIC),
4903 .intfver_vnic = FW_INTFVER(T7, VNIC),
4904 .intfver_ofld = FW_INTFVER(T7, OFLD),
4905 .intfver_ri = FW_INTFVER(T7, RI),
4906 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU),
4907 .intfver_iscsi = FW_INTFVER(T7, ISCSI),
4908 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU),
4909 .intfver_fcoe = FW_INTFVER(T7, FCOE),
4910 },
4911 }
4912 };
4913
4914 static struct fw_info *
find_fw_info(int chip)4915 find_fw_info(int chip)
4916 {
4917 int i;
4918
4919 for (i = 0; i < nitems(fw_info); i++) {
4920 if (fw_info[i].chip == chip)
4921 return (&fw_info[i]);
4922 }
4923 return (NULL);
4924 }
4925
4926 /*
4927 * Is the given firmware API compatible with the one the driver was compiled
4928 * with?
4929 */
4930 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4931 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4932 {
4933
4934 /* short circuit if it's the exact same firmware version */
4935 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4936 return (1);
4937
4938 /*
4939 * XXX: Is this too conservative? Perhaps I should limit this to the
4940 * features that are supported in the driver.
4941 */
4942 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4943 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4944 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4945 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4946 return (1);
4947 #undef SAME_INTF
4948
4949 return (0);
4950 }
4951
4952 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4953 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4954 const struct firmware **fw)
4955 {
4956 struct fw_info *fw_info;
4957
4958 *dcfg = NULL;
4959 if (fw != NULL)
4960 *fw = NULL;
4961
4962 fw_info = find_fw_info(chip_id(sc));
4963 if (fw_info == NULL) {
4964 device_printf(sc->dev,
4965 "unable to look up firmware information for chip %d.\n",
4966 chip_id(sc));
4967 return (EINVAL);
4968 }
4969
4970 *dcfg = firmware_get(fw_info->kld_name);
4971 if (*dcfg != NULL) {
4972 if (fw != NULL)
4973 *fw = firmware_get(fw_info->fw_mod_name);
4974 return (0);
4975 }
4976
4977 return (ENOENT);
4978 }
4979
4980 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4981 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4982 const struct firmware *fw)
4983 {
4984
4985 if (fw != NULL)
4986 firmware_put(fw, FIRMWARE_UNLOAD);
4987 if (dcfg != NULL)
4988 firmware_put(dcfg, FIRMWARE_UNLOAD);
4989 }
4990
4991 /*
4992 * Return values:
4993 * 0 means no firmware install attempted.
4994 * ERESTART means a firmware install was attempted and was successful.
4995 * +ve errno means a firmware install was attempted but failed.
4996 */
4997 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4998 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4999 const struct fw_h *drv_fw, const char *reason, int *already)
5000 {
5001 const struct firmware *cfg, *fw;
5002 const uint32_t c = be32toh(card_fw->fw_ver);
5003 uint32_t d, k;
5004 int rc, fw_install;
5005 struct fw_h bundled_fw;
5006 bool load_attempted;
5007
5008 cfg = fw = NULL;
5009 load_attempted = false;
5010 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
5011
5012 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
5013 if (t4_fw_install < 0) {
5014 rc = load_fw_module(sc, &cfg, &fw);
5015 if (rc != 0 || fw == NULL) {
5016 device_printf(sc->dev,
5017 "failed to load firmware module: %d. cfg %p, fw %p;"
5018 " will use compiled-in firmware version for"
5019 "hw.cxgbe.fw_install checks.\n",
5020 rc, cfg, fw);
5021 } else {
5022 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
5023 }
5024 load_attempted = true;
5025 }
5026 d = be32toh(bundled_fw.fw_ver);
5027
5028 if (reason != NULL)
5029 goto install;
5030
5031 if ((sc->flags & FW_OK) == 0) {
5032
5033 if (c == 0xffffffff) {
5034 reason = "missing";
5035 goto install;
5036 }
5037
5038 rc = 0;
5039 goto done;
5040 }
5041
5042 if (!fw_compatible(card_fw, &bundled_fw)) {
5043 reason = "incompatible or unusable";
5044 goto install;
5045 }
5046
5047 if (d > c) {
5048 reason = "older than the version bundled with this driver";
5049 goto install;
5050 }
5051
5052 if (fw_install == 2 && d != c) {
5053 reason = "different than the version bundled with this driver";
5054 goto install;
5055 }
5056
5057 /* No reason to do anything to the firmware already on the card. */
5058 rc = 0;
5059 goto done;
5060
5061 install:
5062 rc = 0;
5063 if ((*already)++)
5064 goto done;
5065
5066 if (fw_install == 0) {
5067 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5068 "but the driver is prohibited from installing a firmware "
5069 "on the card.\n",
5070 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5071 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5072
5073 goto done;
5074 }
5075
5076 /*
5077 * We'll attempt to install a firmware. Load the module first (if it
5078 * hasn't been loaded already).
5079 */
5080 if (!load_attempted) {
5081 rc = load_fw_module(sc, &cfg, &fw);
5082 if (rc != 0 || fw == NULL) {
5083 device_printf(sc->dev,
5084 "failed to load firmware module: %d. cfg %p, fw %p\n",
5085 rc, cfg, fw);
5086 /* carry on */
5087 }
5088 }
5089 if (fw == NULL) {
5090 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5091 "but the driver cannot take corrective action because it "
5092 "is unable to load the firmware module.\n",
5093 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5094 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
5095 rc = sc->flags & FW_OK ? 0 : ENOENT;
5096 goto done;
5097 }
5098 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
5099 if (k != d) {
5100 MPASS(t4_fw_install > 0);
5101 device_printf(sc->dev,
5102 "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
5103 "expecting (%u.%u.%u.%u) and will not be used.\n",
5104 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
5105 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
5106 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5107 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5108 rc = sc->flags & FW_OK ? 0 : EINVAL;
5109 goto done;
5110 }
5111
5112 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
5113 "installing firmware %u.%u.%u.%u on card.\n",
5114 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
5115 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
5116 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
5117 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
5118
5119 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
5120 if (rc != 0) {
5121 device_printf(sc->dev, "failed to install firmware: %d\n", rc);
5122 } else {
5123 /* Installed successfully, update the cached header too. */
5124 rc = ERESTART;
5125 memcpy(card_fw, fw->data, sizeof(*card_fw));
5126 }
5127 done:
5128 unload_fw_module(sc, cfg, fw);
5129
5130 return (rc);
5131 }
5132
5133 /*
5134 * Establish contact with the firmware and attempt to become the master driver.
5135 *
5136 * A firmware will be installed to the card if needed (if the driver is allowed
5137 * to do so).
5138 */
5139 static int
contact_firmware(struct adapter * sc)5140 contact_firmware(struct adapter *sc)
5141 {
5142 int rc, already = 0;
5143 enum dev_state state;
5144 struct fw_info *fw_info;
5145 struct fw_hdr *card_fw; /* fw on the card */
5146 const struct fw_h *drv_fw;
5147
5148 fw_info = find_fw_info(chip_id(sc));
5149 if (fw_info == NULL) {
5150 device_printf(sc->dev,
5151 "unable to look up firmware information for chip %d.\n",
5152 chip_id(sc));
5153 return (EINVAL);
5154 }
5155 drv_fw = &fw_info->fw_h;
5156
5157 /* Read the header of the firmware on the card */
5158 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
5159 restart:
5160 rc = -t4_get_fw_hdr(sc, card_fw);
5161 if (rc != 0) {
5162 device_printf(sc->dev,
5163 "unable to read firmware header from card's flash: %d\n",
5164 rc);
5165 goto done;
5166 }
5167
5168 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
5169 &already);
5170 if (rc == ERESTART)
5171 goto restart;
5172 if (rc != 0)
5173 goto done;
5174
5175 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
5176 if (rc < 0 || state == DEV_STATE_ERR) {
5177 rc = -rc;
5178 device_printf(sc->dev,
5179 "failed to connect to the firmware: %d, %d. "
5180 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5181 #if 0
5182 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5183 "not responding properly to HELLO", &already) == ERESTART)
5184 goto restart;
5185 #endif
5186 goto done;
5187 }
5188 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
5189 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */
5190
5191 if (rc == sc->pf) {
5192 sc->flags |= MASTER_PF;
5193 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
5194 NULL, &already);
5195 if (rc == ERESTART)
5196 rc = 0;
5197 else if (rc != 0)
5198 goto done;
5199 } else if (state == DEV_STATE_UNINIT) {
5200 /*
5201 * We didn't get to be the master so we definitely won't be
5202 * configuring the chip. It's a bug if someone else hasn't
5203 * configured it already.
5204 */
5205 device_printf(sc->dev, "couldn't be master(%d), "
5206 "device not already initialized either(%d). "
5207 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5208 rc = EPROTO;
5209 goto done;
5210 } else {
5211 /*
5212 * Some other PF is the master and has configured the chip.
5213 * This is allowed but untested.
5214 */
5215 device_printf(sc->dev, "PF%d is master, device state %d. "
5216 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
5217 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
5218 sc->cfcsum = 0;
5219 rc = 0;
5220 }
5221 done:
5222 if (rc != 0 && sc->flags & FW_OK) {
5223 t4_fw_bye(sc, sc->mbox);
5224 sc->flags &= ~FW_OK;
5225 }
5226 free(card_fw, M_CXGBE);
5227 return (rc);
5228 }
5229
5230 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff,u_int maxlen)5231 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
5232 uint32_t mtype, uint32_t moff, u_int maxlen)
5233 {
5234 struct fw_info *fw_info;
5235 const struct firmware *dcfg, *rcfg = NULL;
5236 const uint32_t *cfdata;
5237 uint32_t cflen, addr;
5238 int rc;
5239
5240 load_fw_module(sc, &dcfg, NULL);
5241
5242 /* Card specific interpretation of "default". */
5243 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5244 if (pci_get_device(sc->dev) == 0x440a)
5245 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
5246 if (is_fpga(sc))
5247 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
5248 }
5249
5250 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
5251 if (dcfg == NULL) {
5252 device_printf(sc->dev,
5253 "KLD with default config is not available.\n");
5254 rc = ENOENT;
5255 goto done;
5256 }
5257 cfdata = dcfg->data;
5258 cflen = dcfg->datasize & ~3;
5259 } else {
5260 char s[32];
5261
5262 fw_info = find_fw_info(chip_id(sc));
5263 if (fw_info == NULL) {
5264 device_printf(sc->dev,
5265 "unable to look up firmware information for chip %d.\n",
5266 chip_id(sc));
5267 rc = EINVAL;
5268 goto done;
5269 }
5270 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
5271
5272 rcfg = firmware_get(s);
5273 if (rcfg == NULL) {
5274 device_printf(sc->dev,
5275 "unable to load module \"%s\" for configuration "
5276 "profile \"%s\".\n", s, cfg_file);
5277 rc = ENOENT;
5278 goto done;
5279 }
5280 cfdata = rcfg->data;
5281 cflen = rcfg->datasize & ~3;
5282 }
5283
5284 if (cflen > maxlen) {
5285 device_printf(sc->dev,
5286 "config file too long (%d, max allowed is %d).\n",
5287 cflen, maxlen);
5288 rc = EINVAL;
5289 goto done;
5290 }
5291
5292 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
5293 if (rc != 0) {
5294 device_printf(sc->dev,
5295 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
5296 __func__, mtype, moff, cflen, rc);
5297 rc = EINVAL;
5298 goto done;
5299 }
5300 write_via_memwin(sc, 2, addr, cfdata, cflen);
5301 done:
5302 if (rcfg != NULL)
5303 firmware_put(rcfg, FIRMWARE_UNLOAD);
5304 unload_fw_module(sc, dcfg, NULL);
5305 return (rc);
5306 }
5307
5308 struct caps_allowed {
5309 uint16_t nbmcaps;
5310 uint16_t linkcaps;
5311 uint16_t switchcaps;
5312 uint16_t nvmecaps;
5313 uint16_t niccaps;
5314 uint16_t toecaps;
5315 uint16_t rdmacaps;
5316 uint16_t cryptocaps;
5317 uint16_t iscsicaps;
5318 uint16_t fcoecaps;
5319 };
5320
5321 #define FW_PARAM_DEV(param) \
5322 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5323 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5324 #define FW_PARAM_PFVF(param) \
5325 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5326 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
5327
5328 /*
5329 * Provide a configuration profile to the firmware and have it initialize the
5330 * chip accordingly. This may involve uploading a configuration file to the
5331 * card.
5332 */
5333 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)5334 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
5335 const struct caps_allowed *caps_allowed)
5336 {
5337 int rc;
5338 struct fw_caps_config_cmd caps;
5339 uint32_t mtype, moff, finicsum, cfcsum, param, val;
5340 unsigned int maxlen = 0;
5341 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen);
5342
5343 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
5344 if (rc != 0) {
5345 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
5346 return (rc);
5347 }
5348
5349 bzero(&caps, sizeof(caps));
5350 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5351 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5352 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
5353 mtype = 0;
5354 moff = 0;
5355 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5356 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
5357 mtype = FW_MEMTYPE_FLASH;
5358 moff = cfg_addr;
5359 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5360 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5361 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5362 FW_LEN16(caps));
5363 } else {
5364 /*
5365 * Ask the firmware where it wants us to upload the config file.
5366 */
5367 param = FW_PARAM_DEV(CF);
5368 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5369 if (rc != 0) {
5370 /* No support for config file? Shouldn't happen. */
5371 device_printf(sc->dev,
5372 "failed to query config file location: %d.\n", rc);
5373 goto done;
5374 }
5375 mtype = G_FW_PARAMS_PARAM_Y(val);
5376 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
5377 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
5378 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5379 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
5380 FW_LEN16(caps));
5381
5382 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen);
5383 if (rc != 0) {
5384 device_printf(sc->dev,
5385 "failed to upload config file to card: %d.\n", rc);
5386 goto done;
5387 }
5388 }
5389 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5390 if (rc != 0) {
5391 device_printf(sc->dev, "failed to pre-process config file: %d "
5392 "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
5393 goto done;
5394 }
5395
5396 finicsum = be32toh(caps.finicsum);
5397 cfcsum = be32toh(caps.cfcsum); /* actual */
5398 if (finicsum != cfcsum) {
5399 device_printf(sc->dev,
5400 "WARNING: config file checksum mismatch: %08x %08x\n",
5401 finicsum, cfcsum);
5402 }
5403 sc->cfcsum = cfcsum;
5404 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5405
5406 /*
5407 * Let the firmware know what features will (not) be used so it can tune
5408 * things accordingly.
5409 */
5410 #define LIMIT_CAPS(x) do { \
5411 caps.x##caps &= htobe16(caps_allowed->x##caps); \
5412 } while (0)
5413 LIMIT_CAPS(nbm);
5414 LIMIT_CAPS(link);
5415 LIMIT_CAPS(switch);
5416 LIMIT_CAPS(nvme);
5417 LIMIT_CAPS(nic);
5418 LIMIT_CAPS(toe);
5419 LIMIT_CAPS(rdma);
5420 LIMIT_CAPS(crypto);
5421 LIMIT_CAPS(iscsi);
5422 LIMIT_CAPS(fcoe);
5423 #undef LIMIT_CAPS
5424 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5425 /*
5426 * TOE and hashfilters are mutually exclusive. It is a config
5427 * file or firmware bug if both are reported as available. Try
5428 * to cope with the situation in non-debug builds by disabling
5429 * TOE.
5430 */
5431 MPASS(caps.toecaps == 0);
5432
5433 caps.toecaps = 0;
5434 caps.rdmacaps = 0;
5435 caps.iscsicaps = 0;
5436 caps.nvmecaps = 0;
5437 }
5438
5439 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5440 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5441 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5442 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5443 if (rc != 0) {
5444 device_printf(sc->dev,
5445 "failed to process config file: %d.\n", rc);
5446 goto done;
5447 }
5448
5449 t4_tweak_chip_settings(sc);
5450 set_params__pre_init(sc);
5451
5452 /* get basic stuff going */
5453 rc = -t4_fw_initialize(sc, sc->mbox);
5454 if (rc != 0) {
5455 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5456 goto done;
5457 }
5458 done:
5459 return (rc);
5460 }
5461
5462 /*
5463 * Partition chip resources for use between various PFs, VFs, etc.
5464 */
5465 static int
partition_resources(struct adapter * sc)5466 partition_resources(struct adapter *sc)
5467 {
5468 char cfg_file[sizeof(t4_cfg_file)];
5469 struct caps_allowed caps_allowed;
5470 int rc;
5471 bool fallback;
5472
5473 /* Only the master driver gets to configure the chip resources. */
5474 MPASS(sc->flags & MASTER_PF);
5475
5476 #define COPY_CAPS(x) do { \
5477 caps_allowed.x##caps = t4_##x##caps_allowed; \
5478 } while (0)
5479 bzero(&caps_allowed, sizeof(caps_allowed));
5480 COPY_CAPS(nbm);
5481 COPY_CAPS(link);
5482 COPY_CAPS(switch);
5483 COPY_CAPS(nvme);
5484 COPY_CAPS(nic);
5485 COPY_CAPS(toe);
5486 COPY_CAPS(rdma);
5487 COPY_CAPS(crypto);
5488 COPY_CAPS(iscsi);
5489 COPY_CAPS(fcoe);
5490 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5491 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5492 retry:
5493 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5494 if (rc != 0 && fallback) {
5495 dump_devlog(sc);
5496 device_printf(sc->dev,
5497 "failed (%d) to configure card with \"%s\" profile, "
5498 "will fall back to a basic configuration and retry.\n",
5499 rc, cfg_file);
5500 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5501 bzero(&caps_allowed, sizeof(caps_allowed));
5502 COPY_CAPS(switch);
5503 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5504 fallback = false;
5505 goto retry;
5506 }
5507 #undef COPY_CAPS
5508 return (rc);
5509 }
5510
5511 /*
5512 * Retrieve parameters that are needed (or nice to have) very early.
5513 */
5514 static int
get_params__pre_init(struct adapter * sc)5515 get_params__pre_init(struct adapter *sc)
5516 {
5517 int rc;
5518 uint32_t param[2], val[2];
5519
5520 t4_get_version_info(sc);
5521
5522 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5523 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5524 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5525 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5526 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5527
5528 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5529 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5530 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5531 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5532 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5533
5534 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5535 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5536 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5537 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5538 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5539
5540 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5541 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5542 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5543 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5544 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5545
5546 param[0] = FW_PARAM_DEV(PORTVEC);
5547 param[1] = FW_PARAM_DEV(CCLK);
5548 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5549 if (rc != 0) {
5550 device_printf(sc->dev,
5551 "failed to query parameters (pre_init): %d.\n", rc);
5552 return (rc);
5553 }
5554
5555 sc->params.portvec = val[0];
5556 sc->params.nports = bitcount32(val[0]);
5557 sc->params.vpd.cclk = val[1];
5558
5559 /* Read device log parameters. */
5560 rc = -t4_init_devlog_ncores_params(sc, 1);
5561 if (rc == 0)
5562 fixup_devlog_params(sc);
5563 else {
5564 device_printf(sc->dev,
5565 "failed to get devlog parameters: %d.\n", rc);
5566 rc = 0; /* devlog isn't critical for device operation */
5567 }
5568
5569 return (rc);
5570 }
5571
5572 /*
5573 * Any params that need to be set before FW_INITIALIZE.
5574 */
5575 static int
set_params__pre_init(struct adapter * sc)5576 set_params__pre_init(struct adapter *sc)
5577 {
5578 int rc = 0;
5579 uint32_t param, val;
5580
5581 if (chip_id(sc) >= CHELSIO_T6) {
5582 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5583 val = 1;
5584 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5585 /* firmwares < 1.20.1.0 do not have this param. */
5586 if (rc == FW_EINVAL &&
5587 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5588 rc = 0;
5589 }
5590 if (rc != 0) {
5591 device_printf(sc->dev,
5592 "failed to enable high priority filters :%d.\n",
5593 rc);
5594 }
5595
5596 param = FW_PARAM_DEV(PPOD_EDRAM);
5597 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5598 if (rc == 0 && val == 1) {
5599 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m,
5600 &val);
5601 if (rc != 0) {
5602 device_printf(sc->dev,
5603 "failed to set PPOD_EDRAM: %d.\n", rc);
5604 }
5605 }
5606 }
5607
5608 /* Enable opaque VIIDs with firmwares that support it. */
5609 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5610 val = 1;
5611 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
5612 if (rc == 0 && val == 1)
5613 sc->params.viid_smt_extn_support = true;
5614 else
5615 sc->params.viid_smt_extn_support = false;
5616
5617 return (rc);
5618 }
5619
5620 /*
5621 * Retrieve various parameters that are of interest to the driver. The device
5622 * has been initialized by the firmware at this point.
5623 */
5624 static int
get_params__post_init(struct adapter * sc)5625 get_params__post_init(struct adapter *sc)
5626 {
5627 int rc;
5628 uint32_t param[7], val[7];
5629 struct fw_caps_config_cmd caps;
5630
5631 param[0] = FW_PARAM_PFVF(IQFLINT_START);
5632 param[1] = FW_PARAM_PFVF(EQ_START);
5633 param[2] = FW_PARAM_PFVF(FILTER_START);
5634 param[3] = FW_PARAM_PFVF(FILTER_END);
5635 param[4] = FW_PARAM_PFVF(L2T_START);
5636 param[5] = FW_PARAM_PFVF(L2T_END);
5637 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5638 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5639 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5640 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5641 if (rc != 0) {
5642 device_printf(sc->dev,
5643 "failed to query parameters (post_init): %d.\n", rc);
5644 return (rc);
5645 }
5646
5647 sc->sge.iq_start = val[0];
5648 sc->sge.eq_start = val[1];
5649 if ((int)val[3] > (int)val[2]) {
5650 sc->tids.ftid_base = val[2];
5651 sc->tids.ftid_end = val[3];
5652 sc->tids.nftids = val[3] - val[2] + 1;
5653 }
5654 sc->vres.l2t.start = val[4];
5655 sc->vres.l2t.size = val[5] - val[4] + 1;
5656 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */
5657 if (sc->vres.l2t.size > 0)
5658 MPASS(fls(val[5]) <= S_SYNC_WR);
5659 sc->params.core_vdd = val[6];
5660
5661 param[0] = FW_PARAM_PFVF(IQFLINT_END);
5662 param[1] = FW_PARAM_PFVF(EQ_END);
5663 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5664 if (rc != 0) {
5665 device_printf(sc->dev,
5666 "failed to query parameters (post_init2): %d.\n", rc);
5667 return (rc);
5668 }
5669 MPASS((int)val[0] >= sc->sge.iq_start);
5670 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5671 MPASS((int)val[1] >= sc->sge.eq_start);
5672 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5673
5674 if (chip_id(sc) >= CHELSIO_T6) {
5675
5676 sc->tids.tid_base = t4_read_reg(sc,
5677 A_LE_DB_ACTIVE_TABLE_START_INDEX);
5678
5679 param[0] = FW_PARAM_PFVF(HPFILTER_START);
5680 param[1] = FW_PARAM_PFVF(HPFILTER_END);
5681 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5682 if (rc != 0) {
5683 device_printf(sc->dev,
5684 "failed to query hpfilter parameters: %d.\n", rc);
5685 return (rc);
5686 }
5687 if ((int)val[1] > (int)val[0]) {
5688 sc->tids.hpftid_base = val[0];
5689 sc->tids.hpftid_end = val[1];
5690 sc->tids.nhpftids = val[1] - val[0] + 1;
5691
5692 /*
5693 * These should go off if the layout changes and the
5694 * driver needs to catch up.
5695 */
5696 MPASS(sc->tids.hpftid_base == 0);
5697 MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5698 }
5699
5700 param[0] = FW_PARAM_PFVF(RAWF_START);
5701 param[1] = FW_PARAM_PFVF(RAWF_END);
5702 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5703 if (rc != 0) {
5704 device_printf(sc->dev,
5705 "failed to query rawf parameters: %d.\n", rc);
5706 return (rc);
5707 }
5708 if ((int)val[1] > (int)val[0]) {
5709 sc->rawf_base = val[0];
5710 sc->nrawf = val[1] - val[0] + 1;
5711 }
5712 }
5713
5714 if (sc->params.ncores > 1) {
5715 MPASS(chip_id(sc) >= CHELSIO_T7);
5716
5717 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK);
5718 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5719 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0;
5720 }
5721
5722 /*
5723 * The parameters that follow may not be available on all firmwares. We
5724 * query them individually rather than in a compound query because old
5725 * firmwares fail the entire query if an unknown parameter is queried.
5726 */
5727
5728 /*
5729 * MPS buffer group configuration.
5730 */
5731 param[0] = FW_PARAM_DEV(MPSBGMAP);
5732 val[0] = 0;
5733 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5734 if (rc == 0)
5735 sc->params.mps_bg_map = val[0];
5736 else
5737 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */
5738
5739 param[0] = FW_PARAM_DEV(TPCHMAP);
5740 val[0] = 0;
5741 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5742 if (rc == 0)
5743 sc->params.tp_ch_map = val[0];
5744 else
5745 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */
5746
5747 param[0] = FW_PARAM_DEV(TX_TPCHMAP);
5748 val[0] = 0;
5749 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5750 if (rc == 0)
5751 sc->params.tx_tp_ch_map = val[0];
5752 else
5753 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */
5754
5755 /*
5756 * Determine whether the firmware supports the filter2 work request.
5757 */
5758 param[0] = FW_PARAM_DEV(FILTER2_WR);
5759 val[0] = 0;
5760 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5761 if (rc == 0)
5762 sc->params.filter2_wr_support = val[0] != 0;
5763 else
5764 sc->params.filter2_wr_support = 0;
5765
5766 /*
5767 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5768 */
5769 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5770 val[0] = 0;
5771 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5772 if (rc == 0)
5773 sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5774 else
5775 sc->params.ulptx_memwrite_dsgl = false;
5776
5777 /* FW_RI_FR_NSMR_TPTE_WR support */
5778 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5779 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5780 if (rc == 0)
5781 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5782 else
5783 sc->params.fr_nsmr_tpte_wr_support = false;
5784
5785 /* Support for 512 SGL entries per FR MR. */
5786 param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5787 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5788 if (rc == 0)
5789 sc->params.dev_512sgl_mr = val[0] != 0;
5790 else
5791 sc->params.dev_512sgl_mr = false;
5792
5793 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5794 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5795 if (rc == 0)
5796 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5797 else
5798 sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5799
5800 param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5801 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5802 if (rc == 0) {
5803 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */
5804 sc->params.nsched_cls = val[0];
5805 } else
5806 sc->params.nsched_cls = sc->chip_params->nsched_cls;
5807
5808 /* get capabilites */
5809 bzero(&caps, sizeof(caps));
5810 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5811 F_FW_CMD_REQUEST | F_FW_CMD_READ);
5812 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5813 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5814 if (rc != 0) {
5815 device_printf(sc->dev,
5816 "failed to get card capabilities: %d.\n", rc);
5817 return (rc);
5818 }
5819
5820 #define READ_CAPS(x) do { \
5821 sc->x = htobe16(caps.x); \
5822 } while (0)
5823 READ_CAPS(nbmcaps);
5824 READ_CAPS(linkcaps);
5825 READ_CAPS(switchcaps);
5826 READ_CAPS(nvmecaps);
5827 READ_CAPS(niccaps);
5828 READ_CAPS(toecaps);
5829 READ_CAPS(rdmacaps);
5830 READ_CAPS(cryptocaps);
5831 READ_CAPS(iscsicaps);
5832 READ_CAPS(fcoecaps);
5833
5834 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5835 MPASS(chip_id(sc) > CHELSIO_T4);
5836 MPASS(sc->toecaps == 0);
5837 sc->toecaps = 0;
5838
5839 param[0] = FW_PARAM_DEV(NTID);
5840 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5841 if (rc != 0) {
5842 device_printf(sc->dev,
5843 "failed to query HASHFILTER parameters: %d.\n", rc);
5844 return (rc);
5845 }
5846 sc->tids.ntids = val[0];
5847 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5848 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5849 sc->tids.ntids -= sc->tids.nhpftids;
5850 }
5851 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5852 sc->params.hash_filter = 1;
5853 }
5854 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5855 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5856 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5857 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5858 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5859 if (rc != 0) {
5860 device_printf(sc->dev,
5861 "failed to query NIC parameters: %d.\n", rc);
5862 return (rc);
5863 }
5864 if ((int)val[1] > (int)val[0]) {
5865 sc->tids.etid_base = val[0];
5866 sc->tids.etid_end = val[1];
5867 sc->tids.netids = val[1] - val[0] + 1;
5868 sc->params.eo_wr_cred = val[2];
5869 sc->params.ethoffload = 1;
5870 }
5871 }
5872 if (sc->toecaps) {
5873 /* query offload-related parameters */
5874 param[0] = FW_PARAM_DEV(NTID);
5875 param[1] = FW_PARAM_PFVF(SERVER_START);
5876 param[2] = FW_PARAM_PFVF(SERVER_END);
5877 param[3] = FW_PARAM_PFVF(TDDP_START);
5878 param[4] = FW_PARAM_PFVF(TDDP_END);
5879 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5880 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5881 if (rc != 0) {
5882 device_printf(sc->dev,
5883 "failed to query TOE parameters: %d.\n", rc);
5884 return (rc);
5885 }
5886 sc->tids.ntids = val[0];
5887 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5888 MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5889 sc->tids.ntids -= sc->tids.nhpftids;
5890 }
5891 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5892 if ((int)val[2] > (int)val[1]) {
5893 sc->tids.stid_base = val[1];
5894 sc->tids.nstids = val[2] - val[1] + 1;
5895 }
5896 sc->vres.ddp.start = val[3];
5897 sc->vres.ddp.size = val[4] - val[3] + 1;
5898 sc->params.ofldq_wr_cred = val[5];
5899 sc->params.offload = 1;
5900 } else {
5901 /*
5902 * The firmware attempts memfree TOE configuration for -SO cards
5903 * and will report toecaps=0 if it runs out of resources (this
5904 * depends on the config file). It may not report 0 for other
5905 * capabilities dependent on the TOE in this case. Set them to
5906 * 0 here so that the driver doesn't bother tracking resources
5907 * that will never be used.
5908 */
5909 sc->iscsicaps = 0;
5910 sc->nvmecaps = 0;
5911 sc->rdmacaps = 0;
5912 }
5913 if (sc->nvmecaps || sc->rdmacaps) {
5914 param[0] = FW_PARAM_PFVF(STAG_START);
5915 param[1] = FW_PARAM_PFVF(STAG_END);
5916 param[2] = FW_PARAM_PFVF(PBL_START);
5917 param[3] = FW_PARAM_PFVF(PBL_END);
5918 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5919 if (rc != 0) {
5920 device_printf(sc->dev,
5921 "failed to query NVMe/RDMA parameters: %d.\n", rc);
5922 return (rc);
5923 }
5924 sc->vres.stag.start = val[0];
5925 sc->vres.stag.size = val[1] - val[0] + 1;
5926 sc->vres.pbl.start = val[2];
5927 sc->vres.pbl.size = val[3] - val[2] + 1;
5928 }
5929 if (sc->rdmacaps) {
5930 param[0] = FW_PARAM_PFVF(RQ_START);
5931 param[1] = FW_PARAM_PFVF(RQ_END);
5932 param[2] = FW_PARAM_PFVF(SQRQ_START);
5933 param[3] = FW_PARAM_PFVF(SQRQ_END);
5934 param[4] = FW_PARAM_PFVF(CQ_START);
5935 param[5] = FW_PARAM_PFVF(CQ_END);
5936 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5937 if (rc != 0) {
5938 device_printf(sc->dev,
5939 "failed to query RDMA parameters(1): %d.\n", rc);
5940 return (rc);
5941 }
5942 sc->vres.rq.start = val[0];
5943 sc->vres.rq.size = val[1] - val[0] + 1;
5944 sc->vres.qp.start = val[2];
5945 sc->vres.qp.size = val[3] - val[2] + 1;
5946 sc->vres.cq.start = val[4];
5947 sc->vres.cq.size = val[5] - val[4] + 1;
5948
5949 param[0] = FW_PARAM_PFVF(OCQ_START);
5950 param[1] = FW_PARAM_PFVF(OCQ_END);
5951 param[2] = FW_PARAM_PFVF(SRQ_START);
5952 param[3] = FW_PARAM_PFVF(SRQ_END);
5953 param[4] = FW_PARAM_DEV(MAXORDIRD_QP);
5954 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5955 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5956 if (rc != 0) {
5957 device_printf(sc->dev,
5958 "failed to query RDMA parameters(2): %d.\n", rc);
5959 return (rc);
5960 }
5961 sc->vres.ocq.start = val[0];
5962 sc->vres.ocq.size = val[1] - val[0] + 1;
5963 sc->vres.srq.start = val[2];
5964 sc->vres.srq.size = val[3] - val[2] + 1;
5965 sc->params.max_ordird_qp = val[4];
5966 sc->params.max_ird_adapter = val[5];
5967 }
5968 if (sc->iscsicaps) {
5969 param[0] = FW_PARAM_PFVF(ISCSI_START);
5970 param[1] = FW_PARAM_PFVF(ISCSI_END);
5971 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5972 if (rc != 0) {
5973 device_printf(sc->dev,
5974 "failed to query iSCSI parameters: %d.\n", rc);
5975 return (rc);
5976 }
5977 sc->vres.iscsi.start = val[0];
5978 sc->vres.iscsi.size = val[1] - val[0] + 1;
5979 }
5980 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5981 param[0] = FW_PARAM_PFVF(TLS_START);
5982 param[1] = FW_PARAM_PFVF(TLS_END);
5983 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5984 if (rc != 0) {
5985 device_printf(sc->dev,
5986 "failed to query TLS parameters: %d.\n", rc);
5987 return (rc);
5988 }
5989 sc->vres.key.start = val[0];
5990 sc->vres.key.size = val[1] - val[0] + 1;
5991 }
5992
5993 /*
5994 * We've got the params we wanted to query directly from the firmware.
5995 * Grab some others via other means.
5996 */
5997 t4_init_sge_params(sc);
5998 t4_init_tp_params(sc);
5999 t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
6000 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
6001
6002 rc = t4_verify_chip_settings(sc);
6003 if (rc != 0)
6004 return (rc);
6005 t4_init_rx_buf_info(sc);
6006
6007 return (rc);
6008 }
6009
6010 #ifdef KERN_TLS
6011 static void
ktls_tick(void * arg)6012 ktls_tick(void *arg)
6013 {
6014 struct adapter *sc;
6015 uint32_t tstamp;
6016
6017 sc = arg;
6018 tstamp = tcp_ts_getticks();
6019 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
6020 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
6021 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
6022 }
6023
6024 static int
t6_config_kern_tls(struct adapter * sc,bool enable)6025 t6_config_kern_tls(struct adapter *sc, bool enable)
6026 {
6027 int rc;
6028 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6029 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
6030 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
6031 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
6032
6033 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m);
6034 if (rc != 0) {
6035 CH_ERR(sc, "failed to %s NIC TLS: %d\n",
6036 enable ? "enable" : "disable", rc);
6037 return (rc);
6038 }
6039
6040 if (enable) {
6041 sc->flags |= KERN_TLS_ON;
6042 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
6043 C_HARDCLOCK);
6044 } else {
6045 sc->flags &= ~KERN_TLS_ON;
6046 callout_stop(&sc->ktls_tick);
6047 }
6048
6049 return (rc);
6050 }
6051 #endif
6052
6053 static int
set_params__post_init(struct adapter * sc)6054 set_params__post_init(struct adapter *sc)
6055 {
6056 uint32_t mask, param, val;
6057 #ifdef TCP_OFFLOAD
6058 int i, v, shift;
6059 #endif
6060
6061 /* ask for encapsulated CPLs */
6062 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
6063 val = 1;
6064 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
6065
6066 /* Enable 32b port caps if the firmware supports it. */
6067 param = FW_PARAM_PFVF(PORT_CAPS32);
6068 val = 1;
6069 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0)
6070 sc->params.port_caps32 = 1;
6071
6072 /* Let filter + maskhash steer to a part of the VI's RSS region. */
6073 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
6074 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
6075 V_MASKFILTER(val - 1));
6076
6077 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
6078 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
6079 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6080 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
6081 val = 0;
6082 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
6083 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
6084 F_ATTACKFILTERENABLE);
6085 val |= F_DROPERRORATTACK;
6086 }
6087 if (t4_drop_ip_fragments != 0) {
6088 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
6089 F_FRAGMENTDROP);
6090 val |= F_DROPERRORFRAG;
6091 }
6092 if (t4_drop_pkts_with_l2_errors != 0)
6093 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
6094 if (t4_drop_pkts_with_l3_errors != 0) {
6095 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
6096 F_DROPERRORCSUMIP;
6097 }
6098 if (t4_drop_pkts_with_l4_errors != 0) {
6099 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
6100 F_DROPERRORTCPOPT | F_DROPERRORCSUM;
6101 }
6102 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
6103
6104 #ifdef TCP_OFFLOAD
6105 /*
6106 * Override the TOE timers with user provided tunables. This is not the
6107 * recommended way to change the timers (the firmware config file is) so
6108 * these tunables are not documented.
6109 *
6110 * All the timer tunables are in microseconds.
6111 */
6112 if (t4_toe_keepalive_idle != 0) {
6113 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
6114 v &= M_KEEPALIVEIDLE;
6115 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
6116 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
6117 }
6118 if (t4_toe_keepalive_interval != 0) {
6119 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
6120 v &= M_KEEPALIVEINTVL;
6121 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
6122 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
6123 }
6124 if (t4_toe_keepalive_count != 0) {
6125 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
6126 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6127 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
6128 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
6129 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
6130 }
6131 if (t4_toe_rexmt_min != 0) {
6132 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
6133 v &= M_RXTMIN;
6134 t4_set_reg_field(sc, A_TP_RXT_MIN,
6135 V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
6136 }
6137 if (t4_toe_rexmt_max != 0) {
6138 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
6139 v &= M_RXTMAX;
6140 t4_set_reg_field(sc, A_TP_RXT_MAX,
6141 V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
6142 }
6143 if (t4_toe_rexmt_count != 0) {
6144 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
6145 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
6146 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
6147 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
6148 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
6149 }
6150 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
6151 if (t4_toe_rexmt_backoff[i] != -1) {
6152 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
6153 shift = (i & 3) << 3;
6154 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
6155 M_TIMERBACKOFFINDEX0 << shift, v << shift);
6156 }
6157 }
6158 #endif
6159
6160 /*
6161 * Limit TOE connections to 2 reassembly "islands". This is
6162 * required to permit migrating TOE connections to either
6163 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
6164 */
6165 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
6166 V_PASSMODE(2));
6167
6168 #ifdef KERN_TLS
6169 if (is_ktls(sc)) {
6170 sc->tlst.inline_keys = t4_tls_inline_keys;
6171 if (t4_kern_tls != 0 && is_t6(sc)) {
6172 sc->tlst.combo_wrs = t4_tls_combo_wrs;
6173 t6_config_kern_tls(sc, true);
6174 } else {
6175 sc->tlst.short_records = t4_tls_short_records;
6176 sc->tlst.partial_ghash = t4_tls_partial_ghash;
6177 }
6178 }
6179 #endif
6180 return (0);
6181 }
6182
6183 #undef FW_PARAM_PFVF
6184 #undef FW_PARAM_DEV
6185
6186 static void
t4_set_desc(struct adapter * sc)6187 t4_set_desc(struct adapter *sc)
6188 {
6189 struct adapter_params *p = &sc->params;
6190
6191 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
6192 }
6193
6194 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)6195 ifmedia_add4(struct ifmedia *ifm, int m)
6196 {
6197
6198 ifmedia_add(ifm, m, 0, NULL);
6199 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
6200 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
6201 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
6202 }
6203
6204 /*
6205 * This is the selected media, which is not quite the same as the active media.
6206 * The media line in ifconfig is "media: Ethernet selected (active)" if selected
6207 * and active are not the same, and "media: Ethernet selected" otherwise.
6208 */
6209 static void
set_current_media(struct port_info * pi)6210 set_current_media(struct port_info *pi)
6211 {
6212 struct link_config *lc;
6213 struct ifmedia *ifm;
6214 int mword;
6215 u_int speed;
6216
6217 PORT_LOCK_ASSERT_OWNED(pi);
6218
6219 /* Leave current media alone if it's already set to IFM_NONE. */
6220 ifm = &pi->media;
6221 if (ifm->ifm_cur != NULL &&
6222 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
6223 return;
6224
6225 lc = &pi->link_cfg;
6226 if (lc->requested_aneg != AUTONEG_DISABLE &&
6227 lc->pcaps & FW_PORT_CAP32_ANEG) {
6228 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
6229 return;
6230 }
6231 mword = IFM_ETHER | IFM_FDX;
6232 if (lc->requested_fc & PAUSE_TX)
6233 mword |= IFM_ETH_TXPAUSE;
6234 if (lc->requested_fc & PAUSE_RX)
6235 mword |= IFM_ETH_RXPAUSE;
6236 if (lc->requested_speed == 0)
6237 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */
6238 else
6239 speed = lc->requested_speed;
6240 mword |= port_mword(pi, speed_to_fwcap(speed));
6241 ifmedia_set(ifm, mword);
6242 }
6243
6244 /*
6245 * Returns true if the ifmedia list for the port cannot change.
6246 */
6247 static bool
fixed_ifmedia(struct port_info * pi)6248 fixed_ifmedia(struct port_info *pi)
6249 {
6250
6251 return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
6252 pi->port_type == FW_PORT_TYPE_BT_XFI ||
6253 pi->port_type == FW_PORT_TYPE_BT_XAUI ||
6254 pi->port_type == FW_PORT_TYPE_KX4 ||
6255 pi->port_type == FW_PORT_TYPE_KX ||
6256 pi->port_type == FW_PORT_TYPE_KR ||
6257 pi->port_type == FW_PORT_TYPE_BP_AP ||
6258 pi->port_type == FW_PORT_TYPE_BP4_AP ||
6259 pi->port_type == FW_PORT_TYPE_BP40_BA ||
6260 pi->port_type == FW_PORT_TYPE_KR4_100G ||
6261 pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
6262 pi->port_type == FW_PORT_TYPE_KR_XLAUI);
6263 }
6264
6265 static void
build_medialist(struct port_info * pi)6266 build_medialist(struct port_info *pi)
6267 {
6268 uint32_t ss, speed;
6269 int unknown, mword, bit;
6270 struct link_config *lc;
6271 struct ifmedia *ifm;
6272
6273 PORT_LOCK_ASSERT_OWNED(pi);
6274
6275 if (pi->flags & FIXED_IFMEDIA)
6276 return;
6277
6278 /*
6279 * Rebuild the ifmedia list.
6280 */
6281 ifm = &pi->media;
6282 ifmedia_removeall(ifm);
6283 lc = &pi->link_cfg;
6284 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
6285 if (__predict_false(ss == 0)) { /* not supposed to happen. */
6286 MPASS(ss != 0);
6287 no_media:
6288 MPASS(LIST_EMPTY(&ifm->ifm_list));
6289 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
6290 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
6291 return;
6292 }
6293
6294 unknown = 0;
6295 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
6296 speed = 1 << bit;
6297 MPASS(speed & M_FW_PORT_CAP32_SPEED);
6298 if (ss & speed) {
6299 mword = port_mword(pi, speed);
6300 if (mword == IFM_NONE) {
6301 goto no_media;
6302 } else if (mword == IFM_UNKNOWN)
6303 unknown++;
6304 else
6305 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
6306 }
6307 }
6308 if (unknown > 0) /* Add one unknown for all unknown media types. */
6309 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
6310 if (lc->pcaps & FW_PORT_CAP32_ANEG)
6311 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
6312
6313 set_current_media(pi);
6314 }
6315
6316 /*
6317 * Initialize the requested fields in the link config based on driver tunables.
6318 */
6319 static void
init_link_config(struct port_info * pi)6320 init_link_config(struct port_info *pi)
6321 {
6322 struct link_config *lc = &pi->link_cfg;
6323
6324 PORT_LOCK_ASSERT_OWNED(pi);
6325
6326 lc->requested_caps = 0;
6327 lc->requested_speed = 0;
6328
6329 if (t4_autoneg == 0)
6330 lc->requested_aneg = AUTONEG_DISABLE;
6331 else if (t4_autoneg == 1)
6332 lc->requested_aneg = AUTONEG_ENABLE;
6333 else
6334 lc->requested_aneg = AUTONEG_AUTO;
6335
6336 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
6337 PAUSE_AUTONEG);
6338
6339 if (t4_fec & FEC_AUTO)
6340 lc->requested_fec = FEC_AUTO;
6341 else if (t4_fec == 0)
6342 lc->requested_fec = FEC_NONE;
6343 else {
6344 /* -1 is handled by the FEC_AUTO block above and not here. */
6345 lc->requested_fec = t4_fec &
6346 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
6347 if (lc->requested_fec == 0)
6348 lc->requested_fec = FEC_AUTO;
6349 }
6350 if (t4_force_fec < 0)
6351 lc->force_fec = -1;
6352 else if (t4_force_fec > 0)
6353 lc->force_fec = 1;
6354 else
6355 lc->force_fec = 0;
6356 }
6357
6358 /*
6359 * Makes sure that all requested settings comply with what's supported by the
6360 * port. Returns the number of settings that were invalid and had to be fixed.
6361 */
6362 static int
fixup_link_config(struct port_info * pi)6363 fixup_link_config(struct port_info *pi)
6364 {
6365 int n = 0;
6366 struct link_config *lc = &pi->link_cfg;
6367 uint32_t fwspeed;
6368
6369 PORT_LOCK_ASSERT_OWNED(pi);
6370
6371 /* Speed (when not autonegotiating) */
6372 if (lc->requested_speed != 0) {
6373 fwspeed = speed_to_fwcap(lc->requested_speed);
6374 if ((fwspeed & lc->pcaps) == 0) {
6375 n++;
6376 lc->requested_speed = 0;
6377 }
6378 }
6379
6380 /* Link autonegotiation */
6381 MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
6382 lc->requested_aneg == AUTONEG_DISABLE ||
6383 lc->requested_aneg == AUTONEG_AUTO);
6384 if (lc->requested_aneg == AUTONEG_ENABLE &&
6385 !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
6386 n++;
6387 lc->requested_aneg = AUTONEG_AUTO;
6388 }
6389
6390 /* Flow control */
6391 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
6392 if (lc->requested_fc & PAUSE_TX &&
6393 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
6394 n++;
6395 lc->requested_fc &= ~PAUSE_TX;
6396 }
6397 if (lc->requested_fc & PAUSE_RX &&
6398 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
6399 n++;
6400 lc->requested_fc &= ~PAUSE_RX;
6401 }
6402 if (!(lc->requested_fc & PAUSE_AUTONEG) &&
6403 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
6404 n++;
6405 lc->requested_fc |= PAUSE_AUTONEG;
6406 }
6407
6408 /* FEC */
6409 if ((lc->requested_fec & FEC_RS &&
6410 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
6411 (lc->requested_fec & FEC_BASER_RS &&
6412 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
6413 n++;
6414 lc->requested_fec = FEC_AUTO;
6415 }
6416
6417 return (n);
6418 }
6419
6420 /*
6421 * Apply the requested L1 settings, which are expected to be valid, to the
6422 * hardware.
6423 */
6424 static int
apply_link_config(struct port_info * pi)6425 apply_link_config(struct port_info *pi)
6426 {
6427 struct adapter *sc = pi->adapter;
6428 struct link_config *lc = &pi->link_cfg;
6429 int rc;
6430
6431 #ifdef INVARIANTS
6432 ASSERT_SYNCHRONIZED_OP(sc);
6433 PORT_LOCK_ASSERT_OWNED(pi);
6434
6435 if (lc->requested_aneg == AUTONEG_ENABLE)
6436 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6437 if (!(lc->requested_fc & PAUSE_AUTONEG))
6438 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6439 if (lc->requested_fc & PAUSE_TX)
6440 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6441 if (lc->requested_fc & PAUSE_RX)
6442 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6443 if (lc->requested_fec & FEC_RS)
6444 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6445 if (lc->requested_fec & FEC_BASER_RS)
6446 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6447 #endif
6448 if (!(sc->flags & IS_VF)) {
6449 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc);
6450 if (rc != 0) {
6451 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6452 return (rc);
6453 }
6454 }
6455
6456 /*
6457 * An L1_CFG will almost always result in a link-change event if the
6458 * link is up, and the driver will refresh the actual fec/fc/etc. when
6459 * the notification is processed. If the link is down then the actual
6460 * settings are meaningless.
6461 *
6462 * This takes care of the case where a change in the L1 settings may not
6463 * result in a notification.
6464 */
6465 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6466 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6467
6468 return (0);
6469 }
6470
6471 #define FW_MAC_EXACT_CHUNK 7
6472 struct mcaddr_ctx {
6473 if_t ifp;
6474 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6475 uint64_t hash;
6476 int i;
6477 int del;
6478 int rc;
6479 };
6480
6481 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6482 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6483 {
6484 struct mcaddr_ctx *ctx = arg;
6485 struct vi_info *vi = if_getsoftc(ctx->ifp);
6486 struct port_info *pi = vi->pi;
6487 struct adapter *sc = pi->adapter;
6488
6489 if (ctx->rc < 0)
6490 return (0);
6491
6492 ctx->mcaddr[ctx->i] = LLADDR(sdl);
6493 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6494 ctx->i++;
6495
6496 if (ctx->i == FW_MAC_EXACT_CHUNK) {
6497 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6498 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6499 if (ctx->rc < 0) {
6500 int j;
6501
6502 for (j = 0; j < ctx->i; j++) {
6503 if_printf(ctx->ifp,
6504 "failed to add mc address"
6505 " %02x:%02x:%02x:"
6506 "%02x:%02x:%02x rc=%d\n",
6507 ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6508 ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6509 ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6510 -ctx->rc);
6511 }
6512 return (0);
6513 }
6514 ctx->del = 0;
6515 ctx->i = 0;
6516 }
6517
6518 return (1);
6519 }
6520
6521 /*
6522 * Program the port's XGMAC based on parameters in ifnet. The caller also
6523 * indicates which parameters should be programmed (the rest are left alone).
6524 */
6525 int
update_mac_settings(if_t ifp,int flags)6526 update_mac_settings(if_t ifp, int flags)
6527 {
6528 int rc = 0;
6529 struct vi_info *vi = if_getsoftc(ifp);
6530 struct port_info *pi = vi->pi;
6531 struct adapter *sc = pi->adapter;
6532 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6533 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6534
6535 ASSERT_SYNCHRONIZED_OP(sc);
6536 KASSERT(flags, ("%s: not told what to update.", __func__));
6537
6538 if (flags & XGMAC_MTU)
6539 mtu = if_getmtu(ifp);
6540
6541 if (flags & XGMAC_PROMISC)
6542 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6543
6544 if (flags & XGMAC_ALLMULTI)
6545 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6546
6547 if (flags & XGMAC_VLANEX)
6548 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6549
6550 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6551 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6552 allmulti, 1, vlanex, false);
6553 if (rc) {
6554 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6555 rc);
6556 return (rc);
6557 }
6558 }
6559
6560 if (flags & XGMAC_UCADDR) {
6561 uint8_t ucaddr[ETHER_ADDR_LEN];
6562
6563 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6564 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6565 ucaddr, true, &vi->smt_idx);
6566 if (rc < 0) {
6567 rc = -rc;
6568 if_printf(ifp, "change_mac failed: %d\n", rc);
6569 return (rc);
6570 } else {
6571 vi->xact_addr_filt = rc;
6572 rc = 0;
6573 }
6574 }
6575
6576 if (flags & XGMAC_MCADDRS) {
6577 struct epoch_tracker et;
6578 struct mcaddr_ctx ctx;
6579 int j;
6580
6581 ctx.ifp = ifp;
6582 ctx.hash = 0;
6583 ctx.i = 0;
6584 ctx.del = 1;
6585 ctx.rc = 0;
6586 /*
6587 * Unlike other drivers, we accumulate list of pointers into
6588 * interface address lists and we need to keep it safe even
6589 * after if_foreach_llmaddr() returns, thus we must enter the
6590 * network epoch.
6591 */
6592 NET_EPOCH_ENTER(et);
6593 if_foreach_llmaddr(ifp, add_maddr, &ctx);
6594 if (ctx.rc < 0) {
6595 NET_EPOCH_EXIT(et);
6596 rc = -ctx.rc;
6597 return (rc);
6598 }
6599 if (ctx.i > 0) {
6600 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6601 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6602 NET_EPOCH_EXIT(et);
6603 if (rc < 0) {
6604 rc = -rc;
6605 for (j = 0; j < ctx.i; j++) {
6606 if_printf(ifp,
6607 "failed to add mcast address"
6608 " %02x:%02x:%02x:"
6609 "%02x:%02x:%02x rc=%d\n",
6610 ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6611 ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6612 ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6613 rc);
6614 }
6615 return (rc);
6616 }
6617 ctx.del = 0;
6618 } else
6619 NET_EPOCH_EXIT(et);
6620
6621 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6622 if (rc != 0)
6623 if_printf(ifp, "failed to set mcast address hash: %d\n",
6624 rc);
6625 if (ctx.del == 0) {
6626 /* We clobbered the VXLAN entry if there was one. */
6627 pi->vxlan_tcam_entry = false;
6628 }
6629 }
6630
6631 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6632 pi->vxlan_tcam_entry == false) {
6633 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6634 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6635 true);
6636 if (rc < 0) {
6637 rc = -rc;
6638 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6639 rc);
6640 } else {
6641 MPASS(rc == sc->rawf_base + pi->port_id);
6642 rc = 0;
6643 pi->vxlan_tcam_entry = true;
6644 }
6645 }
6646
6647 return (rc);
6648 }
6649
6650 /*
6651 * {begin|end}_synchronized_op must be called from the same thread.
6652 */
6653 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6654 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6655 char *wmesg)
6656 {
6657 int rc;
6658
6659 #ifdef WITNESS
6660 /* the caller thinks it's ok to sleep, but is it really? */
6661 if (flags & SLEEP_OK)
6662 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
6663 #endif
6664 ADAPTER_LOCK(sc);
6665 for (;;) {
6666
6667 if (vi && IS_DETACHING(vi)) {
6668 rc = ENXIO;
6669 goto done;
6670 }
6671
6672 if (!IS_BUSY(sc)) {
6673 rc = 0;
6674 break;
6675 }
6676
6677 if (!(flags & SLEEP_OK)) {
6678 rc = EBUSY;
6679 goto done;
6680 }
6681
6682 if (mtx_sleep(&sc->flags, &sc->sc_lock,
6683 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) {
6684 rc = EINTR;
6685 goto done;
6686 }
6687 }
6688
6689 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6690 SET_BUSY(sc);
6691 #ifdef INVARIANTS
6692 sc->last_op = wmesg;
6693 sc->last_op_thr = curthread;
6694 sc->last_op_flags = flags;
6695 #endif
6696
6697 done:
6698 if (!(flags & HOLD_LOCK) || rc)
6699 ADAPTER_UNLOCK(sc);
6700
6701 return (rc);
6702 }
6703
6704 /*
6705 * Tell if_ioctl and if_init that the VI is going away. This is
6706 * special variant of begin_synchronized_op and must be paired with a
6707 * call to end_vi_detach.
6708 */
6709 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6710 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6711 {
6712 ADAPTER_LOCK(sc);
6713 SET_DETACHING(vi);
6714 wakeup(&sc->flags);
6715 while (IS_BUSY(sc))
6716 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6717 SET_BUSY(sc);
6718 #ifdef INVARIANTS
6719 sc->last_op = "t4detach";
6720 sc->last_op_thr = curthread;
6721 sc->last_op_flags = 0;
6722 #endif
6723 ADAPTER_UNLOCK(sc);
6724 }
6725
6726 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6727 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6728 {
6729 ADAPTER_LOCK(sc);
6730 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6731 CLR_BUSY(sc);
6732 CLR_DETACHING(vi);
6733 wakeup(&sc->flags);
6734 ADAPTER_UNLOCK(sc);
6735 }
6736
6737 /*
6738 * {begin|end}_synchronized_op must be called from the same thread.
6739 */
6740 void
end_synchronized_op(struct adapter * sc,int flags)6741 end_synchronized_op(struct adapter *sc, int flags)
6742 {
6743
6744 if (flags & LOCK_HELD)
6745 ADAPTER_LOCK_ASSERT_OWNED(sc);
6746 else
6747 ADAPTER_LOCK(sc);
6748
6749 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6750 CLR_BUSY(sc);
6751 wakeup(&sc->flags);
6752 ADAPTER_UNLOCK(sc);
6753 }
6754
6755 static int
cxgbe_init_synchronized(struct vi_info * vi)6756 cxgbe_init_synchronized(struct vi_info *vi)
6757 {
6758 struct port_info *pi = vi->pi;
6759 struct adapter *sc = pi->adapter;
6760 if_t ifp = vi->ifp;
6761 int rc = 0, i;
6762 struct sge_txq *txq;
6763
6764 ASSERT_SYNCHRONIZED_OP(sc);
6765
6766 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6767 return (0); /* already running */
6768
6769 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6770 return (rc); /* error message displayed already */
6771
6772 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6773 return (rc); /* error message displayed already */
6774
6775 rc = update_mac_settings(ifp, XGMAC_ALL);
6776 if (rc)
6777 goto done; /* error message displayed already */
6778
6779 PORT_LOCK(pi);
6780 if (pi->up_vis == 0) {
6781 t4_update_port_info(pi);
6782 fixup_link_config(pi);
6783 build_medialist(pi);
6784 apply_link_config(pi);
6785 }
6786
6787 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6788 if (rc != 0) {
6789 if_printf(ifp, "enable_vi failed: %d\n", rc);
6790 PORT_UNLOCK(pi);
6791 goto done;
6792 }
6793
6794 /*
6795 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized
6796 * if this changes.
6797 */
6798
6799 for_each_txq(vi, i, txq) {
6800 TXQ_LOCK(txq);
6801 txq->eq.flags |= EQ_ENABLED;
6802 TXQ_UNLOCK(txq);
6803 }
6804
6805 /*
6806 * The first iq of the first port to come up is used for tracing.
6807 */
6808 if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6809 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6810 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq);
6811 pi->flags |= HAS_TRACEQ;
6812 }
6813
6814 /* all ok */
6815 pi->up_vis++;
6816 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6817 if (pi->link_cfg.link_ok)
6818 t4_os_link_changed(pi);
6819 PORT_UNLOCK(pi);
6820
6821 mtx_lock(&vi->tick_mtx);
6822 if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6823 callout_reset(&vi->tick, hz, vi_tick, vi);
6824 else
6825 callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6826 mtx_unlock(&vi->tick_mtx);
6827 done:
6828 if (rc != 0)
6829 cxgbe_uninit_synchronized(vi);
6830
6831 return (rc);
6832 }
6833
6834 /*
6835 * Idempotent.
6836 */
6837 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6838 cxgbe_uninit_synchronized(struct vi_info *vi)
6839 {
6840 struct port_info *pi = vi->pi;
6841 struct adapter *sc = pi->adapter;
6842 if_t ifp = vi->ifp;
6843 int rc, i;
6844 struct sge_txq *txq;
6845
6846 ASSERT_SYNCHRONIZED_OP(sc);
6847
6848 if (!(vi->flags & VI_INIT_DONE)) {
6849 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6850 KASSERT(0, ("uninited VI is running"));
6851 if_printf(ifp, "uninited VI with running ifnet. "
6852 "vi->flags 0x%016lx, if_flags 0x%08x, "
6853 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6854 if_getdrvflags(ifp));
6855 }
6856 return (0);
6857 }
6858
6859 /*
6860 * Disable the VI so that all its data in either direction is discarded
6861 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz
6862 * tick) intact as the TP can deliver negative advice or data that it's
6863 * holding in its RAM (for an offloaded connection) even after the VI is
6864 * disabled.
6865 */
6866 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6867 if (rc) {
6868 if_printf(ifp, "disable_vi failed: %d\n", rc);
6869 return (rc);
6870 }
6871
6872 for_each_txq(vi, i, txq) {
6873 TXQ_LOCK(txq);
6874 txq->eq.flags &= ~EQ_ENABLED;
6875 TXQ_UNLOCK(txq);
6876 }
6877
6878 mtx_lock(&vi->tick_mtx);
6879 callout_stop(&vi->tick);
6880 mtx_unlock(&vi->tick_mtx);
6881
6882 PORT_LOCK(pi);
6883 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6884 PORT_UNLOCK(pi);
6885 return (0);
6886 }
6887 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6888 pi->up_vis--;
6889 if (pi->up_vis > 0) {
6890 PORT_UNLOCK(pi);
6891 return (0);
6892 }
6893
6894 pi->link_cfg.link_ok = false;
6895 pi->link_cfg.speed = 0;
6896 pi->link_cfg.link_down_rc = 255;
6897 t4_os_link_changed(pi);
6898 PORT_UNLOCK(pi);
6899
6900 return (0);
6901 }
6902
6903 /*
6904 * It is ok for this function to fail midway and return right away. t4_detach
6905 * will walk the entire sc->irq list and clean up whatever is valid.
6906 */
6907 int
t4_setup_intr_handlers(struct adapter * sc)6908 t4_setup_intr_handlers(struct adapter *sc)
6909 {
6910 int rc, rid, p, q, v;
6911 char s[8];
6912 struct irq *irq;
6913 struct port_info *pi;
6914 struct vi_info *vi;
6915 struct sge *sge = &sc->sge;
6916 struct sge_rxq *rxq;
6917 #ifdef TCP_OFFLOAD
6918 struct sge_ofld_rxq *ofld_rxq;
6919 #endif
6920 #ifdef DEV_NETMAP
6921 struct sge_nm_rxq *nm_rxq;
6922 #endif
6923 #ifdef RSS
6924 int nbuckets = rss_getnumbuckets();
6925 #endif
6926
6927 /*
6928 * Setup interrupts.
6929 */
6930 irq = &sc->irq[0];
6931 rid = sc->intr_type == INTR_INTX ? 0 : 1;
6932 if (forwarding_intr_to_fwq(sc))
6933 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6934
6935 /* Multiple interrupts. */
6936 if (sc->flags & IS_VF)
6937 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6938 ("%s: too few intr.", __func__));
6939 else
6940 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6941 ("%s: too few intr.", __func__));
6942
6943 /* The first one is always error intr on PFs */
6944 if (!(sc->flags & IS_VF)) {
6945 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6946 if (rc != 0)
6947 return (rc);
6948 irq++;
6949 rid++;
6950 }
6951
6952 /* The second one is always the firmware event queue (first on VFs) */
6953 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6954 if (rc != 0)
6955 return (rc);
6956 irq++;
6957 rid++;
6958
6959 for_each_port(sc, p) {
6960 pi = sc->port[p];
6961 for_each_vi(pi, v, vi) {
6962 vi->first_intr = rid - 1;
6963
6964 if (vi->nnmrxq > 0) {
6965 int n = max(vi->nrxq, vi->nnmrxq);
6966
6967 rxq = &sge->rxq[vi->first_rxq];
6968 #ifdef DEV_NETMAP
6969 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6970 #endif
6971 for (q = 0; q < n; q++) {
6972 snprintf(s, sizeof(s), "%x%c%x", p,
6973 'a' + v, q);
6974 if (q < vi->nrxq)
6975 irq->rxq = rxq++;
6976 #ifdef DEV_NETMAP
6977 if (q < vi->nnmrxq)
6978 irq->nm_rxq = nm_rxq++;
6979
6980 if (irq->nm_rxq != NULL &&
6981 irq->rxq == NULL) {
6982 /* Netmap rx only */
6983 rc = t4_alloc_irq(sc, irq, rid,
6984 t4_nm_intr, irq->nm_rxq, s);
6985 }
6986 if (irq->nm_rxq != NULL &&
6987 irq->rxq != NULL) {
6988 /* NIC and Netmap rx */
6989 rc = t4_alloc_irq(sc, irq, rid,
6990 t4_vi_intr, irq, s);
6991 }
6992 #endif
6993 if (irq->rxq != NULL &&
6994 irq->nm_rxq == NULL) {
6995 /* NIC rx only */
6996 rc = t4_alloc_irq(sc, irq, rid,
6997 t4_intr, irq->rxq, s);
6998 }
6999 if (rc != 0)
7000 return (rc);
7001 #ifdef RSS
7002 if (q < vi->nrxq) {
7003 bus_bind_intr(sc->dev, irq->res,
7004 rss_getcpu(q % nbuckets));
7005 }
7006 #endif
7007 irq++;
7008 rid++;
7009 vi->nintr++;
7010 }
7011 } else {
7012 for_each_rxq(vi, q, rxq) {
7013 snprintf(s, sizeof(s), "%x%c%x", p,
7014 'a' + v, q);
7015 rc = t4_alloc_irq(sc, irq, rid,
7016 t4_intr, rxq, s);
7017 if (rc != 0)
7018 return (rc);
7019 #ifdef RSS
7020 bus_bind_intr(sc->dev, irq->res,
7021 rss_getcpu(q % nbuckets));
7022 #endif
7023 irq++;
7024 rid++;
7025 vi->nintr++;
7026 }
7027 }
7028 #ifdef TCP_OFFLOAD
7029 for_each_ofld_rxq(vi, q, ofld_rxq) {
7030 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
7031 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
7032 ofld_rxq, s);
7033 if (rc != 0)
7034 return (rc);
7035 irq++;
7036 rid++;
7037 vi->nintr++;
7038 }
7039 #endif
7040 }
7041 }
7042 MPASS(irq == &sc->irq[sc->intr_count]);
7043
7044 return (0);
7045 }
7046
7047 static void
write_global_rss_key(struct adapter * sc)7048 write_global_rss_key(struct adapter *sc)
7049 {
7050 int i;
7051 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7052 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
7053
7054 CTASSERT(RSS_KEYSIZE == 40);
7055
7056 rss_getkey((void *)&raw_rss_key[0]);
7057 for (i = 0; i < nitems(rss_key); i++) {
7058 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
7059 }
7060 t4_write_rss_key(sc, &rss_key[0], -1, 1);
7061 }
7062
7063 /*
7064 * Idempotent.
7065 */
7066 static int
adapter_full_init(struct adapter * sc)7067 adapter_full_init(struct adapter *sc)
7068 {
7069 int rc, i;
7070
7071 ASSERT_SYNCHRONIZED_OP(sc);
7072
7073 /*
7074 * queues that belong to the adapter (not any particular port).
7075 */
7076 rc = t4_setup_adapter_queues(sc);
7077 if (rc != 0)
7078 return (rc);
7079
7080 MPASS(sc->params.nports <= nitems(sc->tq));
7081 for (i = 0; i < sc->params.nports; i++) {
7082 if (sc->tq[i] != NULL)
7083 continue;
7084 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
7085 taskqueue_thread_enqueue, &sc->tq[i]);
7086 if (sc->tq[i] == NULL) {
7087 CH_ERR(sc, "failed to allocate task queue %d\n", i);
7088 return (ENOMEM);
7089 }
7090 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
7091 device_get_nameunit(sc->dev), i);
7092 }
7093
7094 if (!(sc->flags & IS_VF)) {
7095 write_global_rss_key(sc);
7096 t4_intr_enable(sc);
7097 }
7098 return (0);
7099 }
7100
7101 int
adapter_init(struct adapter * sc)7102 adapter_init(struct adapter *sc)
7103 {
7104 int rc;
7105
7106 ASSERT_SYNCHRONIZED_OP(sc);
7107 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
7108 KASSERT((sc->flags & FULL_INIT_DONE) == 0,
7109 ("%s: FULL_INIT_DONE already", __func__));
7110
7111 rc = adapter_full_init(sc);
7112 if (rc != 0)
7113 adapter_full_uninit(sc);
7114 else
7115 sc->flags |= FULL_INIT_DONE;
7116
7117 return (rc);
7118 }
7119
7120 /*
7121 * Idempotent.
7122 */
7123 static void
adapter_full_uninit(struct adapter * sc)7124 adapter_full_uninit(struct adapter *sc)
7125 {
7126 int i;
7127
7128 t4_teardown_adapter_queues(sc);
7129
7130 for (i = 0; i < nitems(sc->tq); i++) {
7131 if (sc->tq[i] == NULL)
7132 continue;
7133 taskqueue_free(sc->tq[i]);
7134 sc->tq[i] = NULL;
7135 }
7136
7137 sc->flags &= ~FULL_INIT_DONE;
7138 }
7139
7140 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
7141 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
7142 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
7143 RSS_HASHTYPE_RSS_UDP_IPV6)
7144
7145 /* Translates kernel hash types to hardware. */
7146 static int
hashconfig_to_hashen(int hashconfig)7147 hashconfig_to_hashen(int hashconfig)
7148 {
7149 int hashen = 0;
7150
7151 if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
7152 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
7153 if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
7154 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
7155 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
7156 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7157 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7158 }
7159 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
7160 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
7161 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7162 }
7163 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
7164 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
7165 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
7166 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
7167
7168 return (hashen);
7169 }
7170
7171 /* Translates hardware hash types to kernel. */
7172 static int
hashen_to_hashconfig(int hashen)7173 hashen_to_hashconfig(int hashen)
7174 {
7175 int hashconfig = 0;
7176
7177 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
7178 /*
7179 * If UDP hashing was enabled it must have been enabled for
7180 * either IPv4 or IPv6 (inclusive or). Enabling UDP without
7181 * enabling any 4-tuple hash is nonsense configuration.
7182 */
7183 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
7184 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
7185
7186 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7187 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
7188 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7189 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
7190 }
7191 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
7192 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
7193 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
7194 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
7195 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
7196 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
7197 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
7198 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
7199
7200 return (hashconfig);
7201 }
7202
7203 /*
7204 * Idempotent.
7205 */
7206 static int
vi_full_init(struct vi_info * vi)7207 vi_full_init(struct vi_info *vi)
7208 {
7209 struct adapter *sc = vi->adapter;
7210 struct sge_rxq *rxq;
7211 int rc, i, j, extra;
7212 int hashconfig = rss_gethashconfig();
7213 #ifdef RSS
7214 int nbuckets = rss_getnumbuckets();
7215 #endif
7216
7217 ASSERT_SYNCHRONIZED_OP(sc);
7218
7219 /*
7220 * Allocate tx/rx/fl queues for this VI.
7221 */
7222 rc = t4_setup_vi_queues(vi);
7223 if (rc != 0)
7224 return (rc);
7225
7226 /*
7227 * Setup RSS for this VI. Save a copy of the RSS table for later use.
7228 */
7229 if (vi->nrxq > vi->rss_size) {
7230 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
7231 "some queues will never receive traffic.\n", vi->nrxq,
7232 vi->rss_size);
7233 } else if (vi->rss_size % vi->nrxq) {
7234 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
7235 "expect uneven traffic distribution.\n", vi->nrxq,
7236 vi->rss_size);
7237 }
7238 #ifdef RSS
7239 if (vi->nrxq != nbuckets) {
7240 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
7241 "performance will be impacted.\n", vi->nrxq, nbuckets);
7242 }
7243 #endif
7244 if (vi->rss == NULL)
7245 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
7246 M_ZERO | M_WAITOK);
7247 for (i = 0; i < vi->rss_size;) {
7248 #ifdef RSS
7249 j = rss_get_indirection_to_bucket(i);
7250 j %= vi->nrxq;
7251 rxq = &sc->sge.rxq[vi->first_rxq + j];
7252 vi->rss[i++] = rxq->iq.abs_id;
7253 #else
7254 for_each_rxq(vi, j, rxq) {
7255 vi->rss[i++] = rxq->iq.abs_id;
7256 if (i == vi->rss_size)
7257 break;
7258 }
7259 #endif
7260 }
7261
7262 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
7263 vi->rss, vi->rss_size);
7264 if (rc != 0) {
7265 CH_ERR(vi, "rss_config failed: %d\n", rc);
7266 return (rc);
7267 }
7268
7269 vi->hashen = hashconfig_to_hashen(hashconfig);
7270
7271 /*
7272 * We may have had to enable some hashes even though the global config
7273 * wants them disabled. This is a potential problem that must be
7274 * reported to the user.
7275 */
7276 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
7277
7278 /*
7279 * If we consider only the supported hash types, then the enabled hashes
7280 * are a superset of the requested hashes. In other words, there cannot
7281 * be any supported hash that was requested but not enabled, but there
7282 * can be hashes that were not requested but had to be enabled.
7283 */
7284 extra &= SUPPORTED_RSS_HASHTYPES;
7285 MPASS((extra & hashconfig) == 0);
7286
7287 if (extra) {
7288 CH_ALERT(vi,
7289 "global RSS config (0x%x) cannot be accommodated.\n",
7290 hashconfig);
7291 }
7292 if (extra & RSS_HASHTYPE_RSS_IPV4)
7293 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
7294 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
7295 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
7296 if (extra & RSS_HASHTYPE_RSS_IPV6)
7297 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
7298 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
7299 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
7300 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
7301 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
7302 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
7303 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
7304
7305 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
7306 0, 0);
7307 if (rc != 0) {
7308 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
7309 return (rc);
7310 }
7311
7312 return (0);
7313 }
7314
7315 int
vi_init(struct vi_info * vi)7316 vi_init(struct vi_info *vi)
7317 {
7318 int rc;
7319
7320 ASSERT_SYNCHRONIZED_OP(vi->adapter);
7321 KASSERT((vi->flags & VI_INIT_DONE) == 0,
7322 ("%s: VI_INIT_DONE already", __func__));
7323
7324 rc = vi_full_init(vi);
7325 if (rc != 0)
7326 vi_full_uninit(vi);
7327 else
7328 vi->flags |= VI_INIT_DONE;
7329
7330 return (rc);
7331 }
7332
7333 /*
7334 * Idempotent.
7335 */
7336 static void
vi_full_uninit(struct vi_info * vi)7337 vi_full_uninit(struct vi_info *vi)
7338 {
7339
7340 if (vi->flags & VI_INIT_DONE) {
7341 quiesce_vi(vi);
7342 free(vi->rss, M_CXGBE);
7343 free(vi->nm_rss, M_CXGBE);
7344 }
7345
7346 t4_teardown_vi_queues(vi);
7347 vi->flags &= ~VI_INIT_DONE;
7348 }
7349
7350 static void
quiesce_txq(struct sge_txq * txq)7351 quiesce_txq(struct sge_txq *txq)
7352 {
7353 struct sge_eq *eq = &txq->eq;
7354 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
7355
7356 MPASS(eq->flags & EQ_SW_ALLOCATED);
7357 MPASS(!(eq->flags & EQ_ENABLED));
7358
7359 /* Wait for the mp_ring to empty. */
7360 while (!mp_ring_is_idle(txq->r)) {
7361 mp_ring_check_drainage(txq->r, 4096);
7362 pause("rquiesce", 1);
7363 }
7364 MPASS(txq->txp.npkt == 0);
7365
7366 if (eq->flags & EQ_HW_ALLOCATED) {
7367 /*
7368 * Hardware is alive and working normally. Wait for it to
7369 * finish and then wait for the driver to catch up and reclaim
7370 * all descriptors.
7371 */
7372 while (spg->cidx != htobe16(eq->pidx))
7373 pause("equiesce", 1);
7374 while (eq->cidx != eq->pidx)
7375 pause("dquiesce", 1);
7376 } else {
7377 /*
7378 * Hardware is unavailable. Discard all pending tx and reclaim
7379 * descriptors directly.
7380 */
7381 TXQ_LOCK(txq);
7382 while (eq->cidx != eq->pidx) {
7383 struct mbuf *m, *nextpkt;
7384 struct tx_sdesc *txsd;
7385
7386 txsd = &txq->sdesc[eq->cidx];
7387 for (m = txsd->m; m != NULL; m = nextpkt) {
7388 nextpkt = m->m_nextpkt;
7389 m->m_nextpkt = NULL;
7390 m_freem(m);
7391 }
7392 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
7393 }
7394 spg->pidx = spg->cidx = htobe16(eq->cidx);
7395 TXQ_UNLOCK(txq);
7396 }
7397 }
7398
7399 static void
quiesce_wrq(struct sge_wrq * wrq)7400 quiesce_wrq(struct sge_wrq *wrq)
7401 {
7402 struct wrqe *wr;
7403
7404 TXQ_LOCK(wrq);
7405 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
7406 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
7407 #ifdef INVARIANTS
7408 wrq->nwr_pending--;
7409 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE);
7410 #endif
7411 free(wr, M_CXGBE);
7412 }
7413 MPASS(wrq->nwr_pending == 0);
7414 MPASS(wrq->ndesc_needed == 0);
7415 wrq->nwr_pending = 0;
7416 wrq->ndesc_needed = 0;
7417 TXQ_UNLOCK(wrq);
7418 }
7419
7420 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7421 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7422 {
7423 /* Synchronize with the interrupt handler */
7424 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7425 pause("iqfree", 1);
7426
7427 if (fl != NULL) {
7428 MPASS(iq->flags & IQ_HAS_FL);
7429
7430 mtx_lock(&sc->sfl_lock);
7431 FL_LOCK(fl);
7432 fl->flags |= FL_DOOMED;
7433 FL_UNLOCK(fl);
7434 callout_stop(&sc->sfl_callout);
7435 mtx_unlock(&sc->sfl_lock);
7436
7437 KASSERT((fl->flags & FL_STARVING) == 0,
7438 ("%s: still starving", __func__));
7439
7440 /* Release all buffers if hardware is no longer available. */
7441 if (!(iq->flags & IQ_HW_ALLOCATED))
7442 free_fl_buffers(sc, fl);
7443 }
7444 }
7445
7446 /*
7447 * Wait for all activity on all the queues of the VI to complete. It is assumed
7448 * that no new work is being enqueued by the hardware or the driver. That part
7449 * should be arranged before calling this function.
7450 */
7451 static void
quiesce_vi(struct vi_info * vi)7452 quiesce_vi(struct vi_info *vi)
7453 {
7454 int i;
7455 struct adapter *sc = vi->adapter;
7456 struct sge_rxq *rxq;
7457 struct sge_txq *txq;
7458 #ifdef TCP_OFFLOAD
7459 struct sge_ofld_rxq *ofld_rxq;
7460 #endif
7461 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7462 struct sge_ofld_txq *ofld_txq;
7463 #endif
7464
7465 if (!(vi->flags & VI_INIT_DONE))
7466 return;
7467
7468 for_each_txq(vi, i, txq) {
7469 quiesce_txq(txq);
7470 }
7471
7472 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7473 for_each_ofld_txq(vi, i, ofld_txq) {
7474 quiesce_wrq(&ofld_txq->wrq);
7475 }
7476 #endif
7477
7478 for_each_rxq(vi, i, rxq) {
7479 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7480 }
7481
7482 #ifdef TCP_OFFLOAD
7483 for_each_ofld_rxq(vi, i, ofld_rxq) {
7484 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7485 }
7486 #endif
7487 }
7488
7489 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7490 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7491 driver_intr_t *handler, void *arg, char *name)
7492 {
7493 int rc;
7494
7495 irq->rid = rid;
7496 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7497 RF_SHAREABLE | RF_ACTIVE);
7498 if (irq->res == NULL) {
7499 device_printf(sc->dev,
7500 "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7501 return (ENOMEM);
7502 }
7503
7504 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7505 NULL, handler, arg, &irq->tag);
7506 if (rc != 0) {
7507 device_printf(sc->dev,
7508 "failed to setup interrupt for rid %d, name %s: %d\n",
7509 rid, name, rc);
7510 } else if (name)
7511 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7512
7513 return (rc);
7514 }
7515
7516 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7517 t4_free_irq(struct adapter *sc, struct irq *irq)
7518 {
7519 if (irq->tag)
7520 bus_teardown_intr(sc->dev, irq->res, irq->tag);
7521 if (irq->res)
7522 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7523
7524 bzero(irq, sizeof(*irq));
7525
7526 return (0);
7527 }
7528
7529 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7530 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7531 {
7532
7533 regs->version = chip_id(sc) | chip_rev(sc) << 10;
7534 t4_get_regs(sc, buf, regs->len);
7535 }
7536
7537 #define A_PL_INDIR_CMD 0x1f8
7538
7539 #define S_PL_AUTOINC 31
7540 #define M_PL_AUTOINC 0x1U
7541 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
7542 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7543
7544 #define S_PL_VFID 20
7545 #define M_PL_VFID 0xffU
7546 #define V_PL_VFID(x) ((x) << S_PL_VFID)
7547 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
7548
7549 #define S_PL_ADDR 0
7550 #define M_PL_ADDR 0xfffffU
7551 #define V_PL_ADDR(x) ((x) << S_PL_ADDR)
7552 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
7553
7554 #define A_PL_INDIR_DATA 0x1fc
7555
7556 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7557 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7558 {
7559 u32 stats[2];
7560
7561 if (sc->flags & IS_VF) {
7562 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7563 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7564 } else {
7565 mtx_assert(&sc->reg_lock, MA_OWNED);
7566 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7567 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7568 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7569 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7570 }
7571 return (((uint64_t)stats[1]) << 32 | stats[0]);
7572 }
7573
7574 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7575 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7576 {
7577
7578 #define GET_STAT(name) \
7579 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7580
7581 if (!(sc->flags & IS_VF))
7582 mtx_lock(&sc->reg_lock);
7583 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
7584 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
7585 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
7586 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
7587 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
7588 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
7589 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
7590 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
7591 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7592 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
7593 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
7594 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
7595 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
7596 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
7597 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
7598 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
7599 if (!(sc->flags & IS_VF))
7600 mtx_unlock(&sc->reg_lock);
7601
7602 #undef GET_STAT
7603 }
7604
7605 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7606 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7607 {
7608 int reg;
7609
7610 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7611 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7612 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7613 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7614 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7615 }
7616
7617 static void
vi_refresh_stats(struct vi_info * vi)7618 vi_refresh_stats(struct vi_info *vi)
7619 {
7620 struct timeval tv;
7621 const struct timeval interval = {0, 250000}; /* 250ms */
7622
7623 mtx_assert(&vi->tick_mtx, MA_OWNED);
7624
7625 if (vi->flags & VI_SKIP_STATS)
7626 return;
7627
7628 getmicrotime(&tv);
7629 timevalsub(&tv, &interval);
7630 if (timevalcmp(&tv, &vi->last_refreshed, <))
7631 return;
7632
7633 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7634 getmicrotime(&vi->last_refreshed);
7635 }
7636
7637 static void
cxgbe_refresh_stats(struct vi_info * vi)7638 cxgbe_refresh_stats(struct vi_info *vi)
7639 {
7640 u_int i, v, tnl_cong_drops, chan_map;
7641 struct timeval tv;
7642 const struct timeval interval = {0, 250000}; /* 250ms */
7643 struct port_info *pi;
7644 struct adapter *sc;
7645
7646 mtx_assert(&vi->tick_mtx, MA_OWNED);
7647
7648 if (vi->flags & VI_SKIP_STATS)
7649 return;
7650
7651 getmicrotime(&tv);
7652 timevalsub(&tv, &interval);
7653 if (timevalcmp(&tv, &vi->last_refreshed, <))
7654 return;
7655
7656 pi = vi->pi;
7657 sc = vi->adapter;
7658 tnl_cong_drops = 0;
7659 t4_get_port_stats(sc, pi->hw_port, &pi->stats);
7660 chan_map = pi->rx_e_chan_map;
7661 while (chan_map) {
7662 i = ffs(chan_map) - 1;
7663 mtx_lock(&sc->reg_lock);
7664 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7665 A_TP_MIB_TNL_CNG_DROP_0 + i);
7666 mtx_unlock(&sc->reg_lock);
7667 tnl_cong_drops += v;
7668 chan_map &= ~(1 << i);
7669 }
7670 pi->tnl_cong_drops = tnl_cong_drops;
7671 getmicrotime(&vi->last_refreshed);
7672 }
7673
7674 static void
cxgbe_tick(void * arg)7675 cxgbe_tick(void *arg)
7676 {
7677 struct vi_info *vi = arg;
7678
7679 MPASS(IS_MAIN_VI(vi));
7680 mtx_assert(&vi->tick_mtx, MA_OWNED);
7681
7682 cxgbe_refresh_stats(vi);
7683 callout_schedule(&vi->tick, hz);
7684 }
7685
7686 static void
vi_tick(void * arg)7687 vi_tick(void *arg)
7688 {
7689 struct vi_info *vi = arg;
7690
7691 mtx_assert(&vi->tick_mtx, MA_OWNED);
7692
7693 vi_refresh_stats(vi);
7694 callout_schedule(&vi->tick, hz);
7695 }
7696
7697 /* CIM inbound queues */
7698 static const char *t4_ibq[CIM_NUM_IBQ] = {
7699 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi"
7700 };
7701 static const char *t7_ibq[CIM_NUM_IBQ_T7] = {
7702 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7703 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3",
7704 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7"
7705 };
7706 static const char *t7_ibq_sec[] = {
7707 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0",
7708 NULL, NULL, NULL, "ibq_ipc0"
7709 };
7710
7711 /* CIM outbound queues */
7712 static const char *t4_obq[CIM_NUM_OBQ_T5] = {
7713 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7714 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */
7715 };
7716 static const char *t7_obq[CIM_NUM_OBQ_T7] = {
7717 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi",
7718 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3",
7719 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7"
7720 };
7721 static const char *t7_obq_sec[] = {
7722 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL,
7723 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0"
7724 };
7725
7726 static void
cim_sysctls(struct adapter * sc,struct sysctl_ctx_list * ctx,struct sysctl_oid_list * c0)7727 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
7728 struct sysctl_oid_list *c0)
7729 {
7730 struct sysctl_oid *oid;
7731 struct sysctl_oid_list *children1;
7732 int i, j, qcount;
7733 char s[16];
7734 const char **qname;
7735
7736 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim",
7737 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block");
7738 c0 = SYSCTL_CHILDREN(oid);
7739
7740 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL,
7741 sc->params.ncores, "# of active CIM cores");
7742
7743 for (i = 0; i < sc->params.ncores; i++) {
7744 snprintf(s, sizeof(s), "%u", i);
7745 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s,
7746 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core");
7747 children1 = SYSCTL_CHILDREN(oid);
7748
7749 /*
7750 * CTLFLAG_SKIP because the misc.devlog sysctl already displays
7751 * the log for all cores. Use this sysctl to get the log for a
7752 * particular core only.
7753 */
7754 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog",
7755 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
7756 sc, i, sysctl_devlog, "A", "firmware's device log");
7757
7758 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg",
7759 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7760 sysctl_loadavg, "A",
7761 "microprocessor load averages (select firmwares only)");
7762
7763 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg",
7764 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7765 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg,
7766 "A", "Queue configuration");
7767
7768 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la",
7769 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7770 sysctl_cim_la, "A", "Logic analyzer");
7771
7772 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la",
7773 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7774 sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7775
7776 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la",
7777 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
7778 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7779
7780 /* IBQs */
7781 switch (chip_id(sc)) {
7782 case CHELSIO_T4:
7783 case CHELSIO_T5:
7784 case CHELSIO_T6:
7785 qname = &t4_ibq[0];
7786 qcount = nitems(t4_ibq);
7787 break;
7788 case CHELSIO_T7:
7789 default:
7790 if (i == 0) {
7791 qname = &t7_ibq[0];
7792 qcount = nitems(t7_ibq);
7793 } else {
7794 qname = &t7_ibq_sec[0];
7795 qcount = nitems(t7_ibq_sec);
7796 }
7797 break;
7798 }
7799 MPASS(qcount <= sc->chip_params->cim_num_ibq);
7800 for (j = 0; j < qcount; j++) {
7801 if (qname[j] == NULL)
7802 continue;
7803 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7804 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7805 (i << 16) | j, sysctl_cim_ibq, "A", NULL);
7806 }
7807
7808 /* OBQs */
7809 switch (chip_id(sc)) {
7810 case CHELSIO_T4:
7811 qname = t4_obq;
7812 qcount = CIM_NUM_OBQ;
7813 break;
7814 case CHELSIO_T5:
7815 case CHELSIO_T6:
7816 qname = t4_obq;
7817 qcount = nitems(t4_obq);
7818 break;
7819 case CHELSIO_T7:
7820 default:
7821 if (i == 0) {
7822 qname = t7_obq;
7823 qcount = nitems(t7_obq);
7824 } else {
7825 qname = t7_obq_sec;
7826 qcount = nitems(t7_obq_sec);
7827 }
7828 break;
7829 }
7830 MPASS(qcount <= sc->chip_params->cim_num_obq);
7831 for (j = 0; j < qcount; j++) {
7832 if (qname[j] == NULL)
7833 continue;
7834 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j],
7835 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7836 (i << 16) | j, sysctl_cim_obq, "A", NULL);
7837 }
7838 }
7839 }
7840
7841 /*
7842 * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7843 */
7844 static char *caps_decoder[] = {
7845 "\20\001IPMI\002NCSI", /* 0: NBM */
7846 "\20\001PPP\002QFC\003DCBX", /* 1: link */
7847 "\20\001INGRESS\002EGRESS", /* 2: switch */
7848 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
7849 "\006HASHFILTER\007ETHOFLD",
7850 "\20\001TOE\002SENDPATH", /* 4: TOE */
7851 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */
7852 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
7853 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7854 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7855 "\007T10DIF"
7856 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7857 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */
7858 "\004TLS_HW,\005TOE_IPSEC",
7859 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
7860 "\004PO_INITIATOR\005PO_TARGET",
7861 "\20\001NVMe_TCP", /* 9: NVMe */
7862 };
7863
7864 void
t4_sysctls(struct adapter * sc)7865 t4_sysctls(struct adapter *sc)
7866 {
7867 struct sysctl_ctx_list *ctx = &sc->ctx;
7868 struct sysctl_oid *oid;
7869 struct sysctl_oid_list *children, *c0;
7870 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7871
7872 /*
7873 * dev.t4nex.X.
7874 */
7875 oid = device_get_sysctl_tree(sc->dev);
7876 c0 = children = SYSCTL_CHILDREN(oid);
7877
7878 sc->sc_do_rxcopy = 1;
7879 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7880 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7881
7882 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7883 sc->params.nports, "# of ports");
7884
7885 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7886 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7887 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7888 "available doorbells");
7889
7890 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7891 sc->params.vpd.cclk, "core clock frequency (in KHz)");
7892
7893 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7894 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7895 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7896 sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7897
7898 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7899 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7900 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7901 sysctl_int_array, "A", "interrupt holdoff packet counter values");
7902
7903 t4_sge_sysctls(sc, ctx, children);
7904
7905 sc->lro_timeout = 100;
7906 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7907 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7908
7909 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7910 &sc->debug_flags, 0, "flags to enable runtime debugging");
7911
7912 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iflags", CTLFLAG_RW,
7913 &sc->intr_flags, 0, "flags for the slow interrupt handler");
7914
7915 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7916 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7917
7918 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7919 CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7920
7921 if (sc->flags & IS_VF)
7922 return;
7923
7924 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7925 NULL, chip_rev(sc), "chip hardware revision");
7926
7927 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7928 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7929
7930 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7931 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7932
7933 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7934 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7935
7936 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7937 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7938
7939 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7940 CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7941
7942 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7943 sc->er_version, 0, "expansion ROM version");
7944
7945 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7946 sc->bs_version, 0, "bootstrap firmware version");
7947
7948 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7949 NULL, sc->params.scfg_vers, "serial config version");
7950
7951 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7952 NULL, sc->params.vpd_vers, "VPD version");
7953
7954 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7955 CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7956
7957 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7958 sc->cfcsum, "config file checksum");
7959
7960 #define SYSCTL_CAP(name, n, text) \
7961 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7962 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7963 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7964 "available " text " capabilities")
7965
7966 SYSCTL_CAP(nbmcaps, 0, "NBM");
7967 SYSCTL_CAP(linkcaps, 1, "link");
7968 SYSCTL_CAP(switchcaps, 2, "switch");
7969 SYSCTL_CAP(nvmecaps, 9, "NVMe");
7970 SYSCTL_CAP(niccaps, 3, "NIC");
7971 SYSCTL_CAP(toecaps, 4, "TCP offload");
7972 SYSCTL_CAP(rdmacaps, 5, "RDMA");
7973 SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7974 SYSCTL_CAP(cryptocaps, 7, "crypto");
7975 SYSCTL_CAP(fcoecaps, 8, "FCoE");
7976 #undef SYSCTL_CAP
7977
7978 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7979 NULL, sc->tids.nftids, "number of filters");
7980
7981 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7982 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7983 sysctl_temperature, "I", "chip temperature (in Celsius)");
7984 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7985 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7986 sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7987
7988 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7989 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7990 "I", "core Vdd (in mV)");
7991
7992 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7993 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7994 sysctl_cpus, "A", "local CPUs");
7995
7996 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7997 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7998 sysctl_cpus, "A", "preferred CPUs for interrupts");
7999
8000 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
8001 &sc->swintr, 0, "software triggered interrupts");
8002
8003 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
8004 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
8005 "1 = reset adapter, 0 = zero reset counter");
8006
8007 /*
8008 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
8009 */
8010 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
8011 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
8012 "logs and miscellaneous information");
8013 children = SYSCTL_CHILDREN(oid);
8014
8015 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
8016 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8017 sysctl_cctrl, "A", "congestion control");
8018
8019 cim_sysctls(sc, ctx, children);
8020
8021 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
8022 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8023 sysctl_cpl_stats, "A", "CPL statistics");
8024
8025 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
8026 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8027 sysctl_ddp_stats, "A", "non-TCP DDP statistics");
8028
8029 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
8030 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8031 sysctl_tid_stats, "A", "tid stats");
8032
8033 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
8034 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1,
8035 sysctl_devlog, "A", "firmware's device log (all cores)");
8036
8037 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
8038 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8039 sysctl_fcoe_stats, "A", "FCoE statistics");
8040
8041 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
8042 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8043 sysctl_hw_sched, "A", "hardware scheduler ");
8044
8045 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
8046 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8047 sysctl_l2t, "A", "hardware L2 table");
8048
8049 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
8050 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8051 sysctl_smt, "A", "hardware source MAC table");
8052
8053 #ifdef INET6
8054 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
8055 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8056 sysctl_clip, "A", "active CLIP table entries");
8057 #endif
8058
8059 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
8060 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8061 sysctl_lb_stats, "A", "loopback statistics");
8062
8063 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
8064 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8065 sysctl_meminfo, "A", "memory regions");
8066
8067 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
8068 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8069 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 :
8070 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam),
8071 "A", "MPS TCAM entries");
8072
8073 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
8074 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8075 sysctl_path_mtus, "A", "path MTUs");
8076
8077 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
8078 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8079 sysctl_pm_stats, "A", "PM statistics");
8080
8081 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
8082 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8083 sysctl_rdma_stats, "A", "RDMA statistics");
8084
8085 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
8086 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8087 sysctl_tcp_stats, "A", "TCP statistics");
8088
8089 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
8090 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8091 sysctl_tids, "A", "TID information");
8092
8093 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
8094 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8095 sysctl_tp_err_stats, "A", "TP error statistics");
8096
8097 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
8098 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8099 sysctl_tnl_stats, "A", "TP tunnel statistics");
8100
8101 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
8102 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
8103 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
8104
8105 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
8106 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8107 sysctl_tp_la, "A", "TP logic analyzer");
8108
8109 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
8110 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8111 sysctl_tx_rate, "A", "Tx rate");
8112
8113 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
8114 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8115 sysctl_ulprx_la, "A", "ULPRX logic analyzer");
8116
8117 if (chip_id(sc) >= CHELSIO_T5) {
8118 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
8119 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8120 sysctl_wcwr_stats, "A", "write combined work requests");
8121 }
8122
8123 if (chip_id(sc) >= CHELSIO_T7) {
8124 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcb_cache",
8125 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tcb_cache, "I",
8126 "1 = enabled (default), 0 = disabled (for debug only)");
8127 }
8128
8129 #ifdef KERN_TLS
8130 if (is_ktls(sc)) {
8131 /*
8132 * dev.t4nex.0.tls.
8133 */
8134 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
8135 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
8136 children = SYSCTL_CHILDREN(oid);
8137
8138 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
8139 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
8140 "keys in work requests (1) or attempt to store TLS keys "
8141 "in card memory.");
8142
8143 if (is_t6(sc))
8144 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
8145 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
8146 "combine TCB field updates with TLS record work "
8147 "requests.");
8148 else {
8149 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records",
8150 CTLFLAG_RW, &sc->tlst.short_records, 0,
8151 "Use cipher-only mode for short records.");
8152 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash",
8153 CTLFLAG_RW, &sc->tlst.partial_ghash, 0,
8154 "Use partial GHASH for AES-GCM records.");
8155 }
8156 }
8157 #endif
8158
8159 #ifdef TCP_OFFLOAD
8160 if (is_offload(sc)) {
8161 int i;
8162 char s[4];
8163
8164 /*
8165 * dev.t4nex.X.toe.
8166 */
8167 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
8168 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
8169 children = SYSCTL_CHILDREN(oid);
8170
8171 sc->tt.cong_algorithm = -1;
8172 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
8173 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
8174 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
8175 "3 = highspeed)");
8176
8177 sc->tt.sndbuf = -1;
8178 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
8179 &sc->tt.sndbuf, 0, "hardware send buffer");
8180
8181 sc->tt.ddp = 0;
8182 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
8183 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
8184 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
8185 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
8186
8187 sc->tt.rx_coalesce = -1;
8188 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
8189 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
8190
8191 sc->tt.tls = 1;
8192 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
8193 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
8194 "Inline TLS allowed");
8195
8196 sc->tt.tx_align = -1;
8197 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
8198 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
8199
8200 sc->tt.tx_zcopy = 0;
8201 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
8202 CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
8203 "Enable zero-copy aio_write(2)");
8204
8205 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
8206 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8207 "cop_managed_offloading", CTLFLAG_RW,
8208 &sc->tt.cop_managed_offloading, 0,
8209 "COP (Connection Offload Policy) controls all TOE offload");
8210
8211 sc->tt.autorcvbuf_inc = 16 * 1024;
8212 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
8213 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
8214 "autorcvbuf increment");
8215
8216 sc->tt.update_hc_on_pmtu_change = 1;
8217 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8218 "update_hc_on_pmtu_change", CTLFLAG_RW,
8219 &sc->tt.update_hc_on_pmtu_change, 0,
8220 "Update hostcache entry if the PMTU changes");
8221
8222 sc->tt.iso = 1;
8223 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
8224 &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
8225
8226 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
8227 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8228 sysctl_tp_tick, "A", "TP timer tick (us)");
8229
8230 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
8231 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
8232 sysctl_tp_tick, "A", "TCP timestamp tick (us)");
8233
8234 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
8235 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
8236 sysctl_tp_tick, "A", "DACK tick (us)");
8237
8238 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
8239 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
8240 sysctl_tp_dack_timer, "IU", "DACK timer (us)");
8241
8242 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
8243 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8244 A_TP_RXT_MIN, sysctl_tp_timer, "LU",
8245 "Minimum retransmit interval (us)");
8246
8247 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
8248 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8249 A_TP_RXT_MAX, sysctl_tp_timer, "LU",
8250 "Maximum retransmit interval (us)");
8251
8252 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
8253 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8254 A_TP_PERS_MIN, sysctl_tp_timer, "LU",
8255 "Persist timer min (us)");
8256
8257 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
8258 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8259 A_TP_PERS_MAX, sysctl_tp_timer, "LU",
8260 "Persist timer max (us)");
8261
8262 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
8263 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8264 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
8265 "Keepalive idle timer (us)");
8266
8267 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
8268 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8269 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
8270 "Keepalive interval timer (us)");
8271
8272 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
8273 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8274 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
8275
8276 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
8277 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8278 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
8279 "FINWAIT2 timer (us)");
8280
8281 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
8282 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8283 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
8284 "Number of SYN retransmissions before abort");
8285
8286 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
8287 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8288 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
8289 "Number of retransmissions before abort");
8290
8291 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
8292 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8293 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
8294 "Number of keepalive probes before abort");
8295
8296 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
8297 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8298 "TOE retransmit backoffs");
8299 children = SYSCTL_CHILDREN(oid);
8300 for (i = 0; i < 16; i++) {
8301 snprintf(s, sizeof(s), "%u", i);
8302 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
8303 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8304 i, sysctl_tp_backoff, "IU",
8305 "TOE retransmit backoff");
8306 }
8307 }
8308 #endif
8309 }
8310
8311 void
vi_sysctls(struct vi_info * vi)8312 vi_sysctls(struct vi_info *vi)
8313 {
8314 struct sysctl_ctx_list *ctx = &vi->ctx;
8315 struct sysctl_oid *oid;
8316 struct sysctl_oid_list *children;
8317
8318 /*
8319 * dev.v?(cxgbe|cxl).X.
8320 */
8321 oid = device_get_sysctl_tree(vi->dev);
8322 children = SYSCTL_CHILDREN(oid);
8323
8324 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
8325 vi->viid, "VI identifer");
8326 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
8327 &vi->nrxq, 0, "# of rx queues");
8328 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
8329 &vi->ntxq, 0, "# of tx queues");
8330 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
8331 &vi->first_rxq, 0, "index of first rx queue");
8332 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
8333 &vi->first_txq, 0, "index of first tx queue");
8334 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
8335 vi->rss_base, "start of RSS indirection table");
8336 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
8337 vi->rss_size, "size of RSS indirection table");
8338
8339 if (IS_MAIN_VI(vi)) {
8340 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
8341 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8342 sysctl_noflowq, "IU",
8343 "Reserve queue 0 for non-flowid packets");
8344 }
8345
8346 if (vi->adapter->flags & IS_VF) {
8347 MPASS(vi->flags & TX_USES_VM_WR);
8348 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
8349 NULL, 1, "use VM work requests for transmit");
8350 } else {
8351 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
8352 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8353 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
8354 }
8355
8356 #ifdef TCP_OFFLOAD
8357 if (vi->nofldrxq != 0) {
8358 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
8359 &vi->nofldrxq, 0,
8360 "# of rx queues for offloaded TCP connections");
8361 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
8362 CTLFLAG_RD, &vi->first_ofld_rxq, 0,
8363 "index of first TOE rx queue");
8364 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
8365 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8366 sysctl_holdoff_tmr_idx_ofld, "I",
8367 "holdoff timer index for TOE queues");
8368 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
8369 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8370 sysctl_holdoff_pktc_idx_ofld, "I",
8371 "holdoff packet counter index for TOE queues");
8372 }
8373 #endif
8374 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
8375 if (vi->nofldtxq != 0) {
8376 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
8377 &vi->nofldtxq, 0,
8378 "# of tx queues for TOE/ETHOFLD");
8379 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
8380 CTLFLAG_RD, &vi->first_ofld_txq, 0,
8381 "index of first TOE/ETHOFLD tx queue");
8382 }
8383 #endif
8384 #ifdef DEV_NETMAP
8385 if (vi->nnmrxq != 0) {
8386 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
8387 &vi->nnmrxq, 0, "# of netmap rx queues");
8388 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
8389 &vi->nnmtxq, 0, "# of netmap tx queues");
8390 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
8391 CTLFLAG_RD, &vi->first_nm_rxq, 0,
8392 "index of first netmap rx queue");
8393 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
8394 CTLFLAG_RD, &vi->first_nm_txq, 0,
8395 "index of first netmap tx queue");
8396 }
8397 #endif
8398
8399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
8400 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8401 sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
8402 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
8403 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8404 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
8405
8406 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
8407 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8408 sysctl_qsize_rxq, "I", "rx queue size");
8409 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
8410 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
8411 sysctl_qsize_txq, "I", "tx queue size");
8412 }
8413
8414 static void
cxgbe_sysctls(struct port_info * pi)8415 cxgbe_sysctls(struct port_info *pi)
8416 {
8417 struct sysctl_ctx_list *ctx = &pi->ctx;
8418 struct sysctl_oid *oid;
8419 struct sysctl_oid_list *children, *children2;
8420 struct adapter *sc = pi->adapter;
8421 int i;
8422 char name[16];
8423 static char *tc_flags = {"\20\1USER"};
8424
8425 /*
8426 * dev.cxgbe.X.
8427 */
8428 oid = device_get_sysctl_tree(pi->dev);
8429 children = SYSCTL_CHILDREN(oid);
8430
8431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
8432 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8433 sysctl_linkdnrc, "A", "reason why link is down");
8434 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
8435 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
8436 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
8437 sysctl_btphy, "I", "PHY temperature (in Celsius)");
8438 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
8439 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
8440 sysctl_btphy, "I", "PHY firmware version");
8441 }
8442
8443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
8444 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8445 sysctl_pause_settings, "A",
8446 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
8447 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
8448 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
8449 "FEC in use on the link");
8450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
8451 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8452 sysctl_requested_fec, "A",
8453 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
8454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
8455 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
8456 "FEC recommended by the cable/transceiver");
8457 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
8458 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8459 sysctl_autoneg, "I",
8460 "autonegotiation (-1 = not supported)");
8461 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
8462 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
8463 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
8464
8465 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
8466 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
8467 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
8468 &pi->link_cfg.pcaps, 0, "port capabilities");
8469 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
8470 &pi->link_cfg.acaps, 0, "advertised capabilities");
8471 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
8472 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
8473
8474 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
8475 port_top_speed(pi), "max speed (in Gbps)");
8476 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
8477 pi->mps_bg_map, "MPS buffer group map");
8478 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
8479 NULL, pi->rx_e_chan_map, "TP rx e-channel map");
8480 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
8481 pi->tx_chan, "TP tx c-channel");
8482 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
8483 pi->rx_chan, "TP rx c-channel");
8484
8485 if (sc->flags & IS_VF)
8486 return;
8487
8488 /*
8489 * dev.(cxgbe|cxl).X.tc.
8490 */
8491 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
8492 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
8493 "Tx scheduler traffic classes (cl_rl)");
8494 children2 = SYSCTL_CHILDREN(oid);
8495 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
8496 CTLFLAG_RW, &pi->sched_params->pktsize, 0,
8497 "pktsize for per-flow cl-rl (0 means up to the driver )");
8498 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
8499 CTLFLAG_RW, &pi->sched_params->burstsize, 0,
8500 "burstsize for per-flow cl-rl (0 means up to the driver)");
8501 for (i = 0; i < sc->params.nsched_cls; i++) {
8502 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
8503
8504 snprintf(name, sizeof(name), "%d", i);
8505 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8506 SYSCTL_CHILDREN(oid), OID_AUTO, name,
8507 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8508 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8509 CTLFLAG_RD, &tc->state, 0, "current state");
8510 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8511 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8512 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8513 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8514 CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8515 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8516 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8517 (pi->port_id << 16) | i, sysctl_tc_params, "A",
8518 "traffic class parameters");
8519 }
8520
8521 /*
8522 * dev.cxgbe.X.stats.
8523 */
8524 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8525 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8526 children = SYSCTL_CHILDREN(oid);
8527 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8528 &pi->tx_parse_error, 0,
8529 "# of tx packets with invalid length or # of segments");
8530
8531 #define T4_LBSTAT(name, stat, desc) do { \
8532 if (sc->params.tp.lb_mode) { \
8533 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8534 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \
8535 A_MPS_PORT_STAT_##stat##_L, \
8536 sysctl_handle_t4_portstat64, "QU", desc); \
8537 } else { \
8538 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8539 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8540 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8541 sysctl_handle_t4_reg64, "QU", desc); \
8542 } \
8543 } while (0)
8544
8545 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8546 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8547 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8548 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8549 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8550 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8551 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8552 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8553 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8554 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8555 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8556 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8557 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8558 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8559 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8560 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8561 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8562 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8563 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8564 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8565 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8566 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8567 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8568
8569 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8570 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8571 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8572 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8573 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8574 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8575 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8576 if (is_t6(sc)) {
8577 /* Read from port_stats and may be stale by up to 1s */
8578 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err",
8579 CTLFLAG_RD, &pi->stats.rx_fcs_err,
8580 "# of frames received with bad FCS since last link up");
8581 } else {
8582 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8583 "# of frames received with bad FCS");
8584 }
8585 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8586 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8587 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8588 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8589 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8590 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8591 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8592 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8593 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8594 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8595 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8596 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8597 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8598 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8599 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8600 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8601 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8602 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8603 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8604 #undef T4_LBSTAT
8605
8606 #define T4_REGSTAT(name, stat, desc) do { \
8607 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8608 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8609 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \
8610 } while (0)
8611
8612 if (pi->mps_bg_map & 1) {
8613 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME,
8614 "# drops due to buffer-group 0 overflows");
8615 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME,
8616 "# of buffer-group 0 truncated packets");
8617 }
8618 if (pi->mps_bg_map & 2) {
8619 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME,
8620 "# drops due to buffer-group 1 overflows");
8621 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME,
8622 "# of buffer-group 1 truncated packets");
8623 }
8624 if (pi->mps_bg_map & 4) {
8625 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME,
8626 "# drops due to buffer-group 2 overflows");
8627 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME,
8628 "# of buffer-group 2 truncated packets");
8629 }
8630 if (pi->mps_bg_map & 8) {
8631 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME,
8632 "# drops due to buffer-group 3 overflows");
8633 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME,
8634 "# of buffer-group 3 truncated packets");
8635 }
8636 #undef T4_REGSTAT
8637 }
8638
8639 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8640 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8641 {
8642 int rc, *i, space = 0;
8643 struct sbuf sb;
8644
8645 sbuf_new_for_sysctl(&sb, NULL, 64, req);
8646 for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8647 if (space)
8648 sbuf_printf(&sb, " ");
8649 sbuf_printf(&sb, "%d", *i);
8650 space = 1;
8651 }
8652 rc = sbuf_finish(&sb);
8653 sbuf_delete(&sb);
8654 return (rc);
8655 }
8656
8657 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8658 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8659 {
8660 int rc;
8661 struct sbuf *sb;
8662
8663 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8664 if (sb == NULL)
8665 return (ENOMEM);
8666
8667 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8668 rc = sbuf_finish(sb);
8669 sbuf_delete(sb);
8670
8671 return (rc);
8672 }
8673
8674 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8675 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8676 {
8677 int rc;
8678 struct sbuf *sb;
8679
8680 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8681 if (sb == NULL)
8682 return (ENOMEM);
8683
8684 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8685 rc = sbuf_finish(sb);
8686 sbuf_delete(sb);
8687
8688 return (rc);
8689 }
8690
8691 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8692 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8693 {
8694 struct port_info *pi = arg1;
8695 int op = arg2;
8696 struct adapter *sc = pi->adapter;
8697 u_int v;
8698 int rc;
8699
8700 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8701 if (rc)
8702 return (rc);
8703 if (!hw_all_ok(sc))
8704 rc = ENXIO;
8705 else {
8706 /* XXX: magic numbers */
8707 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8708 op ? 0x20 : 0xc820, &v);
8709 }
8710 end_synchronized_op(sc, 0);
8711 if (rc)
8712 return (rc);
8713 if (op == 0)
8714 v /= 256;
8715
8716 rc = sysctl_handle_int(oidp, &v, 0, req);
8717 return (rc);
8718 }
8719
8720 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8721 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8722 {
8723 struct vi_info *vi = arg1;
8724 int rc, val;
8725
8726 val = vi->rsrv_noflowq;
8727 rc = sysctl_handle_int(oidp, &val, 0, req);
8728 if (rc != 0 || req->newptr == NULL)
8729 return (rc);
8730
8731 if ((val >= 1) && (vi->ntxq > 1))
8732 vi->rsrv_noflowq = 1;
8733 else
8734 vi->rsrv_noflowq = 0;
8735
8736 return (rc);
8737 }
8738
8739 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8740 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8741 {
8742 struct vi_info *vi = arg1;
8743 struct adapter *sc = vi->adapter;
8744 int rc, val, i;
8745
8746 MPASS(!(sc->flags & IS_VF));
8747
8748 val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8749 rc = sysctl_handle_int(oidp, &val, 0, req);
8750 if (rc != 0 || req->newptr == NULL)
8751 return (rc);
8752
8753 if (val != 0 && val != 1)
8754 return (EINVAL);
8755
8756 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8757 "t4txvm");
8758 if (rc)
8759 return (rc);
8760 if (!hw_all_ok(sc))
8761 rc = ENXIO;
8762 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8763 /*
8764 * We don't want parse_pkt to run with one setting (VF or PF)
8765 * and then eth_tx to see a different setting but still use
8766 * stale information calculated by parse_pkt.
8767 */
8768 rc = EBUSY;
8769 } else {
8770 struct port_info *pi = vi->pi;
8771 struct sge_txq *txq;
8772 uint32_t ctrl0;
8773 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8774
8775 if (val) {
8776 vi->flags |= TX_USES_VM_WR;
8777 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8778 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8779 V_TXPKT_INTF(pi->hw_port));
8780 if (!(sc->flags & IS_VF))
8781 npkt--;
8782 } else {
8783 vi->flags &= ~TX_USES_VM_WR;
8784 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8785 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8786 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) |
8787 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8788 }
8789 for_each_txq(vi, i, txq) {
8790 txq->cpl_ctrl0 = ctrl0;
8791 txq->txp.max_npkt = npkt;
8792 }
8793 }
8794 end_synchronized_op(sc, LOCK_HELD);
8795 return (rc);
8796 }
8797
8798 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8799 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8800 {
8801 struct vi_info *vi = arg1;
8802 struct adapter *sc = vi->adapter;
8803 int idx, rc, i;
8804 struct sge_rxq *rxq;
8805 uint8_t v;
8806
8807 idx = vi->tmr_idx;
8808
8809 rc = sysctl_handle_int(oidp, &idx, 0, req);
8810 if (rc != 0 || req->newptr == NULL)
8811 return (rc);
8812
8813 if (idx < 0 || idx >= SGE_NTIMERS)
8814 return (EINVAL);
8815
8816 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8817 "t4tmr");
8818 if (rc)
8819 return (rc);
8820
8821 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8822 for_each_rxq(vi, i, rxq) {
8823 #ifdef atomic_store_rel_8
8824 atomic_store_rel_8(&rxq->iq.intr_params, v);
8825 #else
8826 rxq->iq.intr_params = v;
8827 #endif
8828 }
8829 vi->tmr_idx = idx;
8830
8831 end_synchronized_op(sc, LOCK_HELD);
8832 return (0);
8833 }
8834
8835 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8836 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8837 {
8838 struct vi_info *vi = arg1;
8839 struct adapter *sc = vi->adapter;
8840 int idx, rc;
8841
8842 idx = vi->pktc_idx;
8843
8844 rc = sysctl_handle_int(oidp, &idx, 0, req);
8845 if (rc != 0 || req->newptr == NULL)
8846 return (rc);
8847
8848 if (idx < -1 || idx >= SGE_NCOUNTERS)
8849 return (EINVAL);
8850
8851 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8852 "t4pktc");
8853 if (rc)
8854 return (rc);
8855
8856 if (vi->flags & VI_INIT_DONE)
8857 rc = EBUSY; /* cannot be changed once the queues are created */
8858 else
8859 vi->pktc_idx = idx;
8860
8861 end_synchronized_op(sc, LOCK_HELD);
8862 return (rc);
8863 }
8864
8865 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8866 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8867 {
8868 struct vi_info *vi = arg1;
8869 struct adapter *sc = vi->adapter;
8870 int qsize, rc;
8871
8872 qsize = vi->qsize_rxq;
8873
8874 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8875 if (rc != 0 || req->newptr == NULL)
8876 return (rc);
8877
8878 if (qsize < 128 || (qsize & 7))
8879 return (EINVAL);
8880
8881 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8882 "t4rxqs");
8883 if (rc)
8884 return (rc);
8885
8886 if (vi->flags & VI_INIT_DONE)
8887 rc = EBUSY; /* cannot be changed once the queues are created */
8888 else
8889 vi->qsize_rxq = qsize;
8890
8891 end_synchronized_op(sc, LOCK_HELD);
8892 return (rc);
8893 }
8894
8895 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8896 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8897 {
8898 struct vi_info *vi = arg1;
8899 struct adapter *sc = vi->adapter;
8900 int qsize, rc;
8901
8902 qsize = vi->qsize_txq;
8903
8904 rc = sysctl_handle_int(oidp, &qsize, 0, req);
8905 if (rc != 0 || req->newptr == NULL)
8906 return (rc);
8907
8908 if (qsize < 128 || qsize > 65536)
8909 return (EINVAL);
8910
8911 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8912 "t4txqs");
8913 if (rc)
8914 return (rc);
8915
8916 if (vi->flags & VI_INIT_DONE)
8917 rc = EBUSY; /* cannot be changed once the queues are created */
8918 else
8919 vi->qsize_txq = qsize;
8920
8921 end_synchronized_op(sc, LOCK_HELD);
8922 return (rc);
8923 }
8924
8925 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8926 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8927 {
8928 struct port_info *pi = arg1;
8929 struct adapter *sc = pi->adapter;
8930 struct link_config *lc = &pi->link_cfg;
8931 int rc;
8932
8933 if (req->newptr == NULL) {
8934 struct sbuf *sb;
8935 static char *bits = "\20\1RX\2TX\3AUTO";
8936
8937 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8938 if (sb == NULL)
8939 return (ENOMEM);
8940
8941 if (lc->link_ok) {
8942 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8943 (lc->requested_fc & PAUSE_AUTONEG), bits);
8944 } else {
8945 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8946 PAUSE_RX | PAUSE_AUTONEG), bits);
8947 }
8948 rc = sbuf_finish(sb);
8949 sbuf_delete(sb);
8950 } else {
8951 char s[2];
8952 int n;
8953
8954 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8955 PAUSE_AUTONEG));
8956 s[1] = 0;
8957
8958 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8959 if (rc != 0)
8960 return(rc);
8961
8962 if (s[1] != 0)
8963 return (EINVAL);
8964 if (s[0] < '0' || s[0] > '9')
8965 return (EINVAL); /* not a number */
8966 n = s[0] - '0';
8967 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8968 return (EINVAL); /* some other bit is set too */
8969
8970 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8971 "t4PAUSE");
8972 if (rc)
8973 return (rc);
8974 if (hw_all_ok(sc)) {
8975 PORT_LOCK(pi);
8976 lc->requested_fc = n;
8977 fixup_link_config(pi);
8978 if (pi->up_vis > 0)
8979 rc = apply_link_config(pi);
8980 set_current_media(pi);
8981 PORT_UNLOCK(pi);
8982 }
8983 end_synchronized_op(sc, 0);
8984 }
8985
8986 return (rc);
8987 }
8988
8989 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8990 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8991 {
8992 struct port_info *pi = arg1;
8993 struct link_config *lc = &pi->link_cfg;
8994 int rc;
8995 struct sbuf *sb;
8996
8997 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8998 if (sb == NULL)
8999 return (ENOMEM);
9000 if (lc->link_ok)
9001 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits);
9002 else
9003 sbuf_printf(sb, "no link");
9004 rc = sbuf_finish(sb);
9005 sbuf_delete(sb);
9006
9007 return (rc);
9008 }
9009
9010 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)9011 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
9012 {
9013 struct port_info *pi = arg1;
9014 struct adapter *sc = pi->adapter;
9015 struct link_config *lc = &pi->link_cfg;
9016 int rc;
9017 int8_t old = lc->requested_fec;
9018
9019 if (req->newptr == NULL) {
9020 struct sbuf *sb;
9021
9022 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9023 if (sb == NULL)
9024 return (ENOMEM);
9025
9026 sbuf_printf(sb, "%b", old, t4_fec_bits);
9027 rc = sbuf_finish(sb);
9028 sbuf_delete(sb);
9029 } else {
9030 char s[8];
9031 int n;
9032
9033 snprintf(s, sizeof(s), "%d", old == FEC_AUTO ? -1 :
9034 old & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
9035
9036 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
9037 if (rc != 0)
9038 return(rc);
9039
9040 n = strtol(&s[0], NULL, 0);
9041 if (n < 0 || n & FEC_AUTO)
9042 n = FEC_AUTO;
9043 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
9044 return (EINVAL);/* some other bit is set too */
9045
9046 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9047 "t4reqf");
9048 if (rc)
9049 return (rc);
9050 PORT_LOCK(pi);
9051 if (lc->requested_fec != old) {
9052 rc = EBUSY;
9053 goto done;
9054 }
9055 if (n == FEC_AUTO)
9056 lc->requested_fec = FEC_AUTO;
9057 else if (n == 0 || n == FEC_NONE)
9058 lc->requested_fec = FEC_NONE;
9059 else {
9060 if ((lc->pcaps |
9061 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
9062 lc->pcaps) {
9063 rc = ENOTSUP;
9064 goto done;
9065 }
9066 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
9067 FEC_MODULE);
9068 }
9069 if (hw_all_ok(sc)) {
9070 fixup_link_config(pi);
9071 if (pi->up_vis > 0) {
9072 rc = apply_link_config(pi);
9073 if (rc != 0) {
9074 lc->requested_fec = old;
9075 if (rc == FW_EPROTO)
9076 rc = ENOTSUP;
9077 }
9078 }
9079 }
9080 done:
9081 PORT_UNLOCK(pi);
9082 end_synchronized_op(sc, 0);
9083 }
9084
9085 return (rc);
9086 }
9087
9088 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)9089 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
9090 {
9091 struct port_info *pi = arg1;
9092 struct adapter *sc = pi->adapter;
9093 struct link_config *lc = &pi->link_cfg;
9094 int rc;
9095 int8_t fec;
9096 struct sbuf *sb;
9097
9098 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
9099 if (sb == NULL)
9100 return (ENOMEM);
9101
9102 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
9103 rc = EBUSY;
9104 goto done;
9105 }
9106 if (!hw_all_ok(sc)) {
9107 rc = ENXIO;
9108 goto done;
9109 }
9110 PORT_LOCK(pi);
9111 if (pi->up_vis == 0) {
9112 /*
9113 * If all the interfaces are administratively down the firmware
9114 * does not report transceiver changes. Refresh port info here.
9115 * This is the only reason we have a synchronized op in this
9116 * function. Just PORT_LOCK would have been enough otherwise.
9117 */
9118 t4_update_port_info(pi);
9119 }
9120
9121 fec = lc->fec_hint;
9122 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
9123 !fec_supported(lc->pcaps)) {
9124 PORT_UNLOCK(pi);
9125 sbuf_printf(sb, "n/a");
9126 } else {
9127 if (fec == 0)
9128 fec = FEC_NONE;
9129 PORT_UNLOCK(pi);
9130 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits);
9131 }
9132 rc = sbuf_finish(sb);
9133 done:
9134 sbuf_delete(sb);
9135 end_synchronized_op(sc, 0);
9136
9137 return (rc);
9138 }
9139
9140 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)9141 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
9142 {
9143 struct port_info *pi = arg1;
9144 struct adapter *sc = pi->adapter;
9145 struct link_config *lc = &pi->link_cfg;
9146 int rc, val;
9147
9148 if (lc->pcaps & FW_PORT_CAP32_ANEG)
9149 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
9150 else
9151 val = -1;
9152 rc = sysctl_handle_int(oidp, &val, 0, req);
9153 if (rc != 0 || req->newptr == NULL)
9154 return (rc);
9155 if (val == 0)
9156 val = AUTONEG_DISABLE;
9157 else if (val == 1)
9158 val = AUTONEG_ENABLE;
9159 else
9160 val = AUTONEG_AUTO;
9161
9162 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
9163 "t4aneg");
9164 if (rc)
9165 return (rc);
9166 PORT_LOCK(pi);
9167 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
9168 rc = ENOTSUP;
9169 goto done;
9170 }
9171 lc->requested_aneg = val;
9172 if (hw_all_ok(sc)) {
9173 fixup_link_config(pi);
9174 if (pi->up_vis > 0)
9175 rc = apply_link_config(pi);
9176 set_current_media(pi);
9177 }
9178 done:
9179 PORT_UNLOCK(pi);
9180 end_synchronized_op(sc, 0);
9181 return (rc);
9182 }
9183
9184 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)9185 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
9186 {
9187 struct port_info *pi = arg1;
9188 struct adapter *sc = pi->adapter;
9189 struct link_config *lc = &pi->link_cfg;
9190 int rc, val;
9191
9192 val = lc->force_fec;
9193 MPASS(val >= -1 && val <= 1);
9194 rc = sysctl_handle_int(oidp, &val, 0, req);
9195 if (rc != 0 || req->newptr == NULL)
9196 return (rc);
9197 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
9198 return (ENOTSUP);
9199 if (val < -1 || val > 1)
9200 return (EINVAL);
9201
9202 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
9203 if (rc)
9204 return (rc);
9205 PORT_LOCK(pi);
9206 lc->force_fec = val;
9207 if (hw_all_ok(sc)) {
9208 fixup_link_config(pi);
9209 if (pi->up_vis > 0)
9210 rc = apply_link_config(pi);
9211 }
9212 PORT_UNLOCK(pi);
9213 end_synchronized_op(sc, 0);
9214 return (rc);
9215 }
9216
9217 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)9218 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
9219 {
9220 struct adapter *sc = arg1;
9221 int rc, reg = arg2;
9222 uint64_t val;
9223
9224 mtx_lock(&sc->reg_lock);
9225 if (hw_off_limits(sc))
9226 rc = ENXIO;
9227 else {
9228 rc = 0;
9229 val = t4_read_reg64(sc, reg);
9230 }
9231 mtx_unlock(&sc->reg_lock);
9232 if (rc == 0)
9233 rc = sysctl_handle_64(oidp, &val, 0, req);
9234 return (rc);
9235 }
9236
9237 static int
sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)9238 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS)
9239 {
9240 struct port_info *pi = arg1;
9241 struct adapter *sc = pi->adapter;
9242 int rc, i, reg = arg2;
9243 uint64_t val;
9244
9245 mtx_lock(&sc->reg_lock);
9246 if (hw_off_limits(sc))
9247 rc = ENXIO;
9248 else {
9249 val = 0;
9250 for (i = 0; i < sc->params.tp.lb_nchan; i++) {
9251 val += t4_read_reg64(sc,
9252 t4_port_reg(sc, pi->tx_chan + i, reg));
9253 }
9254 rc = 0;
9255 }
9256 mtx_unlock(&sc->reg_lock);
9257 if (rc == 0)
9258 rc = sysctl_handle_64(oidp, &val, 0, req);
9259 return (rc);
9260 }
9261
9262 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)9263 sysctl_temperature(SYSCTL_HANDLER_ARGS)
9264 {
9265 struct adapter *sc = arg1;
9266 int rc, t;
9267 uint32_t param, val;
9268
9269 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
9270 if (rc)
9271 return (rc);
9272 if (!hw_all_ok(sc))
9273 rc = ENXIO;
9274 else {
9275 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9276 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9277 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
9278 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9279 }
9280 end_synchronized_op(sc, 0);
9281 if (rc)
9282 return (rc);
9283
9284 /* unknown is returned as 0 but we display -1 in that case */
9285 t = val == 0 ? -1 : val;
9286
9287 rc = sysctl_handle_int(oidp, &t, 0, req);
9288 return (rc);
9289 }
9290
9291 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)9292 sysctl_vdd(SYSCTL_HANDLER_ARGS)
9293 {
9294 struct adapter *sc = arg1;
9295 int rc;
9296 uint32_t param, val;
9297
9298 if (sc->params.core_vdd == 0) {
9299 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
9300 "t4vdd");
9301 if (rc)
9302 return (rc);
9303 if (!hw_all_ok(sc))
9304 rc = ENXIO;
9305 else {
9306 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9307 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9308 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
9309 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
9310 ¶m, &val);
9311 }
9312 end_synchronized_op(sc, 0);
9313 if (rc)
9314 return (rc);
9315 sc->params.core_vdd = val;
9316 }
9317
9318 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
9319 }
9320
9321 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)9322 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
9323 {
9324 struct adapter *sc = arg1;
9325 int rc, v;
9326 uint32_t param, val;
9327
9328 v = sc->sensor_resets;
9329 rc = sysctl_handle_int(oidp, &v, 0, req);
9330 if (rc != 0 || req->newptr == NULL || v <= 0)
9331 return (rc);
9332
9333 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
9334 chip_id(sc) < CHELSIO_T5)
9335 return (ENOTSUP);
9336
9337 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
9338 if (rc)
9339 return (rc);
9340 if (!hw_all_ok(sc))
9341 rc = ENXIO;
9342 else {
9343 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9344 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
9345 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
9346 val = 1;
9347 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9348 }
9349 end_synchronized_op(sc, 0);
9350 if (rc == 0)
9351 sc->sensor_resets++;
9352 return (rc);
9353 }
9354
9355 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)9356 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
9357 {
9358 struct adapter *sc = arg1;
9359 struct sbuf *sb;
9360 int rc;
9361 uint32_t param, val;
9362 uint8_t coreid = (uint8_t)arg2;
9363
9364 KASSERT(coreid < sc->params.ncores,
9365 ("%s: bad coreid %u\n", __func__, coreid));
9366
9367 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
9368 if (rc)
9369 return (rc);
9370 if (!hw_all_ok(sc))
9371 rc = ENXIO;
9372 else {
9373 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9374 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) |
9375 V_FW_PARAMS_PARAM_Y(coreid);
9376 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
9377 }
9378 end_synchronized_op(sc, 0);
9379 if (rc)
9380 return (rc);
9381
9382 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9383 if (sb == NULL)
9384 return (ENOMEM);
9385
9386 if (val == 0xffffffff) {
9387 /* Only debug and custom firmwares report load averages. */
9388 sbuf_printf(sb, "not available");
9389 } else {
9390 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
9391 (val >> 16) & 0xff);
9392 }
9393 rc = sbuf_finish(sb);
9394 sbuf_delete(sb);
9395
9396 return (rc);
9397 }
9398
9399 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)9400 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
9401 {
9402 struct adapter *sc = arg1;
9403 struct sbuf *sb;
9404 int rc, i;
9405 uint16_t incr[NMTUS][NCCTRL_WIN];
9406 static const char *dec_fac[] = {
9407 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
9408 "0.9375"
9409 };
9410
9411 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9412 if (sb == NULL)
9413 return (ENOMEM);
9414
9415 rc = 0;
9416 mtx_lock(&sc->reg_lock);
9417 if (hw_off_limits(sc))
9418 rc = ENXIO;
9419 else
9420 t4_read_cong_tbl(sc, incr);
9421 mtx_unlock(&sc->reg_lock);
9422 if (rc)
9423 goto done;
9424
9425 for (i = 0; i < NCCTRL_WIN; ++i) {
9426 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
9427 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
9428 incr[5][i], incr[6][i], incr[7][i]);
9429 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
9430 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
9431 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
9432 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
9433 }
9434
9435 rc = sbuf_finish(sb);
9436 done:
9437 sbuf_delete(sb);
9438 return (rc);
9439 }
9440
9441 static int
sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)9442 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS)
9443 {
9444 struct adapter *sc = arg1;
9445 struct sbuf *sb;
9446 int rc, i, n, qid, coreid;
9447 uint32_t *buf, *p;
9448
9449 qid = arg2 & 0xffff;
9450 coreid = arg2 >> 16;
9451
9452 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq,
9453 ("%s: bad ibq qid %d\n", __func__, qid));
9454 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9455 ("%s: bad coreid %d\n", __func__, coreid));
9456
9457 n = 4 * CIM_IBQ_SIZE;
9458 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9459 mtx_lock(&sc->reg_lock);
9460 if (hw_off_limits(sc))
9461 rc = -ENXIO;
9462 else
9463 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n);
9464 mtx_unlock(&sc->reg_lock);
9465 if (rc < 0) {
9466 rc = -rc;
9467 goto done;
9468 }
9469 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9470
9471 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9472 if (sb == NULL) {
9473 rc = ENOMEM;
9474 goto done;
9475 }
9476 for (i = 0, p = buf; i < n; i += 16, p += 4)
9477 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9478 p[2], p[3]);
9479 rc = sbuf_finish(sb);
9480 sbuf_delete(sb);
9481 done:
9482 free(buf, M_CXGBE);
9483 return (rc);
9484 }
9485
9486 static int
sysctl_cim_obq(SYSCTL_HANDLER_ARGS)9487 sysctl_cim_obq(SYSCTL_HANDLER_ARGS)
9488 {
9489 struct adapter *sc = arg1;
9490 struct sbuf *sb;
9491 int rc, i, n, qid, coreid;
9492 uint32_t *buf, *p;
9493
9494 qid = arg2 & 0xffff;
9495 coreid = arg2 >> 16;
9496
9497 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq,
9498 ("%s: bad obq qid %d\n", __func__, qid));
9499 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
9500 ("%s: bad coreid %d\n", __func__, coreid));
9501
9502 n = 6 * CIM_OBQ_SIZE * 4;
9503 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
9504 mtx_lock(&sc->reg_lock);
9505 if (hw_off_limits(sc))
9506 rc = -ENXIO;
9507 else
9508 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n);
9509 mtx_unlock(&sc->reg_lock);
9510 if (rc < 0) {
9511 rc = -rc;
9512 goto done;
9513 }
9514 n = rc * sizeof(uint32_t); /* rc has # of words actually read */
9515
9516 rc = sysctl_wire_old_buffer(req, 0);
9517 if (rc != 0)
9518 goto done;
9519
9520 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9521 if (sb == NULL) {
9522 rc = ENOMEM;
9523 goto done;
9524 }
9525 for (i = 0, p = buf; i < n; i += 16, p += 4)
9526 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
9527 p[2], p[3]);
9528 rc = sbuf_finish(sb);
9529 sbuf_delete(sb);
9530 done:
9531 free(buf, M_CXGBE);
9532 return (rc);
9533 }
9534
9535 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9536 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9537 {
9538 uint32_t *p;
9539
9540 sbuf_printf(sb, "Status Data PC%s",
9541 cfg & F_UPDBGLACAPTPCONLY ? "" :
9542 " LS0Stat LS0Addr LS0Data");
9543
9544 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
9545 if (cfg & F_UPDBGLACAPTPCONLY) {
9546 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
9547 p[6], p[7]);
9548 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
9549 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9550 p[4] & 0xff, p[5] >> 8);
9551 sbuf_printf(sb, "\n %02x %x%07x %x%07x",
9552 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9553 p[1] & 0xf, p[2] >> 4);
9554 } else {
9555 sbuf_printf(sb,
9556 "\n %02x %x%07x %x%07x %08x %08x "
9557 "%08x%08x%08x%08x",
9558 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9559 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9560 p[6], p[7]);
9561 }
9562 }
9563 }
9564
9565 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9566 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9567 {
9568 uint32_t *p;
9569
9570 sbuf_printf(sb, "Status Inst Data PC%s",
9571 cfg & F_UPDBGLACAPTPCONLY ? "" :
9572 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
9573
9574 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9575 if (cfg & F_UPDBGLACAPTPCONLY) {
9576 sbuf_printf(sb, "\n %02x %08x %08x %08x",
9577 p[3] & 0xff, p[2], p[1], p[0]);
9578 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
9579 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9580 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9581 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
9582 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9583 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9584 p[6] >> 16);
9585 } else {
9586 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
9587 "%08x %08x %08x %08x %08x %08x",
9588 (p[9] >> 16) & 0xff,
9589 p[9] & 0xffff, p[8] >> 16,
9590 p[8] & 0xffff, p[7] >> 16,
9591 p[7] & 0xffff, p[6] >> 16,
9592 p[2], p[1], p[0], p[5], p[4], p[3]);
9593 }
9594 }
9595 }
9596
9597 static int
sbuf_cim_la(struct adapter * sc,int coreid,struct sbuf * sb,int flags)9598 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
9599 {
9600 uint32_t cfg, *buf;
9601 int rc;
9602
9603 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9604 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9605 M_ZERO | flags);
9606 if (buf == NULL)
9607 return (ENOMEM);
9608
9609 mtx_lock(&sc->reg_lock);
9610 if (hw_off_limits(sc))
9611 rc = ENXIO;
9612 else {
9613 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
9614 &cfg);
9615 if (rc == 0)
9616 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL);
9617 }
9618 mtx_unlock(&sc->reg_lock);
9619 if (rc == 0) {
9620 if (chip_id(sc) < CHELSIO_T6)
9621 sbuf_cim_la4(sc, sb, buf, cfg);
9622 else
9623 sbuf_cim_la6(sc, sb, buf, cfg);
9624 }
9625 free(buf, M_CXGBE);
9626 return (rc);
9627 }
9628
9629 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9630 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9631 {
9632 struct adapter *sc = arg1;
9633 int coreid = arg2;
9634 struct sbuf *sb;
9635 int rc;
9636
9637 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9638 if (sb == NULL)
9639 return (ENOMEM);
9640
9641 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK);
9642 if (rc == 0)
9643 rc = sbuf_finish(sb);
9644 sbuf_delete(sb);
9645 return (rc);
9646 }
9647
9648 static void
dump_cim_regs(struct adapter * sc)9649 dump_cim_regs(struct adapter *sc)
9650 {
9651 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9652 device_get_nameunit(sc->dev),
9653 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9654 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9655 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9656 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9657 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9658 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9659 device_get_nameunit(sc->dev),
9660 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9661 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9662 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9663 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9664 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9665 }
9666
9667 static void
dump_cimla(struct adapter * sc)9668 dump_cimla(struct adapter *sc)
9669 {
9670 struct sbuf sb;
9671 int rc;
9672
9673 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9674 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9675 device_get_nameunit(sc->dev));
9676 return;
9677 }
9678 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK);
9679 if (rc == 0) {
9680 rc = sbuf_finish(&sb);
9681 if (rc == 0) {
9682 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9683 device_get_nameunit(sc->dev), sbuf_data(&sb));
9684 }
9685 }
9686 sbuf_delete(&sb);
9687 }
9688
9689 void
t4_os_cim_err(struct adapter * sc)9690 t4_os_cim_err(struct adapter *sc)
9691 {
9692 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9693 }
9694
9695 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9696 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9697 {
9698 struct adapter *sc = arg1;
9699 u_int i;
9700 struct sbuf *sb;
9701 uint32_t *buf, *p;
9702 int rc;
9703
9704 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9705 if (sb == NULL)
9706 return (ENOMEM);
9707
9708 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9709 M_ZERO | M_WAITOK);
9710
9711 rc = 0;
9712 mtx_lock(&sc->reg_lock);
9713 if (hw_off_limits(sc))
9714 rc = ENXIO;
9715 else
9716 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9717 mtx_unlock(&sc->reg_lock);
9718 if (rc)
9719 goto done;
9720
9721 p = buf;
9722 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9723 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9724 p[1], p[0]);
9725 }
9726
9727 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
9728 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9729 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
9730 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9731 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9732 (p[1] >> 2) | ((p[2] & 3) << 30),
9733 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9734 p[0] & 1);
9735 }
9736 rc = sbuf_finish(sb);
9737 done:
9738 sbuf_delete(sb);
9739 free(buf, M_CXGBE);
9740 return (rc);
9741 }
9742
9743 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9744 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9745 {
9746 struct adapter *sc = arg1;
9747 u_int i;
9748 struct sbuf *sb;
9749 uint32_t *buf, *p;
9750 int rc;
9751
9752 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9753 if (sb == NULL)
9754 return (ENOMEM);
9755
9756 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9757 M_ZERO | M_WAITOK);
9758
9759 rc = 0;
9760 mtx_lock(&sc->reg_lock);
9761 if (hw_off_limits(sc))
9762 rc = ENXIO;
9763 else
9764 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9765 mtx_unlock(&sc->reg_lock);
9766 if (rc)
9767 goto done;
9768
9769 p = buf;
9770 sbuf_printf(sb, "Cntl ID DataBE Addr Data");
9771 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9772 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
9773 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9774 p[4], p[3], p[2], p[1], p[0]);
9775 }
9776
9777 sbuf_printf(sb, "\n\nCntl ID Data");
9778 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9779 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
9780 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9781 }
9782
9783 rc = sbuf_finish(sb);
9784 done:
9785 sbuf_delete(sb);
9786 free(buf, M_CXGBE);
9787 return (rc);
9788 }
9789
9790 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9791 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9792 {
9793 struct adapter *sc = arg1;
9794 struct sbuf *sb;
9795 int rc, i;
9796 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9797 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9798 uint16_t thres[CIM_NUM_IBQ];
9799 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9800 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9801 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9802 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
9803 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
9804 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
9805 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
9806 };
9807
9808 MPASS(chip_id(sc) < CHELSIO_T7);
9809
9810 cim_num_obq = sc->chip_params->cim_num_obq;
9811 if (is_t4(sc)) {
9812 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9813 obq_rdaddr = A_UP_OBQ_0_REALADDR;
9814 } else {
9815 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9816 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9817 }
9818 nq = CIM_NUM_IBQ + cim_num_obq;
9819
9820 mtx_lock(&sc->reg_lock);
9821 if (hw_off_limits(sc))
9822 rc = ENXIO;
9823 else {
9824 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9825 if (rc == 0) {
9826 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9827 obq_wr);
9828 if (rc == 0)
9829 t4_read_cimq_cfg(sc, base, size, thres);
9830 }
9831 }
9832 mtx_unlock(&sc->reg_lock);
9833 if (rc)
9834 return (rc);
9835
9836 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9837 if (sb == NULL)
9838 return (ENOMEM);
9839
9840 sbuf_printf(sb,
9841 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9842
9843 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9844 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9845 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9846 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9847 G_QUEREMFLITS(p[2]) * 16);
9848 for ( ; i < nq; i++, p += 4, wr += 2)
9849 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
9850 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9851 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9852 G_QUEREMFLITS(p[2]) * 16);
9853
9854 rc = sbuf_finish(sb);
9855 sbuf_delete(sb);
9856
9857 return (rc);
9858 }
9859
9860 static int
sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)9861 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS)
9862 {
9863 struct adapter *sc = arg1;
9864 u_int coreid = arg2;
9865 struct sbuf *sb;
9866 int rc, i;
9867 u_int addr;
9868 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9869 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7];
9870 uint16_t thres[CIM_NUM_IBQ_T7];
9871 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr;
9872 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat;
9873 static const char * const qname_ibq_t7[] = {
9874 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI",
9875 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7",
9876 };
9877 static const char * const qname_obq_t7[] = {
9878 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX",
9879 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5",
9880 "IPC6", "IPC7"
9881 };
9882 static const char * const qname_ibq_sec_t7[] = {
9883 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD",
9884 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD",
9885 };
9886 static const char * const qname_obq_sec_t7[] = {
9887 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX",
9888 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD",
9889 "RSVD", "RSVD",
9890 };
9891
9892 MPASS(chip_id(sc) >= CHELSIO_T7);
9893
9894 mtx_lock(&sc->reg_lock);
9895 if (hw_off_limits(sc))
9896 rc = ENXIO;
9897 else {
9898 rc = -t4_cim_read_core(sc, 1, coreid,
9899 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat);
9900 if (rc != 0)
9901 goto unlock;
9902
9903 rc = -t4_cim_read_core(sc, 1, coreid,
9904 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7,
9905 &stat[4 * CIM_NUM_IBQ_T7]);
9906 if (rc != 0)
9907 goto unlock;
9908
9909 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR;
9910 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) {
9911 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1,
9912 &obq_wr[i]);
9913 if (rc != 0)
9914 goto unlock;
9915 }
9916 t4_read_cimq_cfg_core(sc, coreid, base, size, thres);
9917 }
9918 unlock:
9919 mtx_unlock(&sc->reg_lock);
9920 if (rc)
9921 return (rc);
9922
9923 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9924 if (sb == NULL)
9925 return (ENOMEM);
9926
9927 sbuf_printf(sb,
9928 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
9929
9930 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) {
9931 if (!size[i])
9932 continue;
9933
9934 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
9935 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i],
9936 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff,
9937 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]),
9938 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16);
9939 }
9940
9941 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) {
9942 if (!size[i])
9943 continue;
9944
9945 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u",
9946 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] :
9947 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7],
9948 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff,
9949 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9950 G_T7_QUEREMFLITS(p[2]) * 16);
9951 }
9952
9953 rc = sbuf_finish(sb);
9954 sbuf_delete(sb);
9955 return (rc);
9956 }
9957
9958 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9959 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9960 {
9961 struct adapter *sc = arg1;
9962 struct sbuf *sb;
9963 int rc;
9964 struct tp_cpl_stats stats;
9965
9966 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9967 if (sb == NULL)
9968 return (ENOMEM);
9969
9970 rc = 0;
9971 mtx_lock(&sc->reg_lock);
9972 if (hw_off_limits(sc))
9973 rc = ENXIO;
9974 else
9975 t4_tp_get_cpl_stats(sc, &stats, 0);
9976 mtx_unlock(&sc->reg_lock);
9977 if (rc)
9978 goto done;
9979
9980 if (sc->chip_params->nchan > 2) {
9981 sbuf_printf(sb, " channel 0 channel 1"
9982 " channel 2 channel 3");
9983 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
9984 stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9985 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
9986 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9987 } else {
9988 sbuf_printf(sb, " channel 0 channel 1");
9989 sbuf_printf(sb, "\nCPL requests: %10u %10u",
9990 stats.req[0], stats.req[1]);
9991 sbuf_printf(sb, "\nCPL responses: %10u %10u",
9992 stats.rsp[0], stats.rsp[1]);
9993 }
9994
9995 rc = sbuf_finish(sb);
9996 done:
9997 sbuf_delete(sb);
9998 return (rc);
9999 }
10000
10001 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)10002 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
10003 {
10004 struct adapter *sc = arg1;
10005 struct sbuf *sb;
10006 int rc;
10007 struct tp_usm_stats stats;
10008
10009 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10010 if (sb == NULL)
10011 return (ENOMEM);
10012
10013 rc = 0;
10014 mtx_lock(&sc->reg_lock);
10015 if (hw_off_limits(sc))
10016 rc = ENXIO;
10017 else
10018 t4_get_usm_stats(sc, &stats, 1);
10019 mtx_unlock(&sc->reg_lock);
10020 if (rc == 0) {
10021 sbuf_printf(sb, "Frames: %u\n", stats.frames);
10022 sbuf_printf(sb, "Octets: %ju\n", stats.octets);
10023 sbuf_printf(sb, "Drops: %u", stats.drops);
10024 rc = sbuf_finish(sb);
10025 }
10026 sbuf_delete(sb);
10027
10028 return (rc);
10029 }
10030
10031 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)10032 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
10033 {
10034 struct adapter *sc = arg1;
10035 struct sbuf *sb;
10036 int rc;
10037 struct tp_tid_stats stats;
10038
10039 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10040 if (sb == NULL)
10041 return (ENOMEM);
10042
10043 rc = 0;
10044 mtx_lock(&sc->reg_lock);
10045 if (hw_off_limits(sc))
10046 rc = ENXIO;
10047 else
10048 t4_tp_get_tid_stats(sc, &stats, 1);
10049 mtx_unlock(&sc->reg_lock);
10050 if (rc == 0) {
10051 sbuf_printf(sb, "Delete: %u\n", stats.del);
10052 sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
10053 sbuf_printf(sb, "Active: %u\n", stats.act);
10054 sbuf_printf(sb, "Passive: %u", stats.pas);
10055 rc = sbuf_finish(sb);
10056 }
10057 sbuf_delete(sb);
10058
10059 return (rc);
10060 }
10061
10062 static const char * const devlog_level_strings[] = {
10063 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
10064 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
10065 [FW_DEVLOG_LEVEL_ERR] = "ERR",
10066 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
10067 [FW_DEVLOG_LEVEL_INFO] = "INFO",
10068 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
10069 };
10070
10071 static const char * const devlog_facility_strings[] = {
10072 [FW_DEVLOG_FACILITY_CORE] = "CORE",
10073 [FW_DEVLOG_FACILITY_CF] = "CF",
10074 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
10075 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
10076 [FW_DEVLOG_FACILITY_RES] = "RES",
10077 [FW_DEVLOG_FACILITY_HW] = "HW",
10078 [FW_DEVLOG_FACILITY_FLR] = "FLR",
10079 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
10080 [FW_DEVLOG_FACILITY_PHY] = "PHY",
10081 [FW_DEVLOG_FACILITY_MAC] = "MAC",
10082 [FW_DEVLOG_FACILITY_PORT] = "PORT",
10083 [FW_DEVLOG_FACILITY_VI] = "VI",
10084 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
10085 [FW_DEVLOG_FACILITY_ACL] = "ACL",
10086 [FW_DEVLOG_FACILITY_TM] = "TM",
10087 [FW_DEVLOG_FACILITY_QFC] = "QFC",
10088 [FW_DEVLOG_FACILITY_DCB] = "DCB",
10089 [FW_DEVLOG_FACILITY_ETH] = "ETH",
10090 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
10091 [FW_DEVLOG_FACILITY_RI] = "RI",
10092 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
10093 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
10094 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
10095 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
10096 [FW_DEVLOG_FACILITY_CHNET] = "CHNET",
10097 };
10098
10099 static int
sbuf_devlog(struct adapter * sc,int coreid,struct sbuf * sb,int flags)10100 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags)
10101 {
10102 int i, j, rc, nentries, first = 0;
10103 struct devlog_params *dparams = &sc->params.devlog;
10104 struct fw_devlog_e *buf, *e;
10105 uint32_t addr, size;
10106 uint64_t ftstamp = UINT64_MAX;
10107
10108 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10109 ("%s: bad coreid %d\n", __func__, coreid));
10110
10111 if (dparams->addr == 0)
10112 return (ENXIO);
10113
10114 size = dparams->size / sc->params.ncores;
10115 addr = dparams->addr + coreid * size;
10116
10117 MPASS(flags == M_WAITOK || flags == M_NOWAIT);
10118 buf = malloc(size, M_CXGBE, M_ZERO | flags);
10119 if (buf == NULL)
10120 return (ENOMEM);
10121
10122 mtx_lock(&sc->reg_lock);
10123 if (hw_off_limits(sc))
10124 rc = ENXIO;
10125 else
10126 rc = read_via_memwin(sc, 1, addr, (void *)buf, size);
10127 mtx_unlock(&sc->reg_lock);
10128 if (rc != 0)
10129 goto done;
10130
10131 nentries = size / sizeof(struct fw_devlog_e);
10132 for (i = 0; i < nentries; i++) {
10133 e = &buf[i];
10134
10135 if (e->timestamp == 0)
10136 break; /* end */
10137
10138 e->timestamp = be64toh(e->timestamp);
10139 e->seqno = be32toh(e->seqno);
10140 for (j = 0; j < 8; j++)
10141 e->params[j] = be32toh(e->params[j]);
10142
10143 if (e->timestamp < ftstamp) {
10144 ftstamp = e->timestamp;
10145 first = i;
10146 }
10147 }
10148
10149 if (buf[first].timestamp == 0)
10150 goto done; /* nothing in the log */
10151
10152 sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
10153 "Seq#", "Tstamp", "Level", "Facility", "Message");
10154
10155 i = first;
10156 do {
10157 e = &buf[i];
10158 if (e->timestamp == 0)
10159 break; /* end */
10160
10161 sbuf_printf(sb, "%10d %15ju %8s %8s ",
10162 e->seqno, e->timestamp,
10163 (e->level < nitems(devlog_level_strings) ?
10164 devlog_level_strings[e->level] : "UNKNOWN"),
10165 (e->facility < nitems(devlog_facility_strings) ?
10166 devlog_facility_strings[e->facility] : "UNKNOWN"));
10167 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
10168 e->params[2], e->params[3], e->params[4],
10169 e->params[5], e->params[6], e->params[7]);
10170
10171 if (++i == nentries)
10172 i = 0;
10173 } while (i != first);
10174 done:
10175 free(buf, M_CXGBE);
10176 return (rc);
10177 }
10178
10179 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)10180 sysctl_devlog(SYSCTL_HANDLER_ARGS)
10181 {
10182 struct adapter *sc = arg1;
10183 int rc, i, coreid = arg2;
10184 struct sbuf *sb;
10185
10186 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10187 if (sb == NULL)
10188 return (ENOMEM);
10189 if (coreid == -1) {
10190 /* -1 means all cores */
10191 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10192 if (sc->params.ncores > 0)
10193 sbuf_printf(sb, "=== CIM core %u ===\n", i);
10194 rc = sbuf_devlog(sc, i, sb, M_WAITOK);
10195 }
10196 } else {
10197 KASSERT(coreid >= 0 && coreid < sc->params.ncores,
10198 ("%s: bad coreid %d\n", __func__, coreid));
10199 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK);
10200 }
10201 if (rc == 0)
10202 rc = sbuf_finish(sb);
10203 sbuf_delete(sb);
10204 return (rc);
10205 }
10206
10207 static void
dump_devlog(struct adapter * sc)10208 dump_devlog(struct adapter *sc)
10209 {
10210 int rc, i;
10211 struct sbuf sb;
10212
10213 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
10214 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
10215 device_get_nameunit(sc->dev));
10216 return;
10217 }
10218 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) {
10219 if (sc->params.ncores > 0)
10220 sbuf_printf(&sb, "=== CIM core %u ===\n", i);
10221 rc = sbuf_devlog(sc, i, &sb, M_WAITOK);
10222 }
10223 if (rc == 0) {
10224 sbuf_finish(&sb);
10225 log(LOG_DEBUG, "%s: device log follows.\n%s",
10226 device_get_nameunit(sc->dev), sbuf_data(&sb));
10227 }
10228 sbuf_delete(&sb);
10229 }
10230
10231 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)10232 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
10233 {
10234 struct adapter *sc = arg1;
10235 struct sbuf *sb;
10236 int rc;
10237 struct tp_fcoe_stats stats[MAX_NCHAN];
10238 int i, nchan = sc->chip_params->nchan;
10239
10240 rc = 0;
10241 mtx_lock(&sc->reg_lock);
10242 if (hw_off_limits(sc))
10243 rc = ENXIO;
10244 else {
10245 for (i = 0; i < nchan; i++)
10246 t4_get_fcoe_stats(sc, i, &stats[i], 1);
10247 }
10248 mtx_unlock(&sc->reg_lock);
10249 if (rc != 0)
10250 return (rc);
10251
10252 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10253 if (sb == NULL)
10254 return (ENOMEM);
10255
10256 if (nchan > 2) {
10257 sbuf_printf(sb, " channel 0 channel 1"
10258 " channel 2 channel 3");
10259 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
10260 stats[0].octets_ddp, stats[1].octets_ddp,
10261 stats[2].octets_ddp, stats[3].octets_ddp);
10262 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
10263 stats[0].frames_ddp, stats[1].frames_ddp,
10264 stats[2].frames_ddp, stats[3].frames_ddp);
10265 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
10266 stats[0].frames_drop, stats[1].frames_drop,
10267 stats[2].frames_drop, stats[3].frames_drop);
10268 } else {
10269 sbuf_printf(sb, " channel 0 channel 1");
10270 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
10271 stats[0].octets_ddp, stats[1].octets_ddp);
10272 sbuf_printf(sb, "\nframesDDP: %16u %16u",
10273 stats[0].frames_ddp, stats[1].frames_ddp);
10274 sbuf_printf(sb, "\nframesDrop: %16u %16u",
10275 stats[0].frames_drop, stats[1].frames_drop);
10276 }
10277
10278 rc = sbuf_finish(sb);
10279 sbuf_delete(sb);
10280
10281 return (rc);
10282 }
10283
10284 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)10285 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
10286 {
10287 struct adapter *sc = arg1;
10288 struct sbuf *sb;
10289 int rc, i;
10290 unsigned int map, kbps, ipg, mode;
10291 unsigned int pace_tab[NTX_SCHED];
10292
10293 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
10294 if (sb == NULL)
10295 return (ENOMEM);
10296
10297 mtx_lock(&sc->reg_lock);
10298 if (hw_off_limits(sc)) {
10299 mtx_unlock(&sc->reg_lock);
10300 rc = ENXIO;
10301 goto done;
10302 }
10303
10304 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
10305 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
10306 t4_read_pace_tbl(sc, pace_tab);
10307 mtx_unlock(&sc->reg_lock);
10308
10309 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
10310 "Class IPG (0.1 ns) Flow IPG (us)");
10311
10312 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
10313 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
10314 sbuf_printf(sb, "\n %u %-5s %u ", i,
10315 (mode & (1 << i)) ? "flow" : "class", map & 3);
10316 if (kbps)
10317 sbuf_printf(sb, "%9u ", kbps);
10318 else
10319 sbuf_printf(sb, " disabled ");
10320
10321 if (ipg)
10322 sbuf_printf(sb, "%13u ", ipg);
10323 else
10324 sbuf_printf(sb, " disabled ");
10325
10326 if (pace_tab[i])
10327 sbuf_printf(sb, "%10u", pace_tab[i]);
10328 else
10329 sbuf_printf(sb, " disabled");
10330 }
10331 rc = sbuf_finish(sb);
10332 done:
10333 sbuf_delete(sb);
10334 return (rc);
10335 }
10336
10337 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)10338 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
10339 {
10340 struct adapter *sc = arg1;
10341 struct sbuf *sb;
10342 int rc, i, j;
10343 uint64_t *p0, *p1;
10344 struct lb_port_stats s[2];
10345 static const char *stat_name[] = {
10346 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
10347 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
10348 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
10349 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
10350 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
10351 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
10352 "BG2FramesTrunc:", "BG3FramesTrunc:"
10353 };
10354
10355 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10356 if (sb == NULL)
10357 return (ENOMEM);
10358
10359 memset(s, 0, sizeof(s));
10360
10361 rc = 0;
10362 for (i = 0; i < sc->chip_params->nchan; i += 2) {
10363 mtx_lock(&sc->reg_lock);
10364 if (hw_off_limits(sc))
10365 rc = ENXIO;
10366 else {
10367 t4_get_lb_stats(sc, i, &s[0]);
10368 t4_get_lb_stats(sc, i + 1, &s[1]);
10369 }
10370 mtx_unlock(&sc->reg_lock);
10371 if (rc != 0)
10372 break;
10373
10374 p0 = &s[0].octets;
10375 p1 = &s[1].octets;
10376 sbuf_printf(sb, "%s Loopback %u"
10377 " Loopback %u", i == 0 ? "" : "\n", i, i + 1);
10378
10379 for (j = 0; j < nitems(stat_name); j++)
10380 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
10381 *p0++, *p1++);
10382 }
10383
10384 if (rc == 0)
10385 rc = sbuf_finish(sb);
10386 sbuf_delete(sb);
10387
10388 return (rc);
10389 }
10390
10391 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)10392 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
10393 {
10394 int rc = 0;
10395 struct port_info *pi = arg1;
10396 struct link_config *lc = &pi->link_cfg;
10397 struct sbuf *sb;
10398
10399 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
10400 if (sb == NULL)
10401 return (ENOMEM);
10402
10403 if (lc->link_ok || lc->link_down_rc == 255)
10404 sbuf_printf(sb, "n/a");
10405 else
10406 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
10407
10408 rc = sbuf_finish(sb);
10409 sbuf_delete(sb);
10410
10411 return (rc);
10412 }
10413
10414 struct mem_desc {
10415 uint64_t base;
10416 uint64_t limit;
10417 u_int idx;
10418 };
10419
10420 static int
mem_desc_cmp(const void * a,const void * b)10421 mem_desc_cmp(const void *a, const void *b)
10422 {
10423 const uint64_t v1 = ((const struct mem_desc *)a)->base;
10424 const uint64_t v2 = ((const struct mem_desc *)b)->base;
10425
10426 if (v1 < v2)
10427 return (-1);
10428 else if (v1 > v2)
10429 return (1);
10430
10431 return (0);
10432 }
10433
10434 static void
mem_region_show(struct sbuf * sb,const char * name,uint64_t from,uint64_t to)10435 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to)
10436 {
10437 uintmax_t size;
10438
10439 if (from == to)
10440 return;
10441
10442 size = to - from + 1;
10443 if (size == 0)
10444 return;
10445
10446 if (from > UINT32_MAX || to > UINT32_MAX)
10447 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name,
10448 (uintmax_t)from, (uintmax_t)to, size);
10449 else
10450 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name,
10451 (uintmax_t)from, (uintmax_t)to, size);
10452 }
10453
10454 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)10455 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
10456 {
10457 struct adapter *sc = arg1;
10458 struct sbuf *sb;
10459 int rc, i, n, nchan;
10460 uint32_t lo, hi, used, free, alloc;
10461 static const char *memory[] = {
10462 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
10463 };
10464 static const char *region[] = {
10465 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
10466 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
10467 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
10468 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
10469 "RQUDP region:", "PBL region:", "TXPBL region:",
10470 "TLSKey region:", "RRQ region:", "NVMe STAG region:",
10471 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:",
10472 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:",
10473 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:",
10474 };
10475 struct mem_desc avail[4];
10476 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
10477 struct mem_desc *md;
10478
10479 rc = sysctl_wire_old_buffer(req, 0);
10480 if (rc != 0)
10481 return (rc);
10482
10483 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10484 if (sb == NULL)
10485 return (ENOMEM);
10486
10487 for (i = 0; i < nitems(mem); i++) {
10488 mem[i].limit = 0;
10489 mem[i].idx = i;
10490 }
10491
10492 mtx_lock(&sc->reg_lock);
10493 if (hw_off_limits(sc)) {
10494 rc = ENXIO;
10495 goto done;
10496 }
10497
10498 /* Find and sort the populated memory ranges */
10499 i = 0;
10500 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
10501 if (lo & F_EDRAM0_ENABLE) {
10502 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
10503 if (chip_id(sc) >= CHELSIO_T7) {
10504 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20;
10505 avail[i].limit = avail[i].base +
10506 (G_T7_EDRAM0_SIZE(hi) << 20);
10507 } else {
10508 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20;
10509 avail[i].limit = avail[i].base +
10510 (G_EDRAM0_SIZE(hi) << 20);
10511 }
10512 avail[i].idx = 0;
10513 i++;
10514 }
10515 if (lo & F_EDRAM1_ENABLE) {
10516 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
10517 if (chip_id(sc) >= CHELSIO_T7) {
10518 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20;
10519 avail[i].limit = avail[i].base +
10520 (G_T7_EDRAM1_SIZE(hi) << 20);
10521 } else {
10522 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20;
10523 avail[i].limit = avail[i].base +
10524 (G_EDRAM1_SIZE(hi) << 20);
10525 }
10526 avail[i].idx = 1;
10527 i++;
10528 }
10529 if (lo & F_EXT_MEM_ENABLE) {
10530 switch (chip_id(sc)) {
10531 case CHELSIO_T4:
10532 case CHELSIO_T6:
10533 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
10534 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20;
10535 avail[i].limit = avail[i].base +
10536 (G_EXT_MEM_SIZE(hi) << 20);
10537 avail[i].idx = 2;
10538 break;
10539 case CHELSIO_T5:
10540 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10541 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20;
10542 avail[i].limit = avail[i].base +
10543 (G_EXT_MEM0_SIZE(hi) << 20);
10544 avail[i].idx = 3; /* Call it MC0 for T5 */
10545 break;
10546 default:
10547 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR);
10548 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20;
10549 avail[i].limit = avail[i].base +
10550 (G_T7_EXT_MEM0_SIZE(hi) << 20);
10551 avail[i].idx = 3; /* Call it MC0 for T7+ */
10552 break;
10553 }
10554 i++;
10555 }
10556 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) {
10557 /* Only T5 and T7+ have 2 MCs. */
10558 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7);
10559
10560 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10561 if (chip_id(sc) >= CHELSIO_T7) {
10562 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20;
10563 avail[i].limit = avail[i].base +
10564 (G_T7_EXT_MEM1_SIZE(hi) << 20);
10565 } else {
10566 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20;
10567 avail[i].limit = avail[i].base +
10568 (G_EXT_MEM1_SIZE(hi) << 20);
10569 }
10570 avail[i].idx = 4;
10571 i++;
10572 }
10573 if (lo & F_HMA_MUX) {
10574 /* Only T6+ have HMA. */
10575 MPASS(chip_id(sc) >= CHELSIO_T6);
10576
10577 if (chip_id(sc) >= CHELSIO_T7) {
10578 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR);
10579 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20;
10580 avail[i].limit = avail[i].base +
10581 (G_T7_HMA_SIZE(hi) << 20);
10582 } else {
10583 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
10584 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
10585 avail[i].limit = avail[i].base +
10586 (G_EXT_MEM1_SIZE(hi) << 20);
10587 }
10588 avail[i].idx = 5;
10589 i++;
10590 }
10591 MPASS(i <= nitems(avail));
10592 if (!i) /* no memory available */
10593 goto done;
10594 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
10595
10596 md = &mem[0];
10597 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
10598 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
10599 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
10600 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10601 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
10602 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
10603 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
10604 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
10605 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
10606
10607 /* the next few have explicit upper bounds */
10608 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
10609 md->limit = md->base - 1 +
10610 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
10611 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
10612 md++;
10613
10614 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
10615 md->limit = md->base - 1 +
10616 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
10617 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
10618 md++;
10619
10620 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10621 if (chip_id(sc) <= CHELSIO_T5)
10622 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
10623 else
10624 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
10625 md->limit = 0;
10626 } else {
10627 md->base = 0;
10628 md->idx = nitems(region); /* hide it */
10629 }
10630 md++;
10631
10632 #define ulp_region(reg) do {\
10633 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \
10634 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \
10635 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \
10636 md->limit += (1 << shift) - 1; \
10637 md++; \
10638 } while (0)
10639
10640 #define hide_ulp_region() do { \
10641 md->base = 0; \
10642 md->idx = nitems(region); \
10643 md++; \
10644 } while (0)
10645
10646 ulp_region(RX_ISCSI);
10647 ulp_region(RX_TDDP);
10648 ulp_region(TX_TPT);
10649 ulp_region(RX_STAG);
10650 ulp_region(RX_RQ);
10651 if (chip_id(sc) < CHELSIO_T7)
10652 ulp_region(RX_RQUDP);
10653 else
10654 hide_ulp_region();
10655 ulp_region(RX_PBL);
10656 ulp_region(TX_PBL);
10657 if (chip_id(sc) >= CHELSIO_T6)
10658 ulp_region(RX_TLS_KEY);
10659 else
10660 hide_ulp_region();
10661 if (chip_id(sc) >= CHELSIO_T7) {
10662 ulp_region(RX_RRQ);
10663 ulp_region(RX_NVME_TCP_STAG);
10664 ulp_region(RX_NVME_TCP_RQ);
10665 ulp_region(RX_NVME_TCP_PBL);
10666 ulp_region(TX_NVME_TCP_TPT);
10667 ulp_region(TX_NVME_TCP_PBL);
10668 } else {
10669 hide_ulp_region();
10670 hide_ulp_region();
10671 hide_ulp_region();
10672 hide_ulp_region();
10673 hide_ulp_region();
10674 hide_ulp_region();
10675 }
10676 #undef ulp_region
10677 #undef hide_ulp_region
10678
10679 md->base = 0;
10680 if (is_t4(sc))
10681 md->idx = nitems(region);
10682 else {
10683 uint32_t size = 0;
10684 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
10685 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
10686
10687 if (is_t5(sc)) {
10688 if (sge_ctrl & F_VFIFO_ENABLE)
10689 size = fifo_size << 2;
10690 } else
10691 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
10692
10693 if (size) {
10694 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
10695 md->limit = md->base + size - 1;
10696 } else
10697 md->idx = nitems(region);
10698 }
10699 md++;
10700
10701 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
10702 md->limit = 0;
10703 md++;
10704 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
10705 md->limit = 0;
10706 md++;
10707
10708 if (chip_id(sc) >= CHELSIO_T7) {
10709 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false);
10710 md->base = lo;
10711 } else {
10712 md->base = 0;
10713 md->idx = nitems(region);
10714 }
10715 md++;
10716
10717 md->base = sc->vres.ocq.start;
10718 if (sc->vres.ocq.size)
10719 md->limit = md->base + sc->vres.ocq.size - 1;
10720 else
10721 md->idx = nitems(region); /* hide it */
10722 md++;
10723
10724 /* add any address-space holes, there can be up to 3 */
10725 for (n = 0; n < i - 1; n++)
10726 if (avail[n].limit < avail[n + 1].base)
10727 (md++)->base = avail[n].limit;
10728 if (avail[n].limit)
10729 (md++)->base = avail[n].limit;
10730
10731 n = md - mem;
10732 MPASS(n <= nitems(mem));
10733 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
10734
10735 for (lo = 0; lo < i; lo++)
10736 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
10737 avail[lo].limit - 1);
10738
10739 sbuf_printf(sb, "\n");
10740 for (i = 0; i < n; i++) {
10741 if (mem[i].idx >= nitems(region))
10742 continue; /* skip holes */
10743 if (!mem[i].limit)
10744 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10745 mem_region_show(sb, region[mem[i].idx], mem[i].base,
10746 mem[i].limit);
10747 }
10748
10749 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10750 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10751 if (hi != lo - 1) {
10752 sbuf_printf(sb, "\n");
10753 mem_region_show(sb, "uP RAM:", lo, hi);
10754 }
10755
10756 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10757 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10758 if (hi != lo - 1)
10759 mem_region_show(sb, "uP Extmem2:", lo, hi);
10760
10761 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10762 if (chip_id(sc) >= CHELSIO_T7)
10763 nchan = 1 << G_T7_PMRXNUMCHN(lo);
10764 else
10765 nchan = lo & F_PMRXNUMCHN ? 2 : 1;
10766 for (i = 0, free = 0; i < nchan; i++)
10767 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10768 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10769 G_PMRXMAXPAGE(lo), free,
10770 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan);
10771
10772 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10773 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10774 if (chip_id(sc) >= CHELSIO_T7)
10775 nchan = 1 << G_T7_PMTXNUMCHN(lo);
10776 else
10777 nchan = 1 << G_PMTXNUMCHN(lo);
10778 for (i = 0, free = 0; i < nchan; i++)
10779 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10780 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10781 G_PMTXMAXPAGE(lo), free,
10782 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10783 hi >= (1 << 20) ? 'M' : 'K', nchan);
10784 sbuf_printf(sb, "%u p-structs (%u free)\n",
10785 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10786 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10787
10788 for (i = 0; i < 4; i++) {
10789 if (chip_id(sc) > CHELSIO_T5)
10790 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10791 else
10792 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10793 if (is_t5(sc)) {
10794 used = G_T5_USED(lo);
10795 alloc = G_T5_ALLOC(lo);
10796 } else {
10797 used = G_USED(lo);
10798 alloc = G_ALLOC(lo);
10799 }
10800 /* For T6+ these are MAC buffer groups */
10801 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10802 i, used, alloc);
10803 }
10804 for (i = 0; i < sc->chip_params->nchan; i++) {
10805 if (chip_id(sc) > CHELSIO_T5)
10806 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10807 else
10808 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10809 if (is_t5(sc)) {
10810 used = G_T5_USED(lo);
10811 alloc = G_T5_ALLOC(lo);
10812 } else {
10813 used = G_USED(lo);
10814 alloc = G_ALLOC(lo);
10815 }
10816 /* For T6+ these are MAC buffer groups */
10817 sbuf_printf(sb,
10818 "\nLoopback %d using %u pages out of %u allocated",
10819 i, used, alloc);
10820 }
10821 done:
10822 mtx_unlock(&sc->reg_lock);
10823 if (rc == 0)
10824 rc = sbuf_finish(sb);
10825 sbuf_delete(sb);
10826 return (rc);
10827 }
10828
10829 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10830 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10831 {
10832 *mask = x | y;
10833 y = htobe64(y);
10834 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10835 }
10836
10837 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10838 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10839 {
10840 struct adapter *sc = arg1;
10841 struct sbuf *sb;
10842 int rc, i;
10843
10844 MPASS(chip_id(sc) <= CHELSIO_T5);
10845
10846 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10847 if (sb == NULL)
10848 return (ENOMEM);
10849
10850 sbuf_printf(sb,
10851 "Idx Ethernet address Mask Vld Ports PF"
10852 " VF Replication P0 P1 P2 P3 ML");
10853 rc = 0;
10854 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10855 uint64_t tcamx, tcamy, mask;
10856 uint32_t cls_lo, cls_hi;
10857 uint8_t addr[ETHER_ADDR_LEN];
10858
10859 mtx_lock(&sc->reg_lock);
10860 if (hw_off_limits(sc))
10861 rc = ENXIO;
10862 else {
10863 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10864 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10865 }
10866 mtx_unlock(&sc->reg_lock);
10867 if (rc != 0)
10868 break;
10869 if (tcamx & tcamy)
10870 continue;
10871 tcamxy2valmask(tcamx, tcamy, addr, &mask);
10872 mtx_lock(&sc->reg_lock);
10873 if (hw_off_limits(sc))
10874 rc = ENXIO;
10875 else {
10876 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10877 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10878 }
10879 mtx_unlock(&sc->reg_lock);
10880 if (rc != 0)
10881 break;
10882 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10883 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
10884 addr[3], addr[4], addr[5], (uintmax_t)mask,
10885 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10886 G_PORTMAP(cls_hi), G_PF(cls_lo),
10887 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10888
10889 if (cls_lo & F_REPLICATE) {
10890 struct fw_ldst_cmd ldst_cmd;
10891
10892 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10893 ldst_cmd.op_to_addrspace =
10894 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10895 F_FW_CMD_REQUEST | F_FW_CMD_READ |
10896 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10897 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10898 ldst_cmd.u.mps.rplc.fid_idx =
10899 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10900 V_FW_LDST_CMD_IDX(i));
10901
10902 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10903 "t4mps");
10904 if (rc)
10905 break;
10906 if (hw_off_limits(sc))
10907 rc = ENXIO;
10908 else
10909 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10910 sizeof(ldst_cmd), &ldst_cmd);
10911 end_synchronized_op(sc, 0);
10912 if (rc != 0)
10913 break;
10914 else {
10915 sbuf_printf(sb, " %08x %08x %08x %08x",
10916 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10917 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10918 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10919 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10920 }
10921 } else
10922 sbuf_printf(sb, "%36s", "");
10923
10924 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10925 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10926 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10927 }
10928
10929 if (rc)
10930 (void) sbuf_finish(sb);
10931 else
10932 rc = sbuf_finish(sb);
10933 sbuf_delete(sb);
10934
10935 return (rc);
10936 }
10937
10938 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10939 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10940 {
10941 struct adapter *sc = arg1;
10942 struct sbuf *sb;
10943 int rc, i;
10944
10945 MPASS(chip_id(sc) == CHELSIO_T6);
10946
10947 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10948 if (sb == NULL)
10949 return (ENOMEM);
10950
10951 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
10952 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
10953 " Replication"
10954 " P0 P1 P2 P3 ML");
10955
10956 rc = 0;
10957 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10958 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10959 uint16_t ivlan;
10960 uint64_t tcamx, tcamy, val, mask;
10961 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10962 uint8_t addr[ETHER_ADDR_LEN];
10963
10964 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10965 if (i < 256)
10966 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10967 else
10968 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10969 mtx_lock(&sc->reg_lock);
10970 if (hw_off_limits(sc))
10971 rc = ENXIO;
10972 else {
10973 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10974 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10975 tcamy = G_DMACH(val) << 32;
10976 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10977 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10978 }
10979 mtx_unlock(&sc->reg_lock);
10980 if (rc != 0)
10981 break;
10982
10983 lookup_type = G_DATALKPTYPE(data2);
10984 port_num = G_DATAPORTNUM(data2);
10985 if (lookup_type && lookup_type != M_DATALKPTYPE) {
10986 /* Inner header VNI */
10987 vniy = ((data2 & F_DATAVIDH2) << 23) |
10988 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10989 dip_hit = data2 & F_DATADIPHIT;
10990 vlan_vld = 0;
10991 } else {
10992 vniy = 0;
10993 dip_hit = 0;
10994 vlan_vld = data2 & F_DATAVIDH2;
10995 ivlan = G_VIDL(val);
10996 }
10997
10998 ctl |= V_CTLXYBITSEL(1);
10999 mtx_lock(&sc->reg_lock);
11000 if (hw_off_limits(sc))
11001 rc = ENXIO;
11002 else {
11003 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11004 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
11005 tcamx = G_DMACH(val) << 32;
11006 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
11007 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
11008 }
11009 mtx_unlock(&sc->reg_lock);
11010 if (rc != 0)
11011 break;
11012
11013 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11014 /* Inner header VNI mask */
11015 vnix = ((data2 & F_DATAVIDH2) << 23) |
11016 (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
11017 } else
11018 vnix = 0;
11019
11020 if (tcamx & tcamy)
11021 continue;
11022 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11023
11024 mtx_lock(&sc->reg_lock);
11025 if (hw_off_limits(sc))
11026 rc = ENXIO;
11027 else {
11028 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11029 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11030 }
11031 mtx_unlock(&sc->reg_lock);
11032 if (rc != 0)
11033 break;
11034
11035 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11036 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11037 "%012jx %06x %06x - - %3c"
11038 " I %4x %3c %#x%4u%4d", i, addr[0],
11039 addr[1], addr[2], addr[3], addr[4], addr[5],
11040 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11041 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11042 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11043 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11044 } else {
11045 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11046 "%012jx - - ", i, addr[0], addr[1],
11047 addr[2], addr[3], addr[4], addr[5],
11048 (uintmax_t)mask);
11049
11050 if (vlan_vld)
11051 sbuf_printf(sb, "%4u Y ", ivlan);
11052 else
11053 sbuf_printf(sb, " - N ");
11054
11055 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11056 lookup_type ? 'I' : 'O', port_num,
11057 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11058 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11059 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11060 }
11061
11062
11063 if (cls_lo & F_T6_REPLICATE) {
11064 struct fw_ldst_cmd ldst_cmd;
11065
11066 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11067 ldst_cmd.op_to_addrspace =
11068 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11069 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11070 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11071 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11072 ldst_cmd.u.mps.rplc.fid_idx =
11073 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11074 V_FW_LDST_CMD_IDX(i));
11075
11076 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11077 "t6mps");
11078 if (rc)
11079 break;
11080 if (hw_off_limits(sc))
11081 rc = ENXIO;
11082 else
11083 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11084 sizeof(ldst_cmd), &ldst_cmd);
11085 end_synchronized_op(sc, 0);
11086 if (rc != 0)
11087 break;
11088 else {
11089 sbuf_printf(sb, " %08x %08x %08x %08x"
11090 " %08x %08x %08x %08x",
11091 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11092 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11093 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11094 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11095 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11096 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11097 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11098 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11099 }
11100 } else
11101 sbuf_printf(sb, "%72s", "");
11102
11103 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11104 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11105 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11106 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11107 }
11108
11109 if (rc)
11110 (void) sbuf_finish(sb);
11111 else
11112 rc = sbuf_finish(sb);
11113 sbuf_delete(sb);
11114
11115 return (rc);
11116 }
11117
11118 static int
sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)11119 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS)
11120 {
11121 struct adapter *sc = arg1;
11122 struct sbuf *sb;
11123 int rc, i;
11124
11125 MPASS(chip_id(sc) >= CHELSIO_T7);
11126
11127 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11128 if (sb == NULL)
11129 return (ENOMEM);
11130
11131 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
11132 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
11133 " Replication"
11134 " P0 P1 P2 P3 ML");
11135
11136 rc = 0;
11137 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
11138 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
11139 uint16_t ivlan;
11140 uint64_t tcamx, tcamy, val, mask;
11141 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
11142 uint8_t addr[ETHER_ADDR_LEN];
11143
11144 /* Read tcamy */
11145 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11146 if (chip_rev(sc) == 0) {
11147 if (i < 256)
11148 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11149 else
11150 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1);
11151 } else {
11152 #if 0
11153 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0));
11154 #endif
11155 if (i < 512)
11156 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0);
11157 else if (i < 1024)
11158 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1);
11159 else
11160 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2);
11161 }
11162
11163 mtx_lock(&sc->reg_lock);
11164 if (hw_off_limits(sc))
11165 rc = ENXIO;
11166 else {
11167 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11168 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11169 tcamy = G_DMACH(val) << 32;
11170 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11171 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11172 }
11173 mtx_unlock(&sc->reg_lock);
11174 if (rc != 0)
11175 break;
11176
11177 lookup_type = G_DATALKPTYPE(data2);
11178 port_num = G_DATAPORTNUM(data2);
11179 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11180 /* Inner header VNI */
11181 vniy = (((data2 & F_DATAVIDH2) |
11182 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11183 dip_hit = data2 & F_DATADIPHIT;
11184 vlan_vld = 0;
11185 } else {
11186 vniy = 0;
11187 dip_hit = 0;
11188 vlan_vld = data2 & F_DATAVIDH2;
11189 ivlan = G_VIDL(val);
11190 }
11191
11192 ctl |= V_CTLXYBITSEL(1);
11193 mtx_lock(&sc->reg_lock);
11194 if (hw_off_limits(sc))
11195 rc = ENXIO;
11196 else {
11197 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
11198 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1);
11199 tcamx = G_DMACH(val) << 32;
11200 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1);
11201 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1);
11202 }
11203 mtx_unlock(&sc->reg_lock);
11204 if (rc != 0)
11205 break;
11206
11207 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11208 /* Inner header VNI mask */
11209 vnix = (((data2 & F_DATAVIDH2) |
11210 G_DATAVIDH1(data2)) << 16) | G_VIDL(val);
11211 } else
11212 vnix = 0;
11213
11214 if (tcamx & tcamy)
11215 continue;
11216 tcamxy2valmask(tcamx, tcamy, addr, &mask);
11217
11218 mtx_lock(&sc->reg_lock);
11219 if (hw_off_limits(sc))
11220 rc = ENXIO;
11221 else {
11222 if (chip_rev(sc) == 0) {
11223 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
11224 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
11225 } else {
11226 t4_write_reg(sc, A_MPS_CLS_SRAM_H,
11227 V_SRAMWRN(0) | V_SRAMINDEX(i));
11228 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L);
11229 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H);
11230 }
11231 }
11232 mtx_unlock(&sc->reg_lock);
11233 if (rc != 0)
11234 break;
11235
11236 if (lookup_type && lookup_type != M_DATALKPTYPE) {
11237 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11238 "%012jx %06x %06x - - %3c"
11239 " I %4x %3c %#x%4u%4d", i, addr[0],
11240 addr[1], addr[2], addr[3], addr[4], addr[5],
11241 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
11242 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11243 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11244 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11245 } else {
11246 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
11247 "%012jx - - ", i, addr[0], addr[1],
11248 addr[2], addr[3], addr[4], addr[5],
11249 (uintmax_t)mask);
11250
11251 if (vlan_vld)
11252 sbuf_printf(sb, "%4u Y ", ivlan);
11253 else
11254 sbuf_printf(sb, " - N ");
11255
11256 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
11257 lookup_type ? 'I' : 'O', port_num,
11258 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
11259 G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
11260 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
11261 }
11262
11263 if (cls_lo & F_T6_REPLICATE) {
11264 struct fw_ldst_cmd ldst_cmd;
11265
11266 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11267 ldst_cmd.op_to_addrspace =
11268 htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
11269 F_FW_CMD_REQUEST | F_FW_CMD_READ |
11270 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
11271 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
11272 ldst_cmd.u.mps.rplc.fid_idx =
11273 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
11274 V_FW_LDST_CMD_IDX(i));
11275
11276 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
11277 "t6mps");
11278 if (rc)
11279 break;
11280 if (hw_off_limits(sc))
11281 rc = ENXIO;
11282 else
11283 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
11284 sizeof(ldst_cmd), &ldst_cmd);
11285 end_synchronized_op(sc, 0);
11286 if (rc != 0)
11287 break;
11288 else {
11289 sbuf_printf(sb, " %08x %08x %08x %08x"
11290 " %08x %08x %08x %08x",
11291 be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
11292 be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
11293 be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
11294 be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
11295 be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
11296 be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
11297 be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
11298 be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
11299 }
11300 } else
11301 sbuf_printf(sb, "%72s", "");
11302
11303 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
11304 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
11305 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
11306 (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
11307 }
11308
11309 if (rc)
11310 (void) sbuf_finish(sb);
11311 else
11312 rc = sbuf_finish(sb);
11313 sbuf_delete(sb);
11314
11315 return (rc);
11316 }
11317
11318 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)11319 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
11320 {
11321 struct adapter *sc = arg1;
11322 struct sbuf *sb;
11323 int rc;
11324 uint16_t mtus[NMTUS];
11325
11326 rc = 0;
11327 mtx_lock(&sc->reg_lock);
11328 if (hw_off_limits(sc))
11329 rc = ENXIO;
11330 else
11331 t4_read_mtu_tbl(sc, mtus, NULL);
11332 mtx_unlock(&sc->reg_lock);
11333 if (rc != 0)
11334 return (rc);
11335
11336 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11337 if (sb == NULL)
11338 return (ENOMEM);
11339
11340 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
11341 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
11342 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
11343 mtus[14], mtus[15]);
11344
11345 rc = sbuf_finish(sb);
11346 sbuf_delete(sb);
11347
11348 return (rc);
11349 }
11350
11351 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)11352 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
11353 {
11354 struct adapter *sc = arg1;
11355 struct sbuf *sb;
11356 int rc, i;
11357 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
11358 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
11359 uint32_t stats[T7_PM_RX_CACHE_NSTATS];
11360 static const char *tx_stats[MAX_PM_NSTATS] = {
11361 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
11362 "Tx FIFO wait", NULL, "Tx latency"
11363 };
11364 static const char *rx_stats[MAX_PM_NSTATS] = {
11365 "Read:", "Write bypass:", "Write mem:", "Flush:",
11366 "Rx FIFO wait", NULL, "Rx latency"
11367 };
11368
11369 rc = 0;
11370 mtx_lock(&sc->reg_lock);
11371 if (hw_off_limits(sc))
11372 rc = ENXIO;
11373 else {
11374 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
11375 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
11376 if (chip_id(sc) >= CHELSIO_T7)
11377 t4_pmrx_cache_get_stats(sc, stats);
11378 }
11379 mtx_unlock(&sc->reg_lock);
11380 if (rc != 0)
11381 return (rc);
11382
11383 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11384 if (sb == NULL)
11385 return (ENOMEM);
11386
11387 sbuf_printf(sb, " Tx pcmds Tx bytes");
11388 for (i = 0; i < 4; i++) {
11389 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11390 tx_cyc[i]);
11391 }
11392
11393 sbuf_printf(sb, "\n Rx pcmds Rx bytes");
11394 for (i = 0; i < 4; i++) {
11395 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11396 rx_cyc[i]);
11397 }
11398
11399 if (chip_id(sc) > CHELSIO_T5) {
11400 sbuf_printf(sb,
11401 "\n Total wait Total occupancy");
11402 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11403 tx_cyc[i]);
11404 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11405 rx_cyc[i]);
11406
11407 i += 2;
11408 MPASS(i < nitems(tx_stats));
11409
11410 sbuf_printf(sb,
11411 "\n Reads Total wait");
11412 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
11413 tx_cyc[i]);
11414 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
11415 rx_cyc[i]);
11416 }
11417
11418 if (chip_id(sc) >= CHELSIO_T7) {
11419 i = 0;
11420 sbuf_printf(sb, "\n\nPM RX Cache Stats\n");
11421 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]);
11422 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]);
11423 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]);
11424 sbuf_printf(sb, "%-40s %u\n", "Write Split Request",
11425 stats[i++]);
11426 sbuf_printf(sb, "%-40s %u\n",
11427 "Normal Read Split (Read Invalidate)", stats[i++]);
11428 sbuf_printf(sb, "%-40s %u\n",
11429 "Feedback Read Split (Read NoInvalidate)",
11430 stats[i++]);
11431 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]);
11432 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit",
11433 stats[i++]);
11434 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit",
11435 stats[i++]);
11436 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail",
11437 stats[i++]);
11438 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail",
11439 stats[i++]);
11440 sbuf_printf(sb, "%-40s %u\n",
11441 "Normal Read Hit Partial Avail",
11442 stats[i++]);
11443 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail",
11444 stats[i++]);
11445 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail",
11446 stats[i++]);
11447 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail",
11448 stats[i++]);
11449 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free",
11450 stats[i++]);
11451 sbuf_printf(sb, "%-40s %u\n",
11452 "Normal Read Part-avail Mul-Regions",
11453 stats[i++]);
11454 sbuf_printf(sb, "%-40s %u\n",
11455 "FB Read Part-avail Mul-Regions",
11456 stats[i++]);
11457 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used",
11458 stats[i++]);
11459 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used",
11460 stats[i++]);
11461 sbuf_printf(sb, "%-40s %u\n",
11462 "Write Miss LRU-Multiple Evict", stats[i++]);
11463 sbuf_printf(sb, "%-40s %u\n",
11464 "Write Hit Increasing Islands", stats[i++]);
11465 sbuf_printf(sb, "%-40s %u\n",
11466 "Normal Read Island Read split", stats[i++]);
11467 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction",
11468 stats[i++]);
11469 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction",
11470 stats[i++]);
11471 }
11472
11473 rc = sbuf_finish(sb);
11474 sbuf_delete(sb);
11475
11476 return (rc);
11477 }
11478
11479 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)11480 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
11481 {
11482 struct adapter *sc = arg1;
11483 struct sbuf *sb;
11484 int rc;
11485 struct tp_rdma_stats stats;
11486
11487 rc = 0;
11488 mtx_lock(&sc->reg_lock);
11489 if (hw_off_limits(sc))
11490 rc = ENXIO;
11491 else
11492 t4_tp_get_rdma_stats(sc, &stats, 0);
11493 mtx_unlock(&sc->reg_lock);
11494 if (rc != 0)
11495 return (rc);
11496
11497 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11498 if (sb == NULL)
11499 return (ENOMEM);
11500
11501 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
11502 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
11503
11504 rc = sbuf_finish(sb);
11505 sbuf_delete(sb);
11506
11507 return (rc);
11508 }
11509
11510 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)11511 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
11512 {
11513 struct adapter *sc = arg1;
11514 struct sbuf *sb;
11515 int rc;
11516 struct tp_tcp_stats v4, v6;
11517
11518 rc = 0;
11519 mtx_lock(&sc->reg_lock);
11520 if (hw_off_limits(sc))
11521 rc = ENXIO;
11522 else
11523 t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
11524 mtx_unlock(&sc->reg_lock);
11525 if (rc != 0)
11526 return (rc);
11527
11528 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11529 if (sb == NULL)
11530 return (ENOMEM);
11531
11532 sbuf_printf(sb,
11533 " IP IPv6\n");
11534 sbuf_printf(sb, "OutRsts: %20u %20u\n",
11535 v4.tcp_out_rsts, v6.tcp_out_rsts);
11536 sbuf_printf(sb, "InSegs: %20ju %20ju\n",
11537 v4.tcp_in_segs, v6.tcp_in_segs);
11538 sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
11539 v4.tcp_out_segs, v6.tcp_out_segs);
11540 sbuf_printf(sb, "RetransSegs: %20ju %20ju",
11541 v4.tcp_retrans_segs, v6.tcp_retrans_segs);
11542
11543 rc = sbuf_finish(sb);
11544 sbuf_delete(sb);
11545
11546 return (rc);
11547 }
11548
11549 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)11550 sysctl_tids(SYSCTL_HANDLER_ARGS)
11551 {
11552 struct adapter *sc = arg1;
11553 struct sbuf *sb;
11554 int rc;
11555 uint32_t x, y;
11556 struct tid_info *t = &sc->tids;
11557
11558 rc = 0;
11559 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11560 if (sb == NULL)
11561 return (ENOMEM);
11562
11563 if (t->natids) {
11564 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
11565 t->atids_in_use);
11566 }
11567
11568 if (t->nhpftids) {
11569 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
11570 t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
11571 }
11572
11573 if (t->ntids) {
11574 bool hashen = false;
11575
11576 mtx_lock(&sc->reg_lock);
11577 if (hw_off_limits(sc))
11578 rc = ENXIO;
11579 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
11580 hashen = true;
11581 if (chip_id(sc) <= CHELSIO_T5) {
11582 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
11583 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
11584 } else {
11585 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
11586 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
11587 }
11588 }
11589 mtx_unlock(&sc->reg_lock);
11590 if (rc != 0)
11591 goto done;
11592
11593 sbuf_printf(sb, "TID range: ");
11594 if (hashen) {
11595 if (x)
11596 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
11597 sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
11598 } else {
11599 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
11600 t->ntids - 1);
11601 }
11602 sbuf_printf(sb, ", in use: %u\n",
11603 atomic_load_acq_int(&t->tids_in_use));
11604 }
11605
11606 if (t->nstids) {
11607 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
11608 t->stid_base + t->nstids - 1, t->stids_in_use);
11609 }
11610
11611 if (t->nftids) {
11612 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
11613 t->ftid_end, t->ftids_in_use);
11614 }
11615
11616 if (t->netids) {
11617 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
11618 t->etid_base + t->netids - 1, t->etids_in_use);
11619 }
11620
11621 mtx_lock(&sc->reg_lock);
11622 if (hw_off_limits(sc))
11623 rc = ENXIO;
11624 else {
11625 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
11626 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
11627 }
11628 mtx_unlock(&sc->reg_lock);
11629 if (rc != 0)
11630 goto done;
11631 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
11632 done:
11633 if (rc == 0)
11634 rc = sbuf_finish(sb);
11635 else
11636 (void)sbuf_finish(sb);
11637 sbuf_delete(sb);
11638
11639 return (rc);
11640 }
11641
11642 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)11643 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
11644 {
11645 struct adapter *sc = arg1;
11646 struct sbuf *sb;
11647 int rc;
11648 struct tp_err_stats stats;
11649
11650 rc = 0;
11651 mtx_lock(&sc->reg_lock);
11652 if (hw_off_limits(sc))
11653 rc = ENXIO;
11654 else
11655 t4_tp_get_err_stats(sc, &stats, 0);
11656 mtx_unlock(&sc->reg_lock);
11657 if (rc != 0)
11658 return (rc);
11659
11660 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11661 if (sb == NULL)
11662 return (ENOMEM);
11663
11664 if (sc->chip_params->nchan > 2) {
11665 sbuf_printf(sb, " channel 0 channel 1"
11666 " channel 2 channel 3\n");
11667 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
11668 stats.mac_in_errs[0], stats.mac_in_errs[1],
11669 stats.mac_in_errs[2], stats.mac_in_errs[3]);
11670 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
11671 stats.hdr_in_errs[0], stats.hdr_in_errs[1],
11672 stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
11673 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
11674 stats.tcp_in_errs[0], stats.tcp_in_errs[1],
11675 stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
11676 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
11677 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
11678 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
11679 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
11680 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
11681 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
11682 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
11683 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
11684 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
11685 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
11686 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
11687 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
11688 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
11689 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
11690 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
11691 } else {
11692 sbuf_printf(sb, " channel 0 channel 1\n");
11693 sbuf_printf(sb, "macInErrs: %10u %10u\n",
11694 stats.mac_in_errs[0], stats.mac_in_errs[1]);
11695 sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
11696 stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
11697 sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
11698 stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
11699 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
11700 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
11701 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
11702 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
11703 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
11704 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
11705 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
11706 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
11707 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
11708 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
11709 }
11710
11711 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
11712 stats.ofld_no_neigh, stats.ofld_cong_defer);
11713
11714 rc = sbuf_finish(sb);
11715 sbuf_delete(sb);
11716
11717 return (rc);
11718 }
11719
11720 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)11721 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
11722 {
11723 struct adapter *sc = arg1;
11724 struct sbuf *sb;
11725 int rc;
11726 struct tp_tnl_stats stats;
11727
11728 rc = 0;
11729 mtx_lock(&sc->reg_lock);
11730 if (hw_off_limits(sc))
11731 rc = ENXIO;
11732 else
11733 t4_tp_get_tnl_stats(sc, &stats, 1);
11734 mtx_unlock(&sc->reg_lock);
11735 if (rc != 0)
11736 return (rc);
11737
11738 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11739 if (sb == NULL)
11740 return (ENOMEM);
11741
11742 if (sc->chip_params->nchan > 2) {
11743 sbuf_printf(sb, " channel 0 channel 1"
11744 " channel 2 channel 3\n");
11745 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n",
11746 stats.out_pkt[0], stats.out_pkt[1],
11747 stats.out_pkt[2], stats.out_pkt[3]);
11748 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u",
11749 stats.in_pkt[0], stats.in_pkt[1],
11750 stats.in_pkt[2], stats.in_pkt[3]);
11751 } else {
11752 sbuf_printf(sb, " channel 0 channel 1\n");
11753 sbuf_printf(sb, "OutPkts: %10u %10u\n",
11754 stats.out_pkt[0], stats.out_pkt[1]);
11755 sbuf_printf(sb, "InPkts: %10u %10u",
11756 stats.in_pkt[0], stats.in_pkt[1]);
11757 }
11758
11759 rc = sbuf_finish(sb);
11760 sbuf_delete(sb);
11761
11762 return (rc);
11763 }
11764
11765 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)11766 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
11767 {
11768 struct adapter *sc = arg1;
11769 struct tp_params *tpp = &sc->params.tp;
11770 u_int mask;
11771 int rc;
11772
11773 mask = tpp->la_mask >> 16;
11774 rc = sysctl_handle_int(oidp, &mask, 0, req);
11775 if (rc != 0 || req->newptr == NULL)
11776 return (rc);
11777 if (mask > 0xffff)
11778 return (EINVAL);
11779 mtx_lock(&sc->reg_lock);
11780 if (hw_off_limits(sc))
11781 rc = ENXIO;
11782 else {
11783 tpp->la_mask = mask << 16;
11784 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
11785 tpp->la_mask);
11786 }
11787 mtx_unlock(&sc->reg_lock);
11788
11789 return (rc);
11790 }
11791
11792 struct field_desc {
11793 const char *name;
11794 u_int start;
11795 u_int width;
11796 };
11797
11798 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)11799 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
11800 {
11801 char buf[32];
11802 int line_size = 0;
11803
11804 while (f->name) {
11805 uint64_t mask = (1ULL << f->width) - 1;
11806 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
11807 ((uintmax_t)v >> f->start) & mask);
11808
11809 if (line_size + len >= 79) {
11810 line_size = 8;
11811 sbuf_printf(sb, "\n ");
11812 }
11813 sbuf_printf(sb, "%s ", buf);
11814 line_size += len + 1;
11815 f++;
11816 }
11817 sbuf_printf(sb, "\n");
11818 }
11819
11820 static const struct field_desc tp_la0[] = {
11821 { "RcfOpCodeOut", 60, 4 },
11822 { "State", 56, 4 },
11823 { "WcfState", 52, 4 },
11824 { "RcfOpcSrcOut", 50, 2 },
11825 { "CRxError", 49, 1 },
11826 { "ERxError", 48, 1 },
11827 { "SanityFailed", 47, 1 },
11828 { "SpuriousMsg", 46, 1 },
11829 { "FlushInputMsg", 45, 1 },
11830 { "FlushInputCpl", 44, 1 },
11831 { "RssUpBit", 43, 1 },
11832 { "RssFilterHit", 42, 1 },
11833 { "Tid", 32, 10 },
11834 { "InitTcb", 31, 1 },
11835 { "LineNumber", 24, 7 },
11836 { "Emsg", 23, 1 },
11837 { "EdataOut", 22, 1 },
11838 { "Cmsg", 21, 1 },
11839 { "CdataOut", 20, 1 },
11840 { "EreadPdu", 19, 1 },
11841 { "CreadPdu", 18, 1 },
11842 { "TunnelPkt", 17, 1 },
11843 { "RcfPeerFin", 16, 1 },
11844 { "RcfReasonOut", 12, 4 },
11845 { "TxCchannel", 10, 2 },
11846 { "RcfTxChannel", 8, 2 },
11847 { "RxEchannel", 6, 2 },
11848 { "RcfRxChannel", 5, 1 },
11849 { "RcfDataOutSrdy", 4, 1 },
11850 { "RxDvld", 3, 1 },
11851 { "RxOoDvld", 2, 1 },
11852 { "RxCongestion", 1, 1 },
11853 { "TxCongestion", 0, 1 },
11854 { NULL }
11855 };
11856
11857 static const struct field_desc tp_la1[] = {
11858 { "CplCmdIn", 56, 8 },
11859 { "CplCmdOut", 48, 8 },
11860 { "ESynOut", 47, 1 },
11861 { "EAckOut", 46, 1 },
11862 { "EFinOut", 45, 1 },
11863 { "ERstOut", 44, 1 },
11864 { "SynIn", 43, 1 },
11865 { "AckIn", 42, 1 },
11866 { "FinIn", 41, 1 },
11867 { "RstIn", 40, 1 },
11868 { "DataIn", 39, 1 },
11869 { "DataInVld", 38, 1 },
11870 { "PadIn", 37, 1 },
11871 { "RxBufEmpty", 36, 1 },
11872 { "RxDdp", 35, 1 },
11873 { "RxFbCongestion", 34, 1 },
11874 { "TxFbCongestion", 33, 1 },
11875 { "TxPktSumSrdy", 32, 1 },
11876 { "RcfUlpType", 28, 4 },
11877 { "Eread", 27, 1 },
11878 { "Ebypass", 26, 1 },
11879 { "Esave", 25, 1 },
11880 { "Static0", 24, 1 },
11881 { "Cread", 23, 1 },
11882 { "Cbypass", 22, 1 },
11883 { "Csave", 21, 1 },
11884 { "CPktOut", 20, 1 },
11885 { "RxPagePoolFull", 18, 2 },
11886 { "RxLpbkPkt", 17, 1 },
11887 { "TxLpbkPkt", 16, 1 },
11888 { "RxVfValid", 15, 1 },
11889 { "SynLearned", 14, 1 },
11890 { "SetDelEntry", 13, 1 },
11891 { "SetInvEntry", 12, 1 },
11892 { "CpcmdDvld", 11, 1 },
11893 { "CpcmdSave", 10, 1 },
11894 { "RxPstructsFull", 8, 2 },
11895 { "EpcmdDvld", 7, 1 },
11896 { "EpcmdFlush", 6, 1 },
11897 { "EpcmdTrimPrefix", 5, 1 },
11898 { "EpcmdTrimPostfix", 4, 1 },
11899 { "ERssIp4Pkt", 3, 1 },
11900 { "ERssIp6Pkt", 2, 1 },
11901 { "ERssTcpUdpPkt", 1, 1 },
11902 { "ERssFceFipPkt", 0, 1 },
11903 { NULL }
11904 };
11905
11906 static const struct field_desc tp_la2[] = {
11907 { "CplCmdIn", 56, 8 },
11908 { "MpsVfVld", 55, 1 },
11909 { "MpsPf", 52, 3 },
11910 { "MpsVf", 44, 8 },
11911 { "SynIn", 43, 1 },
11912 { "AckIn", 42, 1 },
11913 { "FinIn", 41, 1 },
11914 { "RstIn", 40, 1 },
11915 { "DataIn", 39, 1 },
11916 { "DataInVld", 38, 1 },
11917 { "PadIn", 37, 1 },
11918 { "RxBufEmpty", 36, 1 },
11919 { "RxDdp", 35, 1 },
11920 { "RxFbCongestion", 34, 1 },
11921 { "TxFbCongestion", 33, 1 },
11922 { "TxPktSumSrdy", 32, 1 },
11923 { "RcfUlpType", 28, 4 },
11924 { "Eread", 27, 1 },
11925 { "Ebypass", 26, 1 },
11926 { "Esave", 25, 1 },
11927 { "Static0", 24, 1 },
11928 { "Cread", 23, 1 },
11929 { "Cbypass", 22, 1 },
11930 { "Csave", 21, 1 },
11931 { "CPktOut", 20, 1 },
11932 { "RxPagePoolFull", 18, 2 },
11933 { "RxLpbkPkt", 17, 1 },
11934 { "TxLpbkPkt", 16, 1 },
11935 { "RxVfValid", 15, 1 },
11936 { "SynLearned", 14, 1 },
11937 { "SetDelEntry", 13, 1 },
11938 { "SetInvEntry", 12, 1 },
11939 { "CpcmdDvld", 11, 1 },
11940 { "CpcmdSave", 10, 1 },
11941 { "RxPstructsFull", 8, 2 },
11942 { "EpcmdDvld", 7, 1 },
11943 { "EpcmdFlush", 6, 1 },
11944 { "EpcmdTrimPrefix", 5, 1 },
11945 { "EpcmdTrimPostfix", 4, 1 },
11946 { "ERssIp4Pkt", 3, 1 },
11947 { "ERssIp6Pkt", 2, 1 },
11948 { "ERssTcpUdpPkt", 1, 1 },
11949 { "ERssFceFipPkt", 0, 1 },
11950 { NULL }
11951 };
11952
11953 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)11954 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
11955 {
11956
11957 field_desc_show(sb, *p, tp_la0);
11958 }
11959
11960 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)11961 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
11962 {
11963
11964 if (idx)
11965 sbuf_printf(sb, "\n");
11966 field_desc_show(sb, p[0], tp_la0);
11967 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11968 field_desc_show(sb, p[1], tp_la0);
11969 }
11970
11971 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)11972 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
11973 {
11974
11975 if (idx)
11976 sbuf_printf(sb, "\n");
11977 field_desc_show(sb, p[0], tp_la0);
11978 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
11979 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11980 }
11981
11982 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11983 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11984 {
11985 struct adapter *sc = arg1;
11986 struct sbuf *sb;
11987 uint64_t *buf, *p;
11988 int rc;
11989 u_int i, inc;
11990 void (*show_func)(struct sbuf *, uint64_t *, int);
11991
11992 rc = 0;
11993 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11994 if (sb == NULL)
11995 return (ENOMEM);
11996
11997 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11998
11999 mtx_lock(&sc->reg_lock);
12000 if (hw_off_limits(sc))
12001 rc = ENXIO;
12002 else {
12003 t4_tp_read_la(sc, buf, NULL);
12004 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
12005 case 2:
12006 inc = 2;
12007 show_func = tp_la_show2;
12008 break;
12009 case 3:
12010 inc = 2;
12011 show_func = tp_la_show3;
12012 break;
12013 default:
12014 inc = 1;
12015 show_func = tp_la_show;
12016 }
12017 }
12018 mtx_unlock(&sc->reg_lock);
12019 if (rc != 0)
12020 goto done;
12021
12022 p = buf;
12023 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
12024 (*show_func)(sb, p, i);
12025 rc = sbuf_finish(sb);
12026 done:
12027 sbuf_delete(sb);
12028 free(buf, M_CXGBE);
12029 return (rc);
12030 }
12031
12032 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)12033 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
12034 {
12035 struct adapter *sc = arg1;
12036 struct sbuf *sb;
12037 int rc;
12038 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
12039
12040 rc = 0;
12041 mtx_lock(&sc->reg_lock);
12042 if (hw_off_limits(sc))
12043 rc = ENXIO;
12044 else
12045 t4_get_chan_txrate(sc, nrate, orate);
12046 mtx_unlock(&sc->reg_lock);
12047 if (rc != 0)
12048 return (rc);
12049
12050 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
12051 if (sb == NULL)
12052 return (ENOMEM);
12053
12054 if (sc->chip_params->nchan > 2) {
12055 sbuf_printf(sb, " channel 0 channel 1"
12056 " channel 2 channel 3\n");
12057 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
12058 nrate[0], nrate[1], nrate[2], nrate[3]);
12059 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
12060 orate[0], orate[1], orate[2], orate[3]);
12061 } else {
12062 sbuf_printf(sb, " channel 0 channel 1\n");
12063 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
12064 nrate[0], nrate[1]);
12065 sbuf_printf(sb, "Offload B/s: %10ju %10ju",
12066 orate[0], orate[1]);
12067 }
12068
12069 rc = sbuf_finish(sb);
12070 sbuf_delete(sb);
12071
12072 return (rc);
12073 }
12074
12075 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)12076 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
12077 {
12078 struct adapter *sc = arg1;
12079 struct sbuf *sb;
12080 uint32_t *buf, *p;
12081 int rc, i;
12082
12083 rc = 0;
12084 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12085 if (sb == NULL)
12086 return (ENOMEM);
12087
12088 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
12089 M_ZERO | M_WAITOK);
12090
12091 mtx_lock(&sc->reg_lock);
12092 if (hw_off_limits(sc))
12093 rc = ENXIO;
12094 else
12095 t4_ulprx_read_la(sc, buf);
12096 mtx_unlock(&sc->reg_lock);
12097 if (rc != 0)
12098 goto done;
12099
12100 p = buf;
12101 sbuf_printf(sb, " Pcmd Type Message"
12102 " Data");
12103 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
12104 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
12105 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
12106 }
12107 rc = sbuf_finish(sb);
12108 done:
12109 sbuf_delete(sb);
12110 free(buf, M_CXGBE);
12111 return (rc);
12112 }
12113
12114 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)12115 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
12116 {
12117 struct adapter *sc = arg1;
12118 struct sbuf *sb;
12119 int rc;
12120 uint32_t cfg, s1, s2;
12121
12122 MPASS(chip_id(sc) >= CHELSIO_T5);
12123
12124 rc = 0;
12125 mtx_lock(&sc->reg_lock);
12126 if (hw_off_limits(sc))
12127 rc = ENXIO;
12128 else {
12129 cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
12130 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
12131 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
12132 }
12133 mtx_unlock(&sc->reg_lock);
12134 if (rc != 0)
12135 return (rc);
12136
12137 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12138 if (sb == NULL)
12139 return (ENOMEM);
12140
12141 if (G_STATSOURCE_T5(cfg) == 7) {
12142 int mode;
12143
12144 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
12145 if (mode == 0)
12146 sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
12147 else if (mode == 1)
12148 sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
12149 else
12150 sbuf_printf(sb, "unknown mode %d", mode);
12151 }
12152 rc = sbuf_finish(sb);
12153 sbuf_delete(sb);
12154
12155 return (rc);
12156 }
12157
12158 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)12159 sysctl_cpus(SYSCTL_HANDLER_ARGS)
12160 {
12161 struct adapter *sc = arg1;
12162 enum cpu_sets op = arg2;
12163 cpuset_t cpuset;
12164 struct sbuf *sb;
12165 int i, rc;
12166
12167 MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
12168
12169 CPU_ZERO(&cpuset);
12170 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
12171 if (rc != 0)
12172 return (rc);
12173
12174 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
12175 if (sb == NULL)
12176 return (ENOMEM);
12177
12178 CPU_FOREACH(i)
12179 sbuf_printf(sb, "%d ", i);
12180 rc = sbuf_finish(sb);
12181 sbuf_delete(sb);
12182
12183 return (rc);
12184 }
12185
12186 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)12187 sysctl_reset(SYSCTL_HANDLER_ARGS)
12188 {
12189 struct adapter *sc = arg1;
12190 u_int val;
12191 int rc;
12192
12193 val = atomic_load_int(&sc->num_resets);
12194 rc = sysctl_handle_int(oidp, &val, 0, req);
12195 if (rc != 0 || req->newptr == NULL)
12196 return (rc);
12197
12198 if (val == 0) {
12199 /* Zero out the counter that tracks reset. */
12200 atomic_store_int(&sc->num_resets, 0);
12201 return (0);
12202 }
12203
12204 if (val != 1)
12205 return (EINVAL); /* 0 or 1 are the only legal values */
12206
12207 if (hw_off_limits(sc)) /* harmless race */
12208 return (EALREADY);
12209
12210 taskqueue_enqueue(reset_tq, &sc->reset_task);
12211 return (0);
12212 }
12213
12214 static int
sysctl_tcb_cache(SYSCTL_HANDLER_ARGS)12215 sysctl_tcb_cache(SYSCTL_HANDLER_ARGS)
12216 {
12217 struct adapter *sc = arg1;
12218 u_int val, v;
12219 int rc;
12220
12221 mtx_lock(&sc->reg_lock);
12222 if (hw_off_limits(sc)) {
12223 rc = ENXIO;
12224 goto done;
12225 }
12226 t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
12227 mtx_unlock(&sc->reg_lock);
12228
12229 val = v & F_GLFL ? 0 : 1;
12230 rc = sysctl_handle_int(oidp, &val, 0, req);
12231 if (rc != 0 || req->newptr == NULL)
12232 return (rc);
12233 if (val == 0)
12234 v |= F_GLFL;
12235 else
12236 v &= ~F_GLFL;
12237
12238 mtx_lock(&sc->reg_lock);
12239 if (hw_off_limits(sc))
12240 rc = ENXIO;
12241 else
12242 t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
12243 done:
12244 mtx_unlock(&sc->reg_lock);
12245 return (rc);
12246 }
12247
12248 #ifdef TCP_OFFLOAD
12249 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)12250 sysctl_tls(SYSCTL_HANDLER_ARGS)
12251 {
12252 struct adapter *sc = arg1;
12253 int i, j, v, rc;
12254 struct vi_info *vi;
12255
12256 v = sc->tt.tls;
12257 rc = sysctl_handle_int(oidp, &v, 0, req);
12258 if (rc != 0 || req->newptr == NULL)
12259 return (rc);
12260
12261 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
12262 return (ENOTSUP);
12263
12264 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
12265 if (rc)
12266 return (rc);
12267 if (hw_off_limits(sc))
12268 rc = ENXIO;
12269 else {
12270 sc->tt.tls = !!v;
12271 for_each_port(sc, i) {
12272 for_each_vi(sc->port[i], j, vi) {
12273 if (vi->flags & VI_INIT_DONE)
12274 t4_update_fl_bufsize(vi->ifp);
12275 }
12276 }
12277 }
12278 end_synchronized_op(sc, 0);
12279
12280 return (rc);
12281
12282 }
12283
12284 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)12285 unit_conv(char *buf, size_t len, u_int val, u_int factor)
12286 {
12287 u_int rem = val % factor;
12288
12289 if (rem == 0)
12290 snprintf(buf, len, "%u", val / factor);
12291 else {
12292 while (rem % 10 == 0)
12293 rem /= 10;
12294 snprintf(buf, len, "%u.%u", val / factor, rem);
12295 }
12296 }
12297
12298 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)12299 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
12300 {
12301 struct adapter *sc = arg1;
12302 char buf[16];
12303 u_int res, re;
12304 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12305
12306 mtx_lock(&sc->reg_lock);
12307 if (hw_off_limits(sc))
12308 res = (u_int)-1;
12309 else
12310 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
12311 mtx_unlock(&sc->reg_lock);
12312 if (res == (u_int)-1)
12313 return (ENXIO);
12314
12315 switch (arg2) {
12316 case 0:
12317 /* timer_tick */
12318 re = G_TIMERRESOLUTION(res);
12319 break;
12320 case 1:
12321 /* TCP timestamp tick */
12322 re = G_TIMESTAMPRESOLUTION(res);
12323 break;
12324 case 2:
12325 /* DACK tick */
12326 re = G_DELAYEDACKRESOLUTION(res);
12327 break;
12328 default:
12329 return (EDOOFUS);
12330 }
12331
12332 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
12333
12334 return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
12335 }
12336
12337 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)12338 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
12339 {
12340 struct adapter *sc = arg1;
12341 int rc;
12342 u_int dack_tmr, dack_re, v;
12343 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12344
12345 mtx_lock(&sc->reg_lock);
12346 if (hw_off_limits(sc))
12347 rc = ENXIO;
12348 else {
12349 rc = 0;
12350 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
12351 A_TP_TIMER_RESOLUTION));
12352 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
12353 }
12354 mtx_unlock(&sc->reg_lock);
12355 if (rc != 0)
12356 return (rc);
12357
12358 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
12359
12360 return (sysctl_handle_int(oidp, &v, 0, req));
12361 }
12362
12363 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)12364 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
12365 {
12366 struct adapter *sc = arg1;
12367 int rc, reg = arg2;
12368 u_int tre;
12369 u_long tp_tick_us, v;
12370 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
12371
12372 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
12373 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
12374 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
12375 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
12376
12377 mtx_lock(&sc->reg_lock);
12378 if (hw_off_limits(sc))
12379 rc = ENXIO;
12380 else {
12381 rc = 0;
12382 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
12383 tp_tick_us = (cclk_ps << tre) / 1000000;
12384 if (reg == A_TP_INIT_SRTT)
12385 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
12386 else
12387 v = tp_tick_us * t4_read_reg(sc, reg);
12388 }
12389 mtx_unlock(&sc->reg_lock);
12390 if (rc != 0)
12391 return (rc);
12392 else
12393 return (sysctl_handle_long(oidp, &v, 0, req));
12394 }
12395
12396 /*
12397 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
12398 * passed to this function.
12399 */
12400 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)12401 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
12402 {
12403 struct adapter *sc = arg1;
12404 int rc, idx = arg2;
12405 u_int v;
12406
12407 MPASS(idx >= 0 && idx <= 24);
12408
12409 mtx_lock(&sc->reg_lock);
12410 if (hw_off_limits(sc))
12411 rc = ENXIO;
12412 else {
12413 rc = 0;
12414 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
12415 }
12416 mtx_unlock(&sc->reg_lock);
12417 if (rc != 0)
12418 return (rc);
12419 else
12420 return (sysctl_handle_int(oidp, &v, 0, req));
12421 }
12422
12423 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)12424 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
12425 {
12426 struct adapter *sc = arg1;
12427 int rc, idx = arg2;
12428 u_int shift, v, r;
12429
12430 MPASS(idx >= 0 && idx < 16);
12431
12432 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
12433 shift = (idx & 3) << 3;
12434 mtx_lock(&sc->reg_lock);
12435 if (hw_off_limits(sc))
12436 rc = ENXIO;
12437 else {
12438 rc = 0;
12439 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
12440 }
12441 mtx_unlock(&sc->reg_lock);
12442 if (rc != 0)
12443 return (rc);
12444 else
12445 return (sysctl_handle_int(oidp, &v, 0, req));
12446 }
12447
12448 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)12449 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
12450 {
12451 struct vi_info *vi = arg1;
12452 struct adapter *sc = vi->adapter;
12453 int idx, rc, i;
12454 struct sge_ofld_rxq *ofld_rxq;
12455 uint8_t v;
12456
12457 idx = vi->ofld_tmr_idx;
12458
12459 rc = sysctl_handle_int(oidp, &idx, 0, req);
12460 if (rc != 0 || req->newptr == NULL)
12461 return (rc);
12462
12463 if (idx < 0 || idx >= SGE_NTIMERS)
12464 return (EINVAL);
12465
12466 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12467 "t4otmr");
12468 if (rc)
12469 return (rc);
12470
12471 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
12472 for_each_ofld_rxq(vi, i, ofld_rxq) {
12473 #ifdef atomic_store_rel_8
12474 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
12475 #else
12476 ofld_rxq->iq.intr_params = v;
12477 #endif
12478 }
12479 vi->ofld_tmr_idx = idx;
12480
12481 end_synchronized_op(sc, LOCK_HELD);
12482 return (0);
12483 }
12484
12485 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)12486 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
12487 {
12488 struct vi_info *vi = arg1;
12489 struct adapter *sc = vi->adapter;
12490 int idx, rc;
12491
12492 idx = vi->ofld_pktc_idx;
12493
12494 rc = sysctl_handle_int(oidp, &idx, 0, req);
12495 if (rc != 0 || req->newptr == NULL)
12496 return (rc);
12497
12498 if (idx < -1 || idx >= SGE_NCOUNTERS)
12499 return (EINVAL);
12500
12501 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
12502 "t4opktc");
12503 if (rc)
12504 return (rc);
12505
12506 if (vi->flags & VI_INIT_DONE)
12507 rc = EBUSY; /* cannot be changed once the queues are created */
12508 else
12509 vi->ofld_pktc_idx = idx;
12510
12511 end_synchronized_op(sc, LOCK_HELD);
12512 return (rc);
12513 }
12514 #endif
12515
12516 static int
get_sge_context(struct adapter * sc,int mem_id,uint32_t cid,int len,uint32_t * data)12517 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len,
12518 uint32_t *data)
12519 {
12520 int rc;
12521
12522 if (len < sc->chip_params->sge_ctxt_size)
12523 return (ENOBUFS);
12524 if (cid > M_CTXTQID)
12525 return (EINVAL);
12526 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS &&
12527 mem_id != CTXT_FLM && mem_id != CTXT_CNM)
12528 return (EINVAL);
12529
12530 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
12531 if (rc)
12532 return (rc);
12533
12534 if (hw_off_limits(sc)) {
12535 rc = ENXIO;
12536 goto done;
12537 }
12538
12539 if (sc->flags & FW_OK) {
12540 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data);
12541 if (rc == 0)
12542 goto done;
12543 }
12544
12545 /*
12546 * Read via firmware failed or wasn't even attempted. Read directly via
12547 * the backdoor.
12548 */
12549 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data);
12550 done:
12551 end_synchronized_op(sc, 0);
12552 return (rc);
12553 }
12554
12555 static int
load_fw(struct adapter * sc,struct t4_data * fw)12556 load_fw(struct adapter *sc, struct t4_data *fw)
12557 {
12558 int rc;
12559 uint8_t *fw_data;
12560
12561 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
12562 if (rc)
12563 return (rc);
12564
12565 if (hw_off_limits(sc)) {
12566 rc = ENXIO;
12567 goto done;
12568 }
12569
12570 /*
12571 * The firmware, with the sole exception of the memory parity error
12572 * handler, runs from memory and not flash. It is almost always safe to
12573 * install a new firmware on a running system. Just set bit 1 in
12574 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
12575 */
12576 if (sc->flags & FULL_INIT_DONE &&
12577 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
12578 rc = EBUSY;
12579 goto done;
12580 }
12581
12582 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
12583
12584 rc = copyin(fw->data, fw_data, fw->len);
12585 if (rc == 0)
12586 rc = -t4_load_fw(sc, fw_data, fw->len);
12587
12588 free(fw_data, M_CXGBE);
12589 done:
12590 end_synchronized_op(sc, 0);
12591 return (rc);
12592 }
12593
12594 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)12595 load_cfg(struct adapter *sc, struct t4_data *cfg)
12596 {
12597 int rc;
12598 uint8_t *cfg_data = NULL;
12599
12600 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12601 if (rc)
12602 return (rc);
12603
12604 if (hw_off_limits(sc)) {
12605 rc = ENXIO;
12606 goto done;
12607 }
12608
12609 if (cfg->len == 0) {
12610 /* clear */
12611 rc = -t4_load_cfg(sc, NULL, 0);
12612 goto done;
12613 }
12614
12615 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
12616
12617 rc = copyin(cfg->data, cfg_data, cfg->len);
12618 if (rc == 0)
12619 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
12620
12621 free(cfg_data, M_CXGBE);
12622 done:
12623 end_synchronized_op(sc, 0);
12624 return (rc);
12625 }
12626
12627 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)12628 load_boot(struct adapter *sc, struct t4_bootrom *br)
12629 {
12630 int rc;
12631 uint8_t *br_data = NULL;
12632 u_int offset;
12633
12634 if (br->len > 1024 * 1024)
12635 return (EFBIG);
12636
12637 if (br->pf_offset == 0) {
12638 /* pfidx */
12639 if (br->pfidx_addr > 7)
12640 return (EINVAL);
12641 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
12642 A_PCIE_PF_EXPROM_OFST)));
12643 } else if (br->pf_offset == 1) {
12644 /* offset */
12645 offset = G_OFFSET(br->pfidx_addr);
12646 } else {
12647 return (EINVAL);
12648 }
12649
12650 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
12651 if (rc)
12652 return (rc);
12653
12654 if (hw_off_limits(sc)) {
12655 rc = ENXIO;
12656 goto done;
12657 }
12658
12659 if (br->len == 0) {
12660 /* clear */
12661 rc = -t4_load_boot(sc, NULL, offset, 0);
12662 goto done;
12663 }
12664
12665 br_data = malloc(br->len, M_CXGBE, M_WAITOK);
12666
12667 rc = copyin(br->data, br_data, br->len);
12668 if (rc == 0)
12669 rc = -t4_load_boot(sc, br_data, offset, br->len);
12670
12671 free(br_data, M_CXGBE);
12672 done:
12673 end_synchronized_op(sc, 0);
12674 return (rc);
12675 }
12676
12677 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)12678 load_bootcfg(struct adapter *sc, struct t4_data *bc)
12679 {
12680 int rc;
12681 uint8_t *bc_data = NULL;
12682
12683 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
12684 if (rc)
12685 return (rc);
12686
12687 if (hw_off_limits(sc)) {
12688 rc = ENXIO;
12689 goto done;
12690 }
12691
12692 if (bc->len == 0) {
12693 /* clear */
12694 rc = -t4_load_bootcfg(sc, NULL, 0);
12695 goto done;
12696 }
12697
12698 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
12699
12700 rc = copyin(bc->data, bc_data, bc->len);
12701 if (rc == 0)
12702 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
12703
12704 free(bc_data, M_CXGBE);
12705 done:
12706 end_synchronized_op(sc, 0);
12707 return (rc);
12708 }
12709
12710 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)12711 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
12712 {
12713 int rc;
12714 struct cudbg_init *cudbg;
12715 void *handle, *buf;
12716
12717 /* buf is large, don't block if no memory is available */
12718 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
12719 if (buf == NULL)
12720 return (ENOMEM);
12721
12722 handle = cudbg_alloc_handle();
12723 if (handle == NULL) {
12724 rc = ENOMEM;
12725 goto done;
12726 }
12727
12728 cudbg = cudbg_get_init(handle);
12729 cudbg->adap = sc;
12730 cudbg->print = (cudbg_print_cb)printf;
12731
12732 #ifndef notyet
12733 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
12734 __func__, dump->wr_flash, dump->len, dump->data);
12735 #endif
12736
12737 if (dump->wr_flash)
12738 cudbg->use_flash = 1;
12739 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
12740 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
12741
12742 rc = cudbg_collect(handle, buf, &dump->len);
12743 if (rc != 0)
12744 goto done;
12745
12746 rc = copyout(buf, dump->data, dump->len);
12747 done:
12748 cudbg_free_handle(handle);
12749 free(buf, M_CXGBE);
12750 return (rc);
12751 }
12752
12753 static void
free_offload_policy(struct t4_offload_policy * op)12754 free_offload_policy(struct t4_offload_policy *op)
12755 {
12756 struct offload_rule *r;
12757 int i;
12758
12759 if (op == NULL)
12760 return;
12761
12762 r = &op->rule[0];
12763 for (i = 0; i < op->nrules; i++, r++) {
12764 free(r->bpf_prog.bf_insns, M_CXGBE);
12765 }
12766 free(op->rule, M_CXGBE);
12767 free(op, M_CXGBE);
12768 }
12769
12770 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)12771 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
12772 {
12773 int i, rc, len;
12774 struct t4_offload_policy *op, *old;
12775 struct bpf_program *bf;
12776 const struct offload_settings *s;
12777 struct offload_rule *r;
12778 void *u;
12779
12780 if (!is_offload(sc))
12781 return (ENODEV);
12782
12783 if (uop->nrules == 0) {
12784 /* Delete installed policies. */
12785 op = NULL;
12786 goto set_policy;
12787 } else if (uop->nrules > 256) { /* arbitrary */
12788 return (E2BIG);
12789 }
12790
12791 /* Copy userspace offload policy to kernel */
12792 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
12793 op->nrules = uop->nrules;
12794 len = op->nrules * sizeof(struct offload_rule);
12795 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12796 rc = copyin(uop->rule, op->rule, len);
12797 if (rc) {
12798 free(op->rule, M_CXGBE);
12799 free(op, M_CXGBE);
12800 return (rc);
12801 }
12802
12803 r = &op->rule[0];
12804 for (i = 0; i < op->nrules; i++, r++) {
12805
12806 /* Validate open_type */
12807 if (r->open_type != OPEN_TYPE_LISTEN &&
12808 r->open_type != OPEN_TYPE_ACTIVE &&
12809 r->open_type != OPEN_TYPE_PASSIVE &&
12810 r->open_type != OPEN_TYPE_DONTCARE) {
12811 error:
12812 /*
12813 * Rules 0 to i have malloc'd filters that need to be
12814 * freed. Rules i+1 to nrules have userspace pointers
12815 * and should be left alone.
12816 */
12817 op->nrules = i;
12818 free_offload_policy(op);
12819 return (rc);
12820 }
12821
12822 /* Validate settings */
12823 s = &r->settings;
12824 if ((s->offload != 0 && s->offload != 1) ||
12825 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
12826 s->sched_class < -1 ||
12827 s->sched_class >= sc->params.nsched_cls) {
12828 rc = EINVAL;
12829 goto error;
12830 }
12831
12832 bf = &r->bpf_prog;
12833 u = bf->bf_insns; /* userspace ptr */
12834 bf->bf_insns = NULL;
12835 if (bf->bf_len == 0) {
12836 /* legal, matches everything */
12837 continue;
12838 }
12839 len = bf->bf_len * sizeof(*bf->bf_insns);
12840 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
12841 rc = copyin(u, bf->bf_insns, len);
12842 if (rc != 0)
12843 goto error;
12844
12845 if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
12846 rc = EINVAL;
12847 goto error;
12848 }
12849 }
12850 set_policy:
12851 rw_wlock(&sc->policy_lock);
12852 old = sc->policy;
12853 sc->policy = op;
12854 rw_wunlock(&sc->policy_lock);
12855 free_offload_policy(old);
12856
12857 return (0);
12858 }
12859
12860 #define MAX_READ_BUF_SIZE (128 * 1024)
12861 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)12862 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
12863 {
12864 uint32_t addr, remaining, n;
12865 uint32_t *buf;
12866 int rc;
12867 uint8_t *dst;
12868
12869 mtx_lock(&sc->reg_lock);
12870 if (hw_off_limits(sc))
12871 rc = ENXIO;
12872 else
12873 rc = validate_mem_range(sc, mr->addr, mr->len);
12874 mtx_unlock(&sc->reg_lock);
12875 if (rc != 0)
12876 return (rc);
12877
12878 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
12879 addr = mr->addr;
12880 remaining = mr->len;
12881 dst = (void *)mr->data;
12882
12883 while (remaining) {
12884 n = min(remaining, MAX_READ_BUF_SIZE);
12885 mtx_lock(&sc->reg_lock);
12886 if (hw_off_limits(sc))
12887 rc = ENXIO;
12888 else
12889 read_via_memwin(sc, 2, addr, buf, n);
12890 mtx_unlock(&sc->reg_lock);
12891 if (rc != 0)
12892 break;
12893
12894 rc = copyout(buf, dst, n);
12895 if (rc != 0)
12896 break;
12897
12898 dst += n;
12899 remaining -= n;
12900 addr += n;
12901 }
12902
12903 free(buf, M_CXGBE);
12904 return (rc);
12905 }
12906 #undef MAX_READ_BUF_SIZE
12907
12908 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)12909 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
12910 {
12911 int rc;
12912
12913 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
12914 return (EINVAL);
12915
12916 if (i2cd->len > sizeof(i2cd->data))
12917 return (EFBIG);
12918
12919 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
12920 if (rc)
12921 return (rc);
12922 if (hw_off_limits(sc))
12923 rc = ENXIO;
12924 else
12925 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
12926 i2cd->offset, i2cd->len, &i2cd->data[0]);
12927 end_synchronized_op(sc, 0);
12928
12929 return (rc);
12930 }
12931
12932 static int
clear_stats(struct adapter * sc,u_int port_id)12933 clear_stats(struct adapter *sc, u_int port_id)
12934 {
12935 int i, v, chan_map;
12936 struct port_info *pi;
12937 struct vi_info *vi;
12938 struct sge_rxq *rxq;
12939 struct sge_txq *txq;
12940 struct sge_wrq *wrq;
12941 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12942 struct sge_ofld_txq *ofld_txq;
12943 #endif
12944 #ifdef TCP_OFFLOAD
12945 struct sge_ofld_rxq *ofld_rxq;
12946 #endif
12947
12948 if (port_id >= sc->params.nports)
12949 return (EINVAL);
12950 pi = sc->port[port_id];
12951 if (pi == NULL)
12952 return (EIO);
12953
12954 mtx_lock(&sc->reg_lock);
12955 if (!hw_off_limits(sc)) {
12956 /* MAC stats */
12957 t4_clr_port_stats(sc, pi->hw_port);
12958 if (is_t6(sc)) {
12959 if (pi->fcs_reg != -1)
12960 pi->fcs_base = t4_read_reg64(sc,
12961 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
12962 else
12963 pi->stats.rx_fcs_err = 0;
12964 }
12965 for_each_vi(pi, v, vi) {
12966 if (vi->flags & VI_INIT_DONE)
12967 t4_clr_vi_stats(sc, vi->vin);
12968 }
12969 chan_map = pi->rx_e_chan_map;
12970 v = 0; /* reuse */
12971 while (chan_map) {
12972 i = ffs(chan_map) - 1;
12973 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
12974 1, A_TP_MIB_TNL_CNG_DROP_0 + i);
12975 chan_map &= ~(1 << i);
12976 }
12977 }
12978 mtx_unlock(&sc->reg_lock);
12979 pi->tx_parse_error = 0;
12980 pi->tnl_cong_drops = 0;
12981
12982 /*
12983 * Since this command accepts a port, clear stats for
12984 * all VIs on this port.
12985 */
12986 for_each_vi(pi, v, vi) {
12987 if (vi->flags & VI_INIT_DONE) {
12988
12989 for_each_rxq(vi, i, rxq) {
12990 #if defined(INET) || defined(INET6)
12991 rxq->lro.lro_queued = 0;
12992 rxq->lro.lro_flushed = 0;
12993 #endif
12994 rxq->rxcsum = 0;
12995 rxq->vlan_extraction = 0;
12996 rxq->vxlan_rxcsum = 0;
12997
12998 rxq->fl.cl_allocated = 0;
12999 rxq->fl.cl_recycled = 0;
13000 rxq->fl.cl_fast_recycled = 0;
13001 }
13002
13003 for_each_txq(vi, i, txq) {
13004 txq->txcsum = 0;
13005 txq->tso_wrs = 0;
13006 txq->vlan_insertion = 0;
13007 txq->imm_wrs = 0;
13008 txq->sgl_wrs = 0;
13009 txq->txpkt_wrs = 0;
13010 txq->txpkts0_wrs = 0;
13011 txq->txpkts1_wrs = 0;
13012 txq->txpkts0_pkts = 0;
13013 txq->txpkts1_pkts = 0;
13014 txq->txpkts_flush = 0;
13015 txq->raw_wrs = 0;
13016 txq->vxlan_tso_wrs = 0;
13017 txq->vxlan_txcsum = 0;
13018 txq->kern_tls_records = 0;
13019 txq->kern_tls_short = 0;
13020 txq->kern_tls_partial = 0;
13021 txq->kern_tls_full = 0;
13022 txq->kern_tls_octets = 0;
13023 txq->kern_tls_waste = 0;
13024 txq->kern_tls_header = 0;
13025 txq->kern_tls_fin_short = 0;
13026 txq->kern_tls_cbc = 0;
13027 txq->kern_tls_gcm = 0;
13028 if (is_t6(sc)) {
13029 txq->kern_tls_options = 0;
13030 txq->kern_tls_fin = 0;
13031 } else {
13032 txq->kern_tls_ghash_received = 0;
13033 txq->kern_tls_ghash_requested = 0;
13034 txq->kern_tls_lso = 0;
13035 txq->kern_tls_partial_ghash = 0;
13036 txq->kern_tls_splitmode = 0;
13037 txq->kern_tls_trailer = 0;
13038 }
13039 mp_ring_reset_stats(txq->r);
13040 }
13041
13042 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
13043 for_each_ofld_txq(vi, i, ofld_txq) {
13044 ofld_txq->wrq.tx_wrs_direct = 0;
13045 ofld_txq->wrq.tx_wrs_copied = 0;
13046 counter_u64_zero(ofld_txq->tx_iscsi_pdus);
13047 counter_u64_zero(ofld_txq->tx_iscsi_octets);
13048 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
13049 counter_u64_zero(ofld_txq->tx_nvme_pdus);
13050 counter_u64_zero(ofld_txq->tx_nvme_octets);
13051 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs);
13052 counter_u64_zero(ofld_txq->tx_aio_jobs);
13053 counter_u64_zero(ofld_txq->tx_aio_octets);
13054 counter_u64_zero(ofld_txq->tx_toe_tls_records);
13055 counter_u64_zero(ofld_txq->tx_toe_tls_octets);
13056 }
13057 #endif
13058 #ifdef TCP_OFFLOAD
13059 for_each_ofld_rxq(vi, i, ofld_rxq) {
13060 ofld_rxq->fl.cl_allocated = 0;
13061 ofld_rxq->fl.cl_recycled = 0;
13062 ofld_rxq->fl.cl_fast_recycled = 0;
13063 counter_u64_zero(
13064 ofld_rxq->rx_iscsi_ddp_setup_ok);
13065 counter_u64_zero(
13066 ofld_rxq->rx_iscsi_ddp_setup_error);
13067 ofld_rxq->rx_iscsi_ddp_pdus = 0;
13068 ofld_rxq->rx_iscsi_ddp_octets = 0;
13069 ofld_rxq->rx_iscsi_fl_pdus = 0;
13070 ofld_rxq->rx_iscsi_fl_octets = 0;
13071 counter_u64_zero(
13072 ofld_rxq->rx_nvme_ddp_setup_ok);
13073 counter_u64_zero(
13074 ofld_rxq->rx_nvme_ddp_setup_no_stag);
13075 counter_u64_zero(
13076 ofld_rxq->rx_nvme_ddp_setup_error);
13077 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus);
13078 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets);
13079 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus);
13080 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets);
13081 counter_u64_zero(
13082 ofld_rxq->rx_nvme_invalid_headers);
13083 counter_u64_zero(
13084 ofld_rxq->rx_nvme_header_digest_errors);
13085 counter_u64_zero(
13086 ofld_rxq->rx_nvme_data_digest_errors);
13087 ofld_rxq->rx_aio_ddp_jobs = 0;
13088 ofld_rxq->rx_aio_ddp_octets = 0;
13089 ofld_rxq->rx_toe_tls_records = 0;
13090 ofld_rxq->rx_toe_tls_octets = 0;
13091 ofld_rxq->rx_toe_ddp_octets = 0;
13092 counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
13093 counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
13094 counter_u64_zero(ofld_rxq->ddp_buffer_free);
13095 }
13096 #endif
13097
13098 if (IS_MAIN_VI(vi)) {
13099 wrq = &sc->sge.ctrlq[pi->port_id];
13100 wrq->tx_wrs_direct = 0;
13101 wrq->tx_wrs_copied = 0;
13102 }
13103 }
13104 }
13105
13106 return (0);
13107 }
13108
13109 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13110 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13111 {
13112 #ifdef INET6
13113 struct in6_addr in6;
13114
13115 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13116 if (t4_get_clip_entry(sc, &in6, true) != NULL)
13117 return (0);
13118 else
13119 return (EIO);
13120 #else
13121 return (ENOTSUP);
13122 #endif
13123 }
13124
13125 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)13126 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
13127 {
13128 #ifdef INET6
13129 struct in6_addr in6;
13130
13131 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
13132 return (t4_release_clip_addr(sc, &in6));
13133 #else
13134 return (ENOTSUP);
13135 #endif
13136 }
13137
13138 int
t4_os_find_pci_capability(struct adapter * sc,int cap)13139 t4_os_find_pci_capability(struct adapter *sc, int cap)
13140 {
13141 int i;
13142
13143 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
13144 }
13145
13146 void
t4_os_portmod_changed(struct port_info * pi)13147 t4_os_portmod_changed(struct port_info *pi)
13148 {
13149 struct adapter *sc = pi->adapter;
13150 struct vi_info *vi;
13151 if_t ifp;
13152 static const char *mod_str[] = {
13153 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM",
13154 "LR_SIMPLEX", "DR"
13155 };
13156
13157 KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
13158 ("%s: port_type %u", __func__, pi->port_type));
13159
13160 vi = &pi->vi[0];
13161 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
13162 PORT_LOCK(pi);
13163 build_medialist(pi);
13164 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
13165 fixup_link_config(pi);
13166 apply_link_config(pi);
13167 }
13168 PORT_UNLOCK(pi);
13169 end_synchronized_op(sc, LOCK_HELD);
13170 }
13171
13172 ifp = vi->ifp;
13173 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
13174 if_printf(ifp, "transceiver unplugged.\n");
13175 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
13176 if_printf(ifp, "unknown transceiver inserted.\n");
13177 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
13178 if_printf(ifp, "unsupported transceiver inserted.\n");
13179 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
13180 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
13181 port_top_speed(pi), mod_str[pi->mod_type]);
13182 } else {
13183 if_printf(ifp, "transceiver (type %d) inserted.\n",
13184 pi->mod_type);
13185 }
13186 }
13187
13188 void
t4_os_link_changed(struct port_info * pi)13189 t4_os_link_changed(struct port_info *pi)
13190 {
13191 struct vi_info *vi;
13192 if_t ifp;
13193 struct link_config *lc = &pi->link_cfg;
13194 struct adapter *sc = pi->adapter;
13195 int v;
13196
13197 PORT_LOCK_ASSERT_OWNED(pi);
13198
13199 if (is_t6(sc)) {
13200 if (lc->link_ok) {
13201 if (lc->speed > 25000 ||
13202 (lc->speed == 25000 && lc->fec == FEC_RS))
13203 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS;
13204 else
13205 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS;
13206 pi->fcs_base = t4_read_reg64(sc,
13207 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg));
13208 pi->stats.rx_fcs_err = 0;
13209 } else {
13210 pi->fcs_reg = -1;
13211 }
13212 } else {
13213 MPASS(pi->fcs_reg != -1);
13214 MPASS(pi->fcs_base == 0);
13215 }
13216
13217 for_each_vi(pi, v, vi) {
13218 ifp = vi->ifp;
13219 if (ifp == NULL || IS_DETACHING(vi))
13220 continue;
13221
13222 if (lc->link_ok) {
13223 if_setbaudrate(ifp, IF_Mbps(lc->speed));
13224 if_link_state_change(ifp, LINK_STATE_UP);
13225 } else {
13226 if_link_state_change(ifp, LINK_STATE_DOWN);
13227 }
13228 }
13229 }
13230
13231 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)13232 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
13233 {
13234 struct adapter *sc;
13235
13236 sx_slock(&t4_list_lock);
13237 SLIST_FOREACH(sc, &t4_list, link) {
13238 /*
13239 * func should not make any assumptions about what state sc is
13240 * in - the only guarantee is that sc->sc_lock is a valid lock.
13241 */
13242 func(sc, arg);
13243 }
13244 sx_sunlock(&t4_list_lock);
13245 }
13246
13247 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)13248 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
13249 struct thread *td)
13250 {
13251 int rc;
13252 struct adapter *sc = dev->si_drv1;
13253
13254 rc = priv_check(td, PRIV_DRIVER);
13255 if (rc != 0)
13256 return (rc);
13257
13258 switch (cmd) {
13259 case CHELSIO_T4_GETREG: {
13260 struct t4_reg *edata = (struct t4_reg *)data;
13261
13262 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13263 return (EFAULT);
13264
13265 mtx_lock(&sc->reg_lock);
13266 if (hw_off_limits(sc))
13267 rc = ENXIO;
13268 else if (edata->size == 4)
13269 edata->val = t4_read_reg(sc, edata->addr);
13270 else if (edata->size == 8)
13271 edata->val = t4_read_reg64(sc, edata->addr);
13272 else
13273 rc = EINVAL;
13274 mtx_unlock(&sc->reg_lock);
13275
13276 break;
13277 }
13278 case CHELSIO_T4_SETREG: {
13279 struct t4_reg *edata = (struct t4_reg *)data;
13280
13281 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
13282 return (EFAULT);
13283
13284 mtx_lock(&sc->reg_lock);
13285 if (hw_off_limits(sc))
13286 rc = ENXIO;
13287 else if (edata->size == 4) {
13288 if (edata->val & 0xffffffff00000000)
13289 rc = EINVAL;
13290 t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
13291 } else if (edata->size == 8)
13292 t4_write_reg64(sc, edata->addr, edata->val);
13293 else
13294 rc = EINVAL;
13295 mtx_unlock(&sc->reg_lock);
13296
13297 break;
13298 }
13299 case CHELSIO_T4_REGDUMP: {
13300 struct t4_regdump *regs = (struct t4_regdump *)data;
13301 int reglen = t4_get_regs_len(sc);
13302 uint8_t *buf;
13303
13304 if (regs->len < reglen) {
13305 regs->len = reglen; /* hint to the caller */
13306 return (ENOBUFS);
13307 }
13308
13309 regs->len = reglen;
13310 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
13311 mtx_lock(&sc->reg_lock);
13312 if (hw_off_limits(sc))
13313 rc = ENXIO;
13314 else
13315 get_regs(sc, regs, buf);
13316 mtx_unlock(&sc->reg_lock);
13317 if (rc == 0)
13318 rc = copyout(buf, regs->data, reglen);
13319 free(buf, M_CXGBE);
13320 break;
13321 }
13322 case CHELSIO_T4_GET_FILTER_MODE:
13323 rc = get_filter_mode(sc, (uint32_t *)data);
13324 break;
13325 case CHELSIO_T4_SET_FILTER_MODE:
13326 rc = set_filter_mode(sc, *(uint32_t *)data);
13327 break;
13328 case CHELSIO_T4_SET_FILTER_MASK:
13329 rc = set_filter_mask(sc, *(uint32_t *)data);
13330 break;
13331 case CHELSIO_T4_GET_FILTER:
13332 rc = get_filter(sc, (struct t4_filter *)data);
13333 break;
13334 case CHELSIO_T4_SET_FILTER:
13335 rc = set_filter(sc, (struct t4_filter *)data);
13336 break;
13337 case CHELSIO_T4_DEL_FILTER:
13338 rc = del_filter(sc, (struct t4_filter *)data);
13339 break;
13340 case CHELSIO_T4_GET_SGE_CONTEXT: {
13341 struct t4_sge_context *ctxt = (struct t4_sge_context *)data;
13342
13343 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13344 sizeof(ctxt->data), &ctxt->data[0]);
13345 break;
13346 }
13347 case CHELSIO_T4_LOAD_FW:
13348 rc = load_fw(sc, (struct t4_data *)data);
13349 break;
13350 case CHELSIO_T4_GET_MEM:
13351 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
13352 break;
13353 case CHELSIO_T4_GET_I2C:
13354 rc = read_i2c(sc, (struct t4_i2c_data *)data);
13355 break;
13356 case CHELSIO_T4_CLEAR_STATS:
13357 rc = clear_stats(sc, *(uint32_t *)data);
13358 break;
13359 case CHELSIO_T4_SCHED_CLASS:
13360 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
13361 break;
13362 case CHELSIO_T4_SCHED_QUEUE:
13363 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
13364 break;
13365 case CHELSIO_T4_GET_TRACER:
13366 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
13367 break;
13368 case CHELSIO_T4_SET_TRACER:
13369 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
13370 break;
13371 case CHELSIO_T4_LOAD_CFG:
13372 rc = load_cfg(sc, (struct t4_data *)data);
13373 break;
13374 case CHELSIO_T4_LOAD_BOOT:
13375 rc = load_boot(sc, (struct t4_bootrom *)data);
13376 break;
13377 case CHELSIO_T4_LOAD_BOOTCFG:
13378 rc = load_bootcfg(sc, (struct t4_data *)data);
13379 break;
13380 case CHELSIO_T4_CUDBG_DUMP:
13381 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
13382 break;
13383 case CHELSIO_T4_SET_OFLD_POLICY:
13384 rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
13385 break;
13386 case CHELSIO_T4_HOLD_CLIP_ADDR:
13387 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
13388 break;
13389 case CHELSIO_T4_RELEASE_CLIP_ADDR:
13390 rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
13391 break;
13392 case CHELSIO_T4_GET_SGE_CTXT: {
13393 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data;
13394
13395 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid,
13396 sizeof(ctxt->data), &ctxt->data[0]);
13397 break;
13398 }
13399 default:
13400 rc = ENOTTY;
13401 }
13402
13403 return (rc);
13404 }
13405
13406 #ifdef TCP_OFFLOAD
13407 int
toe_capability(struct vi_info * vi,bool enable)13408 toe_capability(struct vi_info *vi, bool enable)
13409 {
13410 int rc;
13411 struct port_info *pi = vi->pi;
13412 struct adapter *sc = pi->adapter;
13413
13414 ASSERT_SYNCHRONIZED_OP(sc);
13415
13416 if (!is_offload(sc))
13417 return (ENODEV);
13418 if (!hw_all_ok(sc))
13419 return (ENXIO);
13420
13421 if (enable) {
13422 #ifdef KERN_TLS
13423 if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
13424 int i, j, n;
13425 struct port_info *p;
13426 struct vi_info *v;
13427
13428 /*
13429 * Reconfigure hardware for TOE if TXTLS is not enabled
13430 * on any ifnet.
13431 */
13432 n = 0;
13433 for_each_port(sc, i) {
13434 p = sc->port[i];
13435 for_each_vi(p, j, v) {
13436 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
13437 CH_WARN(sc,
13438 "%s has NIC TLS enabled.\n",
13439 device_get_nameunit(v->dev));
13440 n++;
13441 }
13442 }
13443 }
13444 if (n > 0) {
13445 CH_WARN(sc, "Disable NIC TLS on all interfaces "
13446 "associated with this adapter before "
13447 "trying to enable TOE.\n");
13448 return (EAGAIN);
13449 }
13450 rc = t6_config_kern_tls(sc, false);
13451 if (rc)
13452 return (rc);
13453 }
13454 #endif
13455 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
13456 /* TOE is already enabled. */
13457 return (0);
13458 }
13459
13460 /*
13461 * We need the port's queues around so that we're able to send
13462 * and receive CPLs to/from the TOE even if the ifnet for this
13463 * port has never been UP'd administratively.
13464 */
13465 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
13466 return (rc);
13467 if (!(pi->vi[0].flags & VI_INIT_DONE) &&
13468 ((rc = vi_init(&pi->vi[0])) != 0))
13469 return (rc);
13470
13471 if (isset(&sc->offload_map, pi->port_id)) {
13472 /* TOE is enabled on another VI of this port. */
13473 MPASS(pi->uld_vis > 0);
13474 pi->uld_vis++;
13475 return (0);
13476 }
13477
13478 if (!uld_active(sc, ULD_TOM)) {
13479 rc = t4_activate_uld(sc, ULD_TOM);
13480 if (rc == EAGAIN) {
13481 log(LOG_WARNING,
13482 "You must kldload t4_tom.ko before trying "
13483 "to enable TOE on a cxgbe interface.\n");
13484 }
13485 if (rc != 0)
13486 return (rc);
13487 KASSERT(sc->tom_softc != NULL,
13488 ("%s: TOM activated but softc NULL", __func__));
13489 KASSERT(uld_active(sc, ULD_TOM),
13490 ("%s: TOM activated but flag not set", __func__));
13491 }
13492
13493 /*
13494 * Activate iWARP, iSCSI, and NVMe too, if the modules
13495 * are loaded.
13496 */
13497 if (!uld_active(sc, ULD_IWARP))
13498 (void) t4_activate_uld(sc, ULD_IWARP);
13499 if (!uld_active(sc, ULD_ISCSI))
13500 (void) t4_activate_uld(sc, ULD_ISCSI);
13501 if (!uld_active(sc, ULD_NVME))
13502 (void) t4_activate_uld(sc, ULD_NVME);
13503
13504 if (pi->uld_vis++ == 0)
13505 setbit(&sc->offload_map, pi->port_id);
13506 } else {
13507 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) {
13508 /* TOE is already disabled. */
13509 return (0);
13510 }
13511 MPASS(isset(&sc->offload_map, pi->port_id));
13512 MPASS(pi->uld_vis > 0);
13513 if (--pi->uld_vis == 0)
13514 clrbit(&sc->offload_map, pi->port_id);
13515 }
13516
13517 return (0);
13518 }
13519
13520 /*
13521 * Add an upper layer driver to the global list.
13522 */
13523 int
t4_register_uld(struct uld_info * ui,int id)13524 t4_register_uld(struct uld_info *ui, int id)
13525 {
13526 int rc;
13527
13528 if (id < 0 || id > ULD_MAX)
13529 return (EINVAL);
13530 sx_xlock(&t4_uld_list_lock);
13531 if (t4_uld_list[id] != NULL)
13532 rc = EEXIST;
13533 else {
13534 t4_uld_list[id] = ui;
13535 rc = 0;
13536 }
13537 sx_xunlock(&t4_uld_list_lock);
13538 return (rc);
13539 }
13540
13541 int
t4_unregister_uld(struct uld_info * ui,int id)13542 t4_unregister_uld(struct uld_info *ui, int id)
13543 {
13544
13545 if (id < 0 || id > ULD_MAX)
13546 return (EINVAL);
13547 sx_xlock(&t4_uld_list_lock);
13548 MPASS(t4_uld_list[id] == ui);
13549 t4_uld_list[id] = NULL;
13550 sx_xunlock(&t4_uld_list_lock);
13551 return (0);
13552 }
13553
13554 int
t4_activate_uld(struct adapter * sc,int id)13555 t4_activate_uld(struct adapter *sc, int id)
13556 {
13557 int rc;
13558
13559 ASSERT_SYNCHRONIZED_OP(sc);
13560
13561 if (id < 0 || id > ULD_MAX)
13562 return (EINVAL);
13563
13564 /* Adapter needs to be initialized before any ULD can be activated. */
13565 if (!(sc->flags & FULL_INIT_DONE)) {
13566 rc = adapter_init(sc);
13567 if (rc != 0)
13568 return (rc);
13569 }
13570
13571 sx_slock(&t4_uld_list_lock);
13572 if (t4_uld_list[id] == NULL)
13573 rc = EAGAIN; /* load the KLD with this ULD and try again. */
13574 else {
13575 rc = t4_uld_list[id]->uld_activate(sc);
13576 if (rc == 0)
13577 setbit(&sc->active_ulds, id);
13578 }
13579 sx_sunlock(&t4_uld_list_lock);
13580
13581 return (rc);
13582 }
13583
13584 int
t4_deactivate_uld(struct adapter * sc,int id)13585 t4_deactivate_uld(struct adapter *sc, int id)
13586 {
13587 int rc;
13588
13589 ASSERT_SYNCHRONIZED_OP(sc);
13590
13591 if (id < 0 || id > ULD_MAX)
13592 return (EINVAL);
13593
13594 sx_slock(&t4_uld_list_lock);
13595 if (t4_uld_list[id] == NULL)
13596 rc = ENXIO;
13597 else {
13598 rc = t4_uld_list[id]->uld_deactivate(sc);
13599 if (rc == 0)
13600 clrbit(&sc->active_ulds, id);
13601 }
13602 sx_sunlock(&t4_uld_list_lock);
13603
13604 return (rc);
13605 }
13606
13607 static int
deactivate_all_uld(struct adapter * sc)13608 deactivate_all_uld(struct adapter *sc)
13609 {
13610 int i, rc;
13611
13612 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
13613 if (rc != 0)
13614 return (ENXIO);
13615 sx_slock(&t4_uld_list_lock);
13616 for (i = 0; i <= ULD_MAX; i++) {
13617 if (t4_uld_list[i] == NULL || !uld_active(sc, i))
13618 continue;
13619 rc = t4_uld_list[i]->uld_deactivate(sc);
13620 if (rc != 0)
13621 break;
13622 clrbit(&sc->active_ulds, i);
13623 }
13624 sx_sunlock(&t4_uld_list_lock);
13625 end_synchronized_op(sc, 0);
13626
13627 return (rc);
13628 }
13629
13630 static void
stop_all_uld(struct adapter * sc)13631 stop_all_uld(struct adapter *sc)
13632 {
13633 int i;
13634
13635 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0)
13636 return;
13637 sx_slock(&t4_uld_list_lock);
13638 for (i = 0; i <= ULD_MAX; i++) {
13639 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13640 t4_uld_list[i]->uld_stop == NULL)
13641 continue;
13642 (void) t4_uld_list[i]->uld_stop(sc);
13643 }
13644 sx_sunlock(&t4_uld_list_lock);
13645 end_synchronized_op(sc, 0);
13646 }
13647
13648 static void
restart_all_uld(struct adapter * sc)13649 restart_all_uld(struct adapter *sc)
13650 {
13651 int i;
13652
13653 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0)
13654 return;
13655 sx_slock(&t4_uld_list_lock);
13656 for (i = 0; i <= ULD_MAX; i++) {
13657 if (t4_uld_list[i] == NULL || !uld_active(sc, i) ||
13658 t4_uld_list[i]->uld_restart == NULL)
13659 continue;
13660 (void) t4_uld_list[i]->uld_restart(sc);
13661 }
13662 sx_sunlock(&t4_uld_list_lock);
13663 end_synchronized_op(sc, 0);
13664 }
13665
13666 int
uld_active(struct adapter * sc,int id)13667 uld_active(struct adapter *sc, int id)
13668 {
13669
13670 MPASS(id >= 0 && id <= ULD_MAX);
13671
13672 return (isset(&sc->active_ulds, id));
13673 }
13674 #endif
13675
13676 #ifdef KERN_TLS
13677 static int
ktls_capability(struct adapter * sc,bool enable)13678 ktls_capability(struct adapter *sc, bool enable)
13679 {
13680 ASSERT_SYNCHRONIZED_OP(sc);
13681
13682 if (!is_ktls(sc))
13683 return (ENODEV);
13684 if (!is_t6(sc))
13685 return (0);
13686 if (!hw_all_ok(sc))
13687 return (ENXIO);
13688
13689 if (enable) {
13690 if (sc->flags & KERN_TLS_ON)
13691 return (0); /* already on */
13692 if (sc->offload_map != 0) {
13693 CH_WARN(sc,
13694 "Disable TOE on all interfaces associated with "
13695 "this adapter before trying to enable NIC TLS.\n");
13696 return (EAGAIN);
13697 }
13698 return (t6_config_kern_tls(sc, true));
13699 } else {
13700 /*
13701 * Nothing to do for disable. If TOE is enabled sometime later
13702 * then toe_capability will reconfigure the hardware.
13703 */
13704 return (0);
13705 }
13706 }
13707 #endif
13708
13709 /*
13710 * t = ptr to tunable.
13711 * nc = number of CPUs.
13712 * c = compiled in default for that tunable.
13713 */
13714 static void
calculate_nqueues(int * t,int nc,const int c)13715 calculate_nqueues(int *t, int nc, const int c)
13716 {
13717 int nq;
13718
13719 if (*t > 0)
13720 return;
13721 nq = *t < 0 ? -*t : c;
13722 *t = min(nc, nq);
13723 }
13724
13725 /*
13726 * Come up with reasonable defaults for some of the tunables, provided they're
13727 * not set by the user (in which case we'll use the values as is).
13728 */
13729 static void
tweak_tunables(void)13730 tweak_tunables(void)
13731 {
13732 int nc = mp_ncpus; /* our snapshot of the number of CPUs */
13733
13734 if (t4_ntxq < 1) {
13735 #ifdef RSS
13736 t4_ntxq = rss_getnumbuckets();
13737 #else
13738 calculate_nqueues(&t4_ntxq, nc, NTXQ);
13739 #endif
13740 }
13741
13742 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
13743
13744 if (t4_nrxq < 1) {
13745 #ifdef RSS
13746 t4_nrxq = rss_getnumbuckets();
13747 #else
13748 calculate_nqueues(&t4_nrxq, nc, NRXQ);
13749 #endif
13750 }
13751
13752 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
13753
13754 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
13755 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
13756 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
13757 #endif
13758 #ifdef TCP_OFFLOAD
13759 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
13760 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
13761 #endif
13762
13763 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
13764 if (t4_toecaps_allowed == -1)
13765 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
13766 #else
13767 if (t4_toecaps_allowed == -1)
13768 t4_toecaps_allowed = 0;
13769 #endif
13770
13771 #ifdef TCP_OFFLOAD
13772 if (t4_rdmacaps_allowed == -1) {
13773 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
13774 FW_CAPS_CONFIG_RDMA_RDMAC;
13775 }
13776
13777 if (t4_iscsicaps_allowed == -1) {
13778 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
13779 FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
13780 FW_CAPS_CONFIG_ISCSI_T10DIF;
13781 }
13782
13783 if (t4_nvmecaps_allowed == -1)
13784 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP;
13785
13786 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
13787 t4_tmr_idx_ofld = TMR_IDX_OFLD;
13788
13789 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
13790 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
13791 #else
13792 if (t4_rdmacaps_allowed == -1)
13793 t4_rdmacaps_allowed = 0;
13794
13795 if (t4_iscsicaps_allowed == -1)
13796 t4_iscsicaps_allowed = 0;
13797
13798 if (t4_nvmecaps_allowed == -1)
13799 t4_nvmecaps_allowed = 0;
13800 #endif
13801
13802 #ifdef DEV_NETMAP
13803 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
13804 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
13805 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
13806 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
13807 #endif
13808
13809 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
13810 t4_tmr_idx = TMR_IDX;
13811
13812 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
13813 t4_pktc_idx = PKTC_IDX;
13814
13815 if (t4_qsize_txq < 128)
13816 t4_qsize_txq = 128;
13817
13818 if (t4_qsize_rxq < 128)
13819 t4_qsize_rxq = 128;
13820 while (t4_qsize_rxq & 7)
13821 t4_qsize_rxq++;
13822
13823 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
13824
13825 /*
13826 * Number of VIs to create per-port. The first VI is the "main" regular
13827 * VI for the port. The rest are additional virtual interfaces on the
13828 * same physical port. Note that the main VI does not have native
13829 * netmap support but the extra VIs do.
13830 *
13831 * Limit the number of VIs per port to the number of available
13832 * MAC addresses per port.
13833 */
13834 if (t4_num_vis < 1)
13835 t4_num_vis = 1;
13836 if (t4_num_vis > nitems(vi_mac_funcs)) {
13837 t4_num_vis = nitems(vi_mac_funcs);
13838 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
13839 }
13840
13841 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
13842 pcie_relaxed_ordering = 1;
13843 #if defined(__i386__) || defined(__amd64__)
13844 if (cpu_vendor_id == CPU_VENDOR_INTEL)
13845 pcie_relaxed_ordering = 0;
13846 #endif
13847 }
13848 }
13849
13850 #ifdef DDB
13851 static void
t4_dump_mem(struct adapter * sc,u_int addr,u_int len)13852 t4_dump_mem(struct adapter *sc, u_int addr, u_int len)
13853 {
13854 uint32_t base, j, off, pf, reg, save, win_pos;
13855
13856 reg = chip_id(sc) > CHELSIO_T6 ?
13857 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) :
13858 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
13859 save = t4_read_reg(sc, reg);
13860 base = sc->memwin[2].mw_base;
13861
13862 if (is_t4(sc)) {
13863 pf = 0;
13864 win_pos = addr & ~0xf; /* start must be 16B aligned */
13865 } else {
13866 pf = V_PFNUM(sc->pf);
13867 win_pos = addr & ~0x7f; /* start must be 128B aligned */
13868 }
13869 off = addr - win_pos;
13870 if (chip_id(sc) > CHELSIO_T6)
13871 win_pos >>= X_T7_MEMOFST_SHIFT;
13872 t4_write_reg(sc, reg, win_pos | pf);
13873 t4_read_reg(sc, reg);
13874
13875 while (len > 0 && !db_pager_quit) {
13876 uint32_t buf[8];
13877 for (j = 0; j < 8; j++, off += 4)
13878 buf[j] = htonl(t4_read_reg(sc, base + off));
13879
13880 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
13881 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
13882 buf[7]);
13883 if (len <= sizeof(buf))
13884 len = 0;
13885 else
13886 len -= sizeof(buf);
13887 }
13888
13889 t4_write_reg(sc, reg, save);
13890 t4_read_reg(sc, reg);
13891 }
13892
13893 static void
t4_dump_tcb(struct adapter * sc,int tid)13894 t4_dump_tcb(struct adapter *sc, int tid)
13895 {
13896 uint32_t tcb_addr;
13897
13898 /* Dump TCB for the tid */
13899 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
13900 tcb_addr += tid * TCB_SIZE;
13901 t4_dump_mem(sc, tcb_addr, TCB_SIZE);
13902 }
13903
13904 static void
t4_dump_devlog(struct adapter * sc)13905 t4_dump_devlog(struct adapter *sc)
13906 {
13907 struct devlog_params *dparams = &sc->params.devlog;
13908 struct fw_devlog_e e;
13909 int i, first, j, m, nentries, rc;
13910 uint64_t ftstamp = UINT64_MAX;
13911
13912 if (dparams->start == 0) {
13913 db_printf("devlog params not valid\n");
13914 return;
13915 }
13916
13917 nentries = dparams->size / sizeof(struct fw_devlog_e);
13918 m = fwmtype_to_hwmtype(dparams->memtype);
13919
13920 /* Find the first entry. */
13921 first = -1;
13922 for (i = 0; i < nentries && !db_pager_quit; i++) {
13923 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13924 sizeof(e), (void *)&e);
13925 if (rc != 0)
13926 break;
13927
13928 if (e.timestamp == 0)
13929 break;
13930
13931 e.timestamp = be64toh(e.timestamp);
13932 if (e.timestamp < ftstamp) {
13933 ftstamp = e.timestamp;
13934 first = i;
13935 }
13936 }
13937
13938 if (first == -1)
13939 return;
13940
13941 i = first;
13942 do {
13943 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
13944 sizeof(e), (void *)&e);
13945 if (rc != 0)
13946 return;
13947
13948 if (e.timestamp == 0)
13949 return;
13950
13951 e.timestamp = be64toh(e.timestamp);
13952 e.seqno = be32toh(e.seqno);
13953 for (j = 0; j < 8; j++)
13954 e.params[j] = be32toh(e.params[j]);
13955
13956 db_printf("%10d %15ju %8s %8s ",
13957 e.seqno, e.timestamp,
13958 (e.level < nitems(devlog_level_strings) ?
13959 devlog_level_strings[e.level] : "UNKNOWN"),
13960 (e.facility < nitems(devlog_facility_strings) ?
13961 devlog_facility_strings[e.facility] : "UNKNOWN"));
13962 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
13963 e.params[3], e.params[4], e.params[5], e.params[6],
13964 e.params[7]);
13965
13966 if (++i == nentries)
13967 i = 0;
13968 } while (i != first && !db_pager_quit);
13969 }
13970
13971 static DB_DEFINE_TABLE(show, t4, show_t4);
13972
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)13973 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
13974 {
13975 device_t dev;
13976 int t;
13977 bool valid;
13978
13979 valid = false;
13980 t = db_read_token();
13981 if (t == tIDENT) {
13982 dev = device_lookup_by_name(db_tok_string);
13983 valid = true;
13984 }
13985 db_skip_to_eol();
13986 if (!valid) {
13987 db_printf("usage: show t4 devlog <nexus>\n");
13988 return;
13989 }
13990
13991 if (dev == NULL) {
13992 db_printf("device not found\n");
13993 return;
13994 }
13995
13996 t4_dump_devlog(device_get_softc(dev));
13997 }
13998
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)13999 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
14000 {
14001 device_t dev;
14002 int radix, tid, t;
14003 bool valid;
14004
14005 valid = false;
14006 radix = db_radix;
14007 db_radix = 10;
14008 t = db_read_token();
14009 if (t == tIDENT) {
14010 dev = device_lookup_by_name(db_tok_string);
14011 t = db_read_token();
14012 if (t == tNUMBER) {
14013 tid = db_tok_number;
14014 valid = true;
14015 }
14016 }
14017 db_radix = radix;
14018 db_skip_to_eol();
14019 if (!valid) {
14020 db_printf("usage: show t4 tcb <nexus> <tid>\n");
14021 return;
14022 }
14023
14024 if (dev == NULL) {
14025 db_printf("device not found\n");
14026 return;
14027 }
14028 if (tid < 0) {
14029 db_printf("invalid tid\n");
14030 return;
14031 }
14032
14033 t4_dump_tcb(device_get_softc(dev), tid);
14034 }
14035
DB_TABLE_COMMAND_FLAGS(show_t4,memdump,db_show_memdump,CS_OWN)14036 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN)
14037 {
14038 device_t dev;
14039 int radix, t;
14040 bool valid;
14041
14042 valid = false;
14043 radix = db_radix;
14044 db_radix = 10;
14045 t = db_read_token();
14046 if (t == tIDENT) {
14047 dev = device_lookup_by_name(db_tok_string);
14048 t = db_read_token();
14049 if (t == tNUMBER) {
14050 addr = db_tok_number;
14051 t = db_read_token();
14052 if (t == tNUMBER) {
14053 count = db_tok_number;
14054 valid = true;
14055 }
14056 }
14057 }
14058 db_radix = radix;
14059 db_skip_to_eol();
14060 if (!valid) {
14061 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n");
14062 return;
14063 }
14064
14065 if (dev == NULL) {
14066 db_printf("device not found\n");
14067 return;
14068 }
14069 if (addr < 0) {
14070 db_printf("invalid address\n");
14071 return;
14072 }
14073 if (count <= 0) {
14074 db_printf("invalid length\n");
14075 return;
14076 }
14077
14078 t4_dump_mem(device_get_softc(dev), addr, count);
14079 }
14080 #endif
14081
14082 static eventhandler_tag vxlan_start_evtag;
14083 static eventhandler_tag vxlan_stop_evtag;
14084
14085 struct vxlan_evargs {
14086 if_t ifp;
14087 uint16_t port;
14088 };
14089
14090 static void
enable_vxlan_rx(struct adapter * sc)14091 enable_vxlan_rx(struct adapter *sc)
14092 {
14093 int i, rc;
14094 struct port_info *pi;
14095 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
14096
14097 ASSERT_SYNCHRONIZED_OP(sc);
14098
14099 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
14100 F_VXLAN_EN);
14101 for_each_port(sc, i) {
14102 pi = sc->port[i];
14103 if (pi->vxlan_tcam_entry == true)
14104 continue;
14105 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
14106 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
14107 true);
14108 if (rc < 0) {
14109 rc = -rc;
14110 CH_ERR(&pi->vi[0],
14111 "failed to add VXLAN TCAM entry: %d.\n", rc);
14112 } else {
14113 MPASS(rc == sc->rawf_base + pi->port_id);
14114 pi->vxlan_tcam_entry = true;
14115 }
14116 }
14117 }
14118
14119 static void
t4_vxlan_start(struct adapter * sc,void * arg)14120 t4_vxlan_start(struct adapter *sc, void *arg)
14121 {
14122 struct vxlan_evargs *v = arg;
14123
14124 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14125 return;
14126 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
14127 return;
14128
14129 if (sc->vxlan_refcount == 0) {
14130 sc->vxlan_port = v->port;
14131 sc->vxlan_refcount = 1;
14132 if (!hw_off_limits(sc))
14133 enable_vxlan_rx(sc);
14134 } else if (sc->vxlan_port == v->port) {
14135 sc->vxlan_refcount++;
14136 } else {
14137 CH_ERR(sc, "VXLAN already configured on port %d; "
14138 "ignoring attempt to configure it on port %d\n",
14139 sc->vxlan_port, v->port);
14140 }
14141 end_synchronized_op(sc, 0);
14142 }
14143
14144 static void
t4_vxlan_stop(struct adapter * sc,void * arg)14145 t4_vxlan_stop(struct adapter *sc, void *arg)
14146 {
14147 struct vxlan_evargs *v = arg;
14148
14149 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
14150 return;
14151 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
14152 return;
14153
14154 /*
14155 * VXLANs may have been configured before the driver was loaded so we
14156 * may see more stops than starts. This is not handled cleanly but at
14157 * least we keep the refcount sane.
14158 */
14159 if (sc->vxlan_port != v->port)
14160 goto done;
14161 if (sc->vxlan_refcount == 0) {
14162 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
14163 "ignoring attempt to stop it again.\n", sc->vxlan_port);
14164 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
14165 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
14166 done:
14167 end_synchronized_op(sc, 0);
14168 }
14169
14170 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14171 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
14172 sa_family_t family, u_int port)
14173 {
14174 struct vxlan_evargs v;
14175
14176 MPASS(family == AF_INET || family == AF_INET6);
14177 v.ifp = ifp;
14178 v.port = port;
14179
14180 t4_iterate(t4_vxlan_start, &v);
14181 }
14182
14183 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)14184 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
14185 u_int port)
14186 {
14187 struct vxlan_evargs v;
14188
14189 MPASS(family == AF_INET || family == AF_INET6);
14190 v.ifp = ifp;
14191 v.port = port;
14192
14193 t4_iterate(t4_vxlan_stop, &v);
14194 }
14195
14196
14197 static struct sx mlu; /* mod load unload */
14198 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
14199
14200 static int
mod_event(module_t mod,int cmd,void * arg)14201 mod_event(module_t mod, int cmd, void *arg)
14202 {
14203 int rc = 0;
14204 static int loaded = 0;
14205
14206 switch (cmd) {
14207 case MOD_LOAD:
14208 sx_xlock(&mlu);
14209 if (loaded++ == 0) {
14210 t4_sge_modload();
14211 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14212 t4_filter_rpl, CPL_COOKIE_FILTER);
14213 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
14214 do_l2t_write_rpl, CPL_COOKIE_FILTER);
14215 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
14216 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
14217 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
14218 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
14219 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
14220 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
14221 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
14222 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
14223 t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
14224 do_smt_write_rpl);
14225 sx_init(&t4_list_lock, "T4/T5 adapters");
14226 SLIST_INIT(&t4_list);
14227 callout_init(&fatal_callout, 1);
14228 #ifdef TCP_OFFLOAD
14229 sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
14230 #endif
14231 #ifdef INET6
14232 t4_clip_modload();
14233 #endif
14234 #ifdef KERN_TLS
14235 t6_ktls_modload();
14236 t7_ktls_modload();
14237 #endif
14238 t4_tracer_modload();
14239 tweak_tunables();
14240 vxlan_start_evtag =
14241 EVENTHANDLER_REGISTER(vxlan_start,
14242 t4_vxlan_start_handler, NULL,
14243 EVENTHANDLER_PRI_ANY);
14244 vxlan_stop_evtag =
14245 EVENTHANDLER_REGISTER(vxlan_stop,
14246 t4_vxlan_stop_handler, NULL,
14247 EVENTHANDLER_PRI_ANY);
14248 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
14249 taskqueue_thread_enqueue, &reset_tq);
14250 taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
14251 "t4_rst_thr");
14252 }
14253 sx_xunlock(&mlu);
14254 break;
14255
14256 case MOD_UNLOAD:
14257 sx_xlock(&mlu);
14258 if (--loaded == 0) {
14259 #ifdef TCP_OFFLOAD
14260 int i;
14261 #endif
14262 int tries;
14263
14264 taskqueue_free(reset_tq);
14265
14266 tries = 0;
14267 while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
14268 uprintf("%ju clusters with custom free routine "
14269 "still is use.\n", t4_sge_extfree_refs());
14270 pause("t4unload", 2 * hz);
14271 }
14272
14273 sx_slock(&t4_list_lock);
14274 if (!SLIST_EMPTY(&t4_list)) {
14275 rc = EBUSY;
14276 sx_sunlock(&t4_list_lock);
14277 goto done_unload;
14278 }
14279 #ifdef TCP_OFFLOAD
14280 sx_slock(&t4_uld_list_lock);
14281 for (i = 0; i <= ULD_MAX; i++) {
14282 if (t4_uld_list[i] != NULL) {
14283 rc = EBUSY;
14284 sx_sunlock(&t4_uld_list_lock);
14285 sx_sunlock(&t4_list_lock);
14286 goto done_unload;
14287 }
14288 }
14289 sx_sunlock(&t4_uld_list_lock);
14290 #endif
14291 sx_sunlock(&t4_list_lock);
14292
14293 if (t4_sge_extfree_refs() == 0) {
14294 EVENTHANDLER_DEREGISTER(vxlan_start,
14295 vxlan_start_evtag);
14296 EVENTHANDLER_DEREGISTER(vxlan_stop,
14297 vxlan_stop_evtag);
14298 t4_tracer_modunload();
14299 #ifdef KERN_TLS
14300 t7_ktls_modunload();
14301 t6_ktls_modunload();
14302 #endif
14303 #ifdef INET6
14304 t4_clip_modunload();
14305 #endif
14306 #ifdef TCP_OFFLOAD
14307 sx_destroy(&t4_uld_list_lock);
14308 #endif
14309 sx_destroy(&t4_list_lock);
14310 t4_sge_modunload();
14311 loaded = 0;
14312 } else {
14313 rc = EBUSY;
14314 loaded++; /* undo earlier decrement */
14315 }
14316 }
14317 done_unload:
14318 sx_xunlock(&mlu);
14319 break;
14320 }
14321
14322 return (rc);
14323 }
14324
14325 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
14326 MODULE_VERSION(t4nex, 1);
14327 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
14328 #ifdef DEV_NETMAP
14329 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
14330 #endif /* DEV_NETMAP */
14331
14332 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
14333 MODULE_VERSION(t5nex, 1);
14334 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
14335 #ifdef DEV_NETMAP
14336 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
14337 #endif /* DEV_NETMAP */
14338
14339 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
14340 MODULE_VERSION(t6nex, 1);
14341 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
14342 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
14343 #ifdef DEV_NETMAP
14344 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
14345 #endif /* DEV_NETMAP */
14346
14347 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0);
14348 MODULE_VERSION(chnex, 1);
14349 MODULE_DEPEND(chnex, crypto, 1, 1, 1);
14350 MODULE_DEPEND(chnex, firmware, 1, 1, 1);
14351 #ifdef DEV_NETMAP
14352 MODULE_DEPEND(chnex, netmap, 1, 1, 1);
14353 #endif /* DEV_NETMAP */
14354
14355 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
14356 MODULE_VERSION(cxgbe, 1);
14357
14358 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
14359 MODULE_VERSION(cxl, 1);
14360
14361 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
14362 MODULE_VERSION(cc, 1);
14363
14364 DRIVER_MODULE(che, chnex, che_driver, 0, 0);
14365 MODULE_VERSION(che, 1);
14366
14367 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
14368 MODULE_VERSION(vcxgbe, 1);
14369
14370 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
14371 MODULE_VERSION(vcxl, 1);
14372
14373 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
14374 MODULE_VERSION(vcc, 1);
14375
14376 DRIVER_MODULE(vche, che, vche_driver, 0, 0);
14377 MODULE_VERSION(vche, 1);
14378