xref: /freebsd/sys/contrib/openzfs/module/zcommon/zfs_fletcher.c (revision aca928a50a42f00f344df934005b09dbcb4e2f77)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
25  */
26 /*
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  */
29 
30 /*
31  * Copyright (c) 2016 by Delphix. All rights reserved.
32  */
33 
34 /*
35  * Fletcher Checksums
36  * ------------------
37  *
38  * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
39  * recurrence relations:
40  *
41  *	a  = a    + f
42  *	 i    i-1    i-1
43  *
44  *	b  = b    + a
45  *	 i    i-1    i
46  *
47  *	c  = c    + b		(fletcher-4 only)
48  *	 i    i-1    i
49  *
50  *	d  = d    + c		(fletcher-4 only)
51  *	 i    i-1    i
52  *
53  * Where
54  *	a_0 = b_0 = c_0 = d_0 = 0
55  * and
56  *	f_0 .. f_(n-1) are the input data.
57  *
58  * Using standard techniques, these translate into the following series:
59  *
60  *	     __n_			     __n_
61  *	     \   |			     \   |
62  *	a  =  >     f			b  =  >     i * f
63  *	 n   /___|   n - i		 n   /___|	 n - i
64  *	     i = 1			     i = 1
65  *
66  *
67  *	     __n_			     __n_
68  *	     \   |  i*(i+1)		     \   |  i*(i+1)*(i+2)
69  *	c  =  >     ------- f		d  =  >     ------------- f
70  *	 n   /___|     2     n - i	 n   /___|	  6	   n - i
71  *	     i = 1			     i = 1
72  *
73  * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
74  * Since the additions are done mod (2^64), errors in the high bits may not
75  * be noticed.  For this reason, fletcher-2 is deprecated.
76  *
77  * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
78  * A conservative estimate of how big the buffer can get before we overflow
79  * can be estimated using f_i = 0xffffffff for all i:
80  *
81  * % bc
82  *  f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
83  * 2264
84  *  quit
85  * %
86  *
87  * So blocks of up to 2k will not overflow.  Our largest block size is
88  * 128k, which has 32k 4-byte words, so we can compute the largest possible
89  * accumulators, then divide by 2^64 to figure the max amount of overflow:
90  *
91  * % bc
92  *  a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
93  *  a/2^64;b/2^64;c/2^64;d/2^64
94  * 0
95  * 0
96  * 1365
97  * 11186858
98  *  quit
99  * %
100  *
101  * So a and b cannot overflow.  To make sure each bit of input has some
102  * effect on the contents of c and d, we can look at what the factors of
103  * the coefficients in the equations for c_n and d_n are.  The number of 2s
104  * in the factors determines the lowest set bit in the multiplier.  Running
105  * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
106  * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15.  So while some data may overflow
107  * the 64-bit accumulators, every bit of every f_i effects every accumulator,
108  * even for 128k blocks.
109  *
110  * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
111  * we could do our calculations mod (2^32 - 1) by adding in the carries
112  * periodically, and store the number of carries in the top 32-bits.
113  *
114  * --------------------
115  * Checksum Performance
116  * --------------------
117  *
118  * There are two interesting components to checksum performance: cached and
119  * uncached performance.  With cached data, fletcher-2 is about four times
120  * faster than fletcher-4.  With uncached data, the performance difference is
121  * negligible, since the cost of a cache fill dominates the processing time.
122  * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
123  * efficient pass over the data.
124  *
125  * In normal operation, the data which is being checksummed is in a buffer
126  * which has been filled either by:
127  *
128  *	1. a compression step, which will be mostly cached, or
129  *	2. a memcpy() or copyin(), which will be uncached
130  *	   (because the copy is cache-bypassing).
131  *
132  * For both cached and uncached data, both fletcher checksums are much faster
133  * than sha-256, and slower than 'off', which doesn't touch the data at all.
134  */
135 
136 #include <sys/types.h>
137 #include <sys/sysmacros.h>
138 #include <sys/byteorder.h>
139 #include <sys/simd.h>
140 #include <sys/spa.h>
141 #include <sys/zio_checksum.h>
142 #include <sys/zfs_context.h>
143 #include <zfs_fletcher.h>
144 
145 #define	FLETCHER_MIN_SIMD_SIZE	64
146 
147 static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
148 static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
149 static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
150     const void *buf, uint64_t size);
151 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
152     const void *buf, uint64_t size);
153 static boolean_t fletcher_4_scalar_valid(void);
154 
155 static const fletcher_4_ops_t fletcher_4_scalar_ops = {
156 	.init_native = fletcher_4_scalar_init,
157 	.fini_native = fletcher_4_scalar_fini,
158 	.compute_native = fletcher_4_scalar_native,
159 	.init_byteswap = fletcher_4_scalar_init,
160 	.fini_byteswap = fletcher_4_scalar_fini,
161 	.compute_byteswap = fletcher_4_scalar_byteswap,
162 	.valid = fletcher_4_scalar_valid,
163 	.uses_fpu = B_FALSE,
164 	.name = "scalar"
165 };
166 
167 static fletcher_4_ops_t fletcher_4_fastest_impl = {
168 	.name = "fastest",
169 	.valid = fletcher_4_scalar_valid
170 };
171 
172 static const fletcher_4_ops_t *fletcher_4_impls[] = {
173 	&fletcher_4_scalar_ops,
174 	&fletcher_4_superscalar_ops,
175 	&fletcher_4_superscalar4_ops,
176 #if defined(HAVE_SSE2)
177 	&fletcher_4_sse2_ops,
178 #endif
179 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
180 	&fletcher_4_ssse3_ops,
181 #endif
182 #if defined(HAVE_AVX) && defined(HAVE_AVX2)
183 	&fletcher_4_avx2_ops,
184 #endif
185 #if defined(__x86_64) && defined(HAVE_AVX512F)
186 	&fletcher_4_avx512f_ops,
187 #endif
188 #if defined(__x86_64) && defined(HAVE_AVX512BW)
189 	&fletcher_4_avx512bw_ops,
190 #endif
191 #if defined(__aarch64__) && !defined(__FreeBSD__)
192 	&fletcher_4_aarch64_neon_ops,
193 #endif
194 };
195 
196 /* Hold all supported implementations */
197 static uint32_t fletcher_4_supp_impls_cnt = 0;
198 static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
199 
200 /* Select fletcher4 implementation */
201 #define	IMPL_FASTEST	(UINT32_MAX)
202 #define	IMPL_CYCLE	(UINT32_MAX - 1)
203 #define	IMPL_SCALAR	(0)
204 
205 static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
206 
207 #define	IMPL_READ(i)	(*(volatile uint32_t *) &(i))
208 
209 static struct fletcher_4_impl_selector {
210 	const char	*fis_name;
211 	uint32_t	fis_sel;
212 } fletcher_4_impl_selectors[] = {
213 	{ "cycle",	IMPL_CYCLE },
214 	{ "fastest",	IMPL_FASTEST },
215 	{ "scalar",	IMPL_SCALAR }
216 };
217 
218 #if defined(_KERNEL)
219 static kstat_t *fletcher_4_kstat;
220 
221 static struct fletcher_4_kstat {
222 	uint64_t native;
223 	uint64_t byteswap;
224 } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
225 #endif
226 
227 /* Indicate that benchmark has been completed */
228 static boolean_t fletcher_4_initialized = B_FALSE;
229 
230 void
fletcher_init(zio_cksum_t * zcp)231 fletcher_init(zio_cksum_t *zcp)
232 {
233 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
234 }
235 
236 int
fletcher_2_incremental_native(void * buf,size_t size,void * data)237 fletcher_2_incremental_native(void *buf, size_t size, void *data)
238 {
239 	zio_cksum_t *zcp = data;
240 
241 	const uint64_t *ip = buf;
242 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
243 	uint64_t a0, b0, a1, b1;
244 
245 	a0 = zcp->zc_word[0];
246 	a1 = zcp->zc_word[1];
247 	b0 = zcp->zc_word[2];
248 	b1 = zcp->zc_word[3];
249 
250 	for (; ip < ipend; ip += 2) {
251 		a0 += ip[0];
252 		a1 += ip[1];
253 		b0 += a0;
254 		b1 += a1;
255 	}
256 
257 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
258 	return (0);
259 }
260 
261 void
fletcher_2_native(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)262 fletcher_2_native(const void *buf, uint64_t size,
263     const void *ctx_template, zio_cksum_t *zcp)
264 {
265 	(void) ctx_template;
266 	fletcher_init(zcp);
267 	(void) fletcher_2_incremental_native((void *) buf, size, zcp);
268 }
269 
270 int
fletcher_2_incremental_byteswap(void * buf,size_t size,void * data)271 fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
272 {
273 	zio_cksum_t *zcp = data;
274 
275 	const uint64_t *ip = buf;
276 	const uint64_t *ipend = ip + (size / sizeof (uint64_t));
277 	uint64_t a0, b0, a1, b1;
278 
279 	a0 = zcp->zc_word[0];
280 	a1 = zcp->zc_word[1];
281 	b0 = zcp->zc_word[2];
282 	b1 = zcp->zc_word[3];
283 
284 	for (; ip < ipend; ip += 2) {
285 		a0 += BSWAP_64(ip[0]);
286 		a1 += BSWAP_64(ip[1]);
287 		b0 += a0;
288 		b1 += a1;
289 	}
290 
291 	ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
292 	return (0);
293 }
294 
295 void
fletcher_2_byteswap(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)296 fletcher_2_byteswap(const void *buf, uint64_t size,
297     const void *ctx_template, zio_cksum_t *zcp)
298 {
299 	(void) ctx_template;
300 	fletcher_init(zcp);
301 	(void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
302 }
303 
304 static void
fletcher_4_scalar_init(fletcher_4_ctx_t * ctx)305 fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
306 {
307 	ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
308 }
309 
310 static void
fletcher_4_scalar_fini(fletcher_4_ctx_t * ctx,zio_cksum_t * zcp)311 fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
312 {
313 	memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
314 }
315 
316 static void
fletcher_4_scalar_native(fletcher_4_ctx_t * ctx,const void * buf,uint64_t size)317 fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
318     uint64_t size)
319 {
320 	const uint32_t *ip = buf;
321 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
322 	uint64_t a, b, c, d;
323 
324 	a = ctx->scalar.zc_word[0];
325 	b = ctx->scalar.zc_word[1];
326 	c = ctx->scalar.zc_word[2];
327 	d = ctx->scalar.zc_word[3];
328 
329 	for (; ip < ipend; ip++) {
330 		a += ip[0];
331 		b += a;
332 		c += b;
333 		d += c;
334 	}
335 
336 	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
337 }
338 
339 static void
fletcher_4_scalar_byteswap(fletcher_4_ctx_t * ctx,const void * buf,uint64_t size)340 fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
341     uint64_t size)
342 {
343 	const uint32_t *ip = buf;
344 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
345 	uint64_t a, b, c, d;
346 
347 	a = ctx->scalar.zc_word[0];
348 	b = ctx->scalar.zc_word[1];
349 	c = ctx->scalar.zc_word[2];
350 	d = ctx->scalar.zc_word[3];
351 
352 	for (; ip < ipend; ip++) {
353 		a += BSWAP_32(ip[0]);
354 		b += a;
355 		c += b;
356 		d += c;
357 	}
358 
359 	ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
360 }
361 
362 static boolean_t
fletcher_4_scalar_valid(void)363 fletcher_4_scalar_valid(void)
364 {
365 	return (B_TRUE);
366 }
367 
368 int
fletcher_4_impl_set(const char * val)369 fletcher_4_impl_set(const char *val)
370 {
371 	int err = -EINVAL;
372 	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
373 	size_t i, val_len;
374 
375 	val_len = strlen(val);
376 	while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
377 		val_len--;
378 
379 	/* check mandatory implementations */
380 	for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
381 		const char *name = fletcher_4_impl_selectors[i].fis_name;
382 
383 		if (val_len == strlen(name) &&
384 		    strncmp(val, name, val_len) == 0) {
385 			impl = fletcher_4_impl_selectors[i].fis_sel;
386 			err = 0;
387 			break;
388 		}
389 	}
390 
391 	if (err != 0 && fletcher_4_initialized) {
392 		/* check all supported implementations */
393 		for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
394 			const char *name = fletcher_4_supp_impls[i]->name;
395 
396 			if (val_len == strlen(name) &&
397 			    strncmp(val, name, val_len) == 0) {
398 				impl = i;
399 				err = 0;
400 				break;
401 			}
402 		}
403 	}
404 
405 	if (err == 0) {
406 		atomic_swap_32(&fletcher_4_impl_chosen, impl);
407 		membar_producer();
408 	}
409 
410 	return (err);
411 }
412 
413 /*
414  * Returns the Fletcher 4 operations for checksums.   When a SIMD
415  * implementation is not allowed in the current context, then fallback
416  * to the fastest generic implementation.
417  */
418 static inline const fletcher_4_ops_t *
fletcher_4_impl_get(void)419 fletcher_4_impl_get(void)
420 {
421 	if (!kfpu_allowed())
422 		return (&fletcher_4_superscalar4_ops);
423 
424 	const fletcher_4_ops_t *ops = NULL;
425 	uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
426 
427 	switch (impl) {
428 	case IMPL_FASTEST:
429 		ASSERT(fletcher_4_initialized);
430 		ops = &fletcher_4_fastest_impl;
431 		break;
432 	case IMPL_CYCLE:
433 		/* Cycle through supported implementations */
434 		ASSERT(fletcher_4_initialized);
435 		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
436 		static uint32_t cycle_count = 0;
437 		uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
438 		ops = fletcher_4_supp_impls[idx];
439 		break;
440 	default:
441 		ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
442 		ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
443 		ops = fletcher_4_supp_impls[impl];
444 		break;
445 	}
446 
447 	ASSERT3P(ops, !=, NULL);
448 
449 	return (ops);
450 }
451 
452 static inline void
fletcher_4_native_impl(const void * buf,uint64_t size,zio_cksum_t * zcp)453 fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
454 {
455 	fletcher_4_ctx_t ctx;
456 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
457 
458 	if (ops->uses_fpu == B_TRUE) {
459 		kfpu_begin();
460 	}
461 	ops->init_native(&ctx);
462 	ops->compute_native(&ctx, buf, size);
463 	ops->fini_native(&ctx, zcp);
464 	if (ops->uses_fpu == B_TRUE) {
465 		kfpu_end();
466 	}
467 }
468 
469 void
fletcher_4_native(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)470 fletcher_4_native(const void *buf, uint64_t size,
471     const void *ctx_template, zio_cksum_t *zcp)
472 {
473 	(void) ctx_template;
474 	const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE,
475 	    uint64_t);
476 
477 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
478 
479 	if (size == 0 || p2size == 0) {
480 		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
481 
482 		if (size > 0)
483 			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
484 			    buf, size);
485 	} else {
486 		fletcher_4_native_impl(buf, p2size, zcp);
487 
488 		if (p2size < size)
489 			fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
490 			    (char *)buf + p2size, size - p2size);
491 	}
492 }
493 
494 void
fletcher_4_native_varsize(const void * buf,uint64_t size,zio_cksum_t * zcp)495 fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
496 {
497 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
498 	fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
499 }
500 
501 static inline void
fletcher_4_byteswap_impl(const void * buf,uint64_t size,zio_cksum_t * zcp)502 fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
503 {
504 	fletcher_4_ctx_t ctx;
505 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
506 
507 	if (ops->uses_fpu == B_TRUE) {
508 		kfpu_begin();
509 	}
510 	ops->init_byteswap(&ctx);
511 	ops->compute_byteswap(&ctx, buf, size);
512 	ops->fini_byteswap(&ctx, zcp);
513 	if (ops->uses_fpu == B_TRUE) {
514 		kfpu_end();
515 	}
516 }
517 
518 void
fletcher_4_byteswap(const void * buf,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)519 fletcher_4_byteswap(const void *buf, uint64_t size,
520     const void *ctx_template, zio_cksum_t *zcp)
521 {
522 	(void) ctx_template;
523 	const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE,
524 	    uint64_t);
525 
526 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
527 
528 	if (size == 0 || p2size == 0) {
529 		ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
530 
531 		if (size > 0)
532 			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
533 			    buf, size);
534 	} else {
535 		fletcher_4_byteswap_impl(buf, p2size, zcp);
536 
537 		if (p2size < size)
538 			fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
539 			    (char *)buf + p2size, size - p2size);
540 	}
541 }
542 
543 /* Incremental Fletcher 4 */
544 
545 #define	ZFS_FLETCHER_4_INC_MAX_SIZE	(8ULL << 20)
546 
547 static inline void
fletcher_4_incremental_combine(zio_cksum_t * zcp,const uint64_t size,const zio_cksum_t * nzcp)548 fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
549     const zio_cksum_t *nzcp)
550 {
551 	const uint64_t c1 = size / sizeof (uint32_t);
552 	const uint64_t c2 = c1 * (c1 + 1) / 2;
553 	const uint64_t c3 = c2 * (c1 + 2) / 3;
554 
555 	/*
556 	 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
557 	 * reason we split incremental fletcher4 computation of large buffers
558 	 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
559 	 */
560 	ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
561 
562 	zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
563 	    c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
564 	zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
565 	    c2 * zcp->zc_word[0];
566 	zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
567 	zcp->zc_word[0] += nzcp->zc_word[0];
568 }
569 
570 static inline void
fletcher_4_incremental_impl(boolean_t native,const void * buf,uint64_t size,zio_cksum_t * zcp)571 fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
572     zio_cksum_t *zcp)
573 {
574 	while (size > 0) {
575 		zio_cksum_t nzc;
576 		uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
577 
578 		if (native)
579 			fletcher_4_native(buf, len, NULL, &nzc);
580 		else
581 			fletcher_4_byteswap(buf, len, NULL, &nzc);
582 
583 		fletcher_4_incremental_combine(zcp, len, &nzc);
584 
585 		size -= len;
586 		buf += len;
587 	}
588 }
589 
590 int
fletcher_4_incremental_native(void * buf,size_t size,void * data)591 fletcher_4_incremental_native(void *buf, size_t size, void *data)
592 {
593 	zio_cksum_t *zcp = data;
594 	/* Use scalar impl to directly update cksum of small blocks */
595 	if (size < SPA_MINBLOCKSIZE)
596 		fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
597 	else
598 		fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
599 	return (0);
600 }
601 
602 int
fletcher_4_incremental_byteswap(void * buf,size_t size,void * data)603 fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
604 {
605 	zio_cksum_t *zcp = data;
606 	/* Use scalar impl to directly update cksum of small blocks */
607 	if (size < SPA_MINBLOCKSIZE)
608 		fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
609 	else
610 		fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
611 	return (0);
612 }
613 
614 #if defined(_KERNEL)
615 /*
616  * Fletcher 4 kstats
617  */
618 static int
fletcher_4_kstat_headers(char * buf,size_t size)619 fletcher_4_kstat_headers(char *buf, size_t size)
620 {
621 	ssize_t off = 0;
622 
623 	off += snprintf(buf + off, size, "%-17s", "implementation");
624 	off += snprintf(buf + off, size - off, "%-15s", "native");
625 	(void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
626 
627 	return (0);
628 }
629 
630 static int
fletcher_4_kstat_data(char * buf,size_t size,void * data)631 fletcher_4_kstat_data(char *buf, size_t size, void *data)
632 {
633 	struct fletcher_4_kstat *fastest_stat =
634 	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
635 	struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
636 	ssize_t off = 0;
637 
638 	if (curr_stat == fastest_stat) {
639 		off += snprintf(buf + off, size - off, "%-17s", "fastest");
640 		off += snprintf(buf + off, size - off, "%-15s",
641 		    fletcher_4_supp_impls[fastest_stat->native]->name);
642 		(void) snprintf(buf + off, size - off, "%-15s\n",
643 		    fletcher_4_supp_impls[fastest_stat->byteswap]->name);
644 	} else {
645 		ptrdiff_t id = curr_stat - fletcher_4_stat_data;
646 
647 		off += snprintf(buf + off, size - off, "%-17s",
648 		    fletcher_4_supp_impls[id]->name);
649 		off += snprintf(buf + off, size - off, "%-15llu",
650 		    (u_longlong_t)curr_stat->native);
651 		(void) snprintf(buf + off, size - off, "%-15llu\n",
652 		    (u_longlong_t)curr_stat->byteswap);
653 	}
654 
655 	return (0);
656 }
657 
658 static void *
fletcher_4_kstat_addr(kstat_t * ksp,loff_t n)659 fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
660 {
661 	if (n <= fletcher_4_supp_impls_cnt)
662 		ksp->ks_private = (void *) (fletcher_4_stat_data + n);
663 	else
664 		ksp->ks_private = NULL;
665 
666 	return (ksp->ks_private);
667 }
668 #endif
669 
670 #define	FLETCHER_4_FASTEST_FN_COPY(type, src)				  \
671 {									  \
672 	fletcher_4_fastest_impl.init_ ## type = src->init_ ## type;	  \
673 	fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type;	  \
674 	fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
675 	fletcher_4_fastest_impl.uses_fpu = src->uses_fpu;		  \
676 }
677 
678 #define	FLETCHER_4_BENCH_NS	(MSEC2NSEC(1))		/* 1ms */
679 
680 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
681 					zio_cksum_t *);
682 
683 #if defined(_KERNEL)
684 static void
fletcher_4_benchmark_impl(boolean_t native,char * data,uint64_t data_size)685 fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
686 {
687 
688 	struct fletcher_4_kstat *fastest_stat =
689 	    &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
690 	hrtime_t start;
691 	uint64_t run_bw, run_time_ns, best_run = 0;
692 	zio_cksum_t zc;
693 	uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
694 
695 	fletcher_checksum_func_t *fletcher_4_test = native ?
696 	    fletcher_4_native : fletcher_4_byteswap;
697 
698 	for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
699 		struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
700 		uint64_t run_count = 0;
701 
702 		/* temporary set an implementation */
703 		fletcher_4_impl_chosen = i;
704 
705 		kpreempt_disable();
706 		start = gethrtime();
707 		do {
708 			for (l = 0; l < 32; l++, run_count++)
709 				fletcher_4_test(data, data_size, NULL, &zc);
710 
711 			run_time_ns = gethrtime() - start;
712 		} while (run_time_ns < FLETCHER_4_BENCH_NS);
713 		kpreempt_enable();
714 
715 		run_bw = data_size * run_count * NANOSEC;
716 		run_bw /= run_time_ns;	/* B/s */
717 
718 		if (native)
719 			stat->native = run_bw;
720 		else
721 			stat->byteswap = run_bw;
722 
723 		if (run_bw > best_run) {
724 			best_run = run_bw;
725 
726 			if (native) {
727 				fastest_stat->native = i;
728 				FLETCHER_4_FASTEST_FN_COPY(native,
729 				    fletcher_4_supp_impls[i]);
730 			} else {
731 				fastest_stat->byteswap = i;
732 				FLETCHER_4_FASTEST_FN_COPY(byteswap,
733 				    fletcher_4_supp_impls[i]);
734 			}
735 		}
736 	}
737 
738 	/* restore original selection */
739 	atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
740 }
741 #endif /* _KERNEL */
742 
743 /*
744  * Initialize and benchmark all supported implementations.
745  */
746 static void
fletcher_4_benchmark(void)747 fletcher_4_benchmark(void)
748 {
749 	fletcher_4_ops_t *curr_impl;
750 	int i, c;
751 
752 	/* Move supported implementations into fletcher_4_supp_impls */
753 	for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
754 		curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
755 
756 		if (curr_impl->valid && curr_impl->valid())
757 			fletcher_4_supp_impls[c++] = curr_impl;
758 	}
759 	membar_producer();	/* complete fletcher_4_supp_impls[] init */
760 	fletcher_4_supp_impls_cnt = c;	/* number of supported impl */
761 
762 #if defined(_KERNEL)
763 	static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
764 	char *databuf = vmem_alloc(data_size, KM_SLEEP);
765 
766 	for (i = 0; i < data_size / sizeof (uint64_t); i++)
767 		((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
768 
769 	fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
770 	fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
771 
772 	vmem_free(databuf, data_size);
773 #else
774 	/*
775 	 * Skip the benchmark in user space to avoid impacting libzpool
776 	 * consumers (zdb, zhack, zinject, ztest).  The last implementation
777 	 * is assumed to be the fastest and used by default.
778 	 */
779 	memcpy(&fletcher_4_fastest_impl,
780 	    fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
781 	    sizeof (fletcher_4_fastest_impl));
782 	fletcher_4_fastest_impl.name = "fastest";
783 	membar_producer();
784 #endif /* _KERNEL */
785 }
786 
787 void
fletcher_4_init(void)788 fletcher_4_init(void)
789 {
790 	/* Determine the fastest available implementation. */
791 	fletcher_4_benchmark();
792 
793 #if defined(_KERNEL)
794 	/* Install kstats for all implementations */
795 	fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
796 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
797 	if (fletcher_4_kstat != NULL) {
798 		fletcher_4_kstat->ks_data = NULL;
799 		fletcher_4_kstat->ks_ndata = UINT32_MAX;
800 		kstat_set_raw_ops(fletcher_4_kstat,
801 		    fletcher_4_kstat_headers,
802 		    fletcher_4_kstat_data,
803 		    fletcher_4_kstat_addr);
804 		kstat_install(fletcher_4_kstat);
805 	}
806 #endif
807 
808 	/* Finish initialization */
809 	fletcher_4_initialized = B_TRUE;
810 }
811 
812 void
fletcher_4_fini(void)813 fletcher_4_fini(void)
814 {
815 #if defined(_KERNEL)
816 	if (fletcher_4_kstat != NULL) {
817 		kstat_delete(fletcher_4_kstat);
818 		fletcher_4_kstat = NULL;
819 	}
820 #endif
821 }
822 
823 /* ABD adapters */
824 
825 static void
abd_fletcher_4_init(zio_abd_checksum_data_t * cdp)826 abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
827 {
828 	const fletcher_4_ops_t *ops = fletcher_4_impl_get();
829 	cdp->acd_private = (void *) ops;
830 
831 	if (ops->uses_fpu == B_TRUE) {
832 		kfpu_begin();
833 	}
834 	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
835 		ops->init_native(cdp->acd_ctx);
836 	else
837 		ops->init_byteswap(cdp->acd_ctx);
838 
839 }
840 
841 static void
abd_fletcher_4_fini(zio_abd_checksum_data_t * cdp)842 abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
843 {
844 	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
845 
846 	ASSERT(ops);
847 
848 	if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
849 		ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
850 	else
851 		ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
852 
853 	if (ops->uses_fpu == B_TRUE) {
854 		kfpu_end();
855 	}
856 }
857 
858 
859 static void
abd_fletcher_4_simd2scalar(boolean_t native,void * data,size_t size,zio_abd_checksum_data_t * cdp)860 abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
861     zio_abd_checksum_data_t *cdp)
862 {
863 	zio_cksum_t *zcp = cdp->acd_zcp;
864 
865 	ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
866 
867 	abd_fletcher_4_fini(cdp);
868 	cdp->acd_private = (void *)&fletcher_4_scalar_ops;
869 
870 	if (native)
871 		fletcher_4_incremental_native(data, size, zcp);
872 	else
873 		fletcher_4_incremental_byteswap(data, size, zcp);
874 }
875 
876 static int
abd_fletcher_4_iter(void * data,size_t size,void * private)877 abd_fletcher_4_iter(void *data, size_t size, void *private)
878 {
879 	zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
880 	fletcher_4_ctx_t *ctx = cdp->acd_ctx;
881 	fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
882 	boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
883 	uint64_t asize = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE, uint64_t);
884 
885 	ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
886 
887 	if (asize > 0) {
888 		if (native)
889 			ops->compute_native(ctx, data, asize);
890 		else
891 			ops->compute_byteswap(ctx, data, asize);
892 
893 		size -= asize;
894 		data = (char *)data + asize;
895 	}
896 
897 	if (size > 0) {
898 		ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
899 		/* At this point we have to switch to scalar impl */
900 		abd_fletcher_4_simd2scalar(native, data, size, cdp);
901 	}
902 
903 	return (0);
904 }
905 
906 zio_abd_checksum_func_t fletcher_4_abd_ops = {
907 	.acf_init = abd_fletcher_4_init,
908 	.acf_fini = abd_fletcher_4_fini,
909 	.acf_iter = abd_fletcher_4_iter
910 };
911 
912 #if defined(_KERNEL)
913 
914 #define	IMPL_FMT(impl, i)	(((impl) == (i)) ? "[%s] " : "%s ")
915 
916 #if defined(__linux__)
917 
918 static int
fletcher_4_param_get(char * buffer,zfs_kernel_param_t * unused)919 fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
920 {
921 	const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
922 	char *fmt;
923 	int cnt = 0;
924 
925 	/* list fastest */
926 	fmt = IMPL_FMT(impl, IMPL_FASTEST);
927 	cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt, "fastest");
928 
929 	/* list all supported implementations */
930 	for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
931 		fmt = IMPL_FMT(impl, i);
932 		cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt,
933 		    fletcher_4_supp_impls[i]->name);
934 	}
935 
936 	return (cnt);
937 }
938 
939 static int
fletcher_4_param_set(const char * val,zfs_kernel_param_t * unused)940 fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
941 {
942 	return (fletcher_4_impl_set(val));
943 }
944 
945 #else
946 
947 #include <sys/sbuf.h>
948 
949 static int
fletcher_4_param(ZFS_MODULE_PARAM_ARGS)950 fletcher_4_param(ZFS_MODULE_PARAM_ARGS)
951 {
952 	int err;
953 
954 	if (req->newptr == NULL) {
955 		const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
956 		const int init_buflen = 64;
957 		const char *fmt;
958 		struct sbuf *s;
959 
960 		s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req);
961 
962 		/* list fastest */
963 		fmt = IMPL_FMT(impl, IMPL_FASTEST);
964 		(void) sbuf_printf(s, fmt, "fastest");
965 
966 		/* list all supported implementations */
967 		for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
968 			fmt = IMPL_FMT(impl, i);
969 			(void) sbuf_printf(s, fmt,
970 			    fletcher_4_supp_impls[i]->name);
971 		}
972 
973 		err = sbuf_finish(s);
974 		sbuf_delete(s);
975 
976 		return (err);
977 	}
978 
979 	char buf[16];
980 
981 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
982 	if (err)
983 		return (err);
984 	return (-fletcher_4_impl_set(buf));
985 }
986 
987 #endif
988 
989 #undef IMPL_FMT
990 
991 /*
992  * Choose a fletcher 4 implementation in ZFS.
993  * Users can choose "cycle" to exercise all implementations, but this is
994  * for testing purpose therefore it can only be set in user space.
995  */
996 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl,
997     fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW,
998 	"Select fletcher 4 implementation.");
999 
1000 EXPORT_SYMBOL(fletcher_init);
1001 EXPORT_SYMBOL(fletcher_2_incremental_native);
1002 EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
1003 EXPORT_SYMBOL(fletcher_4_init);
1004 EXPORT_SYMBOL(fletcher_4_fini);
1005 EXPORT_SYMBOL(fletcher_2_native);
1006 EXPORT_SYMBOL(fletcher_2_byteswap);
1007 EXPORT_SYMBOL(fletcher_4_native);
1008 EXPORT_SYMBOL(fletcher_4_native_varsize);
1009 EXPORT_SYMBOL(fletcher_4_byteswap);
1010 EXPORT_SYMBOL(fletcher_4_incremental_native);
1011 EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
1012 EXPORT_SYMBOL(fletcher_4_abd_ops);
1013 #endif
1014