xref: /linux/drivers/acpi/ec.c (revision 18531f4d1c8c47c4796289dbbc1ab657ffa063d2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  ec.c - ACPI Embedded Controller Driver (v3)
4  *
5  *  Copyright (C) 2001-2015 Intel Corporation
6  *    Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7  *            2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8  *            2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  *            2004       Luming Yu <luming.yu@intel.com>
10  *            2001, 2002 Andy Grover <andrew.grover@intel.com>
11  *            2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12  *  Copyright (C) 2008      Alexey Starikovskiy <astarikovskiy@suse.de>
13  */
14 
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/printk.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/suspend.h>
31 #include <linux/acpi.h>
32 #include <linux/dmi.h>
33 #include <asm/io.h>
34 
35 #include "internal.h"
36 
37 #define ACPI_EC_CLASS			"embedded_controller"
38 #define ACPI_EC_DEVICE_NAME		"Embedded Controller"
39 
40 /* EC status register */
41 #define ACPI_EC_FLAG_OBF	0x01	/* Output buffer full */
42 #define ACPI_EC_FLAG_IBF	0x02	/* Input buffer full */
43 #define ACPI_EC_FLAG_CMD	0x08	/* Input buffer contains a command */
44 #define ACPI_EC_FLAG_BURST	0x10	/* burst mode */
45 #define ACPI_EC_FLAG_SCI	0x20	/* EC-SCI occurred */
46 
47 /*
48  * The SCI_EVT clearing timing is not defined by the ACPI specification.
49  * This leads to lots of practical timing issues for the host EC driver.
50  * The following variations are defined (from the target EC firmware's
51  * perspective):
52  * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
53  *         target can clear SCI_EVT at any time so long as the host can see
54  *         the indication by reading the status register (EC_SC). So the
55  *         host should re-check SCI_EVT after the first time the SCI_EVT
56  *         indication is seen, which is the same time the query request
57  *         (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
58  *         at any later time could indicate another event. Normally such
59  *         kind of EC firmware has implemented an event queue and will
60  *         return 0x00 to indicate "no outstanding event".
61  * QUERY: After seeing the query request (QR_EC) written to the command
62  *        register (EC_CMD) by the host and having prepared the responding
63  *        event value in the data register (EC_DATA), the target can safely
64  *        clear SCI_EVT because the target can confirm that the current
65  *        event is being handled by the host. The host then should check
66  *        SCI_EVT right after reading the event response from the data
67  *        register (EC_DATA).
68  * EVENT: After seeing the event response read from the data register
69  *        (EC_DATA) by the host, the target can clear SCI_EVT. As the
70  *        target requires time to notice the change in the data register
71  *        (EC_DATA), the host may be required to wait additional guarding
72  *        time before checking the SCI_EVT again. Such guarding may not be
73  *        necessary if the host is notified via another IRQ.
74  */
75 #define ACPI_EC_EVT_TIMING_STATUS	0x00
76 #define ACPI_EC_EVT_TIMING_QUERY	0x01
77 #define ACPI_EC_EVT_TIMING_EVENT	0x02
78 
79 /* EC commands */
80 enum ec_command {
81 	ACPI_EC_COMMAND_READ = 0x80,
82 	ACPI_EC_COMMAND_WRITE = 0x81,
83 	ACPI_EC_BURST_ENABLE = 0x82,
84 	ACPI_EC_BURST_DISABLE = 0x83,
85 	ACPI_EC_COMMAND_QUERY = 0x84,
86 };
87 
88 #define ACPI_EC_DELAY		500	/* Wait 500ms max. during EC ops */
89 #define ACPI_EC_UDELAY_GLK	1000	/* Wait 1ms max. to get global lock */
90 #define ACPI_EC_UDELAY_POLL	550	/* Wait 1ms for EC transaction polling */
91 #define ACPI_EC_CLEAR_MAX	100	/* Maximum number of events to query
92 					 * when trying to clear the EC */
93 #define ACPI_EC_MAX_QUERIES	16	/* Maximum number of parallel queries */
94 
95 enum {
96 	EC_FLAGS_QUERY_ENABLED,		/* Query is enabled */
97 	EC_FLAGS_EVENT_HANDLER_INSTALLED,	/* Event handler installed */
98 	EC_FLAGS_EC_HANDLER_INSTALLED,	/* OpReg handler installed */
99 	EC_FLAGS_EC_REG_CALLED,		/* OpReg ACPI _REG method called */
100 	EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
101 	EC_FLAGS_STARTED,		/* Driver is started */
102 	EC_FLAGS_STOPPED,		/* Driver is stopped */
103 	EC_FLAGS_EVENTS_MASKED,		/* Events masked */
104 };
105 
106 #define ACPI_EC_COMMAND_POLL		0x01 /* Available for command byte */
107 #define ACPI_EC_COMMAND_COMPLETE	0x02 /* Completed last byte */
108 
109 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
110 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
111 module_param(ec_delay, uint, 0644);
112 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
113 
114 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
115 module_param(ec_max_queries, uint, 0644);
116 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
117 
118 static bool ec_busy_polling __read_mostly;
119 module_param(ec_busy_polling, bool, 0644);
120 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
121 
122 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
123 module_param(ec_polling_guard, uint, 0644);
124 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
125 
126 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
127 
128 /*
129  * If the number of false interrupts per one transaction exceeds
130  * this threshold, will think there is a GPE storm happened and
131  * will disable the GPE for normal transaction.
132  */
133 static unsigned int ec_storm_threshold  __read_mostly = 8;
134 module_param(ec_storm_threshold, uint, 0644);
135 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
136 
137 static bool ec_freeze_events __read_mostly;
138 module_param(ec_freeze_events, bool, 0644);
139 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
140 
141 static bool ec_no_wakeup __read_mostly;
142 module_param(ec_no_wakeup, bool, 0644);
143 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
144 
145 struct acpi_ec_query_handler {
146 	struct list_head node;
147 	acpi_ec_query_func func;
148 	acpi_handle handle;
149 	void *data;
150 	u8 query_bit;
151 	struct kref kref;
152 };
153 
154 struct transaction {
155 	const u8 *wdata;
156 	u8 *rdata;
157 	unsigned short irq_count;
158 	u8 command;
159 	u8 wi;
160 	u8 ri;
161 	u8 wlen;
162 	u8 rlen;
163 	u8 flags;
164 };
165 
166 struct acpi_ec_query {
167 	struct transaction transaction;
168 	struct work_struct work;
169 	struct acpi_ec_query_handler *handler;
170 	struct acpi_ec *ec;
171 };
172 
173 static int acpi_ec_submit_query(struct acpi_ec *ec);
174 static void advance_transaction(struct acpi_ec *ec, bool interrupt);
175 static void acpi_ec_event_handler(struct work_struct *work);
176 
177 struct acpi_ec *first_ec;
178 EXPORT_SYMBOL(first_ec);
179 
180 static struct acpi_ec *boot_ec;
181 static bool boot_ec_is_ecdt;
182 static struct workqueue_struct *ec_wq;
183 static struct workqueue_struct *ec_query_wq;
184 
185 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
186 static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */
187 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
188 
189 /* --------------------------------------------------------------------------
190  *                           Logging/Debugging
191  * -------------------------------------------------------------------------- */
192 
193 /*
194  * Splitters used by the developers to track the boundary of the EC
195  * handling processes.
196  */
197 #ifdef DEBUG
198 #define EC_DBG_SEP	" "
199 #define EC_DBG_DRV	"+++++"
200 #define EC_DBG_STM	"====="
201 #define EC_DBG_REQ	"*****"
202 #define EC_DBG_EVT	"#####"
203 #else
204 #define EC_DBG_SEP	""
205 #define EC_DBG_DRV
206 #define EC_DBG_STM
207 #define EC_DBG_REQ
208 #define EC_DBG_EVT
209 #endif
210 
211 #define ec_log_raw(fmt, ...) \
212 	pr_info(fmt "\n", ##__VA_ARGS__)
213 #define ec_dbg_raw(fmt, ...) \
214 	pr_debug(fmt "\n", ##__VA_ARGS__)
215 #define ec_log(filter, fmt, ...) \
216 	ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
217 #define ec_dbg(filter, fmt, ...) \
218 	ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
219 
220 #define ec_log_drv(fmt, ...) \
221 	ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
222 #define ec_dbg_drv(fmt, ...) \
223 	ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
224 #define ec_dbg_stm(fmt, ...) \
225 	ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
226 #define ec_dbg_req(fmt, ...) \
227 	ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
228 #define ec_dbg_evt(fmt, ...) \
229 	ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
230 #define ec_dbg_ref(ec, fmt, ...) \
231 	ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
232 
233 /* --------------------------------------------------------------------------
234  *                           Device Flags
235  * -------------------------------------------------------------------------- */
236 
acpi_ec_started(struct acpi_ec * ec)237 static bool acpi_ec_started(struct acpi_ec *ec)
238 {
239 	return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
240 	       !test_bit(EC_FLAGS_STOPPED, &ec->flags);
241 }
242 
acpi_ec_event_enabled(struct acpi_ec * ec)243 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
244 {
245 	/*
246 	 * There is an OSPM early stage logic. During the early stages
247 	 * (boot/resume), OSPMs shouldn't enable the event handling, only
248 	 * the EC transactions are allowed to be performed.
249 	 */
250 	if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
251 		return false;
252 	/*
253 	 * However, disabling the event handling is experimental for late
254 	 * stage (suspend), and is controlled by the boot parameter of
255 	 * "ec_freeze_events":
256 	 * 1. true:  The EC event handling is disabled before entering
257 	 *           the noirq stage.
258 	 * 2. false: The EC event handling is automatically disabled as
259 	 *           soon as the EC driver is stopped.
260 	 */
261 	if (ec_freeze_events)
262 		return acpi_ec_started(ec);
263 	else
264 		return test_bit(EC_FLAGS_STARTED, &ec->flags);
265 }
266 
acpi_ec_flushed(struct acpi_ec * ec)267 static bool acpi_ec_flushed(struct acpi_ec *ec)
268 {
269 	return ec->reference_count == 1;
270 }
271 
272 /* --------------------------------------------------------------------------
273  *                           EC Registers
274  * -------------------------------------------------------------------------- */
275 
acpi_ec_read_status(struct acpi_ec * ec)276 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
277 {
278 	u8 x = inb(ec->command_addr);
279 
280 	ec_dbg_raw("EC_SC(R) = 0x%2.2x "
281 		   "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
282 		   x,
283 		   !!(x & ACPI_EC_FLAG_SCI),
284 		   !!(x & ACPI_EC_FLAG_BURST),
285 		   !!(x & ACPI_EC_FLAG_CMD),
286 		   !!(x & ACPI_EC_FLAG_IBF),
287 		   !!(x & ACPI_EC_FLAG_OBF));
288 	return x;
289 }
290 
acpi_ec_read_data(struct acpi_ec * ec)291 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
292 {
293 	u8 x = inb(ec->data_addr);
294 
295 	ec->timestamp = jiffies;
296 	ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
297 	return x;
298 }
299 
acpi_ec_write_cmd(struct acpi_ec * ec,u8 command)300 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
301 {
302 	ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
303 	outb(command, ec->command_addr);
304 	ec->timestamp = jiffies;
305 }
306 
acpi_ec_write_data(struct acpi_ec * ec,u8 data)307 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
308 {
309 	ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
310 	outb(data, ec->data_addr);
311 	ec->timestamp = jiffies;
312 }
313 
314 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
acpi_ec_cmd_string(u8 cmd)315 static const char *acpi_ec_cmd_string(u8 cmd)
316 {
317 	switch (cmd) {
318 	case 0x80:
319 		return "RD_EC";
320 	case 0x81:
321 		return "WR_EC";
322 	case 0x82:
323 		return "BE_EC";
324 	case 0x83:
325 		return "BD_EC";
326 	case 0x84:
327 		return "QR_EC";
328 	}
329 	return "UNKNOWN";
330 }
331 #else
332 #define acpi_ec_cmd_string(cmd)		"UNDEF"
333 #endif
334 
335 /* --------------------------------------------------------------------------
336  *                           GPE Registers
337  * -------------------------------------------------------------------------- */
338 
acpi_ec_gpe_status_set(struct acpi_ec * ec)339 static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec)
340 {
341 	acpi_event_status gpe_status = 0;
342 
343 	(void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
344 	return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET);
345 }
346 
acpi_ec_enable_gpe(struct acpi_ec * ec,bool open)347 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
348 {
349 	if (open)
350 		acpi_enable_gpe(NULL, ec->gpe);
351 	else {
352 		BUG_ON(ec->reference_count < 1);
353 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
354 	}
355 	if (acpi_ec_gpe_status_set(ec)) {
356 		/*
357 		 * On some platforms, EN=1 writes cannot trigger GPE. So
358 		 * software need to manually trigger a pseudo GPE event on
359 		 * EN=1 writes.
360 		 */
361 		ec_dbg_raw("Polling quirk");
362 		advance_transaction(ec, false);
363 	}
364 }
365 
acpi_ec_disable_gpe(struct acpi_ec * ec,bool close)366 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
367 {
368 	if (close)
369 		acpi_disable_gpe(NULL, ec->gpe);
370 	else {
371 		BUG_ON(ec->reference_count < 1);
372 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
373 	}
374 }
375 
376 /* --------------------------------------------------------------------------
377  *                           Transaction Management
378  * -------------------------------------------------------------------------- */
379 
acpi_ec_submit_request(struct acpi_ec * ec)380 static void acpi_ec_submit_request(struct acpi_ec *ec)
381 {
382 	ec->reference_count++;
383 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
384 	    ec->gpe >= 0 && ec->reference_count == 1)
385 		acpi_ec_enable_gpe(ec, true);
386 }
387 
acpi_ec_complete_request(struct acpi_ec * ec)388 static void acpi_ec_complete_request(struct acpi_ec *ec)
389 {
390 	bool flushed = false;
391 
392 	ec->reference_count--;
393 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
394 	    ec->gpe >= 0 && ec->reference_count == 0)
395 		acpi_ec_disable_gpe(ec, true);
396 	flushed = acpi_ec_flushed(ec);
397 	if (flushed)
398 		wake_up(&ec->wait);
399 }
400 
acpi_ec_mask_events(struct acpi_ec * ec)401 static void acpi_ec_mask_events(struct acpi_ec *ec)
402 {
403 	if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
404 		if (ec->gpe >= 0)
405 			acpi_ec_disable_gpe(ec, false);
406 		else
407 			disable_irq_nosync(ec->irq);
408 
409 		ec_dbg_drv("Polling enabled");
410 		set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
411 	}
412 }
413 
acpi_ec_unmask_events(struct acpi_ec * ec)414 static void acpi_ec_unmask_events(struct acpi_ec *ec)
415 {
416 	if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
417 		clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
418 		if (ec->gpe >= 0)
419 			acpi_ec_enable_gpe(ec, false);
420 		else
421 			enable_irq(ec->irq);
422 
423 		ec_dbg_drv("Polling disabled");
424 	}
425 }
426 
427 /*
428  * acpi_ec_submit_flushable_request() - Increase the reference count unless
429  *                                      the flush operation is not in
430  *                                      progress
431  * @ec: the EC device
432  *
433  * This function must be used before taking a new action that should hold
434  * the reference count.  If this function returns false, then the action
435  * must be discarded or it will prevent the flush operation from being
436  * completed.
437  */
acpi_ec_submit_flushable_request(struct acpi_ec * ec)438 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
439 {
440 	if (!acpi_ec_started(ec))
441 		return false;
442 	acpi_ec_submit_request(ec);
443 	return true;
444 }
445 
acpi_ec_submit_event(struct acpi_ec * ec)446 static void acpi_ec_submit_event(struct acpi_ec *ec)
447 {
448 	/*
449 	 * It is safe to mask the events here, because acpi_ec_close_event()
450 	 * will run at least once after this.
451 	 */
452 	acpi_ec_mask_events(ec);
453 	if (!acpi_ec_event_enabled(ec))
454 		return;
455 
456 	if (ec->event_state != EC_EVENT_READY)
457 		return;
458 
459 	ec_dbg_evt("Command(%s) submitted/blocked",
460 		   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
461 
462 	ec->event_state = EC_EVENT_IN_PROGRESS;
463 	/*
464 	 * If events_to_process is greater than 0 at this point, the while ()
465 	 * loop in acpi_ec_event_handler() is still running and incrementing
466 	 * events_to_process will cause it to invoke acpi_ec_submit_query() once
467 	 * more, so it is not necessary to queue up the event work to start the
468 	 * same loop again.
469 	 */
470 	if (ec->events_to_process++ > 0)
471 		return;
472 
473 	ec->events_in_progress++;
474 	queue_work(ec_wq, &ec->work);
475 }
476 
acpi_ec_complete_event(struct acpi_ec * ec)477 static void acpi_ec_complete_event(struct acpi_ec *ec)
478 {
479 	if (ec->event_state == EC_EVENT_IN_PROGRESS)
480 		ec->event_state = EC_EVENT_COMPLETE;
481 }
482 
acpi_ec_close_event(struct acpi_ec * ec)483 static void acpi_ec_close_event(struct acpi_ec *ec)
484 {
485 	if (ec->event_state != EC_EVENT_READY)
486 		ec_dbg_evt("Command(%s) unblocked",
487 			   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
488 
489 	ec->event_state = EC_EVENT_READY;
490 	acpi_ec_unmask_events(ec);
491 }
492 
__acpi_ec_enable_event(struct acpi_ec * ec)493 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
494 {
495 	if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
496 		ec_log_drv("event unblocked");
497 	/*
498 	 * Unconditionally invoke this once after enabling the event
499 	 * handling mechanism to detect the pending events.
500 	 */
501 	advance_transaction(ec, false);
502 }
503 
__acpi_ec_disable_event(struct acpi_ec * ec)504 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
505 {
506 	if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
507 		ec_log_drv("event blocked");
508 }
509 
510 /*
511  * Process _Q events that might have accumulated in the EC.
512  * Run with locked ec mutex.
513  */
acpi_ec_clear(struct acpi_ec * ec)514 static void acpi_ec_clear(struct acpi_ec *ec)
515 {
516 	int i;
517 
518 	for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
519 		if (acpi_ec_submit_query(ec))
520 			break;
521 	}
522 	if (unlikely(i == ACPI_EC_CLEAR_MAX))
523 		pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
524 	else
525 		pr_info("%d stale EC events cleared\n", i);
526 }
527 
acpi_ec_enable_event(struct acpi_ec * ec)528 static void acpi_ec_enable_event(struct acpi_ec *ec)
529 {
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&ec->lock, flags);
533 	if (acpi_ec_started(ec))
534 		__acpi_ec_enable_event(ec);
535 	spin_unlock_irqrestore(&ec->lock, flags);
536 
537 	/* Drain additional events if hardware requires that */
538 	if (EC_FLAGS_CLEAR_ON_RESUME)
539 		acpi_ec_clear(ec);
540 }
541 
542 #ifdef CONFIG_PM_SLEEP
__acpi_ec_flush_work(void)543 static void __acpi_ec_flush_work(void)
544 {
545 	flush_workqueue(ec_wq); /* flush ec->work */
546 	flush_workqueue(ec_query_wq); /* flush queries */
547 }
548 
acpi_ec_disable_event(struct acpi_ec * ec)549 static void acpi_ec_disable_event(struct acpi_ec *ec)
550 {
551 	unsigned long flags;
552 
553 	spin_lock_irqsave(&ec->lock, flags);
554 	__acpi_ec_disable_event(ec);
555 	spin_unlock_irqrestore(&ec->lock, flags);
556 
557 	/*
558 	 * When ec_freeze_events is true, we need to flush events in
559 	 * the proper position before entering the noirq stage.
560 	 */
561 	__acpi_ec_flush_work();
562 }
563 
acpi_ec_flush_work(void)564 void acpi_ec_flush_work(void)
565 {
566 	/* Without ec_wq there is nothing to flush. */
567 	if (!ec_wq)
568 		return;
569 
570 	__acpi_ec_flush_work();
571 }
572 #endif /* CONFIG_PM_SLEEP */
573 
acpi_ec_guard_event(struct acpi_ec * ec)574 static bool acpi_ec_guard_event(struct acpi_ec *ec)
575 {
576 	unsigned long flags;
577 	bool guarded;
578 
579 	spin_lock_irqsave(&ec->lock, flags);
580 	/*
581 	 * If firmware SCI_EVT clearing timing is "event", we actually
582 	 * don't know when the SCI_EVT will be cleared by firmware after
583 	 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
584 	 * acceptable period.
585 	 *
586 	 * The guarding period is applicable if the event state is not
587 	 * EC_EVENT_READY, but otherwise if the current transaction is of the
588 	 * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already
589 	 * and it should not be applied to let the transaction transition into
590 	 * the ACPI_EC_COMMAND_POLL state immediately.
591 	 */
592 	guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
593 		ec->event_state != EC_EVENT_READY &&
594 		(!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY);
595 	spin_unlock_irqrestore(&ec->lock, flags);
596 	return guarded;
597 }
598 
ec_transaction_polled(struct acpi_ec * ec)599 static int ec_transaction_polled(struct acpi_ec *ec)
600 {
601 	unsigned long flags;
602 	int ret = 0;
603 
604 	spin_lock_irqsave(&ec->lock, flags);
605 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
606 		ret = 1;
607 	spin_unlock_irqrestore(&ec->lock, flags);
608 	return ret;
609 }
610 
ec_transaction_completed(struct acpi_ec * ec)611 static int ec_transaction_completed(struct acpi_ec *ec)
612 {
613 	unsigned long flags;
614 	int ret = 0;
615 
616 	spin_lock_irqsave(&ec->lock, flags);
617 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
618 		ret = 1;
619 	spin_unlock_irqrestore(&ec->lock, flags);
620 	return ret;
621 }
622 
ec_transaction_transition(struct acpi_ec * ec,unsigned long flag)623 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
624 {
625 	ec->curr->flags |= flag;
626 
627 	if (ec->curr->command != ACPI_EC_COMMAND_QUERY)
628 		return;
629 
630 	switch (ec_event_clearing) {
631 	case ACPI_EC_EVT_TIMING_STATUS:
632 		if (flag == ACPI_EC_COMMAND_POLL)
633 			acpi_ec_close_event(ec);
634 
635 		return;
636 
637 	case ACPI_EC_EVT_TIMING_QUERY:
638 		if (flag == ACPI_EC_COMMAND_COMPLETE)
639 			acpi_ec_close_event(ec);
640 
641 		return;
642 
643 	case ACPI_EC_EVT_TIMING_EVENT:
644 		if (flag == ACPI_EC_COMMAND_COMPLETE)
645 			acpi_ec_complete_event(ec);
646 	}
647 }
648 
acpi_ec_spurious_interrupt(struct acpi_ec * ec,struct transaction * t)649 static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t)
650 {
651 	if (t->irq_count < ec_storm_threshold)
652 		++t->irq_count;
653 
654 	/* Trigger if the threshold is 0 too. */
655 	if (t->irq_count == ec_storm_threshold)
656 		acpi_ec_mask_events(ec);
657 }
658 
advance_transaction(struct acpi_ec * ec,bool interrupt)659 static void advance_transaction(struct acpi_ec *ec, bool interrupt)
660 {
661 	struct transaction *t = ec->curr;
662 	bool wakeup = false;
663 	u8 status;
664 
665 	ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id());
666 
667 	status = acpi_ec_read_status(ec);
668 
669 	/*
670 	 * Another IRQ or a guarded polling mode advancement is detected,
671 	 * the next QR_EC submission is then allowed.
672 	 */
673 	if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
674 		if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
675 		    ec->event_state == EC_EVENT_COMPLETE)
676 			acpi_ec_close_event(ec);
677 
678 		if (!t)
679 			goto out;
680 	}
681 
682 	if (t->flags & ACPI_EC_COMMAND_POLL) {
683 		if (t->wlen > t->wi) {
684 			if (!(status & ACPI_EC_FLAG_IBF))
685 				acpi_ec_write_data(ec, t->wdata[t->wi++]);
686 			else if (interrupt && !(status & ACPI_EC_FLAG_SCI))
687 				acpi_ec_spurious_interrupt(ec, t);
688 		} else if (t->rlen > t->ri) {
689 			if (status & ACPI_EC_FLAG_OBF) {
690 				t->rdata[t->ri++] = acpi_ec_read_data(ec);
691 				if (t->rlen == t->ri) {
692 					ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
693 					wakeup = true;
694 					if (t->command == ACPI_EC_COMMAND_QUERY)
695 						ec_dbg_evt("Command(%s) completed by hardware",
696 							   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
697 				}
698 			} else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) {
699 				acpi_ec_spurious_interrupt(ec, t);
700 			}
701 		} else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) {
702 			ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
703 			wakeup = true;
704 		}
705 	} else if (!(status & ACPI_EC_FLAG_IBF)) {
706 		acpi_ec_write_cmd(ec, t->command);
707 		ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
708 	}
709 
710 out:
711 	if (status & ACPI_EC_FLAG_SCI)
712 		acpi_ec_submit_event(ec);
713 
714 	if (wakeup && interrupt)
715 		wake_up(&ec->wait);
716 }
717 
start_transaction(struct acpi_ec * ec)718 static void start_transaction(struct acpi_ec *ec)
719 {
720 	ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
721 	ec->curr->flags = 0;
722 }
723 
ec_guard(struct acpi_ec * ec)724 static int ec_guard(struct acpi_ec *ec)
725 {
726 	unsigned long guard = usecs_to_jiffies(ec->polling_guard);
727 	unsigned long timeout = ec->timestamp + guard;
728 
729 	/* Ensure guarding period before polling EC status */
730 	do {
731 		if (ec->busy_polling) {
732 			/* Perform busy polling */
733 			if (ec_transaction_completed(ec))
734 				return 0;
735 			udelay(jiffies_to_usecs(guard));
736 		} else {
737 			/*
738 			 * Perform wait polling
739 			 * 1. Wait the transaction to be completed by the
740 			 *    GPE handler after the transaction enters
741 			 *    ACPI_EC_COMMAND_POLL state.
742 			 * 2. A special guarding logic is also required
743 			 *    for event clearing mode "event" before the
744 			 *    transaction enters ACPI_EC_COMMAND_POLL
745 			 *    state.
746 			 */
747 			if (!ec_transaction_polled(ec) &&
748 			    !acpi_ec_guard_event(ec))
749 				break;
750 			if (wait_event_timeout(ec->wait,
751 					       ec_transaction_completed(ec),
752 					       guard))
753 				return 0;
754 		}
755 	} while (time_before(jiffies, timeout));
756 	return -ETIME;
757 }
758 
ec_poll(struct acpi_ec * ec)759 static int ec_poll(struct acpi_ec *ec)
760 {
761 	unsigned long flags;
762 	int repeat = 5; /* number of command restarts */
763 
764 	while (repeat--) {
765 		unsigned long delay = jiffies +
766 			msecs_to_jiffies(ec_delay);
767 		do {
768 			if (!ec_guard(ec))
769 				return 0;
770 			spin_lock_irqsave(&ec->lock, flags);
771 			advance_transaction(ec, false);
772 			spin_unlock_irqrestore(&ec->lock, flags);
773 		} while (time_before(jiffies, delay));
774 		pr_debug("controller reset, restart transaction\n");
775 		spin_lock_irqsave(&ec->lock, flags);
776 		start_transaction(ec);
777 		spin_unlock_irqrestore(&ec->lock, flags);
778 	}
779 	return -ETIME;
780 }
781 
acpi_ec_transaction_unlocked(struct acpi_ec * ec,struct transaction * t)782 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
783 					struct transaction *t)
784 {
785 	unsigned long tmp;
786 	int ret = 0;
787 
788 	if (t->rdata)
789 		memset(t->rdata, 0, t->rlen);
790 
791 	/* start transaction */
792 	spin_lock_irqsave(&ec->lock, tmp);
793 	/* Enable GPE for command processing (IBF=0/OBF=1) */
794 	if (!acpi_ec_submit_flushable_request(ec)) {
795 		ret = -EINVAL;
796 		goto unlock;
797 	}
798 	ec_dbg_ref(ec, "Increase command");
799 	/* following two actions should be kept atomic */
800 	ec->curr = t;
801 	ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
802 	start_transaction(ec);
803 	spin_unlock_irqrestore(&ec->lock, tmp);
804 
805 	ret = ec_poll(ec);
806 
807 	spin_lock_irqsave(&ec->lock, tmp);
808 	if (t->irq_count == ec_storm_threshold)
809 		acpi_ec_unmask_events(ec);
810 	ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
811 	ec->curr = NULL;
812 	/* Disable GPE for command processing (IBF=0/OBF=1) */
813 	acpi_ec_complete_request(ec);
814 	ec_dbg_ref(ec, "Decrease command");
815 unlock:
816 	spin_unlock_irqrestore(&ec->lock, tmp);
817 	return ret;
818 }
819 
acpi_ec_transaction(struct acpi_ec * ec,struct transaction * t)820 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
821 {
822 	int status;
823 	u32 glk;
824 
825 	if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
826 		return -EINVAL;
827 
828 	mutex_lock(&ec->mutex);
829 	if (ec->global_lock) {
830 		status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
831 		if (ACPI_FAILURE(status)) {
832 			status = -ENODEV;
833 			goto unlock;
834 		}
835 	}
836 
837 	status = acpi_ec_transaction_unlocked(ec, t);
838 
839 	if (ec->global_lock)
840 		acpi_release_global_lock(glk);
841 unlock:
842 	mutex_unlock(&ec->mutex);
843 	return status;
844 }
845 
acpi_ec_burst_enable(struct acpi_ec * ec)846 static int acpi_ec_burst_enable(struct acpi_ec *ec)
847 {
848 	u8 d;
849 	struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
850 				.wdata = NULL, .rdata = &d,
851 				.wlen = 0, .rlen = 1};
852 
853 	return acpi_ec_transaction_unlocked(ec, &t);
854 }
855 
acpi_ec_burst_disable(struct acpi_ec * ec)856 static int acpi_ec_burst_disable(struct acpi_ec *ec)
857 {
858 	struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
859 				.wdata = NULL, .rdata = NULL,
860 				.wlen = 0, .rlen = 0};
861 
862 	return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
863 				acpi_ec_transaction_unlocked(ec, &t) : 0;
864 }
865 
acpi_ec_read(struct acpi_ec * ec,u8 address,u8 * data)866 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
867 {
868 	int result;
869 	u8 d;
870 	struct transaction t = {.command = ACPI_EC_COMMAND_READ,
871 				.wdata = &address, .rdata = &d,
872 				.wlen = 1, .rlen = 1};
873 
874 	result = acpi_ec_transaction(ec, &t);
875 	*data = d;
876 	return result;
877 }
878 
acpi_ec_read_unlocked(struct acpi_ec * ec,u8 address,u8 * data)879 static int acpi_ec_read_unlocked(struct acpi_ec *ec, u8 address, u8 *data)
880 {
881 	int result;
882 	u8 d;
883 	struct transaction t = {.command = ACPI_EC_COMMAND_READ,
884 				.wdata = &address, .rdata = &d,
885 				.wlen = 1, .rlen = 1};
886 
887 	result = acpi_ec_transaction_unlocked(ec, &t);
888 	*data = d;
889 	return result;
890 }
891 
acpi_ec_write(struct acpi_ec * ec,u8 address,u8 data)892 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
893 {
894 	u8 wdata[2] = { address, data };
895 	struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
896 				.wdata = wdata, .rdata = NULL,
897 				.wlen = 2, .rlen = 0};
898 
899 	return acpi_ec_transaction(ec, &t);
900 }
901 
acpi_ec_write_unlocked(struct acpi_ec * ec,u8 address,u8 data)902 static int acpi_ec_write_unlocked(struct acpi_ec *ec, u8 address, u8 data)
903 {
904 	u8 wdata[2] = { address, data };
905 	struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
906 				.wdata = wdata, .rdata = NULL,
907 				.wlen = 2, .rlen = 0};
908 
909 	return acpi_ec_transaction_unlocked(ec, &t);
910 }
911 
ec_read(u8 addr,u8 * val)912 int ec_read(u8 addr, u8 *val)
913 {
914 	int err;
915 	u8 temp_data;
916 
917 	if (!first_ec)
918 		return -ENODEV;
919 
920 	err = acpi_ec_read(first_ec, addr, &temp_data);
921 
922 	if (!err) {
923 		*val = temp_data;
924 		return 0;
925 	}
926 	return err;
927 }
928 EXPORT_SYMBOL(ec_read);
929 
ec_write(u8 addr,u8 val)930 int ec_write(u8 addr, u8 val)
931 {
932 	if (!first_ec)
933 		return -ENODEV;
934 
935 	return acpi_ec_write(first_ec, addr, val);
936 }
937 EXPORT_SYMBOL(ec_write);
938 
ec_transaction(u8 command,const u8 * wdata,unsigned wdata_len,u8 * rdata,unsigned rdata_len)939 int ec_transaction(u8 command,
940 		   const u8 *wdata, unsigned wdata_len,
941 		   u8 *rdata, unsigned rdata_len)
942 {
943 	struct transaction t = {.command = command,
944 				.wdata = wdata, .rdata = rdata,
945 				.wlen = wdata_len, .rlen = rdata_len};
946 
947 	if (!first_ec)
948 		return -ENODEV;
949 
950 	return acpi_ec_transaction(first_ec, &t);
951 }
952 EXPORT_SYMBOL(ec_transaction);
953 
954 /* Get the handle to the EC device */
ec_get_handle(void)955 acpi_handle ec_get_handle(void)
956 {
957 	if (!first_ec)
958 		return NULL;
959 	return first_ec->handle;
960 }
961 EXPORT_SYMBOL(ec_get_handle);
962 
acpi_ec_start(struct acpi_ec * ec,bool resuming)963 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
964 {
965 	unsigned long flags;
966 
967 	spin_lock_irqsave(&ec->lock, flags);
968 	if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
969 		ec_dbg_drv("Starting EC");
970 		/* Enable GPE for event processing (SCI_EVT=1) */
971 		if (!resuming) {
972 			acpi_ec_submit_request(ec);
973 			ec_dbg_ref(ec, "Increase driver");
974 		}
975 		ec_log_drv("EC started");
976 	}
977 	spin_unlock_irqrestore(&ec->lock, flags);
978 }
979 
acpi_ec_stopped(struct acpi_ec * ec)980 static bool acpi_ec_stopped(struct acpi_ec *ec)
981 {
982 	unsigned long flags;
983 	bool flushed;
984 
985 	spin_lock_irqsave(&ec->lock, flags);
986 	flushed = acpi_ec_flushed(ec);
987 	spin_unlock_irqrestore(&ec->lock, flags);
988 	return flushed;
989 }
990 
acpi_ec_stop(struct acpi_ec * ec,bool suspending)991 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
992 {
993 	unsigned long flags;
994 
995 	spin_lock_irqsave(&ec->lock, flags);
996 	if (acpi_ec_started(ec)) {
997 		ec_dbg_drv("Stopping EC");
998 		set_bit(EC_FLAGS_STOPPED, &ec->flags);
999 		spin_unlock_irqrestore(&ec->lock, flags);
1000 		wait_event(ec->wait, acpi_ec_stopped(ec));
1001 		spin_lock_irqsave(&ec->lock, flags);
1002 		/* Disable GPE for event processing (SCI_EVT=1) */
1003 		if (!suspending) {
1004 			acpi_ec_complete_request(ec);
1005 			ec_dbg_ref(ec, "Decrease driver");
1006 		} else if (!ec_freeze_events)
1007 			__acpi_ec_disable_event(ec);
1008 		clear_bit(EC_FLAGS_STARTED, &ec->flags);
1009 		clear_bit(EC_FLAGS_STOPPED, &ec->flags);
1010 		ec_log_drv("EC stopped");
1011 	}
1012 	spin_unlock_irqrestore(&ec->lock, flags);
1013 }
1014 
acpi_ec_enter_noirq(struct acpi_ec * ec)1015 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
1016 {
1017 	unsigned long flags;
1018 
1019 	spin_lock_irqsave(&ec->lock, flags);
1020 	ec->busy_polling = true;
1021 	ec->polling_guard = 0;
1022 	ec_log_drv("interrupt blocked");
1023 	spin_unlock_irqrestore(&ec->lock, flags);
1024 }
1025 
acpi_ec_leave_noirq(struct acpi_ec * ec)1026 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1027 {
1028 	unsigned long flags;
1029 
1030 	spin_lock_irqsave(&ec->lock, flags);
1031 	ec->busy_polling = ec_busy_polling;
1032 	ec->polling_guard = ec_polling_guard;
1033 	ec_log_drv("interrupt unblocked");
1034 	spin_unlock_irqrestore(&ec->lock, flags);
1035 }
1036 
acpi_ec_block_transactions(void)1037 void acpi_ec_block_transactions(void)
1038 {
1039 	struct acpi_ec *ec = first_ec;
1040 
1041 	if (!ec)
1042 		return;
1043 
1044 	mutex_lock(&ec->mutex);
1045 	/* Prevent transactions from being carried out */
1046 	acpi_ec_stop(ec, true);
1047 	mutex_unlock(&ec->mutex);
1048 }
1049 
acpi_ec_unblock_transactions(void)1050 void acpi_ec_unblock_transactions(void)
1051 {
1052 	/*
1053 	 * Allow transactions to happen again (this function is called from
1054 	 * atomic context during wakeup, so we don't need to acquire the mutex).
1055 	 */
1056 	if (first_ec)
1057 		acpi_ec_start(first_ec, true);
1058 }
1059 
1060 /* --------------------------------------------------------------------------
1061                                 Event Management
1062    -------------------------------------------------------------------------- */
1063 static struct acpi_ec_query_handler *
acpi_ec_get_query_handler_by_value(struct acpi_ec * ec,u8 value)1064 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1065 {
1066 	struct acpi_ec_query_handler *handler;
1067 
1068 	mutex_lock(&ec->mutex);
1069 	list_for_each_entry(handler, &ec->list, node) {
1070 		if (value == handler->query_bit) {
1071 			kref_get(&handler->kref);
1072 			mutex_unlock(&ec->mutex);
1073 			return handler;
1074 		}
1075 	}
1076 	mutex_unlock(&ec->mutex);
1077 	return NULL;
1078 }
1079 
acpi_ec_query_handler_release(struct kref * kref)1080 static void acpi_ec_query_handler_release(struct kref *kref)
1081 {
1082 	struct acpi_ec_query_handler *handler =
1083 		container_of(kref, struct acpi_ec_query_handler, kref);
1084 
1085 	kfree(handler);
1086 }
1087 
acpi_ec_put_query_handler(struct acpi_ec_query_handler * handler)1088 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1089 {
1090 	kref_put(&handler->kref, acpi_ec_query_handler_release);
1091 }
1092 
acpi_ec_add_query_handler(struct acpi_ec * ec,u8 query_bit,acpi_handle handle,acpi_ec_query_func func,void * data)1093 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1094 			      acpi_handle handle, acpi_ec_query_func func,
1095 			      void *data)
1096 {
1097 	struct acpi_ec_query_handler *handler;
1098 
1099 	if (!handle && !func)
1100 		return -EINVAL;
1101 
1102 	handler = kzalloc(sizeof(*handler), GFP_KERNEL);
1103 	if (!handler)
1104 		return -ENOMEM;
1105 
1106 	handler->query_bit = query_bit;
1107 	handler->handle = handle;
1108 	handler->func = func;
1109 	handler->data = data;
1110 	mutex_lock(&ec->mutex);
1111 	kref_init(&handler->kref);
1112 	list_add(&handler->node, &ec->list);
1113 	mutex_unlock(&ec->mutex);
1114 
1115 	return 0;
1116 }
1117 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1118 
acpi_ec_remove_query_handlers(struct acpi_ec * ec,bool remove_all,u8 query_bit)1119 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1120 					  bool remove_all, u8 query_bit)
1121 {
1122 	struct acpi_ec_query_handler *handler, *tmp;
1123 	LIST_HEAD(free_list);
1124 
1125 	mutex_lock(&ec->mutex);
1126 	list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1127 		/*
1128 		 * When remove_all is false, only remove custom query handlers
1129 		 * which have handler->func set. This is done to preserve query
1130 		 * handlers discovered thru ACPI, as they should continue handling
1131 		 * EC queries.
1132 		 */
1133 		if (remove_all || (handler->func && handler->query_bit == query_bit)) {
1134 			list_del_init(&handler->node);
1135 			list_add(&handler->node, &free_list);
1136 
1137 		}
1138 	}
1139 	mutex_unlock(&ec->mutex);
1140 	list_for_each_entry_safe(handler, tmp, &free_list, node)
1141 		acpi_ec_put_query_handler(handler);
1142 }
1143 
acpi_ec_remove_query_handler(struct acpi_ec * ec,u8 query_bit)1144 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1145 {
1146 	acpi_ec_remove_query_handlers(ec, false, query_bit);
1147 	flush_workqueue(ec_query_wq);
1148 }
1149 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1150 
acpi_ec_event_processor(struct work_struct * work)1151 static void acpi_ec_event_processor(struct work_struct *work)
1152 {
1153 	struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1154 	struct acpi_ec_query_handler *handler = q->handler;
1155 	struct acpi_ec *ec = q->ec;
1156 
1157 	ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1158 
1159 	if (handler->func)
1160 		handler->func(handler->data);
1161 	else if (handler->handle)
1162 		acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1163 
1164 	ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1165 
1166 	spin_lock_irq(&ec->lock);
1167 	ec->queries_in_progress--;
1168 	spin_unlock_irq(&ec->lock);
1169 
1170 	acpi_ec_put_query_handler(handler);
1171 	kfree(q);
1172 }
1173 
acpi_ec_create_query(struct acpi_ec * ec,u8 * pval)1174 static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval)
1175 {
1176 	struct acpi_ec_query *q;
1177 	struct transaction *t;
1178 
1179 	q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1180 	if (!q)
1181 		return NULL;
1182 
1183 	INIT_WORK(&q->work, acpi_ec_event_processor);
1184 	t = &q->transaction;
1185 	t->command = ACPI_EC_COMMAND_QUERY;
1186 	t->rdata = pval;
1187 	t->rlen = 1;
1188 	q->ec = ec;
1189 	return q;
1190 }
1191 
acpi_ec_submit_query(struct acpi_ec * ec)1192 static int acpi_ec_submit_query(struct acpi_ec *ec)
1193 {
1194 	struct acpi_ec_query *q;
1195 	u8 value = 0;
1196 	int result;
1197 
1198 	q = acpi_ec_create_query(ec, &value);
1199 	if (!q)
1200 		return -ENOMEM;
1201 
1202 	/*
1203 	 * Query the EC to find out which _Qxx method we need to evaluate.
1204 	 * Note that successful completion of the query causes the ACPI_EC_SCI
1205 	 * bit to be cleared (and thus clearing the interrupt source).
1206 	 */
1207 	result = acpi_ec_transaction(ec, &q->transaction);
1208 	if (result)
1209 		goto err_exit;
1210 
1211 	if (!value) {
1212 		result = -ENODATA;
1213 		goto err_exit;
1214 	}
1215 
1216 	q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1217 	if (!q->handler) {
1218 		result = -ENODATA;
1219 		goto err_exit;
1220 	}
1221 
1222 	/*
1223 	 * It is reported that _Qxx are evaluated in a parallel way on Windows:
1224 	 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1225 	 *
1226 	 * Put this log entry before queue_work() to make it appear in the log
1227 	 * before any other messages emitted during workqueue handling.
1228 	 */
1229 	ec_dbg_evt("Query(0x%02x) scheduled", value);
1230 
1231 	spin_lock_irq(&ec->lock);
1232 
1233 	ec->queries_in_progress++;
1234 	queue_work(ec_query_wq, &q->work);
1235 
1236 	spin_unlock_irq(&ec->lock);
1237 
1238 	return 0;
1239 
1240 err_exit:
1241 	kfree(q);
1242 
1243 	return result;
1244 }
1245 
acpi_ec_event_handler(struct work_struct * work)1246 static void acpi_ec_event_handler(struct work_struct *work)
1247 {
1248 	struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1249 
1250 	ec_dbg_evt("Event started");
1251 
1252 	spin_lock_irq(&ec->lock);
1253 
1254 	while (ec->events_to_process) {
1255 		spin_unlock_irq(&ec->lock);
1256 
1257 		acpi_ec_submit_query(ec);
1258 
1259 		spin_lock_irq(&ec->lock);
1260 
1261 		ec->events_to_process--;
1262 	}
1263 
1264 	/*
1265 	 * Before exit, make sure that the it will be possible to queue up the
1266 	 * event handling work again regardless of whether or not the query
1267 	 * queued up above is processed successfully.
1268 	 */
1269 	if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1270 		bool guard_timeout;
1271 
1272 		acpi_ec_complete_event(ec);
1273 
1274 		ec_dbg_evt("Event stopped");
1275 
1276 		spin_unlock_irq(&ec->lock);
1277 
1278 		guard_timeout = !!ec_guard(ec);
1279 
1280 		spin_lock_irq(&ec->lock);
1281 
1282 		/* Take care of SCI_EVT unless someone else is doing that. */
1283 		if (guard_timeout && !ec->curr)
1284 			advance_transaction(ec, false);
1285 	} else {
1286 		acpi_ec_close_event(ec);
1287 
1288 		ec_dbg_evt("Event stopped");
1289 	}
1290 
1291 	ec->events_in_progress--;
1292 
1293 	spin_unlock_irq(&ec->lock);
1294 }
1295 
clear_gpe_and_advance_transaction(struct acpi_ec * ec,bool interrupt)1296 static void clear_gpe_and_advance_transaction(struct acpi_ec *ec, bool interrupt)
1297 {
1298 	/*
1299 	 * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1
1300 	 * changes to always trigger a GPE interrupt.
1301 	 *
1302 	 * GPE STS is a W1C register, which means:
1303 	 *
1304 	 * 1. Software can clear it without worrying about clearing the other
1305 	 *    GPEs' STS bits when the hardware sets them in parallel.
1306 	 *
1307 	 * 2. As long as software can ensure only clearing it when it is set,
1308 	 *    hardware won't set it in parallel.
1309 	 */
1310 	if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec))
1311 		acpi_clear_gpe(NULL, ec->gpe);
1312 
1313 	advance_transaction(ec, true);
1314 }
1315 
acpi_ec_handle_interrupt(struct acpi_ec * ec)1316 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1317 {
1318 	unsigned long flags;
1319 
1320 	spin_lock_irqsave(&ec->lock, flags);
1321 
1322 	clear_gpe_and_advance_transaction(ec, true);
1323 
1324 	spin_unlock_irqrestore(&ec->lock, flags);
1325 }
1326 
acpi_ec_gpe_handler(acpi_handle gpe_device,u32 gpe_number,void * data)1327 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1328 			       u32 gpe_number, void *data)
1329 {
1330 	acpi_ec_handle_interrupt(data);
1331 	return ACPI_INTERRUPT_HANDLED;
1332 }
1333 
acpi_ec_irq_handler(int irq,void * data)1334 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1335 {
1336 	acpi_ec_handle_interrupt(data);
1337 	return IRQ_HANDLED;
1338 }
1339 
1340 /* --------------------------------------------------------------------------
1341  *                           Address Space Management
1342  * -------------------------------------------------------------------------- */
1343 
1344 static acpi_status
acpi_ec_space_handler(u32 function,acpi_physical_address address,u32 bits,u64 * value64,void * handler_context,void * region_context)1345 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1346 		      u32 bits, u64 *value64,
1347 		      void *handler_context, void *region_context)
1348 {
1349 	struct acpi_ec *ec = handler_context;
1350 	int result = 0, i, bytes = bits / 8;
1351 	u8 *value = (u8 *)value64;
1352 	u32 glk;
1353 
1354 	if ((address > 0xFF) || !value || !handler_context)
1355 		return AE_BAD_PARAMETER;
1356 
1357 	if (function != ACPI_READ && function != ACPI_WRITE)
1358 		return AE_BAD_PARAMETER;
1359 
1360 	mutex_lock(&ec->mutex);
1361 
1362 	if (ec->global_lock) {
1363 		acpi_status status;
1364 
1365 		status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
1366 		if (ACPI_FAILURE(status)) {
1367 			result = -ENODEV;
1368 			goto unlock;
1369 		}
1370 	}
1371 
1372 	if (ec->busy_polling || bits > 8)
1373 		acpi_ec_burst_enable(ec);
1374 
1375 	for (i = 0; i < bytes; ++i, ++address, ++value) {
1376 		result = (function == ACPI_READ) ?
1377 			acpi_ec_read_unlocked(ec, address, value) :
1378 			acpi_ec_write_unlocked(ec, address, *value);
1379 		if (result < 0)
1380 			break;
1381 	}
1382 
1383 	if (ec->busy_polling || bits > 8)
1384 		acpi_ec_burst_disable(ec);
1385 
1386 	if (ec->global_lock)
1387 		acpi_release_global_lock(glk);
1388 
1389 unlock:
1390 	mutex_unlock(&ec->mutex);
1391 
1392 	switch (result) {
1393 	case -EINVAL:
1394 		return AE_BAD_PARAMETER;
1395 	case -ENODEV:
1396 		return AE_NOT_FOUND;
1397 	case -ETIME:
1398 		return AE_TIME;
1399 	case 0:
1400 		return AE_OK;
1401 	default:
1402 		return AE_ERROR;
1403 	}
1404 }
1405 
1406 /* --------------------------------------------------------------------------
1407  *                             Driver Interface
1408  * -------------------------------------------------------------------------- */
1409 
1410 static acpi_status
1411 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1412 
acpi_ec_free(struct acpi_ec * ec)1413 static void acpi_ec_free(struct acpi_ec *ec)
1414 {
1415 	if (first_ec == ec)
1416 		first_ec = NULL;
1417 	if (boot_ec == ec)
1418 		boot_ec = NULL;
1419 	kfree(ec);
1420 }
1421 
acpi_ec_alloc(void)1422 static struct acpi_ec *acpi_ec_alloc(void)
1423 {
1424 	struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1425 
1426 	if (!ec)
1427 		return NULL;
1428 	mutex_init(&ec->mutex);
1429 	init_waitqueue_head(&ec->wait);
1430 	INIT_LIST_HEAD(&ec->list);
1431 	spin_lock_init(&ec->lock);
1432 	INIT_WORK(&ec->work, acpi_ec_event_handler);
1433 	ec->timestamp = jiffies;
1434 	ec->busy_polling = true;
1435 	ec->polling_guard = 0;
1436 	ec->gpe = -1;
1437 	ec->irq = -1;
1438 	return ec;
1439 }
1440 
1441 static acpi_status
acpi_ec_register_query_methods(acpi_handle handle,u32 level,void * context,void ** return_value)1442 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1443 			       void *context, void **return_value)
1444 {
1445 	char node_name[5];
1446 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
1447 	struct acpi_ec *ec = context;
1448 	int value = 0;
1449 	acpi_status status;
1450 
1451 	status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1452 
1453 	if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1454 		acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1455 	return AE_OK;
1456 }
1457 
1458 static acpi_status
ec_parse_device(acpi_handle handle,u32 Level,void * context,void ** retval)1459 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1460 {
1461 	acpi_status status;
1462 	unsigned long long tmp = 0;
1463 	struct acpi_ec *ec = context;
1464 
1465 	/* clear addr values, ec_parse_io_ports depend on it */
1466 	ec->command_addr = ec->data_addr = 0;
1467 
1468 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1469 				     ec_parse_io_ports, ec);
1470 	if (ACPI_FAILURE(status))
1471 		return status;
1472 	if (ec->data_addr == 0 || ec->command_addr == 0)
1473 		return AE_OK;
1474 
1475 	/* Get GPE bit assignment (EC events). */
1476 	/* TODO: Add support for _GPE returning a package */
1477 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1478 	if (ACPI_SUCCESS(status))
1479 		ec->gpe = tmp;
1480 	/*
1481 	 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1482 	 * platforms which use GpioInt instead of GPE.
1483 	 */
1484 
1485 	/* Use the global lock for all EC transactions? */
1486 	tmp = 0;
1487 	acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1488 	ec->global_lock = tmp;
1489 	ec->handle = handle;
1490 	return AE_CTRL_TERMINATE;
1491 }
1492 
install_gpe_event_handler(struct acpi_ec * ec)1493 static bool install_gpe_event_handler(struct acpi_ec *ec)
1494 {
1495 	acpi_status status;
1496 
1497 	status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1498 					      ACPI_GPE_EDGE_TRIGGERED,
1499 					      &acpi_ec_gpe_handler, ec);
1500 	if (ACPI_FAILURE(status))
1501 		return false;
1502 
1503 	if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1504 		acpi_ec_enable_gpe(ec, true);
1505 
1506 	return true;
1507 }
1508 
install_gpio_irq_event_handler(struct acpi_ec * ec)1509 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1510 {
1511 	return request_threaded_irq(ec->irq, NULL, acpi_ec_irq_handler,
1512 				    IRQF_SHARED | IRQF_ONESHOT, "ACPI EC", ec) >= 0;
1513 }
1514 
1515 /**
1516  * ec_install_handlers - Install service callbacks and register query methods.
1517  * @ec: Target EC.
1518  * @device: ACPI device object corresponding to @ec.
1519  * @call_reg: If _REG should be called to notify OpRegion availability
1520  *
1521  * Install a handler for the EC address space type unless it has been installed
1522  * already.  If @device is not NULL, also look for EC query methods in the
1523  * namespace and register them, and install an event (either GPE or GPIO IRQ)
1524  * handler for the EC, if possible.
1525  *
1526  * Return:
1527  * -ENODEV if the address space handler cannot be installed, which means
1528  *  "unable to handle transactions",
1529  * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1530  * or 0 (success) otherwise.
1531  */
ec_install_handlers(struct acpi_ec * ec,struct acpi_device * device,bool call_reg)1532 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device,
1533 			       bool call_reg)
1534 {
1535 	acpi_status status;
1536 
1537 	acpi_ec_start(ec, false);
1538 
1539 	if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1540 		acpi_handle scope_handle = ec == first_ec ? ACPI_ROOT_OBJECT : ec->handle;
1541 
1542 		acpi_ec_enter_noirq(ec);
1543 		status = acpi_install_address_space_handler_no_reg(scope_handle,
1544 								   ACPI_ADR_SPACE_EC,
1545 								   &acpi_ec_space_handler,
1546 								   NULL, ec);
1547 		if (ACPI_FAILURE(status)) {
1548 			acpi_ec_stop(ec, false);
1549 			return -ENODEV;
1550 		}
1551 		set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1552 	}
1553 
1554 	if (call_reg && !test_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags)) {
1555 		acpi_execute_reg_methods(ec->handle, ACPI_UINT32_MAX, ACPI_ADR_SPACE_EC);
1556 		set_bit(EC_FLAGS_EC_REG_CALLED, &ec->flags);
1557 	}
1558 
1559 	if (!device)
1560 		return 0;
1561 
1562 	if (ec->gpe < 0) {
1563 		/* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1564 		int irq = acpi_dev_gpio_irq_get(device, 0);
1565 		/*
1566 		 * Bail out right away for deferred probing or complete the
1567 		 * initialization regardless of any other errors.
1568 		 */
1569 		if (irq == -EPROBE_DEFER)
1570 			return -EPROBE_DEFER;
1571 		else if (irq >= 0)
1572 			ec->irq = irq;
1573 	}
1574 
1575 	if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1576 		/* Find and register all query methods */
1577 		acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1578 				    acpi_ec_register_query_methods,
1579 				    NULL, ec, NULL);
1580 		set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1581 	}
1582 	if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1583 		bool ready = false;
1584 
1585 		if (ec->gpe >= 0)
1586 			ready = install_gpe_event_handler(ec);
1587 		else if (ec->irq >= 0)
1588 			ready = install_gpio_irq_event_handler(ec);
1589 
1590 		if (ready) {
1591 			set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1592 			acpi_ec_leave_noirq(ec);
1593 		}
1594 		/*
1595 		 * Failures to install an event handler are not fatal, because
1596 		 * the EC can be polled for events.
1597 		 */
1598 	}
1599 	/* EC is fully operational, allow queries */
1600 	acpi_ec_enable_event(ec);
1601 
1602 	return 0;
1603 }
1604 
ec_remove_handlers(struct acpi_ec * ec)1605 static void ec_remove_handlers(struct acpi_ec *ec)
1606 {
1607 	acpi_handle scope_handle = ec == first_ec ? ACPI_ROOT_OBJECT : ec->handle;
1608 
1609 	if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1610 		if (ACPI_FAILURE(acpi_remove_address_space_handler(
1611 						scope_handle,
1612 						ACPI_ADR_SPACE_EC,
1613 						&acpi_ec_space_handler)))
1614 			pr_err("failed to remove space handler\n");
1615 		clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1616 	}
1617 
1618 	/*
1619 	 * Stops handling the EC transactions after removing the operation
1620 	 * region handler. This is required because _REG(DISCONNECT)
1621 	 * invoked during the removal can result in new EC transactions.
1622 	 *
1623 	 * Flushes the EC requests and thus disables the GPE before
1624 	 * removing the GPE handler. This is required by the current ACPICA
1625 	 * GPE core. ACPICA GPE core will automatically disable a GPE when
1626 	 * it is indicated but there is no way to handle it. So the drivers
1627 	 * must disable the GPEs prior to removing the GPE handlers.
1628 	 */
1629 	acpi_ec_stop(ec, false);
1630 
1631 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1632 		if (ec->gpe >= 0 &&
1633 		    ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1634 				 &acpi_ec_gpe_handler)))
1635 			pr_err("failed to remove gpe handler\n");
1636 
1637 		if (ec->irq >= 0)
1638 			free_irq(ec->irq, ec);
1639 
1640 		clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1641 	}
1642 	if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1643 		acpi_ec_remove_query_handlers(ec, true, 0);
1644 		clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1645 	}
1646 }
1647 
acpi_ec_setup(struct acpi_ec * ec,struct acpi_device * device,bool call_reg)1648 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device, bool call_reg)
1649 {
1650 	int ret;
1651 
1652 	/* First EC capable of handling transactions */
1653 	if (!first_ec)
1654 		first_ec = ec;
1655 
1656 	ret = ec_install_handlers(ec, device, call_reg);
1657 	if (ret) {
1658 		if (ec == first_ec)
1659 			first_ec = NULL;
1660 
1661 		return ret;
1662 	}
1663 
1664 	pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1665 		ec->data_addr);
1666 
1667 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1668 		if (ec->gpe >= 0)
1669 			pr_info("GPE=0x%x\n", ec->gpe);
1670 		else
1671 			pr_info("IRQ=%d\n", ec->irq);
1672 	}
1673 
1674 	return ret;
1675 }
1676 
acpi_ec_add(struct acpi_device * device)1677 static int acpi_ec_add(struct acpi_device *device)
1678 {
1679 	struct acpi_ec *ec;
1680 	int ret;
1681 
1682 	strscpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1683 	strscpy(acpi_device_class(device), ACPI_EC_CLASS);
1684 
1685 	if (boot_ec && (boot_ec->handle == device->handle ||
1686 	    !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1687 		/* Fast path: this device corresponds to the boot EC. */
1688 		ec = boot_ec;
1689 	} else {
1690 		acpi_status status;
1691 
1692 		ec = acpi_ec_alloc();
1693 		if (!ec)
1694 			return -ENOMEM;
1695 
1696 		status = ec_parse_device(device->handle, 0, ec, NULL);
1697 		if (status != AE_CTRL_TERMINATE) {
1698 			ret = -EINVAL;
1699 			goto err;
1700 		}
1701 
1702 		if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1703 		    ec->data_addr == boot_ec->data_addr) {
1704 			/*
1705 			 * Trust PNP0C09 namespace location rather than ECDT ID.
1706 			 * But trust ECDT GPE rather than _GPE because of ASUS
1707 			 * quirks. So do not change boot_ec->gpe to ec->gpe,
1708 			 * except when the TRUST_DSDT_GPE quirk is set.
1709 			 */
1710 			boot_ec->handle = ec->handle;
1711 
1712 			if (EC_FLAGS_TRUST_DSDT_GPE)
1713 				boot_ec->gpe = ec->gpe;
1714 
1715 			acpi_handle_debug(ec->handle, "duplicated.\n");
1716 			acpi_ec_free(ec);
1717 			ec = boot_ec;
1718 		}
1719 	}
1720 
1721 	ret = acpi_ec_setup(ec, device, true);
1722 	if (ret)
1723 		goto err;
1724 
1725 	if (ec == boot_ec)
1726 		acpi_handle_info(boot_ec->handle,
1727 				 "Boot %s EC initialization complete\n",
1728 				 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1729 
1730 	acpi_handle_info(ec->handle,
1731 			 "EC: Used to handle transactions and events\n");
1732 
1733 	device->driver_data = ec;
1734 
1735 	ret = !!request_region(ec->data_addr, 1, "EC data");
1736 	WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1737 	ret = !!request_region(ec->command_addr, 1, "EC cmd");
1738 	WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1739 
1740 	/* Reprobe devices depending on the EC */
1741 	acpi_dev_clear_dependencies(device);
1742 
1743 	acpi_handle_debug(ec->handle, "enumerated.\n");
1744 	return 0;
1745 
1746 err:
1747 	if (ec != boot_ec)
1748 		acpi_ec_free(ec);
1749 
1750 	return ret;
1751 }
1752 
acpi_ec_remove(struct acpi_device * device)1753 static void acpi_ec_remove(struct acpi_device *device)
1754 {
1755 	struct acpi_ec *ec;
1756 
1757 	if (!device)
1758 		return;
1759 
1760 	ec = acpi_driver_data(device);
1761 	release_region(ec->data_addr, 1);
1762 	release_region(ec->command_addr, 1);
1763 	device->driver_data = NULL;
1764 	if (ec != boot_ec) {
1765 		ec_remove_handlers(ec);
1766 		acpi_ec_free(ec);
1767 	}
1768 }
1769 
acpi_ec_register_opregions(struct acpi_device * adev)1770 void acpi_ec_register_opregions(struct acpi_device *adev)
1771 {
1772 	if (first_ec && first_ec->handle != adev->handle)
1773 		acpi_execute_reg_methods(adev->handle, 1, ACPI_ADR_SPACE_EC);
1774 }
1775 
1776 static acpi_status
ec_parse_io_ports(struct acpi_resource * resource,void * context)1777 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1778 {
1779 	struct acpi_ec *ec = context;
1780 
1781 	if (resource->type != ACPI_RESOURCE_TYPE_IO)
1782 		return AE_OK;
1783 
1784 	/*
1785 	 * The first address region returned is the data port, and
1786 	 * the second address region returned is the status/command
1787 	 * port.
1788 	 */
1789 	if (ec->data_addr == 0)
1790 		ec->data_addr = resource->data.io.minimum;
1791 	else if (ec->command_addr == 0)
1792 		ec->command_addr = resource->data.io.minimum;
1793 	else
1794 		return AE_CTRL_TERMINATE;
1795 
1796 	return AE_OK;
1797 }
1798 
1799 static const struct acpi_device_id ec_device_ids[] = {
1800 	{"PNP0C09", 0},
1801 	{ACPI_ECDT_HID, 0},
1802 	{"", 0},
1803 };
1804 
1805 /*
1806  * This function is not Windows-compatible as Windows never enumerates the
1807  * namespace EC before the main ACPI device enumeration process. It is
1808  * retained for historical reason and will be deprecated in the future.
1809  */
acpi_ec_dsdt_probe(void)1810 void __init acpi_ec_dsdt_probe(void)
1811 {
1812 	struct acpi_ec *ec;
1813 	acpi_status status;
1814 	int ret;
1815 
1816 	/*
1817 	 * If a platform has ECDT, there is no need to proceed as the
1818 	 * following probe is not a part of the ACPI device enumeration,
1819 	 * executing _STA is not safe, and thus this probe may risk of
1820 	 * picking up an invalid EC device.
1821 	 */
1822 	if (boot_ec)
1823 		return;
1824 
1825 	ec = acpi_ec_alloc();
1826 	if (!ec)
1827 		return;
1828 
1829 	/*
1830 	 * At this point, the namespace is initialized, so start to find
1831 	 * the namespace objects.
1832 	 */
1833 	status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1834 	if (ACPI_FAILURE(status) || !ec->handle) {
1835 		acpi_ec_free(ec);
1836 		return;
1837 	}
1838 
1839 	/*
1840 	 * When the DSDT EC is available, always re-configure boot EC to
1841 	 * have _REG evaluated. _REG can only be evaluated after the
1842 	 * namespace initialization.
1843 	 * At this point, the GPE is not fully initialized, so do not to
1844 	 * handle the events.
1845 	 */
1846 	ret = acpi_ec_setup(ec, NULL, true);
1847 	if (ret) {
1848 		acpi_ec_free(ec);
1849 		return;
1850 	}
1851 
1852 	boot_ec = ec;
1853 
1854 	acpi_handle_info(ec->handle,
1855 			 "Boot DSDT EC used to handle transactions\n");
1856 }
1857 
1858 /*
1859  * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1860  *
1861  * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1862  * found a matching object in the namespace.
1863  *
1864  * Next, in case the DSDT EC is not functioning, it is still necessary to
1865  * provide a functional ECDT EC to handle events, so add an extra device object
1866  * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1867  *
1868  * This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1869  * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1870  */
acpi_ec_ecdt_start(void)1871 static void __init acpi_ec_ecdt_start(void)
1872 {
1873 	struct acpi_table_ecdt *ecdt_ptr;
1874 	acpi_handle handle;
1875 	acpi_status status;
1876 
1877 	/* Bail out if a matching EC has been found in the namespace. */
1878 	if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1879 		return;
1880 
1881 	/* Look up the object pointed to from the ECDT in the namespace. */
1882 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1883 				(struct acpi_table_header **)&ecdt_ptr);
1884 	if (ACPI_FAILURE(status))
1885 		return;
1886 
1887 	status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1888 	if (ACPI_SUCCESS(status)) {
1889 		boot_ec->handle = handle;
1890 
1891 		/* Add a special ACPI device object to represent the boot EC. */
1892 		acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1893 	}
1894 
1895 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1896 }
1897 
1898 /*
1899  * On some hardware it is necessary to clear events accumulated by the EC during
1900  * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1901  * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1902  *
1903  * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1904  *
1905  * Ideally, the EC should also be instructed NOT to accumulate events during
1906  * sleep (which Windows seems to do somehow), but the interface to control this
1907  * behaviour is not known at this time.
1908  *
1909  * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1910  * however it is very likely that other Samsung models are affected.
1911  *
1912  * On systems which don't accumulate _Q events during sleep, this extra check
1913  * should be harmless.
1914  */
ec_clear_on_resume(const struct dmi_system_id * id)1915 static int ec_clear_on_resume(const struct dmi_system_id *id)
1916 {
1917 	pr_debug("Detected system needing EC poll on resume.\n");
1918 	EC_FLAGS_CLEAR_ON_RESUME = 1;
1919 	ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1920 	return 0;
1921 }
1922 
1923 /*
1924  * Some ECDTs contain wrong register addresses.
1925  * MSI MS-171F
1926  * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1927  */
ec_correct_ecdt(const struct dmi_system_id * id)1928 static int ec_correct_ecdt(const struct dmi_system_id *id)
1929 {
1930 	pr_debug("Detected system needing ECDT address correction.\n");
1931 	EC_FLAGS_CORRECT_ECDT = 1;
1932 	return 0;
1933 }
1934 
1935 /*
1936  * Some ECDTs contain wrong GPE setting, but they share the same port addresses
1937  * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case.
1938  * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1939  */
ec_honor_dsdt_gpe(const struct dmi_system_id * id)1940 static int ec_honor_dsdt_gpe(const struct dmi_system_id *id)
1941 {
1942 	pr_debug("Detected system needing DSDT GPE setting.\n");
1943 	EC_FLAGS_TRUST_DSDT_GPE = 1;
1944 	return 0;
1945 }
1946 
1947 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1948 	{
1949 		/*
1950 		 * MSI MS-171F
1951 		 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1952 		 */
1953 		.callback = ec_correct_ecdt,
1954 		.matches = {
1955 			DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1956 			DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),
1957 		},
1958 	},
1959 	{
1960 		/*
1961 		 * HP Pavilion Gaming Laptop 15-cx0xxx
1962 		 * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1963 		 */
1964 		.callback = ec_honor_dsdt_gpe,
1965 		.matches = {
1966 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1967 			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"),
1968 		},
1969 	},
1970 	{
1971 		/*
1972 		 * HP Pavilion Gaming Laptop 15-cx0041ur
1973 		 */
1974 		.callback = ec_honor_dsdt_gpe,
1975 		.matches = {
1976 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1977 			DMI_MATCH(DMI_PRODUCT_NAME, "HP 15-cx0041ur"),
1978 		},
1979 	},
1980 	{
1981 		/*
1982 		 * HP Pavilion Gaming Laptop 15-dk1xxx
1983 		 * https://github.com/systemd/systemd/issues/28942
1984 		 */
1985 		.callback = ec_honor_dsdt_gpe,
1986 		.matches = {
1987 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1988 			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-dk1xxx"),
1989 		},
1990 	},
1991 	{
1992 		/*
1993 		 * HP 250 G7 Notebook PC
1994 		 */
1995 		.callback = ec_honor_dsdt_gpe,
1996 		.matches = {
1997 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1998 			DMI_MATCH(DMI_PRODUCT_NAME, "HP 250 G7 Notebook PC"),
1999 		},
2000 	},
2001 	{
2002 		/*
2003 		 * Samsung hardware
2004 		 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
2005 		 */
2006 		.callback = ec_clear_on_resume,
2007 		.matches = {
2008 			DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD."),
2009 		},
2010 	},
2011 	{}
2012 };
2013 
acpi_ec_ecdt_probe(void)2014 void __init acpi_ec_ecdt_probe(void)
2015 {
2016 	struct acpi_table_ecdt *ecdt_ptr;
2017 	struct acpi_ec *ec;
2018 	acpi_status status;
2019 	int ret;
2020 
2021 	/* Generate a boot ec context. */
2022 	dmi_check_system(ec_dmi_table);
2023 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
2024 				(struct acpi_table_header **)&ecdt_ptr);
2025 	if (ACPI_FAILURE(status))
2026 		return;
2027 
2028 	if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
2029 		/*
2030 		 * Asus X50GL:
2031 		 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
2032 		 */
2033 		goto out;
2034 	}
2035 
2036 	if (!strstarts(ecdt_ptr->id, "\\")) {
2037 		/*
2038 		 * The ECDT table on some MSI notebooks contains invalid data, together
2039 		 * with an empty ID string ("").
2040 		 *
2041 		 * Section 5.2.15 of the ACPI specification requires the ID string to be
2042 		 * a "fully qualified reference to the (...) embedded controller device",
2043 		 * so this string always has to start with a backslash.
2044 		 *
2045 		 * By verifying this we can avoid such faulty ECDT tables in a safe way.
2046 		 */
2047 		pr_err(FW_BUG "Ignoring ECDT due to invalid ID string \"%s\"\n", ecdt_ptr->id);
2048 		goto out;
2049 	}
2050 
2051 	ec = acpi_ec_alloc();
2052 	if (!ec)
2053 		goto out;
2054 
2055 	if (EC_FLAGS_CORRECT_ECDT) {
2056 		ec->command_addr = ecdt_ptr->data.address;
2057 		ec->data_addr = ecdt_ptr->control.address;
2058 	} else {
2059 		ec->command_addr = ecdt_ptr->control.address;
2060 		ec->data_addr = ecdt_ptr->data.address;
2061 	}
2062 
2063 	/*
2064 	 * Ignore the GPE value on Reduced Hardware platforms.
2065 	 * Some products have this set to an erroneous value.
2066 	 */
2067 	if (!acpi_gbl_reduced_hardware)
2068 		ec->gpe = ecdt_ptr->gpe;
2069 
2070 	ec->handle = ACPI_ROOT_OBJECT;
2071 
2072 	/*
2073 	 * At this point, the namespace is not initialized, so do not find
2074 	 * the namespace objects, or handle the events.
2075 	 */
2076 	ret = acpi_ec_setup(ec, NULL, false);
2077 	if (ret) {
2078 		acpi_ec_free(ec);
2079 		goto out;
2080 	}
2081 
2082 	boot_ec = ec;
2083 	boot_ec_is_ecdt = true;
2084 
2085 	pr_info("Boot ECDT EC used to handle transactions\n");
2086 
2087 out:
2088 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
2089 }
2090 
2091 #ifdef CONFIG_PM_SLEEP
acpi_ec_suspend(struct device * dev)2092 static int acpi_ec_suspend(struct device *dev)
2093 {
2094 	struct acpi_ec *ec =
2095 		acpi_driver_data(to_acpi_device(dev));
2096 
2097 	if (!pm_suspend_no_platform() && ec_freeze_events)
2098 		acpi_ec_disable_event(ec);
2099 	return 0;
2100 }
2101 
acpi_ec_suspend_noirq(struct device * dev)2102 static int acpi_ec_suspend_noirq(struct device *dev)
2103 {
2104 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2105 
2106 	/*
2107 	 * The SCI handler doesn't run at this point, so the GPE can be
2108 	 * masked at the low level without side effects.
2109 	 */
2110 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2111 	    ec->gpe >= 0 && ec->reference_count >= 1)
2112 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
2113 
2114 	acpi_ec_enter_noirq(ec);
2115 
2116 	return 0;
2117 }
2118 
acpi_ec_resume_noirq(struct device * dev)2119 static int acpi_ec_resume_noirq(struct device *dev)
2120 {
2121 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2122 
2123 	acpi_ec_leave_noirq(ec);
2124 
2125 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2126 	    ec->gpe >= 0 && ec->reference_count >= 1)
2127 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
2128 
2129 	return 0;
2130 }
2131 
acpi_ec_resume(struct device * dev)2132 static int acpi_ec_resume(struct device *dev)
2133 {
2134 	struct acpi_ec *ec =
2135 		acpi_driver_data(to_acpi_device(dev));
2136 
2137 	acpi_ec_enable_event(ec);
2138 	return 0;
2139 }
2140 
acpi_ec_mark_gpe_for_wake(void)2141 void acpi_ec_mark_gpe_for_wake(void)
2142 {
2143 	if (first_ec && !ec_no_wakeup)
2144 		acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
2145 }
2146 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
2147 
acpi_ec_set_gpe_wake_mask(u8 action)2148 void acpi_ec_set_gpe_wake_mask(u8 action)
2149 {
2150 	if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
2151 		acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
2152 }
2153 
acpi_ec_work_in_progress(struct acpi_ec * ec)2154 static bool acpi_ec_work_in_progress(struct acpi_ec *ec)
2155 {
2156 	return ec->events_in_progress + ec->queries_in_progress > 0;
2157 }
2158 
acpi_ec_dispatch_gpe(void)2159 bool acpi_ec_dispatch_gpe(void)
2160 {
2161 	bool work_in_progress = false;
2162 
2163 	if (!first_ec)
2164 		return acpi_any_gpe_status_set(U32_MAX);
2165 
2166 	/*
2167 	 * Report wakeup if the status bit is set for any enabled GPE other
2168 	 * than the EC one.
2169 	 */
2170 	if (acpi_any_gpe_status_set(first_ec->gpe))
2171 		return true;
2172 
2173 	/*
2174 	 * Cancel the SCI wakeup and process all pending events in case there
2175 	 * are any wakeup ones in there.
2176 	 *
2177 	 * Note that if any non-EC GPEs are active at this point, the SCI will
2178 	 * retrigger after the rearming in acpi_s2idle_wake(), so no events
2179 	 * should be missed by canceling the wakeup here.
2180 	 */
2181 	pm_system_cancel_wakeup();
2182 
2183 	/*
2184 	 * Dispatch the EC GPE in-band, but do not report wakeup in any case
2185 	 * to allow the caller to process events properly after that.
2186 	 */
2187 	spin_lock_irq(&first_ec->lock);
2188 
2189 	if (acpi_ec_gpe_status_set(first_ec)) {
2190 		pm_pr_dbg("ACPI EC GPE status set\n");
2191 
2192 		clear_gpe_and_advance_transaction(first_ec, false);
2193 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2194 	}
2195 
2196 	spin_unlock_irq(&first_ec->lock);
2197 
2198 	if (!work_in_progress)
2199 		return false;
2200 
2201 	pm_pr_dbg("ACPI EC GPE dispatched\n");
2202 
2203 	/* Drain EC work. */
2204 	do {
2205 		acpi_ec_flush_work();
2206 
2207 		pm_pr_dbg("ACPI EC work flushed\n");
2208 
2209 		spin_lock_irq(&first_ec->lock);
2210 
2211 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2212 
2213 		spin_unlock_irq(&first_ec->lock);
2214 	} while (work_in_progress && !pm_wakeup_pending());
2215 
2216 	return false;
2217 }
2218 #endif /* CONFIG_PM_SLEEP */
2219 
2220 static const struct dev_pm_ops acpi_ec_pm = {
2221 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2222 	SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2223 };
2224 
param_set_event_clearing(const char * val,const struct kernel_param * kp)2225 static int param_set_event_clearing(const char *val,
2226 				    const struct kernel_param *kp)
2227 {
2228 	int result = 0;
2229 
2230 	if (!strncmp(val, "status", sizeof("status") - 1)) {
2231 		ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2232 		pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2233 	} else if (!strncmp(val, "query", sizeof("query") - 1)) {
2234 		ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2235 		pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2236 	} else if (!strncmp(val, "event", sizeof("event") - 1)) {
2237 		ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2238 		pr_info("Assuming SCI_EVT clearing on event reads\n");
2239 	} else
2240 		result = -EINVAL;
2241 	return result;
2242 }
2243 
param_get_event_clearing(char * buffer,const struct kernel_param * kp)2244 static int param_get_event_clearing(char *buffer,
2245 				    const struct kernel_param *kp)
2246 {
2247 	switch (ec_event_clearing) {
2248 	case ACPI_EC_EVT_TIMING_STATUS:
2249 		return sprintf(buffer, "status\n");
2250 	case ACPI_EC_EVT_TIMING_QUERY:
2251 		return sprintf(buffer, "query\n");
2252 	case ACPI_EC_EVT_TIMING_EVENT:
2253 		return sprintf(buffer, "event\n");
2254 	default:
2255 		return sprintf(buffer, "invalid\n");
2256 	}
2257 	return 0;
2258 }
2259 
2260 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2261 		  NULL, 0644);
2262 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2263 
2264 static struct acpi_driver acpi_ec_driver = {
2265 	.name = "ec",
2266 	.class = ACPI_EC_CLASS,
2267 	.ids = ec_device_ids,
2268 	.ops = {
2269 		.add = acpi_ec_add,
2270 		.remove = acpi_ec_remove,
2271 		},
2272 	.drv.pm = &acpi_ec_pm,
2273 };
2274 
acpi_ec_destroy_workqueues(void)2275 static void acpi_ec_destroy_workqueues(void)
2276 {
2277 	if (ec_wq) {
2278 		destroy_workqueue(ec_wq);
2279 		ec_wq = NULL;
2280 	}
2281 	if (ec_query_wq) {
2282 		destroy_workqueue(ec_query_wq);
2283 		ec_query_wq = NULL;
2284 	}
2285 }
2286 
acpi_ec_init_workqueues(void)2287 static int acpi_ec_init_workqueues(void)
2288 {
2289 	if (!ec_wq)
2290 		ec_wq = alloc_ordered_workqueue("kec", 0);
2291 
2292 	if (!ec_query_wq)
2293 		ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2294 
2295 	if (!ec_wq || !ec_query_wq) {
2296 		acpi_ec_destroy_workqueues();
2297 		return -ENODEV;
2298 	}
2299 	return 0;
2300 }
2301 
2302 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2303 	{
2304 		.matches = {
2305 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2306 			DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2307 		},
2308 	},
2309 	{
2310 		.matches = {
2311 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2312 			DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2313 		},
2314 	},
2315 	{
2316 		.matches = {
2317 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
2318 			DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"),
2319 		},
2320 	},
2321 	/*
2322 	 * Lenovo Legion Go S; touchscreen blocks HW sleep when woken up from EC
2323 	 * https://gitlab.freedesktop.org/drm/amd/-/issues/3929
2324 	 */
2325 	{
2326 		.matches = {
2327 			DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2328 			DMI_MATCH(DMI_PRODUCT_NAME, "83L3"),
2329 		}
2330 	},
2331 	{
2332 		.matches = {
2333 			DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2334 			DMI_MATCH(DMI_PRODUCT_NAME, "83N6"),
2335 		}
2336 	},
2337 	{
2338 		.matches = {
2339 			DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2340 			DMI_MATCH(DMI_PRODUCT_NAME, "83Q2"),
2341 		}
2342 	},
2343 	{
2344 		.matches = {
2345 			DMI_MATCH(DMI_BOARD_VENDOR, "LENOVO"),
2346 			DMI_MATCH(DMI_PRODUCT_NAME, "83Q3"),
2347 		}
2348 	},
2349 	{
2350 		// TUXEDO InfinityBook Pro AMD Gen9
2351 		.matches = {
2352 			DMI_MATCH(DMI_BOARD_NAME, "GXxHRXx"),
2353 		},
2354 	},
2355 	{ },
2356 };
2357 
acpi_ec_init(void)2358 void __init acpi_ec_init(void)
2359 {
2360 	int result;
2361 
2362 	result = acpi_ec_init_workqueues();
2363 	if (result)
2364 		return;
2365 
2366 	/*
2367 	 * Disable EC wakeup on following systems to prevent periodic
2368 	 * wakeup from EC GPE.
2369 	 */
2370 	if (dmi_check_system(acpi_ec_no_wakeup)) {
2371 		ec_no_wakeup = true;
2372 		pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2373 	}
2374 
2375 	/* Driver must be registered after acpi_ec_init_workqueues(). */
2376 	acpi_bus_register_driver(&acpi_ec_driver);
2377 
2378 	acpi_ec_ecdt_start();
2379 }
2380 
2381 /* EC driver currently not unloadable */
2382 #if 0
2383 static void __exit acpi_ec_exit(void)
2384 {
2385 
2386 	acpi_bus_unregister_driver(&acpi_ec_driver);
2387 	acpi_ec_destroy_workqueues();
2388 }
2389 #endif	/* 0 */
2390