1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
51
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 START, LAST, static inline, raid1_rb);
56
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 struct serial_info *si, int idx)
59 {
60 unsigned long flags;
61 int ret = 0;
62 sector_t lo = r1_bio->sector;
63 sector_t hi = lo + r1_bio->sectors;
64 struct serial_in_rdev *serial = &rdev->serial[idx];
65
66 spin_lock_irqsave(&serial->serial_lock, flags);
67 /* collision happened */
68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 ret = -EBUSY;
70 else {
71 si->start = lo;
72 si->last = hi;
73 raid1_rb_insert(si, &serial->serial_rb);
74 }
75 spin_unlock_irqrestore(&serial->serial_lock, flags);
76
77 return ret;
78 }
79
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81 {
82 struct mddev *mddev = rdev->mddev;
83 struct serial_info *si;
84 int idx = sector_to_idx(r1_bio->sector);
85 struct serial_in_rdev *serial = &rdev->serial[idx];
86
87 if (WARN_ON(!mddev->serial_info_pool))
88 return;
89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 wait_event(serial->serial_io_wait,
91 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92 }
93
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95 {
96 struct serial_info *si;
97 unsigned long flags;
98 int found = 0;
99 struct mddev *mddev = rdev->mddev;
100 int idx = sector_to_idx(lo);
101 struct serial_in_rdev *serial = &rdev->serial[idx];
102
103 spin_lock_irqsave(&serial->serial_lock, flags);
104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 si; si = raid1_rb_iter_next(si, lo, hi)) {
106 if (si->start == lo && si->last == hi) {
107 raid1_rb_remove(si, &serial->serial_rb);
108 mempool_free(si, mddev->serial_info_pool);
109 found = 1;
110 break;
111 }
112 }
113 if (!found)
114 WARN(1, "The write IO is not recorded for serialization\n");
115 spin_unlock_irqrestore(&serial->serial_lock, flags);
116 wake_up(&serial->serial_io_wait);
117 }
118
119 /*
120 * for resync bio, r1bio pointer can be retrieved from the per-bio
121 * 'struct resync_pages'.
122 */
get_resync_r1bio(struct bio * bio)123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124 {
125 return get_resync_pages(bio)->raid_bio;
126 }
127
r1bio_pool_alloc(gfp_t gfp_flags,void * data)128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129 {
130 struct pool_info *pi = data;
131 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132
133 /* allocate a r1bio with room for raid_disks entries in the bios array */
134 return kzalloc(size, gfp_flags);
135 }
136
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143
r1buf_pool_alloc(gfp_t gfp_flags,void * data)144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145 {
146 struct pool_info *pi = data;
147 struct r1bio *r1_bio;
148 struct bio *bio;
149 int need_pages;
150 int j;
151 struct resync_pages *rps;
152
153 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154 if (!r1_bio)
155 return NULL;
156
157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 gfp_flags);
159 if (!rps)
160 goto out_free_r1bio;
161
162 /*
163 * Allocate bios : 1 for reading, n-1 for writing
164 */
165 for (j = pi->raid_disks ; j-- ; ) {
166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167 if (!bio)
168 goto out_free_bio;
169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 r1_bio->bios[j] = bio;
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them to
174 * the first bio.
175 * If this is a user-requested check/repair, allocate
176 * RESYNC_PAGES for each bio.
177 */
178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 need_pages = pi->raid_disks;
180 else
181 need_pages = 1;
182 for (j = 0; j < pi->raid_disks; j++) {
183 struct resync_pages *rp = &rps[j];
184
185 bio = r1_bio->bios[j];
186
187 if (j < need_pages) {
188 if (resync_alloc_pages(rp, gfp_flags))
189 goto out_free_pages;
190 } else {
191 memcpy(rp, &rps[0], sizeof(*rp));
192 resync_get_all_pages(rp);
193 }
194
195 rp->raid_bio = r1_bio;
196 bio->bi_private = rp;
197 }
198
199 r1_bio->master_bio = NULL;
200
201 return r1_bio;
202
203 out_free_pages:
204 while (--j >= 0)
205 resync_free_pages(&rps[j]);
206
207 out_free_bio:
208 while (++j < pi->raid_disks) {
209 bio_uninit(r1_bio->bios[j]);
210 kfree(r1_bio->bios[j]);
211 }
212 kfree(rps);
213
214 out_free_r1bio:
215 rbio_pool_free(r1_bio, data);
216 return NULL;
217 }
218
r1buf_pool_free(void * __r1_bio,void * data)219 static void r1buf_pool_free(void *__r1_bio, void *data)
220 {
221 struct pool_info *pi = data;
222 int i;
223 struct r1bio *r1bio = __r1_bio;
224 struct resync_pages *rp = NULL;
225
226 for (i = pi->raid_disks; i--; ) {
227 rp = get_resync_pages(r1bio->bios[i]);
228 resync_free_pages(rp);
229 bio_uninit(r1bio->bios[i]);
230 kfree(r1bio->bios[i]);
231 }
232
233 /* resync pages array stored in the 1st bio's .bi_private */
234 kfree(rp);
235
236 rbio_pool_free(r1bio, data);
237 }
238
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240 {
241 int i;
242
243 for (i = 0; i < conf->raid_disks * 2; i++) {
244 struct bio **bio = r1_bio->bios + i;
245 if (!BIO_SPECIAL(*bio))
246 bio_put(*bio);
247 *bio = NULL;
248 }
249 }
250
free_r1bio(struct r1bio * r1_bio)251 static void free_r1bio(struct r1bio *r1_bio)
252 {
253 struct r1conf *conf = r1_bio->mddev->private;
254
255 put_all_bios(conf, r1_bio);
256 mempool_free(r1_bio, &conf->r1bio_pool);
257 }
258
put_buf(struct r1bio * r1_bio)259 static void put_buf(struct r1bio *r1_bio)
260 {
261 struct r1conf *conf = r1_bio->mddev->private;
262 sector_t sect = r1_bio->sector;
263 int i;
264
265 for (i = 0; i < conf->raid_disks * 2; i++) {
266 struct bio *bio = r1_bio->bios[i];
267 if (bio->bi_end_io)
268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 }
270
271 mempool_free(r1_bio, &conf->r1buf_pool);
272
273 lower_barrier(conf, sect);
274 }
275
reschedule_retry(struct r1bio * r1_bio)276 static void reschedule_retry(struct r1bio *r1_bio)
277 {
278 unsigned long flags;
279 struct mddev *mddev = r1_bio->mddev;
280 struct r1conf *conf = mddev->private;
281 int idx;
282
283 idx = sector_to_idx(r1_bio->sector);
284 spin_lock_irqsave(&conf->device_lock, flags);
285 list_add(&r1_bio->retry_list, &conf->retry_list);
286 atomic_inc(&conf->nr_queued[idx]);
287 spin_unlock_irqrestore(&conf->device_lock, flags);
288
289 wake_up(&conf->wait_barrier);
290 md_wakeup_thread(mddev->thread);
291 }
292
293 /*
294 * raid_end_bio_io() is called when we have finished servicing a mirrored
295 * operation and are ready to return a success/failure code to the buffer
296 * cache layer.
297 */
call_bio_endio(struct r1bio * r1_bio)298 static void call_bio_endio(struct r1bio *r1_bio)
299 {
300 struct bio *bio = r1_bio->master_bio;
301
302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 bio->bi_status = BLK_STS_IOERR;
304
305 bio_endio(bio);
306 }
307
raid_end_bio_io(struct r1bio * r1_bio)308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
312 sector_t sector = r1_bio->sector;
313
314 /* if nobody has done the final endio yet, do it now */
315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 (unsigned long long) bio->bi_iter.bi_sector,
319 (unsigned long long) bio_end_sector(bio) - 1);
320
321 call_bio_endio(r1_bio);
322 }
323
324 free_r1bio(r1_bio);
325 /*
326 * Wake up any possible resync thread that waits for the device
327 * to go idle. All I/Os, even write-behind writes, are done.
328 */
329 allow_barrier(conf, sector);
330 }
331
332 /*
333 * Update disk head position estimator based on IRQ completion info.
334 */
update_head_pos(int disk,struct r1bio * r1_bio)335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 {
337 struct r1conf *conf = r1_bio->mddev->private;
338
339 conf->mirrors[disk].head_position =
340 r1_bio->sector + (r1_bio->sectors);
341 }
342
343 /*
344 * Find the disk number which triggered given bio
345 */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347 {
348 int mirror;
349 struct r1conf *conf = r1_bio->mddev->private;
350 int raid_disks = conf->raid_disks;
351
352 for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 if (r1_bio->bios[mirror] == bio)
354 break;
355
356 BUG_ON(mirror == raid_disks * 2);
357 update_head_pos(mirror, r1_bio);
358
359 return mirror;
360 }
361
raid1_end_read_request(struct bio * bio)362 static void raid1_end_read_request(struct bio *bio)
363 {
364 int uptodate = !bio->bi_status;
365 struct r1bio *r1_bio = bio->bi_private;
366 struct r1conf *conf = r1_bio->mddev->private;
367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368
369 /*
370 * this branch is our 'one mirror IO has finished' event handler:
371 */
372 update_head_pos(r1_bio->read_disk, r1_bio);
373
374 if (uptodate)
375 set_bit(R1BIO_Uptodate, &r1_bio->state);
376 else if (test_bit(FailFast, &rdev->flags) &&
377 test_bit(R1BIO_FailFast, &r1_bio->state))
378 /* This was a fail-fast read so we definitely
379 * want to retry */
380 ;
381 else {
382 /* If all other devices have failed, we want to return
383 * the error upwards rather than fail the last device.
384 * Here we redefine "uptodate" to mean "Don't want to retry"
385 */
386 unsigned long flags;
387 spin_lock_irqsave(&conf->device_lock, flags);
388 if (r1_bio->mddev->degraded == conf->raid_disks ||
389 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 test_bit(In_sync, &rdev->flags)))
391 uptodate = 1;
392 spin_unlock_irqrestore(&conf->device_lock, flags);
393 }
394
395 if (uptodate) {
396 raid_end_bio_io(r1_bio);
397 rdev_dec_pending(rdev, conf->mddev);
398 } else {
399 /*
400 * oops, read error:
401 */
402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403 mdname(conf->mddev),
404 rdev->bdev,
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
409 }
410 }
411
close_write(struct r1bio * r1_bio)412 static void close_write(struct r1bio *r1_bio)
413 {
414 struct mddev *mddev = r1_bio->mddev;
415
416 /* it really is the end of this request */
417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418 bio_free_pages(r1_bio->behind_master_bio);
419 bio_put(r1_bio->behind_master_bio);
420 r1_bio->behind_master_bio = NULL;
421 }
422
423 /* clear the bitmap if all writes complete successfully */
424 mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors,
425 !test_bit(R1BIO_Degraded, &r1_bio->state),
426 test_bit(R1BIO_BehindIO, &r1_bio->state));
427 md_write_end(mddev);
428 }
429
r1_bio_write_done(struct r1bio * r1_bio)430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 if (!atomic_dec_and_test(&r1_bio->remaining))
433 return;
434
435 if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else {
438 close_write(r1_bio);
439 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 reschedule_retry(r1_bio);
441 else
442 raid_end_bio_io(r1_bio);
443 }
444 }
445
raid1_end_write_request(struct bio * bio)446 static void raid1_end_write_request(struct bio *bio)
447 {
448 struct r1bio *r1_bio = bio->bi_private;
449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 struct r1conf *conf = r1_bio->mddev->private;
451 struct bio *to_put = NULL;
452 int mirror = find_bio_disk(r1_bio, bio);
453 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 bool discard_error;
455 sector_t lo = r1_bio->sector;
456 sector_t hi = r1_bio->sector + r1_bio->sectors;
457
458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459
460 /*
461 * 'one mirror IO has finished' event handler:
462 */
463 if (bio->bi_status && !discard_error) {
464 set_bit(WriteErrorSeen, &rdev->flags);
465 if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 set_bit(MD_RECOVERY_NEEDED, &
467 conf->mddev->recovery);
468
469 if (test_bit(FailFast, &rdev->flags) &&
470 (bio->bi_opf & MD_FAILFAST) &&
471 /* We never try FailFast to WriteMostly devices */
472 !test_bit(WriteMostly, &rdev->flags)) {
473 md_error(r1_bio->mddev, rdev);
474 }
475
476 /*
477 * When the device is faulty, it is not necessary to
478 * handle write error.
479 */
480 if (!test_bit(Faulty, &rdev->flags))
481 set_bit(R1BIO_WriteError, &r1_bio->state);
482 else {
483 /* Fail the request */
484 set_bit(R1BIO_Degraded, &r1_bio->state);
485 /* Finished with this branch */
486 r1_bio->bios[mirror] = NULL;
487 to_put = bio;
488 }
489 } else {
490 /*
491 * Set R1BIO_Uptodate in our master bio, so that we
492 * will return a good error code for to the higher
493 * levels even if IO on some other mirrored buffer
494 * fails.
495 *
496 * The 'master' represents the composite IO operation
497 * to user-side. So if something waits for IO, then it
498 * will wait for the 'master' bio.
499 */
500 r1_bio->bios[mirror] = NULL;
501 to_put = bio;
502 /*
503 * Do not set R1BIO_Uptodate if the current device is
504 * rebuilding or Faulty. This is because we cannot use
505 * such device for properly reading the data back (we could
506 * potentially use it, if the current write would have felt
507 * before rdev->recovery_offset, but for simplicity we don't
508 * check this here.
509 */
510 if (test_bit(In_sync, &rdev->flags) &&
511 !test_bit(Faulty, &rdev->flags))
512 set_bit(R1BIO_Uptodate, &r1_bio->state);
513
514 /* Maybe we can clear some bad blocks. */
515 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
516 !discard_error) {
517 r1_bio->bios[mirror] = IO_MADE_GOOD;
518 set_bit(R1BIO_MadeGood, &r1_bio->state);
519 }
520 }
521
522 if (behind) {
523 if (test_bit(CollisionCheck, &rdev->flags))
524 remove_serial(rdev, lo, hi);
525 if (test_bit(WriteMostly, &rdev->flags))
526 atomic_dec(&r1_bio->behind_remaining);
527
528 /*
529 * In behind mode, we ACK the master bio once the I/O
530 * has safely reached all non-writemostly
531 * disks. Setting the Returned bit ensures that this
532 * gets done only once -- we don't ever want to return
533 * -EIO here, instead we'll wait
534 */
535 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
536 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
537 /* Maybe we can return now */
538 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
539 struct bio *mbio = r1_bio->master_bio;
540 pr_debug("raid1: behind end write sectors"
541 " %llu-%llu\n",
542 (unsigned long long) mbio->bi_iter.bi_sector,
543 (unsigned long long) bio_end_sector(mbio) - 1);
544 call_bio_endio(r1_bio);
545 }
546 }
547 } else if (rdev->mddev->serialize_policy)
548 remove_serial(rdev, lo, hi);
549 if (r1_bio->bios[mirror] == NULL)
550 rdev_dec_pending(rdev, conf->mddev);
551
552 /*
553 * Let's see if all mirrored write operations have finished
554 * already.
555 */
556 r1_bio_write_done(r1_bio);
557
558 if (to_put)
559 bio_put(to_put);
560 }
561
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)562 static sector_t align_to_barrier_unit_end(sector_t start_sector,
563 sector_t sectors)
564 {
565 sector_t len;
566
567 WARN_ON(sectors == 0);
568 /*
569 * len is the number of sectors from start_sector to end of the
570 * barrier unit which start_sector belongs to.
571 */
572 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
573 start_sector;
574
575 if (len > sectors)
576 len = sectors;
577
578 return len;
579 }
580
update_read_sectors(struct r1conf * conf,int disk,sector_t this_sector,int len)581 static void update_read_sectors(struct r1conf *conf, int disk,
582 sector_t this_sector, int len)
583 {
584 struct raid1_info *info = &conf->mirrors[disk];
585
586 atomic_inc(&info->rdev->nr_pending);
587 if (info->next_seq_sect != this_sector)
588 info->seq_start = this_sector;
589 info->next_seq_sect = this_sector + len;
590 }
591
choose_first_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)592 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
593 int *max_sectors)
594 {
595 sector_t this_sector = r1_bio->sector;
596 int len = r1_bio->sectors;
597 int disk;
598
599 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
600 struct md_rdev *rdev;
601 int read_len;
602
603 if (r1_bio->bios[disk] == IO_BLOCKED)
604 continue;
605
606 rdev = conf->mirrors[disk].rdev;
607 if (!rdev || test_bit(Faulty, &rdev->flags))
608 continue;
609
610 /* choose the first disk even if it has some bad blocks. */
611 read_len = raid1_check_read_range(rdev, this_sector, &len);
612 if (read_len > 0) {
613 update_read_sectors(conf, disk, this_sector, read_len);
614 *max_sectors = read_len;
615 return disk;
616 }
617 }
618
619 return -1;
620 }
621
rdev_in_recovery(struct md_rdev * rdev,struct r1bio * r1_bio)622 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
623 {
624 return !test_bit(In_sync, &rdev->flags) &&
625 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
626 }
627
choose_bb_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)628 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
629 int *max_sectors)
630 {
631 sector_t this_sector = r1_bio->sector;
632 int best_disk = -1;
633 int best_len = 0;
634 int disk;
635
636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 struct md_rdev *rdev;
638 int len;
639 int read_len;
640
641 if (r1_bio->bios[disk] == IO_BLOCKED)
642 continue;
643
644 rdev = conf->mirrors[disk].rdev;
645 if (!rdev || test_bit(Faulty, &rdev->flags) ||
646 rdev_in_recovery(rdev, r1_bio) ||
647 test_bit(WriteMostly, &rdev->flags))
648 continue;
649
650 /* keep track of the disk with the most readable sectors. */
651 len = r1_bio->sectors;
652 read_len = raid1_check_read_range(rdev, this_sector, &len);
653 if (read_len > best_len) {
654 best_disk = disk;
655 best_len = read_len;
656 }
657 }
658
659 if (best_disk != -1) {
660 *max_sectors = best_len;
661 update_read_sectors(conf, best_disk, this_sector, best_len);
662 }
663
664 return best_disk;
665 }
666
choose_slow_rdev(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)667 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
668 int *max_sectors)
669 {
670 sector_t this_sector = r1_bio->sector;
671 int bb_disk = -1;
672 int bb_read_len = 0;
673 int disk;
674
675 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
676 struct md_rdev *rdev;
677 int len;
678 int read_len;
679
680 if (r1_bio->bios[disk] == IO_BLOCKED)
681 continue;
682
683 rdev = conf->mirrors[disk].rdev;
684 if (!rdev || test_bit(Faulty, &rdev->flags) ||
685 !test_bit(WriteMostly, &rdev->flags) ||
686 rdev_in_recovery(rdev, r1_bio))
687 continue;
688
689 /* there are no bad blocks, we can use this disk */
690 len = r1_bio->sectors;
691 read_len = raid1_check_read_range(rdev, this_sector, &len);
692 if (read_len == r1_bio->sectors) {
693 *max_sectors = read_len;
694 update_read_sectors(conf, disk, this_sector, read_len);
695 return disk;
696 }
697
698 /*
699 * there are partial bad blocks, choose the rdev with largest
700 * read length.
701 */
702 if (read_len > bb_read_len) {
703 bb_disk = disk;
704 bb_read_len = read_len;
705 }
706 }
707
708 if (bb_disk != -1) {
709 *max_sectors = bb_read_len;
710 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
711 }
712
713 return bb_disk;
714 }
715
is_sequential(struct r1conf * conf,int disk,struct r1bio * r1_bio)716 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
717 {
718 /* TODO: address issues with this check and concurrency. */
719 return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
720 conf->mirrors[disk].head_position == r1_bio->sector;
721 }
722
723 /*
724 * If buffered sequential IO size exceeds optimal iosize, check if there is idle
725 * disk. If yes, choose the idle disk.
726 */
should_choose_next(struct r1conf * conf,int disk)727 static bool should_choose_next(struct r1conf *conf, int disk)
728 {
729 struct raid1_info *mirror = &conf->mirrors[disk];
730 int opt_iosize;
731
732 if (!test_bit(Nonrot, &mirror->rdev->flags))
733 return false;
734
735 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
736 return opt_iosize > 0 && mirror->seq_start != MaxSector &&
737 mirror->next_seq_sect > opt_iosize &&
738 mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
739 }
740
rdev_readable(struct md_rdev * rdev,struct r1bio * r1_bio)741 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
742 {
743 if (!rdev || test_bit(Faulty, &rdev->flags))
744 return false;
745
746 if (rdev_in_recovery(rdev, r1_bio))
747 return false;
748
749 /* don't read from slow disk unless have to */
750 if (test_bit(WriteMostly, &rdev->flags))
751 return false;
752
753 /* don't split IO for bad blocks unless have to */
754 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
755 return false;
756
757 return true;
758 }
759
760 struct read_balance_ctl {
761 sector_t closest_dist;
762 int closest_dist_disk;
763 int min_pending;
764 int min_pending_disk;
765 int sequential_disk;
766 int readable_disks;
767 };
768
choose_best_rdev(struct r1conf * conf,struct r1bio * r1_bio)769 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
770 {
771 int disk;
772 struct read_balance_ctl ctl = {
773 .closest_dist_disk = -1,
774 .closest_dist = MaxSector,
775 .min_pending_disk = -1,
776 .min_pending = UINT_MAX,
777 .sequential_disk = -1,
778 };
779
780 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
781 struct md_rdev *rdev;
782 sector_t dist;
783 unsigned int pending;
784
785 if (r1_bio->bios[disk] == IO_BLOCKED)
786 continue;
787
788 rdev = conf->mirrors[disk].rdev;
789 if (!rdev_readable(rdev, r1_bio))
790 continue;
791
792 /* At least two disks to choose from so failfast is OK */
793 if (ctl.readable_disks++ == 1)
794 set_bit(R1BIO_FailFast, &r1_bio->state);
795
796 pending = atomic_read(&rdev->nr_pending);
797 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
798
799 /* Don't change to another disk for sequential reads */
800 if (is_sequential(conf, disk, r1_bio)) {
801 if (!should_choose_next(conf, disk))
802 return disk;
803
804 /*
805 * Add 'pending' to avoid choosing this disk if
806 * there is other idle disk.
807 */
808 pending++;
809 /*
810 * If there is no other idle disk, this disk
811 * will be chosen.
812 */
813 ctl.sequential_disk = disk;
814 }
815
816 if (ctl.min_pending > pending) {
817 ctl.min_pending = pending;
818 ctl.min_pending_disk = disk;
819 }
820
821 if (ctl.closest_dist > dist) {
822 ctl.closest_dist = dist;
823 ctl.closest_dist_disk = disk;
824 }
825 }
826
827 /*
828 * sequential IO size exceeds optimal iosize, however, there is no other
829 * idle disk, so choose the sequential disk.
830 */
831 if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
832 return ctl.sequential_disk;
833
834 /*
835 * If all disks are rotational, choose the closest disk. If any disk is
836 * non-rotational, choose the disk with less pending request even the
837 * disk is rotational, which might/might not be optimal for raids with
838 * mixed ratation/non-rotational disks depending on workload.
839 */
840 if (ctl.min_pending_disk != -1 &&
841 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
842 return ctl.min_pending_disk;
843 else
844 return ctl.closest_dist_disk;
845 }
846
847 /*
848 * This routine returns the disk from which the requested read should be done.
849 *
850 * 1) If resync is in progress, find the first usable disk and use it even if it
851 * has some bad blocks.
852 *
853 * 2) Now that there is no resync, loop through all disks and skipping slow
854 * disks and disks with bad blocks for now. Only pay attention to key disk
855 * choice.
856 *
857 * 3) If we've made it this far, now look for disks with bad blocks and choose
858 * the one with most number of sectors.
859 *
860 * 4) If we are all the way at the end, we have no choice but to use a disk even
861 * if it is write mostly.
862 *
863 * The rdev for the device selected will have nr_pending incremented.
864 */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)865 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
866 int *max_sectors)
867 {
868 int disk;
869
870 clear_bit(R1BIO_FailFast, &r1_bio->state);
871
872 if (raid1_should_read_first(conf->mddev, r1_bio->sector,
873 r1_bio->sectors))
874 return choose_first_rdev(conf, r1_bio, max_sectors);
875
876 disk = choose_best_rdev(conf, r1_bio);
877 if (disk >= 0) {
878 *max_sectors = r1_bio->sectors;
879 update_read_sectors(conf, disk, r1_bio->sector,
880 r1_bio->sectors);
881 return disk;
882 }
883
884 /*
885 * If we are here it means we didn't find a perfectly good disk so
886 * now spend a bit more time trying to find one with the most good
887 * sectors.
888 */
889 disk = choose_bb_rdev(conf, r1_bio, max_sectors);
890 if (disk >= 0)
891 return disk;
892
893 return choose_slow_rdev(conf, r1_bio, max_sectors);
894 }
895
wake_up_barrier(struct r1conf * conf)896 static void wake_up_barrier(struct r1conf *conf)
897 {
898 if (wq_has_sleeper(&conf->wait_barrier))
899 wake_up(&conf->wait_barrier);
900 }
901
flush_bio_list(struct r1conf * conf,struct bio * bio)902 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
903 {
904 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
905 raid1_prepare_flush_writes(conf->mddev);
906 wake_up_barrier(conf);
907
908 while (bio) { /* submit pending writes */
909 struct bio *next = bio->bi_next;
910
911 raid1_submit_write(bio);
912 bio = next;
913 cond_resched();
914 }
915 }
916
flush_pending_writes(struct r1conf * conf)917 static void flush_pending_writes(struct r1conf *conf)
918 {
919 /* Any writes that have been queued but are awaiting
920 * bitmap updates get flushed here.
921 */
922 spin_lock_irq(&conf->device_lock);
923
924 if (conf->pending_bio_list.head) {
925 struct blk_plug plug;
926 struct bio *bio;
927
928 bio = bio_list_get(&conf->pending_bio_list);
929 spin_unlock_irq(&conf->device_lock);
930
931 /*
932 * As this is called in a wait_event() loop (see freeze_array),
933 * current->state might be TASK_UNINTERRUPTIBLE which will
934 * cause a warning when we prepare to wait again. As it is
935 * rare that this path is taken, it is perfectly safe to force
936 * us to go around the wait_event() loop again, so the warning
937 * is a false-positive. Silence the warning by resetting
938 * thread state
939 */
940 __set_current_state(TASK_RUNNING);
941 blk_start_plug(&plug);
942 flush_bio_list(conf, bio);
943 blk_finish_plug(&plug);
944 } else
945 spin_unlock_irq(&conf->device_lock);
946 }
947
948 /* Barriers....
949 * Sometimes we need to suspend IO while we do something else,
950 * either some resync/recovery, or reconfigure the array.
951 * To do this we raise a 'barrier'.
952 * The 'barrier' is a counter that can be raised multiple times
953 * to count how many activities are happening which preclude
954 * normal IO.
955 * We can only raise the barrier if there is no pending IO.
956 * i.e. if nr_pending == 0.
957 * We choose only to raise the barrier if no-one is waiting for the
958 * barrier to go down. This means that as soon as an IO request
959 * is ready, no other operations which require a barrier will start
960 * until the IO request has had a chance.
961 *
962 * So: regular IO calls 'wait_barrier'. When that returns there
963 * is no backgroup IO happening, It must arrange to call
964 * allow_barrier when it has finished its IO.
965 * backgroup IO calls must call raise_barrier. Once that returns
966 * there is no normal IO happeing. It must arrange to call
967 * lower_barrier when the particular background IO completes.
968 *
969 * If resync/recovery is interrupted, returns -EINTR;
970 * Otherwise, returns 0.
971 */
raise_barrier(struct r1conf * conf,sector_t sector_nr)972 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
973 {
974 int idx = sector_to_idx(sector_nr);
975
976 spin_lock_irq(&conf->resync_lock);
977
978 /* Wait until no block IO is waiting */
979 wait_event_lock_irq(conf->wait_barrier,
980 !atomic_read(&conf->nr_waiting[idx]),
981 conf->resync_lock);
982
983 /* block any new IO from starting */
984 atomic_inc(&conf->barrier[idx]);
985 /*
986 * In raise_barrier() we firstly increase conf->barrier[idx] then
987 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
988 * increase conf->nr_pending[idx] then check conf->barrier[idx].
989 * A memory barrier here to make sure conf->nr_pending[idx] won't
990 * be fetched before conf->barrier[idx] is increased. Otherwise
991 * there will be a race between raise_barrier() and _wait_barrier().
992 */
993 smp_mb__after_atomic();
994
995 /* For these conditions we must wait:
996 * A: while the array is in frozen state
997 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
998 * existing in corresponding I/O barrier bucket.
999 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
1000 * max resync count which allowed on current I/O barrier bucket.
1001 */
1002 wait_event_lock_irq(conf->wait_barrier,
1003 (!conf->array_frozen &&
1004 !atomic_read(&conf->nr_pending[idx]) &&
1005 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1006 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1007 conf->resync_lock);
1008
1009 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1010 atomic_dec(&conf->barrier[idx]);
1011 spin_unlock_irq(&conf->resync_lock);
1012 wake_up(&conf->wait_barrier);
1013 return -EINTR;
1014 }
1015
1016 atomic_inc(&conf->nr_sync_pending);
1017 spin_unlock_irq(&conf->resync_lock);
1018
1019 return 0;
1020 }
1021
lower_barrier(struct r1conf * conf,sector_t sector_nr)1022 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024 int idx = sector_to_idx(sector_nr);
1025
1026 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1027
1028 atomic_dec(&conf->barrier[idx]);
1029 atomic_dec(&conf->nr_sync_pending);
1030 wake_up(&conf->wait_barrier);
1031 }
1032
_wait_barrier(struct r1conf * conf,int idx,bool nowait)1033 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1034 {
1035 bool ret = true;
1036
1037 /*
1038 * We need to increase conf->nr_pending[idx] very early here,
1039 * then raise_barrier() can be blocked when it waits for
1040 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1041 * conf->resync_lock when there is no barrier raised in same
1042 * barrier unit bucket. Also if the array is frozen, I/O
1043 * should be blocked until array is unfrozen.
1044 */
1045 atomic_inc(&conf->nr_pending[idx]);
1046 /*
1047 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1048 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1049 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1050 * barrier is necessary here to make sure conf->barrier[idx] won't be
1051 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1052 * will be a race between _wait_barrier() and raise_barrier().
1053 */
1054 smp_mb__after_atomic();
1055
1056 /*
1057 * Don't worry about checking two atomic_t variables at same time
1058 * here. If during we check conf->barrier[idx], the array is
1059 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1060 * 0, it is safe to return and make the I/O continue. Because the
1061 * array is frozen, all I/O returned here will eventually complete
1062 * or be queued, no race will happen. See code comment in
1063 * frozen_array().
1064 */
1065 if (!READ_ONCE(conf->array_frozen) &&
1066 !atomic_read(&conf->barrier[idx]))
1067 return ret;
1068
1069 /*
1070 * After holding conf->resync_lock, conf->nr_pending[idx]
1071 * should be decreased before waiting for barrier to drop.
1072 * Otherwise, we may encounter a race condition because
1073 * raise_barrer() might be waiting for conf->nr_pending[idx]
1074 * to be 0 at same time.
1075 */
1076 spin_lock_irq(&conf->resync_lock);
1077 atomic_inc(&conf->nr_waiting[idx]);
1078 atomic_dec(&conf->nr_pending[idx]);
1079 /*
1080 * In case freeze_array() is waiting for
1081 * get_unqueued_pending() == extra
1082 */
1083 wake_up_barrier(conf);
1084 /* Wait for the barrier in same barrier unit bucket to drop. */
1085
1086 /* Return false when nowait flag is set */
1087 if (nowait) {
1088 ret = false;
1089 } else {
1090 wait_event_lock_irq(conf->wait_barrier,
1091 !conf->array_frozen &&
1092 !atomic_read(&conf->barrier[idx]),
1093 conf->resync_lock);
1094 atomic_inc(&conf->nr_pending[idx]);
1095 }
1096
1097 atomic_dec(&conf->nr_waiting[idx]);
1098 spin_unlock_irq(&conf->resync_lock);
1099 return ret;
1100 }
1101
wait_read_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1102 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1103 {
1104 int idx = sector_to_idx(sector_nr);
1105 bool ret = true;
1106
1107 /*
1108 * Very similar to _wait_barrier(). The difference is, for read
1109 * I/O we don't need wait for sync I/O, but if the whole array
1110 * is frozen, the read I/O still has to wait until the array is
1111 * unfrozen. Since there is no ordering requirement with
1112 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1113 */
1114 atomic_inc(&conf->nr_pending[idx]);
1115
1116 if (!READ_ONCE(conf->array_frozen))
1117 return ret;
1118
1119 spin_lock_irq(&conf->resync_lock);
1120 atomic_inc(&conf->nr_waiting[idx]);
1121 atomic_dec(&conf->nr_pending[idx]);
1122 /*
1123 * In case freeze_array() is waiting for
1124 * get_unqueued_pending() == extra
1125 */
1126 wake_up_barrier(conf);
1127 /* Wait for array to be unfrozen */
1128
1129 /* Return false when nowait flag is set */
1130 if (nowait) {
1131 /* Return false when nowait flag is set */
1132 ret = false;
1133 } else {
1134 wait_event_lock_irq(conf->wait_barrier,
1135 !conf->array_frozen,
1136 conf->resync_lock);
1137 atomic_inc(&conf->nr_pending[idx]);
1138 }
1139
1140 atomic_dec(&conf->nr_waiting[idx]);
1141 spin_unlock_irq(&conf->resync_lock);
1142 return ret;
1143 }
1144
wait_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1145 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1146 {
1147 int idx = sector_to_idx(sector_nr);
1148
1149 return _wait_barrier(conf, idx, nowait);
1150 }
1151
_allow_barrier(struct r1conf * conf,int idx)1152 static void _allow_barrier(struct r1conf *conf, int idx)
1153 {
1154 atomic_dec(&conf->nr_pending[idx]);
1155 wake_up_barrier(conf);
1156 }
1157
allow_barrier(struct r1conf * conf,sector_t sector_nr)1158 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1159 {
1160 int idx = sector_to_idx(sector_nr);
1161
1162 _allow_barrier(conf, idx);
1163 }
1164
1165 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1166 static int get_unqueued_pending(struct r1conf *conf)
1167 {
1168 int idx, ret;
1169
1170 ret = atomic_read(&conf->nr_sync_pending);
1171 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1172 ret += atomic_read(&conf->nr_pending[idx]) -
1173 atomic_read(&conf->nr_queued[idx]);
1174
1175 return ret;
1176 }
1177
freeze_array(struct r1conf * conf,int extra)1178 static void freeze_array(struct r1conf *conf, int extra)
1179 {
1180 /* Stop sync I/O and normal I/O and wait for everything to
1181 * go quiet.
1182 * This is called in two situations:
1183 * 1) management command handlers (reshape, remove disk, quiesce).
1184 * 2) one normal I/O request failed.
1185
1186 * After array_frozen is set to 1, new sync IO will be blocked at
1187 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1188 * or wait_read_barrier(). The flying I/Os will either complete or be
1189 * queued. When everything goes quite, there are only queued I/Os left.
1190
1191 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1192 * barrier bucket index which this I/O request hits. When all sync and
1193 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1194 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1195 * in handle_read_error(), we may call freeze_array() before trying to
1196 * fix the read error. In this case, the error read I/O is not queued,
1197 * so get_unqueued_pending() == 1.
1198 *
1199 * Therefore before this function returns, we need to wait until
1200 * get_unqueued_pendings(conf) gets equal to extra. For
1201 * normal I/O context, extra is 1, in rested situations extra is 0.
1202 */
1203 spin_lock_irq(&conf->resync_lock);
1204 conf->array_frozen = 1;
1205 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1206 wait_event_lock_irq_cmd(
1207 conf->wait_barrier,
1208 get_unqueued_pending(conf) == extra,
1209 conf->resync_lock,
1210 flush_pending_writes(conf));
1211 spin_unlock_irq(&conf->resync_lock);
1212 }
unfreeze_array(struct r1conf * conf)1213 static void unfreeze_array(struct r1conf *conf)
1214 {
1215 /* reverse the effect of the freeze */
1216 spin_lock_irq(&conf->resync_lock);
1217 conf->array_frozen = 0;
1218 spin_unlock_irq(&conf->resync_lock);
1219 wake_up(&conf->wait_barrier);
1220 }
1221
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1222 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1223 struct bio *bio)
1224 {
1225 int size = bio->bi_iter.bi_size;
1226 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1227 int i = 0;
1228 struct bio *behind_bio = NULL;
1229
1230 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1231 &r1_bio->mddev->bio_set);
1232
1233 /* discard op, we don't support writezero/writesame yet */
1234 if (!bio_has_data(bio)) {
1235 behind_bio->bi_iter.bi_size = size;
1236 goto skip_copy;
1237 }
1238
1239 while (i < vcnt && size) {
1240 struct page *page;
1241 int len = min_t(int, PAGE_SIZE, size);
1242
1243 page = alloc_page(GFP_NOIO);
1244 if (unlikely(!page))
1245 goto free_pages;
1246
1247 if (!bio_add_page(behind_bio, page, len, 0)) {
1248 put_page(page);
1249 goto free_pages;
1250 }
1251
1252 size -= len;
1253 i++;
1254 }
1255
1256 bio_copy_data(behind_bio, bio);
1257 skip_copy:
1258 r1_bio->behind_master_bio = behind_bio;
1259 set_bit(R1BIO_BehindIO, &r1_bio->state);
1260
1261 return;
1262
1263 free_pages:
1264 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1265 bio->bi_iter.bi_size);
1266 bio_free_pages(behind_bio);
1267 bio_put(behind_bio);
1268 }
1269
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1270 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1271 {
1272 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1273 cb);
1274 struct mddev *mddev = plug->cb.data;
1275 struct r1conf *conf = mddev->private;
1276 struct bio *bio;
1277
1278 if (from_schedule) {
1279 spin_lock_irq(&conf->device_lock);
1280 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1281 spin_unlock_irq(&conf->device_lock);
1282 wake_up_barrier(conf);
1283 md_wakeup_thread(mddev->thread);
1284 kfree(plug);
1285 return;
1286 }
1287
1288 /* we aren't scheduling, so we can do the write-out directly. */
1289 bio = bio_list_get(&plug->pending);
1290 flush_bio_list(conf, bio);
1291 kfree(plug);
1292 }
1293
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1294 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1295 {
1296 r1_bio->master_bio = bio;
1297 r1_bio->sectors = bio_sectors(bio);
1298 r1_bio->state = 0;
1299 r1_bio->mddev = mddev;
1300 r1_bio->sector = bio->bi_iter.bi_sector;
1301 }
1302
1303 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1304 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1305 {
1306 struct r1conf *conf = mddev->private;
1307 struct r1bio *r1_bio;
1308
1309 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1310 /* Ensure no bio records IO_BLOCKED */
1311 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1312 init_r1bio(r1_bio, mddev, bio);
1313 return r1_bio;
1314 }
1315
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1316 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1317 int max_read_sectors, struct r1bio *r1_bio)
1318 {
1319 struct r1conf *conf = mddev->private;
1320 struct raid1_info *mirror;
1321 struct bio *read_bio;
1322 const enum req_op op = bio_op(bio);
1323 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1324 int max_sectors;
1325 int rdisk, error;
1326 bool r1bio_existed = !!r1_bio;
1327
1328 /*
1329 * If r1_bio is set, we are blocking the raid1d thread
1330 * so there is a tiny risk of deadlock. So ask for
1331 * emergency memory if needed.
1332 */
1333 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1334
1335 /*
1336 * Still need barrier for READ in case that whole
1337 * array is frozen.
1338 */
1339 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1340 bio->bi_opf & REQ_NOWAIT)) {
1341 bio_wouldblock_error(bio);
1342 return;
1343 }
1344
1345 if (!r1_bio)
1346 r1_bio = alloc_r1bio(mddev, bio);
1347 else
1348 init_r1bio(r1_bio, mddev, bio);
1349 r1_bio->sectors = max_read_sectors;
1350
1351 /*
1352 * make_request() can abort the operation when read-ahead is being
1353 * used and no empty request is available.
1354 */
1355 rdisk = read_balance(conf, r1_bio, &max_sectors);
1356 if (rdisk < 0) {
1357 /* couldn't find anywhere to read from */
1358 if (r1bio_existed)
1359 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1360 mdname(mddev),
1361 conf->mirrors[r1_bio->read_disk].rdev->bdev,
1362 r1_bio->sector);
1363 raid_end_bio_io(r1_bio);
1364 return;
1365 }
1366 mirror = conf->mirrors + rdisk;
1367
1368 if (r1bio_existed)
1369 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1370 mdname(mddev),
1371 (unsigned long long)r1_bio->sector,
1372 mirror->rdev->bdev);
1373
1374 if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1375 /*
1376 * Reading from a write-mostly device must take care not to
1377 * over-take any writes that are 'behind'
1378 */
1379 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1380 mddev->bitmap_ops->wait_behind_writes(mddev);
1381 }
1382
1383 if (max_sectors < bio_sectors(bio)) {
1384 struct bio *split = bio_split(bio, max_sectors,
1385 gfp, &conf->bio_split);
1386
1387 if (IS_ERR(split)) {
1388 error = PTR_ERR(split);
1389 goto err_handle;
1390 }
1391 bio_chain(split, bio);
1392 submit_bio_noacct(bio);
1393 bio = split;
1394 r1_bio->master_bio = bio;
1395 r1_bio->sectors = max_sectors;
1396 }
1397
1398 r1_bio->read_disk = rdisk;
1399 if (!r1bio_existed) {
1400 md_account_bio(mddev, &bio);
1401 r1_bio->master_bio = bio;
1402 }
1403 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1404 &mddev->bio_set);
1405
1406 r1_bio->bios[rdisk] = read_bio;
1407
1408 read_bio->bi_iter.bi_sector = r1_bio->sector +
1409 mirror->rdev->data_offset;
1410 read_bio->bi_end_io = raid1_end_read_request;
1411 read_bio->bi_opf = op | do_sync;
1412 if (test_bit(FailFast, &mirror->rdev->flags) &&
1413 test_bit(R1BIO_FailFast, &r1_bio->state))
1414 read_bio->bi_opf |= MD_FAILFAST;
1415 read_bio->bi_private = r1_bio;
1416 mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1417 submit_bio_noacct(read_bio);
1418 return;
1419
1420 err_handle:
1421 atomic_dec(&mirror->rdev->nr_pending);
1422 bio->bi_status = errno_to_blk_status(error);
1423 set_bit(R1BIO_Uptodate, &r1_bio->state);
1424 raid_end_bio_io(r1_bio);
1425 }
1426
wait_blocked_rdev(struct mddev * mddev,struct bio * bio)1427 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
1428 {
1429 struct r1conf *conf = mddev->private;
1430 int disks = conf->raid_disks * 2;
1431 int i;
1432
1433 retry:
1434 for (i = 0; i < disks; i++) {
1435 struct md_rdev *rdev = conf->mirrors[i].rdev;
1436
1437 if (!rdev)
1438 continue;
1439
1440 /* don't write here until the bad block is acknowledged */
1441 if (test_bit(WriteErrorSeen, &rdev->flags) &&
1442 rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
1443 bio_sectors(bio)) < 0)
1444 set_bit(BlockedBadBlocks, &rdev->flags);
1445
1446 if (rdev_blocked(rdev)) {
1447 if (bio->bi_opf & REQ_NOWAIT)
1448 return false;
1449
1450 mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
1451 rdev->raid_disk);
1452 atomic_inc(&rdev->nr_pending);
1453 md_wait_for_blocked_rdev(rdev, rdev->mddev);
1454 goto retry;
1455 }
1456 }
1457
1458 return true;
1459 }
1460
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1461 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1462 int max_write_sectors)
1463 {
1464 struct r1conf *conf = mddev->private;
1465 struct r1bio *r1_bio;
1466 int i, disks, k, error;
1467 unsigned long flags;
1468 int first_clone;
1469 int max_sectors;
1470 bool write_behind = false;
1471 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1472
1473 if (mddev_is_clustered(mddev) &&
1474 md_cluster_ops->area_resyncing(mddev, WRITE,
1475 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1476
1477 DEFINE_WAIT(w);
1478 if (bio->bi_opf & REQ_NOWAIT) {
1479 bio_wouldblock_error(bio);
1480 return;
1481 }
1482 for (;;) {
1483 prepare_to_wait(&conf->wait_barrier,
1484 &w, TASK_IDLE);
1485 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1486 bio->bi_iter.bi_sector,
1487 bio_end_sector(bio)))
1488 break;
1489 schedule();
1490 }
1491 finish_wait(&conf->wait_barrier, &w);
1492 }
1493
1494 /*
1495 * Register the new request and wait if the reconstruction
1496 * thread has put up a bar for new requests.
1497 * Continue immediately if no resync is active currently.
1498 */
1499 if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1500 bio->bi_opf & REQ_NOWAIT)) {
1501 bio_wouldblock_error(bio);
1502 return;
1503 }
1504
1505 if (!wait_blocked_rdev(mddev, bio)) {
1506 bio_wouldblock_error(bio);
1507 return;
1508 }
1509
1510 r1_bio = alloc_r1bio(mddev, bio);
1511 r1_bio->sectors = max_write_sectors;
1512
1513 /* first select target devices under rcu_lock and
1514 * inc refcount on their rdev. Record them by setting
1515 * bios[x] to bio
1516 * If there are known/acknowledged bad blocks on any device on
1517 * which we have seen a write error, we want to avoid writing those
1518 * blocks.
1519 * This potentially requires several writes to write around
1520 * the bad blocks. Each set of writes gets it's own r1bio
1521 * with a set of bios attached.
1522 */
1523
1524 disks = conf->raid_disks * 2;
1525 max_sectors = r1_bio->sectors;
1526 for (i = 0; i < disks; i++) {
1527 struct md_rdev *rdev = conf->mirrors[i].rdev;
1528
1529 /*
1530 * The write-behind io is only attempted on drives marked as
1531 * write-mostly, which means we could allocate write behind
1532 * bio later.
1533 */
1534 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1535 write_behind = true;
1536
1537 r1_bio->bios[i] = NULL;
1538 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1539 if (i < conf->raid_disks)
1540 set_bit(R1BIO_Degraded, &r1_bio->state);
1541 continue;
1542 }
1543
1544 atomic_inc(&rdev->nr_pending);
1545 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1546 sector_t first_bad;
1547 int bad_sectors;
1548 int is_bad;
1549
1550 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1551 &first_bad, &bad_sectors);
1552 if (is_bad && first_bad <= r1_bio->sector) {
1553 /* Cannot write here at all */
1554 bad_sectors -= (r1_bio->sector - first_bad);
1555 if (bad_sectors < max_sectors)
1556 /* mustn't write more than bad_sectors
1557 * to other devices yet
1558 */
1559 max_sectors = bad_sectors;
1560 rdev_dec_pending(rdev, mddev);
1561 /* We don't set R1BIO_Degraded as that
1562 * only applies if the disk is
1563 * missing, so it might be re-added,
1564 * and we want to know to recover this
1565 * chunk.
1566 * In this case the device is here,
1567 * and the fact that this chunk is not
1568 * in-sync is recorded in the bad
1569 * block log
1570 */
1571 continue;
1572 }
1573 if (is_bad) {
1574 int good_sectors;
1575
1576 /*
1577 * We cannot atomically write this, so just
1578 * error in that case. It could be possible to
1579 * atomically write other mirrors, but the
1580 * complexity of supporting that is not worth
1581 * the benefit.
1582 */
1583 if (bio->bi_opf & REQ_ATOMIC) {
1584 error = -EIO;
1585 goto err_handle;
1586 }
1587
1588 good_sectors = first_bad - r1_bio->sector;
1589 if (good_sectors < max_sectors)
1590 max_sectors = good_sectors;
1591 }
1592 }
1593 r1_bio->bios[i] = bio;
1594 }
1595
1596 /*
1597 * When using a bitmap, we may call alloc_behind_master_bio below.
1598 * alloc_behind_master_bio allocates a copy of the data payload a page
1599 * at a time and thus needs a new bio that can fit the whole payload
1600 * this bio in page sized chunks.
1601 */
1602 if (write_behind && mddev->bitmap)
1603 max_sectors = min_t(int, max_sectors,
1604 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1605 if (max_sectors < bio_sectors(bio)) {
1606 struct bio *split = bio_split(bio, max_sectors,
1607 GFP_NOIO, &conf->bio_split);
1608
1609 if (IS_ERR(split)) {
1610 error = PTR_ERR(split);
1611 goto err_handle;
1612 }
1613 bio_chain(split, bio);
1614 submit_bio_noacct(bio);
1615 bio = split;
1616 r1_bio->master_bio = bio;
1617 r1_bio->sectors = max_sectors;
1618 }
1619
1620 md_account_bio(mddev, &bio);
1621 r1_bio->master_bio = bio;
1622 atomic_set(&r1_bio->remaining, 1);
1623 atomic_set(&r1_bio->behind_remaining, 0);
1624
1625 first_clone = 1;
1626
1627 for (i = 0; i < disks; i++) {
1628 struct bio *mbio = NULL;
1629 struct md_rdev *rdev = conf->mirrors[i].rdev;
1630 if (!r1_bio->bios[i])
1631 continue;
1632
1633 if (first_clone) {
1634 unsigned long max_write_behind =
1635 mddev->bitmap_info.max_write_behind;
1636 struct md_bitmap_stats stats;
1637 int err;
1638
1639 /* do behind I/O ?
1640 * Not if there are too many, or cannot
1641 * allocate memory, or a reader on WriteMostly
1642 * is waiting for behind writes to flush */
1643 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1644 if (!err && write_behind && !stats.behind_wait &&
1645 stats.behind_writes < max_write_behind)
1646 alloc_behind_master_bio(r1_bio, bio);
1647
1648 mddev->bitmap_ops->startwrite(
1649 mddev, r1_bio->sector, r1_bio->sectors,
1650 test_bit(R1BIO_BehindIO, &r1_bio->state));
1651 first_clone = 0;
1652 }
1653
1654 if (r1_bio->behind_master_bio) {
1655 mbio = bio_alloc_clone(rdev->bdev,
1656 r1_bio->behind_master_bio,
1657 GFP_NOIO, &mddev->bio_set);
1658 if (test_bit(CollisionCheck, &rdev->flags))
1659 wait_for_serialization(rdev, r1_bio);
1660 if (test_bit(WriteMostly, &rdev->flags))
1661 atomic_inc(&r1_bio->behind_remaining);
1662 } else {
1663 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1664 &mddev->bio_set);
1665
1666 if (mddev->serialize_policy)
1667 wait_for_serialization(rdev, r1_bio);
1668 }
1669
1670 r1_bio->bios[i] = mbio;
1671
1672 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1673 mbio->bi_end_io = raid1_end_write_request;
1674 mbio->bi_opf = bio_op(bio) |
1675 (bio->bi_opf & (REQ_SYNC | REQ_FUA | REQ_ATOMIC));
1676 if (test_bit(FailFast, &rdev->flags) &&
1677 !test_bit(WriteMostly, &rdev->flags) &&
1678 conf->raid_disks - mddev->degraded > 1)
1679 mbio->bi_opf |= MD_FAILFAST;
1680 mbio->bi_private = r1_bio;
1681
1682 atomic_inc(&r1_bio->remaining);
1683 mddev_trace_remap(mddev, mbio, r1_bio->sector);
1684 /* flush_pending_writes() needs access to the rdev so...*/
1685 mbio->bi_bdev = (void *)rdev;
1686 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1687 spin_lock_irqsave(&conf->device_lock, flags);
1688 bio_list_add(&conf->pending_bio_list, mbio);
1689 spin_unlock_irqrestore(&conf->device_lock, flags);
1690 md_wakeup_thread(mddev->thread);
1691 }
1692 }
1693
1694 r1_bio_write_done(r1_bio);
1695
1696 /* In case raid1d snuck in to freeze_array */
1697 wake_up_barrier(conf);
1698 return;
1699 err_handle:
1700 for (k = 0; k < i; k++) {
1701 if (r1_bio->bios[k]) {
1702 rdev_dec_pending(conf->mirrors[k].rdev, mddev);
1703 r1_bio->bios[k] = NULL;
1704 }
1705 }
1706
1707 bio->bi_status = errno_to_blk_status(error);
1708 set_bit(R1BIO_Uptodate, &r1_bio->state);
1709 raid_end_bio_io(r1_bio);
1710 }
1711
raid1_make_request(struct mddev * mddev,struct bio * bio)1712 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1713 {
1714 sector_t sectors;
1715
1716 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1717 && md_flush_request(mddev, bio))
1718 return true;
1719
1720 /*
1721 * There is a limit to the maximum size, but
1722 * the read/write handler might find a lower limit
1723 * due to bad blocks. To avoid multiple splits,
1724 * we pass the maximum number of sectors down
1725 * and let the lower level perform the split.
1726 */
1727 sectors = align_to_barrier_unit_end(
1728 bio->bi_iter.bi_sector, bio_sectors(bio));
1729
1730 if (bio_data_dir(bio) == READ)
1731 raid1_read_request(mddev, bio, sectors, NULL);
1732 else {
1733 md_write_start(mddev,bio);
1734 raid1_write_request(mddev, bio, sectors);
1735 }
1736 return true;
1737 }
1738
raid1_status(struct seq_file * seq,struct mddev * mddev)1739 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1740 {
1741 struct r1conf *conf = mddev->private;
1742 int i;
1743
1744 lockdep_assert_held(&mddev->lock);
1745
1746 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1747 conf->raid_disks - mddev->degraded);
1748 for (i = 0; i < conf->raid_disks; i++) {
1749 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1750
1751 seq_printf(seq, "%s",
1752 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1753 }
1754 seq_printf(seq, "]");
1755 }
1756
1757 /**
1758 * raid1_error() - RAID1 error handler.
1759 * @mddev: affected md device.
1760 * @rdev: member device to fail.
1761 *
1762 * The routine acknowledges &rdev failure and determines new @mddev state.
1763 * If it failed, then:
1764 * - &MD_BROKEN flag is set in &mddev->flags.
1765 * - recovery is disabled.
1766 * Otherwise, it must be degraded:
1767 * - recovery is interrupted.
1768 * - &mddev->degraded is bumped.
1769 *
1770 * @rdev is marked as &Faulty excluding case when array is failed and
1771 * &mddev->fail_last_dev is off.
1772 */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1773 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1774 {
1775 struct r1conf *conf = mddev->private;
1776 unsigned long flags;
1777
1778 spin_lock_irqsave(&conf->device_lock, flags);
1779
1780 if (test_bit(In_sync, &rdev->flags) &&
1781 (conf->raid_disks - mddev->degraded) == 1) {
1782 set_bit(MD_BROKEN, &mddev->flags);
1783
1784 if (!mddev->fail_last_dev) {
1785 conf->recovery_disabled = mddev->recovery_disabled;
1786 spin_unlock_irqrestore(&conf->device_lock, flags);
1787 return;
1788 }
1789 }
1790 set_bit(Blocked, &rdev->flags);
1791 if (test_and_clear_bit(In_sync, &rdev->flags))
1792 mddev->degraded++;
1793 set_bit(Faulty, &rdev->flags);
1794 spin_unlock_irqrestore(&conf->device_lock, flags);
1795 /*
1796 * if recovery is running, make sure it aborts.
1797 */
1798 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1799 set_mask_bits(&mddev->sb_flags, 0,
1800 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1801 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1802 "md/raid1:%s: Operation continuing on %d devices.\n",
1803 mdname(mddev), rdev->bdev,
1804 mdname(mddev), conf->raid_disks - mddev->degraded);
1805 }
1806
print_conf(struct r1conf * conf)1807 static void print_conf(struct r1conf *conf)
1808 {
1809 int i;
1810
1811 pr_debug("RAID1 conf printout:\n");
1812 if (!conf) {
1813 pr_debug("(!conf)\n");
1814 return;
1815 }
1816 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1817 conf->raid_disks);
1818
1819 lockdep_assert_held(&conf->mddev->reconfig_mutex);
1820 for (i = 0; i < conf->raid_disks; i++) {
1821 struct md_rdev *rdev = conf->mirrors[i].rdev;
1822 if (rdev)
1823 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1824 i, !test_bit(In_sync, &rdev->flags),
1825 !test_bit(Faulty, &rdev->flags),
1826 rdev->bdev);
1827 }
1828 }
1829
close_sync(struct r1conf * conf)1830 static void close_sync(struct r1conf *conf)
1831 {
1832 int idx;
1833
1834 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1835 _wait_barrier(conf, idx, false);
1836 _allow_barrier(conf, idx);
1837 }
1838
1839 mempool_exit(&conf->r1buf_pool);
1840 }
1841
raid1_spare_active(struct mddev * mddev)1842 static int raid1_spare_active(struct mddev *mddev)
1843 {
1844 int i;
1845 struct r1conf *conf = mddev->private;
1846 int count = 0;
1847 unsigned long flags;
1848
1849 /*
1850 * Find all failed disks within the RAID1 configuration
1851 * and mark them readable.
1852 * Called under mddev lock, so rcu protection not needed.
1853 * device_lock used to avoid races with raid1_end_read_request
1854 * which expects 'In_sync' flags and ->degraded to be consistent.
1855 */
1856 spin_lock_irqsave(&conf->device_lock, flags);
1857 for (i = 0; i < conf->raid_disks; i++) {
1858 struct md_rdev *rdev = conf->mirrors[i].rdev;
1859 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1860 if (repl
1861 && !test_bit(Candidate, &repl->flags)
1862 && repl->recovery_offset == MaxSector
1863 && !test_bit(Faulty, &repl->flags)
1864 && !test_and_set_bit(In_sync, &repl->flags)) {
1865 /* replacement has just become active */
1866 if (!rdev ||
1867 !test_and_clear_bit(In_sync, &rdev->flags))
1868 count++;
1869 if (rdev) {
1870 /* Replaced device not technically
1871 * faulty, but we need to be sure
1872 * it gets removed and never re-added
1873 */
1874 set_bit(Faulty, &rdev->flags);
1875 sysfs_notify_dirent_safe(
1876 rdev->sysfs_state);
1877 }
1878 }
1879 if (rdev
1880 && rdev->recovery_offset == MaxSector
1881 && !test_bit(Faulty, &rdev->flags)
1882 && !test_and_set_bit(In_sync, &rdev->flags)) {
1883 count++;
1884 sysfs_notify_dirent_safe(rdev->sysfs_state);
1885 }
1886 }
1887 mddev->degraded -= count;
1888 spin_unlock_irqrestore(&conf->device_lock, flags);
1889
1890 print_conf(conf);
1891 return count;
1892 }
1893
raid1_add_conf(struct r1conf * conf,struct md_rdev * rdev,int disk,bool replacement)1894 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1895 bool replacement)
1896 {
1897 struct raid1_info *info = conf->mirrors + disk;
1898
1899 if (replacement)
1900 info += conf->raid_disks;
1901
1902 if (info->rdev)
1903 return false;
1904
1905 if (bdev_nonrot(rdev->bdev)) {
1906 set_bit(Nonrot, &rdev->flags);
1907 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1908 }
1909
1910 rdev->raid_disk = disk;
1911 info->head_position = 0;
1912 info->seq_start = MaxSector;
1913 WRITE_ONCE(info->rdev, rdev);
1914
1915 return true;
1916 }
1917
raid1_remove_conf(struct r1conf * conf,int disk)1918 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1919 {
1920 struct raid1_info *info = conf->mirrors + disk;
1921 struct md_rdev *rdev = info->rdev;
1922
1923 if (!rdev || test_bit(In_sync, &rdev->flags) ||
1924 atomic_read(&rdev->nr_pending))
1925 return false;
1926
1927 /* Only remove non-faulty devices if recovery is not possible. */
1928 if (!test_bit(Faulty, &rdev->flags) &&
1929 rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1930 rdev->mddev->degraded < conf->raid_disks)
1931 return false;
1932
1933 if (test_and_clear_bit(Nonrot, &rdev->flags))
1934 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1935
1936 WRITE_ONCE(info->rdev, NULL);
1937 return true;
1938 }
1939
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1940 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1941 {
1942 struct r1conf *conf = mddev->private;
1943 int err = -EEXIST;
1944 int mirror = 0, repl_slot = -1;
1945 struct raid1_info *p;
1946 int first = 0;
1947 int last = conf->raid_disks - 1;
1948
1949 if (mddev->recovery_disabled == conf->recovery_disabled)
1950 return -EBUSY;
1951
1952 if (rdev->raid_disk >= 0)
1953 first = last = rdev->raid_disk;
1954
1955 /*
1956 * find the disk ... but prefer rdev->saved_raid_disk
1957 * if possible.
1958 */
1959 if (rdev->saved_raid_disk >= 0 &&
1960 rdev->saved_raid_disk >= first &&
1961 rdev->saved_raid_disk < conf->raid_disks &&
1962 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1963 first = last = rdev->saved_raid_disk;
1964
1965 for (mirror = first; mirror <= last; mirror++) {
1966 p = conf->mirrors + mirror;
1967 if (!p->rdev) {
1968 err = mddev_stack_new_rdev(mddev, rdev);
1969 if (err)
1970 return err;
1971
1972 raid1_add_conf(conf, rdev, mirror, false);
1973 /* As all devices are equivalent, we don't need a full recovery
1974 * if this was recently any drive of the array
1975 */
1976 if (rdev->saved_raid_disk < 0)
1977 conf->fullsync = 1;
1978 break;
1979 }
1980 if (test_bit(WantReplacement, &p->rdev->flags) &&
1981 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1982 repl_slot = mirror;
1983 }
1984
1985 if (err && repl_slot >= 0) {
1986 /* Add this device as a replacement */
1987 clear_bit(In_sync, &rdev->flags);
1988 set_bit(Replacement, &rdev->flags);
1989 raid1_add_conf(conf, rdev, repl_slot, true);
1990 err = 0;
1991 conf->fullsync = 1;
1992 }
1993
1994 print_conf(conf);
1995 return err;
1996 }
1997
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1998 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1999 {
2000 struct r1conf *conf = mddev->private;
2001 int err = 0;
2002 int number = rdev->raid_disk;
2003 struct raid1_info *p = conf->mirrors + number;
2004
2005 if (unlikely(number >= conf->raid_disks))
2006 goto abort;
2007
2008 if (rdev != p->rdev) {
2009 number += conf->raid_disks;
2010 p = conf->mirrors + number;
2011 }
2012
2013 print_conf(conf);
2014 if (rdev == p->rdev) {
2015 if (!raid1_remove_conf(conf, number)) {
2016 err = -EBUSY;
2017 goto abort;
2018 }
2019
2020 if (number < conf->raid_disks &&
2021 conf->mirrors[conf->raid_disks + number].rdev) {
2022 /* We just removed a device that is being replaced.
2023 * Move down the replacement. We drain all IO before
2024 * doing this to avoid confusion.
2025 */
2026 struct md_rdev *repl =
2027 conf->mirrors[conf->raid_disks + number].rdev;
2028 freeze_array(conf, 0);
2029 if (atomic_read(&repl->nr_pending)) {
2030 /* It means that some queued IO of retry_list
2031 * hold repl. Thus, we cannot set replacement
2032 * as NULL, avoiding rdev NULL pointer
2033 * dereference in sync_request_write and
2034 * handle_write_finished.
2035 */
2036 err = -EBUSY;
2037 unfreeze_array(conf);
2038 goto abort;
2039 }
2040 clear_bit(Replacement, &repl->flags);
2041 WRITE_ONCE(p->rdev, repl);
2042 conf->mirrors[conf->raid_disks + number].rdev = NULL;
2043 unfreeze_array(conf);
2044 }
2045
2046 clear_bit(WantReplacement, &rdev->flags);
2047 err = md_integrity_register(mddev);
2048 }
2049 abort:
2050
2051 print_conf(conf);
2052 return err;
2053 }
2054
end_sync_read(struct bio * bio)2055 static void end_sync_read(struct bio *bio)
2056 {
2057 struct r1bio *r1_bio = get_resync_r1bio(bio);
2058
2059 update_head_pos(r1_bio->read_disk, r1_bio);
2060
2061 /*
2062 * we have read a block, now it needs to be re-written,
2063 * or re-read if the read failed.
2064 * We don't do much here, just schedule handling by raid1d
2065 */
2066 if (!bio->bi_status)
2067 set_bit(R1BIO_Uptodate, &r1_bio->state);
2068
2069 if (atomic_dec_and_test(&r1_bio->remaining))
2070 reschedule_retry(r1_bio);
2071 }
2072
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)2073 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2074 {
2075 sector_t sync_blocks = 0;
2076 sector_t s = r1_bio->sector;
2077 long sectors_to_go = r1_bio->sectors;
2078
2079 /* make sure these bits don't get cleared. */
2080 do {
2081 mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2082 s += sync_blocks;
2083 sectors_to_go -= sync_blocks;
2084 } while (sectors_to_go > 0);
2085 }
2086
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)2087 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2088 {
2089 if (atomic_dec_and_test(&r1_bio->remaining)) {
2090 struct mddev *mddev = r1_bio->mddev;
2091 int s = r1_bio->sectors;
2092
2093 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2094 test_bit(R1BIO_WriteError, &r1_bio->state))
2095 reschedule_retry(r1_bio);
2096 else {
2097 put_buf(r1_bio);
2098 md_done_sync(mddev, s, uptodate);
2099 }
2100 }
2101 }
2102
end_sync_write(struct bio * bio)2103 static void end_sync_write(struct bio *bio)
2104 {
2105 int uptodate = !bio->bi_status;
2106 struct r1bio *r1_bio = get_resync_r1bio(bio);
2107 struct mddev *mddev = r1_bio->mddev;
2108 struct r1conf *conf = mddev->private;
2109 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2110
2111 if (!uptodate) {
2112 abort_sync_write(mddev, r1_bio);
2113 set_bit(WriteErrorSeen, &rdev->flags);
2114 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2115 set_bit(MD_RECOVERY_NEEDED, &
2116 mddev->recovery);
2117 set_bit(R1BIO_WriteError, &r1_bio->state);
2118 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2119 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2120 r1_bio->sector, r1_bio->sectors)) {
2121 set_bit(R1BIO_MadeGood, &r1_bio->state);
2122 }
2123
2124 put_sync_write_buf(r1_bio, uptodate);
2125 }
2126
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,blk_opf_t rw)2127 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2128 int sectors, struct page *page, blk_opf_t rw)
2129 {
2130 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2131 /* success */
2132 return 1;
2133 if (rw == REQ_OP_WRITE) {
2134 set_bit(WriteErrorSeen, &rdev->flags);
2135 if (!test_and_set_bit(WantReplacement,
2136 &rdev->flags))
2137 set_bit(MD_RECOVERY_NEEDED, &
2138 rdev->mddev->recovery);
2139 }
2140 /* need to record an error - either for the block or the device */
2141 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2142 md_error(rdev->mddev, rdev);
2143 return 0;
2144 }
2145
fix_sync_read_error(struct r1bio * r1_bio)2146 static int fix_sync_read_error(struct r1bio *r1_bio)
2147 {
2148 /* Try some synchronous reads of other devices to get
2149 * good data, much like with normal read errors. Only
2150 * read into the pages we already have so we don't
2151 * need to re-issue the read request.
2152 * We don't need to freeze the array, because being in an
2153 * active sync request, there is no normal IO, and
2154 * no overlapping syncs.
2155 * We don't need to check is_badblock() again as we
2156 * made sure that anything with a bad block in range
2157 * will have bi_end_io clear.
2158 */
2159 struct mddev *mddev = r1_bio->mddev;
2160 struct r1conf *conf = mddev->private;
2161 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2162 struct page **pages = get_resync_pages(bio)->pages;
2163 sector_t sect = r1_bio->sector;
2164 int sectors = r1_bio->sectors;
2165 int idx = 0;
2166 struct md_rdev *rdev;
2167
2168 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2169 if (test_bit(FailFast, &rdev->flags)) {
2170 /* Don't try recovering from here - just fail it
2171 * ... unless it is the last working device of course */
2172 md_error(mddev, rdev);
2173 if (test_bit(Faulty, &rdev->flags))
2174 /* Don't try to read from here, but make sure
2175 * put_buf does it's thing
2176 */
2177 bio->bi_end_io = end_sync_write;
2178 }
2179
2180 while(sectors) {
2181 int s = sectors;
2182 int d = r1_bio->read_disk;
2183 int success = 0;
2184 int start;
2185
2186 if (s > (PAGE_SIZE>>9))
2187 s = PAGE_SIZE >> 9;
2188 do {
2189 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2190 /* No rcu protection needed here devices
2191 * can only be removed when no resync is
2192 * active, and resync is currently active
2193 */
2194 rdev = conf->mirrors[d].rdev;
2195 if (sync_page_io(rdev, sect, s<<9,
2196 pages[idx],
2197 REQ_OP_READ, false)) {
2198 success = 1;
2199 break;
2200 }
2201 }
2202 d++;
2203 if (d == conf->raid_disks * 2)
2204 d = 0;
2205 } while (!success && d != r1_bio->read_disk);
2206
2207 if (!success) {
2208 int abort = 0;
2209 /* Cannot read from anywhere, this block is lost.
2210 * Record a bad block on each device. If that doesn't
2211 * work just disable and interrupt the recovery.
2212 * Don't fail devices as that won't really help.
2213 */
2214 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2215 mdname(mddev), bio->bi_bdev,
2216 (unsigned long long)r1_bio->sector);
2217 for (d = 0; d < conf->raid_disks * 2; d++) {
2218 rdev = conf->mirrors[d].rdev;
2219 if (!rdev || test_bit(Faulty, &rdev->flags))
2220 continue;
2221 if (!rdev_set_badblocks(rdev, sect, s, 0))
2222 abort = 1;
2223 }
2224 if (abort) {
2225 conf->recovery_disabled =
2226 mddev->recovery_disabled;
2227 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2228 md_done_sync(mddev, r1_bio->sectors, 0);
2229 put_buf(r1_bio);
2230 return 0;
2231 }
2232 /* Try next page */
2233 sectors -= s;
2234 sect += s;
2235 idx++;
2236 continue;
2237 }
2238
2239 start = d;
2240 /* write it back and re-read */
2241 while (d != r1_bio->read_disk) {
2242 if (d == 0)
2243 d = conf->raid_disks * 2;
2244 d--;
2245 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2246 continue;
2247 rdev = conf->mirrors[d].rdev;
2248 if (r1_sync_page_io(rdev, sect, s,
2249 pages[idx],
2250 REQ_OP_WRITE) == 0) {
2251 r1_bio->bios[d]->bi_end_io = NULL;
2252 rdev_dec_pending(rdev, mddev);
2253 }
2254 }
2255 d = start;
2256 while (d != r1_bio->read_disk) {
2257 if (d == 0)
2258 d = conf->raid_disks * 2;
2259 d--;
2260 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2261 continue;
2262 rdev = conf->mirrors[d].rdev;
2263 if (r1_sync_page_io(rdev, sect, s,
2264 pages[idx],
2265 REQ_OP_READ) != 0)
2266 atomic_add(s, &rdev->corrected_errors);
2267 }
2268 sectors -= s;
2269 sect += s;
2270 idx ++;
2271 }
2272 set_bit(R1BIO_Uptodate, &r1_bio->state);
2273 bio->bi_status = 0;
2274 return 1;
2275 }
2276
process_checks(struct r1bio * r1_bio)2277 static void process_checks(struct r1bio *r1_bio)
2278 {
2279 /* We have read all readable devices. If we haven't
2280 * got the block, then there is no hope left.
2281 * If we have, then we want to do a comparison
2282 * and skip the write if everything is the same.
2283 * If any blocks failed to read, then we need to
2284 * attempt an over-write
2285 */
2286 struct mddev *mddev = r1_bio->mddev;
2287 struct r1conf *conf = mddev->private;
2288 int primary;
2289 int i;
2290 int vcnt;
2291
2292 /* Fix variable parts of all bios */
2293 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2294 for (i = 0; i < conf->raid_disks * 2; i++) {
2295 blk_status_t status;
2296 struct bio *b = r1_bio->bios[i];
2297 struct resync_pages *rp = get_resync_pages(b);
2298 if (b->bi_end_io != end_sync_read)
2299 continue;
2300 /* fixup the bio for reuse, but preserve errno */
2301 status = b->bi_status;
2302 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2303 b->bi_status = status;
2304 b->bi_iter.bi_sector = r1_bio->sector +
2305 conf->mirrors[i].rdev->data_offset;
2306 b->bi_end_io = end_sync_read;
2307 rp->raid_bio = r1_bio;
2308 b->bi_private = rp;
2309
2310 /* initialize bvec table again */
2311 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2312 }
2313 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2314 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2315 !r1_bio->bios[primary]->bi_status) {
2316 r1_bio->bios[primary]->bi_end_io = NULL;
2317 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2318 break;
2319 }
2320 r1_bio->read_disk = primary;
2321 for (i = 0; i < conf->raid_disks * 2; i++) {
2322 int j = 0;
2323 struct bio *pbio = r1_bio->bios[primary];
2324 struct bio *sbio = r1_bio->bios[i];
2325 blk_status_t status = sbio->bi_status;
2326 struct page **ppages = get_resync_pages(pbio)->pages;
2327 struct page **spages = get_resync_pages(sbio)->pages;
2328 struct bio_vec *bi;
2329 int page_len[RESYNC_PAGES] = { 0 };
2330 struct bvec_iter_all iter_all;
2331
2332 if (sbio->bi_end_io != end_sync_read)
2333 continue;
2334 /* Now we can 'fixup' the error value */
2335 sbio->bi_status = 0;
2336
2337 bio_for_each_segment_all(bi, sbio, iter_all)
2338 page_len[j++] = bi->bv_len;
2339
2340 if (!status) {
2341 for (j = vcnt; j-- ; ) {
2342 if (memcmp(page_address(ppages[j]),
2343 page_address(spages[j]),
2344 page_len[j]))
2345 break;
2346 }
2347 } else
2348 j = 0;
2349 if (j >= 0)
2350 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2351 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2352 && !status)) {
2353 /* No need to write to this device. */
2354 sbio->bi_end_io = NULL;
2355 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2356 continue;
2357 }
2358
2359 bio_copy_data(sbio, pbio);
2360 }
2361 }
2362
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2363 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2364 {
2365 struct r1conf *conf = mddev->private;
2366 int i;
2367 int disks = conf->raid_disks * 2;
2368 struct bio *wbio;
2369
2370 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2371 /* ouch - failed to read all of that. */
2372 if (!fix_sync_read_error(r1_bio))
2373 return;
2374
2375 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2376 process_checks(r1_bio);
2377
2378 /*
2379 * schedule writes
2380 */
2381 atomic_set(&r1_bio->remaining, 1);
2382 for (i = 0; i < disks ; i++) {
2383 wbio = r1_bio->bios[i];
2384 if (wbio->bi_end_io == NULL ||
2385 (wbio->bi_end_io == end_sync_read &&
2386 (i == r1_bio->read_disk ||
2387 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2388 continue;
2389 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2390 abort_sync_write(mddev, r1_bio);
2391 continue;
2392 }
2393
2394 wbio->bi_opf = REQ_OP_WRITE;
2395 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2396 wbio->bi_opf |= MD_FAILFAST;
2397
2398 wbio->bi_end_io = end_sync_write;
2399 atomic_inc(&r1_bio->remaining);
2400 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2401
2402 submit_bio_noacct(wbio);
2403 }
2404
2405 put_sync_write_buf(r1_bio, 1);
2406 }
2407
2408 /*
2409 * This is a kernel thread which:
2410 *
2411 * 1. Retries failed read operations on working mirrors.
2412 * 2. Updates the raid superblock when problems encounter.
2413 * 3. Performs writes following reads for array synchronising.
2414 */
2415
fix_read_error(struct r1conf * conf,struct r1bio * r1_bio)2416 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2417 {
2418 sector_t sect = r1_bio->sector;
2419 int sectors = r1_bio->sectors;
2420 int read_disk = r1_bio->read_disk;
2421 struct mddev *mddev = conf->mddev;
2422 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2423
2424 if (exceed_read_errors(mddev, rdev)) {
2425 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2426 return;
2427 }
2428
2429 while(sectors) {
2430 int s = sectors;
2431 int d = read_disk;
2432 int success = 0;
2433 int start;
2434
2435 if (s > (PAGE_SIZE>>9))
2436 s = PAGE_SIZE >> 9;
2437
2438 do {
2439 rdev = conf->mirrors[d].rdev;
2440 if (rdev &&
2441 (test_bit(In_sync, &rdev->flags) ||
2442 (!test_bit(Faulty, &rdev->flags) &&
2443 rdev->recovery_offset >= sect + s)) &&
2444 rdev_has_badblock(rdev, sect, s) == 0) {
2445 atomic_inc(&rdev->nr_pending);
2446 if (sync_page_io(rdev, sect, s<<9,
2447 conf->tmppage, REQ_OP_READ, false))
2448 success = 1;
2449 rdev_dec_pending(rdev, mddev);
2450 if (success)
2451 break;
2452 }
2453
2454 d++;
2455 if (d == conf->raid_disks * 2)
2456 d = 0;
2457 } while (d != read_disk);
2458
2459 if (!success) {
2460 /* Cannot read from anywhere - mark it bad */
2461 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2462 if (!rdev_set_badblocks(rdev, sect, s, 0))
2463 md_error(mddev, rdev);
2464 break;
2465 }
2466 /* write it back and re-read */
2467 start = d;
2468 while (d != read_disk) {
2469 if (d==0)
2470 d = conf->raid_disks * 2;
2471 d--;
2472 rdev = conf->mirrors[d].rdev;
2473 if (rdev &&
2474 !test_bit(Faulty, &rdev->flags)) {
2475 atomic_inc(&rdev->nr_pending);
2476 r1_sync_page_io(rdev, sect, s,
2477 conf->tmppage, REQ_OP_WRITE);
2478 rdev_dec_pending(rdev, mddev);
2479 }
2480 }
2481 d = start;
2482 while (d != read_disk) {
2483 if (d==0)
2484 d = conf->raid_disks * 2;
2485 d--;
2486 rdev = conf->mirrors[d].rdev;
2487 if (rdev &&
2488 !test_bit(Faulty, &rdev->flags)) {
2489 atomic_inc(&rdev->nr_pending);
2490 if (r1_sync_page_io(rdev, sect, s,
2491 conf->tmppage, REQ_OP_READ)) {
2492 atomic_add(s, &rdev->corrected_errors);
2493 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2494 mdname(mddev), s,
2495 (unsigned long long)(sect +
2496 rdev->data_offset),
2497 rdev->bdev);
2498 }
2499 rdev_dec_pending(rdev, mddev);
2500 }
2501 }
2502 sectors -= s;
2503 sect += s;
2504 }
2505 }
2506
narrow_write_error(struct r1bio * r1_bio,int i)2507 static int narrow_write_error(struct r1bio *r1_bio, int i)
2508 {
2509 struct mddev *mddev = r1_bio->mddev;
2510 struct r1conf *conf = mddev->private;
2511 struct md_rdev *rdev = conf->mirrors[i].rdev;
2512
2513 /* bio has the data to be written to device 'i' where
2514 * we just recently had a write error.
2515 * We repeatedly clone the bio and trim down to one block,
2516 * then try the write. Where the write fails we record
2517 * a bad block.
2518 * It is conceivable that the bio doesn't exactly align with
2519 * blocks. We must handle this somehow.
2520 *
2521 * We currently own a reference on the rdev.
2522 */
2523
2524 int block_sectors;
2525 sector_t sector;
2526 int sectors;
2527 int sect_to_write = r1_bio->sectors;
2528 int ok = 1;
2529
2530 if (rdev->badblocks.shift < 0)
2531 return 0;
2532
2533 block_sectors = roundup(1 << rdev->badblocks.shift,
2534 bdev_logical_block_size(rdev->bdev) >> 9);
2535 sector = r1_bio->sector;
2536 sectors = ((sector + block_sectors)
2537 & ~(sector_t)(block_sectors - 1))
2538 - sector;
2539
2540 while (sect_to_write) {
2541 struct bio *wbio;
2542 if (sectors > sect_to_write)
2543 sectors = sect_to_write;
2544 /* Write at 'sector' for 'sectors'*/
2545
2546 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2547 wbio = bio_alloc_clone(rdev->bdev,
2548 r1_bio->behind_master_bio,
2549 GFP_NOIO, &mddev->bio_set);
2550 } else {
2551 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2552 GFP_NOIO, &mddev->bio_set);
2553 }
2554
2555 wbio->bi_opf = REQ_OP_WRITE;
2556 wbio->bi_iter.bi_sector = r1_bio->sector;
2557 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2558
2559 bio_trim(wbio, sector - r1_bio->sector, sectors);
2560 wbio->bi_iter.bi_sector += rdev->data_offset;
2561
2562 if (submit_bio_wait(wbio) < 0)
2563 /* failure! */
2564 ok = rdev_set_badblocks(rdev, sector,
2565 sectors, 0)
2566 && ok;
2567
2568 bio_put(wbio);
2569 sect_to_write -= sectors;
2570 sector += sectors;
2571 sectors = block_sectors;
2572 }
2573 return ok;
2574 }
2575
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2576 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2577 {
2578 int m;
2579 int s = r1_bio->sectors;
2580 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2581 struct md_rdev *rdev = conf->mirrors[m].rdev;
2582 struct bio *bio = r1_bio->bios[m];
2583 if (bio->bi_end_io == NULL)
2584 continue;
2585 if (!bio->bi_status &&
2586 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2587 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2588 }
2589 if (bio->bi_status &&
2590 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2591 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2592 md_error(conf->mddev, rdev);
2593 }
2594 }
2595 put_buf(r1_bio);
2596 md_done_sync(conf->mddev, s, 1);
2597 }
2598
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2599 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2600 {
2601 int m, idx;
2602 bool fail = false;
2603
2604 for (m = 0; m < conf->raid_disks * 2 ; m++)
2605 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2606 struct md_rdev *rdev = conf->mirrors[m].rdev;
2607 rdev_clear_badblocks(rdev,
2608 r1_bio->sector,
2609 r1_bio->sectors, 0);
2610 rdev_dec_pending(rdev, conf->mddev);
2611 } else if (r1_bio->bios[m] != NULL) {
2612 /* This drive got a write error. We need to
2613 * narrow down and record precise write
2614 * errors.
2615 */
2616 fail = true;
2617 if (!narrow_write_error(r1_bio, m)) {
2618 md_error(conf->mddev,
2619 conf->mirrors[m].rdev);
2620 /* an I/O failed, we can't clear the bitmap */
2621 set_bit(R1BIO_Degraded, &r1_bio->state);
2622 }
2623 rdev_dec_pending(conf->mirrors[m].rdev,
2624 conf->mddev);
2625 }
2626 if (fail) {
2627 spin_lock_irq(&conf->device_lock);
2628 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2629 idx = sector_to_idx(r1_bio->sector);
2630 atomic_inc(&conf->nr_queued[idx]);
2631 spin_unlock_irq(&conf->device_lock);
2632 /*
2633 * In case freeze_array() is waiting for condition
2634 * get_unqueued_pending() == extra to be true.
2635 */
2636 wake_up(&conf->wait_barrier);
2637 md_wakeup_thread(conf->mddev->thread);
2638 } else {
2639 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2640 close_write(r1_bio);
2641 raid_end_bio_io(r1_bio);
2642 }
2643 }
2644
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2645 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2646 {
2647 struct mddev *mddev = conf->mddev;
2648 struct bio *bio;
2649 struct md_rdev *rdev;
2650 sector_t sector;
2651
2652 clear_bit(R1BIO_ReadError, &r1_bio->state);
2653 /* we got a read error. Maybe the drive is bad. Maybe just
2654 * the block and we can fix it.
2655 * We freeze all other IO, and try reading the block from
2656 * other devices. When we find one, we re-write
2657 * and check it that fixes the read error.
2658 * This is all done synchronously while the array is
2659 * frozen
2660 */
2661
2662 bio = r1_bio->bios[r1_bio->read_disk];
2663 bio_put(bio);
2664 r1_bio->bios[r1_bio->read_disk] = NULL;
2665
2666 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2667 if (mddev->ro == 0
2668 && !test_bit(FailFast, &rdev->flags)) {
2669 freeze_array(conf, 1);
2670 fix_read_error(conf, r1_bio);
2671 unfreeze_array(conf);
2672 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2673 md_error(mddev, rdev);
2674 } else {
2675 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2676 }
2677
2678 rdev_dec_pending(rdev, conf->mddev);
2679 sector = r1_bio->sector;
2680 bio = r1_bio->master_bio;
2681
2682 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2683 r1_bio->state = 0;
2684 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2685 allow_barrier(conf, sector);
2686 }
2687
raid1d(struct md_thread * thread)2688 static void raid1d(struct md_thread *thread)
2689 {
2690 struct mddev *mddev = thread->mddev;
2691 struct r1bio *r1_bio;
2692 unsigned long flags;
2693 struct r1conf *conf = mddev->private;
2694 struct list_head *head = &conf->retry_list;
2695 struct blk_plug plug;
2696 int idx;
2697
2698 md_check_recovery(mddev);
2699
2700 if (!list_empty_careful(&conf->bio_end_io_list) &&
2701 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2702 LIST_HEAD(tmp);
2703 spin_lock_irqsave(&conf->device_lock, flags);
2704 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2705 list_splice_init(&conf->bio_end_io_list, &tmp);
2706 spin_unlock_irqrestore(&conf->device_lock, flags);
2707 while (!list_empty(&tmp)) {
2708 r1_bio = list_first_entry(&tmp, struct r1bio,
2709 retry_list);
2710 list_del(&r1_bio->retry_list);
2711 idx = sector_to_idx(r1_bio->sector);
2712 atomic_dec(&conf->nr_queued[idx]);
2713 if (mddev->degraded)
2714 set_bit(R1BIO_Degraded, &r1_bio->state);
2715 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2716 close_write(r1_bio);
2717 raid_end_bio_io(r1_bio);
2718 }
2719 }
2720
2721 blk_start_plug(&plug);
2722 for (;;) {
2723
2724 flush_pending_writes(conf);
2725
2726 spin_lock_irqsave(&conf->device_lock, flags);
2727 if (list_empty(head)) {
2728 spin_unlock_irqrestore(&conf->device_lock, flags);
2729 break;
2730 }
2731 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2732 list_del(head->prev);
2733 idx = sector_to_idx(r1_bio->sector);
2734 atomic_dec(&conf->nr_queued[idx]);
2735 spin_unlock_irqrestore(&conf->device_lock, flags);
2736
2737 mddev = r1_bio->mddev;
2738 conf = mddev->private;
2739 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2740 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2741 test_bit(R1BIO_WriteError, &r1_bio->state))
2742 handle_sync_write_finished(conf, r1_bio);
2743 else
2744 sync_request_write(mddev, r1_bio);
2745 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2746 test_bit(R1BIO_WriteError, &r1_bio->state))
2747 handle_write_finished(conf, r1_bio);
2748 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2749 handle_read_error(conf, r1_bio);
2750 else
2751 WARN_ON_ONCE(1);
2752
2753 cond_resched();
2754 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2755 md_check_recovery(mddev);
2756 }
2757 blk_finish_plug(&plug);
2758 }
2759
init_resync(struct r1conf * conf)2760 static int init_resync(struct r1conf *conf)
2761 {
2762 int buffs;
2763
2764 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2765 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2766
2767 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2768 r1buf_pool_free, conf->poolinfo);
2769 }
2770
raid1_alloc_init_r1buf(struct r1conf * conf)2771 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2772 {
2773 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2774 struct resync_pages *rps;
2775 struct bio *bio;
2776 int i;
2777
2778 for (i = conf->poolinfo->raid_disks; i--; ) {
2779 bio = r1bio->bios[i];
2780 rps = bio->bi_private;
2781 bio_reset(bio, NULL, 0);
2782 bio->bi_private = rps;
2783 }
2784 r1bio->master_bio = NULL;
2785 return r1bio;
2786 }
2787
2788 /*
2789 * perform a "sync" on one "block"
2790 *
2791 * We need to make sure that no normal I/O request - particularly write
2792 * requests - conflict with active sync requests.
2793 *
2794 * This is achieved by tracking pending requests and a 'barrier' concept
2795 * that can be installed to exclude normal IO requests.
2796 */
2797
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)2798 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2799 sector_t max_sector, int *skipped)
2800 {
2801 struct r1conf *conf = mddev->private;
2802 struct r1bio *r1_bio;
2803 struct bio *bio;
2804 sector_t nr_sectors;
2805 int disk = -1;
2806 int i;
2807 int wonly = -1;
2808 int write_targets = 0, read_targets = 0;
2809 sector_t sync_blocks;
2810 bool still_degraded = false;
2811 int good_sectors = RESYNC_SECTORS;
2812 int min_bad = 0; /* number of sectors that are bad in all devices */
2813 int idx = sector_to_idx(sector_nr);
2814 int page_idx = 0;
2815
2816 if (!mempool_initialized(&conf->r1buf_pool))
2817 if (init_resync(conf))
2818 return 0;
2819
2820 if (sector_nr >= max_sector) {
2821 /* If we aborted, we need to abort the
2822 * sync on the 'current' bitmap chunk (there will
2823 * only be one in raid1 resync.
2824 * We can find the current addess in mddev->curr_resync
2825 */
2826 if (mddev->curr_resync < max_sector) /* aborted */
2827 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2828 &sync_blocks);
2829 else /* completed sync */
2830 conf->fullsync = 0;
2831
2832 mddev->bitmap_ops->close_sync(mddev);
2833 close_sync(conf);
2834
2835 if (mddev_is_clustered(mddev)) {
2836 conf->cluster_sync_low = 0;
2837 conf->cluster_sync_high = 0;
2838 }
2839 return 0;
2840 }
2841
2842 if (mddev->bitmap == NULL &&
2843 mddev->recovery_cp == MaxSector &&
2844 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2845 conf->fullsync == 0) {
2846 *skipped = 1;
2847 return max_sector - sector_nr;
2848 }
2849 /* before building a request, check if we can skip these blocks..
2850 * This call the bitmap_start_sync doesn't actually record anything
2851 */
2852 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2853 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2854 /* We can skip this block, and probably several more */
2855 *skipped = 1;
2856 return sync_blocks;
2857 }
2858
2859 /*
2860 * If there is non-resync activity waiting for a turn, then let it
2861 * though before starting on this new sync request.
2862 */
2863 if (atomic_read(&conf->nr_waiting[idx]))
2864 schedule_timeout_uninterruptible(1);
2865
2866 /* we are incrementing sector_nr below. To be safe, we check against
2867 * sector_nr + two times RESYNC_SECTORS
2868 */
2869
2870 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2871 mddev_is_clustered(mddev) &&
2872 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2873
2874 if (raise_barrier(conf, sector_nr))
2875 return 0;
2876
2877 r1_bio = raid1_alloc_init_r1buf(conf);
2878
2879 /*
2880 * If we get a correctably read error during resync or recovery,
2881 * we might want to read from a different device. So we
2882 * flag all drives that could conceivably be read from for READ,
2883 * and any others (which will be non-In_sync devices) for WRITE.
2884 * If a read fails, we try reading from something else for which READ
2885 * is OK.
2886 */
2887
2888 r1_bio->mddev = mddev;
2889 r1_bio->sector = sector_nr;
2890 r1_bio->state = 0;
2891 set_bit(R1BIO_IsSync, &r1_bio->state);
2892 /* make sure good_sectors won't go across barrier unit boundary */
2893 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2894
2895 for (i = 0; i < conf->raid_disks * 2; i++) {
2896 struct md_rdev *rdev;
2897 bio = r1_bio->bios[i];
2898
2899 rdev = conf->mirrors[i].rdev;
2900 if (rdev == NULL ||
2901 test_bit(Faulty, &rdev->flags)) {
2902 if (i < conf->raid_disks)
2903 still_degraded = true;
2904 } else if (!test_bit(In_sync, &rdev->flags)) {
2905 bio->bi_opf = REQ_OP_WRITE;
2906 bio->bi_end_io = end_sync_write;
2907 write_targets ++;
2908 } else {
2909 /* may need to read from here */
2910 sector_t first_bad = MaxSector;
2911 int bad_sectors;
2912
2913 if (is_badblock(rdev, sector_nr, good_sectors,
2914 &first_bad, &bad_sectors)) {
2915 if (first_bad > sector_nr)
2916 good_sectors = first_bad - sector_nr;
2917 else {
2918 bad_sectors -= (sector_nr - first_bad);
2919 if (min_bad == 0 ||
2920 min_bad > bad_sectors)
2921 min_bad = bad_sectors;
2922 }
2923 }
2924 if (sector_nr < first_bad) {
2925 if (test_bit(WriteMostly, &rdev->flags)) {
2926 if (wonly < 0)
2927 wonly = i;
2928 } else {
2929 if (disk < 0)
2930 disk = i;
2931 }
2932 bio->bi_opf = REQ_OP_READ;
2933 bio->bi_end_io = end_sync_read;
2934 read_targets++;
2935 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2936 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2937 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2938 /*
2939 * The device is suitable for reading (InSync),
2940 * but has bad block(s) here. Let's try to correct them,
2941 * if we are doing resync or repair. Otherwise, leave
2942 * this device alone for this sync request.
2943 */
2944 bio->bi_opf = REQ_OP_WRITE;
2945 bio->bi_end_io = end_sync_write;
2946 write_targets++;
2947 }
2948 }
2949 if (rdev && bio->bi_end_io) {
2950 atomic_inc(&rdev->nr_pending);
2951 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2952 bio_set_dev(bio, rdev->bdev);
2953 if (test_bit(FailFast, &rdev->flags))
2954 bio->bi_opf |= MD_FAILFAST;
2955 }
2956 }
2957 if (disk < 0)
2958 disk = wonly;
2959 r1_bio->read_disk = disk;
2960
2961 if (read_targets == 0 && min_bad > 0) {
2962 /* These sectors are bad on all InSync devices, so we
2963 * need to mark them bad on all write targets
2964 */
2965 int ok = 1;
2966 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2967 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2968 struct md_rdev *rdev = conf->mirrors[i].rdev;
2969 ok = rdev_set_badblocks(rdev, sector_nr,
2970 min_bad, 0
2971 ) && ok;
2972 }
2973 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2974 *skipped = 1;
2975 put_buf(r1_bio);
2976
2977 if (!ok) {
2978 /* Cannot record the badblocks, so need to
2979 * abort the resync.
2980 * If there are multiple read targets, could just
2981 * fail the really bad ones ???
2982 */
2983 conf->recovery_disabled = mddev->recovery_disabled;
2984 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2985 return 0;
2986 } else
2987 return min_bad;
2988
2989 }
2990 if (min_bad > 0 && min_bad < good_sectors) {
2991 /* only resync enough to reach the next bad->good
2992 * transition */
2993 good_sectors = min_bad;
2994 }
2995
2996 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2997 /* extra read targets are also write targets */
2998 write_targets += read_targets-1;
2999
3000 if (write_targets == 0 || read_targets == 0) {
3001 /* There is nowhere to write, so all non-sync
3002 * drives must be failed - so we are finished
3003 */
3004 sector_t rv;
3005 if (min_bad > 0)
3006 max_sector = sector_nr + min_bad;
3007 rv = max_sector - sector_nr;
3008 *skipped = 1;
3009 put_buf(r1_bio);
3010 return rv;
3011 }
3012
3013 if (max_sector > mddev->resync_max)
3014 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3015 if (max_sector > sector_nr + good_sectors)
3016 max_sector = sector_nr + good_sectors;
3017 nr_sectors = 0;
3018 sync_blocks = 0;
3019 do {
3020 struct page *page;
3021 int len = PAGE_SIZE;
3022 if (sector_nr + (len>>9) > max_sector)
3023 len = (max_sector - sector_nr) << 9;
3024 if (len == 0)
3025 break;
3026 if (sync_blocks == 0) {
3027 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3028 &sync_blocks, still_degraded) &&
3029 !conf->fullsync &&
3030 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3031 break;
3032 if ((len >> 9) > sync_blocks)
3033 len = sync_blocks<<9;
3034 }
3035
3036 for (i = 0 ; i < conf->raid_disks * 2; i++) {
3037 struct resync_pages *rp;
3038
3039 bio = r1_bio->bios[i];
3040 rp = get_resync_pages(bio);
3041 if (bio->bi_end_io) {
3042 page = resync_fetch_page(rp, page_idx);
3043
3044 /*
3045 * won't fail because the vec table is big
3046 * enough to hold all these pages
3047 */
3048 __bio_add_page(bio, page, len, 0);
3049 }
3050 }
3051 nr_sectors += len>>9;
3052 sector_nr += len>>9;
3053 sync_blocks -= (len>>9);
3054 } while (++page_idx < RESYNC_PAGES);
3055
3056 r1_bio->sectors = nr_sectors;
3057
3058 if (mddev_is_clustered(mddev) &&
3059 conf->cluster_sync_high < sector_nr + nr_sectors) {
3060 conf->cluster_sync_low = mddev->curr_resync_completed;
3061 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3062 /* Send resync message */
3063 md_cluster_ops->resync_info_update(mddev,
3064 conf->cluster_sync_low,
3065 conf->cluster_sync_high);
3066 }
3067
3068 /* For a user-requested sync, we read all readable devices and do a
3069 * compare
3070 */
3071 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3072 atomic_set(&r1_bio->remaining, read_targets);
3073 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3074 bio = r1_bio->bios[i];
3075 if (bio->bi_end_io == end_sync_read) {
3076 read_targets--;
3077 md_sync_acct_bio(bio, nr_sectors);
3078 if (read_targets == 1)
3079 bio->bi_opf &= ~MD_FAILFAST;
3080 submit_bio_noacct(bio);
3081 }
3082 }
3083 } else {
3084 atomic_set(&r1_bio->remaining, 1);
3085 bio = r1_bio->bios[r1_bio->read_disk];
3086 md_sync_acct_bio(bio, nr_sectors);
3087 if (read_targets == 1)
3088 bio->bi_opf &= ~MD_FAILFAST;
3089 submit_bio_noacct(bio);
3090 }
3091 return nr_sectors;
3092 }
3093
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)3094 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3095 {
3096 if (sectors)
3097 return sectors;
3098
3099 return mddev->dev_sectors;
3100 }
3101
setup_conf(struct mddev * mddev)3102 static struct r1conf *setup_conf(struct mddev *mddev)
3103 {
3104 struct r1conf *conf;
3105 int i;
3106 struct raid1_info *disk;
3107 struct md_rdev *rdev;
3108 int err = -ENOMEM;
3109
3110 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3111 if (!conf)
3112 goto abort;
3113
3114 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3115 sizeof(atomic_t), GFP_KERNEL);
3116 if (!conf->nr_pending)
3117 goto abort;
3118
3119 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3120 sizeof(atomic_t), GFP_KERNEL);
3121 if (!conf->nr_waiting)
3122 goto abort;
3123
3124 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3125 sizeof(atomic_t), GFP_KERNEL);
3126 if (!conf->nr_queued)
3127 goto abort;
3128
3129 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3130 sizeof(atomic_t), GFP_KERNEL);
3131 if (!conf->barrier)
3132 goto abort;
3133
3134 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3135 mddev->raid_disks, 2),
3136 GFP_KERNEL);
3137 if (!conf->mirrors)
3138 goto abort;
3139
3140 conf->tmppage = alloc_page(GFP_KERNEL);
3141 if (!conf->tmppage)
3142 goto abort;
3143
3144 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3145 if (!conf->poolinfo)
3146 goto abort;
3147 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3148 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3149 rbio_pool_free, conf->poolinfo);
3150 if (err)
3151 goto abort;
3152
3153 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3154 if (err)
3155 goto abort;
3156
3157 conf->poolinfo->mddev = mddev;
3158
3159 err = -EINVAL;
3160 spin_lock_init(&conf->device_lock);
3161 conf->raid_disks = mddev->raid_disks;
3162 rdev_for_each(rdev, mddev) {
3163 int disk_idx = rdev->raid_disk;
3164
3165 if (disk_idx >= conf->raid_disks || disk_idx < 0)
3166 continue;
3167
3168 if (!raid1_add_conf(conf, rdev, disk_idx,
3169 test_bit(Replacement, &rdev->flags)))
3170 goto abort;
3171 }
3172 conf->mddev = mddev;
3173 INIT_LIST_HEAD(&conf->retry_list);
3174 INIT_LIST_HEAD(&conf->bio_end_io_list);
3175
3176 spin_lock_init(&conf->resync_lock);
3177 init_waitqueue_head(&conf->wait_barrier);
3178
3179 bio_list_init(&conf->pending_bio_list);
3180 conf->recovery_disabled = mddev->recovery_disabled - 1;
3181
3182 err = -EIO;
3183 for (i = 0; i < conf->raid_disks * 2; i++) {
3184
3185 disk = conf->mirrors + i;
3186
3187 if (i < conf->raid_disks &&
3188 disk[conf->raid_disks].rdev) {
3189 /* This slot has a replacement. */
3190 if (!disk->rdev) {
3191 /* No original, just make the replacement
3192 * a recovering spare
3193 */
3194 disk->rdev =
3195 disk[conf->raid_disks].rdev;
3196 disk[conf->raid_disks].rdev = NULL;
3197 } else if (!test_bit(In_sync, &disk->rdev->flags))
3198 /* Original is not in_sync - bad */
3199 goto abort;
3200 }
3201
3202 if (!disk->rdev ||
3203 !test_bit(In_sync, &disk->rdev->flags)) {
3204 disk->head_position = 0;
3205 if (disk->rdev &&
3206 (disk->rdev->saved_raid_disk < 0))
3207 conf->fullsync = 1;
3208 }
3209 }
3210
3211 err = -ENOMEM;
3212 rcu_assign_pointer(conf->thread,
3213 md_register_thread(raid1d, mddev, "raid1"));
3214 if (!conf->thread)
3215 goto abort;
3216
3217 return conf;
3218
3219 abort:
3220 if (conf) {
3221 mempool_exit(&conf->r1bio_pool);
3222 kfree(conf->mirrors);
3223 safe_put_page(conf->tmppage);
3224 kfree(conf->poolinfo);
3225 kfree(conf->nr_pending);
3226 kfree(conf->nr_waiting);
3227 kfree(conf->nr_queued);
3228 kfree(conf->barrier);
3229 bioset_exit(&conf->bio_split);
3230 kfree(conf);
3231 }
3232 return ERR_PTR(err);
3233 }
3234
raid1_set_limits(struct mddev * mddev)3235 static int raid1_set_limits(struct mddev *mddev)
3236 {
3237 struct queue_limits lim;
3238 int err;
3239
3240 md_init_stacking_limits(&lim);
3241 lim.max_write_zeroes_sectors = 0;
3242 lim.features |= BLK_FEAT_ATOMIC_WRITES_STACKED;
3243 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3244 if (err) {
3245 queue_limits_cancel_update(mddev->gendisk->queue);
3246 return err;
3247 }
3248 return queue_limits_set(mddev->gendisk->queue, &lim);
3249 }
3250
raid1_run(struct mddev * mddev)3251 static int raid1_run(struct mddev *mddev)
3252 {
3253 struct r1conf *conf;
3254 int i;
3255 int ret;
3256
3257 if (mddev->level != 1) {
3258 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3259 mdname(mddev), mddev->level);
3260 return -EIO;
3261 }
3262 if (mddev->reshape_position != MaxSector) {
3263 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3264 mdname(mddev));
3265 return -EIO;
3266 }
3267
3268 /*
3269 * copy the already verified devices into our private RAID1
3270 * bookkeeping area. [whatever we allocate in run(),
3271 * should be freed in raid1_free()]
3272 */
3273 if (mddev->private == NULL)
3274 conf = setup_conf(mddev);
3275 else
3276 conf = mddev->private;
3277
3278 if (IS_ERR(conf))
3279 return PTR_ERR(conf);
3280
3281 if (!mddev_is_dm(mddev)) {
3282 ret = raid1_set_limits(mddev);
3283 if (ret)
3284 return ret;
3285 }
3286
3287 mddev->degraded = 0;
3288 for (i = 0; i < conf->raid_disks; i++)
3289 if (conf->mirrors[i].rdev == NULL ||
3290 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3291 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3292 mddev->degraded++;
3293 /*
3294 * RAID1 needs at least one disk in active
3295 */
3296 if (conf->raid_disks - mddev->degraded < 1) {
3297 md_unregister_thread(mddev, &conf->thread);
3298 return -EINVAL;
3299 }
3300
3301 if (conf->raid_disks - mddev->degraded == 1)
3302 mddev->recovery_cp = MaxSector;
3303
3304 if (mddev->recovery_cp != MaxSector)
3305 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3306 mdname(mddev));
3307 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3308 mdname(mddev), mddev->raid_disks - mddev->degraded,
3309 mddev->raid_disks);
3310
3311 /*
3312 * Ok, everything is just fine now
3313 */
3314 rcu_assign_pointer(mddev->thread, conf->thread);
3315 rcu_assign_pointer(conf->thread, NULL);
3316 mddev->private = conf;
3317 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3318
3319 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3320
3321 ret = md_integrity_register(mddev);
3322 if (ret)
3323 md_unregister_thread(mddev, &mddev->thread);
3324 return ret;
3325 }
3326
raid1_free(struct mddev * mddev,void * priv)3327 static void raid1_free(struct mddev *mddev, void *priv)
3328 {
3329 struct r1conf *conf = priv;
3330
3331 mempool_exit(&conf->r1bio_pool);
3332 kfree(conf->mirrors);
3333 safe_put_page(conf->tmppage);
3334 kfree(conf->poolinfo);
3335 kfree(conf->nr_pending);
3336 kfree(conf->nr_waiting);
3337 kfree(conf->nr_queued);
3338 kfree(conf->barrier);
3339 bioset_exit(&conf->bio_split);
3340 kfree(conf);
3341 }
3342
raid1_resize(struct mddev * mddev,sector_t sectors)3343 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3344 {
3345 /* no resync is happening, and there is enough space
3346 * on all devices, so we can resize.
3347 * We need to make sure resync covers any new space.
3348 * If the array is shrinking we should possibly wait until
3349 * any io in the removed space completes, but it hardly seems
3350 * worth it.
3351 */
3352 sector_t newsize = raid1_size(mddev, sectors, 0);
3353 int ret;
3354
3355 if (mddev->external_size &&
3356 mddev->array_sectors > newsize)
3357 return -EINVAL;
3358
3359 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3360 if (ret)
3361 return ret;
3362
3363 md_set_array_sectors(mddev, newsize);
3364 if (sectors > mddev->dev_sectors &&
3365 mddev->recovery_cp > mddev->dev_sectors) {
3366 mddev->recovery_cp = mddev->dev_sectors;
3367 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3368 }
3369 mddev->dev_sectors = sectors;
3370 mddev->resync_max_sectors = sectors;
3371 return 0;
3372 }
3373
raid1_reshape(struct mddev * mddev)3374 static int raid1_reshape(struct mddev *mddev)
3375 {
3376 /* We need to:
3377 * 1/ resize the r1bio_pool
3378 * 2/ resize conf->mirrors
3379 *
3380 * We allocate a new r1bio_pool if we can.
3381 * Then raise a device barrier and wait until all IO stops.
3382 * Then resize conf->mirrors and swap in the new r1bio pool.
3383 *
3384 * At the same time, we "pack" the devices so that all the missing
3385 * devices have the higher raid_disk numbers.
3386 */
3387 mempool_t newpool, oldpool;
3388 struct pool_info *newpoolinfo;
3389 struct raid1_info *newmirrors;
3390 struct r1conf *conf = mddev->private;
3391 int cnt, raid_disks;
3392 unsigned long flags;
3393 int d, d2;
3394 int ret;
3395
3396 memset(&newpool, 0, sizeof(newpool));
3397 memset(&oldpool, 0, sizeof(oldpool));
3398
3399 /* Cannot change chunk_size, layout, or level */
3400 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3401 mddev->layout != mddev->new_layout ||
3402 mddev->level != mddev->new_level) {
3403 mddev->new_chunk_sectors = mddev->chunk_sectors;
3404 mddev->new_layout = mddev->layout;
3405 mddev->new_level = mddev->level;
3406 return -EINVAL;
3407 }
3408
3409 if (!mddev_is_clustered(mddev))
3410 md_allow_write(mddev);
3411
3412 raid_disks = mddev->raid_disks + mddev->delta_disks;
3413
3414 if (raid_disks < conf->raid_disks) {
3415 cnt=0;
3416 for (d= 0; d < conf->raid_disks; d++)
3417 if (conf->mirrors[d].rdev)
3418 cnt++;
3419 if (cnt > raid_disks)
3420 return -EBUSY;
3421 }
3422
3423 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3424 if (!newpoolinfo)
3425 return -ENOMEM;
3426 newpoolinfo->mddev = mddev;
3427 newpoolinfo->raid_disks = raid_disks * 2;
3428
3429 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3430 rbio_pool_free, newpoolinfo);
3431 if (ret) {
3432 kfree(newpoolinfo);
3433 return ret;
3434 }
3435 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3436 raid_disks, 2),
3437 GFP_KERNEL);
3438 if (!newmirrors) {
3439 kfree(newpoolinfo);
3440 mempool_exit(&newpool);
3441 return -ENOMEM;
3442 }
3443
3444 freeze_array(conf, 0);
3445
3446 /* ok, everything is stopped */
3447 oldpool = conf->r1bio_pool;
3448 conf->r1bio_pool = newpool;
3449
3450 for (d = d2 = 0; d < conf->raid_disks; d++) {
3451 struct md_rdev *rdev = conf->mirrors[d].rdev;
3452 if (rdev && rdev->raid_disk != d2) {
3453 sysfs_unlink_rdev(mddev, rdev);
3454 rdev->raid_disk = d2;
3455 sysfs_unlink_rdev(mddev, rdev);
3456 if (sysfs_link_rdev(mddev, rdev))
3457 pr_warn("md/raid1:%s: cannot register rd%d\n",
3458 mdname(mddev), rdev->raid_disk);
3459 }
3460 if (rdev)
3461 newmirrors[d2++].rdev = rdev;
3462 }
3463 kfree(conf->mirrors);
3464 conf->mirrors = newmirrors;
3465 kfree(conf->poolinfo);
3466 conf->poolinfo = newpoolinfo;
3467
3468 spin_lock_irqsave(&conf->device_lock, flags);
3469 mddev->degraded += (raid_disks - conf->raid_disks);
3470 spin_unlock_irqrestore(&conf->device_lock, flags);
3471 conf->raid_disks = mddev->raid_disks = raid_disks;
3472 mddev->delta_disks = 0;
3473
3474 unfreeze_array(conf);
3475
3476 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3478 md_wakeup_thread(mddev->thread);
3479
3480 mempool_exit(&oldpool);
3481 return 0;
3482 }
3483
raid1_quiesce(struct mddev * mddev,int quiesce)3484 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3485 {
3486 struct r1conf *conf = mddev->private;
3487
3488 if (quiesce)
3489 freeze_array(conf, 0);
3490 else
3491 unfreeze_array(conf);
3492 }
3493
raid1_takeover(struct mddev * mddev)3494 static void *raid1_takeover(struct mddev *mddev)
3495 {
3496 /* raid1 can take over:
3497 * raid5 with 2 devices, any layout or chunk size
3498 */
3499 if (mddev->level == 5 && mddev->raid_disks == 2) {
3500 struct r1conf *conf;
3501 mddev->new_level = 1;
3502 mddev->new_layout = 0;
3503 mddev->new_chunk_sectors = 0;
3504 conf = setup_conf(mddev);
3505 if (!IS_ERR(conf)) {
3506 /* Array must appear to be quiesced */
3507 conf->array_frozen = 1;
3508 mddev_clear_unsupported_flags(mddev,
3509 UNSUPPORTED_MDDEV_FLAGS);
3510 }
3511 return conf;
3512 }
3513 return ERR_PTR(-EINVAL);
3514 }
3515
3516 static struct md_personality raid1_personality =
3517 {
3518 .name = "raid1",
3519 .level = 1,
3520 .owner = THIS_MODULE,
3521 .make_request = raid1_make_request,
3522 .run = raid1_run,
3523 .free = raid1_free,
3524 .status = raid1_status,
3525 .error_handler = raid1_error,
3526 .hot_add_disk = raid1_add_disk,
3527 .hot_remove_disk= raid1_remove_disk,
3528 .spare_active = raid1_spare_active,
3529 .sync_request = raid1_sync_request,
3530 .resize = raid1_resize,
3531 .size = raid1_size,
3532 .check_reshape = raid1_reshape,
3533 .quiesce = raid1_quiesce,
3534 .takeover = raid1_takeover,
3535 };
3536
raid_init(void)3537 static int __init raid_init(void)
3538 {
3539 return register_md_personality(&raid1_personality);
3540 }
3541
raid_exit(void)3542 static void raid_exit(void)
3543 {
3544 unregister_md_personality(&raid1_personality);
3545 }
3546
3547 module_init(raid_init);
3548 module_exit(raid_exit);
3549 MODULE_LICENSE("GPL");
3550 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3551 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3552 MODULE_ALIAS("md-raid1");
3553 MODULE_ALIAS("md-level-1");
3554