xref: /titanic_44/usr/src/common/crypto/rng/fips_random.c (revision b5a2d8455dfa3190fc977c4bec53e91c99012767)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <rng/fips_random.h>
28 #include <sys/sha1.h>
29 
30 /*
31  * Adds val1 and val2 and stores result into sum.  The various input
32  * pointers can be exactly aliased.  (They cannot be offset and
33  * overlapping, but no one would ever do that.)  Values are big endian
34  * by words and native byte order within words.  The return value's
35  * 2-bit is 0 if the result is zero, it's 1 bit is carry out.  (This
36  * is reused code.  The return code is not used by n2rng.)  Thus,
37  * calling with both carryin and complement_val2 ones does a
38  * subtraction.  A null sum pointer parameter is allowed.  The
39  * subtraction features were required when this code was orginally
40  * written so it could do a mod q operation.
41  */
42 static int
fips_add160(uint32_t * sum,uint32_t const * val1,uint32_t const * val2,const unsigned carryin,const int complement_val2)43 fips_add160(uint32_t *sum, uint32_t const *val1, uint32_t const *val2,
44     const unsigned carryin, const int complement_val2)
45 {
46 	int i;
47 	uint32_t partialsum;
48 	uint32_t carry = (carryin > 0);
49 	uint32_t non_zero = 0;
50 
51 	for (i = 4; i >= 0; --i) {
52 		partialsum = val1[i] + (complement_val2 ? ~val2[i] : val2[i]) +
53 		    carry;
54 		if (carry) {
55 			carry = (partialsum <= val1[i]);
56 		} else {
57 			carry = (partialsum < val1[i]);
58 		}
59 		if (sum) {
60 			sum[i] = partialsum;
61 		}
62 		non_zero |= partialsum;
63 	}
64 
65 	return (((non_zero != 0) * 2) | carry);
66 }
67 
68 #ifdef _LITTLE_ENDIAN
69 #define	SWAP16(value)  \
70 	((((value) & 0xff) << 8) | ((value) >> 8))
71 
72 #define	SWAP32(value)	\
73 	(((uint32_t)SWAP16((uint16_t)((value) & 0xffff)) << 16) | \
74 	(uint32_t)SWAP16((uint16_t)((value) >> 16)))
75 
76 static void
xvalconv(uint32_t * dest,uint32_t * src,int len)77 xvalconv(uint32_t *dest, uint32_t *src, int len)
78 {
79 	int i;
80 
81 	for (i = 0; i < len; i++) {
82 		dest [i] = SWAP32(src[i]);
83 	}
84 }
85 #endif /* _LITTLE_ENDIAN */
86 
87 /*
88  * Computes a new random value, which is stored in x_j; updates
89  * XKEY.  XSEED_j is additional input.  In principle, we should
90  * protect XKEY, perhaps by putting it on a non-pagable page, but we
91  * aways clobber XKEY with fresh entropy just before we use it.  And
92  * step 3d irreversibly updates it just after we use it.  The only
93  * risk is that if an attacker captured the state while the entropy
94  * generator was broken, the attacker could predict future values.
95  * There are two cases: 1.  The attack gets root access to a live
96  * system.  But there is no defense against that.  2.  The attacker
97  * gets access to a crash dump.  But by then no values are being
98  * generated.
99  *
100  * Note that XSEEDj is overwritten with sensitive stuff, and must be
101  * zeroed by the caller.  We use two separate symbols (XVAL and
102  * XSEEDj) to make each step match the notation in FIPS 186-2.
103  */
104 void
fips_random_inner(uint32_t * key,uint32_t * x_j,uint32_t * XSEED_j)105 fips_random_inner(uint32_t *key, uint32_t *x_j,
106     uint32_t *XSEED_j)
107 {
108 	SHA1_CTX	sha1_context;
109 	/* Alias to preserve terminology from FIPS 186-2 */
110 #define	XVAL XSEED_j
111 	/*
112 	 * K&R section A8.7: If the array has fixed size, the number
113 	 * of initializers may not exceed the number of members in the
114 	 * array; if there are fewer, the trailing members are
115 	 * initialized with 0.
116 	 */
117 	static const char	zero[SHA1BLOCKBYTES - SHA1BYTES] = {0};
118 
119 	/*
120 	 * Step 3b: XVAL = (XKEY + XSEED_sub_j) mod 2^b.  The mod is
121 	 * implicit in the 160 bit representation.  Note that XVAL and
122 	 * XSEED_j are actually the same location.
123 	 */
124 	(void) fips_add160(XVAL, key, XSEED_j, 0, 0);
125 	/*
126 	 * Step 3c: x_sub_j = G(t, XVAL).
127 	 */
128 	SHA1Init(&sha1_context);
129 	SHA1Update(&sha1_context, (unsigned char *)XVAL, SHA1BYTES);
130 	/*
131 	 * Filling to 64 bytes is requried by FIPS 186-2 Appendix 3.3.
132 	 * It also triggers SHA1Transform (the steps a-e of the spec).
133 	 *
134 	 * zero is a const char[], but SHA1update does not declare its
135 	 * second parameter const, even though it does not modify it,
136 	 * so we cast to suppress a compiler warning.
137 	 */
138 	SHA1Update(&sha1_context, (unsigned char *)zero,
139 	    SHA1BLOCKBYTES - SHA1BYTES);
140 	/*
141 	 * The code below directly accesses the state field of
142 	 * sha1_context, which is of type SHA1_CTX, defined in sha1.h.
143 	 */
144 	/* copy out to x_j */
145 
146 #ifdef _BIG_ENDIAN
147 	{
148 		int i;
149 		for (i = 0; i < 5; i++) {
150 			x_j[i] = sha1_context.state[i];
151 		}
152 	}
153 #else
154 	xvalconv(x_j, sha1_context.state, SHA1BYTES/4);
155 #endif
156 
157 	/*
158 	 * Step 3d: XKEY = (1 + XKEY + x_sub_j) mod 2^b.  b=160.  The
159 	 * mod 2^160 is implicit in the 160 bit representation.  The
160 	 * one is added via the carry-in flag.
161 	 */
162 	(void) fips_add160(key, key, x_j, 1, 0);
163 #undef XVAL
164 }
165